>> Contents Help

J

For C Programmers

Henry Rich

2004/10/31
Copyright © 2004 Henry H. Rich. All rights reserved.

Foreword

Y ou are an experienced C programmer who has heard about J, and you think you'd
like to see what it's al about. Congratulations! Y ou have made a decision that will
change your programming life, if only you see it through. The purpose of this book
Isto help you do that.

It won't be easy, and it certainly won't be what you're expecting. You've learned
languages before, and you know the drill: find out how variables are declared, learn
the syntax for conditionals and loops, learn how to call afunction, get a couple of
examplesto edit, and you're a coder. Fuggeddaboutit! In J, there are no
declarations, seldom will you see aloop, and conditionals often go incognito. As
for coding from examples, well, most of our examples are only a couple of lines of
code—you won't get much momentum from that! Y ou're just going to have to grit
your teeth and learn a completely new way to write programs.

Why should you bother? To begin with, for the productivity. Jprograms are
usually afifth to atenth aslong as corresponding C programs, and along with that
economy of expression comes coding speed. Next, for the programming
environment: Jis an interpreted language, so your programs will never crash, you
can modify code while it's running, you don't have to deal with makefiles and
linking, and you can test your code simply by entering it at the keyboard and seeing
what it does.

If you stick with it, Jwon't just help the way you code, it'll help the way you think.
C isacomputer language; it lets you control the things the computer does. Jisa
language of computation: it lets you describe what needs to be done without getting
bogged down in details (but in those details, the efficiency of itsalgorithmsis
extraordinary). Because Jexpressions deal with large blocks of data, you will stop
thinking of individual numbers and start thinking at alarger scale. Confronted with
aproblem, you will immediately break it down into pieces of the proper size and
express the solution in J—and if you can express the problem, you have aJ
program, and your problem is solved.

Unfortunately, it seems to be the case that the more experience you haveasaC
programmer, the less likely you are to switch to J. This may not be because
prolonged exposure to C code limits your vision and contracts the scope of your
thinking to the size of a 32-bit word—though studies to check that are still under

way and it might be wise for you to stop before it's too late—but because the better
you are at C, the more you have to lose by switching to J. You have developed a
number of coding habits: for example, how to manage loops to avoid errors at
extreme cases; how to manage pointers effectively; how to use type-checking to
avoid errors. None of that will be applicableto J. Jwill take advantage of your skill
In grasping the essence of a problem—indeed, it will develop that skill considerably
by making it easier for you to express what you grasp—but you will go through a
period during which it will seem like it takes forever to get things done.

During that period, please remember that to justify your choice of J, you don't have
to be as expert in Jas you were in C; you only have to be more productive in J than
you werein C. That might well happen within amonth. After you have fully
learned J, it will usually be your first choice for describing a program.

Becoming a J programmer doesn't mean you'll have to give up C completely; every
language has its place. In the cases where you want to write code in C (either to use
alibrary you havein C or to writea DLL for afunction that isinefficiently
computed in J), you will find interfacing Jto DLLsto be ssmple and effective.

Thisbook's goal isto explain rudimentary J using language familiar toaC
programmer. After you finish reading it, you should do yourself the honor of
carefully reading the J Dictionary, in which you can learn the full language, one of
the great creations in computer science and mathematics,

Acknowledgements

| am obliged to the reviewers who commented on earlier versions:. Michel
Dumontier, Ken Iverson, Fraser Jackson, David Ness, Richard Payne, and Keith
Smillie. Brian Schott, Nicholas Spies, and Norman Thomson exchanged emails
with me at length to smooth over rough spots. David Steele conducted a
painstaking review of several early drafts and suggested many changes great and
small. Bjorn Helgason trandated the text into Icelandic, finding a number of errors
along theway. Kip Murray's 'review' became more of a dismantling, cleaning, and
reassembly operation in which large sections of prose were rewritten as he pointed
out to me their essential meaninglessness; the reader should be as grateful to him as
| am.

Without the patient explanations of my early teachersin J, Raul Miller and Martin
Neitzel, | would have given up on J. | hope that this book pays to others the debt |
owe to them.

My current happy career as a J programmer would not have been possible without

the work of the staff at Jsoftware, Inc., who created J. For the patriarch, the late
Ken lverson, | am unworthy to express admiration: | have only awe. | hope his
achievement eases the lives of programmers for generationsto come. To therest,
both Iversons and non-lversons, | give my thanks.

The implementation of the Jinterpreter has required diverse skills: architectural
vision, careful selection of algorithms, cold-eyed project management to select
features for implementation, robust and efficient coding, performance optimization,
and expertise in numerical analysis. Most improbably, al these talents have resided
in one man, Roger Hui il miglior fabbro. Jgivesusall away to have alittle of
Roger's code in our own. We should aspire no higher.

Change History

2002/6/18: Add chapters on mathematicsin J, and section on Symbols; minor
changes to wording; bring text up to J Release 5.01

2002/8/16: Minor additions; added section on aliasing; added chapter on sockets

2002/9/26: Added sections on fndisplay, integrated rank support, and ordering of
implied loops

2002/11/14 Added explanatory sections, section on the J Performance Monitor,
and chapter on Error Messages

2003/07/18 (J5.03) added section on |., updated f. Added chapter on frequent
errors. Added section on run-length decoding

2004/10/31 (J5.04) ~.a:, vector cut. Added chapter on Sequential Machines

<< >> Contents Help

Contents

Foreword
Acknowledgements
Change History

1. Introduction

Programming In J

2. Preliminaries
Notation
Terminology
Sentences (statements)
Word Formation (tokenizing rules)
Numbers
Characters
Vaence of Verbs (Binary and Unary Operators)
How Names (Identifiers) Get Assigned
Order of Evaluation
What averb (function) looks like
Running a J program
Interrupting Execution
Errors
The Execution Window; Script Windows
Names Defined at Startup
Step-By-Step Learning: Labs
JDocumentation
Getting Help
3. A First Look At JPrograms
Average Daily Balance
Calculating Chebyshev Coefficients
4. Declarations
Arrays

Cdlls
Choosing Axis Order
Negative Cell-Rank; Items
Lists
Phrases To Memorize
Constant Lists
Array-creating verbs
Dyad $ ($hape) and monad $ ($hape Of)
Monad # (Tally)
Monadi . (Integers)
5. Loopless Code |I—Verbs Have Rank
Examples of Implicit Loops
The Concept of Verb Rank
Verb Execution—How Rank |s Used (Monads)
Controlling Verb Execution By Specifying a Rank
Examples Of Verb Rank
f ndi spl ay—A Utility for Understanding Evaluation
Negative Verb Rank
Verb Execution—How Rank Is Used (Dyads)
Concatenating Lists: Dyad, (Append)
When Dyad Frames Differ: Operand Agreement
Order of Execution in Implied Loops
A Mistake To Avoid
6. Starting To WritelIn J
7. MoreVerbs
Arithmetic Dyads
Boolean Dyads
Min and Max Dyads
Arithmetic Monads
Boolean Monad
Operations on Arrays
Dyads
Monads
8. Loopless Code |l—Adverbs/ and ~

Modifiers
The Adverb Monad u/

The adverb ~
9. Continuing to Writein J
10. Compound Verbs
Verb Sequences—u@ v and u@

The Difference Between u@ v and u@

Making aMonad Into a Dyad: The Verbs[and]
Making a Dyad Into aMonad: u&n and m&v

11. Boxing (structures)

Terminology

Boxing As an Equivaent For Structures In C
12. Empty Operands

Execution On a Cell Of Fills

Empty cells

If Fill-Cells Are Not Enough
13. Loopless Code II1l—Adverbs\ and)\ .

14. Verbsfor Arithmetic
Dyads
Monads (all rank 0)
15. Loopless Code IV
A Few JTricks
Power/If/DoWhile Conjunction u”: nandu”: v
Tie and Agenda (switch)
TheTieConjunctionu™v U n mv mn
The Agenda (switch) conjunction m@ v
16. More Verbs For Boxes
Dyad; (Link) And Monad; (Raze)
Dyad, Revisited—the Case of Dissimilar Items
Verbs With More Than 2 Operands—Multiple Assignment
Dyad { Revisited
Split String Into JWords: Monad ; :

Fetch From Structure: Dyad { : :
Report Boxing Level: Monad L.

17. Verb-Definition Revisited
What really happensduringm : nandver b defi ne

Compound Verbs Can Be Assigned
Dual-Vaenceverbs. u : v

The SuicideVerb | :
Multi-Line CommentsUsing0 : 0
Final Reminder

18. u™: 1,u& v,andu :.v

The Obverseu”: 1
Apply Under Transformation: u&. v andu&. : v
Defined obverses:u : . v
u& v and u&v
An observation about dyadic verbs
19. Performance: Measurement & Tips
Timing Individual Sentences
Compounds Recognized by the Interpreter
Use Large Verb-Ranks! and Integrated Rank Support
Shining a Light: The J Performance Monitor
20. Input And Output
Foreigns
File Operations 1! : n; Error Handling
Error Handling: u ::v,13!:11,and9!: 8
Treating a File asa Noun: Mapped Files
Format Data For Printing: Monad And Dyad " :
Monad " :
Format binary data: 3! : n
printf,sprintf,andqgprintf
Convert Character To Numeric: Dyad " .

21. Calling aDLL Under Windows
Memory Management

Aliasing of Variables
Aliasing of Mapped Nouns
Aliasing of DLL Operands

22. Socket Programming
sdsel ect

Asynchronous Sockets and socket _handl er

Names and |P Addresses
Connecting
Listening
Other Socket Verbs
Datagrams
Socket Options
Housekeeping
23. Loopless Code V—Partitions
Find Unique Items: Monad ~. and Monad ~:
Apply On Subsets. Dyad u/ .
Apply On Partitions: Monad u; . 1 and u; . 2
Apply On Specified Partitions: Dyad u; . 1 and u; . 2
Find Sequence Of Items. Dyad E.
Multidimensional Partitions
Apply On Subarray: Dyad u; . O
Apply On All Subarrays: Dyad u; . 3andu; . 3
Extracting Variable-Length FieldsUsing”: and; . 1
24. When Programs Are Data
Calling a Published Name
Using the Argument To aModifier
Invoking a Gerund: m : 6
Passing the Definition Of aVerb: 128! : 2 (Apply)
Passing an Executable Sentence: Monad " . and 5! : 5
25. Loopless Code VI
26. Loopless Code VII—Sequential Machines
27. Modifying an array: ni
Monad | . —Indexes of the 1sin a Boolean Vector

Modification In Place
28. Control Structures
for./do. /end. andf or x. /do. /end.
whi | e. /do. /end. andwhi | st. /do. /end.
i f./do. /el se./end. ,if./do. /el seif./do. /end.
try./catch. /end. andcatcht./t hrow.
sel ect . /case. /f case. /end.
return.
assert.
29. Modular Code
L ocales And Locatives
Assignment
Name Lookup
Changing The Current Locale
The Shared Locale' z'
Using Locales
30. Writing Y our Own Modifiers
Modifiers That Do Not Refer Tox. Ory.
Example: Creating an Operating-System-Dependent Verb
Example: The LoopW t hl ni ti al Conjunction
Example: A Conjunction that Analyzesu and v
An Exception: Modifiersthat Do Not Refer tou. orv.
Modifiers That Refer Tox. Ory.
31. Applied Mathematicsin J
Complex Numbers
Matrix Operations
Polynomials: p.
Caculus. d. ,D.,D: ,andp. .
Taylor Series:t. ,t:,and T.
Hypergeometric Function with H.
Sparse Arrays. Monad and Dyad $.
Random Numbers: ?

Plot
Computational Addons
Useful Scripts Supplied With J
32. Elementary Mathematicsin J
Verbs for Mathematics
Extended Integers, Rational Numbers, and x:
Factors and Primes. Monad p: , Monad and Dyad q:
Permutations: A. and C.

33. Odds And Ends

Dyad # Revisited

Boxed words to string: Monad ; : ~: 1
Spread: #7: 1

Choose From Lists Item-By-Item: monad n}
Recursion: $:

Make a Table: Adverb dyad u/
Boolean Functions: Dyad m b.

Functions on Boolean operands
Bitwise Boolean Operations on Integers
OperationsInsideBoxes:u L: n,u S: n

Comparison Tolerance! . f

Right Shift: Monad | . ! . f
Generalized Transpose: Dyad | :
Monadi : and Dyadi :

Fast String Searching: s: (Symbols)
Unicode Characters: u:

Window Driver And Form Editor

Tacit Programming

34. Tacit Programs

35. First Look At Forks

36. Parsing and Execution |
37. Parsing and Execution 11

The Parsing Table
Examples Of Parsing And Execution
Undefined Words
38. Forks, Hooks, and Compound Adverbs
Tacit and Compound Adverbs
Referring ToaNoun InaTacit Verb
39. Readable Tacit Definitions
Flatten aVerb: Adverbf .

Using f . to improve performance

40. Explicit-To-Tacit Converter
Specia Verb-Forms Used in Tacit Definitions
41. Common Mistakes
Mechanics
Programming Errors
42. Vaedictory
43. Glossary
44, Error Messages
45. Index

<< >> Contents Hep

1. Introduction

This book will tell you enough about Jfor you to use it as alanguage for developing
serious applications, but it is about more than learning the Jlanguage: it isalso
about 'thinking big' in programming, and how programming in Jis fundamentally
different from programming in C. C programs deal intimately with scalars (single
numbers and characters), and even when they combine those scalarsinto arrays and
structures, the operations on the arrays and structures are defined by operations on
the scalars. To ensure that each item of an array is operated on, loops are created
that visit each element of the array and perform a scalar operation on the element.

Writing code in a scalar language makes you rather like a general who gives orders
to histroops by visiting each one and whispering in hisear. That touch-of-Harry
kind of generalling can achieve victorious results, and it has the advantage that the
orders can be tailored to the man, but its disadvantages are significant: the general
spends much mental energy in formulating individual orders and much breath in
communicating them individually; more significant, hislimited attention is drawn
toward individuals and away from the army as awhole. Even the great Rommel
was overtaxed at times,

The J programmer is, in contrast, a general who stands before his army and snaps
out orders to the army as awhole. Every man receives the same order, but the order
itself contains enough detail for the individual men to act appropriately. Such a
general can command a corps as easily as a platoon, and always has the 'big picture
in mind.

OK, maybe you're not Rommel, but you are a working programmer, and you
suspect that very few practical programs can be represented as array operations—
matrix multiplication maybe, or adding alist of numbers—and that, even if awide
range of programs were possible, the set of operations supported must be too vast to
be practical: wouldn't we need an array operation for every possible program?

Thefirst half of this book is devoted to showing you that it is indeed possible to
write meaningful programs with array operations. We take the approach of looking
at the different ways loops are used, and seeing what facilities J has for producing
the same result using array operations. We will find that J contains a couple of
dozen array-processing primitives and a dozen or so very cleverly chosen pipe-
fittings that allow those primitives to be connected together to provide the limitless

supply of array-processing functions needed for practical programming.

