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Preface 
 

Arithmetic is the basic topic of mathematics. According to the American Heritage 
Dictionary [1], it concerns “The mathematics of integers under addition, subtraction, 
multiplication, division, involution, and evolution.” 

The present text differs from other treatments of arithmetic in several respects: 

The provision of simple but precise definitions of the counting numbers and other 
notions introduced. 

The use of simple but precise notation that is executable on a computer, allowing 
experimentation and providing a simple and meaningful introduction to computer 
programming. 

The introduction and significant use of fundamental mathematical notions (such as 
vectors, matrices, Heaviside operators, and duality) in simple contexts that make 
them easy to understand. This lays a firm foundation for a wealth of later use in 
mathematics. 

Emphasis is placed on the use of guesses by speculation and criticism in the spirit of 
Lakatos, as discussed in the treatment of proofs in Chapter 5. 

The thrust of the book might best be appreciated by comparing it with Felix Klein’s 
Elementary Mathematics from an Advanced Standpoint [2]. However, I shun the 
corresponding title Arithmetic from an Advanced Standpoint because it would incorrectly 
suggest that the treatment is intended only for mature mathematicians; on the contrary, 
the use of simple, executable notation makes it accessible to any serious student 
possessing little more than a knowledge of the counting numbers. 

Like Klein, I do not digress to discuss the importance of the topics treated, but leave that 
matter to the knowledge of the mature reader and to the faith of the neophyte. 
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Chapter 

1 

Introduction 

A. Counting Numbers 

The list 1 2 3 4 5 6 7 8 9 10 11 12 shows the first dozen counting numbers, and 
any reader of this book could extend the list to tedious lengths. Although this definition 
by example captures the basic idea, it fails to address related questions such as: 

1. Do counting numbers continue forever? 

2. Are there other numbers that precede the first counting number? 

3.  Are there other numbers between the counting numbers or elsewhere? 

These questions were addressed a century ago by Peano, who began by introducing the 
notion of a successor “operation” which, when applied to any counting number, produced 
its successor. For example, successor 3 would produce 4.  

We will denote the successor operation by the two-character word >:  . For example: 
 
 >: 3 
4 
 
 >: 999 
1000 

 

The foregoing is an example of dialogue with the computer. Because the notation used 
here (and throughout the book) can be executed by a computer provided with the 
language J (available from website jsoftware.com), every expression used can be tested 
by executing it, as can related expressions that the reader may wish to experiment with. 
For example, one might apply the successor to lists of counting numbers as follows: 
 
   >: 1 2 3 4 5 6 7 8 9 10 11 12 
2 3 4 5 6 7 8 9 10 11 12 13 
 
   >: 2 4 6 8 10 
3 5 7 9 11 
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Is there a last or largest counting number? Peano answered this by asserting that every 
counting number has a distinct successor, thus introducing the idea of an unbounded or 
infinite list of counting numbers. 

B. Integers 

Since 7 is the successor of 6, we may also say that 6 is the predecessor of 7, and 
introduce a predecessor operation denoted by <:  . For example: 
 
   <:3 5 7 9 11 
2 4 6 8 10 
 
   >:2 4 6 8 10 
3 5 7 9 11 

It would be convenient if the predecessor (like the successor) applied to all counting 
numbers, but since 1 is the first counting number, its predecessor cannot be a counting 
number. We therefore introduce a wider class of numbers, in which every member has a 
predecessor as well as a successor. Thus: 
 
   <: 1 
0 
   <: 0 
_1 
   <: _1 
_2 
 

This wider class of numbers is called the integers, and includes zero (0), as well as 
negative numbers (_1 _2 _3 etc.). 

It is helpful to form the habit of looking up any new technical term in a good dictionary; 
even if the term is already familiar, its etymology often provides useful insight. For 
example, in the American Heritage Dictionary (a dictionary to be recommended because 
of its method of treating etymology) the definition of integer refers to the Indo-European 
root tag that means “to touch; handle”. This with the prefix in- (meaning not) implies that 
an integer is untouched, or whole; in contrast to one that is “fractured”, like one of the 
fractions one-half, one-quarter, etc. 

Similarly, the word infinite introduced in Section A will be found to mean not (in) finite, 
or without finish. 

C. Inverses 

The predecessor operation (<:) is said to be the inverse of the successor (>:) because it 
“undoes” its work. For example, <:>: 8 yields 8, and the same relation holds for any 
integer. Thus: 
 
   >:1 2 3 4 5 6 <:>:1 2 3 4 5 6 
2 3 4 5 6 7 1 2 3 4 5 6 
 

In the original definition the successor applied only to the counting numbers. We now re-
define it to apply to all integers by defining it as the inverse of predecessor. For example: 
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   >:<: _3 _2 _1 0 1 2 
_3 _2 _1 0 1 2 

D. Domains 
The successor >: defined in Section A applied only to counting numbers, and they would 
be said to be its domain (over which it “ruled”). In defining the predecessor in Section B 
it became necessary to extend its domain to the integers, that also included zero and the 
negative numbers. By re-defining the successor as the inverse of the predecessor, we also 
extended its domain to the integers. 

We will find that the introduction of further operations (such as the inverse of 
“doubling”) will require further extensions of domains. However, to keep the 
development simple, we will restrict attention to simple domains as far as possible. 

E. Nouns and Verbs 

The successor operation >: can be said to “act upon” a counting number to produce a 
result, and is therefore analogous to an “action word” or verb in English. Similarly, the 
numbers to which the verb >: applies are analogous to nouns in English. 

We will soon see that the terms verb and noun lead to further important analogies with 
adverbs, conjunctions, and other parts of speech in English. We will therefore adopt 
them, even though other terms (function, operator, and variable) are more commonly 
used in mathematics. However, function will sometimes be used as a  synonym for verb. 

F. Pronouns and Proverbs 

Consider the following use of the pronoun it : 
 
   it=: 1 2 3 4 5 6 
   <: it 
0 1 2 3 4 5 
 
   >:<: it 
1 2 3 4 5 6 
 

The copula =: behaves like the copulas is and are in English, and the first sentence 
would be read aloud as “it is the list of counting numbers 1 2 3 4 5 6” or as “it is 1 
2 3 4 5 6”. 

In English the names used for pronouns are restricted to a very few, such as it, he, and 
she; they are not so restricted here. For example: 
 
   zero=: 0    
   neg=: _1 _2 _3 
   list6=: it 
   list6,zero,neg 
1 2 3 4 5 6 0 _1 _2 _3 
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A proverb is used to stand for a verb, just as a pronoun is used to stand for a noun. (The 
word proverb in this sense is found only in larger dictionaries.) For example: 
 
   increment=: >: decrement=: <: 
   increment list6,zero,neg 
2 3 4 5 6 7 1 0 _1 _2 
 
   inc=: increment 
   inc list6 
2 3 4 5 6 7 

G. Conjunctions 

The phrase Run and hide expresses an action performed as a sequence of two simpler 
actions, and in it the word and is said to be a copulative conjunction. We will use the 
symbol @ to denote an analogous conjunction. For example: 
 
   add3=: >: @ >: @ >: 
   add3 1 2 3 4 5 6 
4 5 6 7 8 9 
 
   identity=: <: @ >: 
   identity 1 2 3 4 5 6 
1 2 3 4 5 6 
 

Although the verb identity defined above makes no change to its argument, it is an 
important verb, so important that it is given its own symbol. Thus: 
 
   ] 1 2 3 4 5 6 
1 2 3 4 5 6 
 

Although a verb for the twelfth successor could be expressed by repeated use of @, it 
would be tedious, and we introduce a second conjunction illustrated below: 
 
   list=: 1 2 3 4 5 6 
   >:^:3 list 
4 5 6 7 8 9 
 
   >:^:12 list 
13 14 15 16 17 18 
 
   <:^:6 list 
_5 _4 _3 _2 _1 0 
 

The conjunction ^: is called the power conjunction; it applies its left argument (the verb 
to its left) the number of times specified by its noun right argument. 



Chapter 1  Introduction   5 
  

H. Addition And Subtraction 

The examples of the preceding section illustrate the fact that if n is any counting number, 
then the verb >:^:n adds n  to its argument, and <:^:n subtracts n. 

For example : 
   n=: 5 
   abc=: 10 11 12 13 14 15 
   >:^:n abc 
15 16 17 18 19 20 
 
   <:^:n abc 
5 6 7 8 9 10 
 
   abc+n abc-n 
15 16 17 18 19 20 5 6 7 8 9 10 
 

The last two examples introduce the notation commonly used for addition and 
subtraction, and the whole set of examples essentially defines them in terms of the 
simpler successor and predecessor of Peano. 

I. Verb Tables 

Two lists can be added and subtracted as illustrated below: 
 
   a=: 0 1 2 3 4 5 
   b=: 2 3 5 7 11 13 
   a+b a-b 
2 4 7 10 15 18 _2 _2 _3 _4 _7 _8 
 
   a+a 
0 2 4 6 8 10 
   a-a 
0 0 0 0 0 0 
 
   a +/ b 
2 3  5  7 11 13 
3 4  6  8 12 14 
4 5  7  9 13 15 
5 6  8 10 14 16 
6 7  9 11 15 17 
7 8 10 12 16 18 
 
   a +/ a 
0 1 2 3 4  5 
1 2 3 4 5  6 
2 3 4 5 6  7 
3 4 5 6 7  8 
4 5 6 7 8  9 
5 6 7 8 9 10 
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The last two examples show addition tables that add each item of the first argument to 
each item of the second in a systematic manner. The verb +/ is formed by applying the 
adverb / to the verb + , and is usually referred to as the verb “plus table”. The adverb / 
applies uniformly to other verbs, and we can therefore produce subtraction tables as 
follows: 
 
  a-/a b-/1 2 
0 _1 _2 _3 _4 _5  1  0 
1  0 _1 _2 _3 _4  2  1 
2  1  0 _1 _2 _3  4  3 
3  2  1  0 _1 _2  6  5 
4  3  2  1  0 _1 10  9 
5  4  3  2  1  0 12 11 
 

To make clear the meaning of a verb table, draw a vertical line to its left and write the left 
argument vertically to the left of it; draw a horizontal line above the table, and enter the 
right argument horizontally above it. We can produce such an annotated display of a verb 
table by using the adverb table instead of /, as follows: 
 
   a +table b 
+-+---------------+ 
| |2 3  5  7 11 13| 
+-+---------------+ 
|0|2 3  5  7 11 13| 
|1|3 4  6  8 12 14| 
|2|4 5  7  9 13 15| 
|3|5 6  8 10 14 16| 
|4|6 7  9 11 15 17| 
|5|7 8 10 12 16 18| 
+-+---------------+ 
 
   a-table a 
+-+----------------+ 
| |0  1  2  3  4  5| 
+-+----------------+ 
|0|0 _1 _2 _3 _4 _5| 
|1|1  0 _1 _2 _3 _4| 
|2|2  1  0 _1 _2 _3| 
|3|3  2  1  0 _1 _2| 
|4|4  3  2  1  0 _1| 
|5|5  4  3  2  1  0| 
+-+----------------+  

J. Relations 

Any two integers a and b are related in certain simple ways: a precedes (or is less than) 
b; a equals b; or a follows (or is greater than) b. We introduce the verbs < and = and > 
whose results show whether the particular relation holds between the arguments. For 
example: 
 
   1<3 1=3 1>3 
1 0  0 
 
   a=: 1 2 3 4 5 
   b=: 6-a 
   b 
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5 4 3 2 1 
 
   a<b 
1 1 0 0 0 
 
   a=b a>b 
0 0 1 0 0 0 0 0 1 1 
 
   a</b 
1 1 1 1 0 
1 1 1 0 0 
1 1 0 0 0 
1 0 0 0 0 
0 0 0 0 0 
 
   a=/b a>/b 
0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 1 
0 0 1 0 0 0 0 0 1 1 
0 1 0 0 0 0 0 1 1 1 
1 0 0 0 0 0 1 1 1 1 

A result of 1 indicates that the relation holds, and 0 indicates that it does not; it is 
reasonable to read the ones and zeros aloud as “true” and “false”. The final example is a 
greater-than table. 

K. Lesser-Of and Greater-Of  

The lesser of (or minimum of) two arguments is the one that precedes (or perhaps equals) 
the other; the verb <. yields the lesser of its arguments. For example: 
 
   a b 
1 2 3 4 5 5 4 3 2 1 
 
   a<.b a>.b 
1 2 3 2 1 5 4 3 4 5  
 
   a<./b 
1 1 1 1 1 
2 2 2 2 1 
3 3 3 2 1 
4 4 3 2 1 
5 4 3 2 1 

L. List And Table Formation 
Although any list can be specified by listing its members, certain lists can be specified 
more conveniently. The integers verb i. produces lists or tables of integers (beginning 
with zero) that are convenient in producing verb tables. For example : 
 
 ] a=:i. 5 
0 1 2 3 4 
 
   a<./a 
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0 0 0 0 0 
0 1 1 1 1 
0 1 2 2 2 
0 1 2 3 3 
0 1 2 3 4 
 
   4-a 
4 3 2 1 0 
 
   1+a 
1 2 3 4 5 
   i. _5 
4 3 2 1 0 
   i.3 4 
0 1  2  3 
4 5  6  7 
8 9 10 11 
 

The verb # replicates its right argument the number of times specified by the left: 
 
   3#5 
5 5 5 
 
   5#3 
3 3 3 3 3 
 
   2 3 4 # 6 7 8 
6 6 7 7 7 8 8 8 8 
 
   b=: _2 + i. 5 
   b 
_2 _1 0 1 2 
 
   c=:b>0 
   c 
0 0 0 1 1 
   c#b 
1 2 
 

The verb $ “shapes” its right argument, using cyclic repetition of its items as needed: 
 
   8$2 3 5 3 4$2 3 5 
2 3 5 2 3 5 2 3 2 3 5 2 
  3 5 2 3 
  5 2 3 5 

M. Punctuation 

Although the two sentences: 
 The teacher said he was stupid 

 The teacher, said he, was stupid 
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differ only in punctuation, they differ greatly in meaning. 

Arithmetic sentences may also be punctuated (by paired parentheses) as illustrated below: 
 
   (8-3)+4 
9 
   8-(3+4) 
1 
   8-3+4 
1 
 

The last sentence illustrates the behaviour in the absence of parentheses: in effect, the 
sentence is evaluated from right to left or, equivalently, the right argument of each verb is 
the value of the entire phrase to its right. 

Punctuation makes possible many useful expressions. For example: 
 
   c=: 2 7 1 8 2 8 
   (c=2)#c 
2 2 
 
   ((c=2)>.(c=8))#c 
2 8 2 8 
 
   (c<2)>.(c=2) 
1 0 1 0 1 0 
 

The last sentence can be read as “c is less than or equal to 2”. It is equivalent to the verb 
<: in the expression c<:2. 

The beginner is advised to use fully-parenthesized sentences even though some of the 
parentheses are redundant. Thus, write (c<2)>.(c=2) even though (c<2)>.c=2 is 
equivalent. 

N. Insertion 
   a=: 2 7 1 8 2  
   2+7+1+8+2 
20 
   +/a 
20 
 

The foregoing sentences illustrate the fact that the adverb / produces a verb that “inserts” 
its verb left argument between the items of the argument of the resulting verb +/ . Insert 
applies equally to other verbs. For example:  
 
   >./a 2>.7>.1>.8>.2 
8 8 
 
   sum=:+/ 
 
   max=:>./ 
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   min=:<./ 
 
   sum a 
20 
 
   spread=: (max a)-(min a) 
    range=: (min a)+i. >:spread 
   range 
1 2 3 4 5 6 7 8 

O. Multiplication 
   m=:3 
   n=:5 
   n#m 
3 3 3 3 3 
 
   +/n#m 
15 
 

The final result above is clearly the product of m and n, and the sentences essentially 
define multiplication in terms of repeated addition. In mathematics the product verb is 
denoted in a variety of ways; we will use * as in: 
 
   m*n 
15 
 
   dig=: 1+i. 6 odds=: 1+2*i. k=: 6 
   dig odds 
1 2 3 4 5 6 1 3 5 7 9 11 
 
   */dig +/odds 
720 36 
   !#dig  k*k 
720 36 
 

The last two sentences on the left illustrate the definition of a new verb,  factorial, 
denoted by ! . 

P. Power 
   m=: 3 n=: 5 
   n#m      */n#m 
3 3 3 3 3 243 
 

The final result above is called the nth power of m, or m to the power n. Comparison with 
Section O will show that power is defined in terms of multiplication in the same way that 
multiplication is defined in terms of addition. 
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In most math texts there is no symbol for power, it being denoted by showing the second 
argument as a superscript. We will adopt the symbol ^ used by de Morgan [3] about a 
century ago. For example: 
 
   m^n  3^5 
243 243 
 
   (3^5)*(3^2) 3^(5+2) 
2187 2187 

As suggested by the equivalence of the last two sentences, (a^b)*(a^c) is equivalent to 
a^(b+c). The reason for this can be seen by substituting the definition of power given 
above:       
 
   (3^5)*(3^2) (*/5#3)*(*/2#3) 
2187 2187 
 
   (5+2)#3 */(5+2)#3 
3 3 3 3 3 3 3 2187 

Q. Summary 

The main results of this chapter may be summarized as follows: 

1. The idea of the counting numbers is formalized and extended to infinity by 
introducing the notion that every counting number has a successor; it is extended 
to include zero and negative numbers by introducing the notion of predecessor, 
inverse to successor. 

2. Symbols are introduced to denote successor and predecessor (>: and <:); 
because they specify actions they are called verbs, and the integers they act upon 
are called nouns. 

3. The copula =: is introduced to assign a name (called a pronoun) to a noun or list 
of nouns and to assign a name (called a proverb) to a verb. 

4. Conjunctions (@ and ^:) are introduced to define verbs that are specified by a 
sequence of simpler verbs. 

5. Addition is defined in terms of a sequence of successors; subtraction is defined in 
terms of predecessors. 

6. Verb tables are introduced to display the behaviour of addition, subtraction, and 
other verbs that apply to two arguments, such as relations (< = >) and minimum 
and maximum (<. >.). 

7. Parentheses are introduced as punctuation, that is, to specify the order in which 
phrases in a sentence are to be interpreted. 

8    An adverb called insert (denoted by /) is introduced to insert a verb between 
items of a list argument, and +/ is used with replication (#) to define 
multiplication in terms of repeated addition; power is defined in terms of 
repeated multiplication. 

We will now summarize all of the notation used. This summary may be useful for 
reference, but because related symbols are used for related ideas, it should also be studied 
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for mnemonic aids. Succeeding chapters conclude with similar summaries of notation, 
and all notation is available from the J Dictionary discussed in Book 1. 

The table shows the verbs in three columns, each headed by the final character (dot or 
colon) of the verbs in that column: the first row shows Less than (<) in the first column, 
Lesser of (<.) in the second, and Predecessor (<:) in the third: 

Verbs And Copula . : 

 < Less than Lesser of (Min) Predecessor 

 > Greater than Greater of (Max) Successor 

 = Equals  Copula 

 + Add 

 - Subtract 

 * Multiply 

 ^ Power 

 ! Factorial 

 ]  Identity 

 # Replicate 

 $ Shape 

 , Catenate 

 i  Integers 

Adverbs 

 / Insert (when used with one noun argument, as in +/b)  

  Table (when used with two noun arguments, as in a+/b) 

Conjunctions 

 @ Atop (defines a verb by a sequence, as in >:@>:@>:) 

 ^: Power (>:^:3 is >:@>:@>:) 

In conventional math, the symbol - denotes subtraction when used with two arguments 
(a-b) and negation when used with one (-b). We will adopt this usage, defining -b by 
0-b. 

The thoughtful reader may have noticed such usage in this chapter: the verbs produced by 
the adverb / (as shown above), and the <: used for predecessor throughout, but used 
dyadically (that is, with two arguments) for Less or equal in Section M. This ambivalent 
use of verbs is discussed fully in Chapter 2. 

R. On Language 

Notation, the term normally used to refer to the mode of expression in math, is defined 
(in the AHD) as “A system of figures or symbols used in specialized fields ... ”. An 
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executable notation such as that used here is normally called a programming language; 
we will use the terms notation and language interchangeably.  

Programming languages are commonly taught in specific courses, prerequisite to courses 
in topics that employ them. In mathematics, on the contrary, notation is not taught as 
such, but is introduced in passing as required by the subject. The same approach is 
adopted in this text. 

