Easy-J

An Introduction to the World’s most Remarkable Programming Language 

by Linda Alvord and Norman Thomson

October 2002

Contents

Introduction 


  1     



Section 1.  Getting Started





  2

 

Section 2.  Introducing Simulation




13

Section 3.  Defining your own verbs




16 

Section 4.  Fitting equations to data




24

Section 5.  Boxes and Records




26   

Section 6.  Investigating Possibilities




29

Section 7.  Editing, System Facilities and Scripts


33

Section 8.  Drawing graphs





36

Section 9.  Rank






39

Index








43

Vocabulary







44

Introduction

J is both a language and an exceptional programming package which provides a highly concise notation for specifying much that is done routinely in the day to day business of computing, such as sorting, searching, updating and restructuring data.  Its inventor and designer is Dr. K.E. Iverson, who also devised the language APL, out of which J developed.  The first J interpreters appeared around 1990, since when the language has grown in popularity and application, particularly in the world of finance, where its conciseness and power for rapid algorithm development is highly valued.  Amazingly, this algorithm-rich software is available free by download from 



www.jsoftware.com

a download which takes only a few minutes, following which installation is easy.

J also has many enthusiasts in education, where it can be a powerful motivator on account of the clarity with which users can express their intentions on a computer.

The objective of this tutorial is to give a brief introduction which will either encourage the user to perform the above download and discover that the claims which are made on this page are in no way understated, or, if the download has already been performed, encourage him or her to take the first steps up the J learning ladder into a world of discovery and delight.  It is impossible in a pamphlet of this size to cover anything other than a tiny part of the facilities which J affords.  However, that need be no disadvantage, since the J system is fully self-describing through a comprehensive Help facility, through Labs (that is prepared sessions) which can be invoked by the Studio drop down menu, and through libraries of scripts and packages which encapsulate the work of many previous users.  Once the topics in this tutorial have been grasped, the user should find little difficulty in extending his or her knowledge both by exploiting the help features listed above and by direct exploration on the keyboard.   Further, the J language is totally consistent across all the many platforms on which it is now available, and a vigorous Internet forum (forum@ jsoftware.com) is perhaps the best support mechanism of all.       

SECTION 1 : GETTING  STARTED

This tutorial assumes that the reader has either

 (i)  successfully installed J on a computer and is ready to use it; or

(ii)  is interested in J as a vehicle for reading and writing algorithms and wishes to obtain something of its flavour prior to using it on a computer.

J in its simplest use acts just like a desk calculator.  If you are working at a terminal, type the following input, pressing the “enter” key after each line :

   3+4

7

   5*20

100

Symbols like + and * for plus and times in the above phrases are called verbs and represent functions.  You may have more than one verb in a J phrase, in which case it is constructed like a sentence in simple English by reading from left to right, that is 4+6%2 means 4 added to whatever follows, namely 6 divided by 2 :

   4+6%2

7

Here is another phrase :

   4%6+2

0.5

In a similar way this means 4 divided by everything to the right, namely 6+2 which is 8.  Hence 4%6+2 evaluates to 4%8 = 0.5. Notice how the verbs themselves are executed in left to right order, that is the rightmost verb + is executed before the leftmost, %.  The simplicity of these rules for reading phrases on the one hand and executing them on the other avoids the need for artificial rules of precedence such as apply in ordinary arithmetic to state that for example * has priority over +.

Pursuing the analogy with English, the sentence “Jack visited the house which he built” is read from left to right, but in order to “execute” it you must do the “build” first, so that you can properly identify which house was visited.

The repertoire of basic arithmetic verbs   +  -  *  %    in J is completed with the power verb ^ :

   4^3  

64

If you wish to change the order of execution of verbs, you may do so in the normal way by using parentheses :

   1+2%3

1.66667

   (1+2)%3

1

You might wonder why the first of these answers was represented to 6-digit precision rather than any other.  The reason is that print precision is controlled by using a so-called foreign conjunction – foreign because it “belongs” to the system rather than to the J language proper.   The default value is 6 can be confirmed by typing

   9!:10 ''

NB. get the current print precision

6

and reset to other values, say 4, by :

   (9!:11)4

NB. set print precision

   1+2%3

1.667

You should think of  9!:10 and  9!:11 as further verbs which perform system functions within the J workspace environment.  The above lines also introduce the symbol NB. which indicates that everything to its right on a line should be read as a comment.

The underbar symbol  _ is used to indicate “negative”, and is an inseparable part of a negative number.  You may not leave a space between the underbar and the digits of a number. 

   3-8

_5

   3-_8

11

Within the workspace, data is stored by assigning values to variables with names chosen by the user, subject to the requirement that the first character in such a name must be alphabetic :

   b=.4

   value1=._0.3
NB. decimals <1 must have leading 0

   value1=.1.6

NB. a second assignment to value1

Single-value items such as the above are known as “scalars”.  Entry of a name by itself causes the most recently assigned value of the named variable to be output :

   b

4

   value1

1.6

However, J is much more than just a calculator, since arbitrarily large lists of numbers (which are also sometimes called “vectors”)  can be assigned :

   c=.3 1 4 0.5 _2

   d=.4 0 3 _1.2 7

Again the underbar symbol is used to express negative numbers.   Adding two lists means that corresponding items in each are added:

   c+d

7 1 7 _0.7 5

   c*d

12 0 12 _0.6 _14

   d%c

1.333 0 0.75 _2.4 _3.5

Dividing c by d involves a division by 0 in the second position.  The result of this is infinity, denoted by a single underbar :

   d%c

0.75 _ 1.333 _0.4167 _0.2857

There are some list operations which are not meaningful, for example adding a list with five items to one with only three.   If you attempt to do this the result is as follows :  

   c+1 2 3

|length error

|   c    +1 2 3

Three observations should be noted about this error message :


(a) it is concise;

(b) the word “length” gives insight into the nature of the error; and

(c) the added blank spaces indicate the exact point in the phrase where, reading from right to left, the error was detected. 

J allows complex numbers, so for some verbs such as square root, denoted by the digraph %:, may have results with a number separated without spaces by the letter j.  The number 0j1.414 below indicates a real component of 0 and an imaginary component of  1.414.
   %:c


NB. square roots of c 

1.732 1 2 0.7071 0j1.414

The natural logarithm verb ^. produces logarithms to the base e, and can also generate results containing complex numbers : 
   ^.c


NB. natural logarithms

1.099 0 1.386 _0.6931 0.6931j3.142

Logarithms to base 10 are obtained by :

   10^.c

0.4771 0 0.6021 _0.301 0.301j1.364

and similarly for logarithms to any other number bases, e.g. 2 :  

   2^.1 2 4 8 20

0 1 2 3 4.322

If you wish to count or tally  #  the number of items in a list, type :
   #c

5

The verb # is treated like any other verb, so 2 plus the tally of items in c is :

   2+#c

7

The verb from  {   references items in a list. The fourth item in list c is :

   3{c

0.5

You probably expected the answer _2; what you must take into account is that items in lists in J are always indexed from 0.  A list can be used to select from a list :

   0 3 4{c

NB. 0 3 4 is a list of indices

3 0.5 _2

Data need not be numeric – in the next example a list of characters is defined, and the  characters themselves are tallied:

   cv=.'J is useful.'

   cv

J is useful.

   #cv

12

cv can be indexed by a numeric list containing repeated items :

   0 7 10 10 2 7 3{cv 

Jellies

In J a scalar is a single data item which can be either a number, or a literal character, which in turn may be a letter of the alphabet, digit or symbol.  A numeric scalar item is the value of the number represented by the combination of its characters, sign and decimal point.  Literal characters are enclosed in single quotes.  Thus the tally of the literal items in the representation of the single number  _3.875 is :  
   #'_3.875'

6

A tally of the number as a numeric scalar is : 

   #_3.875

1

Some symbols such as # represent two different verbs.  In general, a verb has data on both its left and right, called left and right arguments.  Such a verb is called a dyadic verb.  A verb with only a right argument is described as monadic, thus square root and tally are monadic verbs.  As a dyadic verb # is called copy.  The left argument of copy is the number of copies of each item in the right argument :

   3#c

3 3 3 1 1 1 4 4 4 0.5 0.5 0.5 _2 _2 _2

The dyadic verb reshape verb $ can create what appear to be matrices, but which are in fact lists of lists.  The left argument provides the structure and the right argument gives the data.  The data is reused by “wrapping round” :

    matrix=.3 4$c

  3  1 4 0.5

 _2  3 1   4

0.5 _2 3   1

The monadic verb shape of $ gives the structure of the right argument and is always a list :    

    $matrix

3 4

    #matrix

3

Note that tally counts only the first item in the shape, that is  it counts at the topmost level only. For simple lists like c and d their tally and shape look identical.