Interspersed with the elaboration of more and more intricate array operations are
treatments of other matters of use in practical programming: structure definition,
input and output, performance measurement, calling DLLs, modular programming.
Eventually we will see how to use if-then-else and do-while in J, though you will
have learned more elegant ways to get the same resullts.

The last portion of the book is devoted to the optional topic of tacit programming,
Jslanguage for functional programming. Tacit programming is an extremely terse
way of expressing algorithms, one that allows programs that have been compressed
from a page of C into afew lines of Jto be compressed still further.

<< >> Contents Help

Programming in J

>> Contents Help

2. Prediminaries

Notation
C codeissetin Aria font, like this: for(l = 0;1<10;1++)p[l] = q;
Jcodeisset in Courier New font, likethis:p =. 10 $ ¢

When Jand C use different words for the same idea, the Jword isused. Thefirst
few times, the C word may be given in parentheses, in Arial font: verb (function).
When aword is given aformal definition, it isset in bold italics: verb.

Terminology

To describe the elements of programming, J uses a vocabulary that will be familiar,
though possibly frightening: the vocabulary of English grammar. We will speak of
nouns, verbs, and the like. Don't worry, you're not going to have to write a book
report!

Use of thisterminology is not as strange asit may seem. Take 'verb', for example,
an ideathat correspondsto the C ‘function' or ‘'operator'. Why not just say
‘operator'? Well, that word is aso used in mathematics and physics, with a meaning
quite different from C's. Even a C 'function’ is not a true mathematical function—it
can return different values after invocations with the same arguments.

Javoids imprecise usage by choosing afamiliar set of words and giving them
entirely new meanings. Since Jis alanguage, the vocabulary chosen is that of
English grammar. It is hoped that the familiarity of the words will provide some
mnemonic value, but as long as you learn the J meanings you are free to forget the
grammatical ones. The following table may help:

Jword C word
verb function or operator
noun object
copula assignment
punctuation separator

adverb (untranglatable)

conjunction (untranslatable)

In keeping with the grammatical flavor of the vocabulary, we say that every word
(token) in aJprogram has apart of speech (name type) which is one of the
following: noun, verb, adverb, adjective, copula, or punctuation.

The primary parts of speech are noun, verb, adverb, and conjunction. Every name
we can create, and every word defined by J except for the copulas (=. and =:) and

punctuation, will be a definite one of the primary parts of speech. In thisbook, the
term entity is used to mean something that can be any of the primary parts of
speech. An entity can be assigned to a name, but most entities are anonymous,
appearing and disappearing during the execution of a single sentence (just like
intermediate results in the evaluation of C expressions).

A noun holds data; a verb operates on one or two nouns to produce aresult which is
anoun; an adverb operates on one noun or verb to produce a derived entity; a
conjunction operates on two nouns or verbs to produce a derived entity. Adverbs
and conjunctions are called modifiers.

A word on punctuation under Js definition: it consists of the characters() ' and
end-of-line (written LF but representing either asingle LF character or the CRLF
combination), along with the comment delimiter NB. and afew other special words
likei f. andcase. . Therearealot of other characters that you think of as
punctuation, namely [] , . " ; { },that Jusestodowork. Youwill be
especially surprisedtofindthat[] and{ } areindependent rather than matched
pairs, but you'll get used to it.

Sentences (statements)

The executable unit in Jis called the sentence, corresponding to the C statement.
The sentence delimitersin J (corresponding to the semicolon in C) are the linefeed
LF and the control wordslikei f . that we will learn about later. A

sentence comprises all the characters between sentence delimiters; since LF isa

sentence delimiter, it follows that a J sentence must all fit on oneline. Thereis
nothing corresponding to \<CR> in C that allows you to split a sentence across lines.

All comments start with NB. and run to the next LF . The comment isignored
when the sentence is executed.

Word Formation (tokenizing rules)

Jsnames (identifiers) are formed much asin C. Names must begin with an
alphabetic, underscoreis alowed, and upper- and lowercase letters are
distinguished. Names that end with an underscore or contain two consecutive
underscores are special, and you should avoid them until you know what alocaleis.

The ASCII graphic characters ('+', for example) are called primitives (operators)
inJ. Youwill learn their meanings as we go on.

Any name or primitive (identifier or operator) can be made into a new primitive
by adding'. ' or': ' at theend. Since all primitives are system-defined (i. e. they are
reserved words), youmay not put'.' or ':' in your names. No spaceisrequired
after aprimitive. The part of speech for each primitiveisfixed. Example primitives

are;
+ + + { {: {:: 1. i: for. select. case. end.

Thefirst step in processing a sentence isto split it into words. The words
correspond roughly to C tokens, after making allowance for the specia status of
the'.' and':' characters. The space and TAB characters aretreated as
whitespace. One big surprise will be that a sequence of numbers separated by
spaces is treated as a single word which denotes the entire list of numbers.

We will be careful to distinguish periods used for English punctuation from the dot
that may be at the end of a primitive. When a Jword comes at the end of an English
sentence, we will be sure to leave a space before the period. For example, the verb
for Boolean Or is+. , whilethe verb for additionis+ .

Numbers

Y ou do not need to trouble yourself with the distinction between integers, floats,
and complex numbers. If it'sanumber, Jwill handleit properly. There are agreat
many ways to specify numbers; consult the Dictionary to learn details, including,
among other things, complex numbers, extended-precision integers, and exponential
forms. Example numbers are:

2
_ 2 (underscore, not -, isthe negative sign)

0.5 (since'."isspecial, it must not be the first character of a number)

le?

16b1f (equivaent to Ox1f)

_ (infinity)

___(negative infinity, represented by two underscores)

A noun whose value is one of the numbers 0 and 1 is said to be Boolean. Many
verbsin Jare designed to use or produce Boolean values, with 0 meaning false and
1 meaning true, but there is no Boolean data type: any noun can be used as a
Boolean if itsvaluesare O or 1.

A word isin order in defense of the underscore as the negative sign. - x means 'take
the negative of the number x'; likewise- 5 means 'take the negative of the number
5'. In J, the number 'negative 5' is no cloistered companion, accessible only by

reference to the number 5: it isanumber in its own right and it deservesits own
symbol: 5.

Characters

An ASCII string enclosed in single quotes is a constant of character type (examples:
‘a',' abc'). Thereisno notation to make the distinction between C's single-

guoted character constants and double-quoted character strings.

There are no special escape sequences such as'\n'. If you need a quote character
inside a string, double the quote: ' cannot can be shortened to
can''t' . Character constants do not include atrailing NUL (\O) character, and
NUL isalegal character within a string.

Valence of Verbs (Binary and Unary Operators)

C operators can be unary or binary depending on whether they have one or two
operands; for example, the unary * operator means pointer dereferencing (*p), while
the binary * operator means multiplication (x*y).

Similarly, when aJverb (function or operator) is executed with only one
operand (i. e. without a noun or phrase that evaluates to a noun on its |eft) we say its
invocation ismonadic (unary); if thereis anoun or noun-phrase on its left, that
noun becomes a second operand to the verb and we say that the invocation is dyadic
(binary). Inthe case of programmer-defined verbs (functions), the versions
handling the two cases are defined independently. We use the term valence to

describe the number of operands expected by a verb-definition: a verb-definition has
monadic valence if it can be applied only monadically, dyadic valenceif it can be
applied only dyadically, and dual valenceif it can be applied either way. Sincethe
definitions of the monadic and dyadic forms of a verb can be wildly different, when
we name a verb we will be careful to indicate which version we are talking about:
'monad $', 'dyadi . .

Note that it isimpossible to invoke a verb with no operands. In C we can write
func(), but in Jwe aways must give an operand.

Note also that the syntax of Jlimits verbs (functions) to at most two operands.
When you need a verb with more than two operands, you will represent it asa
monad or dyad in which one of the verb's syntactic operands is an aggregate of the
actual operands the verb will use during its execution. The first thing the verb will
do isto split its operand into the individual pieces. Jhas primitivesto make this

process easy.

The value produced by any entity when it is applied to its operand(s) is called its
result (returned value).

How Names (Identifiers) Get Assigned

Assignment in Jis performed by expressions of the form
nanme =. entity NB. private

and
nanme =: entity NB. public

Names assigned by public assignment are visible outside the entity in which they
are defined; names assigned by private assignment usually are not; we will learn the
details when we discuss modular code. The difference between the two forms of
assignment is in the character following the= . Just asin C, the assignment
expression is considered to produce as its result the value that was assigned, so
expressions like

a= 1+Db=25

arelegal. Jcals=. and=: copulas. Just asin C, the entity that is assigned to the
name can be the result of evaluating an expression.

There are a number of additional capabilities of J assignment that you can read
about in the Dictionary. One that has no counterpart in C is that the name being
assigned can itself be avariable, i. e. you can calculate the name that you want to
assign the value to.

The value assigned can be anoun (object), verb (function), adverb, or
conjunction; the name then becomes whatever part of speech was assigned to it
(evenif it was previoudly defined as a different part of speech!). For example,
n =5

creates a noun, and

v =: verb define
X. + Y.
)

creates averb (more below).

Note: the J Dictionary uses the terms ‘local’ and 'global’ instead of ‘private’ and
'public'. | think 'private’ and 'public' are more accurate terms, because thereis
another dimension to name scope in J, using the J notions locale and path, that
causes public variablesto be visible only in certain entities. It will be along time
before we learn about locales; until then, public names will be global.

Order of Evaluation

Forget the table of operator precedence! All Jverbs (functions and operators)
have the same priority and associate right-to-left. For example,a * b + ¢ is
equivalenttoa * (b + c),not(a * b) + c. Usecarewhen copying
mathematical formulas. Note that the negative sign _isapart of the number, not a
verb. 5 + 4is 9,while-5 + -4is_1.

The executable bits of a sentence (statement) are called fragments
(subexpressions). A verb with its operand(s) is afragment, asis acopulawith
its name and value. We will meet other types of fragment later. Execution of a
sentence consists of the right-to-left execution of its fragments, with the result of
each fragment's execution replacing the fragment and being passed as an operand
into the next fragment. The result of the last execution becomes the result of the
sentence. Thisresult isusually anoun but it can be any of the primary parts of
speech. Asan example, execution of the sentence

a= 3+b= 4*5
consists of execution of the following fragments: 4 * 5 withresult 20; b =. 20
withresult 20; 3 + 20 withresult 23;a =. 23 withresult 23 . Thenamesa

and b are assigned when the assignment fragments are executed.

What a verb (function) lookslike

Aswe saw, aJverb (function) isdefined by lines that look like:

nane =: verb define
J sentences here

)

Theresult of thever b def i ne isaverb, and normally you will assign the result

to a name so you can execute the verb by name when you need it. Subsequent lines,
starting with the one after ver b def i ne and ending before the next line

containing only theword ') ' , are read and saved as the text of the verb (heaven
help you if you leave out the) !). The verb is not ‘compiled'—only the most

rudimentary syntax checking is performed; the text is saved and will be interpreted
when the verb is executed.

Each line of the verb is a sentence (statement). The result of the last sentence
executed becomes the result of the whole verb (thisis not precisely true but it's close
enough for now—details will be revealed in '‘Control Structures).

Since a J verb has only one or two operands, there is no need for you to provide a
list of parameter names as you do in afunction definition in C; instead, J names
them for you. At the start of averb's execution, the private namey. isinitialized

with the value of the right operand of the verb. If the verb is dyadic, the private
name x. isinitialized with the value of the left operand. Many programmerslike to

start their verbs by assigning these values to more descriptive names.

If your verb is going to define only a monadic or dyadic form, you should use
nonad defi neordyad defi neinstead of verb defi ne . If youare

going to define both valences, theway to do so is:
nane =: verb define

nonadi ¢ case here

dyadi c case here

)

where aline with the single word : separates the two cases. If you use
ver b defi ne and don't havethe: , the verb will be monadic.

If your verbisonly onelinelong (not at al unusual in J') you can defineit al in
one line by using the appropriate one of the forms
name =: nonad : 'text of verb'

name =: dyad : 'text of verb'

Running a J program

No compiling. No linking. No makefiles. No debugger. Y ou ssimply type J
sentences and the interpreter executes them and displays any result. At the very

simplest, you can use it as adesk calculator:
22 + 55

77

Jprints 3 spaces as a prompt, so when you scroll through the log of a session, your
input will be indented 3 spaces while Js typeout will be unindented. The result of a
sentence typed on the keyboard is displayed, except that to avoid excessive typeout
nothing is displayed if the last fragment executed in the sentence is an assignment.
If you are at the keyboard while you are reading this book, you can type the
examples and see the responses, or experiment on your own.

Hereis asimple program to add twice the left argument to three times the right
argument:
add2x3y =: dyad : '(2 * x.) + 3 * y.'
We can run this program by giving it operands:
1 2 3 add2x3y 4 5 6
14 19 24

Instead of simply displaying the result, we can assign it to a noun:
a =12 3 add2x3y 4 5 6

We can inspect the value assigned to the noun by typing the name of the noun:

a
14 19 24
We can use the noun in an expression:
2 * a
28 38 48
We can create a new verb that operates on the noun:
twcea = nonad : '2 * a'
tw cea '
28 38 48
Noticethe' ' after theinvocation of t W cea. Remember, to invoke averb you
must give it an operand, even if the verb doesn't use an operand. ' ' isjust an

empty string; O or any other value would work too. If you leave out the operand, J
will show you the value of the name; sincet wi cea isaverb, itsvalueisthe

definition of the verb:
tw cea

3 : '2*a

Of course, in any practical application you will need to have most of your programs
in alibrary so you can quickly make them all availableto J. Jcallsthese libraries
scripts (filename extension '.ijs) and runs them with the| oad verb, for example:

| oad ' system packages\m sc\jforc.ijs’

| oad reads lines from the script and executes them. These lines will normally be
all the verb and noun definitions your application needs, possibly including | oad
commands for other scripts. A script may end with aline executing one of the verbs
it defined, thereby launching the application; or, it may end after defining names,
leaving you in control at the keyboard to type sentences for J to execute.

Note: Names defined by private assignment (using =.) when
a script isloaded are not available outside the script. |f you
want to define names for use elsewhere, make sure you use

=: for your assignmentswithin a script.

If you are used to debugging with Visual C++™ or the like, you will find the
environment less glitzy and more friendly. If you want to change averb
(function), you simply edit the script, using the editor of your choice (I use the
built-in editor provided with J), and rerun it. The verb will be updated, but all
defined nouns (objects) will be unchanged. Evenif you are running alarge
application—yea, even if the application isin the middle of reading from an
asynchronous socket—you can change the program, without recompiling, relinking,
or reinitializing. If you'd like to add some debugging code while the system is
running, go right ahead. This easy interaction with an executing program is one of
the great benefits of programmingin J.

| nterrupting Execution

If aJverb istaking too long to run, press the BREAK key (Ctrl+BREAK, in
Windows) to return control to the keyboard.

Errors

When a sentence contains an error, J stops and displays the sentence along with a
terse error message. Refer to the chapter on Error Messages for explanation of the
error,

The Execution Window; Script Windows

When J starts it displays its execution window. The title of the execution window
ends with the characters' . i | x' . The only way to have a sentence executed isto

have the sentence sent to the execution window. The simplest way to do that is by
typing the sentence into the execution window, as we have been doing in the
examples so far.