Any reader interested in using the notation in topics other than those treated here should 
consult Section 9 L. 

In a math course there is little reason for a student to be curious or concerned about 
notation that has not yet been used. In using a programming language the situation is 
somewhat different; a student who already knows something of the possibilities of 
computer programming may feel frustrated at not knowing what symbols to use for 
operations that she knows must be available in the language. 

There are several avenues open to the student who may be more interested in the 
language than in the treatment of arithmetic: 

1. Press key F1 in the top row to display the vocabulary of J. Then click the mouse 
on any desired entry in the vocabulary to display its definition. Press Esc to 
remove the display. 

2. Use the computer to experiment with various facilities, and therefore to explore 
their definitions. 

3. Range ahead to the On Language sections that conclude Chapters 2 and 9. 
 

Exercises 

In exercises first write (or at least sketch out) the result of each sentence without using 
the computer; then enter the sentence on the computer to check your answer. 

In using the computer, it will be more efficient if you familiarize yourself with the 
available editing facilities. In particular, these allow you to revise entries being prepared, 
and to recall earlier entries for re-entry. Also learn to use expressions such as: 
   names 0 To display the names used for pronouns 
 
   names 1 To display the names used for adverbs 
 
   names 2 To display the names used for conjunctions 
 
   names 3 To display the names used for proverbs 
 
   erase <'abc' To erase the name abc 

Letters such as A and B in the labels below indicate the sections to which the associated 
experiments are relevant. Refer back to these sections for any needed help: 
 

A1 >:12345 

 >:1 2 3 4 5 

 >:>:>:>:1 2 3 4 5 
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B1 <: _12345 

 <:_1 _2 _3 _4 _5 

 <:<:<:<:1 2 3 4 5 

 <:<:>:>:1 2 3 4 5 

 >:<:>:<:1 2 3 4 5 

 

F1 a=:1 2 3 

 b=:4 5 

 >:a 

 a,b 

 >:a,b 

 

F2  z=:0 

 n=:_5 _4 _3 _2 _1 

 n,z,a,b 

 b,a,z,n 

 

F3 wax=: >: 

 wane=:<: 

 wax wax wane n,z,a,b 

 

G1 list=:1 2 3 4 5 

 right=:>:@>: 

 left=:<:@<: 

 right list 

 left list  

 left right list 

 ] list 

 

G2 decade=:>:^:10 

 decade list 

 century=:decade^:10 

 century list 

 >:^:10^:10 list 
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G3 First review the discussion of inverses in Section C. Then enter the following 
sentences on the computer, observe their results, and try to state the effect of the 
power conjunction with negative right arguments: 

 >:^:_1 list 

 <:^:_1 list 

 >:^:_3 list 

 decade^:_1 list 

 decade^:2 decade^:_2 list 

 I1 Reproduce on the computer the last two tables of Section I. 

 

J1 The verbs over and by used in the following sentences were defined and 
illustrated in Section I. As usual, first sketch the result of each sentence by hand 
before entering it on the computer: 

 d=: 0 1 2 3 4 

 d by d over d</d 

 d by d over d=/d 

 d by d over d+/d 

 d by d over d-/d 

 

J2 Repeat Exercise J1 using the list e=:_3 _2 _1 0 1 2 3 instead of the list d. 

 

K1 Repeat Exercises J1 and J2 for the verbs >. and <., that is, for tables of maximum 
and minimum. 

 

M1 An integer such as 14 that can be written as the sum of some integer with itself is 
called an even number; a number such as 7 that cannot is called odd. Write an 
expression using the verb i. to produce the first twenty even numbers. Do not look 
at the answer below until you have tested your answer on the  computer. 

  Answer:   (i.20)+(i.20)  

 

M2 Write an expression for the first 20 odds.  

 

N1 Review Section M and note that the unparenthesized sentence 2-7-1-8-2 is 
equivalent to 2-(7-(1-(8-2))) . Then evaluate the sentence and verify that your 
result agrees with -/2 7 1 8 2. 

 Evaluate and compare the results of the following sentences: 
 -/2 7 1 8 2  

 (+/2 1 2)-(+/7 8) 

 Then state in simple terms what the verb -/ produces, and test your statement on 
other lists (including lists with both odd and even numbers of items). 
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  Answer: -/ list produces the alternating sum, the sum of every other item of 

the list diminished by the sum of the remaining items.  

 

O1 Construct the multiplication table produced by the sentence (2+i.9)*/(2+i.9) 
and observe that its largest item is 100. Note that the table cannot contain prime 
numbers (which cannot be products of positive integers other than themselves and 
1). Examine the table to determine all of the primes up to 9. 

 

P1 b=:i.7 

 b by b over b^/b 

 a=:b-3 

     a by b over a^/b 
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Chapter 

2 

 Properties of Verbs 

A. Valence, Ambivalence, And Bonds 

In the phrases a-b and a<:b and a+/b the verbs “bond to” two arguments and (adopting 
an analogous term from chemistry) we say that in this context the verbs have valence 2; 
in the expressions -b and <:b and +/b the same verbs have valence 1. 

From these examples it is clear that the verbs are ambivalent, the valence being 
determined by the context in which they are used. We also say that a verb used with 
valence 1 is used  monadically, or is a  monad; a verb used with valence 2 is a dyad. 

In the phrase 3&* the conjunction & bonds the noun 3 to the verb * to produce a monad. 
Thus: 
   triple=: 3&* 
   triple a=: 1 2 3 4 
3 6 9 12 
   square=: ^&2 
   square a 
1 4 9 16 
 
   ^&3 a 
1 8 27 64 

Although a is the list 1 2 3 4, it should be noted that the phrase ^&3 1 2 3 4 is not 
equivalent to ^&3 a, because the sequence 3 1 2 3 4 is treated as a single list that is 
bonded to ^ to form a verb. However, ^&3 (1 2 3 4) and ^&3 a are equivalent. 

The bond conjunction is extremely prolific because its use with any dyad d generates two 
families of monads, one using left bonding (n&d) and one using right bonding (d&n). For 
example, with right bonding the verb ^ produces the square, cube, and higher powers; 
with left bonding it produces exponential verbs. 

The conjunction @ introduced in Section 1 G composes two verbs, as in i.@- 3 to yield 
2 1 0; the verb i.@- also has a dyadic meaning, as in 8 i.@- 3 to yield 0 1 2 3 4. 
In general, v1@v2 b is equivalent to v1 v2 b, and a v1@v2 b is equivalent to v1 (a 
v2 b). In effect, the monad v1 is applied “atop” the dyad v2, and the conjunction @ 
(denoted by the commercial at symbol) is called atop.  
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B. Commutativity 

The dyads + and * yield the same results if their arguments are interchanged or 
“commuted”, and they are therefore said to be commutative. For example: 
 
   3+5 5+3 (3*5)=(5*3) 
8  8 1 
 

The dyad produced by the commute or cross  adverb ~ “crosses” the bonds of the verb to 
which it is applied. Moreover, the monad produced by ~ duplicates its single argument. 
For example:  
 
   3-~5 5-3 
2 2 
 
  +~3 ^~3 
6 27 
 
   */~i.5 
0 0 0  0  0 
0 1 2  3  4 
0 2 4  6  8 
0 3 6  9 12 
0 4 8 12 16 

C. Associativity 

Compare the results of the following pairs of sentences, which differ only in the 
“associations” produced by different punctuations: 
 
   (4+3)+(2+1) 4+((3+2)+1) 
10 10 
   (4-3)-(2-1) 4-((3-2)-1) 
0 4 
 (4>.3)>.(2>.1) 4>.((3>.2)>.1) 
4 4 
 
 (4*3)*(2*1) 4*((3*2)*1) 
24  24 
 
 (4^3)^(2^1) 4^((3^2)^1) 
4096 262144 
 

Those verbs (+ >. and *) that yield the same results are examples of associative verbs; 
the others are non-associative. 

D. Distributivity 

The monad >: is said to distribute over the dyad <. because a sentence such as (>:7) 
<. (>:4) has the same result as the corresponding sentence >:(7<.4) in which the 
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monad >: is “distributed over” the result of the dyad <. . Observe the further tests of 
distributivity: 
 
   a=:7 
   b=:4 
   triple=: *&3 
   (triple a) + (triple b) triple (a+b) 
33 33 
 
   (triple a) - (triple b) triple (a-b)  
9 9 
 
   (*&3 a) <. (*&3 b) *&3 (a<.b)  
12 12 
 
   (-&3 a) <. (-&3 b) -&3 (a<.b)  
1    1 
 
   (3&- a) <. (3&- b) 3&- (a<.b)  
_4 _1 
 

In the last two pairs of sentences it appears that although the monad -&3 (which subtracts 
3 from its argument) distributes over minimum, the monad 3&- (which subtracts its 
argument from 3) does not. 

This point is made to show the pitfall in a common practice in math, where it is stated 
that the dyad * distributes over addition, rather than stating (as we do here) that the 
family *&n of right bonds of * distributes over addition. 

Because * is commutative, the left bond c&* is equivalent to the right bond *&c, and 
both distribute over addition. However, in the case of a non-commutative verb such as 
subtraction, it is possible that a right bond with a given dyad distributes while the 
corresponding left bond does not. In such a case it is clearly incorrect to say that the dyad 
distributes, and one is led to statements such as “- distributes to the right over 
minimum”. 

A linear verb (to be discussed further in Chapter 9) is one that distributes over addition. 

E. Symmetry 

If a dyad d (such as + or * or >.) is both associative and commutative, then the monad 
d/ produced by insertion is said to be symmetric, because it produces the same result 
when the argument list to which it applies is re-ordered or permuted. For example: 
   a=: 1 2 3 4 5 
   b=: 3 1 5 2 4 
   +/a +/b 
15  15 
 
   */a */b 
120 120 
 
   >./a >./b 
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3 3 
 
  -/a -/b 
3 9 

F. Display of Proverbs 

If a proverb is entered alone (that is, without arguments), its representation is displayed. 
For example, if the proverbs of Sections F and G of Chapter 1 are already defined, then: 
 
   increment 
>: 
 
   add3 
>:@>:@>: 
 
   identity 
<:@>: 

G. Inverses 

Review the discussion of inverses in Section C and Exercise G3 of Chapter 1. Then 
observe the results of the following uses of inversion: 
 
   a=:0 1 2 3 4 5 
   >:^:_1 a 
_1 0 1 2 3 4 
 
   >:^:_1 
< 
   +&3^:_1 a 
_3 _2 _1 0 1 2 
 
   +&3^:_1 
-&3 
 
   -&3^:_1 a 
3 4 5 6 7 8 
 
   3&-^:_1 a 
3 2 1 0 _1 _2 
 
   3&- 3&-^:3 a 
0 1 2 3 4 5 
 
   3&-^:_1 
3&- 

H. Partitions 

The sum of a list (+/list) is equal to the sum of sums over parts of the list, and a similar 
relation holds for some other verbs such as */ and >./ . For example: 
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   +/3 1 4 1 5 9 (+/3 1)+(+/4 1 5 9) 
23 23 
 
   */3 1 4 1 5 9 (*/3 1)*(*/4 1 5 9) 
540 540 
 
   >./3 1 4 1 5 9 (>./3 1)>.(>./4 1 5 9) 
9 9 
 

These relations can be expressed more clearly in terms of the truncation verbs take ({.) 
and drop (}.). Thus: 
 
   a=:3 1 4 1 5 9 
   2{.a 
3 1 
 
   2}.a 
4 1 5 9 
 
   (+/2{.a)+(+/2}.a) +/a 
23 23 
 
   (*/2{.a)*(*/2}.a) */a 
540 540 
 
   (+/6{.a)+(+/6}.a) 
23 
 
   (*/6{.a)*(*/6}.a) 
540 
 

The last two examples are interesting because the list 6}.a is empty, yet the results of +/ 
and */ upon it are such as to maintain the identities seen for the other cases. Thus: 
 
 +/6}.a */6}.a 
0 1 
 

This matter is explored further in the succeeding section. 

I. Identity Elements and Infinity 

It is easy to verify that the monads 0&+ and 1&* and -&0 are identity verbs that produce 
no change in their arguments. A noun that bonds with a dyad to form an identity verb is 
said to be an identity element of that dyad. Thus, 1 is the identity element of *, and 0 is 
the identity element of + and of - . 

Although -&0 is an identity, 0&- is not. We may therefore say more precisely that 0 is a 
right identity of - . The same is true for other non-commutative verbs. Thus, 1 is a right 
identity of ^ (power). 



22  Arithmetic 
  
To ensure that identities of the form (+/a)=(+/k{.a)+(+/k}.a) remain true when 
one of the lists is empty, we define the result of d/b to be the identity element of d if the 
list b is empty. 

Does the dyad <. (minimum) possess an identity element? If h were a huge number (such 
as 10^9) then it would serve for all practical purposes as the identity element of 
minimum. However, since there is no largest number among the integers, we must again 
extend the domain by adding a new element, denoted by _ and called infinity. To provide 
an identity for maximum we also add a negative infinity denoted by __ . We will refer to 
the resulting domain as integers+. Thus: 
 
   <./0#0 >./i.0 
_ __ 

J. Experimentation 

In experimenting with expressions on the computer you will find that many verbs, 
adverbs, and conjunctions have meanings that are more general than the definitions given 
in the text.  For example: 
 
   halve=: 2&*^:_1 
   halve 2 4 6 8 10  halve 1 2 3 4 5 
1 2 3 4 5 0.5 1 1.5 2 2.5 
 
   sqr=:*~ 
   sqrt=: sqr^:_1 
   sqrt 1 4 9 16 25 sqrt 1 2 3 4 5   
1 2 3 4 5 1 1.41421 1.73205 2 2.23607 
 
   sqrt - 1 2 3 4 5 
0j1 0j1.41421 0j1.73205 0j2 0j2.23607 
 

Some of the results of these experiments are fractions and complex numbers that lie 
outside the domain of integers treated thus far. There is no harm in experimenting further 
with any that interest you, but do not spend too much time on baffling matters that will be 
treated later in the text. 

K. Summary of Notation 

The notation introduced in this chapter comprises two nouns (_ and __) for the identity 
elements of minimum and maximum; two verbs take and drop ({. }.) for truncating a 
list; the commute adverb ~ ;  the conjunction & to bond nouns to dyads; and verbs 
produced by the atop conjunction @ have dyadic as well as monadic cases.  

L. On Language 

Use the computer to test the following assertions: 

1. The monad | yields the magnitude or absolute value. 

2. The monad |. reverses its argument, and 3&|. rotates it by three places. 
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3. The monad -&| is equivalent to -@|, but the dyad -&| applies the dyad - to the 
result of applying the monad | to each argument. 

4. %&4 is division by 4, and is equivalent to 4&*^:_1 . 

5. The monads +: and -: are double and halve. 

6. The monads *: and %: are square and square root. 

7.  'abcde' is the list of the first five letters of the alphabet, and monads such as |. 
and 3&|. and 3 4&$ apply to it. 

Exercises 

A1 Define a verb sump that sums the positive elements of a list. 

 Define dsq and sqd to double the square and square the double. 

 Answer:  sump=:+/@(0&>.)  dsq=:(2&*)@(^&2) sqd=:^&2@(2&*) 

B1 Define the following verbs: 

 from That subtracts its left argument from the right 

 square Without using ^ 

 double Without using * 

 zero A monad that yields zero 

 Answer:     from=: -~     square=:*~     double=:+~    zero=:-~  
 
C1 Test all the dyads defined thus far for associativity. 
 
D1 Which of the monads defined in preceding exercises are linear? 
 
E1 Use the arguments a=: 1 2 3 4 5 and b=: 3 1 5 2 4 to test 
  all dyads (including -~ and ^~) for symmetry. 
 
E2 The expression ?~ n produces a random permutation of the  
 integers i. n. Use it for further tests of symmetry. 
 
G1 Experiment with inverses of the monads defined in preceding 
 exercises. 
 
H1 Test the dyad <. to see if (<./k{.a)<.(<./k}.a) agrees with 
 <./a for various values of k and a . 
 

H2 Repeat Exercise H1 for the dyads - and ^  

H3 Characterize those dyads that satisfy the test of Exercise H1. 

 Answer:    They are associative  

I1 Experiment with various dyads to determine their identity elements. 

J1 Experiment with the dyad % 
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Chapter 

3 

 Partitions and Selections 

A. Partition Adverbs 
The partition adverb \ (called prefix) applies to monads to produce many useful verbs. 
For example: 
 
   a=: 1 2 3 4 5 
   sum=: +/ 
   sum a 
15 
 
   sum\ a Subtotals or “running” sums 
1 3 6 10 15 
 
   (+/1),(+/1 2),(+/1 2 3),(+/1 2 3 4),(+/1 2 3 4 5) 
1 3 6 10 15 
   +/\a 
1 3 6 10 15 
 
   */\a Running products 
1 2 6 24 120 
 
   !a 
1 2 6 24 120 
 
   >./\ 3 1 4 1 5 9 Running maxima 
3 3 4 4 5 9 
 

The partition adverb \. behaves similarly to produce a verb that applies to suffixes: 
 
   sum \.a 
15 14 12 9 5 
 
   */\.a 
120 120 60 20 5 
 
   <./\.3 1 4 1 5 9 
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1 1 1 1 5 9 
 
   (*/\.a)*(*/\a) 
120 240 360 480 600 
 
  (+/\.a)+(+/\a) 
16 17 18 19 20 
 
   (-/\.a)-(-/\a) 
2 _1 2 1 2 
 

The diagonal adverb /. applies to (forward sloping) diagonals of tables. It will later be 
seen to be useful in multiplying polynomials and integers expressed in decimal. It is also 
useful in treating correlations and convolutions: 
 
   t=:1 2 1*/1 2 1 
   t 
1 2 1 
2 4 2 
1 2 1 
 
   sum/. t 
1 4 6 4 1 
 
   (sum/. t)*(10^i.-5) 
10000 4000 600 40 1 
 
   +/(sum/. t)*(10^i.-5) 
14641 
 
  121*121 
14641 
 
   +//.1 2 1*/1 3 3 1 
1 5 10 10 5 1 
 
   +//.1 3 3 1*/1 4 6 4 1 
1 7 21 35 35 21 7 1  

B. Selection Verbs 

The take and drop ({. and }.) used in Section 2 H are examples of selection verbs. A 
more general selection is provided by the verb { (called from). For example: 
 
   primes=:2 3 5 7 11 13 
   2{primes 
5 
 
   0 2 4{primes 
2 5 11 
 
   3{.primes 
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2 3 5 
   (i.3){primes 
2 3 5 
 
   (i.-#primes){primes 
13 11 7 5 3 2 
 
   i.3 5 
 0  1  2  3  4 
 5  6  7  8  9 
10 11 12 13 14 
 
   0 2{i.3 5 
 0  1  2  3  4 
10 11 12 13 14 
 
   2 1 3 5 0 4{primes 
5 3 7 13 2 11 
 

The last sentence above is an example of a permutation that reorders the items of the list 
primes; a list such as 2 1 3 5 0 4 that produces a permutation is called a permutation 
list, or permutation vector, or simply a permutation. 

If the items of a list a are distinct, then the selection b=: i{a has an inverse in the sense 
that for a given b, an index can be found that selects it. The dyad i. fulfills this purpose, 
and is called indexing. For example: 
 
   a=:2 3 5 7 11 13 
   ]b=:3{a 
7 
 
   a i. b 
3 
 
   a i. 11 2 5 
4 0 2 
 

More precisely, the monads {&a and a&i. are mutually inverse. For example: 
 
   psel=: {&2 3 5 7 11 13 
   pind=: 2 3 5 7 11 13&i. 
   pind 7 2 
3 0 
 
   psel pind 7 2 
7 2 

A list such as a specifies a set of intervals, and an integer may be classified according to 
the interval in which it falls. More precisely, we will determine the index of the largest 
element in the list that equals or precedes it. Thus, 5 and 6 both lie in interval 2 of a 
because they are greater than or equal to 2{a and less than 3{a. 