Arithmetic verbs (the words “verb” and “function” can often be used interchangeably) may also have one scalar argument and the other a list :

   c

3 1 4 0.5 _2

   b

4

   c+b

7 5 8 4.5 2

   c*2

6 2 8 1 _4

Technically what happens is that the scalar is replicated (that is extended) to become a list of matching length, and item by item function application takes place as before.

Use the verb append, represented by a comma, to join lists and scalars :

   c,b

3 1 4 0.5 _2 4

Arithmetic verbs have monadic as well as dyadic forms, for example :

   +b

4

   -b

_4

Monadic + (called conjugate) does not change the value of its argument, provided that it is numeric and not complex.  However, it can be useful in simultaneously calculating and displaying a value :

   +z=.4+6%2

7

Monadic minus is called negate , and monadic * is called signum, which returns 1 for a positive value of its argument, _1 for a negative value, and 0 for a zero value :

   *b

1

   *-b

_1

   *b-b

0

Monadic % is the function reciprocal :

   %b

0.25

The two digraph symbols <. and >. double up as minimum and maximum in their dyadic form, and as ceiling and floor (that is, next integer above and below) in their monadic form.  Like the arithmetic verbs, they can be applied to lists as well as to scalars.  Here are some examples :

   +value1=.1.6

1.6

   >.value1

NB. round up value1

2

   <.value1

NB. round down value1

1

   b>.value1

NB. maximum of b and value1

4

   b<.value1

NB. minimum of b and value1

1.6

   c



NB. c and d as defined above 

3 1 4 0.5 _2  

   d



 

4 0 3 _1.2 7

   c>.d


NB. item by item maxima

4 1 4 0.5 7

   0>.d


NB. d with negative items 

4 0 3 0 7


NB.       replaced by zero

This is a good point at which to interrupt the description of J verbs with some elementary arithmetic examples which show how J can be applied to simple problems.

(a)  Suppose you want to express 1 foot 4½ inches as a percentage of first 2 feet, then 2 ft. 6 ins., 3 ft., 6 ft., and 10 ft., in each case rounding the answer to the nearest percentage above.  Using a list allows all five calculations to be done in parallel :

   >.100*(1+4.5%12)%2 2.5 3 6 10

69 55 46 23 14

(b)  An Indian is said to have sold Manhattan Island to white settlers in 1650 for 12 dollars.  What would be the dollar value of this sum in the year 2000 if invested at compound interest of 3%, 4%, 5%, 10% ?

   (9!:11)16

NB. set print precision to 16 

   <.12*(1+0.03 0.04 0.05 0.1)^(2000-1650)

373430 10986263 312921872 3686557834057256

(c)  A body falling from rest for y seconds drops a height of ½gt2 cms. where g=981 cm./sec2.  Find the height fallen after 1,2,4,8,16 secs., then the velocities v at these times (the formula for velocity is v = 
[image: image1.wmf]gh

2

).

   (9!:11)6

NB. set print precision to 6

   +ht=.0.5*981*1 2 4 8 16^2 

490.5 1962 7848 31392 125568

   +vel=.%:2*981*ht

981 1962 3924 7848 15696

Returning to the description of J verbs, the next one to be introduced is | which in its monadic form means absolute value, and in its dyadic form the remainder or residue when the right argument is divided by the left argument :

   |c

3 1 4 0.5 2

   1.6|b

0.8
Frequently one wants to add, multiply etc. all the items in a list.  This process is called insertion, and the notation for doing it is 

   +/c

6.5

   */c

_12

   -/c

3.5

The last example deserves a little more attention.  A more complete description of insertion is that the symbol / represents an adverb which when applied to a verb modifies its behaviour in some way.  The modification for / consists of placing the verb between each item in the list so that +/v is equivalent to

          3 + 1 + 4 + 0.5 + _2

and right to left execution (or alternatively left to right reading) takes place as usual.

Try this with – in the gaps, and it will immediately become clear why -/c  is 3.5.  You will notice also that 3.5 is the alternating sum of c, that is the sum of the items in odd-numbered positions (first, third, etc.) minus the sum of items in even-numbered items.  Following a similar argument, %/c is the alternating product of c.  Perhaps even more interesting is the effect of putting >. and <. in the gaps, which produces the largest and smallest items respectively in the list c.

J has a full complement of relational verbs, that is

<    <:    >    >:    =    ~:

standing for less than, less than or equals, greater than, greater than or equals, equals and not equals respectively.  These are verbs which give Boolean results representing truth by 1 and falsity by 0.  As with arithmetic verbs, corresponding items in lists of the same length are processed in parallel :

   c<d

1 0 0 0 1
Frequently an expression like the above is used as an intermediate step in a further operation such as a copy where 1 means “copy the item” and 0 means “don’t copy” : 

      (c<d)#c

3 _2

   (c>:d)#c

1 4 0.5

Another verb which returns Boolean (that is 0 or 1) values is the membership verb e.:

   6 e. c

0

Read this as a question “is 6 in c?”  If the left argument is a list, the question is asked for each item individually :

   c e. b


NB. c is  3 1 4 0.5 _2,  b is 4 

0 0 1 0 0 

   c e. d


NB. recall d is  4 0 3 _1.2 7

1 0 1 0 0

The set of “logical” verbs also give Boolean results.  They are 


*.    +.    -.   “*:    +: 
which represent and, or, not, not-and and not-or respectively.  For example :

   0 1 1 *.1 1 0

0 1 0    

   -.c<d

0 1 1 1 0

   +./0 1 0 1 0

1

The symbol i. called index generator, produces a list of integers starting from 0:

   i.6

0 1 2 3 4 5

If the integer argument is negative the result is a list in descending order :

      i._6

5 4 3 2 1 0

An important special case arises if the argument is 0, when an empty list is generated :

   i.0

NB. list with zero items

   #i.0

NB. tally of empty list is scalar zero

0 

   $i.0

NB. shape is a one-item list, viz. zero  

0

   $b

NB. shape of a scalar is an empty list

   #b

NB. .. but its tally is 1

1

Mathematically inclined readers should also note the following :

   +/i.0

0

   */i.0

1 

These are the “identity values” of the verbs to the left of /, that is, those values id  for which x verb id is equal to x for all values of x.   Recall that comma means append, so +/c,x   and (+/c)++/x must be equal, since the sum of the list c,x is equal to the sum of the sums of its parts.  If x is i.0  then +/c,x is just +/c  and so +/i.0  must be the identity value for + .   A similar argument applies to * . 

Grids and Tables

It is easy to generalise i. in order to make a list of any equally spaced values, as you might want to do in marking points on the axis of a graph.  For example, the integers from –4 to +4 are given by

   _4+i.9

_4 _3 _2 _1 0 1 2 3 4

and those from 3 to 9 at intervals of one half by

   3+0.5*i.13

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

The 256 ASCII characters are collected together in a constant noun a. called alphabet, in which the upper case letters of the usual alphabet commence at the item indexed as 65 and the lower case ones at 97.  Hence the lower case alphabetic characters are  

   (97+i.26){a.

abcdefghijklmnopqrstuvwxyz

The dyadic form of / gives verb tables, for example the ordinary addition and multiplication tables for the first five natural numbers are, written side by side

   k=.1 2 3 4 5

   k+/k



   k*/k

2 3 4 5  6


1  2  3  4  5

3 4 5 6  7


2  4  6  8 10

4 5 6 7  8


3  6  9 12 15

5 6 7 8  9


4  8 12 16 20

6 7 8 9 10


5 10 15 20 25

Tables can be used as indices and so all of the ideas in this subsection can be put together in the phrase : 

   (k*/k){(96+i.26){a.

abcde

bdfhj

cfilo

dhlpt

ejoty

i. also has a dyadic form called index of  which is somewhat like e. Remembering that the first item has index 0, compare : 

   c

3 1 4 0.5 _2

   c e.b

NB. is c a member of b(= 4)? 

0 0 1 0 0

   c i.b

NB. what is the index of b in c? 

2

If both arguments are lists 

    d

NB. reminder! 

4 0 3 _1.2 7

    d i.c

NB. what are the d-indices of c?

2 5 0 5 5 
the three fives (one more than the largest index in c) indicate that the second, fourth and fifth items in c  do not occur in d.  