The execution window is an edit window and a session log as well as a place to type
sentences for execution. If you put the cursor on some line other than the last and
press ENTER, the line you were on will be copied to the bottom of the session log
asif you had typed it for execution. Y ou can then edit the line before pressing
ENTER again to execute it.

For convenience in editing, you may create other windows which will be script
windows. Usually these windows will contain J scripts that you are working on: the
editor that manages the script windows is familiar with the syntax of J. You create a
script window by clicking File on the Menu Bar and then selecting New ijs, Open,
or Recent.

Sentences that you type into a script window are not automatically executed by J;
you must copy them into the execution window to have them executed. You can
use the script-window editor to send lines from a script to the execution window:
click Run on the Menu Bar and then File, Selection, or Window as appropriate.

Torun a selection of linesfrom a script window, be sureto

use Run|Selection rather than cut-and-paste. |f you paste a

number of linesinto the execution window, only the last one
will be executed.

Names Defined at Startup

When J starts, a number of useful names are defined. Rather than discuss them all, |
will show you how they come to be defined so you can study them when you need
to.

When J starts, it executesthe script J- di rect or y\ syst em extras\ confi g
\ profile.ijs whichthenexecutesthescriptJ- di rect ory\system
\extras\util\boot.ijs. boot.ijs inturnexecutesaseriesof scriptsin
J-di rectory\syst em nmai n which define the starting environment. Look at
these scripts to see what they define.

If you want to add your own initial definitions, do so either by adding commands at
theend of profil e. i s or by creating your own startup scriptin J-

directory\system extras\config\startup.ijs.

Step-By-Step Learning: Labs

The Labs are interactive demos describing various topicsin J. To run the lab for
printf, start a J session, on the menu bar select Studio|Labs..., then select the lab you
are interested in, then press '‘Run’. The lab provides explanatory text interspersed
with examples executed in your J session which you are free to experiment with as
you step through the lab.

| recommend that every now and again you tarry awhile among the labs, running
whichever ones seem interesting. Much of the description of the J system can be
found only there.

J Documentation

The Jdocumentation is available online. Pressing F1 brings up the Vocabulary
page, from which you can quickly go to the Dictionary's description of each J
primitive. At the top of each page of documentation are links to the manuals
distributed with J: these are:

The Index to all documentation:;

The User Manual which describes components of Jthat are not in the language
itself, including system libraries and external interfaces;

The J Primer, an introduction to J;

J Phrases, a collection of useful fragments of J (you will need to finish this book
before trying to use J Phrases);

The J Dictionary, the official definition of the language;
Release Notes for all releases of J;
A description of foreign conjunctions (!:);

A description of the operands to the wd verb (Windows interface).
Getting Help

Your first step in learning J should be to sign up for the J Forum at www.jsoftware.
com. A great many experienced J users monitor messages sent to the Forum and are
willing to answer your questions on J, from the trivial to the profound.

<< >> Contents Help

3. AFirst Look At J
Programs

Before we get into learning the details of J, let'slook at a couple of realistic, if
simple, problems, comparing solutionsin C to solutionsin J. The J code will be
utterly incomprehensible to you, but we will nevertheless be able to see some of the
differences between J programs and C programs. If you stick with me through this
book, you will be able to come back at the end and understand the J code presented
here.

Average Daily Balance

Hereisaprogram abank might use. It calculates some information on accounts
given the transactions that were performed during a month. We are given two files,
each one containing numbersin lines ended by (CR,LF) and numeric fields
separated by TAB characters (they could come from spreadsheets). Each linein the
Accounts file contains an account number followed by the balance in the account at
the beginning of the month. Each linein the Journal file contains an account
number, the day of the month for atransaction, and the amount of the transaction
(positive if money goes into the account, negative if money goes out). The records
in the Journal file arein order of date, but not in order of account. We are to match
each journal entry with its account, and print a line for each account giving the
starting balance, ending balance, and average daily balance (which is the average of
each day's closing balance). The number of daysin the month is an input to the
program, as are the filenames of the two files.

| will offer C code and J code to solve this problem. To keep things simple, | am
not going to deal with file-1/O errors, or datawith invalid format, or account
numbers in the Journal that don't match anything in the Accountsfile.

C code to perform this function might look like this:

#include <stdio.h>

#define MAXACCT 500

// Program to process journal and account files, printing
Il start/end/avg balance. Parameters are # days in current

// month, filename of Accounts file, filename of Journal file
void acctprocess(int daysinmo, char * acctfn, char *jourfn)
{
FILE fid;
int nacct, acctx;
float acctno, openbal, xactnday, xactnamt
struct {
float ano; /[account number
float openbal; // opening balance
float prevday; // day number of last activity
float currbal; // balance after last activity
float weightbal; // weighted balance: sum of closing balances
} acct[MAXACCT];

/l Read initial balances; set day to start-of-month, sum of balances
to 0
fid = fopen(acctfn);
for(nacct = 0;2 == fscanf(fid," %f%f" ,acctno,openbal) {
acct[nacct].ano = acctno;
acct[nacct].openbal = openbal;
acct[nacct].prevday = 1,
acct[nacct].currbal = openbal;
acct[nacct].weightbal = 0;
++nacct;

}

fclose(acctfn);

I/l Process the journal: for each record, look up the account
I/ structure; add closing-balance values for any days that
/l ended before this journal record; update the balance
fid = fopen(jourfn);
while(3 == fscanf(fid," %f%f%f" ,acctno,xactnday,xactnamt) {
for(acctx = 0;acct[acctx].ano != acctno;++acctx);
acct[nacct].weightbal +=
acct[nacct].currbal * (xactnday - acct[nacct].prevday);
acct[nacct].currbal += xactnamt;
acct[nacct].prevday = xactnday;

I/ Go through the accounts. Close the month by adding
Il closing-balance values applicable to the final balance;
/[produce output record
for(acctx = 0;acctx < nacct;++acctx) {
acct[nacct].weightbal +=
acct[nacct].currbal * (daysinmo - acct[nacct].prevday);
printf("Account %d: Opening %d, closing %d, avg %d\n",
acct[acctx].ano, acct[acctx].openbal, acct[acctx].currbal,
acct[acctx].weightbal/daysinmo);
}
fclose(fid);

}

The corresponding J program would look like this:
NB. Verb to convert TAB-delimted file into nuneric

array
rdtabfile =1 (0&".;.2@(TAB&,)@}:);. 2) @ReadFile @

NB. Verb to process journal and account files
NB. y. is (# days in current nonth); (Account filenane);
NB. (Journal fil enane)

acct process =: nonad defi ne

‘ndays acctfn jourfn' = vy.

NB. Read files

‘acctano openbal' =. |: rdtabfile acctfn
‘jourano jourday jourant' =. |: rdtabfile jourfn

NB. Verb: given list of days y., return # days that

NB. each bal ance is a day's closing bal ance

w = nmonad : '(-~ 1&(|.!'.(>:'ndays))) O{"1 y.'

NB. Verb: given an Account entry foll owed by the Journal
NB. entries for the account, produce (closing bal ance),
NB. (average daily bal ance)

ab =. monad : '(mt y.)({:@ , (Y&ndays)@+/)@*)+/\1{"1
y.'

NB. Create (closing bal ance), (average daily bal ance) for
NB. each account. Assign the start-of-nonth day (1) to

t he

NB. openi ng bal ance

cavg =. (acctano,jourano) ab/.(1,.openbal),jourday,.
j our ant

NB. Format and print all results

s =. 'Account %: Opening %l, closing %, avg %\n'
s&rintf"1l acctano ,. openbal ,. cavg
)

Let's compare the two versions. The first thing we notice is that the J code is mostly
commentary (beginning with NB.). The actual processing is donein 3 lines that

read thefiles, 3 lines to perform the computation of closing and average balance,
and 2 lines to print the results. J expresses the algorithm much more briefly.

The next thing we notice is that there seems to be nothing in the J code that is
looping over the journal records and the accounts. The commentary says 'create
balances for each account' and 'produce average daily balance for an account’, tasks
that clearly require loops, and yet there is nothing resembling loop indexes. Thisis
one of the miracles of J: loops are implied; in C terminology, they are
expressions rather than statements, and so they can be assembled easily into
single lines of code that replace many nested loops. We will be spending alot of
time learning how to do this.

We aso note that there is nothing in the J code corresponding to the

#define MAXACCT 500 inthe C. Thisisone of the things that makes
programming in J so pleasant: you don't have to worry about allocating storage, or
freeing it, or wondering how long is long enough for a character-string variable, or
how big to make an array. Here, even though we don't know how many accounts
there are until we have read the entire Accounts file, we smply read the file, split it
into lines and numbers, and let the interpreter allocate as much storage as it needsto
hold the resulting array.

The last thing to see, and perhaps the most important, is that the C versionisjust a
toy program. |t searches through the Accounts information for every record in the
Journal file. We can test it with a small dataset and verify that it works, but if we
scaleit up to 10,000 accounts and 1,000,000 journal entries, we are going to be
disappointed in the performance, because its execution time will be proportional to
A*J where A is the number of accounts and J the number of journal entries. Itis

every programmer's dread: a function that will have to be rewritten when the going
gets tough.

The Jversion, in contrast, will have execution time proportional to (A+J)*log(A
+J). We did nothing meritorious to achieve this better behavior; we simply
expressed our desired result and let the interpreter pick an implementation. Because
we 'think big'—we treat the entire Journal and Accounts files as units—we give the
interpreter great latitude in picking agood algorithm. In many cases the interpreter
makes better decisions than we could hope to, because it looks at the characteristics
of the data before it decides on its algorithm. For example, when we sort an array,
the interpreter will use avery fast method if the range of numbers to be sorted is
fairly small, where 'fairly small' depends on the number of items to be sorted. The
interpreter takes great care in itsimplementation of its primitives, greater care than
we can normally afford in our own C coding. In our example, it will use ahigh-
speed method for matching journal entries with accounts.

Calculating Chebyshev Coefficients

This algorithm for calculating coefficients of the Chebyshev approximation of a
function is taken verbatim from Numerical Recipesin C. | have trandated it into J
just so you can see how compact the J representation of an algorithm can be. Again,
the J code will be gobbledygook for now, but it's concentrated gobbledygook.
// Program to calculate Chebyshev coefficients
I/ Code taken from Numerical Recipes in C 1/e
#include <math.h>
#define Pl 3.141592653589793
void chebft(a,b,c,n,func)
float a,b,c[];
float (*func)();
int n;
{
int k,j;
float fac,bpa,bma,f[300];

bma=0.5*(b-a)
bpa=0.5*(b+a)
for(k = 0;k<n;k++) {
float y = cos(PI*(k+0.5)/n);
f[k] = (*func)(y*bma+bpa);

}
fac = 2.0/n;

for (j = 0;j<n;j++) {
double sum = 0.0;
for(k = O;k<n;k++)
sum += f[k] * cos(PI*j*(k+0.5)/n);
c[j] = fac*sum;

}
}
Jversion:
chebft =: adverb define
f = u 0.5* (+y.) - (-ly.) * 2 o.
X.
(2 %x.) *+ f * 2o0. o (0.5 +1.
X.
)

0.

X.)

(0.5 + i.

*"0 1 (i.

X.)

X.)

%

%

<< >> Contents Help

4. Declarations

Jhas no declarations. Good riddance! No more will you have to warn the computer
of all the names you intend to use, and their types and sizes. No more will your
program crash if you step outside an array bound. Y ou specify the calculations you
want to perform; if, along the way, you want to assign aresult to a name, Jwill
allocate enough space for the data. 1t will free the space when the name is no longer
needed.

Seasoned C programmers have learned to use declarations to create a web of type-
checking, making sure that objects pointed to are of the expected type. Thisisan
example of making a virtue of necessity. Since J solves the problem much more
directly—>by not having pointers at all—you will soon lose your uneasiness with
weak typing.

Arrays

But, you ask, without declarations, how does the computer know that a name
represents an array? For that matter, how do | know that a name represents an array?

The answer affords afirst glimpse of the power of J. Every Jverb, whether a
primitive (operator) or auser-written verb (function), accepts arguments that can
be arrays, even multidimensional arrays. How isthis possible? Like this: Suppose
you write averb that works with 2-dimensional arrays. Part of your verb definition
will indicate that fact. If your verb is executed with an argument that is a 3-
dimensional array, Jwill automatically split the 3-dimensional array into a sequence
of 2-dimensional arrays, call your verb, and put the pieces back together into an
array of results.

We will very soon go into this procedure in great detail. For now, you should learn
the vocabulary J uses to deal with arrays.

What C calsan n-dimensional array of rank ixjx...xk isin Jan array of rank
nwith axes of lengthi,j,....k.

Every noun (variable or object) has a shape which isthe array (of rank 1) made
by concatenating the lengths of all its axes. For example, if q isthe array

corresponding to the C array defined by the declaration
int q[4][5][6];

itsshapeisthearray4 5 6 . Asyou can see, the number of itemsin the shapeis
exactly the rank.

Note: a sequence of numberswritten with no intervening
punctuation definesa numeric array of rank 1 (i. e. alist).
You may have to use parenthesesif you have adjacent

numbers that you don't want to have madeinto a list.

Unlikein C, an array in Jmay have one or more axes of length 0. Such an array has
no atoms, but its rank is still the number of its axes.

A single number or character is called an atom (object of basic type) whichis
said to have the type numeric or character as appropriate. (Actualy, there are types
other than number and character, including a type that resembles astructure, but
we won't get to them for awhile). Anatomisalso called ascalar. Anatomis
defined to have rank O; therefore, its shapeis an array with O items, i. e. an empty
array of rank 1.

Just asin C, every atom of an array must have the same type.

Cdlls

Because the execution of every Jverb involves breaking the argument into pieces,
presenting the piecesto the verb, and assembling results, J has a vocabulary for
describing these operations.

A rank-3 array of shape4 5, 6 such asthe one defined in C by the declaration

int q[4][5][6];
can be thought of as an array of 4 elements, each with rank 2 and shape5 6, or asa
4x5 array of elements, each with rank 1 and shape 6, or as a 4x5x6 array of rank-0

atoms. Theterm call isused to indicate the rank of the e ements that will be
operated on. A 0O-cell isan atom, a 1-cell isan element of rank 1, a2-cell isan
element of rank 2, and so on.

Once you have picked a cell size, you can think of your noun as an array of cells,
the shape of that array is called the frame of the noun relative to the chosen rank of
cell. It follows that the frame, concatenated with the shape of the cells, will be
equal to the shape of the noun. The frame itself (like all shapes) isan array of rank
1.

The diagram illustrates cells of different ranks. Note that the twenty 6-atom 1-cells
are arranged in a4x5 array; thisis the meaning of the frame of the 1-cells. The four
5x6 2-cells are arranged as a vector of 2-cells; thisis the meaning of their frame.

A selected cell is analogous to the subarray selected by indexing in C. Using g as
defined above, in C q[3] isa5x6 array (i. e. a2-cell); q[1][0] is a 6-element vector
(i. e.al-cdl); q[2][0][3] isascaar (O-cdll).