Indexing can be used to perform the classification as follows: 
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   a 
2 3 5 7 11 13 
 
   x=: 6 
   x<a 
0 0 0 1 1 1 
 
   (x<a) i. 1 
3 
 
   ]i=: <:(x<a)i.1 
2 
 
   i{a 
5 

C. Grade and Sort 

The monad /: grades its argument. For example: 
 
   p=: 5 3 7 13 2 11 
   /:p 
4 1 0 2 5 3 
 
   (/:p){p 
2 3 5 7 11 13 
 

More precisely, the monad /: produces a permutation vector that can be used to sort its 
argument to ascending order. 

D. Residue 

Just as the introduction of the predecessor as the inverse of the successor led to a new 
class of numbers outside the class of counting numbers, so an attempt to introduce an 
inverse to a multiplication such as 5&* leads to new numbers when applied to an integer 
such as 17 that is not an integer multiple of 5. In other words, 17 is not in the (integer) 
domain of the inverse 5&*^:_1 . Similar remarks apply to an arbitrary multiple m&*. 

An approximate inverse in integers can be obtained by locating the argument in the 
intervals specified by the multiples 5*i.n . For example: 
 
   x=: 17 
   m5=: 5*i.6 
   m5 
0 5 10 15 20 25 
 
   d=: <:(x<m5)i. 1 
   d  5*d 
3 15 
 
   r=: x-5*d 
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   r 
2 
   5|x 
2 

The result r is the difference between the original argument and the nearest multiple of 5 
that does not exceed it; it is called the residue of x modulo 5, or the 5-residue of x . 

The dyad | is called residue, and x-m|x is an integer multiple of m. Consequently it is in 
the domain of the inverse m&*^:_1. Thus: 
 
   a=: i. 21 
   a 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
   8|a 
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 
   a-8|a 
0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 16 16 16 16 16 
 
   8&*^:_1 a-8|a 
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 
 
   10&*^:_1 a-10|a 
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 

E. Characters 

In English, the word Milk refers to a white liquid, whereas ‘Milk’ refers to the list of four 
literal characters ‘M’ and ‘i’ and ‘l’ and ‘k’. We will use quotes in a similar manner, as 
illustrated below: 
 
   alph=: ' ABCDEFGHIJKLMNOPQRSTUVWXYZ' 
   9 0 9 9 0 9 9 9 0 9 22 0 22 0 22 9 0 22 9 9 { alph 
I II III IV V VI VII 
 
   t=: 4>*/~ 3 2 1 0 1 2 3 
   t t { ' *' 
0 0 1 1 1 0 0 *** 
0 0 1 1 1 0 0 *** 
1 1 1 1 1 1 1 ******* 
1 1 1 1 1 1 1 ******* 
1 1 1 1 1 1 1 ******* 
0 0 1 1 1 0 0 *** 
0 0 1 1 1 0 0 *** 
 
   sentence=: '1 2 3^4' 
   reverse=: (i.-#sentence){sentence 
   reverse 
4^3 2 1    
   do=:". 
   do sentence 
1 16 81 
   do reverse 
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64 16 4 
 
   ;: sentence 
+-----+-+-+ 
|1 2 3|^|4| 
+-----+-+-+ 

F. Box and Open 
The word-formation verb ;: can be applied to a character list that represents a sentence 
to break it into its individual words. Thus: 
 
   letters=: 'abc=:i.3 4+2' 
   words=: ;: letters 
   words 
+---+--+--+---+-+-+ 
|abc|=:|i.|3 4|+|2| 
+---+--+--+---+-+-+ 
 
   #words 
6 
   (i.-#words){words 
+-+-+---+--+--+---+ 
|2|+|3 4|i.|=:|abc| 
+-+-+---+--+--+---+ 

As illustrated, the result of the word-formation is a list of six items, each of which is a 
boxed list representing the corresponding word. 

A single box can also be formed by the box monad < as follows: 
 
   <'abcd' 
+----+ 
|abcd| 
+----+ 
 
   <2 3 5 
+-----+ 
|2 3 5| 
+-----+ 
 
   (<(<'abcd'),<2 3 5),<2 3$(<'abcd'),<2 3 5 
+------------+-------------------+ 
|            |+-----+-----+-----+| 
|+----+-----+||abcd |2 3 5|abcd || 
||abcd|2 3 5||+-----+-----+-----+| 
|+----+-----+||2 3 5|abcd |2 3 5|| 
|            |+-----+-----+-----+| 
+------------+-------------------+ 

The box verb  can also be very helpful in clarifying the behaviour of the partition 
adverbs. For example:    
 
   <\a=:1 2 3 4 5 
+-+---+-----+-------+---------+ 
|1|1 2|1 2 3|1 2 3 4|1 2 3 4 5| 
+-+---+-----+-------+---------+ 
 
   <\.a 
+---------+-------+-----+---+-+ 
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|1 2 3 4 5|2 3 4 5|3 4 5|4 5|5| 
+---------+-------+-----+---+-+ 
 
   i. 3 4 
0 1  2  3 
4 5  6  7 
8 9 10 11 
   </.i.3 4 
+-+---+-----+-----+----+--+ 
|0|1 4|2 5 8|3 6 9|7 10|11| 
+-+---+-----+-----+----+--+ 

The monad > is the inverse of box; where necessary it “pads” the result with appropriate 
zeros or spaces. For example: 
   ]a=: ;: 'Gaily into Ruislip gardens' 
+-----+----+-------+-------+ 
|Gaily|into|Ruislip|gardens| 
+-----+----+-------+-------+ 
   >a 
Gaily   
into    
Ruislip 
gardens 
 
   b=:</.i.3 4 
   b 
+-+---+-----+-----+----+--+ 
|0|1 4|2 5 8|3 6 9|7 10|11| 
+-+---+-----+-----+----+--+ 

 
   >b 
 0  0 0 
 1  4 0 
 2  5 8 
 3  6 9 
 7 10 0 
11  0 0 

G. Summary of Notation 
The notation introduced in this chapter comprises three partition adverbs, prefix, suffix, 
and oblique (\ \. /.); the dyads from and residue ({ |); and the monads box, open, 
grade, and word-formation (< > /: ;:). Section E also introduced the use of quotes to 
distinguish literals and other characters. 

H. On Language 

Review Section R of Chapter 1, and pursue one or more of the options suggested. 
 

Exercises 

In exercises first write (or at least sketch out) the result of each sentence without using 
the computer; then enter the sentence on the computer to check your answer. 

A1 q=:1 1&(*/) 
   q 1 2 1 
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   r=:+//.@q 
   r 1 2 1 
   r 1 
   r r 1 
   r^:(5) 1 
   r^:(i.6 )  

A2     Experiment with the dyad ! for various cases, such as 3!5 and 4!5 and (i.6)!5. 

A3 (i.6)!5 !/~i.6 !~/~i.6 

   (!~/~i.6)=(r^:(i.6) 1) 

B1 (2*i.3){2 3 5 7 11 13 17 

   0 2 3 1{i.4 4 

   2{0 2 3 1{i.4 4 

B2 cl=:i.&1@< 

   6 cl 2 3 5 7 11 13 

   5 cl 2 3 5 7 11 13 

   4 cl 2 3 5 7 11 13 

B3 Experiment with negative left arguments to {. and }. and { 

D1 3|7 

   7|3 

   3|i.10 

   |/~i.7 

E1 text=:'i sing of olaf glad and big' 

   /: text 

   (/:text){text 

   text{~/:text 

   text/:text 

F1 <\'abcdefg' 

   <\.'abcdefg' 

   a=:3 4$'abcde' 

   <\a <\.a 
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 Representation of Integers 

A. Introduction 

Because we are so familiar with the decimal number system (which extends 
systematically to larger and larger numbers), the matter of distinct representations of 
successive counting numbers did not pose an obvious problem. However, in a system 
such as Roman numerals, the sequence I II III IV V VI VII has no clear pattern of 
continuation beyond a few thousand. 

Although the decimal system is familiar, a careful examination of it is fruitful because it 
leads to simple procedures for determining the results of verbs such as addition, 
multiplication, and power. We begin by expressing the relationship of a single number 
(such as the number of days in a year) to the list of decimal digits that represent it: 
 
   n=:365 d=:3 6 5 e=:2 1 0 
   10^e 
100 10 1 
   d*10^e +/d*10^e 
300 60 5 365 
 

The name e was chosen for the list 2 1 0 because the right argument of the power verb 
is often called an exponent. It could have been expressed using the verb i. as follows: 
 
   i. -3 
2 1 0 
   +/d*10^i.-3 
365 
 

The foregoing expression is, of course, suitable only for a list d of three items. To write a 
more general expression for any list d it is necessary to use a verb that yields the number 
of items of its list argument. Thus: 
 
   #d      +/d*10^i.-#d 
3 365 
   d=:1 7 7 6 
   +/d*10^i.-#d  
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1776 

The foregoing is an example of determining the base-10 value of a list of digits, and 
similar expressions apply for other number bases or radices. Thus: 
 
   +/d*8^i.-#d 
245 
 
   b=:1 1 0 1 
   +/b*2^i.-#b 
13 
 
   10#.d 
365 
 
   8#.d 
245 
 
   2#.b 
13 
 

The last three sentences show the use of the dyad #. (called base-value) for the same 
evaluations. 

B. Addition 

Two lists representing numbers in decimal may be added to produce a representation of 
their sum, as illustrated below: 
 
   year=:3 6 5 
   agnes=: 3 0 4 
   base10=:10&#. 
   year + agnes 
6 6 9 
 
   base10 (year + agnes) 
669 
 
   (base10 year) + (base10 agnes) 
669 
 
   year+year 
6 12 10 
 
   base10 (year+year) 
730 
 
   (base10 year)+(base10 year) 
730 
 

Although the sum year+year yields the correct sum when evaluated by base10, it is 
not in the usual normal form with each item in the list lying in the interval from 0 to 9. It 
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can be brought to normal form by subtracting 10 from each of the last two items and 
“carrying” ones to the preceding items to obtain the result 7 3 0 in normal form. 

Since a zero can be appended to the beginning of a list without changing its decimal 
value, lists of different lengths can be added by appending leading zeros to the shorter. 
For example: 
   dozen=:1 2 
   base10 0,dozen 
12 
 
   year+0,dozen 
3 7 7 

C. Multiplication 

A procedure for multiplication will first be stated, and its validity will then be examined: 
 
   a1=:3 6 5 
   b1=: 1 7 7 6 
   (base10 a1)*(base10 b1) 
648240 
 
   over=: ({.;}.)@":@, 
     by=: ' '&;@,.@[,.] 
   a1 by b1 over a1*/b1 
+-+----------+ 
| |1  7  7  6| 
+-+----------+ 
|3|3 21 21 18| 
|6|6 42 42 36| 
|5|5 35 35 30| 
+-+----------+ 
 
   a1*/b1 
3 21 21 18 
6 42 42 36 
5 35 35 30 
 
   ]p=:+//.a1*/b1 
3 27 68 95 71 30 
 
    base10 p 
648240 
 

Normalization of p by carries gives 6 4 8 2 4 0 and: 
   base10 6 4 8 2 4 0 
648240 

The foregoing procedure for multiplication comprises three steps: 

 1. Form the multiplication table of the lists of digits. 

 2. Sum the diagonals of the table. 

 3. Normalize the sums. 
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The method is less error-prone than the one commonly taught, which distributes the 
normalization process through both the multiplication and summation phases. The 
validity of the process may be discerned from the following examples:  
 
   a1=:3 6 5    b1=:1 7 7 6 
   a2=:10^2 1 0    b2=:10^3 2 1 0 
   a=:a1*a2    b=:b1*b2 
   a    b 
300 60 5 1000 700 70 6 
 
    (+/a)*(+/b) 
648240 
 
   a*/b 
300000 210000 21000 1800 
 60000  42000  4200  360 
  5000   3500   350   30 
 
   +/a*/b 
365000 255500 25550 2190 
 
   +/+/a*/b 
648240 
 

The fact that the product of the sums +/a and +/b can be expressed as the sum of 
products arises from two properties: 

 1. Multiplication distributes over addition. 

 2. Summation (+/) is symmetric. 

In the expression a*/b, the arguments are themselves products and, because 
multiplication is both associative and commutative, a*/b can also be expressed as the 
product of two tables as follows: 
   a1*/b1 
3 21 21 18 
6 42 42 36 
5 35 35 30 
 
   a2*/b2 
100000 10000 1000 100 
 10000  1000  100  10 
  1000   100   10   1 
 
   (a1*/b1)*(a2*/b2) a*/b 
300000 210000 21000 1800 300000 210000 21000 1800 
 60000  42000  4200  360  60000  42000  4200  360 
  5000   3500   350   30 5000   3500   350   30 
 

Each element of the table a1*/b1 is multiplied by the corresponding element from the 
“powers of ten” table a2*/b2, and those elements of a1*/b1 multiplied by the same 
power of ten can be first summed and then multiplied by it. Since equal powers lie on 
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diagonals, the sums are made along these diagonals, as in the expression 
p=:+//.a1*/b1 used in describing the multiplication procedure. 

The reason that equal powers lie on diagonals can be made clear by noting that a2 equals 
10^e=:2 1 0, that b2 equals 10^f=:3 2 1 0, and that a2*/b2 equals 10^e+/f : 
 
   e+/f 10^e+/f 
5 4 3 2 100000 10000 1000 100 
4 3 2 1 10000  1000  100  10 
3 2 1 0 1000   100   10   1 

D. Normalization 
The normalization process used in Section B can be expressed more formally. We first 
define the main verbs to be used, and illustrate their use: 
 
   base10=:10&#. 
   residue=: 10&| 
   tithe=: 10&*^:_1 
   n=: 98 45 19 24 
   base10 n 
102714 
 
   remainder=: residue n 
   remainder 
8 5 9 4 
 
   n-remainder 
90 40 10 20 
 
   carry=: tithe n-remainder 
   carry 
9 4 1 2 
 
   carry ,: remainder   (,: laminates lists to form a table) 
9 4 1 2 
8 5 9 4 
 
   +//. carry ,: remainder 
9 12 6 11 4 
 
   base10 +//. carry ,: remainder 
102714 

We begin by specifying a “temporary” name t, and repeatedly re-assign to it the result of 
the process illustrated above: 
   t=: n 
   t=:+//. (tithe t-residue t) ,: residue t 
 
   t 
9 12 6 11 4 
 
   base10 t 
102714 
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   t=:+//. (tithe t-residue t) ,: residue t 
   t  base10 t 
0 10 2 7 1 4 102714 
 
   t=:+//. (tithe t-residue t) ,: residue t 
   base10 t 
102714 
 

We will now use trains of isolated verbs (to be discussed below) to capture the foregoing 
process in a single verb, as follows: 
 
   reduce=: +//.@ ((tithe @ (] - residue)) ,: residue) 
   reduce n 
9 12 6 11 4 
 
   reduce ^:3 n 
0 1 0 2 7 1 4 
 
   reduce^:4 n 
0 0 1 0 2 7 1 4 
 

Because further repetitions of reduce continue to append leading zeros, we will instead 
use trim@reduce, where trim is defined to trim off a leading zero: 
 
   trim=:0&=@(0&{) }. ] 
   (trim @ reduce)^:3 n 
1 0 2 7 1 4 
 
 norm=: trim@reduce^:_ 
 

Three repetitions suffice for the argument n, but in general the number required is 
unknown. However, since the process v^:k stops when the successive results stop 
changing, it suffices to use a sufficiently large value of k, preferably infinity. 

We now consider the trains used in the definitions of reduce and trim. The phrase ] - 
residue occurring in the former has an obvious meaning, as illustrated below: 
 
   ] - residue n 
_8 _5 _9 _4 
 

However, the same sequence of three verbs isolated by parentheses (as they are in the 
definition of reduce) is called a train, and has the meaning illustrated below: 
 
   (] - residue) n 
90 40 10 20 
   (]n) - (residue n) 
90 40 10 20 
 
   (3&< <. 9&>) i. 15 
0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 



Chapter 4  Representation of Integers  39 
  

 
   (3&< i.15) <. (9&> i.15) 
0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 
 

Thus, the middle verb in a train of three applies dyadically to the results of the outer 
verbs. Such a train also has a dyadic meaning defined similarly. For example: 
 
   3 (+*-) 7 
_40 
 
   (3+7)*(3-7) 
_40 
 
   3 (< >. =) 2 3 4 5 
0 1 1 1 
 
  3<:2 3 4 5 
0 1 1 1 

E. Mixed Bases 

The base-value dyad #. used in Section A with the simple bases 10 and 8 and 2 can also 
be used with a mixed base defined by a list. For example: 
 
   base=: 7 24 60 60 
   base #. 0 1 2 3 

3723 # of seconds in 0 days, 1 hour, 2 minutes, 3 seconds 
 
   a=:i. 2 4 
   a 
0 1 2 3 
4 5 6 7 
   base #. a 
3723 363967 
 
   base #: 3723 
0 1 2 3 
 
   base#: base #. a 
0 1 2 3 
4 5 6 7 
 

The last results illustrate the fact that the dyad #: provides an inverse to the base value, 
and can be used to produce the list representations of integers in any base. For example: 
   2 2 2 #: i. 8 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
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1 1 0 
1 1 1 
 
   10 10 10 #: 24 60 365 
0 2 4 
0 6 0 
3 6 5 
 
   fbase=: 3-i. 3 
   fbase 
3 2 1 
   fbase #: i.!3 
0 0 0 
0 1 0 
1 0 0 
1 1 0 
2 0 0 
2 1 0 

The final example employs an unusual “factorial” base, that will be used in the discussion 
of permutations in Chapter 7. 

F. Experimentation 

The verb mag=: ] >. - yields the magnitude of its argument; for example, mag 9 _9 
yields 9 9. However, the monad | does the same. 

Although it is probably unwise to spend time memorizing bits of notation  before they 
arise in context, it is worthwhile to experiment with the monadic cases of dyads already 
encountered (and conversely), and to adopt those that appear useful. The language 
summary at the back of the book can be used to suggest further experiments. It is also 
worthwhile to experiment with the use of tables and other higher-rank arrays such as the 
rank-3 array i. 2 3 4 and the rank-4 array i. 2 3 4 5. Three matters merit attention: 

1. Just as the insertion +/ inserts the verb + between items of a list, so does it 
between items of a higher rank array: between the rows of a table, and between the 
planes of a rank-3 array. Consequently, +/ applied to a table adds one row to 
another. For example: 
 
   i. 3 4 +/i. 3 4 
0 1  2  3 12 15 18 21 
4 5  6  7 
8 9 10 11 

2. Expressions such as a */ b, already used to form tables when applied to lists, 
also apply to higher-rank arrays. For example: 

 
   2 3 5 */ i. 2 4 
 0  2  4  6 
 8 10 12 14 

 
 0  3  6  9 
12 15 18 21 
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 0  5 10 15 
20 25 30 35 
   1+i.2 3 *// (1+i.2 3) 
1 2 3 4  5  6 
4 5 6 8 10 12 
  12 15 18 

3. The rank conjunction " determines the rank of the sub-array to which a verb 
applies. For example: 
 
  sum=:+/ 
    ]a=:i. 2 3  
 0  1  2  3 
 4  5  6  7 
 8  9 10 11 
 
12 13 14 15 
16 17 18 19 
20 21 22 23 
 
   sum a                sum"2 a          sum"1 a 
12 14 16 18          12 15 18 21       6 22 38 
20 22 24 26          48 51 54 57      54 70 86 
28 30 32 34 

G. Summary of Notation 
Notation introduced in this chapter comprises         g        g 
isolated trains of verbs (as indicated in the   / \      / \ 
diagrams at the right); one conjunction (rank ") ;             f   h    f   h 
and four verbs -- base value and its inverse,  |   |   / \ / \ 
laminate, and magnitude (#. #: ,: |).  y   y   x y x y 
 

Exercises 
A1 base10=: 10&#. 
   base8=: 8&#. 
   base2=: 2&#. 
   a=:1 0 1 0 1 
   base2 a base2 -a 
   base8 a base8 -a 
   base10 a base10 -a 

 

C1 Compare the multiplication process described at the beginning of Section C with 
the commonly-taught process for multiplying 365 by 1776 by actually performing 
both. 

C2 Repeat Exercise C1 for various arguments, and note particularly the relative 
difficulties of reviewing the work for suspected errors. 

E1 What is the result of applying the verb norm to a single number such as 1776? 
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E2 Enter t=: ?4 2$10 to define a table t of decimal digits. Then define a verb sum 
such that sum t gives the list representation of the integers represented by the rows 
of t. Check your result by applying base10 to it and +/base10 to t. 