The verbs take  {.  and drop }.  do just this to a specified number of items from a list – from the left of the list if the left argument is positive, and from the right if it is negative :

    3{.c

3 1 4

   _3{.c

4 0.5 _2

   3}.c

0.5 _2

   _3}.c

3 1

Used monadically, the default left argument is 1.  In addition, the verb  tail  {:  selects the last item in a list :

     {:c

_2

Take has the further property that “over-taking” is permitted, that is fill items (0 for numeric data, and blank for character) are used to pad out when necessary :

   7{.c

3 1 4 0.5 _2 0 0

   _25{.'J is useful'

              J is useful
SECTION 2 : INTRODUCING SIMULATION

You have now seen that using J is in many ways more like handling a very sophisticated calculator than a computer.  Used in this way, it is a remarkable tool for solving routine problems in many disciplines.  The techniques in this section show some ways in which you can take advantage of its capability for taking samples.

Classifying, tabulating and condensing actual or simulated data are all easy in J.  Problems involving rolling dice and tossing coins are simple enough to observe what actually happens as well as to predict what you would theoretically expect to happen.

The symbol ? is called roll as in “roll a die”, so that ?6 models rolling a die with six faces, or more generally randomly selecting one of the first six non-negative integers :

   ?6


NB. first throw

0

   ?6


NB. second throw 

4

The faces are usually numbered from 1 to 6.  Conveniently, the verb increment  >: adds 1 to each item(Likewise decrement  <: subtracts 1 from each item)  :

   b=.>:a=.?6  
NB. b is one greater than a

   a

4

   b

5

Suppose we had ten dice.  J extends roll to a list of integers so that the computer simulates the throws of ten dice, or equivalently ten throws of a single die :

   >:?6 6 6 6 6 6 6 6 6 6

4 2 1 5 5 6 3 4 5 1

Suppose that we now simulate a multiple choice test in which there are ten questions each with five options :

   +t=.?10#5

3 4 4 4 1 2 2 0 2 2

To convert these into, say, letters of the alphabet use from :
   t{'abcde'

deeebccacc
In a similar way simulate the tossing of six coins where 0 represents a tail and 1 a head.  First make six copies of the integer 2 :

   6#2

2 2 2 2 2 2

and then roll (that is) toss  each of them :

   (?6#2){'th'

hhthth

Often what is interesting is aggregates rather than the individual rolls.  For example you might want to simulate several times the gender distribution of 1000 births in a hospital where 0 represents a girl and 1 a boy :

   +/?1000#2

501

   +/?1000#2

480

All the above examples have used roll monadically. The dyadic case is called deal , for which the difference is that the left argument gives the number of draws and also the values of i.right argument are progressively deleted:, 

   6?6

4 1 0 3 5 2

This means that the right argument must be at least as great as the left argument, otherwise the left argument is outside the domain, that is, the permitted values   :
   7?6

|domain error

|   7    ?6

There are no limits to the shape of the structure of the units from which the draws are to be made.  For example, suppose the multiple choice test above was taken by each of five children, so that the simulation is now one of six ten-item lists, each item within which is a random draw from i.5 :

   u=.?6 10$5

4 2 3 4 3 4 3 3 0 4

2 2 0 3 2 3 3 0 4 4

4 2 0 2 4 1 2 1 2 4

2 2 4 1 1 4 0 3 3 0

0 3 3 1 2 3 3 1 4 3

4 0 0 3 3 1 1 0 1 4

Now make a draw from each of these, and translate into letters as before :

   u{'abcde'

ecdededdae

ccadcddaee

ecacebcbce

ccebbeadda

addbcddbed

eaaddbbabe

A nice application of this technique is to simulate hands of 13 cards from a pack.  First assume that the cards are ordered in the pack from smallest to highest, and in suit order Diamonds, Clubs, Hearts, Spades. (Whether any actual pack is physically ordered in this way makes no difference to the quality of the simulation.).  A draw is then a choice of 13 integers from 0 to 51 without replacement :

   +hand=.13?52

43 50 25 45 40 4 9 11 24 42 17 19 37

Next calculate the suits by dividing these values by 13 and rounding down (the monadic is called ravel and causes the value of its argument, in this case suits , to be displayed as a simple list)  :

   ,suits=.(<.hand%13){'CDHS'

SSDSSCCCDSDDH

Now calculate the values by taking remainders on division by 13 :
   ,values=.(13|hand){'23456789TJQKA'

6KA836JKK568K

Finally use a verb laminate (,:) to align the cards nicely in columns :
   values,:suits
NB. 6 of spades, King of spades etc.

6KA836JKK568K

SSDSSCCCDSDDH

Simple counts of combinatoric items are obtained by the verbs factorial !  and its dyadic form out of,  which gives the number of combinations of r objects out of n :

      !i.6

NB. factorial 0 thru factorial 5 

1 1 2 6 24 120

   2!2+i.6
NB. e.g.21=no of selections of 2 out of 7 

1 3 6 10 15 21

Pascal’s Triangle

The arrangement of integers known as Pascal’s triangle in which the binomial coefficients appear in columns is constructed using the table :
   (i.8)!/i.8

1 1 1 1 1  1  1  1

0 1 2 3 4  5  6  7

0 0 1 3 6 10 15 21

0 0 0 1 4 10 20 35

0 0 0 0 1  5 15 35

0 0 0 0 0  1  6 21

0 0 0 0 0  0  1  7

0 0 0 0 0  0  0  1

SECTION 3 : DEFINING YOUR OWN VERBS

The starting point is again the list 

   c

3 1 4 0.5 _2

In section 1 we saw how the expressions >./ and <./ supplied the maximum and minimum values respectively, and the range of v is simply the difference between these two values.  J allows us to express this as


>./ - <./

using a verb structure which is known as a fork :

   (>./-<./)c

6

Instead of constantly having to use parentheses to write this compound verb, it can be consolidated by assignment to a user-defined name :

   range=.>./-<./

   range c

6 

One of the most important features of the verb which has just been defined is that, unlike almost every other programming language you are likely to have encountered, there is no explicit reference to data (that is, arguments) in the definition.  This particular style of programming is known as tacit programming.

Another example of tacit programming, which also exhibits the fork structure is   
   mean=.+/%#

   mean c

1.3

The central operation, divide, is performed on two functions, namely the sum +/ and the tally # of the data.  This is just what in mathematics might be written 
[image: image2.wmf]n

x

å

, only as noted above, the J definition makes no reference to data such as x and n. 

A composite verb such as +/%# consists of three verbs written one after the other. When two rather than three verbs are written together the combination is called a hook.  The verbs concerned may be primitive (that is part of the basic J repertoire) or user-defined, and so a simple example of this structure is -mean .

(-mean)c means  c-mean c, that is the single argument is used first as a monadic argument to the right verb, and then as the left argument of the left verb.  In general, for verbs u and v, the hook (u v)y is equivalent to y u v(y).  So define

   mdev=.-mean

NB. deviations from the mean

   mdev c

1.7 _0.3 2.7 _0.8 _3.3

It is natural to ask what happens if there are four verbs in a row, say u v w x.   The answer is that the three rightmost are resolved as a fork leaving two verbs to form a hook  u (v w x) :

   (-+/%#)c

1.7 _0.3 2.7 _0.8 _3.3

Similarly five verbs resolve into two forks, and so on.

Those who have experience of writing programs may protest that “real” programs of any magnitude consist of actions in sequence  -  do this, then this, then this …, just like main verbs in stories.  However, there is another way in which verbs can be combined in English, which becomes  apparent when you think of verbs such as ‘stirfry’ and ‘sleepwalk’.  If you fried the food completely and then stirred it, there is no way in which you could be said to have ‘stirfried’ it!    Rather the two verbs ‘stir’ and ‘fry’ are blended together or fused in a manner which says that the primary verb ‘fry’ is elaborated with an action ‘stir’ which must take place concurrently with it.  Similarly with ‘sleepwalk’, the primary action is walking, only it is a new kind of walking, which happens when sleeping and walking take place simultaneously.   Yet another example which emphasises concurrency even more directly is the verb ‘timestamp’.  Were the event to be timed after the stamping, the two activities of timing and stamping would not take place in exact synchronisation, and similarly if the stamping were to take place after the timing. 