The noun g we have been using as an example can be thought of in any of the
following 4 ways:

Frame Cdlls
asanarray of | Length | Vaue | Rank | Shape
0-cells 3 456 0 | (empty)
1-cells 2 4 5 1 6
2-cells 1 4 2 S 6
3-cells 0 (empty) | 3 |4 56

Choosing Axis Order

Because J verbs operate on cells of nouns, you should choose an order of axes that
makes the cells meaningful for your application. Referring to the figure, we can see
that the groups of items that fall into horizontal strips (1-cells) or horizontal slabs (2-
cells) will be easy to operate on individually. Vertical strips or slabs will not
correspond to cells and so will not be accessible individually; to work on them we
may have to reorder the axes of the noun to make them correspond to cells. Such
reordering of axesiseasy in Jbut it can often be avoided by ordering the axes
properly in thefirst place.

Negative Cell-Rank; Items

In some cases, you may know the length of the frame and want to define the cells to
have whatever rank is left over (for example, you may have a noun with one cell per
employee, but you may not know the rank of the cells). We say that you are
selecting the cells of the noun relative to the given frame. Negative cell-ranks
indicate this. A _1-cell has the shape corresponding to aframe of length 1 (5 6 in
our example), a_2-cell has the shape corresponding to aframe of length 2 (6 in our
example), and so on. If the specified frame islonger than the rank of the noun, the
entire shape of the noun is used for the frame (and the cells are O-célls, i. e. atoms).
In our example, a_3-cell, a_4-cell, a_b-cell, etc., al refer to atoms. Asan
important case of this, the _1-cell of an atom is the atom itself.

_1-cellsare so important in J that they are given the name items. Our example has 4
items, each of shape5 6 . Anatom hasone item, itself.

Remember: an atom has one item: itsalf.

The index of anitem in an array is the sequence number of the item from the
beginning of the array. Thefirstitemin an array hastheindex O, just asin C.

Lists

When we choose to view an array as a collection of itsitems, we say that the array
isalist of itsitems. In our example above, the items of the 4x5%6 array are 5x6
arrays, and we say that the whole array isalist of 4 items each with shape

5 6 (equivaently, we say that it isalist of four 5x6 arrays). So many of Js

primitives operate on items of their operands that we will find ourselves usually
thinking of an array asalist of itsitems,

When the word 'list' is used without any indication of what the list contains, the list
Isassumed to contain atoms. So, 'thelist X' refersto an array of rank 1 (one-

dimensional array). 0 3 5isanumericlist.

Note that Js use of the term 'list' has nothing to do with linked lists such as you are
familiar with, where an element in the list contains a pointer to other elements.
Since J has no pointers at all, you will not need that meaning, and you can get used
to calling rank-1 arrays'lists. A list can also be called a vector.

Phrases To Memorize

Anarray isalist of itsitems.

An atom has one item, itself.

Therank of anounisthelength of its shape.
The shape of an atom isthe empty list.

The suffixes of the shape of a noun give the shapes of its cells: the k trailing atoms
of the shape of a noun give the shape of its k-cell.

The frame of anoun with respect to k-cellsis the shape of the noun with the last
k atoms removed.

Constant Lists

A character or numeric list can be created simply by including the list in a sentence.
We have seen that a sequence of numbers separated by spacesis recognized as a
single word representing the list. Similarly, a character or a character list can be
represented directly by a quoted string. C distinguishes between single-character
constants (such as'a') and strings (such as"abc"), using single quotes for
characters and double quotes for strings. J uses only single quotes for defining
character constants (the" character isa primitiveinits own right). If exactly one
character is between the quotes, the value is an atom; if none or more than one, the
resultisalist.

Array-creating ver bs

Now that we know how to talk about arrays, we might as well create afew and see
what they look like. Asmentioned earlier, every Jverb can be used to create an
array—there are no special 'declaration’ verbs—but we will start with a couple that
do little else. The Jlines are taken from an interpreter session; you can type them
into your own session and get the same results. The indented lines were typed into
J, and the unindented ones are Js responses.

Dyad $ ($hape) and monad $ ($hape Of)

Theverbdyad $ isinvokedasx $ y . Theresult of dyad $ hasthe frame x
relative to the rank of the items of y, and is made up of the items of y, repeated
cyclically as needed. It follows that the shape of thisresult isx concatenated with
the shapeof anitemofy .

We will have to work together on this. Confronted with a definition like that, you
might: (a) decide that J must be alanguage for tax accountants, and give up; (b)
decide the definition is Greek and go on, hoping it will make sense later; (c) try a
few examplesto get an idea for what the definition means; (d) read it over and over
again until you understand it. | hope you will eschew (@) and (b), and settle for no
less than full understanding. For my part, | will offer afew useful examples that
you can compare against the definition. Not everything in Jwill be as abstract as
this.

5% 2
22222
The ssimplest case, creating (and displaying) alist of 5 items, each of whichis2 .
L et's see how this result matches the definition. y isascalar, so it has one item,
whichisaso ascalar. Therefore, the result hasthe shape 5 (x (i. e. 5) concatenated
with the shape of an item of y; the shape of ascalar item of y isthe empty list; 5
concatenated with an empty list isalist with the single element 5). The scalar is

repeated to fill the 5 items of the result. Jdisplaysal-cell onasingleline, as
shown.
5% 'ab
ababa
Now y isalist, but itsitems are still scalars, with rank 0 and shape empty; so the

result still hasthe shape5 . The 5 items come from the items of y, cyclically.

We can distill the foregoing analysis above to the observation that when y isan
atom or alist, x specifiestheshapeof x $ y .

4 4 $ "There is atide in the affairs of nen'
Ther
eis
at
I de
Theitemsof y are still scalars, with rank 0 and shape empty; the result has the
shape4 4 . The 16 itemscome from theitemsof y, cyclically. Not all itemsof y

areused. Jdisplaysarank-2 array as a sequence of lines, one for each 1-cell.
0% 2

(Thedisplay isasingle blank line) Justlike5 $ 2, but the resulting list has 0
items, i. e. itisan empty list.

1% 2
2
Similarly, a 1-item list.
(0%$2) $2
2

Here (0 $ 2) producesan empty list, as we saw above, and that isthe x to the
second$. Theitemsof y are still scalars, so the result has shape empty (an
empty list concatenated with an empty list), i. e. itisascalar.

The displays of ascalar and a 1-item list are identical. Does that mean that a scalar

isthe same thing asa 1-item list? No. | meanno. NO! They arenot (I say this
with the same resignation as when | tell my kids not to rollerblade too fast down our
street, knowing that only painful experience will drive the message home). How
can you tell them apart? What we need is away to see the shape of a noun.

That way ismonad $. Theresult of $ y isthe shape of y (always anumeric list).

For example:
$12314

4
A 4-itemlist hastheshape4 . Didyouforgetthatl 2 3 4 isasinglelist rather

than 4 separate numbers? Y ou can ask the interpreter how it splits aline into words
by using monad ; :
o '$1 234

Thewords are shownin boxes. Thelistl 2 3 4 isrecognized asasingle word.
$ 6

The shape of ascalar isa0-length list, as we have seen.
$1%2

1
Remember, all sentences are executed right-to-left, so thisis$ (1 $ 2), which

gives the shape of the 1-item list. When averb can be invoked dyadically, it is, so
the rightmost $ is executed as a dyad, not as a monad.

$ (0% 2 $2

Here, we get the shape of the scalar—an empty list.
$'a

A single character is an atom, whose shape is the empty list.
$' abc'
3

A 3-item list, one item for each character.
$ | I |
0
' isthe empty character string, which you will seealot of. Becauseitiseasy to

type, it isthe value most often used when an empty list of any type will do.

Executing monad $ twice givestherank: $ $ y istherank of y (asasingle-item
list). | suggest you not read on until you understand why.

Resuming our inquiries into dyad $, we have

25%$110
110 1 10 1
10 110 1 10

Againy isalist, sotheitems of y are scalars. The shape of theresultis2 5, and
theitems of y are repeated to fill that shape. Note that the corresponding atomsin
each cell are aligned in the display.

15%$110
1101 101
Similarly, but now theresult hasshape 1 5. Thisisnot the same asa5-item ligt,

which has shape5 . Again, monad $ shows the shape:
$15%110
15

Wheny isnot ascalar or alist, itsitems are not scalars, and x does not give the
shape of theresult. Let uswork through an example using the definition of

X $y:

3$15%110
1101 101
1101 101
1101 101
Remember, thisisprocessedas3 $ (1 5 $ 1 10). The parenthesized part
produces an array of shape 1 5; sincethishasrank 2, itsitems areits 1-cells, each
with shape 5. The shape of the overall result is x concatenated with the shape of an
item of y, towit 3 5. Thisispopulated with the cells of y, of which thereisonly 1.

3%$259% "Thereis atide in the affairs of nen'
Ther e
s a
Ther e
Y ou should be able to explain where each line came from, and you should note that
in general, x specifiestheframeof x $ y with respect toitemsofy . Wheny

iIsalist or an atom, itsitems are atoms and x gives the entire shape of the resullt.

22%$25%110
110 110 1
10 1 10 1 10

110 110 1
10 1 10 1 10

$22%$25%110
225
Now the shape of theresultis2 2 5, arank-3 array. Jdisplaysthe 2-cellswith a
blank line in between. Similarly, arank-4 array isdisplayed as all the 3-cellswith 2
blank linesin between, and so on for higher ranks.

We have seen that the display of azero-length list isa single blank line: proper, as
thereisonelist, and it has no items. The display of arank-2 array with noitemsis
different: here we have zero lists, so we should expect no linesat all. Thisisindeed
what happens:

0 0%0
(thereisno blank line). Thisisthe result you should produce if you want afunction
to display nothing.

Here are two exercises. Once you can explain each result, you will be well on your
way to becoming aJ programmer. What will each of these sentences produce

(answer on the next page)?
31%$25%110

2 3%25% 11015

Solutions:
31%$25%$110

110 110 1
10 1 10 1 10

110 110 1

2 3%$258% 110 15
1 10 15 1 10
15 1 10 15 1
1 10 15 1 10

15 1 10 15 1
1 10 15 1 10
15 1 10 15 1

Monad # (Tally)

Theresult of # y isascaar, the number of itemsiny . Thisisthefirstitemin
thelist $y, except that if y isan atom, $y isempty but #y is1 (because, remember,
an atom hasoneitem, itself). If y isalist, #y isthe length of thelist. Quiz
guestion: What is the difference betweentheresultsof $ 1 2 3 and # 1 2 3?
$123
3
1 2 3
3
Answer: the result of monad $ isawaysalist, but the result of monad # isascalar:
$%$123
1
$#123

#3y, like $$y, givestherank of y . Since monad # produces a scalar rather than
alist, #8y isusually preferred. Just remember that the length of the shape isthe

rank.
Monadi . (Integers)

Monadi . hasinfiniterank and createsan array. i . y produces the same result as

y $ ints,wherei nts isthelist of all nonnegative integersin order. Examples:
i. 5

01234

A list of 5 items; the items are ascending integers.
i. 2 3

012

345

A rank-2 result.

. 234

© A O
© Ul
ocoN
P~ W

10 1

12 13 14 15
16 17 18 19
20 21 22 23

A rank-3 result.
i. O

A list of O items.
i. 5
43210
If the argument is negative, the absolute value is used for the shape, but the items
runin reverse order.

<< >> Contents Help

5. Loopless Code |l—VerbsHave
Rank

Most J programs contain no loops equivalent to while and for in C. Jdoes contain whi | e.
and f or . constructs, but they carry a performance penalty and are a wise choice only when

the body of the loop is atime-consuming operation. Y ou are just going to have to learn to
learn to code without loops.

| think thisisthe most intimidating thing about learning J—more intimidating even than
programs that look like a three-year-old with a particular fondness for periods and colons was
set before the keyboard. Y ou have developed a solid understanding of loops, and can hardly
think of programming without using them. But Jisarevolutionary language, and all that is
solid meltsinto air: you will find that most of your loops disappear atogether, and the rest are
replaced by small gestures to the interpreter indicating your intentions.

Come, let us see how it can be done. | promise, if you codein Jfor 6 months, you will no
longer think in loops, and if you stay with it for 2 years, you will see that looping code was an
artifact of early programming languages, ready to be displayed in museums along with
vacuum tubes, delay lines, and punched cards. Remember, in the 1960s programmers
laughed at the idea of programming without gotos!

Y ou are not used to classifying loops according to their function, but | am going to do so asa
way of introducting Js primitives. We will treat the subject of loopless iteration in 6 scattered
chapters, showing how to replace different variants of loops:

1. Loopswhere each iteration of the loop performs the same operation on different
data;

2. Loopsthat apply an operation between all the items of the array, for example
finding the largest item,

3. Loopswhere the operation to be performed on each cell is different;

4. Loopsthat are applied to regularly-defined subsets of the data;

5. Loopsthat are applied to subsets of the data defined irregularly;

6. Loops that accumulate information between iterations of the loop.
The simplest case is the most important, and we start with afew experiments.

Examples of Implicit L oops

2 +345
567

The verb dyad + is addition, and we have our first example of an implicit loop: the left
argument 2 was added to each atom in the right argument.

123 +456
579

And look! If each operand isalist, the respective items are added. We wonder if the
behaviorof 2 + 3 4 5 was because items of the shorter operand are repeated cyclicaly:

12 +456
| ength error
| 12 +4 5 6

Evidently not. A 'length error' means that the operands to + did not 'agree’ (and you get an
error if you try to add them). We will shortly understand exactly what this means.
i. 23
012
345
A reminder of what monad i . does.

0 100 +i. 2 3
0 1 2
103 104 105
Whoal The atoms of the left operand were applied to rows of the right operand. Interesting.
This seems to be some kind of nested implicit loop.

Let's learn a couple of more verbs, monad #. and monad #: . Monad #: createsthe binary
representation of an integer (i. e. alist of 0Osand 1), and monad #. isitsinverse, creating the
integer from the binary representation. For the longest time | couldn't remember which was
which, but at last | saw the mnemonic: the verb with the single dot (#.) creates an atom from
alist; the verb with multiple dots (#:) creates alist from an atom:

#. 5
101

#. 1 0 1
5
Y es, they seem to perform as advertised. They can be applied to arrays:

]la = # 529
0101
1001
Look: theresult is not arank-1 list, but rather arank-2 array, where each item has the binary
representation of one operand value (and notice, an extra leading zero was added to the
representation of 5). Thelittletrick with] a =. will be explained later, but for now just

think of] a =. as'assignto a and display the result’. With a assigned, we have:
#. a

59

This seems to be the desired result, but on reflection we are puzzled: how did the interpreter
know to apply #. to each 1-cell rather than to each 0-cell? Contrast this result with the result

of the verb monad +: , which means 'multiply by 2":
+. a

0202

2002

Evidently the verbs themsel ves have some attribute that affects the rank of cell they are
applied to. It'stime for us to stop experimenting and learn what that attribute is.