 Answer: sum=: norm@(+/)  

E3 Write an expression that gives the list representation of the product of the integers 
represented by the rows of t. 

 Answer: norm +//."2^:(<:#t) *//t  

F1 Enter #: i. 8 and compare the result with the use of the dyad #: in Section E. 
Use further experiments to determine and state the definition of the monad #: . 

 Answer: #:x is equivalent to (n#2)#:x , where n is chosen just large enough to 
represent the largest element of x. 

F2 Define t=: ,"1~&0 , ,"1~&1 . Then enter ]b=:i.2 1 and t b and t t b, and 
so on, and compare the results with the results of #:i.2^k for various values of k . 

 



  

Chapter 

5 

 Proofs 

A. Introduction 

A proof is an exposition intended to convince a reader that a certain relation is true, and 
perhaps to provide some insight into why it is true. For example, Section O of Chapter 1 
provided, in passing, an illustration that the sum of the first six odd numbers was equal to 
six times six, that is, the square of six. Thus: 
 
   odds=:1+2*i. k=:6 
   odds 
1 3 5 7 9 11 
 
   +/odds 
36 
 
   k*k 
36 
 
   *:k 
36 
 
   *:#odds 
36 
 

This relation for the case of six odds suggests that a similar relation might hold for any 
number, and the prefix scan (\) provides a convenient test: 
 
   d=:1+i.15 
   d 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
 
   odds=:1+2*i.15 
   odds 
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 
 
   +/\odds 
1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 
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   *:d 
1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 
 

This result provides rather strong evidence that the sum +/1+2*i.k equals the square of 
k for any value of k, but it provides no insight into why this should be so. 

The following numbered sequence of sentences begins and ends with the pair whose 
equivalence is to be established. The intermediate sentences differ in simple ways that 
can provide insight into why the relations would hold true for any value of k: 
 
S1 odds=:1+2*i.k=:10 
    odds 
 1 3 5 7 9 11 13 15 17 19 
 
S2  +/odds 
 100 
 
S3 |.odds 
 19 17 15 13 11 9 7 5 3 1 
 
S4 +/|.odds 
 100 
 
S5 -: (+/odds) + (+/|.odds)  (-: halves its argument) 
 100 
 
S6 -: +/ (odds+|.odds) 
 100 
 
S7 +/ -: (odds+|.odds) 
 100 
 
S8 odds+|.odds 
 20 20 20 20 20 20 20 20 20 20 
 
S9 -: odds+|.odds 
 10 10 10 10 10 10 10 10 10 10 
 
S10  k#k 
 10 10 10 10 10 10 10 10 10 10 
 
S11 +/k#k 
 100 
 
S12 k*k 
 100 
 
S13 *:k 
 100 

Sentences S2 and S4 to S7 show that the sum of the first ten odds can be written in 
several equivalent ways, but really demonstrate it only for the specific case of k=:10. 
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However, we may see reasons to believe that the relations between successive 
sentences should hold for other values of k. 

For example,  because +/ is symmetric (as defined in Section 2 E), and because the 
monad |. permutes its argument, S2 and S4 agree for any list odds . Further, in S5, one-
half of the sum of two equal things is equal to either one of them, and similarly simple 
arguments can establish the equality of the pairs S6, S7; S7, S11; S11, S12; and S12, 
S13. In particular, S12 agrees with S11 because their agreement expresses the definition 
of multiplication. 

We will call a sequence such as S1-S13 an informal proof; it provides insight but leaves 
to the reader the task of providing precise reasons for the equivalence of certain pairs of 
sentences. A formal proof is one in which each sentence is annotated by a clear statement 
of the reasons for its equivalence with an earlier sentence. 

An informal proof is satisfactory only if the relations between successive sentences are 
obvious to the reader. If so, why is it ever desirable to make formal a good informal 
proof? Firstly, what is obvious to one reader may not be to another. A second, more 
serious, reason is that obvious reasons for relations may, in fact, be wrong, or at least 
incomplete. 

For example, does +/1+2*i.k equal k*k for the case k=:0 ? The answer is yes, but this 
does not follow from the arguments given thus far, since they took no account of the 
definition of the summation of an empty list. A complete proof would require 
examination of the definition of identity elements in Section 2 I. 

In the foregoing example the conclusion remained correct even though the reasons 
provided were incomplete, but unexamined proofs and definitions can also lead to errors 
or contradictions. For example, the prime numbers illustrated in Exercise O1 of Chapter 1 
have the important property that any counting number greater than one can be expressed 
as a product of one or more primes, and that this factorization is unique. For example, 
using the first five elements of the list obtained in the cited exercise: 
 
   pr=:2 3 5 7 11 
   e=:2 0 2 1 0 
   pr^e 
4 1 25 7 1 
   */pr^e 
700 
 

Thus, the exponents 2 0 2 1 0 specify the prime factorization of the integer 700, and 
no other factorization in primes is possible. 

We turn now to a definition of primes that is commonly used in high-school: A prime is 
an integer that is divisible only by itself and one. The integers in the list pr satisfy this 
condition, but so does the integer 1. We now consider a list of “primes” that includes 1, 
and see that the factorization of the integer 700 in terms of it is not unique: 
 
   p=:pr,1 
   p 
2 3 5 7 11 1 
 
   */p^2 0 2 1 0 0 
700 
   */p^2 0 2 1 0 3 
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700 

The loss of unique factorization clearly lies in a definition of primes that admits 1 as a 
member. We turn to an informal development of primes that leads to a suitable definition: 
 
   i=:>:i.8 
 
   i 
1 2 3 4 5 6 7 8 
 
   rem=: i|/i div=: 0= i|/i 
   rem div 
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 
1 2 0 1 2 0 1 2 0 0 1 0 0 1 0 0 
1 2 3 0 1 2 3 0 0 0 0 1 0 0 0 1 
1 2 3 4 0 1 2 3 0 0 0 0 1 0 0 0 
1 2 3 4 5 0 1 2 0 0 0 0 0 1 0 0 
1 2 3 4 5 6 0 1 0 0 0 0 0 0 1 0 
1 2 3 4 5 6 7 0 0 0 0 0 0 0 0 1 
 
   +/div 
1 2 2 3 2 4 2 4 
 
   2=+/div 
0 1 1 0 1 0 1 0 
 
   (2=+/div)#i 
2 3 5 7 
 

The table rem is the table of remainders (or residues), and div is a divisibility table that 
identifies zero remainders. The sum +/div sums the columns of div to yield the number 
of divisors of each of the integers i, and the final sentence selects those integers that have 
exactly two distinct divisors. It furnishes a suitable definition: A prime is an integer that 
has exactly two distinct divisors. 

We conclude this section with an example of an informal development designed to clarify 
some matters of elementary algebra.  

The expression a3 is commonly used to denote what we denote here by a^3, and is 
defined by saying that it is the product of three factors a (which we would write as 
a*a*a) but also by continuing to define a0 as 1. What is meant by a product of no 
factors, and why should its result be 1 ? Somewhat less mysteriously, what is a product of 
one factor (a1), and why should it yield a ? 

The definitions of expressions such as a^n and !n are commonly extended to arguments 
that do not fall under the initial definition, by extending them so as to maintain certain 
significant “patterns” or “identities”. These patterns can often be made clear by applying 
functions to lists (such as i.n) that themselves maintain simple patterns. For example: 
 
   a=:4 
 
   e=:3 4 5 
 
   a^e 
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64 256 1024 

To evaluate the next in sequence (that is, a^6), one might perform the calculation 
4*4*4*4*4*4 or, more efficiently, note that the result is simply 4 times the preceding 
case a^5. In other words, the pattern extends to the right by multiplication by 4. 
Consequently, and more interestingly, it proceeds to the left by division by 4. Thus, since 
4^3 is 64, it follows that 4^2 is 16, that 4^1 is 4, and that 4^0 is 1.  

These last two results provide some insight into why a^1 and a^0 are defined as a and 1 
for any a, including the case where a itself is zero. It is worth noting that some college 
texts state that 0^0 is undefined, even though the result 1 is clearly needed to make it 
possible to evaluate the general form of the polynomial in x with coefficients c, namely, 
+/c*x^i.#c. 

Going, for a moment, outside the domain of the integers, we may also note that the 
pattern continues through negative and fractional values. Thus: 
 
   a=:4 
   e=:3 4 5 
   a^e 
64 256 1024 
 
   e=:3-~i.7 
   e 
_3 _2 _1 0 1 2 3 
 
   4^e 
0.015625 0.0625 0.25 1 4 16 64 
 
   f=:-:i.6 
   f 
0 0.5 1 1.5 2 2.5 
 
   4^f 
1 2 4 8 16 32 
 

In the final example, there are two steps rather than one between successive integers of 
the equally-spaced elements of the exponent f, and 4^f must therefore exhibit a pattern 
of multiplication by a factor which applied twice produces multiplication by 4; in other 
words, a factor that is the square root of 4. 

B. Formal and Informal Proofs 

Although topics in mathematics are often presented deductively, as a sequence of formal 
proofs that appear to lead to collections of indisputable facts, we will continue to use an 
informal approach that emphasizes the use of expressions (such as the pair +/\odds and 
*:d of Section A) that suggest relations, and sequences of expressions (such as S1-S13) 
that outline a proof. 

The reasons for adopting such an informal approach are rooted mainly in the view of 
mathematics expressed clearly and entertainingly in the dialogue in Lakatos’ Proofs and 
Refutations [5] (discussed briefly in Section C), but also in the characteristics of the 
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notation used here; characteristics that make it easy to express patterns in lists and tables, 
and to display them accurately and effortlessly by entering the expressions on a 
computer. 

To appreciate these characteristics the reader should attempt to render various 
expressions in this text clearly and completely in more conventional notation. For 
example, +/odds may be expressed by using sigma notation, but +/\odds would 
probably be expressed as: 
 
        i 

 ci = Σ oddsi   

       j=1 

an expression that does not yield an entire list as does +/\odds, but specifies it indirectly 
by specifying each of the elements of some list denoted by c. 

In a similar vein, it might be assumed that the sigma notation used for +/odds would 
also serve for +/|.odds as follows: 
 n 1 
 Σ  oddsi Σ  oddsi 
       i=1 i=n 
 

However, the summation from n to 1 is normally taken to denote summation over an 
empty set, since no summation from j to k could otherwise denote the empty case. 

It might also be noted that the symbol n commonly used in sigma notation has no clear 
connection to the number of elements in the argument, and cannot be expressed as a 
function of the argument without introducing some notation analogous to #odds. 

C. Proofs and Refutations 
Of his Proofs and Refutations [4], Lakatos says “Its modest aim is to elaborate the point 
that informal, quasi-empirical, mathematics does not grow through the monotonous 
increase of the number of indubitably established theorems but through the incessant 
improvement of guesses by speculation and criticism, by the logic of proofs and 
refutations.” 

He goes on to say that there is a simple pattern of mathematical discovery - or of the 
growth of informal mathematical theories - that consists of the following stages (also 
quoted from [4]): 

1. Primitive conjecture 

2. Proof (a rough thought-experiment or argument, decomposing the primitive 
conjecture into sub-conjectures or lemmas). 

3. ‘Global’ counterexamples (counterexamples to the primitive conjecture) emerge. 

4. Proof re-examined: the ‘guilty lemma’ to which the global counter-example is a 
‘local’ counterexample is spotted. This ‘guilty’ lemma may have previously 
remained ‘hidden’ or may have been misidentified. Now it is made explicit, and 
built into the primitive conjecture as a condition. The theorem - the improved 
conjecture - supersedes the primitive conjecture with the new proof-generated 
concept as its paramount new feature. 
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As a result, “Counterexamples are turned into new examples - new fields of 
inquiry open up.” 

Lakatos illustrates this process by following a simple conjecture through surprising twists 
and turns, citing positions held by dozens of eminent mathematicians. To quote from a 
review cited on the cover, “The whole book, as well as being a delightful read, is of 
immense value to anyone concerned with mathematical education at any level.” 

We will illustrate the process briefly. Having counted the number of vertices v, edges e, 
and faces f of various polyhedra (bounded by multiple flat faces, surfaces, or “seats” as 
suggested by the root hedra), a class arrives at the conjecture that the expression f+v-e 
yields 2 for any polyhedron. For example: 

 f v e f+v-e 

Tetrahedron 4 4 6 2 

Square-base pyramid 5 5 8 2 

Cube 6 8 12 2 

The teacher provides the following proof or “thought-experiment” to establish the 
validity of the relation for all polyhedra: 

1. Triangulate each face by (repeatedly) drawing a line between some pair of 
vertices not already joined by an edge. [In the square-based pyramid this requires 
one diagonal on the base; in the cube it requires one diagonal on each face.] 
Since each line drawn adds one edge and one face (splitting one existing face into 
two), the triangulation does not change the result of f+v-e. 

2. Remove one face, leaving a hole bounded by three edges. 

3. Dismantle the body triangle-by-triangle until only one remains, removing at each 
step one edge and one face, or one vertex, two edges, and one face. Either action 
leaves f+v-e unchanged. 

4. For the final triangle, f+v-e is 1+3-3 (that is, 1), which, together with the face 
removed in step 2, gives a result of 2 for f+v-e. 

The validity of each step of the process is challenged by students who enter the dialogue, 
and the validity of the conjecture itself is challenged by counterexamples, including one 
provided by a body formed by fitting together into a square “picture frame” four identical 
moldings (polyhedra) having the following end and side views: 
 
   __         __________________________ 
  /  \     /                          \ 
 /    \      /                            \ 
 

A direct count gives 16+16-32 or 0, contradicting the conjecture. 

Attempts are first made to sharpen the definition of a polyhedron so as to save the 
conjecture by barring the picture frame from consideration (as a “monster”), and later to 
revise the conjecture so as to account for such a monster. 

One such revision is based on the observation that the “well-behaved” polyhedra shared 
the property that (if constructed of elastic surfaces) they could be inflated to a sphere, but 
the picture frame could not. Moreover, a single cut through one limb of the frame (which 
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would appear as a vertical line in the side view above) would form a body with two new 
faces, eight new vertices, and eight new edges, restoring the result of 2 for f+v-e, and 
producing a body that could be inflated to a sphere. 

A revised conjecture taking into account the “connectedness” or “number of cuts needed 
to produce a ‘spherical’ body” can therefore be formulated; but it again is subject to 
further criticism and refinement. 

We conclude this section with an extended quotation from Lakatos (page 73): 

TEACHER: No! Facts do not suggest conjectures and do not support them either! 

BETA: Then what suggested 2=f+v-e to me if not the facts, listed in my 
table? 

TEACHER: I shall tell you. You yourself said you failed many times to fit them 
into a formula. Now what happened was this: you had three or four 
conjectures which in turn were quickly refuted. Your table was built up 
in the process of testing and refuting these conjectures. These dead and 
now forgotten conjectures suggested the facts, not the facts the 
conjectures. Naive conjectures are not inductive conjectures: we arrive 
at them by trial and error, through conjectures and refutations. But if 
you - wrongly - believe that you arrived at them inductively, from your 
tables, if you believe that the longer the table, the more conjectures it 
will suggest, and later support, you may waste your time compiling 
unnecessary data. Also, being indoctrinated that the path of discovery 
is from facts to conjecture, and from conjecture to proof (the myth of 
induction), you may completely forget about the heuristic alternative: 
deductive guessing. 

D. Proofs 

Throughout this text we will present examples intended to stimulate the formulation of 
conjectures, but will not develop proofs. However, the reader is encouraged to provide 
formal and informal proofs for any conjectures that suggest themselves. The present 
section will provide examples of proofs of identities that are familiar in elementary 
mathematics, but are often treated in more limited forms. 

In this section we will use the name X to denote a single element (or scalar), and other 
names to denote lists (or vectors). We will write one sentence below another to indicate 
that they are equivalent. Thus: 

Thm1: +/X*W 

 X*+/W 

asserts that the sum over a scalar times a list is equivalent to the scalar times the sum 
over the list, and labels the identity as Thm1 (Theorem 1) for future reference. 

A formal proof of a theorem is provided by annotating each sentence after the first with 
the reason that it is equivalent to the sentence preceding it. Thus: 

Thm1: +/X*W 

     X*+/W X&* distributes over +   (Section 2 D) 

If values are assigned to the names used in a theorem, then each sentence may be 
entered and executed as a test for the case of the particular values assigned. Thus: 



51 
    

 
   X=: 3 
   W=: 3 1 4 1 
   +/X*W 
27 
 
   X*+/W 
27 
 

This executability is reassuring in developing an identity or proof, because a mis-
statement will very likely produce a different result. For example: 
 

Thm2: V=: 2 4 6 
 
 +/V*/W 
  36 12 48 12 
 
 (+/V)*W Thm1 applied for each element of W 
  36 12 48 12 (since +/V is a scalar) 
 
A sequence of equivalent sentences implies that the first sentence is equivalent to the 
last. Hence the following is a formal proof that the sum of the column sums of the 
multiplication table V*/W equals the product of the sums +/V and +/W: 
 
Thm3: +/+/V*/W 
 
    +/V*(+/W)  Thm2 and commutativity of * 
 
    (+/V)*(+/W) Thm1 (with +/W for X and V for W) 
 and commutativity of *. 
 
The following theorem can be proved formally by showing that the element of column j 
of row i of the first table is equal to the corresponding element of the second table: 
Thm4: (A*P)*/(B*Q) 
     (A*/B)*(P*/Q) 
 
It can be illustrated as follows: 
 
   A=:2 3 5 
   B=: 3 1 4 1 
   P=: 4 3 2 
   Q=: 2 7 1 8 

 
   (A*P)*/(B*Q) 
48 56 32 64 
54 63 36 72 
60 70 40 80 
 
   (A*/B)*(P*/Q) 
48 56 32 64 
54 63 36 72 
60 70 40 80 
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Since x^n is defined by */n#x, it is easy to show that (x^n)*(x^m) is equivalent to 
x^(m+n). This result can be used in the proof of the following theorem: 

Thm5: (X^A)*/(X^B) 

     X^(A+/B) 

The foregoing theorems will be used in an exercise in Section B of Chapter 9 to prove 
that the product of two polynomials with coefficients C and D is equivalent to a 
polynomial with coefficients +//.C*/D. 

The fact that multiplication distributes over addition is commonly extended to a product 
of sums and expressed in conventional notation as: 

LHS= (a+A)(b+B) 

RHS= (ab)+(aB)+(Ab)+(AB) 

the left-hand side LHS being equivalent to the right-hand side RHS. 

This identity can be extended to a product over any number of sums as follows: 

LHS=(a+A)(b+B)(c+C) 

RHS=(abc)+(abC)+(aBc)+(aBC)+(Abc)+(AbC)+(ABc)+(ABC) 

LHS=(a+A)(b+B) ... (z+Z) 

The last expression above uses the informal three-dot notation to suggest continuation of 
the same form to arbitrary lengths. To appreciate the difficulties of such informal 
notation, the reader should attempt its use in a clear definition of the corresponding 
right-hand side. 

The use of vectors (lists) makes the expression of the left-hand side simple: */v1+v2 , 
where (in the three-element case above), v1=:a,b,c and v2=:A,B,C. 