A generic feature which all these compound verbs have in common is that of ‘joining’ simple verbs, which leads, by analogy with usage in English grammar, to the use of the term conjunction.  Further there is a generic property involved in the type of concurrent fusion which is implicit in all three compound verbs described above;  this idea is consolidated in the specific conjunction @ which is called atop.  Thus, in a pidgin mixture of English and J :   

       stirfry =. stir @ fry,  sleepwalk =. sleep @ walk,  timestamp =. time @ stamp   

Contrast this with the kind of sequencing which takes place in a childlike narrative :

“We got dressed, then we ate breakfast, then we cleaned our teeth, then we walked to the woods, then we picnicked ….”

where one thing happens strictly after another in sequence.  Another J conjunction called at  @: deals with this method of joining verbs, so that, using the pidgin mixture above, and taking account of the fact that “after” in English requires a verb reversal compared with “then”, the above story could be related :

   “We picnicked @: walked @: cleaned teeth @: ate @: got dressed”   

Reflection on ordinary linguistic experience thus shows that in combining verbs there is an implicit distinction between fusion with concurrency on the one hand, and strict sequencing on the other.  Because J is of necessity a precise language you are required to distinguish explicitly between these two cases when you choose to combine verbs, which, as we have already seen, is an inevitable activity in writing your own programs.  Thus we look next at how the two J conjunctions , @ and @: are used in programming practice.    First, here is a new verb square whose symbol is *:

   *:c

9 1 16 0.25 4  

Suppose that we wish to total these squared values. The composite operation “total-atop-square” which is a fusion of total and square means that the combined verb is applied to every item in the argument list.   Since “total” can be perfectly reasonably applied to a single number x, that is +/x is just x, the effect of “total-atop-square” is no different from square by itself : 

   (+/@*:)c
NB. total atop square for each item

9 1 16 0.25 4
The other interpretation, and in practice the more likely one, is that “square” should produce an intermediate result before “total” is applied, that is, as in the children’s narrative, we seek  “total-after-square” .  In this case @: must be used :

   (+/@:*:)c
NB. total after square for entire list

30.25

If you like, you can think of @: as providing a weaker linkage between the verbs than @ does .   In order to sum the squares of deviations from the mean, say

   (+/@(*:@mdev))c

21.8

which provides the definition of a “sum of squares” verb :

   ssq=.+/@(*: @mdev)

   ssq c

21.8

Conjunctions are always resolved at the earliest possible point on a left to right reading scan, so that if the parentheses were to omitted in the above definition, the meaning would be  (+/@(*:)@mdev which, as described above, results in totalling being applied to individual items :
   ssq1=.+/@*: @mdev

   ssq1 c

2.89 0.09 7.29 0.64 10.89

Following the discussion of grids in section 1, here is how a monadic verb grid might be developed, given its argument is to be a three-item list consisting of start point, interval width, number of items.  First use the hook (*i.)to construct the intervals, then convert this to a fork using take and drop in order to make  ti monadic :

   2(*i.)5

NB. 2 times 0 1 2 3 4

0 2 4 6 8

   ti=.{.(*i.)}.
NB. ti=times index generator

   ti 2 5

0 2 4 6 8

Apply this technique a second time to introduce the location parameter, and recognise also the fact that ti must be applied after the scale and size parameters have been extracted by drop  :

   grid=.{.+ti@}.

   grid 97 2 5

97 99 101 103 105

It may have struck you in comparing J verb definitions with conventional program writing, that although argument data is excluded from the former, some programs  necessarily involve constants.  For example, to write a verb to round numbers to a given number of decimal places, use of the number 10 is unavoidable.  A possible starting point is a hook which multiplies x (left argument) by “10 to the power..”  J allows you to “bind” the constant 10 to the power verb with a conjunction bond  & . 

    up=.*10&^  

NB. x times 10 to the power y

     3.757 4.232 up 2

375.7 423.2

Simple rounding, that is to the nearest integer, consists of adding 0.5 to a number and taking its floor. This calls for another bond to define a verb rnd for simple rounding :

   rnd=.<.@(0.5&+)

NB. add a half and round down

   rnd 3.4

3
and the next step is to combine rounding with “upping” in an “after” relationship :

   3.757 4.232(rnd@up)2

376 423

By analogy with up define 

   down=.%10&^  

NB. x divided by 10 to the y
so that the desired result is 

   (3.757 4.232(rnd@up)2)down 2

3.76 4.23

Notice that the parameter 2 is used as a right argument twice in the above expression.  To permit this reuse J has two verbs left and right written as [ and ] respectively which extract the right and left arguments.  Using these, the operations embedded in the above line are brought together in the form of a fork :

   round=.rnd@up down ] 

   3.757 4.232 round 2

3.76 4.23

Explicit programming

When you start to write programs which are appreciably larger than those of the preceding subsection, joining verbs correctly can begin to make demands on mental ingenuity.  Accordingly, a more conventional style of defining programs is allowed which allows left and right argument data to be referred explicitly as x. and  y. respectively.  Redefining ssq  in this style should make things clear :  

   ssq=.monad define

+/ *: mdev y.

)

   ssq i.5

10

   ssq c 

21.8

Notice that mdev is still defined tacitly showing that the programmer is free to mix explicit and tacit styles in whatever way he or she find most comfortable. In the case of  round we have a dyadic verb :
   round=.dyad define

(rnd x. up y.)down y. 

)

    3.757 4.232 round 2

3.76 4.23

In this case explicit programming avoids the need to use the conjunction @ which was necessary in the earlier tacit definition.  If you find conjunctions are tricky to master, then the ability to switch between explicit and tacit styles can be invaluable.

J even provides the capability to “translate” an explicit verb automatically into a tacit one as in the following dialogue :

   9!:3(5)
NB. set system for linear display of verbs

   13 : '(rnd x. up y.)down y.' 

([: rnd up) down ]
 9!:3  is a foreign conjunction like 9!:11 which was used earlier to set the print precision.  The available parameters are 2, 4 and 5, which instructs the system to set verb display to boxed, tree and linear formats respectively. 

13 : is a code which requests the translation of whatever explicit definition string follows in quotes.  The result includes a new symbol  cap  [: which is necessary because the translator  resolves everything in terms of forks..  When a monadic function like rnd is encountered, a dummy symbol is necessary to fill the place of the left tine of the fork.      

Verbs for sorting  

J contains two primitive verbs for sorting, namely grade up /:  and grade down \:. These return the permutations which would cause the list given as right argument to be sorted in ascending (descending) order :
   /:c

NB. upward sorting permutation

4 3 1 0 2

   4 3 0 1 2{c

_2 0.5 3 1 4
NB. c sorted upwards

   \:c

NB. downward sorting permutation

2 0 1 3 4

   2 0 1 3 4{c

4 3 1 0.5 _2
NB. c sorted downwards

Each of these pairs of steps can be reduced to a hook.  But first observe that the arguments of any dyadic verb can be switched from left to right by applying an adverb reflex, so that the immediately preceding result could also have been achieved using the verb {~ :

   c{~2 0 1 3 4

4 3 1 0.5 _2
NB. c sorted downwards

Recall that a hook is a composite verb defined by writing two verbs one after the other so that (u v)y is equivalent to y u  v(y).  Thus combining the verbs {~ and  /: gives
     ({~/:)c

_2 0.5 1 3 4
NB. c sorted upwards

leading to user-defined verbs

   sortu=.{~/:
NB. sort upwards

   sortu c

_2 0.5 1 3 4

and

   sortd=.{~\:
NB. sort downwards

   sortd c

4 3 1 0.5 _2

A further primitive verb nub removes duplicates from a list :

   ~. 4 6 2 4 4 6 2 5 4

4 6 2 5

so that an upwardly sorted list with duplicates removed is given by sortu atop

nub.  As you have already seen atop is expressed by the conjunction @

   (sortu@~.)4 6 2 4 4 6 2 5 4

2 4 5 6

This can be made into another user defined verb :

   unub=.sortu @ ~. NB. upwardly sorted nub


   unub 4 6 2 4 4 6 2 5 4

2 4 5 6

A verb for reversing and shifting  
The verb |.  in its monadic reverses a list, and in its dyadic form performs a shift, to the left if the left argument is positive, and to the right if it is negative :  
   |.c


NB. reverse c

_2 0.5 4 1 3

   |.'J is useful.'

.lufesu si J

   2|.1 2 3 4 5
NB. shift >:i.5 two places to left

3 4 5 1 2

   _1|.1 2 3 4 5
NB. shift >:i.5 one place to right

5 1 2 3 4

The principle remains the same even if the argument is a list of lists :

   ]m=.3 5$'rosessmellsweet' NB. list of three words

roses

smell

sweet

   1 |.m


NB. shift words one place up

smell

sweet

roses

Suppose that a verb is wanted which removes duplicate blanks from sentences.  A first  step is to compare the sentence as a character list with itself shifted one place right, and marking where matching items are not equal :

   test=.~:~1&|.

   test s=.'how    are    you   today  ?'   