The Concept of Verb Rank

Every verb has arank—the rank of the cellsto which it isapplied. If the rank of the verb's
operand is smaller than the rank of the verb, the verb is applied to the entire operand and it is
up to the author of the verb to ensure that it produces a meaningful result in that case.

Dyads have arank for each operand, not necessarily the same.

A verb'srank can be infinite (), in which case the verb is always applied to the operand in its

entirety. In other words, if averb hasinfinite rank for an operand, that operand is aways
processed as asingle cell (having the rank of the operand).

If you don't know the rank of averb, you don't know the verb. Using averb of unknown rank
islike wiring in a power-supply of unknown voltage—it will do something when you plug it
in; it might even work; but if the voltage iswrong it will destroy what it's connected to.
Avoid embarrassment! Know the rank of the verbs you use.

The definition page of each Jverb gives the ranks of the verbs defined on the page, right at
the top of the page after the name of the verb. Since most pages define both a monad and a
dyad, you will usually find 3 numbers: the first is the rank of the monad, the other two are the
left and right rank of the dyad. For example, click up the page for #: and you will see
#: 10
which means that monad #: has infinite rank, while dyad #: hasleft rank 1 and right rank O.
For any verb, including user-written verbs, you can ask the interpreter the rank by typing
verbnanme b. O :
b. O
10

Verb Execution—How Rank Is Used (Monads)

The implicit looping in Jresults from the interplay of verb rank and noun rank. For monads,
it goes like this:

1. Figureout the rank r of the cellsthat will be operated on; thiswill be the smaller of
rank of the verb and the rank of the operand. Thisrule applies even if the verb has

infinite rank: r will be the rank of the operand, which is another way of saying that the
verb applies to the operand in its entirety.

2. Findtheframef of the operand with respect to cells of rank r.

3. Think of the operand as an array with shape f whose items are cells of rank r.
Apply the verb to each r-cell, replacing each cell with the result of the verb. Obvioudly,
thiswill yield an array of shape f whose items have the shape of the result of applying
the verb to an r-cell.

Let'slook at some simple examples:

i. 22
01
2 3
Thiswill be the right operand.
+ 0. 22
02
4 6
The stepsto get this result are:
The verb rank is 0 and the noun rank is 2, so we will be applying the verb
to O-cells. Theframefis2 2
0|1
Think of the operand as a 2x2 array of O-célls:
2|3
The verb is applied to each cell: ol2
416
Since each result isan atom, i. e. a 0-cell, the result 02
isa2x2 array of O-cells, i. e. an array of shape2 2 46

Figure1l. Executionof +:i.22

Another example:
]la 224%$0011 0001 0100 0O010O0

o o

0
0

oo
or

RO oOr
o ko

Thisisarank-3 array.

#. a
31
4 2

The verb rank is 1 and the noun rank is 3, so we will be applying the verb to 1-
cells. Theframefis2 2

Think of the operand as a2x2 array of 1-cells: 0011|0001
0100|0010
The verb is applied to each cell: 301
412
Since each result isan atom, i. e. a 0-cell, the result 31
isa2x2 array of O-cells, i. e. an array of shape2 2 42

Figure2. Executionof #£.224%$0011 0001 01000010

Controlling Verb Execution By Specifying a Rank

The implicit loops we have used so far are interesting, but they are not powerful enough for
our mission of replacing all explicit loops. To understand the deficiency and its remedy,
consider the new verb monad +/ , which creates the total of the items of its operand (just think

of it as'monad Sunl t ens’):

+/ 1 2 3
6

Theresultwas1 + 2 + 3, asexpected.
. 23

Theresultwas0 1 2 + 3 4 5, asexpected (remember that the items are added, and the
itemsof i . 2 3 arel-cells). Adding together apair of 1-cells adds the respective atoms, as
we will soon learn.

This application of monad +/ to arank-2 array corresponds to the C code fragment:
for() = 0;j<3;++j)sumlj] = 0;

for(i = 0;i<2;++i)
for(j = 0;j<3;++j)sum[j] += array[i][j];
Suppose we wanted to add up the items of each row, asin the C code fragment
for(i = 0;i<2;++i) {
sumli] =0;
for(j = 0;j<3;++j)sumli] += array[i][j];
}
to producetheresult 3 12? How canwedo itin J? What we have learned so far is not
enough, but if we had away to make monad +/ apply to 1-cells—if we could make monad
+/ have rank 1—our problem would be solved: the implicit looping would cause each row to
be summed and the results collected.

Y ou will not be surprised to learn that J does indeed provide away to apply monad +/ on 1-
cells. That way isthe rank conjunction *

We will learn all about conjunctions later on—the syntax is alittle different than for verbs—
but for now, we'll try to understand this™ . It'sused like this:

u"n
to produce a new verb that isu applied to n-cellsindividually. Thisisasimpleidea, but its

ramifications spread wide. Asafirst example:
+"1i. 23
3 12

Thisiswhat we were looking for. It happened this way:

The verb rank is 1 and the noun rank is 2, so we will be applying the verb
to 1-cells. Theframefis2

Think of the operand asalist of 2 1-cells: 012|345
The verb monad +/ is applied to each cell: 3|12

Since each result isan atom, i. e. a0-cdll, theresult is 3 12
alist of 2 O-célls, i. e. an array of shape 2

Figure3. Execution of +/"1i.23

Examples Of Verb Rank

Here are some more examples using arank-3 array as data:
i. 234

O 1 2 3
4 5 6 7

8 9 10 11

12 13 14 15
16 17 18 19
20 21 22 23

+/"11i. 2 3 4
6 22 38
54 70 86

The verb rank is 1 and the noun rank is 3, so we will be applying the verb to 1-
cells. Theframefis2 3

Think of the operand as a 2x3 0123 4567 891011
array of 1-cells:

12131415 | 16171819 | 202122 23

The verb monad +/ is applied 6 | 22| 38
to each cell:

54 | 70 | 86

Since each result is an atom,
I. e. a0-cell, theresult isa2x3
array of O-cells, i. e. an array

of shape2 3

6 22 38
54 70 86

Figure4. Executionof +/"1i.234

+H"2 1. 234
12 15 18 21
48 51 54 57

The verb rank is 2 and the noun rank is 3, so we will be applying the verb to 2-
cells. Theframefis?2

Think of the operand asalist 0123 | 12131415

of 2 2-cdlls:
4567 | 16171819

891011 | 20212223

The verb monad +/ isapplied
to each cell. Aswe have

learned, this sums the items, 12151821 | 48515457
making each result arank-1
list
Since each result isarank-1
list, i. e. al-cdl, theresultisa 12 15 18 21
48 51 54 57

list of 2 1-cells, i. e. an array
of shape2 4

Figure5. Execution of +/"2i.234

+/"3 0. 2 34
12 14 16 18
20 22 24 26
28 30 32 34
The verb is applied to the single 3-cell. Itsitems, which are 2-cells, are added, leaving a
single 2-cell asthe resuilt.

How abouti . "0 (2 2 2)—canyou figure out what that will produce? (Notice | put
parentheses around the numeric list 2 2 2 so that the rank O wouldn't be treated as part of
the list)

The verb rank is 0 and the noun rank is 1, so we will be applying the verb
to 0-cells. Theframefis3

Think of the operand as alist of 3 0-cells(i. e. atoms):| 2| 2| 2

Theverb monad i . isapplied to each cell: 01lo01l01
Since each result isalist, i. e. al-cell, theresultisa 01
list of 3 1-cells each with shape 2, i. e. an array of 8 1

shape3 2
Figure 6. Executionof i."0(222)

i."0 (2 2 2)
01
01
01
If you worked through that, it might have occurred to you that the shape of each result cell

depended on the value of the operand cell, and that if those cells had not been identical, there
would be some rough edges showing when it came time at the end to join the dissimilar result
cellstogether. If so, full marksto you! That can indeed happen. If it does, then just before
the cells are joined together to make the final result, the interpreter will bulk up the smaller
results to bring them up to the shape of the largest. First, if the ranks of the results are not
identical, each result will have leading axes of length 1 added as needed to bring all the
results up to the same rank (e. g. if oneresult hasshape2 5 and another has shape 5, the

second will be converted to shape 1 5, leaving the data unchanged). Then, if the lengths of

the axes are not identical, the interpreter will extend each axis to the maximum length found
at that axisin any result: this requires adding atoms, called fills, which are aways O for

numeric resultsand’ ' for literal results. Example:
i."0 (0 1 2 3)
00O NB. original result was enpty list; 3 fills added
00O NB. original result was O0; 2 fills added
010 NB. original result was 0 1; 1 fill added
012 NB. this was the |l ongest result, no fill added

f ndi spl ay—A Utility for Understanding Evaluation

J contains a script that we will use to expose the workings of evaluation. Y ou define verbs
which, instead of operating on their operands, accumul ate character strings indicating what
operations were being performed. This gives you away of seeing the operations at different
cells rather than just the results.

Start by loading the script:

| oad ' systent packages/ m sc/fndisplay.ijs'
Then, select the type of display you want. We will be using

setfnform'J
Then, give the names of the verbs you want to use. If you want to assign a rank, you may do
so by appending " r to the name:

defverbs ' Sum tens plus"0'
Optionally, define any names you want to use as nouns. The value assigned to the noun isthe
noun's name:

def nouns 'x y'

Y ou are free to use other nouns in expressions, but they will be replaced by their values.
With these definitions, you can explore Js evaluations:

X (plus) vy
S A +
| x plus vy
S +

The result of the evaluation is a description of the evaluation that was performed. The result
isdisplayed in abox so that a sentence with multiple eval uations shows each in its proper

place:
Sumtens"1l i. 2 3

Here we see that Sum t ens was applied twice, once on each 1-cell.

f ndi spl ay cannot produce avalid result in cases where the rank of averb is smaller than

the rank of the result-cells of the preceding verb, because then the operation would be
performed on part of aresult cell, and the result cell isjust a descriptive string which cannot
be meaningfully subdivided.

In this book, if we give an example that starts with def ver bs it isimplied that
| oad fndisplayandsetfnform'J' havebeen executed.

If you prefer to see the order of evaluation expressed in functional form like that used in C,
you may issueset f nf orm ' mat h' before you execute your sentences:

setfnform ' math'

1 plus 2 plus y

Negative Verb Rank

Recall that we defined the _1-cell of anoun n to be the cells with rank one less than the rank
of n, and similarly for other negative ranks. If averb is defined with negative rank r, it means
as usual that the verb will apply to r-cellsif possible, but with r negative the rank of thoser-
cells will depend on the rank of the operand. After the first step of processing the verb, which
decides what rank of cell the verb will be applied to, verbs with negative rank are processed
just like verbs of positive rank.

+ " 1i. 3
012
Herethe 1-cellsare atoms, so applying monad Suni t ens on each one has no effect.

+ " 1i. 23

3 12

The operand has rank 2, so this expression totals theitemsin each 1-cell.
+ " 2i. 223

3 12

21 30

The operand has rank 3, so thistotals the itemsin each 1-cell, leaving a 2x2 array of totals.

Verb Execution—How Rank IsUsed (Dyads)

We are at last ready to understand the implicit looping that is performed when J processes a
dyadic verb. Because a dyadic verb has two ranks (one for each operand), and these two
ranks interact with each other as well as the ranks of the operands, you should not read further
until you thoroughly understand what we have covered already.

We have |learned that the rank conjunction u" n is used to specify the rank of averb. Since

each verb has the potential of being invoked monadically or dyadically, the rank conjunction
must specify the ranks for both valences. This requires 3 ranks, since the monad has asingle
rank and the dyad aleft and aright rank. The ranksn may comprise from 1 to 3items: if 3
ranks are given they are, in order, the monad's rank, the dyad's left rank, and the dyad's right
rank. If two ranks are given, thefirst isthe dyad's left rank and the second is used for the
dyad's right rank and the rank of the monad. If thereisonly oneiteminthelist, itisused for
al ranks. So,v" 0 1 hasmonad rank 1, dyad left rank O, and dyad right rank 1 . Asusual,

J primitives themselves have the ranks shown in the Dictionary.

Processing of a dyad follows the same overall plan as for monads, except that with two
operands there are two cell-sizes (call them Ir and rr) and two frames (call them If and rf). If
the left and right frames are identical, the operation can be simply described: the Ir-cells of
the left operand match one-to-one with the rr-cells of the right operand; the dyad is applied to
those matched pairs of cells, producing aresult for each pair; those results are collected as an
array with frame If. Weillustrate this case with an example:

(i. 22) +i. 22
02
4 6

The verb hasleft rank 0, and the left operand has rank 2, so the operation will be applied to O-
cells of the left operand. The verb has right rank 0, and the right operand has rank 2, so the
operation will be applied to O-cells of the right operand. Theleft frameis2 2, theright

frameis2 2 .
Think of the left operand asa
2x2 array of O-cells, and the 01 01
right operand as a 2x2 array of 2|3 213
O-cdlls:
The corresponding left and 00 111
right operand cells are paired: =T T3

The operation dyad + is 0]2
performed on each pair of
. 4|6
cells:
Since each result is an atom,
and theframeis2 2, the 02
result is an array with shape 4 6
2 2

Figure7. Executionof (i.22)+i.22

Using f ndi spl ay, we have
| oad' syst eml packages\ m sc\fndisplay.ijs'
setfnform'J
defverbs ' plus"0O'
(i. 22) plusi. 22

Asyou can see, we were correct when we asserted that the sum of two cells of the same shape
Istaken by adding their respective items.

Concatenating Lists: Dyad , (Append)

For a second example we will introduce anew verb, dyad, (theverbisthecomma
character). x , Vy createsan array whose leading items are the items of x and whose trailing
items are the items of y; in other words, it concatenatesx andy .

123, 6
1236
123,123
123123

4, 6

4 6

123, 0$6

12 3

(i. 23, (i. 33)
012

345

012

345
6 7 8
In the last example theitemsof x andy are 3-element lists, sox , Yy isalist of 3-element

lists, containing the items of x followed by theitemsofy .

Dyad, hasinfinite rank, which meansthat it appliesto its operands in their entirety and so its
detailed operation is defined not by the implicit looping we have been learning, but instead by
the definition of the verb in the Dictionary. The discussion given above describes the
operation of dyad, when the operands have identically-shaped items (items, mind you—the
shapes of x and y may differ, if one has more items than the other). In alater chapter we will
learn about x , y when the items have different shapes; for now we will be dealing with
operands that are scalars and lists, for both of which the items are scalars.

Now seeif you canfigureoutwhat (i . 3 3) ,"1 0 i. 3 will dobeforereadingthe
explanation that follows:

Theverb (dyad, "1 0) hasleft rank 1, and the left operand has rank 2, so the operation will

be applied to 1-cells of the left operand. The verb has right rank 0, and the right operand has
rank 1, so the operation will be applied to O-cells of the right operand. The left frameis 3,
theright frameis3 .