To clarify the pattern of the right-hand side, we will use explicit values for v1 and v2, 
thus allowing the direct evaluation of every expression. We will also use numbers less 
than ten in v1, and greater than ten in v2 to make patterns easier to recognize. Thus: 
 
   v1=:2 3 4     v2=:12 13 14 v1+v2 
   14 16 18 
   ]LHS=: */v1+v2 
4032 
 
   ]RHS=:(2*3*4)+(2*3*14)+(2*13*4)+(2*13*14)+(12*3*4)+ 
              (12*3*14)+(12*13*4)+(12*13*14) 
4032 
 

The pattern in the expression for RHS can be better seen in the following table: 
 
   M=:>2 3 4;2 3 14;2 13 4;2 13 14;12 3 4;12 3 14; 
              12 13 4;12 13 14 
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   M 
 2  3  4 
 2  3 14 
 2 13  4 
 2 13 14 
12  3  4 
12  3 14 
12 13  4 
12 13 14 
 
   */"1 M 
24 84 104 364 144 504 624 2184 
 
   +/*/"1 M 
4032 

Because the items of v2 exceed 10, the pattern in M can be displayed more clearly as 
booleans: 
 
   ]b1=: M<10 ]b2=: M>10 
1 1 1 0 0 0 
1 1 0 0 0 1 
1 0 1 0 1 0 
1 0 0 0 1 1 
0 1 1 1 0 0 
0 1 0 1 0 1 
0 0 1 1 1 0 
0 0 0 1 1 1 
 

The right-hand side can now be expressed in either of two ways: 
 
   ]RHS=: +/(*/"1 v1^b1)*(*/"1 v2^b2) 
4032 
 
   ]RHS=: +/*/"1 (v1,v2)^(b1,.b2) 
4032 
 

The details of these expressions can be explored by displaying the partial results. For 
example, the rows of v1^b1 contain the appropriate elements from v1 with the elements 
from v2 being replaced by ones (the identity element of *), and the product over the 
rows multiplied by the product over the rows of v2^b2 yields the products to be 
summed. Thus: 
   v1^b1 v2^b2 
2 3 4   1  1  1 
2 3 1   1  1 14 
2 1 4    1 13  1 
2 1 1    1 13 14 
1 3 4   12  1  1 
1 3 1   12  1 14 
1 1 4   12 13  1 
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1 1 1   12 13 14 
 
   */"1 v1^b1 
24 6 8 2 12 3 4 1 
   */"1 v2^b2 
1 14 13 182 12 168 156 2184 
 
   (*/"1 v1^b1)*(*/"1 v2^b2) 
24 84 104 364 144 504 624 2184 
 
   +/(*/"1 v1^b1)*(*/"1 v2^b2) 
4032 
 

Comparison of b2 with the result of #:i.2^3 in Exercise F1 of Chapter 4 should make 
it clear that #:i.2^n is the table appropriate to any list v of n elements. Moreover, as 
illustrated in Exercise F2 of Chapter 4, the verb t=: ,"1~&0, ,"1~&1 
applied to #:i.2^n yields the table for a list of one more element. 

The foregoing facts can be used to formalize the following proof of the equality of 
general functions for the results illustrated above for LHS and RHS. We first define the 
functions: 

   lhs=:*/@(+"1) 

   rhs=:+/@(f*g) 

     g=:*/"1@(]^T)@] 

     f=:*/"1@(]^0&=@T)@[ 

       T=: #:@i.@(2&^)@# 

For lists V and W of one element each, the results of V lhs W and V rhs W can easily 
be shown to be equivalent. We now present an inductive proof in which we assume that 
V lhs W and V rhs W are equivalent for any lists of n elements, and then use that 
induction hypothesis to prove that they are equivalent for lists on n+1 elements. Thus: 
(x,V) rhs (y,W) 

+/(x,V) (f*g) (y,W) Def of rhs 

+/(L=:(x,V)f(y,W))*(x,V)g(y,W) Def of fork 

+/L**/"1(y,W)^T (y,W) Def of g 

+/L**/"1(y,W)^(0,"1 U),(1,"1 U=:T W)   Structure of T 
+/L*((y^0)*Q),(y^1)*Q=:*/"1 W^U   

+/L*Q,y*Q 

+/((x*P),P=:*/"1 V^0=U)*Q,y*Q Analogous 

+/(x*P*Q),y*P*Q      treatment of L 

(x+y)*+/P*Q 

(x+y)*V lhs W                                  Induction 

(x+y)**/V+W hypothesis 

*/(x,V)+(y,W) 
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(x,V) lhs (y,W) 
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Chapter 

6 

Logic 

A. Domain and Range 

As stated in Section 1 D, the domain of a verb is the collection of arguments to which it 
can apply. For example, the integer 4 is in the domain of >:, but the characters '!' and 
'b'  and '4' are not. 

Similarly, the range of a verb is the collection of results that it can produce. The verb >: 
can produce any integer, and so its range is the same as its domain. This agreement of 
range and domain also holds for verbs such as + and *; but not for %, which can produce 
fractions or rational numbers, and so has a wider range as discussed in Chapter 9. 

A verb may also have a range more limited than its domain. For example, the verb 4&| 
applies to any integer, but its results all fall in the finite list i.4, that is,0 1 2 3. 

It is sometimes useful to examine the properties of a verb when it is applied only to a 
restricted part of its domain, particularly if it is restricted to its range. For example, when 
restricted to the domain i.4, the verbs: 
 
 pm4=: 4&|@* (Product modulo 4) 
 sm4=: 4&|@+ (Sum modulo 4) 
 

have the following tables: 
 
   pm4/~ i.4 sm4/~ i.4 
0 0 0 0 0 1 2 3 
0 1 2 3 1 2 3 0 
0 2 0 2 2 3 0 1 
0 3 2 1 3 0 1 2 
 

We will use the phrase “v on d” to refer to the verb resulting from restricting the verb v 
to the domain d. For example, “4&|@* on i.4” refers to the product mod 4 restricted to 
the domain 0 1 2 3, and “* on i.2” refers to the boolean and, to be discussed in 
Section C. 
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B. Propositions 

A proposition or truth-function is any statement which can be judged to be either true or 
false, and is therefore a verb having a range of two elements. Following Boole (the father 
of symbolic logic), we will denote these elements by 1 (for true) and 0 (for false). For 
example: 
 
   p=: <&5 
   p 3 
1 
 
   p a=:i.8 (p a)#a 
1 1 1 1 1 0 0 0 0 1 2 3 4 
 
   2=+/0=|/~ a 
0 0 1 1 0 1 0 1 
 
   a#~2=+/0=|/~ a 
2 3 5 7 

C. Booleans 

The nouns 0 and 1 (the range of propositions) are called booleans, and a verb whose 
domain and range are boolean is called a boolean function, or boolean. For example, * 
limited to booleans might be called and; its table would appear as follows: 
   and=:* 
   and/~ b=:0 1 
0 0 
0 1 
 
   ]c=:i.8 
0 1 2 3 4 5 6 7 
 
   (>&2 c) and (<&5 c) 
0 0 0 1 1 0 0 0 
 
   (>&2 and <&5) c 
0 0 0 1 1 0 0 0 
 
   c #~ (>&2 and <&5) c 
3 4 
   (] #~ >&2 and <&5) c 
3 4 
 

The sentence (>&2 and <&5) is a “compound” proposition whose result is true if the 
proposition >&2 is true and the proposition <&5 is true. 

A verb or may be defined similarly: 
 
   or=: *@+ 
   or/~b 
0 1 
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1 1 
 
   (=&7 c) or (<&5 c) 
1 1 1 1 1 0 0 1 
 

Note that the dyad + may produce non-boolean results, from which the monad * (called 
signum) produces booleans. Thus: 
 
   * _2 0 2 +/~ b * +/~b 
_1 0 1 0 1 0 1 
  1 2 1 1 

The booleans and and or are exceedingly useful. For example: 
 
   dof10=: 0&=@(|&10) 
   dof10 c =: 1+i. 20 
 
1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
 
   c#~dof10 c  

1 2 5 10 Divisors of ten 
 
   dof15=: 0&=@(|&15) 
   c#~dof15 c 

1 3 5 15 Divisors of fifteen 
 
   c#~ (dof10 and dof15) c 

1 5 Common divisors of ten and fifteen 

   >./c#~ (dof10 and dof15) c 

5 GCD of 10 and 15 
 
   10 15 |~/ c 
0 0 1 2 0 4 3 2 1 0 10 10 10 10 10 10 10 10 10 10 
0 1 0 3 0 3 1 7 6 5  4  3  2  1  0 15 15 15 15 15 
 
   0=10 15 |~/ c 
1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
 
   and/0=10 15 |~/ c 
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
   c #~ and/0=10 15 |~/ c 
1 5 
 
   >./c #~ and/0=10 15 |~/ c 
5 GCD of ten and fifteen 
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The dyad +. is defined to yield the greatest common divisor of its arguments: 
 
   10 +. 15 +./ 10 15 
5 5 
 

The least common multiple is denoted by *. as illustrated below: 
 
   10 *. 15 (10*15) % 10+.15 
30 30 

D. Primitives 

Verbs (such as * and + and *. and i.) that are denoted by single words are called 
primitives, to distinguish them from derived verbs produced by phrases such as that (*@+) 
used to define the boolean or in Section C. Since primitives and derived verbs are treated 
identically, this distinction is of little consequence except to the designer of a language, 
who must choose what primitives to provide. 

Should new primitives be added for such important cases as the boolean and and or? Not 
if primitives already exist that give the appropriate results when restricted to the boolean 
domain. The dyads <. and >. (min and max) might be tested for this purpose. Thus: 
   and=: * 
   or=: *@+ 
   b=: 0 1 
   <./~b >./~b 
0 0 0 1 
0 1 1 1 
   and/~b or/~b 
0 0 0 1 
0 1 1 1 
 

But do min and max provide the appropriate identity elements? The identity element for 
or should be 0, and for and should be 1, as illustrated below: 
 
   0 or b 1 and b 
0 1 0 1 
 

However, the identity elements of min and max are infinities. Thus: 
 
   <./i.0 >./i.0 
_ __ 
 

Other candidates for or and and when restricted to booleans are the greatest common 
divisor (+.) and the least common multiple (*.) introduced in the preceding section. 
Thus: 
 
   +./~b *./~b 
0 1 0 0 
1 1 0 1 
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   +./i.0 *./i.0 
0 1 

Hereafter, these primitives will be used for or and and. It may be noted that Boole also 
represented or and and by then-current symbols for plus and times, but without the 
appended dot used here to distinguish them from these verbs. 

E. Boolean Dyads 

Are there any other boolean dyads in addition to *. and +. (and and or)? If so, how 
many? 

To answer these questions we first display the tables for *. and +., together with the 
ravel of each produced by the monad , : 
 
   *./~ b=:0 1 +./~ b=:0 1 
0 0 0 1 
0 1 1 1 
 
   ,*./~b ,+./~b 
0 0 0 1 0 1 1 1 
 

We then observe that each table must contain four elements, each of which must belong 
to the range 0 1. Since each element may have either of two values, there are 2*2*2*2, 
or 2^4, or 16 possible tables which, when ravelled to form a four-element list, must agree 
with one of the columns in the following transposed table: 
 
   |:T 
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
 

For example, columns 1 and 7 represent *. and +. : 
 
   1{"1 T 7{"1 T 
0 0 0 1 0 1 1 1 
 
   and=: 1 b. or=: 7 b. 
   and/~ 0 1 or/~ 0 1 
0 0 0 1 
0 1 1 1 
 
   and/i. 0 or/i. 0 
1 0 
 

As illustrated in the foregoing, the adverb b. applies to any of the indices (0 to 15) of the 
table T to produce the corresponding boolean dyad. It may be noted that the base-2 value 
of any row yields its index; for example, 2#.7{T is 7. 
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F. Boolean Monads 

A monad that negates a boolean argument is equivalent to subtraction from 1; it is called 
not, and is denoted by -. . There are in all four boolean monads as illustrated below: 
 
   b 
0 1 
 
   -. b 
1 0 
 
   ] b 
0 1 
 
   ~:~ b 
0 0 
 
   =~ b 
1 1 

G. Generators 

In English, compound propositions are commonly expressed using only or, and, and not. 
For example, using p, q, and r to denote propositions, and using parentheses to express 
the punctuation clearly: 
 

 p and q (1 b.) 

 not (p and q) (14 b.) 

 (p or q) and not (p and q) (6 b.) Exclusive-or 

 not p and (not q) (13 b.) Implication 

 (p or q) or (p or not q) (15 b.)    True 

 (p and q) and (p and not q) (0 b.) False 
 

Each of the foregoing phrases can be restated as definitions of verbs.  For example: 
 
   exclor=: +. *. -.@*. 
   exclor/~ 0 1 
0 1 
1 0 
 

Can all of the sixteen booleans be expressed using only or, and, and not ? The answer is 
yes, and for this reason the collection of verbs +. *. -. is said to be a set of generators 
of the booleans. For example, the case 0 b. (which yields 0 for every pair of arguments) 
can be expressed as (p and q) and (p and not q), and 15 b. as not 
(p and q) and (p and not q). 
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Is +. *. -. a minimal set of generators, or could one of them be omitted? This is easily 
answered by showing that *. itself can be expressed in terms of +. and -. and can 
therefore be omitted: 

 and is not (not p) or (not q) 

The foregoing relation is sometimes expressed as “and is the dual of or (with respect to 
negation).” 

The use of or and not as the only generators can lead to cumbersome expressions for 
some of the booleans, but all can be expressed in terms of them. 

Can a single boolean serve as generator? It can be shown that either 8 b. (not-or or nor) 
or 14 b. (not-and or nand) will serve. This matter is developed in exercises. 

H. Boolean Primitives 

The primitives +. and *. (gcd and lcm) when restricted to the boolean domain provide 
the important boolean verbs or and and. Others are provided by similarly restricting 
relations: 
 

 < 4 b. 

 <: 13 b. Implication 

 = 9 b. Identity 

 >: 11 b. 

 > 2 b. 

 ~: 6 b. Exclusive-or 
 

Finally, +: and *: denote nor and nand, that is, 8 b. and 14 b. . 

I. Summary of Notation 

The notation introduced in this chapter comprises one adverb boolean (b.); five dyads 
or, and, nor, nand,  and not-equal  (+. *. +: *: ~:); three monads not, signum, and 
ravel (-. * ,). 

Exercises 

 

A1 Predict and test the results of n | (i. n) +/ (i. n) and of n | (i. n) */ 
(i. n) for various values of n including 10. 

A2 Define monads S and P such that S n and P n yield the tables of Exercise A1. 

 Answer:  S=: ] | i. +/ i. and P=:]|i.*/i. 

B1 Predict and test the result of applying to an integer n the verb PR=: i. #~ 
T@(+/)@(0&=)@(|/~)@i. for the cases T=:2&= and T=:2&< and T=:3&= . 

B2 Define and test a verb IN such that a IN b yields 1 if a lies in the interval 
between the smallest and largest elements of b. 
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 Answer: IN=: (<./@] < [)*.(>./@] > [) 

B3 Define a verb L such that a L b lists the elements of a that lie in the interval 
defined by b. 

 Answer: L=: IN#[ 

C1 Explain the equivalence of the dyads *. and *%+. and test it in expressions such as 
(?7#100) (*. = * % +.)/ (? 10#100) . 

E1 The verbs 1 b. and 7 b. may be called and and or. Recall or invent suitable 
names for as many of the remaining fourteen boolean functions as you can. 

G1 Using only NAND=: 14 b. define a monad called NOT that is equivalent to the 
monad -. on the boolean domain. 

 Answer: NOT=: NAND~ 

G2 Using only NAND=: 14 b.and NOT define dyads AND and OR that are equal to *. 
and +. on the boolean domain. 

 Answer: AND=: NOT@NAND       OR=:NOT@(NOT AND NOT) 

G3 Repeat Exercises G1, G2 using NOR=: 8 b. instead of NAND. 
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Chapter 

7 

Permutations 

A. Introduction 

Permute is a verb meaning “to change the order of”, and |. is an example of a 
permutation: 
 
   |. 'abcdef' 
fedcba 
 
   |. i. 5 
4 3 2 1 0 
 

Indexing provides arbitrary permutations. For example: 
 
   2 0 1 5 4 3 { 'abcdef' 
cabfed 
 
A list of indices to { that produces a permutation is called a permutation vector, or 
permutation, and one that contains n elements is called a permutation of order n. A 
permutation of order n is itself a permutation of the list i. n. 
 
To enumerate all permutations of order n, it is best to list them in ascending order 
(ascending when considered as the digits representing an integer), as illustrated in the 
following tables: 
 
   p3 p2 
0 1 2 0 1 
0 2 1 1 0 
1 0 2 
1 2 0 p1 
2 0 1 0 
2 1 0 
 
   i=:i.!3 
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   i{p4         (6+i){p4      (12+i){p4      (18+i){p4 
0 1 2 3      1 0 2 3       2 0 1 3        3 0 1 2 
0 1 3 2      1 0 3 2       2 0 3 1        3 0 2 1 
0 2 1 3      1 0 3 2       2 1 0 3        3 1 0 2 
0 2 3 1      1 2 3 0       2 1 3 0        3 1 2 0 
0 3 1 2      1 3 0 2       2 3 0 1        3 2 0 1 
0 3 2 1      1 3 2 0       2 3 1 0        3 2 1 0 
 

A row (or rows) of any one of these tables can be applied to index (and therefore to 
permute) a list of the appropriate number of items. For example: 
 
   3{p4 
0 2 3 1 
 
   (3{p4){'abcd' 
acdb 
 
   (3 4{p4){'abcd' 
acdb 
adbc 
 
   (3 4{p4){i.4 
0 2 3 1 
0 3 1 2 
 
   p3{'abc' p2{'ab' 
abc ab 
acb ba 
bac 
bca 
cab 
cba 
 
   3 A. 'abcd' 
acdb 
 
   3 4 A. 'abcd' 
acdb 
adbc 
 

The last examples illustrate the use of the dyad A. in which i A. y permutes y by a 
permutation of order #y, the permutation being row i of the corresponding table of all 
permutations of that order. 

The index i in the phrase i A. y can be thought of as an atomic (that is, single-element) 
representation of the permutation vector it applies, thus providing a mnemonic for the 
word A. . 

From these examples it should be clear that the phrase (i.!n)A.i.n will produce the 
complete table of !n permutations of order n. Thus: 
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   PT=: i.@! A. i. 
 
   PT 3 PT 2 PT 1 
0 1 2 0 1 0 
0 2 1 1 0 
1 0 2 
1 2 0 
2 0 1 
2 1 0 

B. Arrangements 

Any selection of k different items from a list is called an arrangement, or k-arrangement. 
For example, 0 1{a and 1 0{a and 3 1{a are 2-arrangements from the list 
a=:'abcd'. 

Any k columns of a permutation table will contain all k-arrangements, each arrangement 
appearing !k times. For example: 
 
   ALL=: (PT #a) { a=:'abcd' 
   AR2=: 2 {."1 ALL 
   CLAR2=: ~. AR2 
   ALL AR2     CLAR2 
abcd ab ab 
abdc ab ac 
acbd ac ad 
acdb ac ba 
adbc ad bc 
adcb ad bd 
bacd ba ca 
badc ba cb 
bcad bc cd 
bcda bc da 
bdac bd db 
bdca bd dc 
cabd ca 
cadb ca 
cbad cb 
cbda cb 
cdab cd 
cdba cd 
dabc da 
dacb da 
dbac db 
dbca db 
dcab dc 
dcba dc 
 

The table ALL contains all permutations of the list a; the table AR2 contains all 2-
arrangements, with each arrangement appearing twice; the table CLAR2 is the “clean” 
table of arrangements with redundant items suppressed. The suppression of redundant 
items is performed by the monad ~. (called nub).    
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C. Combinations 

The arrangement 'ca' that occurs in the table CLAR2 is a permutation of the arrangement 
'ac', and the two cases therefore represent the same combination of elements from the 
list a=: 'abcd'. We may obtain a table of all 2-combinations of a by first sorting each 
row of CLAR2, and then taking the nub of the sorted table: 
 
   /:~"1 CLAR2 ~./:~"1 CLAR2 
ab ab 
ac ac 
ad ad 
ab bc 
bc bd 
bd cd 
ac 
bc 
cd 
ad 
bd 
cd 
 

The steps in the development of combinations can now be assembled to define a verb C 
such that k C n produces the table of all k-combinations of order n: 
 
   nub=: ~. 
   rtake=: {."1 
   rsort=: /:~"1 
   C=: nub@rsort@nub@([ rtake (PT@])) 
   2 C 4 (2 C #a){a=: 'abcd' 
0 1 ab 
0 2 ac 
0 3 ad 
1 2 bc 
1 3 bd 
2 3 cd 
 
   1 C 3 2 C 3 3 C 3 
0 0 1 0 1 2 
1 0 2 
2 1 2 
 
   2 C 5 3 C 5 
0 1 0 1 2 
0 2 0 1 3 
0 3 0 1 4 
0 4 0 2 3 
1 2 0 2 4 
1 3 0 3 4 
1 4 1 2 3 
2 3 1 2 4 
2 4 1 3 4 
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3 4 2 3 4 
 
   $ 2 C 5 $ 3 C 5 
10 2 10 3 
 
   (!5)%(!2)*(!5-2)    (!5)%(!3)*(!5-3) 
10 10 
 

The foregoing definition of C shows clearly the relation of combinations to the 
permutations of the corresponding order. However, it is highly inefficient in the sense 
that k C n generates and sorts a large table (of r=:!n rows and n columns) in order to 
select from it a smaller table (of r%(!k)*(!n-k) rows and k columns). A more efficient 
alternative is developed in Exercise J10 of Chapter 9. 