1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1

Then use copy to retain only the marked items :

   (#~test) s

how are you today ?

A flaw in the above verb is that it will remove duplicates of any character, not just space.  This can be adjusted for by making a fork whose centre verb is or +. and which does a not equal ~: comparison with space : 

   s1=.'marry   me,   harry   !'

   (#~test+.~:&' ') s1

marry me, harry !

so the final defined verb for RemoveDuplicateBlanks is rdb=.#~test+.~:&' '.

Conditional structures in J are catered for using a mechanism called a gerund, in which a succession of verbs are separated  by the conjunction  tie `, followed by another conjunction called agenda @., followed by a verb whose result is an integer index into the tied verb list.  The overall structure is what is known in programming as a case statement.  As a simple example applied to an if-then-else situation, consider how the median of a list of ordered numbers might be programmed.  If the tally of the argument list is odd, then the median is the value of the middle number.  If it is even the median is the mean of the values of the two middle numbers.

A first step is to obtain the index of the median value or values.  Define   

    half=.-:@<:   
NB.  halve one less than rt. argument  

If the argument is odd, the result is a single integer.   However, if the argument is even the result is a fraction n.5 and what is wanted is both the floor and ceiling .  The condition “is-odd” is the result of  2&| whose result must be 0 or 1 which  are appropriate indices for the two case verbs and leads to the following definition :
  medind=.((<.,>.)@half) ` half @.(2&|)

  medind # 1 3 4 7

1 2 

Next apply the index(es) using from and finally use mean defined above :

   (mean@:{~medind@#) 1 3 4 7 

3.5

As a final step the verb sortu  can be incorporated, so that the requirement that the list be ordered initially can be removed :

   median=.(mean@:{~medind@#)@sortu

   median 7 4 1 3

3.5

SECTION 4 : FITTING EQUATIONS TO DATA
One of the most powerful mathematical J primitive verbs is matrix inverse, which also provides least squares fitting in its dyadic form.    As an example, consider the simultaneous equations


x + 2y –3z = 15


x +   y +  z = 12

          2x –   y –  z  =  0

The coefficient matrix of the left hand side is :

   +m=.3 3$1 2 _3 1 1 1 2 _1 _1

1  2 _3

1  1  1

2 _1 _1

Its inverse is

  %.m

   0 0.3333   0.3333

 0.2 0.3333  _0.2667

_0.2 0.3333 _0.06667

The solution of the equations is :
   15 12 0%.m

4 7 1

The functionality of  %.does not stop here.  Suppose 
   x,:y


NB. x and y as laminated lists


2.1 2.4 3.6 3.7 4.3  5.1 5.5  5.8 5.9  6.6  7.4  8.2

4.1 6.0 5.5 8.2 7.5 12.6 8.1 10.8 7.2 13.1 11.3 15.6

are readings from an experiment in which a best-fitting straight line is to be found :

   y%.x

1.786

says that y = 1.786x is the “best-fitting” line (in the least squares sense)  of the form 

y = kx.  It is usually more useful to fit a constant as well, that is either y = kx + c  or   x = ky +c.  A variant of append called append items adds 1 to every item in a list :

   y%.1,.x

1.272 1.563

   x%.1,.y

0.8117 0.4624

so   y = 1.272 + 1.563x  and x = 0.812 + 0.462y  are the two regression lines.

The right argument of %.in the first of these two phrases is equivalent to x^/i.2 since  x^0 is 1 for all values of x .  Thus :

   y %. x^/i.2

NB. Best fitting straight line

1.27181 1.56334

This idea can be immediately extended by using powers 0,1,2 in order to give the best-fitting quadratic :

   y %. x^/i.3

NB. Best fitting quadratic

2.768 0.8803 0.06781
Now suppose data are the values of a polynomial, say the cubic function  0.5x 3  + 4x2 + 5x – 6.  First assign a list of the coefficients in reverse order :

   coef=._6 5 4 0.5
Next supply a set of x values for which you wish to evaluate the polynomial :

   +x=._4+i.9

_5 _4 _3 _2 _1 0 1 2 3

Now use a verb p.which evaluates the polynomial at all values of x.: 

   +y=.coef p. x

38 15 0 _7 _6 3 20 45 78

An x,y table for the polynomial is :

   x,:y

_4  _3 _2   _1  0   1  2    3   4

 6 1.5 _4 _7.5 _6 3.5 24 58.5 110

The best fitting straight line and quadratic are

   y %. x^/i.2

20.667 10.9

   y %. x^/i.3

_6 10.9 4

that is y = 10.9x + 20.667 and y = 4x2 + 10.9x – 6, whereas the best fitting cubic recovers the original coefficient values :

   y %. x^/i.4

_6 5 4 0.5
SECTION 5 : BOXES AND RECORDS
The concept of a “box” greatly enhances the variety of data structures that J can handle.  The principle is that any list structure, however complex, can be cast into a container called a box, which it itself a scalar.  The analogy with records in conventional data processing should be clear, as should the application of the verb

box  <   in the following  example :

   fname=.'Harry'

   sname=.'Potter'

   fpubl=.1998

   shelfcode=.'childrens'

   (<fname),(<sname),(<fpubl),<shelfcode

+-----+------+----+---------+

|Harry|Potter|1998|childrens|

+-----+------+----+---------+

Without boxing it is not possible to mix character and numeric data : 

   fname,sname,fpubl

|domain error

|   fname,sname    ,fpubl

Also, boxes are complex scalar objects which are quite different both in character and in permissible operations from their contents.  For example, if m=.i.3 4 :

   (<m),<m

+---------+---------+

|0 1  2  3|0 1  2  3|

|4 5  6  7|4 5  6  7|

|8 9 10 11|8 9 10 11|

+---------+---------+

The result is a list of two items in a row, each of which is a container for three lists each of four items.  Adding the contents of the boxed lists works fine :  
   m+m

 0  2  4  6

 8 10 12 14

16 18 20 22

but if you try adding the containers there is a problem :

   (<m)+<m

|domain error

|   (<m)    +<m

This error message says clearly that adding in the numerical sense is not appropriate for the container domain, and in the same way you may not mix the numeric and character domains :   
    fname + fpubl

|domain error

|   fname    +fpubl

An alternative to boxing items individually to construct a boxed list is to use the verb link  ; :  

   fname;sname;fpubl;shelfcode 

+-----+------+----+---------+

|Harry|Potter|1998|childrens|

+-----+------+----+---------+

A matching verb open undoes boxed structures, but naturally requires type consistency for the unboxed contents :

   >fname;sname;shelfcode 

Harry 

Potter

childrens

that is, the result of the above open is three character lists.

A commercial type data set could be built up with further levels of boxing, for example :

   rec1=.fname;sname;fpubl;shelfcode 

   rec2=.'Jane';'Eyre';1847;'classics'  

   (<rec1),:<rec2

+-----------------------------+

|+-----+------+----+---------+|

||Harry|Potter|1998|childrens||

|+-----+------+----+---------+|

+-----------------------------+

|+----+----+----+--------+    |

||Jane|Eyre|1847|classics|    |

|+----+----+----+--------+    |

+-----------------------------+

using laminate  ,:  to align the records vertically.  (n.b.(<rec1),<rec2 would be a list of two single items, and so, as with say 2 3, the items would be displayed side by side.)    Subsequent additions to the data set are made with simple appends :

   rec3=.'Peter';'Rabbit';1904;'childrens'

   ds=.(rec1,:rec2),rec3

   ds

+-----+------+----+---------+

|Harry|Potter|1998|childrens|

+-----+------+----+---------+

|Jane |Eyre  |1847|classics |

+-----+------+----+---------+

|Peter|Pan   |1904|childrens|

+-----+------+----+---------+

This is a list of three four-item lists, and so

   #(rec1,:rec2),rec3

3

   $(rec1,:rec2),rec3

3 4

To extract a list of shelfcodes, use transpose and then from : 

   scs=.3{|:ds

   scs

+---------+--------+---------+

|childrens|classics|childrens|

+---------+--------+---------+

This list can now be used to select the rows which correspond to children’s books :

   (scs=<'childrens')#ds

+-----+------+----+---------+

|Harry|Potter|1998|childrens|

+-----+------+----+---------+

|Peter|Pan   |1904|childrens|

+-----+------+----+---------+

To sort the records in alphabetical order of surnames use 1  to extract the snames fields, then grade-up (introduced in section 3) to find the required permutation :

   /:1{|:ds
1 0 2

Then apply this to make the required selection from the list of records : 
   (/:1{|:ds){ds

+-----+------+----+---------+

|Jane |Eyre  |1847|classics |

+-----+------+----+---------+

|Peter|Pan   |1904|childrens|

+-----+------+----+---------+

|Harry|Potter|1998|childrens|

+-----+------+----+---------+
SECTION 6 : INVESTIGATING POSSIBILITIES

This section begins with a problem.  Suppose we have a situation with four two-way choices, for each of which something must be accepted or rejected.  These could be to add (or not add) onions, cheese, sausage or mushrooms to a pizza.  The aim is to make a table for the cost for each of the possible selections. 