Think of the left operand as a

list of 3 1-cells, and the right 1012|345(678]| 0|1]2]
operand asalist of 3 O-cells:

The corresponding left and 01210 3451 67812

right operand cells are paired:

The operation dyad , is 0120134516782
performed on each pair of
cells:

Since each result isa 1-cell of
shape 4, and the frame is 3,
the result isan array with
shape3 4

o wo
~N b P
o O1 N
N R O

Figure8. Executionof (i.33),"10i.3

def verbs ' commma’

(i. 33 conmm"10i. 3

When Dyad Frames Differ: Operand Agreement

The processing of dyads has an extra step not present for monads, namely the pairing of
corresponding cells of the left and right operands. Aslong asthe frames |f and rf are the
same, as in the examples so far, thisis straightforward. If the frames are different, J may still
be able to pair left and right cells, using another level of implicit looping, one that provides
considerable additional programming power. The formal description that followsis not easy
to follow—you might want to skim over it and read it in detail after you have studied the
examples that follow.

Jrequires that one of the frames be a prefix of the other (if the frames are identical, eachisa
prefix of the other and all the following reduces to the simple case we have studied). The
common frame cf isthe part of the frames that is identical, namely the shorter of the two
frames; its length is designated rcf. If we look at the cells of the operands relative to this
common frame (i. e. the (-rcf)-cells), we see that for the operand with the shorter frame, these
cells are exactly the rank that will be operated on, while for the operand with the longer
frame, each (-rcf)-cell contains multiple operand cells.

First, the (-rcf)-cells of the two operands are paired one-to-one (because they have the same
frame), leaving each shorter-frame operand cell paired with alonger-frame (-rcf)-cell. Then,
the longer-frame (-rcf)-cells are broken up into operand cells, with each operand cell being
paired with a copy of the shorter-frame operand cell that was paired with the (-rcf)-cell (an
equivalent statement is that the cells of the shorter-frame operand are replicated to match the
surplus frame of the longer-frame operand). This completes the pairing of operand cells, and
the operation is then performed on the paired operand cells, and collected using the longer

frame. Maybe some examples will help.
100 200 +i. 2 3

100 101 102
203 204 205

The verb (dyad +) hasleft rank 0, and the left operand has rank 1, so the operation will be

applied to O-cells of the left operand. The verb has right rank 0, and the right operand has
rank 2, so the operation will be applied to O-cells of the right operand. The left frameis 2,

theright frameis2 3 .

The common frameis 2, with length 1,

so think of each operand asalist of 2 [012]345]
_1-cells
The _1-cells of the operands are paired: 1001012 200 | 345
The longer-frame operand (the right 100 | O 100 | 1 100 | 2
one) is broken up into operand O-cells,
each being paired with a copy of the 200 | 3 200 4] 12005

shorter-frame operand cell. Each paired
_1-cell becomes arow of paired

operand cells:
The operation dyad + is performed on 100 [101 | 102
each pair of cells: 203 | 204 | 205
o o3 3 e
9 ’ 203 204 205

array with shape2 3

Figure9. Execution of 100200 +1i.2 3

defverbs ' plus"0O
100 200 plus i. 2 3

The simplest and most common case of different-length frames is when the shorter frame is of
zero length; in other words, when one of the operands has only one cell. In that case, the
single cell isreplicated to match every cell of the longer operand. An easy way to force an
operand to be viewed as a single cell isto make the verb have infinite rank for that operand.
Thisisnot a special case—the behavior follows from the rules already given—~but it's worth
an example:

"abc' ," 0 'defg'
abcd
abce
abcf
abcg

Theverb (dyad, " 0) hasleft rank _, and the left operand has rank 1, so the operation will
be applied to 1-cells of the left operand. The verb hasright rank 0, and the right operand has
rank 1, so the operation will be applied to O-cells of the right operand. The left frameis
(empty), theright frameis4 .

The common frameis (empty),

with length O, so take each defg
operand in its entirety:

The cells of the operands are abc | defg
paired:

The longer-frame operand (the abc | d abc | e abc | f abc | g
right one) is broken up into

operand O-cells, each being
paired with a copy of the shorter-
frame operand cell:

The operation dyad , is abcd | abce | abcf | abcg
performed on each pair of cells:

Since each result isa 1-cell with abcd
length 4, and the longer frameis abce
4, theresult isan array with abcf
shaped 4 abcg

Figure 10. Execution of 'abc’ ," 0 'defg’

defverbs ' commm'
"abc' comma” _ 0 'defg’

Y ou must thoroughly understand this example, where one operand has only one cell, because
it occurs frequently. The handling of the general case of dissimilar frames is uncommon
enough that you do not need to understand it perfectly right now—you'll know when you
need it, and you can sweat out the solution the first few times. Here are afew observations
that may help when that time comes:

It isaways entire cells of the operand with the shorter framethat are replicated. A cell is
never tampered with; nothing inside a cell will be replicated. And, it is not the entire shorter-
frame operand that is replicated, but cells singly, to match the surplus frame of the other
operand.

Thisfact, that single operand cells are replicated, isimplied by the decision that the shorter
frame must be a prefix of the longer frame: the single cell isthe only unit that can be
replicated, since the surplus frame is at the end of the frame rather than the beginning. Take a

moment to see that this was a good design decision. Why should the following fail?
123 +i. 23

| ength error
| 123 +i.2 3

The 'length error' means that the operands do not agree, because the frame-prefix rule is not
met. Your first thought might be that adding a 3-item list to an array of 2 3-item lists should
be something that a fancy language like J would do without complaining; if so, think more

deeply. Jdoes give you away to add lists together—just tell Jto apply the verb to lists:
123 +"1i. 23

135
4 6 8

Operands in which one shape is a suffix of the other, asin this example, are handled by
making the verb have the rank of the lower-rank operand; that single operand cell will then be
paired with all the cells of the other operand. By requiring dissimilar frames to match at the
beginning, J gives you more control over implicit looping, because each different verb-rank
causes different operand cellsto be paired. If dissimilar frames matched at the end, the
pairing of operand cells would be the same regardless of verb-rank.

Order of Execution in Implied L oops

Whenever averb is applied to an operand whose rank is higher than the verb's rank, an
implied loop is created, as we have discussed above. Theorder in which theverb is
applied to the cellsisundefined. The order used on one machine may not be that used on
another one, and the ordering may not be predictable at all. If your verb has side effects, you
must insure that they do not depend on the order of execution.

Current versions of the interpreter apply the verb to cellsin order, but that may changein
future rel eases.

A Mistake To Avoid

Do not fall into the error of thinking that v r is'v with therank changedtor'. Itisnot.
Nothing can ever change the rank of the verb v—v" r isanew verb which hastherank r .
This distinction will become important presently as we discuss nested loops. Consider the
verbv" 1" 2, whichisparsedas(v" 1) "2 . If v"'r changedtherank of v, it would follow
that v" 1" 2 would be'v with the rank changed to 1 and then to 2, i. e. identical tov" 2

But itisnot: actualy, v" 1" 2 appliesv" 1 on the 2-cells of the operand, whilev" 2 appliesv

on those same cells—and we have seenthat v and v" 1 are very different verbs:
+H"1"2 1. 2 3 4

6 22 38
54 70 86
+/"2 1. 234
12 15 18 21
48 51 54 57
Summing the 2-cells (+/ " 2) is not the same as summing the 1-cells within each 2-cell
(+/ " 1" 2). Make sure you see why.

Ah, you may say, but +/ " 1" 2 isequivalentto+/ " 1 . You areright for the monadic case,
but not for the dyadic:
(i. 34) +"1"2i. 2 3 4
0O 2 4 6
8 10 12 14
16 18 20 22

12 14 16 18
20 22 24 26
28 30 32 34
(i. 34 +'1i. 234
| ength error
| (i.3 4) +"11.2 3 4
Dyad +" 1" 2 isexecuted as (+" 1) " 2, i. e. it hasrank 2. S0, thereisonly one 2-cell of the
left operandi . 3 4, andthat cell isreplicated to match the shape of the right operand. The
operands then agree, and the 1-cells can be added. Trying to add the 1-cells directly with
+" 1 fails, because the frames of the operands with respect to 1-cells do not agree.

The situation becomes even more complicated if the assigned left and right ranks are not the
same. My adviceto you issimple: remember that u” r isanew verb that executesu onr -

cells.

<< >> Contents Help

6. Starting ToWrite
InJ

It's time to write some simple J programs. Writing code without loops will be a
shock at first. Many accomplished C programmers give up because they find that
writing every program is a struggle, and they remember how easy it wasin C. |
hope you will have more persistence. If you do, you will soon stop thinking in
loops, translating each one into J; instead, you will think directly about operand
cells, and the code will flow effortlesdly.

In C, when you are going to operate on some array, say X[3][4][5], you write the
code from the outside in. Y ou know you are going to need 3 nested loops to touch
all the cells; you write the control structure for each loop (possibly after thinking a
bit about the order of nesting); finally, you fill in code at whatever nesting level it
fits. Evenif all your work isin the innermost loop, you have to write all the
enclosing layersjust to be able to index the array. When | was writing in C, | made
sure my output was measured in lines of code, so that | could call this 'productivity'.

In J, you grab the heart of the watermelon rather than munching your way in starting
at therind. You decide what rank of operand cell you are going to work on, and you
write the verb to operate on acell. You give the verb the rank of the cells it operates
on, and then you don't care about the shape of the operand, because Jsimplicit
looping will apply the verb to all the cells, no matter how many thereare. A
pleasant side effect of thisway of coding is that the verbs you write can be applied
to operands of any shape: write averb to calculate the current value of aloan, and
you can use that very verb to calculate the current value of all loans at a branch, or

at all branchesin the city, or all over the state.

We will write anumber of Jverbs starting from their C counterparts so you can see

how you need to change your thinking. For these examples, we will imagine we are
in the payroll department of a small consulting business, and we will answer certain
guestions concerning some arrays defined as follows:

empno[nemp] (in J, just enpno) - employee number for each member of
the staff. The number of employeesisnemp.

payrate[nemp] - number of dollars per hour the employeeis paid

billrate[nemp] - number of dollars per hour the customer is billed for the
services of this employee

clientlist[nclients] - every client has a number; thisisthelist of al of
them. The number of clientsisnclient.

emp_client[nemp] - number of the client this employeeisbilled to

hoursworked[nemp][31] - for each employee, and for each day of the
month, the number of hours worked

To get you started thinking about cells rather than loops, | am going to suggest that
you use C-style pseudocode written in away that is easily trandlatable into J. Y our
progressin Jwill be measured by how little you have to use this crutch.

Problem 1. How many hours did each employee work? The C code for thisis:
void emphours(hrs)
int hrs[]; // result: hrsJi] is hours for employee i
inti, J;
for(i = 0;i<nemp;++i)
for(j = O0,hrsJi] = 0;j<31;++j)hrs][i] += hoursworked[i][j];
}

Thefirst step in trandlating thisinto Jis to write the loops, but without loop indexes:
instead, indicate what elements will be operated on:
for (each employee)

for(each day)take the sum of hoursworked

Now, figure out what ranks the operands have. The hoursworked itemsthat are
added are scalars, so we will be looping over alist of them; that means we want the
sum of items of arank-1list. Sotheinner loopisgoingtobe+/"1 . What about
the outer loop? The information for each employee has rank 1 (each employeeis
represented in hoursworked by asingle row), so averb applied to each employee
should haverank 1. Note that we don't worry about the actual shape of

hour swor ked—once we figure out that our verb is going to operate on 1-cells,
we let Jsimplicit looping handle any additional axes. We build up the loops by
applying the rank conjunction for each one, so we have theinner loop +/ "1 and

the outer loop of rank 1; combined, they are+/ " 1" 1 . The" 1" 1 can be changed

toasingle" 1, and we get the final program:
enphours =: nonad : '+/"1 hoursworked'

Problem 2: How much did each employee earn in wages? The C codeis.
void empearnings(earns)
int earns[]; // result: earnsJi] is wages for employee i

inti,j;
for(i = 0;i<nemp;++i) {
for(j = 0,earns[i] = 0;j<31;++j)earns]i] += hoursworked[i][j];
earnsli] *= payratel[i];
}
}

When we write the pseudocode, we will change the algorithm just a bit: rather than
multiplying each total by the billing rate just after the total is calculated, we will
make one loop to calculate the totals, and then a second pass to multiply by the
billing rate. Thisisa case where good J practice differs from good C practice.
Because of the implicit looping that is performed on all verbs, you get better
performance if you let each verb operate on as much data as possible. Y ou may at
first worry that you're using too much memory, or that you might misuse the
processor's caches; get over it. Apply verbsto large operands. The pseudocode is:
for (each employee)

for(each day)take the sum of hoursworked
for(each pair of wage _rate and sum)multiply the pair

Thefirst two loopsarejust +/ "1 hour swor ked asbefore. Thelast loop clearly
multipliesscalars, soitis*" 0 . We notethat dyad * has rank 0, so we don't need

to specify the rank, and we get the final program:
enpearns =. nonad : 'payrate * +/"1 hoursworked'

Problem 3: How much profit did each employee bring in? C code:
void empprofit(profit)
int profit[]; // result: profit[i] is profit from employee i
{
inti, |, temp;
for(i = O;i<nemp;++i) {
for(j =0, temp = 0;j<31;++j)temp += hoursworked[i][j];
profit[i] = temp * (billrate[i] - payrate][i]);

Again, we create a new loop to calculate the list of profit for each employee:
for (each employee)
for(each day)take the sum of hoursworked
for (each employee)take billing_rate - wage_rate;
for(each pair of profit and sum)multiply the pair

The profit is clearly adifference of scalars applied to two lists, therefore it will be
- "0 or equivalently simply - . The program then is

enpprofit = nonad define
(billrate - payrate) * +/"1 hoursworked
)

<< >> Contents Help

7. MoreVerbs

Before we can write more complex programs, we need to learn some more verbs.
We will group them into classes and give afew mnemonic hints.

Before we start, | should point out a convention of J: if adyadic verb is asymmetric,
you should think of x asoperatingony,i.e. x iscontrol information and y is data.
We will note the exceptionsto thisrule—%/:,\:,-,-.,ande. —and the
reasons for the exception.

Arithmetic Dyads

All these verbs have rank 0 and produce a scalar result, so if they are applied to two
operands of equal shape the result will also have that shape; if applied to two
operands that agree, the result has the shape of the larger operand.

X + y addition
X - 'y subtraction (y operates on x to match the mathematical definition)
X * y multiplication

X % y division Note that the slash has another use, so %isdivison. You don't
have to worry about division by zero: it produces _ (infinity) or __ (negative
infinity) except for 098, which yields O .

X "y exponentiation (x to the power y). 070 yields 1 .
x .y logarithm (base-x logarithm of y)

X | 'y modulus (remainder wheny isdivided by x . For thelongest time | had
trouble remembering dyad | ; it seemed that the divisor should bey by analogy
todyad % . Theinconsistency isthat Jdefinesx % y as'x divided by y' to
match accepted practice in mathematics; that makes dyad %anomalous in J,
because we have y operating on x).

The comparison verbs have rank O, and produce Boolean results in which 1 means
true, 0 meansfalse. They use tolerant comparison, which means that two values
that are very closeto equal are considered equal. This saves you the trouble of

adding small amounts to mask the effects of floating-point rounding:
1 =3* 1 %3isl,unlikel.0==3.0* 1.0/ 3.0 whose value depends on the

compiler. If you need exact comparison, append ! . O to the verb. Look under
‘Comparison Tolerance' for details.