As illustrated by the preceding examples, the number of k-combinations of order n is 
given by (!n)%(!k)*(!n-k). The number of combinations is a commonly-useful 
result; so important that the corresponding verb is treated as a primitive. For example: 
 
   2!5 (i.6)!5 
10 1 5 10 10 5 1 
 
   !/~i.6 
1 1 1 1 1  1 
0 1 2 3 4  5 
0 0 1 3 6 10 
0 0 0 1 4 10 
0 0 0 0 1  5 
0 0 0 0 0  1 
 

The last result is called the table of binomial coefficients; when transposed and displayed 
without the relevant sub-diagonal zeros it is also called Pascal’s triangle. 

D. Products of Permutations 

If p is a permutation vector, then the verb p&{ is a permutation. For example: 
 
   p=: 2 3 4 1 0 5 
   P=:p&{ 
   P a=:'abcdef' P P a 
cdebaf ebadcf 
 
   P^:2 a 
ebadcf 
 
   P^:0 1 2 3 4 5 6 7 8 a P^:(i.9) i.6 
abcdef 0 1 2 3 4 5 
cdebaf 2 3 4 1 0 5 
ebadcf 4 1 0 3 2 5 
adcbef 0 3 2 1 4 5 
cbedaf 2 1 4 3 0 5 
edabcf 4 3 0 1 2 5 
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abcdef 0 1 2 3 4 5 
cdebaf 2 3 4 1 0 5 
ebadcf 4 1 0 3 2 5 
 

In the foregoing it may be noted that the sixth power of the permutation P agrees with its 
original argument, and the pattern therefore repeats thereafter. The period of this 
particular permutation is therefore said to be 6. 

E. Cycles 

Column 3 of the tables produced by the power of the permutation P of Section D shows 
that position 3 of successive powers is occupied by the elements 'd', and 'b' (or 3 1) 
in a repeating cycle of length two. Column 1 shows the same cycle displaced. 

Similarly, column 4 shows the length-3 cycle 4 0 2, and columns 0 and 2 show the 
same cycle displaced; column 5 shows the 1-cycle 5.  

The permutation P could therefore be represented unambiguously by its cycles as follows: 
   c=: 3 1 ; 4 0 2 ; 5 
   c 
+---+-----+-+ 
|3 1|4 0 2|5| 
+---+-----+-+ 

The dyad C. produces permutations specified in cycle form. Thus: 
   c C. a=:'abcdef' 
cdebaf 
 
   p { a 
cdebaf 
 
   p C. a 
cdebaf 
 

As illustrated by the last example, the dyad C. also accepts permutation vectors as the 
left argument, and in that case is equivalent to the dyad { . Finally, the monad C. 
provides a self-inverse transformation between the cycle and permutation-vector 
representations of a permutation. Thus: 
   C. c 
2 3 4 1 0 5 
   C. C. c 
+---+-----+-+ 
|3 1|4 0 2|5| 
+---+-----+-+ 
   PT=: i.@! A. i.    
   (PT 3);(C. PT 3);(C. C. PT 3) 
+-----+-------------+-----+ 
|     |+-----+---+-+|     | 
|     ||  0  | 1 |2||     | 
|     |+-----+---+-+|     | 
|0 1 2||  0  |2 1| ||0 1 2| 
|0 2 1|+-----+---+-+|0 2 1| 
|1 0 2|| 1 0 | 2 | ||1 0 2| 
|1 2 0|+-----+---+-+|1 2 0| 
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|2 0 1||2 0 1|   | ||2 0 1| 
|2 1 0|+-----+---+-+|2 1 0| 
|     ||2 1 0|   | ||     | 
|     |+-----+---+-+|     | 
|     ||  1  |2 0| ||     | 
|     |+-----+---+-+|     | 
+-----+-------------+-----+ 

From columns 0 and 1 of the table of Section D it may be seen that the return to an 
identity permutation can occur only when the two cycles (of lengths 2 and 3) complete at 
the same time, in this case after 2*3 applications of the permutation. The period of the 
permutation is therefore 6. 

In general, the period of a permutation is the least common multiple of the lengths of its 
cycles. This will be illustrated further by a permutation of order 20 : 
   p20=:17 4 9 7 12 14 18 13 0 6 15 1 16 10 2 8 3 19 5 11 
   ]c20=:C. p20 
+-------------+-----------------------------------+ 
|18 5 14 2 9 6|19 11 1 4 12 16 3 7 13 10 15 8 0 17| 
+-------------+-----------------------------------+ 
   #@> c20 *./#@> c20 
6 14 42 
   p20&{^:18 a=: 'abcdefghijklmnopqrst' 
bdcphfgiljrqnaotkesm 
 
   p20&{^:(i.19) 'abcdefghijklmnopqrst' 
abcdefghijklmnopqrst 
rejhmosnagpbqkcidtfl 
tmgnqcfkrsiedpjahlob 
lqskdjoptfamhigrnbce 
bdfphgcilorqnastkejm 
ehoinsjabctdkrflpmgq 
mncakfgrejlhptobiqsd 
qkjrpostmgbnilceadfh 
dpgticflqsekabjmrhon 
hislajobdfmpregqtnck 
nafbrgcehoqitmsdlkjp 
kroetsjmncdalqfhbpgi 
ptcmlfgqkjhrbdoneisa 
iljqbosdpgntehckmafr 
abgdecfhisklmnjpqrot 
reshmjonafpbqkgidtcl 
tmfnqgckroiedpsahljb 
lqokdsjptcamhifrnbge 
bdcphfgiljrqnaotkesm 

 

F. Reduced Representation 

There are exactly !n permutations of order n, and the “factorial” base n-i.n introduced 
in Section 4 E can be seen to provide exactly !n distinct lists of n integers, each 
belonging to i.n: 
   R=: (]-i.) #: i.@! 
   R 3 
0 0 0 
0 1 0 
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1 0 0 
1 1 0 
2 0 0 
2 1 0 
 

These lists can be used to represent the permutations in what we will call a reduced 
representation, as distinguished from the “direct” representation used thus far: 
 
   D=: i.@! A. i. 
   D 3 
0 1 2 
0 2 1 
1 0 2 
1 2 0 
2 0 1 
2 1 0 
 

We will now define a verb RFD to yield the reduced representation from the direct, and an 
inverse DFR: 
 
   RFD=: +/@({.>}.)\."1 
   DFR=: /:^:2@,/"1 
 

For example: 
 
   RFD D 3 DFR R 3 
0 0 0 0 1 2 
0 1 0 0 2 1 
1 0 0 1 0 2 
1 1 0 1 2 0 
2 0 0 2 0 1 
2 1 0 2 1 0 

 

The definitions of these verbs will be discussed in exercises. 

G. Summary of Notation 

The notation introduced in this chapter comprises five verbs: atomic permutation, cycle, 
nub, number of combinations, and random (A. C. ~. ! ?). 

Exercises 

A1 Using as argument a list of four items, test the assertion that the monad |. is a 
permutation, and determine the value of k such that k&A. is equivalent to |. . 

A2 Repeat Exercise A1 for the cases of lists of two, three, and five items. 

A3 Test the assertion that a rotation such as r&|. is a permutation, and repeat 
Exercises A1 and A2 using rotations instead of reversal. 

A4 Apply the monad A. to various permutation vectors, and state its definition. 



Chapter 7 Permutations  73 
  

A5 Experiment with k A. 'abcd' for negative values of k. 

B1 Write an expression for the number of k-arrangements of order n. 

C1 Define a monad BC such that BC n gives the table of binomial coefficients up to 
order n-1. 

 Answer:   BC=: !/~@i. 

C2 Without using ! or BC define a monad CS that gives the column sums of BC n. 

 Answer: CS=: 2&^@i.   

D1 Determine the power of the permutation p=: 4824 A. i. 7. 

 Hint: Examine the table produced by p&{^:(i.20) i.7 

D2 Determine the power of the random permutation q=: 5?5. 

E1 Predict and test the results of C. k A. i.n for various values of k and n. 

E2 Predict and test the result of C. 1 3;2 0 4. 

E3 Repeat Exercise E2 for various boxed arguments of C. . 

E4 Use various permutations p to test the assertion that the power of p is the least 
common multiple of the lengths of the cycles in its cycle representation. 

E5 Define a monad PER to give the power of a permutation p. 

 Answer: PER=: *./@(#@>@C.) 

E6 What is the maximum period of a permutation of order n ? 

F1 Predict and test the results of R 4 and D 4 and RFD D 4 and DFR R 4 and 
(RFD@D = R) 4. 

F2 Define rfd equivalent to RFD except that it will apply only to a single permutation 
and not to a table of permutations. 

 Answer: Omit "1 from RFD. 

F3 Analyze the definition of rfd of the preceding exercise by defining and 
individually applying two functions such that f @ (g \.) is equivalent to rfd. 

 Answer: f=:+/    g=: {.<}. 

F4 Analyze DFR. 
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Chapter 

8 

Classification and Sets 

A. Introduction 

It is often necessary to separate a collection of objects into several classes, and then 
perform some operation upon each of the classes. The operation performed is often trivial 
compared to the complexity of the classification procedure itself, and classification is 
therefore an important matter. Indeed, most computation involves some classification, 
even though the classification process may be implicit rather than explicit. 

As an example of the use of classification, consider a set of transactions that are recorded 
as a list of account numbers and a corresponding list of credits to the accounts. Thus: 
 
   an=: 1010 1040 1030 1030 1020 1010 1040 1040 1050 
   cr=:  131  755  458  532  218   47  678  679  934 
 

A summary should therefore post the sum 131+47 to account 1010  and 218 to account 
1020, and so on. If: 
 
   all=: 1010 1020 1030 1040 1050 
 
is the list of all account numbers, then c=: all =/ an is the classification table, and: 
 
   c=: all =/ an 
   c 
1 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 1 1 0 0 0 0 0 
0 1 0 0 0 0 1 1 0 
0 0 0 0 0 0 0 0 1 
   c*cr 
131   0   0   0   0 47   0   0   0 
  0   0   0   0 218  0   0   0   0 
  0   0 458 532   0  0   0   0   0 
  0 755   0   0   0  0 678 679   0 
  0   0   0   0   0  0   0   0 934 
 
   +/"1 c*cr 
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178 218 990 2112 934 

The classification represented by the table c is both complete (each element being 
assigned to some class) and disjoint (each element being assigned to no more than one 
class). Classifications that arise from the expression a =/ b are disjoint if the elements 
of a are all distinct, and are complete if every element of b belongs to a. A boolean table 
B represents a complete disjoint classification if and only if each of its column sums is 
equal to 1; that is, if *./1=+/B . 

Since a table provides such a convenient representation of a classification, we will 
henceforth speak (rather loosely) of the table itself as a classification, or as an n-way 
classification, where n=:#B. 

Meaningful classifications need not be disjoint. For example, the letters of the alphabet 
may be classified phonetically by a 27-column table as follows: 
 
   a=:'abcdefghijklmnopqrstuvwxyz ' 
   PH 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 
1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 
0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 
 
   (0{PH)#a Sibilants 
sz 
   a#~1{PH Fricatives 
fv 
 
   a#~2{PH Plosives 
bdpt 
   a#~3{PH Vowels 
aeiouy 
 
   a#~4{PH Consonants 
bcdfghjklmnpqrstvwxz 
 
   a#~ >/4 2{PH Consonants that are not plosives 
cfghjklmnqrsvwxz 
 

Moreover, if t is any text, then (a i. t){"1 PH provides classifications of it: 
 
   t=: 'i sing of olaf' 
   a i. t 
8 26 18 8 13 6 26 14 5 26 14 11 0 5 
 
   (a i. t) {"1 PH 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 1 0 0 0 1 0 0 1 0 1 0 
0 0 1 0 1 1 0 0 1 0 0 1 0 1 
 
   ((a i. t) {"1 PH) # t 
s      
ff     



Chapter 8 Classification And Sets  77 
  

 
iiooa  
sngflf 

Incomplete classifications are also useful. For example, the classification provided by PH 
is incomplete because the space belongs to none of the classes. Indeed, every n-way 
classification B implicitly defines a further class (which might be called other) defined by 
the expression -.+./B; that is, not the or over the classes. Any classification table may 
therefore be completed by applying the verb comp=: ] , -.@(+./) . 

Related classifications can be obtained from a table. Thus: 
 
   ]M=:>1 0 0 1 0;0 1 1 0 0 
1 0 0 1 0 
0 1 1 0 0 
   M *."0 1 PH 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
   sovfop=: +./"2 M *."0 1 PH 
   sovfop 
1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 
 
   ((a i. t) {"1 sovfop) # t 
isiooa 
ff     
 

The first  row of the resulting classification table sovfop includes sibilants or vowels; 
the second includes fricatives or plosives. 

For any classification table B, a corresponding disjoint classification can be obtained by 
suppressing from each column any 1 except the first. This is achieved by the expression 
</\B. For example: 
 
   </\PH 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 
1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 
0 0 1 0 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 
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The last class of the resulting table represents “all consonants that do not fall in the earlier 
classes”. 

B. Sets 

A set is a one-way classification, and is therefore defined by a proposition. For example: 
   GT10=: >&10 VOW=: +./@('aeiouy'&(=/)) 
   L=: 2 3 5 7 
   MEML=: +./@(L&(=/)) III=: (]=<.) *. >&8 *. <&75   
   GT10 2 3 5 7 11 13 17 
0 0 0 0 1 1 1 
 
   VOW 'happy those early days' 
0 1 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 1 0 
 
   MEML i.15 
0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 
 
    III 6 7 +/ 2%~i.10 
0 0 0 0 0 0 1 0 1 0 
0 0 0 0 1 0 1 0 1 0 

Thus, VOW defines “The set of all vowels”, MEML defines “The set of all members of the 
list L (a parameter that may be changed) ”, and III defines “The set of all integers in an 
interval”. 

The proposition that defines a set is often itself defined in terms of the list of elements 
that belong to the set, as was done directly in the proposition VOW, and indirectly in the 
proposition MEML.  

Although we often speak loosely of the set as the list itself (as in “The set 'aeiouy'”, or 
“The set L”), it is important to remember that the definition of the set is the entire 
proposition, that the ordering of the elements of the list therefore imposes no ordering on 
the members of the set, and that the repetition of elements in the defining list does not 
affect the definition of the set. 

A set is completely determined by the proposition that defines it, and we will sometimes 
speak loosely of “the set P” rather than “the set defined by P”. The defining proposition is 
often compound, and these compound propositions are often given special names. Thus: 

   PI=: P1 *. P2     The intersection of P1 and P2 

   PU=: P1 +. P2     The union of P1 and P2 

   PD=: P1 >  P2     The difference of P1 and P2 

  PSD=: P1 ~: P2     The symmetric difference of P1 and P2 

Although a proposition defining a set may have an infinite domain (such as all numbers), 
it is also useful to consider propositions restricted to a finite list of arguments. We will 
denote such lists by names beginning with U (for universe of discourse). 

For example, some or all of the letters of the alphabet might be assigned to colours, as in 
Acquamarine, Blue, Cyan, Dun, ... Orange, Pink, Quercitron, Red, ... Yellow, and Zaffer. 
The universe is then defined by: 
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   U=:'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 
 

and the sets of primary and secondary pigment colours might be defined by the 
propositions: 
 
   P=: +./@(1 17 24&(=/)@(U&i.)) 
   S=: +./@(6 14 21&(=/)@(U&i.)) 

For example: 
 
   (P U)#U U#~S U 
BRY GOV 
 
   cv=: P U 
   cv 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 
 
   ]ml=: cv # U 
BRY 
 

The vectors cv and ml defined above are the characteristic vector and member list of the 
set defined by the  proposition P on the universe U. The set P could alternatively be 
defined in terms of them: 
 
   P1=: {&cv@(U&i.) 
   P2=: +./@(ml&(=/)) 
   U#~P1 U U#~P2 U 
BRY BRY 
 

The table B=: #: i. 2^# U (whose rows are the base-2 representations of successive 
integers) provides an exhaustive classification of the universe U, including the empty set 
(represented by a characteristic vector of zeros), and the complete set (represented by a 
characteristic vector of ones). For example: 
 
   ]EC=: #: i. 2^# U=: 2 3 5 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 
 

This exhaustive classification is very useful. For example, the sums and products over all 
subsets of U can be obtained as follows: 
 
   +/"1 U*EC */"1 U^EC 
0 5 3 8 2 7 5 10 1 5 3 15 2 10 6 30 

Moreover, since EC is exhaustive, any collection of subsets can be obtained by selecting 
rows from it. For example: 
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   5 1 2{EC (2=+/"1 EC)#EC 

1 0 1 0 1 1 

0 0 1 1 0 1 
0 1 0 1 1 0 

C. Nub Classification 

The nub of an argument contains all of its distinct items. Thus: 
 
   nub=: ~. text=: 'mississippi' 
   nub    ]i=:nub i. text          i{nub 
misp 0 1 2 2 1 2 2 1 3 3 1 mississippi 
 

A classification of an argument in terms of its nub will be called a nub or self or auto 
classification. For example: 
 
   nub =/ text = text 
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 
0 0 1 1 0 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 
   +/"1 = text 
1 4 4 2 
 

The table on the right shows the use of the nub-classification monad = ; the expression 
+/"1 = text gives the distribution of the items of its argument, that is, a frequency 
count of its distinct items. 

D. Interval Classification 

A list of integers L may be classified according to its interval, that is, the list of 
successive integers beginning with the largest element of L and continuing through the 
smallest. Thus: 
   (INT=: >./ - i.@>:@(>./ - <./)) L=:8 3 0 _1 0 3 8 
8 7 6 5 4 3 2 1 0 _1 
   (INT L) =/ L ' *' {~ (INT L) =/ L 
1 0 0 0 0 0 1             *     * 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 1 0 0 0 1 0              *   * 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 1 0 1 0 0               * * 
0 0 0 1 0 0 0                *    
 

If the list L is the result of some function, then the foregoing classification is called a 
graph of the function. For example, if: 
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    PARABOLA=: -&2 * -&4 
 

then PARABOLA i. 7 yields the list L used above. The foregoing results can be collected 
to define a graphing function as follows: 
 
   GRAPH=: ] =/~ >./ - i.@>:@(>./ - <./) 
 

Moreover, the expression +./\GRAPH L produces a barchart of L. Conversely, (in the 
case of non-integer values of L) it may be better to define a barchart function directly by 
substituting the comparison <:/ for the =/ used in GRAPH: 
 
   BARCHART=: ] <:/~ >./ - i.@>:@(>./ - <./) 
 

A graph may then be provided by the expression </\ BARCHART L. Finally, it may be 
remarked that a barchart is a classification of its argument, and that the phrase </\ 
applied to it produces the corresponding disjoint classification used as a graph. 

E. Membership Classification 
The functions VOW and MEML of Section B provide examples of defining a classification 
according to membership in a list, using an or over equality, as in MEML=: 
+./@(L&(=/)) . Membership in a list is important enough to be accorded a primitive, 
denoted in mathematics by the Greek letter epsilon, and here by e. . For example, the 
function MEML could be defined by e.&L . 