First two relevant verbs  base #. and antibase #:. are introduced which allow numbers to be  represented in all manner of different units.   For example, converting 4 hrs. 22 mins. 54 secs. to seconds, and then 2 yds. 2 feet 9 inches to inches is achieved by :

   0 60 60 #. 4 22 54 NB. base for mins., secs.,is 60 60

15774

   0 3 12 #. 2 2 9
  NB. base for ft., ins., is 3 12 


105

To convert back to the original units use #: :

   0 60 60 #:15774
  NB. secs to hrs. mins. secs.

4 22 54

   0 3 12 #:105
  NB. inches to yds. ft. ins. 


2 2 9

As another example, antibase generates the individual digits in a decimal integer :

   10 10 10 #:658
  NB. digits in base 10

6 5 8

When the right argument is a list, the result is a list of lists :

   10 10 10 10 10#:4342 8958 4646 243 10 12334 

0 4 3 4 2

0 8 9 5 8

0 4 6 4 6

0 0 2 4 3

0 0 0 1 0

1 2 3 3 4

With no left argument the default number base is 2, which delivers binary numbers :

   #:i.8

NB. 8=*/2 2 2, so it is also #:i.*/2 2 2 

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

For the purposes of display, it is often convenient to use a verb transpose |: which reorganises a list of lists into a new set of lists in which the first list is a list of all first items, the second list is a list of all second items and so on  :

   |:#:i.8

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

Thus, returning to the pizza problem, given 0 means absent and 1 means present 

   |:#:i.16

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

represents all the possible choices of toppings.

There is no requirement that all the items in the left argument of dyadic #: are the same.  If we wished to allow three possibilities for the second row, say because two types of cheese become available making a total of 24 possible pizzas in total, we can supply 2 3 2 2 as the left argument :

   |:2 3 2 2#:i.24

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 2 2 2 2 0 0 0 0 1 1 1 1 2 2 2 2

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Now the 24 is just the product of 2 3 2 and 2, or in J terminology */2 3 2 2, and so there is some redundancy in the above expression.  J allows us to avoid this by using a hook with #: as the left verb, and i.@(*/) as the right verb : 

   poss=.#:i.@(*/) 

   |: poss 2 3 2 2 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 2 2 2 2 0 0 0 0 1 1 1 1 2 2 2 2

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Now make and display a list of the ingredients, using open and link described in section 5 :

   ]tops=.>'onions';'cheese';'sausage';'mushrooms '

onions   

cheese   

sausage  

mushrooms 

The leftmost verb right ], by virtue of its definition, causes a display of everything to its right.  Earlier monadic + and , were used for this purpose;  in practice right is much the commonest way of doing simultaneous assignment and display because it is independent of type (character or numeric).  Now define   

   tab=.|:poss 2 3 2 2

   tops,tab

|domain error

|   tops    ,tab

The problem here is that J does not allow mixed types (character and numeric) to be appended.   However, J does provide a very convenient verb format ":  which transforms any numeric object into its character equivalent which looks identical on display :

   tops,":tab

onions                                         

cheese                                         

sausage                                        

mushrooms                                      

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 2 2 2 2 0 0 0 0 1 1 1 1 2 2 2 2

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Not quite what we were thinking of  - what is needed is append items ,. which was first met in section 4, and is now used to append the two lists on an item by item basis as opposed to one list after the other.  At the same time we have incorporated the dyadic form of format which allows a field size to be specified, in this case 1  :
   tops,.1 ":tab

onions    000000000000111111111111

cheese    000011112222000011112222

sausage   001100110011001100110011

mushrooms 010101010101010101010101

Now suppose that we want to compute the costs of the various types of pizza, given the costs of the various toppings :

   cost=.0.80 1.80 2.20 1.50

The required calculation is to multiply each of the four lists (rows) in tab by the matching element in cost and then add “down the columns”, that is a +/ applied to each column.  This combination of addition and multiplication, sometimes known as an “inner product” is expressed by the dot conjunction, and so

   cost +/ .* tab

0 1.5 2.2 3.7 1.8 3.3 4 5.5 3.6 5.1 5.8 7.3 0.8 2.3 3 4.5 2.6 4.1 4.8 6.3 4.4 5.9 6.6 8.1

gives a list of the 24 possible pizzas.

To display the combinations in the form of a price list use format once again, only now applying it dyadically to specify a field width of 1 with no decimals for the first four columns, and 6 with 2 decimal places for the price column :

   ((4#1j0),6j2)":|:tab,cost +/ .* tab

0000  0.00

0001  1.50

0010  2.20

0011  3.70

0100  1.80

0101  3.30

0110  4.00

0111  5.50

 ……………..    ..

 …

and so on.  The leftmost column is not very informative, so use copy to make it more meaningful, having first used append items monadically to change it from a list of 24 items to a list of 24 single-item lists :

   $prices=.cost+/ .*tab

24   

   $,.prices

24 1     

   ((|:tab)#'OCSM'),.6j2":,.prices

       0.00

M      1.50

S      2.20

SM     3.70

C      1.80

CM     3.30

CS     4.00

CSM    5.50

CC     3.60

CCM    5.10

CCS    5.80

CCSM   7.30

O      0.80

OM     2.30

OS     3.00

OSM    4.50

OC     2.60

OCM    4.10

OCS    4.80

OCSM   6.30

OCC    4.40

OCCM   5.90

OCCS   6.60

OCCSM  8.10

SECTION 7 : EDITING, SYSTEM FACILITIES and SCRIPTS

Sooner or later you will want to write “programs” which you cannot express on a single line.  While J contains many sophisticated features which make it possible to express a great deal in a single phrase, it can be comforting to know that a more conventional style of conditional and looping programming is also available.  We look at three ways in which a user-defined verb for Fibonacci numbers can be constructed.  Fibonacci numbers are sequences which are started with two arbitrary numbers (most commonly 0 and 1), and thereafter each succeeding number is the sum of the previous two.  Clearly such a series could go on indefinitely, and so for practical purposes one of the parameters of a Fibonacci verb must provide a stopping condition, for example, either a total number of numbers is given, or the series may stop after a given value has been exceeded.

The English of the previous sentence can be rendered in J as _2&{.  (take the last two) and then +/@(_2&{.) (sum the last two).  Finally we want to join this to what we started with, which is the verb structure previously recognised as a hook    ,+/@(_2&{.) .  Hence a user-defined verb for a single Fibonacci step is 

   fib=.,+/@(_2&{.)

   fib 2 3

2 3 5

Suppose that the stopping condition is that this step has to be performed a given number of times, say 10.  J provides a conjunction power  ^:  which allows us to say just this.  Its symbol demonstrates the analogy with the power verb which prescribes how often a number is to be multiplied by itself. 

   fib^:10(0 1)

0 1 1 2 3 5 8 13 21 34 55 89

We can even write this series all in a single line without any named verb, although the expression could be criticised as becoming a little bit hard to disentangle :
   (,+/@(_2&{.))^:10(0 1)

0 1 1 2 3 5 8 13 21 34 55 89

Next, here, side by side, are two alternative ways in which we could have written and executed this program, the second shows incidentally that J supports recursion :
Fib=.dyad define


Fib=.dyad define



r=.y. [ i=.0



if.x.>0 do.

while. i<x. do.  


  r=.(x.-1)Fib y.

  i=.i+1




  r=.r,+/_2{.r

  r=.r,+/_2{.r



else. r=.y.  

end.





end.