X =y equa

X ~: y notequa (if you squint the colon looks like an equal sign)

X >y greater-than

X < vy lessthan

X >: 'y greater-than or equal (if you squint the colon looks like an equal sign)

X <: vy lessthan or equal

Boolean Dyads

These verbs have rank 0 and are applied to Boolean arguments to produce Boolean
results:

X *. 'y Boolean AND

X +. Yy Boolean OR

X =y Boolean XNOR (1 if the operands are equal)
X ~: Yy Boolean XOR (1 if operands differ)

Min and Max Dyads

These verbs are useful for performing tests, because they perform the operation item-
by-item, replacing a C loop that does atest for each atom. They have rank 0 and
produce a scalar in each cell, so the result has the shape of the larger operand.

X >. Yy thegreater of x andy

X <. Yy thelesserof x andy

Arithmetic Monads

These verbs have rank 0.
>: y increment (y+1)

<: y decrement (y- 1)
<. Yy thelargest integer not greater than y (floor function)
>,y thesmallest integer not less than y (ceiling function)
| y absolutevalueof y

* y ggnumofy (_1ifyisnegative O if y istolerantly closeto O, 1 ify is
positive)

X 0. Yy trigonometric function. Think of dyad 0. asamonad, selecting the
function basedonx . Forexample,1 o. yissin(y),and 3 0. Yy isarctan
(y). Thefunctionsare: 0 sgrt(1-sgrt(y)); 1 sin(y); 2 cos(y); 3 tan(y); 4 sgrt

((Y*y)+1); 5 sinh(y); 6 cosh(y); 7 tanh(y); 8 sart(-(1+y*y)); 9 Re(y);
10 Mag(y); 11 Im(y); 12 Angle(y). (- x) oistheinverseof x o, with the

exceptions 8 -sgrt(-(1+y*y)); 9y, 10Conj(y); _11j. vy; 127). y .
For mnemonic purposes, note that the odd numbers specify odd functions.

-y l-y
Boolean M onad
-. Yy (rank 0) Negatey Thisissimply the boolean interpretation of 1-y .

Operationson Arrays

These verbs operate on entire arrays, they have infinite right rank (so they look at
the entirey), and they have left rank as appropriate for the operation performed. |

am going to give a highly ssmplified definition of the functions of these verbs;
consult the Dictionary to see all they can do.

Dyads
Selection: { # -.
x { vy (From)
No, nothing was left out! { isnot paired with } ; it isaverb and stands by itself.

The left rank isO; the result isitem number x of y . One of the great insights of

Jisthe readlization that selection, which in most other languages requires a
gpecia syntax like C'sy[x], isreadlly just adyadic verb like any other. Examples:

2{ 3141509
4

y hasrank 1; itsitems have rank O; item number 2is4 .
24{ 3141509
4 5
Theleft frameis 2; each atom of x selects an item of y (each an atom), and the
results are made into a 2-item list.

1 {i. 33

345

y hasrank 2; itsitems haverank 1; itemnumber 1is3 4 5 .
21{i. 33

6 7 8

345

The left frameis 2; each atom of x selects an item of y (each alist), and the
results are made into a 2x3-item array.

0{ 5

5

You are allowed to select item O of ascalar. Thisfollows from the definition that
ascalar has asingleitem which isthe scalar itself. Selecting any other itemisan
error.

There are many variations on the format of x, providing for multidimensional
indexing where each index can be alist. You will have to wait a bit to learn
them, but | will note here that a negative index counts back from the end of the
array:

1 { 3141509
9

y (Copy)

Leftrankisl. If x isalist whoseitemsareall O or 1, the result has the same
rank asy, and contains just the items of y for which the corresponding item of x
iIs1l. For example:
101000#3141509
34
OO01#i. 34
8 9 10 11

X -. Yy (Remove)
Left rank isinfinite. Any items of x that match items of y are removed:
1234543-. 214
1353
The verb is defined with y operating on x because of the analogy with- . If x
andy aresets, x -. Y istheset difference.
Indexing: i . e.
X i. y(ndexOf)yandx i.!.0 y (Intolerant Index Of)

Theleft rank isinfinite. x i . Yy looksthrough the itemsof x to find one that

matchesy; the result is the item number of the first match. Examples:
314159i. 5

4
(i. 43 i. 678

2

It may occur to you that for y to match an item of x, the rank of y must be the
same as the rank of an item of x (call that rix, which is one less than the rank of
X (namely #$x) unlessx isan atom; formally, rixis(0 >. (#$x) - 1) or,
more cleverly, #${ . x). If y isof higher rank, each rix-cell of y is matched
againstitemsof x . Formally,x i. yisequivalenttox i."(_,rix) y .

Example;
314159i. 15
14
(i. 33 i. (i. 223)
01

If anrix-cell of y matches none of the items of x, the result value for that cell is

#x, 1. e. one more than the largest valid item-number of x :
314159i. 84 _1
6 2 6

To be hair-splittingly accurate we must say that X i . Yy isequivalent to
X 1."(_,rix)"_ vy becausetherank of dyadi . isinfinite. Thisdistinction
will matter eventually.

The comparisonisdyadi . istolerant, that is, numeric operands that are very
closeto equal are considered equal. The special formi . !. Oislikei . , except
that the comparison isintolerant. i . ! . O usesadifferent algorithm fromi . ,
and may be faster even if the operands are not numeric.

X e. Yy (Element Of)

Theleft rank isinfinite. x e. vy isalightweight versonofy 1. X;theresult
iIs1if x matchesanitemof y, Oif not. The verbisapplied to riy-cellsof x
(whereriyistherank of anitem of y). Formally,x e. y isthesameas

(#y) ~ y i. x . Dyade. isanexceptiontotherulethat x iscontrol
information and y isdata. It was defined to be reminiscent of mathematical
epsilon meaning 'element of'.

Takeand Drop: {. }.

x {. y(Take)
x }. y (Drop)

The left rank is 1, but the verb handles scalars also; we will consider only the

casewherex isascalar. x {. y (take)takesthefirst x itemsofy,i.e. it
produces a result which consists of thefirst x itemsof y; x }. vy (drop)
discardsthefirst x itemsof y . If x isnegative, x {. Yy takesthelast (] x)
itemsof y,andx }. vy discardsthelast (] x) items (remember, | X isthe
absolute value of x). The rank of the result is always the same asthe rank of y,
and in all casesthe order of itemsis unchanged. Examples:

2{. 3141509
31

23}. 3141509
4159
2{. 3141529
59

}. i. 33

w o
anN -

-
4
x {. y awaysgivesyou as many items asyou asked for. If you overtake by

asking for more than #y items, Jwill create extra ones, filling them with O or
‘' asappropriate:

5{. 314
31400
5 {. "abc'

abc NB. Negative overtake: fills added at front

We have met fills before; they were added to bring the results from different cells
of averb up to acommon shape so that they could be made into an array. The
fills added by overtake are different: they are part of the execution of the verb
itself. We will distinguish the two types of fill, calling the ones added by the
verb itself verb fills and the ones added to make cell-results compatible framing
fills. Framing fillsareawaysO or' ', but you can specify the value to use for
averb fill, using the fit conjunction ! . :
5{.1.9 (31 4)
314909
5 {.1."x" "abc’
xxabc
The fit conjunction creates anew verb; inthiscase{. ! . f isaverb that looks
just like{. but usesf for the verb fill.

Thefit conjunction is by no means reserved for specifying verb fills: it is
available for use on any primitive to make a small change to the operation of the
primitive. If ! . hasameaning for a primitive, that meaning is givenin the
Dictionary entry for the primitive.

Joining Arrays., . ,:
X ,. Yy (Stitch)

Theleft rank isinfinite. x , . yisequivaenttox ," 1 y . That means
that dyad , isapplied to the corresponding items of x and y, making each

item of the overall result the concatenation of the corresponding items.
Example:
345,. 789

g b~ w
O oo~

X ,: Yy (Laminate)

Theleft rank isinfinite. x , . yisalistof 2items.itemOisx anditem1lisy .

If x and y do not have the same shape, they are brought to a common rank and
padded with fills to acommon shape. Dyad, : concatenates x and y along an
added axis, in contrast to dyad , which concatenates them along their leading axis:

345 ,: 789
345
789
Contrast thiswith dyad , . above or dyad, which would produce
345789.

12, 34,: 56

1 2
3 4
5 6

Take amoment to understand why in this example the first verbisdyad , and the
second isdyad , :

Rotate L eft and Shift Left: | .
X |. y (Rotate Left)

The left rank is 1, but we will discuss only the case where x isascalar. The

result has the same shape asy, with the items of y rotated x placesto the left

(with wraparound). If x isnegative, the items are rotated to the right. Examples:
2]. 3141509

931

|. i. 33

4 1

wo o
NN
Gl N - Ul

X |.V'.f y (Shift Left)

When the fit conjunction is used, any item that is rotated across the beginning of
y isreplaced by thefill f . Thisturnsthe rotate into a shift wheref givesthe
value to be shifted in:

2 |.1."x" "abcde'
cdexx

2 |.!'."x" 'abcde'
xxabc

Sort: /: \:

x [: y (Sort Up Using)
x \: y (Sort Down Using)

Theleft rank isinfinite. x and y must have the same number of items. The
items of x arerecords and theitemsof y arekeys; x /: vy istherecordsx
sorted into ascending order of corresponding keysy . x \: vy sortsinto
descending order. Examples:

314159/: 012345
3141509
y was aready in order.

314159/: 543210
951413

Sorting into reverse order.

314159/: 0101 20 2 30
3451109

X in order of ascendingy .
(i. 43 /: 10 20 1 2

10 1

o ©0o
O~
N =

3 4 5
Items of x in order of ascendingy .

135/.: 78, 12,. 45
351
The keysy do not have to be single numbers; they don't even have to be
numeric. Here, 1 2 islowest,then4 5,then7 8 . TheDictionary gives
complete rulesfor orderingy .

Because sorting is not so easy in C, C programmers are not quick to recognize
applicationsof / : and\: . TheJimplementationof /. and\ : runsin linear

time for most y and should not be avoided.

According to our general principle, we would expect that indyad / . x held the
keysandy thedata. Dyad/ : isan exception to therule.

y
y

y
y

When x and y are the same, you have the ssmple case of sorting y into ascending
or descending order.

/:
\:

Match: - :

X

-y (Match)

Theleft rank isinfinite. Theresultisl if x andy are the same, O otherwise,
except: (1) if they are numeric, the comparison is tolerant; (2) for some reason |
don't understand, if they are empty, they are considered to match even if the
types are different, which means that getting aresult of 1 fromx -: yisno
guarantee that x and y will behave identically:

(0$0) -: "'
1
; (1 {. 0%0) -: (1 {. "")

The important difference between dyad - : and dyad = isthat dyad - ;. has

infinite rank so you get a single result covering the entire array, and it won't fail
if the shapes of x and 'y do not agree.

M onads
Enfile: ,

y (Enfile)

, Yy consists of all the atoms of y, made into alist. The order isrow-major
order , i. e. all the atoms of item O of the original y come first, followed by atoms

of item 1, and so on; within each item the ordering similarly preserves the order
of subitems. Examples:
, 1. 23
012345
The atoms were made into allist.
a=.223% 'abcdefghijkl'
a
abc
def

ghi
j Kl
, a
abcdef ghi j ki
y of any shape produces alist.

Recall that a single quoted character is an atom rather than alist:
$ x'

To get a1-character list, use monad ,
$,] Xl
1

The official name for monad , isthe quaint but unedifying ‘ravel’, meaning

‘separate or undo the texture of'. | prefer the equally quaint but more descriptive
‘enfile’, which means 'arrange in aline (asif on astring)'.

Reverseand Transpose: | . | :
| . vy (Reverse)

Theitemsof y are put into reverse order:
|. 1. 5
43210

| -y (Transpose)

The axesof y arereversed. Thisisdifficult to visualize for high ranks but easy
for the most common case, rank 2:

|: 1. 3 4
04 8
15 9
2 6 10
37 11
Takeand Drop Singleltem: {. {: }. }:

{. y (Head)
{: y (Tail)

}. vy (Behead)
}: y (Curtail)

The operations performed are ssimple; the biggest problem is remembering which
primitive does what. Remember that { meanstakeand} meansdrop, and

that . meansbeginningand: meansend. So, { .y isthefirstitemofy,{:yis
thelastitemof y, } .y isal of y except thefirstitem, } : y isall of y except the
last item:

{. 345
3

{. 1. 314
8 9 10 11

}. 345
4 5

}.yisidenticaltol}.yand}: yisidentica to _1}.y . {.y isnotidentica
to1{.y, because 1{ . y hasthe samerank asy while{ . y hasthe rank of an
itemofy .

Grade (Create Ordering Permutation): / : \:

/:
\:

y (Grade Up)
y (Grade Down)

[.y createsanumeric list with #y items, suchthati {/ : y isthe index of the
I th-largestitemofy . (/:y){y givesy sorted into ascending order. / : y isa
permutation vector, i. e. it contains each integer intherange O to (#y) - 1. \:

issimilar but worksin descending order. Example:
/. 3141509

130245
Read this result as follows: the smallest item of y isitem 1 (with value 1), the
next-smallest isitem 3 (1), then item O (3), then item 2 (4), then item 4 (5), then
item 5 (9). Monad/ : defined thisway turns out to be surprisingly useful. Asa
limbering-up exercise in the use of permutation vectors, and an example of how
compactly J can express ideas, see if you can describe in words what two
applications of monad / : will give:

/[/: 314159
203145

Add An Axis. , : (Itemize)

y

Theresult of , : y hasrank one higher than the rank of y, with one item, which
Isy . Theshapeof, : y istheshapeofy with 1 prepended (inplanJ, $, :y
Constant Verb
m'n
We have met the rank conjunction " applied to verb left arguments; applied to
noun left arguments it produces a verb whose result is always the value of the
noun. The created verb (which can be used as either amonad or a dyad) has
ranks, given astheright operand of " . Examples:
5" 1. 4 4
5
The simplest and most common case. Since the verb hasinfinite rank, it operates
on the entire operand and produces the scalar value.
5"0 i. 3
555

Here the verb is applied to each O-cell of thelist, giving the scalar result for each
cell.

1230i. 3

N e
N NN
W ww

Here the result at each cell istheleft argument of " |, thelist1 2 3 . If you
were expecting the 3 to be repeated, remember that you can look at the words as

J sees them:;
o '123"0i. 3
S +- - - - -+
|1 2 3|"|0]i.]|3|
S +- - - - -+

1 2 3isasingleword.
~9:...1: 0 1:..09:

For afew special values, namely the integers 9 through 9, infinity _, and
negative infinity __, you can create an infinite-rank verb to produce the value by
following the constant valuewith : . Thisisequivaenttoval ue" .

3: "abc'
3

Theoperand' abc' wasignored, and theresult was 3 .