Membership can be used to define a form of plotting that supplements the barcharts and 
graphs provided by the interval classification in Section D. If B is a boolean table, then 
B{' *' gives a plot of the points indicated by the ones in B: 
 
   B B{' *' 
1 1 1 0 0 0 *** 
1 0 1 0 0 0 * * 
1 0 1 0 0 0 * * 

1 1 1 0 0 0 *** 
 

Such a table can be specified by the coordinates of its ones; for example, the coordinates 
defining B are the columns of the table: 
 
   b=:0 1 2 0 2 0 2 0 1 2,:0 0 0 1 1 2 2 3 3 3 
 

Laminate (,:) forms a table from list arguments: 
 
   b 
0 1 2 0 2 0 2 0 1 2 
0 0 0 1 1 2 2 3 3 3 
 

If A is a table of all coordinates of B, then B itself can be specified in terms of the index 
list b by using membership (e.) in the expression A e. boxcol b, where boxcol 
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boxes the columns of its argument. We first define a function to generate all indices of a 
table, using the catalogue function { that forms boxed lists by choosing an element from 
each of the boxes in its argument: 
 
   ]w=:'ABC';'abcd' 
+---+----+ 
|ABC|abcd| 
+---+----+ 
 
   {w 
+--+--+--+--+ 
|Aa|Ab|Ac|Ad| 
+--+--+--+--+ 
|Ba|Bb|Bc|Bd| 
+--+--+--+--+ 
|Ca|Cb|Cc|Cd| 
+--+--+--+--+ 
 
   (i.&.>"1)  4 6 
+-------+-----------+ 
|0 1 2 3|0 1 2 3 4 5| 
+-------+-----------+ 
 
   ALLIX=: {@(i.&.>"1) 
   ALLIX 4 6  
+---+---+---+---+---+---+ 
|0 0|0 1|0 2|0 3|0 4|0 5| 
+---+---+---+---+---+---+ 
|1 0|1 1|1 2|1 3|1 4|1 5| 
+---+---+---+---+---+---+ 
|2 0|2 1|2 2|2 3|2 4|2 5| 
+---+---+---+---+---+---+ 
|3 0|3 1|3 2|3 3|3 4|3 5| 
+---+---+---+---+---+---+ 
 
We now use ALLIX to form the lists of coordinates in the usual form; that is, with the x-
coordinate first and increasing from left to right, and with the y-coordinate increasing 
from bottom to top:  
 
   ALLCO=: |.&.>@:|.@:ALLIX@:>: 
   ALLCO 4 6 
+---+---+---+---+---+---+---+ 
|0 4|1 4|2 4|3 4|4 4|5 4|6 4| 
+---+---+---+---+---+---+---+ 
|0 3|1 3|2 3|3 3|4 3|5 3|6 3| 
+---+---+---+---+---+---+---+ 
|0 2|1 2|2 2|3 2|4 2|5 2|6 2| 
+---+---+---+---+---+---+---+ 
|0 1|1 1|2 1|3 1|4 1|5 1|6 1| 
+---+---+---+---+---+---+---+ 
|0 0|1 0|2 0|3 0|4 0|5 0|6 0| 
+---+---+---+---+---+---+---+ 
 
 
   plot=: {&' *'@(ALLCO@[ e. boxcol@]) 
 
     boxcol=: <"1@|: 

 
   4 6 plot b 
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***     
* *     
* *     
*** 
 
A function equivalent to plot can also be defined by replacing all of its component 
functions by the expressions that define them: 
 
  PLOT=:{&' *'@(|.&.>@|.@({@(i.&.>"1))@>:@[e.<"1@|:@])     
 
If f and g are two functions, then a plot of the points with x-coordinate f k{a and y-
coordinate g k{a will be called a plot of f with g or, alternatively,  a plot of g versus f. 
Thus: 
 
   f=: *: g=: +:        a=:0 1 2 3 
   (f ,: g) a 
0 1 4 9 
0 2 4 6 
 
   7 10 PLOT (f ,: g) a 
            
         *  
            
    *       
            
 *          
            
*       

F. Summary of Notation 

The monads self-classification and catalogue (= and {), and the dyads membership and 
laminate (e. and ,:) were introduced in Sections C and E. 

Exercises 

A1 Enter b=: ?5 7$2 to produce a random boolean table, and n=:(7#2) #. b to 
produce the base-2 values of its rows. Then enter (7#2)#: n and compare the 
result with b . 

 A2 The base -2 value of the rows of the phonetic classification table PH is given by:   

 n=: 258 2097184 41945216 71569476 62648250 

 Use this fact to enter the table PH and then experiment with its use. 

B1 Define two or three propositions, and experiment with their intersection, union, and 
differences. 

B2 Predict and enter the complete classification table for four elements, and select 
from it the classification table for all subsets of two elements. 

C1 Experiment with nub-classification on various arguments, including the boxed list 
;:'A rose is a rose is a rose.' 

D1 Enter the verbs defined in Section D, and experiment with them. 

E1 Predict and verify the result of {'ht';'ao';'gtw' 
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E2 Plot -&2*-&4 versus ] on i.7, and compare the result with the parabola in Section 
D. 

E3 Plot 2&^ versus ^&2  
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Chapter 

9 

Polynomials 

A. Introduction 

A polynomial is a weighted sum of non-negative integer powers of its argument. For 
example: 
 
   x=:1 2 3 4 5 
   e=: 0 1 2 3 
   c=: 1 3 3 1 
   x^/e c*x^/e 
1 1  1   1 1  3  3   1 
1 2  4   8 1  6 12   8 
1 3  9  27 1  9 27  27 
1 4 16  64 1 12 48  64 
1 5 25 125 1 15 75 125 
 
   +/"1 c*x^/e 
8 27 64 125 216 
 

The final result is the value of a polynomial with exponents e and weights (or 
coefficients) c applied to an argument list x. 

A zero coefficient effectively suppresses the effect of the corresponding exponent (e.g., 
+/"1 (0 0 1 2)*x^/0 1 2 3 is equivalent to +/"1 (1 2)*x^/2 3 ); it is therefore 
convenient to express a polynomial only in terms of its coefficients c, and to assume that 
the corresponding exponents are i.#c : 
 
   POL=: +/"1 @ ([ * ] ^/ i.@#@[) 
   c POL x 
8 27 64 125 216 
 

The discussion in Sections A-D will be limited to polynomials with integer coefficients, 
but general polynomials admit real and complex numbers, as discussed in Section F. 
Because a general polynomial admits an arbitrary number of arbitrary coefficients, 
polynomials can be designed to approximate almost any function of practical interest. 



86  Arithmetic 
 

Although its utility rests largely on its potential for approximation, the polynomial has 
other important characteristics that can be discussed in the restricted context of integers: 
the following four functions are themselves polynomials: 

1. The sum or difference of polynomials. 

2. The product of polynomials. 

3. The derivative (or “rate of change”) of a polynomial. 

4. The integral of (or “area under”) a polynomial. 

Although the coefficients of the polynomials for cases 3 and 4 are trivial to compute 
(}.c*i.#c and 0,c%>:i.#c), their treatment will be deferred to Section H. 

B. Sums and Products 

The cases of the sum and product may be illustrated as follows: 
   x=: 0 1 2 3 4 5 
   c=: 1 3 3 1 d=: 1 2 1 
   c POL x 
1 8 27 64 125 216 
 
   d POL x 
1 4 9 16 25 36 
 
   (c POL x) + (d POL x) 
2 12 36 80 150 252 
 
   (c+d,0) POL x 
2 12 36 80 150 252 
 
   (c POL x) * (d POL x) 
1 32 243 1024 3125 7776 
 
   TIMES=: +//. @ (*/) 
   c TIMES d 
1 5 10 10 5 1 
 
   (c TIMES d) POL x 
1 32 243 1024 3125 7776 
 

It will be more illuminating to discuss the sum and product of polynomials in terms of a 
table of an arbitrary number of coefficients. For example: 
 
   ]TC=: >1 3 3 1 ; 1 2 1 ; 1 1 
1 3 3 1 
1 2 1 0 
1 1 0 0 
 
   +/TC 
3 6 4 1 
   (+/TC) POL x 
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3 14 39 84 155 258 
 
   TIMES/TC 
1 6 15 20 15 6 1 0 0 0 
 
   (TIMES/TC) POL x 
1 64 729 4096 15625 46656 
 
   TC POL"1 x */TC POL"1 x 
1 8 27 64 125 216 1 64 729 4096 15625 46656 
1 4  9 16  25  36 
1 2  3  4   5   6 

It should be noted that the final zeros appended to coefficients in forming the table TC do 
not change their effects as coefficients. However, it may be convenient to trim redundant 
trailing zeros from a result such as TIMES/TC above. Thus: 
   trim=: +./\.@* # ] 
   trim TIMES/TC (i.7)!6 
1 6 15 20 15 6 1 1 6 15 20 15 6 1 

C. Roots 

If a function f applied to an argument a yields 0, then a is said to be a zero or root of f. 
A function is sometimes defined in terms of its roots. For example: 
 
   PIR=: */@(-~/) 
   r=: 2 3 5 
   x=: 0 1 2 3 4 5 6 
   r PIR x (x-2)*(x-3)*(x-5) 
_30 _8 0 0 _2 0 12 _30 _8 0 0 _2 0 12 
 
   r&PIR x 
_30 _8 0 0 _2 0 12 
 

The monad r&PIR is also said to be a polynomial (or polynomial in terms of roots) 
because it can be shown to be equivalent to a polynomial c&POL for appropriate 
coefficients c. This is best demonstrated by defining a function CFR that produces the 
coefficients from the roots. Thus: 
 
   AS=: #:@i.@(2&^)@# 
   AS r Boolean table of all subsets of #r items. 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 
 
   POAS=: */"1@(-^AS) 
   POAS r Product over all subsets of -r. 
1 _5 _3 15 _2 10 6 _30 
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   CLBN=: =@(+/"1@AS) Classification by number of 
   CLBN r elements in set. 
1 0 0 0 0 0 0 0 
0 1 1 0 1 0 0 0 
0 0 0 1 0 1 1 0 
0 0 0 0 0 0 0 1 
 
   CFR=: +/"1@|.@(CLBN*POAS)    Coefficients from roots. 
   CFR r 
_30 31 _10 1 
 
   (CFR r) POL x 
_30 _8 0 0 _2 0 12 
   r PIR x 
_30 _8 0 0 _2 0 12 

D. Expansion 

If the polynomial d&POL is equivalent to c&POL x+1, then the coefficients d are said to 
be the expansion of the coefficients c. More formally, d is the expansion of c if d&POL 
and c&POL@>: are equivalent. For example: 
   x=: i. 6 c=:3 1 4 2 
   ]d=: +/ c * !~/~i.#c 
10 15 10 2 
 
   d POL x 
10 37 96 199 358 585 
   c POL x+1 
10 37 96 199 358 585 
 
   EXP=: +/@(] * !~/~@i.@#) 
   EXP c 
10 15 10 2 
 
   EXP^:4 c 
199 129 28 2 
 
   (EXP^:4 c) POL x 
199 358 585 892 1291 1794 
 
   c POL x+4 
199 358 585 892 1291 1794 
 

The definition of the function EXP will be analyzed in exercises. 

Although the function EXP and its non-negative powers can produce expansions for c 
POL x+i for any non-negative integer i, it must be modified to handle the general case 
for fractional values of i such as 0.1. This matter will be addressed in Section F, after 
the introduction of real numbers. 
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E. Graphs And Plots 
Graphs and barcharts of functions with non-integer results can be produced by the 
methods of Section 8 D.We first define a uniform grid of a specified number of intervals, 
and use it to classify the non-integer results. Thus: 
 
   space=:(>./ - <./)@] % [ 
   grid=: <./@] + space * i.@>:@[ 
   graph=: {&' *'@ (</\@|.@ (grid </ ] + -:@space)) 
   10 graph %: i. 40 

                                    **** 
                             *******     
                      *******            
                 *****                   
            *****                        
        ****                             
     ***                                 
   **                                    
 **                                      
                                         
*        

 

The plots of Section 8 E may be extended similarly: 

  GPLOT=: [ PLOT |.@([ classify"0 1 ]) 

  classify=: <:@(+/@(grid </ ] + -:@space)) 

  PLOT=:{&' *'@(|.&.>@|.@({@(i.&.>"1))@>:@[e.<"1@|:@]) 

  6 10 GPLOT (*:,:+:) i.5 

          * 
            
            
       *    
            
     *      
* *         

F. Real And Complex Numbers 

In order to discuss further uses of polynomials, it will be necessary to extend the domains 
of our primitives beyond the integers to which they have been restricted thus far. 

Just as the inverse of the successor led to results outside of the counting numbers, so do 
inverses of certain functions on integers lead outside the domain of integers. For 
example: 
 
   a=: 1 2 3 4 

   *&2 ^:_1 a Rational numbers 
0.5 1 1.5 2 
 
   %&2 a 
0.5 1 1.5 2 
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   %&2 -a 
_0.5 _1 _1.5 _2 
 

   ^&2 ^:_1 a Irrational numbers 
1 1.41421 1.73205 2 
 

   %: a 

1 1.41421 1.73205 2 

 

   %: -a Imaginary numbers 
0j1 0j1.41421 0j1.73205 0j2 
 

   a+%:-a Complex numbers 
1j1 2j1.41421 3j1.73205 4j2 
 

The rationals include the integers and, together with the irrationals, they comprise the 
real numbers. The informal extension of primitives to the real domain is straightforward; 
they are extended so as to maintain the properties discussed in Chapter 2. The imaginary 
and complex numbers are treated similarly, but merit further discussion. 

Since the square of any real number is non-negative, the square root of _1 must be a new 
number outside the domain of reals. It will be denoted by 0j1. The product of 0j1 with 
any real number shares the property that its square is a negative number. This follows 
from the normal properties of multiplication: 
 
   b=: 1 2 3 4 5 
   b*0j1 
0j1 0j2 0j3 0j4 0j5 
 
   (b*0j1) * (b*0j1) 
_1 _4 _9 _16 _25 
 
   b*b * 0j1*0j1 
_1 _4 _9 _16 _25 
 
   (b*b) * (0j1 * 0j1)  
_1 _4 _9 _16 _25 
 
   (b*b) * _1 
_1 _4 _9 _16 _25 

If a and b and c and d are real numbers, then a+0j1*b and c+0j1*d are complex 
numbers. Moreover, their sum can be derived from the familiar properties of addition and 
multiplication: 
 
   a=: 1+b=: 1+c=: 1+d=: 1 
   a,b,c,d 
4 3 2 1 
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   (a+0j1*b) + (c+0j1*d) 
6j4 
 
   (a+c) + 0j1*(c+d) 
6j3 
 
   (a+c) + 0j1*(b+d) 6+0j1*4 
6j4 6j4 
 

The product of complex numbers can be derived similarly: 
 
   (a+0j1*b) * (c+0j1*d) 
5j10 
 
   ((a*c)+(0j1*0j1*b*d)) + (0j1*((a*d)+(b*c)))  
5j10 
 
   ((a*c)+(_1*b*d)) + (0j1*((a*d)+(b*c))) 
5j10 
 
   ((a*c)-(b*d)) + (0j1*((a*d)+(b*c))) 
5j10 
 

These processes can be described succinctly by representing each complex number by a 
two-element list, and using the primitive j. defined as follows: 
 
     j. y is 0j1*y 
   x j. y is x+j.y 
   j. b a j. b j./a,b 
0j3 4j3 4j3 

The “complex plus” and “complex times” functions on two-element lists can now be 
defined as follows: 
 
   cplus=: + 
   ctimes=: -/@:* , +/@([ * |.@]) 
   m=: 3 4 n=: 5 2 
   j./m j./n 
3j4 5j2 
 
   ]sum=: m cplus n ]prod=: m ctimes n 
8 6 7 26 
 
   j./prod (j./m)*(j./n) 
7j26 7j26 
 

Although a collection of complex numbers could be represented by the rows of a two-
column table, it is more convenient to adopt an atomic representation, obtained by boxing 
each list. Thus: 
 
   M=:<m 
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   N=:<n 
   M,N 
+---+---+ 
|3 4|5 2| 
+---+---+ 
   < (>M) ctimes (>N) 
+----+ 
|7 26| 
+----+ 

As illustrated above, the verb cplus can be applied to these representations only by first 
applying > (open), and the corresponding atomic representation is obtained by applying 
the inverse < (box). 

The whole can be achieved by the conjunction &. in which the verb u &. v first applies 
v, applies u to that, and finally applies v^:_1. The conjunction &. is called under, 
because u is applied “under” v in the sense that surgery is performed under anaesthetic, 
the patient being restored from its effects at the end of the operation: 

   M ctimes&.> N 

+----+ 
|7 26| 
+----+ 
   M,N,M 
+---+---+---+ 
|3 4|5 2|3 4| 
+---+---+---+ 
   ctimes&.>/ M,N,M 
+-------+ 
|_83 106| 
+-------+ 
 
   CPLUS=: cplus&.> 
   CTIMES=: ctimes&.> 
   M CPLUS N CTIMES M 
+-----+ 
|10 30| 
+-----+ 

The monad magnitude (|) is extended to complex numbers to yield the square root of the 
sum of the squares of its imaginary parts: 
 
   | _5 
5 
 
   | 3j4 
5 
 
   %:+/*:3 4 
5 

In other words, the magnitude is the distance of a point from the origin when the 
imaginary part is plotted against the real part. 
 
G. General Expansion 



Chapter 9 Polynomials  93 
  

The function EXP of Section D has the property that (EXP c) POL x is equivalent to c 
POL x+1. We will now define a more general expansion such that (y GEXP c) POL x 
is equivalent to c POL x+y: 
   x=: i. 6 
   y=: 0.1 
   c=: 3 1 4 2 
   GEXP=: +/@(] * !~/~@i.@#@] * [ ^ -/~@i.@#@]) 
   y GEXP c 
3.142 1.86 4.6 2 
 
   (y GEXP c) POL x 
3.142 11.602 41.262 104.122 212.182 377.442 
   c POL x+y 
3.142 11.602 41.262 104.122 212.182 377.442 

The definition of the expansion will be analyzed in exercises. 

H. Slopes And Derivatives 

If s is a small quantity, then the difference (f x+s)-(f x) gives an indication of the 
change in the result of the function f in the vicinity of the point x. Moreover, the ratio 
s%~(f x+s)-(f x) obtained by dividing the “step size” s into this difference gives an 
indication of the rate at which f is changing. Because on a graph of the function this ratio 
is the slope of the secant line joining the points with coordinates x,f x and (x+s), f 
x+s, it is called the secant slope of f. For example: 

   f=: *: The square function 
   x=: 4 [ s=: 2 
   (f x+s)-f x s%~(f x+s)-f x 
20 10 
 
   ]s=: 10^-i.5 
1 0.1 0.01 0.001 0.0001    
 
   s%~(f x+s)-f x 
9 8.1 8.01 8.001 8.0001  
 

We now define a dyadic function F such that s F x gives the secant slope of f at x with 
step size s: 
 
   F=: [ %~"0 1 f@([+/,@])-f@] 
   2 F x=: 4 5 6 7 
10 12 14 16 
 
   s F x 
     9      11      13      15 
   8.1    10.1    12.1    14.1 
  8.01   10.01   12.01   14.01 
 8.001  10.001  12.001  14.001 
8.0001 10.0001 12.0001 14.0001 
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For a small step size, the secant slope s F x is a close approximation to the slope of the 
tangent to the graph of f at the point x, a value called the derivative of f at the point x. 
For example: 
 
   s=:10^_10 
   s F x Approximate derivative of square 
8 10 12 14 
 
   2*x 
8 10 12 14 
   f=:^&3 
 
   s F x Approximate derivative of cube 
48 75 108 147 
 
   3*x^2 
48 75 108 147 
 
   f=:^&4 
   s F x Approximate derivative of fourth power 
256 500 864 1372 
 
   4*x^3 
256 500 864 1372 
 
   n=:5 
   f=:^&n 

 
   s F x 
1280 3125 6480 12005 
 
   n*x^n-1 
1280 3125 6480 12005 
 
   n&([ * ] ^ <:@[) x 
1280 3125 6480 12005 
 

The foregoing results suggest that the derivative of ^&n is the function 
n&([ * ] ^ <:@[). This relation will be explored by displaying the terms that must be 
summed to produce the results used in determining the slope, that is, f x+s and f x and 
(f x+s)-f x and s%~(f x+s)-f x. 