)





)

   10 Fib 0 1 

0 1 1 2 3 5 8 13 21 34 55 89

In the body of the code x. and y. are used to reference the left and right arguments as in Section 3.  and the control words (while. do. end. if. else.) must be terminated with dots. The code itself is terminated with a right parenthesis at which point the session reverts to execution mode, as opposed to object definition mode.  The first code line in the left hand program could have been written as two separate lines – the left bracket acts as a statement separator, although you might have recognised it as the verb left whose value is what lies to its left, ignoring any right argument.  Its role as a statement separator is a happy consequence of this definition.

The opening line of the above definition could also have been written Fib=.4 :0, in which case Fib would be a strictly dyadic verb.  Another possibility which allows both a monadic and a dyadic definition is : 

Fib=.3 : 0

10 Fib y. 

:

r=.y. [ i=.0

… ….. etc.

The first line states that it is a dyadic verb (that is an object of class 3) which is to be defined.  The 0 means that the subsequent input lines are to made from the keyboard.  The colon on the second line separates the monadic and dyadic definitions, and in the present case establishes a default left argument of 10. 

More System Facilities

You have already seen how the foreign conjunction is used to get and set print precision.  With different integer arguments it has many other uses for bridging the gap between programs and the underlying operating system.  For example, a left argument of 1 is associated with reading and writing.  1!:1(1) means “read from the keyboard”  :

   g=.1!:1(1)  
I am now typing a message ...

NB. On the keyboard

   g

I am now typing a message ...

NB. From the computer 

Thus 

   ask=.monad define

1!:1(1)

)

   h=.ask 'what''s the score?'

round about 20


NB. From the keyboard

   h

round about 20


NB. From the computer

You can ask how many verbs there are presently in the workspace by 

   4!:1(3)

 +---+---+---+

|Fib|ask|fib|

+---+---+---+

For nouns (that is constants and variables), adverbs and conjunctions replace 3 above   with 0, 1 and 2 respectively.

You can ask the time of day with 6!:0’’(1) , the elapsed time since start of session in microseconds by 6!:1’’(1),together with much, much more which is fully documented within the J system help facilities.

Scripts

Naturally you do not want to repeat the typing of input every time you want to use a sequence of user-defined verbs, so J provides for scripts, which are text files, (usually with qualifier .ijs although any qualifier except .ijx is acceptable) into which you can save objects for later use.   The extension .ijx is reserved for executable J sessions which run under the control of software known as the “session manager”.  It is this software which, for example, allows you to run an arrow up the screen and re-execute a previously submitted line.  Assume that you have saved work from executing sessions into a script files.  When you want to reuse the script file you can either 

(a) load the file explicitly by    load'c:\j406\temp\fib.ijs'

 (b) Use File/Open to open the script file, which results in the file appearing in a new window.  Once the script has been opened, use Run/Window or Run/Line from a drop-down menu;

(c) with the script file open, press Ctl-W which is equivalent to (a).
You will find that there are already many existing scripts in your J system, and by loading these you are able to take advantage of a great deal of other people’s past work and experience.  An example is the statistics package which consists of three separate scripts obtainable by Open/System/stats.ijs.  This script contains three lines  

script_z_ <'system\packages\stats\random.ijs'

script_z_ <'system\packages\stats\statfns.ijs'

script_z_ <'system\packages\stats\statdist.ijs' 

Do Run/Line on the second of these and you can now execute all the verbs in the script, for example median which we laboured to program in section 3  is just one of several statistics immediately available :
   median 6 7 9 0 _2 1 5 7  

5.5

SECTION 8 : DRAWING GRAPHS

One feature of the J package which you are bound to welcome is the ease with which you can draw graphs.  First do the following
   load 'plot'

   plot c=.3 1 4 0.5 _2

and you should observe a new window containing a plot of these five values plotted against i.5 on the x axis.  Any one-dimensional sequence can be plotted in this way; you will find that there are verbs in another script which help you draw, for example, trig series. To draw y= 2sin(5x) + 3cos(12x) from 0 to 2
[image: image3.wmf]p

:

      load 'numeric trig'
   x=.steps 0,(o.1),100  
NB. o. means“’ 'pi times'

   cos=.2&o.  [   sin=.1&o.
NB. dyadic o. supplies the





NB. trig ratios sin,cos,etc

   plot x;(2*sin 5*x)+3*cos(12*x)
[image: image4.png]



To print this graph and simultaneously save it as a file, create the following verb :

pg=.dyad define

'res fn'=.x.;y.   NB. resolution / filename

require'opengl'

glfile fn

glsavebmp res

printbmp_jzopengl_ fn 

)

Then, with the graph displayed in the plot window, issue the following :

   500 300 pg 'c:\j406\temp\plot1.bmp'

Graphs can be divided into two categories, those which are essentially algebraic, and those which are inherently geometrical.  One example of each is given.

To start with, the polynomial y = 4x2 + 5x – 16 (parabola) is plotted from –4 to 4 by  

  x=.steps _4 4 100
    plot x;_16 5 4 p.x

In order to make the graph a little more interesting the second item in the link is changed into a list of three lists, corresponding to a straight line, a parabola and a cubic respectively :

     plot x;((6 5 p.x),:_16 5 4 p.x),_3 _4 2 1 p.x

[image: image5.png]



The example to illustrate geometric graphs involves one possible parametrisation of the curves known as epicycloids and hypocycloids.  The first line below illustrates incidentally a technique for making multiple assignments on a single line :

'r R a b'=.2.6 2.36 _40.1 50 

x=.(0.01*o.2)*i.101

NB. x from 0 to 2pi

p=.(r*cos(a*x))+R*cos(b*x)        q=.(r*sin(a*x))+R*sin(b*x)

The command to make the plot is
     'labels 0'plot p;q

The left argument of plot is a character string which describes just one of the many possible drawing options, in this case it says “do not display axis labels”.
[image: image6.png]



Facilities are also provided which allow the construction of a wide range of drawings.  A selection of the basic drawing tools is given below.  The graphics window is assumed to be 2 units high and 2 units deep with the origin (0,0) at the centre.

   load 'graph'

   gdopen''

   gdrect _0.4 _0.4 0.8 0.8 
  NB. x y width height

   gdellipse 0.5 _0.5 0.2 0.4
  NB. centre, axis lens.


   gdpolygon t=.0.1*7 1 _7 1 7 _4 _2 6 _1 _6 7 1 

 

    NB. t is six coordinate pairs in succession

   gdshow''   NB. window displayed at this point 

[image: image7.png]



The scope for drawing graphics and plots is endless, and ample guidance to all the facilities can be found in the Graph Utilities Lab which is part of the J system.

SECTION 9 : RANK

If you have successfully followed the preceding sections, you are now ready to encounter what is one of the most important concepts in J, namely rank..   In section 1 an object called matrix was defined which, although it looked like a matrix, was in fact a list of three four-lists.

   matrix 

  3  1 4 0.5

 _2  3 1   4

0.5 _2 3   1

The fact that it is a list of three lists is made explicit by tally :

   #matrix

3

and the fact that each of these three lists is a four-list by shape :

   $matrix

3 4

Tallying the shape

    #$matrix

2

indicates that matrix is a list of lists, that is after penetrating two list levels primitive objects, in this case numbers, are reached.   This can be expressed more concisely by saying that “matrix is an object of rank 2”, and leads to the definition of a verb 

   rank=.#@$

It is very important to get the order of verbs right in rank since $@#  means tally first which always results in a scalar, whose shape is an empty list.  An alternative and equivalent definition of rank uses cap which was encountered earlier in section 3 :    

   rank=.[:#$

The structure involved here is called a capped fork, although a capped hook might be  a more appropriate name because the effect is to make  the verb pair u v return u v(y) rather than y u v(y) which it would do under the hook rule.  In either case : 

   rank matrix

2

   rank c=.3 1 4 0.5 _2

1

   rank 7

0

What makes rank a particularly important concept is that verbs, both user-defined and primitive, can be made to operate at different rank levels.  For example we have seen how box < can make any object into a scalar.  Thus :

   rank <matrix

0

However, if  box operates at rank 1, that is 1 level in, then it is only the lowest level rank 1 objects which are boxed :
   <"1 matrix

+---------+--------+----------+

|3 1 4 0.5|_2 3 1 4|0.5 _2 3 1|

+---------+--------+----------+

   rank <"1 matrix

1 

Because it joins a verb and a noun, the symbol " is a conjunction, and because of what it does it is called the rank conjunction.  When we come to insert verbs like +/ rank becomes important and useful in enabling different types of subtotalling to be performed.  To “add-insert” two lists without any reference to rank, means, in a reasonably obvious sense, add their corresponding items :

   +/matrix

1.5 2 8 5.5
that is, in matrix terms, add “down the columns”.  To “add-insert” at rank 1 means to add at the lowest list level, that is to add the items in each of the boxes above :

    +/"1 m

8.5 6 2.5

in matrix terms, this is adding “along the rows” :

To find the grand total of all the items in matrix we have two options using atop : 

   gt1=.+/@”(+/)  or
   gt2=.+/@,
NB. sum atop ravel

   gt1 matrix

   gt2 matrix

17



17

and two using cap :

   gt3=.[:+/+/  
   gt4=.[:+/,
NB. sum after ravel


   gt3 matrix

   gt4 matrix

17



17

Which verb you choose is entirely a matter of personal taste.  If using the atop form, notice that parentheses are essential in the definition of gt1 .  Without them +/@+/ 
means “insert the verb +/@”+”” which, following the discussion in section 3, is just the same as inserting the verb + between each of the three top level lists, which in turn, as we saw above, is the same as adding down the columns :

   (+/@+)/ matrix

1.5 2 8 5.5

To attach column totals to a matrix use a hook :

  ct=.,+/



  ct matrix

  3  1 4 0.5

 _2  3 1   4

0.5 _2 3   1

1.5  2 8 5.5

and to attach both row and column totals :

   ct ct"1 matrix

  3  1 4 0.5 8.5

 _2  3 1   4   6

0.5 _2 3   1 2.5

1.5  2 8 5.5  17

To make this into a user-defined verb there are, as with  gt , two options, you may use either a conjunction with parentheses or cap : 
   totals1=.ct@:(ct"1)
or   totals2=.[:ct ct"1

   totals1 m


   totals2 m

  3  1 4 0.5 8.5

  3  1 4 0.5 8.5

    

 _2  3 1   4   6

 _2  3 1   4   6

0.5 _2 3   1 2.5

0.5 _2 3   1 2.5

1.5  2 8 5.5  17

1.5  2 8 5.5  17

In  totals1 note again the importance of both the parentheses and the need for at @: as opposed to atop @ .  at is vital in this case since the grand total is itself the sum of totals, namely the row totals, and so it is necessary that column totalling does not commence until the row totalling and appending is complete, a form of sequencing which is implicit in cap. 

Another example of a verb operating at different rank levels is taken from section 3 and involves the verb reverse :
   m=.3 5$'rosessmellsweet'

   w

roses

smell

sweet

   |.w 


  |."1 w

sweet


sesor

smell


llems

roses


teews

Similarly

  sortu m

 _2  3 1   4

0.5 _2 3   1

  3  1 4 0.5

sorts the rows in ascending order of the size of the first item, whereas

   sortu"1 m

0.5   1 3 4

 _2   1 3 4

 _2 0.5 1 3

sorts each rows into ascending order individually.

Here are the effects of rank with a deeper (that is, rank 3) list : 

   i.2 2 3

   +/"1 i.2 2 3

0  1  2


 3 12

3  4  5


21 30





   +/"2 i.2 2 3

6  7  8


 3  5  7

9 10 11


15 17 19

i.2 2 3 is a two-list, each item of which is a two-list of three lists.  Summing at rank 1, the result is the sums of each of the inner two-lists of which there are four altogether.  Summing at rank 2, the result is the sums of each of the two pairs of three-lists.   Without the rank conjunction the result is the sum of the two outer two-lists item by item, exactly as with matrix :

   +/i.2 2 3

 6  8 10

12 14 16

Armed with the rank conjunction the potential of J for expressing data manipulations is truly formidable. 

Here the present investigation of J must cease.  As hinted in the introduction there is much, much more left for you to discover.  If you have found what you have met so far has stimulated you, then you will now proceed at a very fast rate under your own direction.       
Absolute value, 8

Adverb, 9, 21, 35

Agenda, 23

Alphabet, 11

Alternating sum, 9

Anti-base, 29

Append, 7, 27, 29, 41

Append items, 24, 31

Arguments, 6

Arithmetic functions, 2

ASCII characters, 11

Assignment, 3

At, 17, 41

Atop, 17, 40 

Base, 29

Best fitting

      polynomials,  25

Bond, 19

Box, 26, 40

Cap, 21, 39, 41

Capped fork, 39

Cards, 15

Case statement, 23 

Ceiling, 7, 23

Character list, 5, 12

Combinations, 15

Comments, 4

Complex numbers, 4

Concurrency, 17

Conjunctions, 17, 35

Control words, 34

Copy, 6, 9 

Deal, 13

Decrement, 13

Dice, 13

Domain errors, 14, 26, 31

Dot conjunction, 31

Drawing, 36

Drop, 12, 19

Dyadic, 6

Empty list, 10

Epicycloids, 37

Explicit Programming,           
             20

Factorial, 15

Fibonacci numbers, 33

Fill items, 12

Floor, 7, 23

Foreign conjunction,

          3, 20, 34

Fork, 16, 19

Format, 31

From, 5, 13, 23

Gerund, 23

Grade down, 21

Grade up,  21, 28

Graphs, 36

Grid, 11,18

Halve, 23

Hook, 16, 19

Hypocycloids, 37

Identity values, 10

Increment, 13

Index generator,10, 11,

  29, 41

Index of, 12

Inner product, 31  

Insert, 9, 40

Keyboard input, 34

Laminate, 15, 24, 27

Least squares, 24

Left, 20, 34

Link, 27

Lists, 4

Logarithms, 4

Logical verbs, 10

Matrix, 6, 24, 39

Matrix inversion, 24

Maximum, 7

Mean, 16

Median, 23, 35

Membership, 9

Minimum, 7

Monadic, 6

Multiple choice, 14

Negate, 7

Not equal, 23

Noun, 11, 33

Nub, 22

Open, 27

Or, 23

Out of, 15

Overtaking, 12 

Pascal’s Triangle, 15

Permutations, 21, 28

Pi, 36

Polynomials, 25, 37

Power, 2, 33

Primitives, 16

Print precision, 3

Quadratics, 25

Range, 16

Rank, 39

Ravel, 15

Reciprocal, 7

Recursion, 33

Reflex, 21

Regression lines, 25

Relational verbs, 9

Remove blanks, 22 

Reshape, 6

Residue, 8

Reverse,  22, 41

Right, 20, 31

Roll, 13

Rounding, 19

Scalars, 3

Scripts, 35 

Sequential

      programming, 17

Session Manager, 35

Shape of, 6, 39

Shift, 22

Signum, 7

Sorting, 21, 41

Simultaneous

      equations, 24

Square Root, 4

Square, 18

System facilities,

                3, 20,34

Tables, 11,15

Tacit programming, 16

Tail, 12

Take, 12

Tally, 5, 39

Tie, 23 

Time, 35

Tossing coins, 13

Transpose, 30

Trigonometry, 36

Underbar, 3 

Vectors, 4

Verbs, 2

Workspace, 3

Wrap around, 6

The table below gives the J symbols which are used in this booklet.  A few other symbols have also been included there are obvious analogies with those which are used in the booklet.  Where two meanings are given, these are monadic/dyadic.

Verbs:

+
conjugate/plus
+.
or (dyadic)
+:
double/not-or

-
negate/minus
-. 
not (monadic)
-:
halve

*
signum/times
*.
and (dyadic)
*:
square/not-and

%
reciprocal/divide
%.   matrix inverse (monadic)
%:
square root

^
power
^.
natural logarithm/logarithm

!
factorial/out of  
|
absolute value/residue
|.
reverse/shift
|:
transpose

=
equals


?
roll/deal
 
#
tally/copy
#.
base
#:
antibase

$
shape of/reshape  


{
from
{.
take
{:
drop

,
ravel/append
,.
append items 
,:
laminate

<
box/less than
<.
floor/minimum
<:
decrement/less than or equal

>
open/greater than
>.
ceiling/maximum
>:
increment/greater than or equal





~:
not equals

;
link 

[
left  


[:  cap


]
right  




/:
grade-up





\:
grade-down








 ”": format

e. membership

i.    index generator/index of

o.    multiply by pi

p.    polynomial

Adverbs :

/  insert/table
~  reflex 

Conjunctions :

@  atop (strong linkage)
     @. agenda


     @: after (weak linkage)     
&  bond
.  dot

`  tie

          
  ^:
power





  !:
foreign conjunction

Noun :


     a.    alphabet

Special symbol :
     =. 
assignment                                
Control words :   if. do. else. while. end.    
1
42

_1069340238.unknown

_1069419314.unknown

_1069240717.unknown