For the power function f=:^&n and for the case n=: 3, the terms of f x+s are easily 
obtained from the direct expansion of the product (x+s)*(x+s)*(x+s) to the form : 
 
   ((s^3)*(x^0)+(3*(s^2)*(x^1))+(3*(s^1)*(x^2))+((s^0)*(x^3)) 
 
Thus for x=:2 and s=:0.1: 
 
  1 3 3 1 * (x^0 1 2 3) * (s^3 2 1 0)  Terms of ^&3 x+s 
0.001 0.06 1.2 8 
 
  0 0 0 1 * (x^0 1 2 3) Terms of ^&3 x 
0 0 0 8 
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  1 3 3 0 * (x^0 1 2 3) * (s^3 2 1 0)  Terms of difference 
0.001 0.06 1.2 0 
 
  1 3 3   * (x^0 1 2  ) * (s^3 2 1  )              " 
0.001 0.06 1.2 
  1 3 3   * (x^0 1 2  ) * (s^2 1 0  )   Terms of slope 
0.01 0.6 12 
  
  1 3 3   * (x^0 1 2  ) * (0^2 1 0  )   Slope for s=:0 
0 0 12 
 
  1 3 3   * (x^0 1 2  ) *  0 0 1                         " 
0 0 12 
 
  3*x^2                                                                           " 
12 
 

In the general case of ^&n, the coefficients 1 3 3 1 and 0 0 0 1 become EXP CP n 
and CP n, and the difference becomes: 
 
   CP=: #&0,1: 
   EXP=: +/@(] * !~/~@i.@#) 
   CP 4 
0 0 0 0 1 
 
   EXP CP 4 
1 4 6 4 1 
   (EXP CP 4)-CP 4 
1 4 6 4 0 
 
   <@(EXP@CP - CP)"0 i. 6 
+-+---+-----+-------+---------+-------------+ 
|0|1 0|1 2 0|1 3 3 0|1 4 6 4 0|1 5 10 10 5 0| 
+-+---+-----+-------+---------+-------------+ 
 
   <@(_2&{.)@(EXP@CP - CP)"0 i. 7 
+---+---+---+---+---+---+---+ 
|0 0|1 0|2 0|3 0|4 0|5 0|6 0| 
+---+---+---+---+---+---+---+ 

It appears that the last two elements of the binomial coefficients of order n are n and 1. 
Since the binomial coefficients are the coefficients that represent the product (x+1)^n, 
insight can be gained by applying the product process of Section B to the corresponding 
coefficients 1 1: 
   1 1 */ 1 1 
1 1 
1 1 
   </.1 1 */ 1 1 
+-+---+-+ 
|1|1 1|1| 
+-+---+-+ 
   ]b2=:+//. 1 1 */ 1 1 
1 2 1 
   1 1 */ b2 
1 2 1 
1 2 1 
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   </. 1 1 */ b2 
+-+---+---+-+ 
|1|2 1|1 2|1| 
+-+---+---+-+ 
 
   ]b3=:+//. 1 1 */ b2 
1 3 3 1 

I. Derivatives of Polynomials 

From the definition of the secant slope it is clear that the slope of a multiple of a function 
(m&*@f) is the same multiple of its slope, and that the slope of the function f+g is the 
sum of the slopes of f and g. The same relations hold for derivatives.  

The polynomial c&POL applied to an argument x is a sum of terms of the form 
(i{c)*(x^i) and (using the results of Section H) its derivative is (i{c)*i*(x^i-1). 
The derivative of the polynomial c&POL is therefore a polynomial with coefficients 
}.c*i.#c. For example, using the functions F and POL of Sections H and A: 
 
   x=:1 2 3 4 5 c=:3 1 4 2 
   D=: }.@(] * i.@#) 
   D c (D c) POL x 
1 8 6 15 41 79 129 191 
 
   f=:c&POL 
   (s=: 10^-10) F x 
15 41 79 129 191 

J. The Exponential Family 

We will now examine coefficients of the form %!i.n, and their relation to the 
coefficients of the corresponding derivative polynomial: 
 
   ]ce=: %!i.n=: 7 
1 1 0.5 0.166667 0.0416667 0.00833333 0.00138889 
 
   D ce 
1 1 0.5 0.166667 0.0416667 0.00833333 
 

Except for the final coefficient, the function ce&POL and its derivative 
(D ce)&POL agree, and the agreement improves as n increases. 

The primitive monad ^ (called exponential) is the limiting value of this polynomial. It is 
therefore a “growth” function, whose rate of growth is equal to the function itself. For 
example: 
 
   f=: ^ 
   f x 
2.71828 7.38906 20.0855 54.5982 148.413 
 
   s F x 
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2.71828 7.38906 20.0855 54.5982 148.413 
 

Not only is the exponential important in its own right, but the odd and even parts of ^ and 
^@j. produce the hyperbolic functions (sinh and cosh, denoted by 5&o. and 6&o.) and 
the circular or trigonometric functions (sine and cosine, denoted by 1&o. and 2&o.). 

A function f is said to be symmetric or even if it gives the same result for positive and 
negative arguments; that is, if f and f@- agree. In terms of its graph we may say that an 
even function is “reflected in the vertical axis”. A function f is skew-symmetric or odd if f 
equals -@f@- or, equivalently, if f equals f&.- . Its graph is reflected in the origin. 

The functions: 
 
   e=: -:@(f+f@-) 
 
   o=: -:@(f-f@-) 
 

are, respectively, even and odd functions. Moreover, e+o equals f, and they are called 
the even and odd parts of f. 

The adverbs ..- and .:- yield the even and odd parts of their arguments. For example: 

 

   cosh=: ^ ..-  space must precede .. 
   sinh=: ^ .:- 
   ]x=: 0.2*i.6 
0 0.2 0.4 0.6 0.8 1 
 
   cosh x 
1 1.02007 1.08107 1.18547 1.33743 1.54308 
 
   cosh -x 
1 1.02007 1.08107 1.18547 1.33743 1.54308 
 
   sinh x 
0 0.201336 0.410752 0.636654 0.888106 1.1752 
 
   sinh -x 
0 _0.201336 _0.410752 _0.636654 _0.888106 _1.1752 
 
   5 o. x 
0 0.201336 0.410752 0.636654 0.888106 1.1752 
 
   (sinh+cosh) x 
1 1.2214 1.49182 1.82212 2.22554 2.71828 
 
   ^ x 
1 1.2214 1.49182 1.82212 2.22554 2.71828 
 

The function ^@j. and its odd and even parts yield further important functions. We first 
observe that the magnitude of any result of ^@j. is 1. Thus: 
 
   2 3 $ ^@j. x 
                1 0.980067j0.198669 0.921061j0.389418 
0.825336j0.564642 0.696707j0.717356 0.540302j0.841471 
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   |^@j. x 
1 1 1 1 1 1 

As remarked in Section F, this implies that a plot of the imaginary part against the real 
part of any result of ^@j. lies on a circle whose radius has a length of 1. Moreover, the 
even and odd parts of ^@j. are its real and imaginary parts, and therefore the plot of one 
of the following functions against the other forms a circle: 
 
   cos=: ^@j. .. - 
 
   sin=: j^:_1@ (^@j. .:-) 
 
   26 52 GPLOT (sin,:cos) 0.2*i.30 
                    *    *    *                       
               *                   *                  
           *                            *             
                                                      
       *                                    *         
                                                      
    *                                          *      
                                                      
                                                  *   
 *                                                    
                                                   *  
*                                                     
                                                      
                                                    * 
*                                                     
                                                      
 *                                                    
                                                      
                                                      
   *                                             *    
                                                      
     *                                        *       
                                                      
         *                                *           
             *                                        
                  *                   *               
                       *    *    * 
 

Moreover, (cos,sin) 0 is 1 0, and the length along the circle from this base point to 
the point with coordinates (cos,sin) x is x. Since the monad o. multiplies its 
argument by pi, the circumference of the circle with unit radius is o. 2, and the sin and 
cos applied to the points o.4%~i.9 yield interesting results. Thus: 
 
   o. 2 
6.28319 
   sin o. 2 
_8.67362e_19 
 
   clean=: **| 
   clean sin o. 2 
0 
 
   ]p=:4%~i.9 
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 
 
   clean (cos,:sin) o. p 
1 0.707107 0 _0.707107 _1 _0.707107  0  0.707107 1 
0 0.707107 1  0.707107  0 _0.707107 _1 _0.707107 0 
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The monad * used in the definition of clean above is called signum:  *x is 0 if x is near 
zero, 1 if it is greater than zero, and _1 if it is less than zero.  

K. Summary Of Notation 

The notation introduced in this chapter comprises complex numbers (3j4) and the 
corresponding verb j. (as in 3 j. 4 and j. 4); three conjunctions under, odd and even 
(&. .: ..); and six monads:  sine, cosine, sinh, cosh, signum, and exponential, (1 2 5 
6&o. *  ^). 

L. On Language 

In accord with the comments in the language section of Chapter 1, notation has been 
introduced sparingly, only as needed in the topics under discussion. As a consequence, 
many important language constructs have been ignored. This section presents a sampling 
of them, grouped according to contexts in which they commonly arise. 

Programming. Computer programming concerns the definition and use of verbs in a 
language executable on a computer, and programming therefore runs through this entire 
text. Nevertheless, it might not be recognized as such by programmers familiar with other 
languages, primarily because it is tacit rather than explicit. 

A tacit definition is one in which no explicit mention is made of the arguments to which 
the defined verb might apply. For example: 
 
   IQ=: <.@% Integer quotient of arguments. 
   317 IQ 10 
31 
 
   IQ 0.166 Integer reciprocal of argument. 
6 
 

An explicit definition begins with an entry that includes the phrase 3 : 0, and follows 
with sentences that use x. and y. to denote the arguments, uses a colon alone on a line to 
separate the definitions of the monadic and dyadic cases, and concludes with a right 
parenthesis alone on a line. For example: 
 
   iq=: 3 : 0 
if. y. < 0  
  do. 0   else. %: y. 
end. 
: 
<. x. % y. 
) 
 
   iq 
\ 25 
5 
 
   iq _25 
0 
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   317 iq 10 
31 
 

Tacit definitions facilitate the use of structured programming, in which complicated 
functions are defined in terms of a hierarchy of simpler functions, each of which is useful 
in its own right. The following example is from statistics: 
   std=: sqrt@var Standard deviation 
     var=: mean@sqr@norm Variance 
       norm=: ] - mean Normalization 
         mean=: +/ % # Mean 
           sqrt=: %: 
   sqr=: *: 
a=:3 4 5 std a mean a 
 0.816497 4 
   ]report=: ?3 4 5 $ 10 
1 7 4 5 2 
0 6 6 9 3 
5 8 0 0 5 
6 0 3 0 4 
 
6 5 9 8 5 
0 6 4 7 9 
7 2 0 7 3 
6 7 9 3 2 
 
9 7 7 6 0 
6 8 2 4 7 
4 2 2 3 1 
4 8 9 0 9 

 

   mean report Mean over tables 
5.33333 6.33333  6.66667 6.33333 2.33333 
      2 6.66667        4 6.66667 6.33333 
5.33333       4 0.666667 3.33333       3 
5.33333       5        7       1       5 
 
   mean"1 report Mean over rows 
3.8 4.8 3.6 2.6 
6.6 5.2 3.8 5.4 
5.8 5.4 2.4   6 
 
   std"1 report 
2.13542 3.05941 3.13688 2.33238 
1.62481 3.05941 2.78568 2.57682 
3.05941 2.15407  1.0198 3.52136 
 

Adverbs And Conjunctions. Adverbs and conjunctions may be defined either tacitly or 
explicitly. The following illustrates the tacit definition of adverbs: 
 
   ]a=: 1 2 3 4 5 
1 2 3 4 5 
 
   prsu=: \\. A sequence of adverbs (prefix and suffix) 
 
   < prsu a 
+-+---+-----+-------+---------+ 
|1|1 2|1 2 3|1 2 3 4|1 2 3 4 5| 
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+-+---+-----+-------+---------+ 
|2|2 3|2 3 4|2 3 4 5|         | 
+-+---+-----+-------+---------+ 
|3|3 4|3 4 5|       |         | 
+-+---+-----+-------+---------+ 
|4|4 5|     |       |         | 
+-+---+-----+-------+---------+ 
|5|   |     |       |         | 
+-+---+-----+-------+---------+ 
 
   +/ prsu a 
1 3  6 10 15 
2 5  9 14  0 
3 7 12  0  0 
4 9  0  0  0 
5 0  0  0  0 
 
   iprsu=: /\\. q=: /prsu 
   * iprsu a *q a 
1  2  6  24 120 1  2  6  24 120 
2  6 24 120   0 2  6 24 120   0 
3 12 60   0   0 3 12 60   0   0 
4 20  0   0   0 4 20  0   0   0 
5  0  0   0   0 5  0  0   0   0 
 

   inverse=: ^:_1 A conjunction with one argument 
   %: inverse a 
1 4 9 16 25 
 
   each=:&.> 
   <\a 
+-+---+-----+-------+---------+ 
|1|1 2|1 2 3|1 2 3 4|1 2 3 4 5| 
+-+---+-----+-------+---------+ 
 
   |. each <\a 
+-+---+-----+-------+---------+ 
|1|2 1|3 2 1|4 3 2 1|5 4 3 2 1| 
+-+---+-----+-------+---------+ 

   slope=: 1 : '[%~ + -&x.f. ]'  Explicit definition of adverb 
   0.000001 ^ slope i.5 
1 2.71828 7.38906 20.0855 54.5982 
 
   ^ i.5 
1 2.71828 7.38906 20.0855 54.5982 
 

The tacit definition of conjunctions will be illustrated first by using the case adverb-
conjunction-adverb, whose result can be used to provide the ordinary matrix product:  
   dot=: /@(("0 1)("1 _)) 
   m=:i.3 3 
   m m + dot * m 
0 1 2 15 18  21 
3 4 5 42 54  66 
6 7 8 69 90 111 
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A second illustration produces a conjunction that applies one of its arguments to a prefix, 
and the other to a suffix: 
 
   ps=: 2 : '(x.@{.)`,`(y.@}.)\' 
   f=: *: ps %: 
   3 f 2 3 4 5 6  f"0 1~i. 5 
4 9 16 2.23607 2.44949  0 1 1.41421 1.73205 2 
 
   1 f 2 3 4 5 6  0 1 1.41421 1.73205 2 
4 1.73205 2 2.23607 2.44949 0 1 1.41421 1.73205 2 
 
   f 2 3 4 5 6  0 1       4 1.73205 2 
4 1.73205 2 2.23607 2.44949  0 1       4       9 2 
 

Gerunds. The conjunction ` “ties” verbs together to form a gerund, a noun that (like the 
English word cooking) carries the force of a verb. Gerunds have a variety of uses, of 
which two are illustrated below: 
 

   +`*/ 1 2 3 4 5 Insertion of successive verbs 
47 
   1+2*3+4*5 
47 
 
   fac_or_sqr=: !`*: @. (>&5) The conjunction @.(agenda) 
   fac_or_sqr 8 uses the index produced by  
64 its right argument to select a 
   fac_or_sqr 5 member of the gerund to  
120 produce the final result. 
 
   fac_or_sqr"0 i. 10   
1 1 2 6 24 120 36 49 64 81 

Recursion. A function that is defined in terms of itself is said to be recursively defined. 
For example: 
 
   fac=: 1:`(] * fac@<:)@.* 
   fac 5 fac"0 i.6 
120 1 1 2 6 24 120 
 

The 1: is the constant function that yields 1, and the monad * (signum) yields 1 if its 
argument is greater than 0. 

Controlled Iteration. If f and g are functions and h=: f ^: g, then x h y “iterates” 
f by applying it repeatedly as long as the result of g is non-zero. For example, an 
iterative determination of the square root using Newton’s method may be defined as 
follows: 
 
   h=: (-:@(] + %))^:([ ~: *:@]) ^: _ 
   5 h 1 
2.23607 
 
   *: 5 h 1 
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5 
 
   1 2 3 4 5 h"0 (1) 
1 1.41421 1.73205 2 2.23607 
 

Linear Functions. The expression mp=:+/ . * uses the dot conjunction to produce the 
dot, inner, or matrix product mp. For example: 
 
   mp=: +/ . * 
   v=: i.3 m=: i. 3 3 
   m  m mp m 
0 1 2 15 18  21 
3 4 5 42 54  66 
6 7 8 69 90 111 
 
   m mp v v mp m 
5 14 23 15 18 21 
 

Moreover, m&mp is a linear function which (as stated in Section 2 D) distributes over 
addition. For example: 
 
   LF=: m&mp 
   a=: 2 3 4 b=: 5 1 1 
   LF (a+b) (LF a)+(LF b) 
14 62 110 14 62 110 
 
   LF (m+2*m) (LF m)+(LF 2*m) 
 45  54  63 45  54  63 
126 162 198 126 162 198 
207 270 333 207 270 333 
 

Any linear function LF can be represented in the form M&mp for a suitable matrix M. If LF 
applies to vectors of n elements, then M may be obtained by applying LF to the identity 
matrix =i.n. For example, if p is an arbitrary permutation vector, then the permutation 
function p&{ is linear and: 
 
   n=: 6 ]p=: n?n 
   5 2 1 3 0 4 
   LF=: p&{ 
   x=:2 3 5 7 11 13 
   LF x 
13 5 3 7 2 11 
 
   M=: LF =i.n 
   M&mp x 
13 5 3 7 2 11 
 
   M %. M 
0 0 0 0 0 1 0 0 0 0 1 0 
0 0 1 0 0 0 0 0 1 0 0 0 
0 1 0 0 0 0 0 1 0 0 0 0 
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0 0 0 1 0 0 0 0 0 1 0 0 
1 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 1 0 1 0 0 0 0 0 
 
   (%.M) mp 13 5 3 7 2 11 
2 3 5 7 11 13 
 
   M&mp^:_1 (13 5 3 7 2 11) 
2 3 5 7 11 13 

Exercises 

A1 Experiment with the expression c POL x using x=:i.7 and various coefficients 
c, including those from the columns of Pascal’s triangle in Section 7 C. 

A2 Using the value of x from Ex A1, evaluate (x+1)^n for various values of n, and 
compare the results with those of Exercise A1. 

A3 Define a function CP such that (CP n) POL x equals x^n. 

    Answer: CP=: #&0,1:   

B1 Evaluate 1 1&TIMES ^:n  1 for various values of n. 

B2 Explore the definition of TIMES by evaluating the following: 

 c=: 3 1 4   d=: 2 0 3 5  

 c */d    </.c */ d      +//. c */ d  

 Also compare TIMES with multiplication of integers in Section 4 C. 

B3 Use theorems 3-5 of Section 5 D to prove that the product of polynomials with 
coefficients C and D is equivalent to the polynomial with coefficients +//.C*/D. 

C1 Predict and test the results of CFR n#1 for various values of n. Repeat for CFR 
n#_1. 

C2 Define a function F such that n F r gives the coefficients of a polynomial having 
n repeated roots r. Test it on expressions such as 

     5 F 1     5 F _1     5&F"0 -i. 6     F&_1"0>:i.6 

  Answer: F=: CFR@#   

D1 Predict and test the results of EXP&CP n for various values of n, where CP is from 
Ex A3. 

D2 Explore the definition of EXP by defining the functions: 

 A=: +/"1 

 B=: ] * C 

 C=: !/~@i.@#@] 

 and then evaluating expressions such as C d=:3 1 4 2 and B d and A B d. 

E1 Predict and test the results of the following expressions: 

 CTIMES/a=: 1 2;3 4;5 6 

 CTIMES/\a 
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 a CPLUS CTIMES/a 

G1 Experiment with GEXP for various arguments. 

G2 Explore the definition of GEXP by defining the subtraction table function ST=: -
~/~@i.@#@] and evaluating ST c=: 3 1 4 2. 

G3 Evaluate y^ST c for various values of y, including 0.   

G4 Explain the equivalence of the expressions (x+y)^n and (y GEXP CP n) POL 
x, where CP is from Exercise A3. 

H1 Extend the sequence that concluded Section H. 

L1 Test the assertion that the scan +/\ is linear. 

L2 Predict and test the results of the following expressions: 
c=: 3 1 4 2 6 

+/\c 

I=: =/~i.#c 

M=: +/\ I 

d=: M +/ . * c 

(%.M) +/ . * d 

(>:/~i.#c) +/ . * c 

L3 Look through earlier chapters for other linear functions, and re-express them as 
inner products. In particular, identify the cases that can employ Pascal’s triangle 
(!/~i.n) and Vandermonde’s matrix x^/i.#c. 

L4 Predict and test the results of applying the matrix inversion function %. to some of 
the matrices used in Exercises L2 and L3, and use them in defining linear 
functions. 

L5 Examine the matrices M and %.M of Ex L2, and note that the former produces 
“aggregation” or “integration”, and the latter produces “differencing”. 

L6 Review the discussion of combinations in Section 7 C, and enter and experiment 
with the following structured definition of a function for generating tables of 
combinations: 

        comb=: basis`recur@.test 

      basis=:i.@(<:,[) 

      recur=: (count#start),.(index@count{comb&.<:) 

         count=:<:@[!<:@[+|.@start 

         start=:i.@-.@- 

         index=:;@:((i.-])&.>) 

      test=: *@[*.< 

[Try 3 comb 4] 
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