<< >> Contents Hep

8. LooplessCodell—
Adverbs/ and ~

The monad +/ , which sums the items of its operand, is a special case of the use of
theadverb/ . Itistimeto learn about adverbs, and other uses of this one.

Modifiers

An adverb isamodifier. It appearsto the right anoun or verb; the prototypeisu a
where u isthe noun or verb and a isthe adverb. Thecompoundu aisanew
entity, and not necessarily the same part of speechasu . When the compoundu a
Is executed, it performs the function given by the definition of a and has accessto u
during its execution. If u a isaverb, then it also has access to the operands of the
verb during its execution; theverb u a will then beinvokedasu a y if monadic
orx u a Yy ifdyadic.

You will notethat | didn't havetowritex (u a) y . WhileJgivesall verbs

egual precedence and executes them right-to-left, it does give modifiers (adverbs
and conjunctions) higher precedence than verbs, in the same way that C and
standard mathematical notation give multiplication precedence over addition. We
will discussthe parsing rulesin detail later; for now, know that modifiers are bound
to their operands before verbs are executed, and that if the left operand of a modifier
has aconjunctiontoitsleft (e.g.x ¢ y a), theconjunction isbound to its
arguments first, and the result of that becomes the left argument to the modifier:

X ¢y ais(x cy) anotx ¢ (y a) . Inother words, modifiers associate
left-to-right. So, +" 1/ (inwhich" isaconjunctionand/ isan adverb) isthe same
as(+"1)/,not+"(1/) . Thephrase| +/"1 (4) + i. 3 3isexecutedas
| ((+/"1) ((4) + (i. 3 3))),inaccordance with the rule: right-to-left
among verbs, but applying modifiersfirst. Notethat | had to put parentheses around
the4, because" 1 4 would have been interpreted asrank 1 4 : collecting adjacent
numbersinto alist is done before anything is executed.

Jincludes arich set of modifiers and even alows you to write your own, though
many J programmers will never write amodifier. We will begin our study of
modifiers with the adverb monad u/ which goes by the mnemonic 'Insert'.

The Adverb Monad u/

Monad u/ (by whichwemean/ with averb left operand, used asu/ 'y rather than
asx u/ y whichisdyadu/ andiscompletely different; notethat m y wherem
Isanoun isdifferent yet), inserts u between itemsof y . Monad u/ hasinfinite

rank. Asasimpleexample,+/ 1 2 3isequivaenttol + 2 + 3:
+ 12 3
6

Asusual, we canusef ndi spl ay to explain what's happening:
defverbs ' pl us"0O
plus/ 1 2 3

The great power of the adverb concept isthat u can be any verb; it's not restricted to
+, -, or any other subset of verbs (it can even be a user-written verb). What would
monad >. / mean? Well,>./ 1 2 3 wouldbeequivdenttol >. 2 >. 3;
since each >. picksthe larger operand, the result is going to be the largest number;
so monad >. / means 'maximum’;

>/ 3141509
9

and of course 'minimum' issimilar:
<./ 3141509

1
What about monad , / ? Convince yourself that it combines the first two axes of its
operand.:
I 1. 2 3
012345
defverbs ' conm'
comma/ i. 2 3
T +
| (0 1 2) comma 3 4 5|
T +
1. 234

4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23

$.,/ 1. 234
6 4
I 1. 23 4
3
7

gl -

0 2
4 6
8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23

How many atomsareiny? Why,*/ $ vy :
* $i. 234
24

We can verify that the rows and columns of the following magic square sum to the

same value:
+/ 33$816 357 492

15 15 15
+/"1(33) $816 357 492
15 15 15

Asthislast example shows, the items can be of any shape. Applying +/ to the rank-
2 array added up 1-cells, while applying +/ " 1 added up the O-cells within each 1-
cell.

Have you wondered what would happen if thereisno cell or only 1? Good on you
if youdid. Theanswer is. if thereisonly 1 cell, the result isjust that cell; if thereis
no cell, theresult isacell of identity elements. The identity elementi for adyadic

verbv isthat valueof i suchthati v y isy for any choiceof y . For example,
the identity element for + is0, because0 + y isawaysy . Theidentity element
for* isl,andfor <. is_ . If thereisno identity element for averb v (for
example, $ has no identity element), you will get adomain error if you apply v/ to
an empty list. Examples:

+/ 0%0
0

*/ 0%$0
1

Empty list; result is the identity element.
+/ 13$357
357
Thereis1 1-cell, sotheresult isthat cell. Thisresult hasshape3,not1 3 .

+/ 03 %0
00O

Thereare 0 1-cells, so theresult isacell of identity elements. Note that even
though there are no cells, the cell still has a shape which is made visible by +/

$/ 0$0
| domai n error
| $/ 0%0

If you don't want to figure out what an identity element for averb v isyou can ask
the interpreter by typingv/ 0$0 .

Before we move on you should note that sincev/ 1 2 3 isequivalent to
1 v 2 v 3,2 v 3 isevauated first: the operation starts at the end of the list
and moves toward the beginning.

Theadverb ~

~ isan adverb. Likeall adverbs, it has a monadic and dyadic form. The dyadic
formx u~ yisequivaenttoy u Xx;inother words, the operands of u are
reversed. The ranks of dyad u~ are the same as those of dyad u, but with left and
right rank interchanged. For advanced Jdyad ~ isindispensable; even in ordinary

use it can save time and obviate the need for parentheses:
(10 + 2) % 3

4
3 % 10 + 2

4

Using %- to mean'y divided by x', we can have right-to-left execution without

parentheses.
-~ 2 4

2

When we know y contains exactly 2items, -/ Yy isaconvenient shorthand to
subtract the second from the first without havingtowrite({.y) - ({:y) . To
subtract the first from the second, we simply invert the order of subtraction with -

~

The monadic form u~ y hasinfiniterank and isequivalenttoy u vy,i.e.it
applies dyad u with both the left and the right operands equal to the one operand of
monad u~ . Aswith dyad u~, most uses of monad u~ are esoteric, but we know
one already: we can sort y into ascending order with eithery /: 'y or our new
equivalent/ : ~ y :

/[:~314159
1134509

<< >> Contents Help

9. Continuingto Write
inJ

Now that we have aformidable battery of verbs at our command, let's continue
writing programsin J. The data definitions are repeated here for convenience:

empno[nemp] (in J, just enpno) - employee number for each member of
the staff. The number of employeesisnemp.

payrate[nemp] - number of dollars per hour the employeeis paid

billrate[nemp] - number of dollars per hour the customer is billed for the
services of this employee

clientlist[nclients] - every client has a number; thisisthelist of al of
them. The number of clientsisnclient.

emp_client[nemp] - number of the client this employeeisbilled to

hoursworked[nemp][31] - for each employee, and for each day of the
month, the number of hours worked

Problem 4: Find the amount to bill agiven client. C code:
int billclient(cno)
int cno; // number of client we are looking up

{
inti, j, temp, total;
total = 0;
for(i = 0;i<nemp;++i) {
if(emp_client[i]==cno) {
for(j = 0, temp = 0;j<31;++j)temp += hoursworked[i][j];
total += billrate[i] * temp;
}
return(total);
}

The function isimplemented in C by looping over the employees and picking the
ones that are working for the specified client. In Jwe deal with entire arrays rather
than with elements one at atime, and the general planis:

get the mask of employees billed to the requested client;
select the hoursworked records for the applicable employees;
for(each employee) // 1

for(each day) accumulate total hours; // 2
for(each employee)multiply hours by billing rate;
for(each employee)get total billing;

This exampleisthefirst one in which an argument is passed into the Jverb. Within
the verb theright argument isreferred to asy. and the left argument (if theverbisa

dyad) isreferredtoasx. . Asusua in C we might use fewer big loops, but in Jwe

stick to small loops. The mask of employees billed to the client is given by
enp_client = y. whichisamask with 1 for the selected employees, O for the

others (remember that = isatest for equality, not an assignment). We can select the
hour swor ked items for the specified client by

(enmp_client = vy.) # hoursworked; thenthe sum for each day will bea
sum within each 1-cell, resulting in alist of hours for each selected employee. The
line+/"1 (enp_client = vy.) # hoursworked performsthe functions of
loops 1 and 2 in the pseudocode: loop 1 within each cell and loop 2 in the implied
loop over the cells. Then, it is asimple matter to select the billing rates for the
employees, multiply each billing rate by the number of hours worked, and take the
total over all employees billed to the customer. The solution (using atemporary

variable to hold the mask) is
billclient = nonad define

mask =. enp_client =vy.
+/ (mask # billrate) * +/"1 mask # hour swor ked

)

Problem 5: For each day, find the worker who billed the most hours. C code:
int dailydrudge(drudges)
int drudges[31]; // result: empno of worker with most hours each day
{
int i, j, highhours;
for(i = 0;i<31;++i) {
highhours = -1;
for(j = O0;j<nemp;++j)
if(hoursworked[j][i]>highhours) {
drudges[i] = empnolj];
highhours = hoursworked[j][i];

}

We note that the inner loop, which records the employee number of any employee
who worked more than the previous high, does not correspond to any of our J

verbs. So, we break this loop into operations that do correspond to J verbs:
for(each day)find the maximum number of hours worked; // 1

for(each day)find the index of the employee who worked that much; // 2
for(each day)translate the index to an employee number; // 3

Loop lissmply >./ hour sworked . Loop2calsfordyadi . toperformthe

search, but there is alittle problem: each search must go through a column of
hour swor ked, giving the hours worked by each employee on that day, but the

column is not an item of hour swor ked; each item isarow, giving hours worked
on each day by one employee. The solution isto transpose hour swor ked (by
| - hour swor ked), making the items correspond to days rather than employees.

Then we match up the resultingl-cells with the O-cells of the maximum found by
loop 1 and find the index of each maximum, usingi . "1 O or the equivalent

I." 1 . Loop3isasimpleapplication of dyad{ . Thefinal codeis

dai | ydrudge =: nonad defi ne
((]: hoursworked) i." 1 >./ hoursworked) { enpno
)

Problem 6: Order the employees by the amount of profit produced. Thisisa
bagatelle for Jand we won't even bother with C code. We have averb that returns
the profit for each employee, so we call it and use the result as the keys for sorting
the employee numbers into descending order. Note that a verb must be given an
argument when it is executed; we use O as aconvenient value. Thefinal Jcodeis

producers=: nonad : 'enpno \: enpprofit O
which makes use of the verb we defined earlier:

enpprofit =: nonad define

(billrate - payrate) * +/"1 hoursworked

)

Problem 7 issimilar: Order the clients by the amount of profit produced. It requires
more ingenuity, and the C code would be more than | want to show, so let'stry to
writein Jdirectly. We start with thelist of clientscl i ent | i st , thelist that tells

which client each employee worked for enp_cl i ent , and the profit per employee
givenby enpprofit 0. Foreach client, we need to find the employees that
worked for the client and add up the profit they brought in. For this kind of problem
we want an ar r ay with employees for one axis and clients for the other, withalin
the positions where the employee is assigned; then we can do

array * enpprofit 0 anddosome suitable summing of the result. Let's
work out what ar r ay must look like. Since dyad * hasrank O,

array * enpprofit 0isgoingto replicate O-cells of the shorter-frame
argument (enppr of i t 0) which meansthat a single profit value is going to
multiply an entire 1-cell of ar r ay . So we see that the leading axis of ar r ay must
be clients and the second axis must be employees; each item will have the client
mask for one employee. The way to create that is by

clientlist ="1 0 enp_client whichwill comparethe entire client list
against each 0-cell of enp_cl i ent and form the resultsinto an array. Then,
(clientlist ="1 O enp_client) * enpprofit O will haveoneitem
per employee, each item having the amount billed to each client; we sum these
items to produce alist with the profit from each client, and use that to order the

client numbers. Solution:
custbyprofit =: nonad defi ne

clientlist \: +/ (clientlist="1 0 enp _client) *
enpprofit O

)

For our final problem in the payroll department, consider how to calculate
withholding tax on each employee's earnings. The tax rate within tax brackets will
be assumed to be the same for al employees. C code for thiswould look like:
int renderuntocaesar(shekels)
float shekels[]; // result: withholding for each employee
{

Il tax-bracket table: start of each bracket, ending with high value

float bktmin[4] = {0,10000,20000,1e9};

/] tax-bracket table: rate in each bracket

float bktrate[3] = {0.05,0.10,0.20};

int earns[nemp];

inti,j;

empearnings(earns); // get earnings for each employee

for(i = O;i<nemp;++i) {

shekels[i]= 0.0;
for(j = 0;j<sizeof(bktrate)/sizeof(bktrate[0]);++)) {
if(earnsJi] > bktmin[j]) {
float bktval = bktmin[j+1];
if(earnsJi] < bktval)bktval = earnsji];
shekelsJi] += bktval * bktrate]j];

}

In J, we will sum over the tax brackets and we must create a suitable array for the
summation. Theitemsin thisarray will be the amounts earned in each tax bracket.
Corresponding to the two if statements we will use conditional operatorsto discard
amounts earned outside the tax bracket. The conditionals will operate on each row,
so they will haverank 1, and they will look something like

O >. (bracket top <. earned) - bracket bottomwhichwill give
the amount earned in the bracket, set to 0 if the earnings are bel ow the bracket and
to the size of the bracket if above. We will create br acket _t op by shifting the
brackets left and filling with infinity (this corresponds to the bktmin[j+1] reference
in the C code). We could create ear ned by replicating the earnings for each
employee to form a 1-cell for each bracket—the code for this would be (#bkt m n)
$" 0 enpearni ngs '' —»butit'snot necessary to create that array explicitly: we
just use the implicit looping to cause each cell of enpear ni ngs ' ' tobe
replicated during the comparison with br acket _t op. Making all these
substitutions, noting that all the operations have rank 1, and summing at the end

over the items within each 1-cell, we get the final code:
render unt ocaesar =: nonad defi ne

bktmn =. 0 10000 20000
bktrate =. 0.05 0.10 0. 20

t=. ((1].!'._ bktmn) <"1 0 enpearnings '') -"1 bktmn
+/"1 bktrate *"1 (0) >. t
)

We used the temporary variablet so our sentences would fit on the page.

Let's write a program to count the lines and wordsin afile. Thisisasimple task,
and in C it might look like:
int[2] wc(f)

char *f; /* pointer to filename */

{
FILE fid;
int ct[2]; /*# words, #lines */
char c;
fid = fopen(f);
while(EOF != (c = fgetc(fid)) {
if(c =="")++ct[0];
if(c == LF)++ct[1];
}
return (ct);
}

Rather than loop for each character, in Jwe process files by reading the whole file
into alist of characters and then operating on the list. The monad ReadFi | e
(defined inthescriptj f or c. i] s) hasinfinite rank; it takes afilenamey and
yields as result the contents of thefile, asalist of characters. Oncethefileisalist,
itistrivial to compare each character against space and linefeed, yielding for each a
list of 1sat each position filled by the character; then summing the list givesthe
number of each character. Jcodeto do thisis:

NB. y. is string filenane, result is (#words), (#l i nes)
wc =: nonad define

+/"1 (" ',LF) ="0 1 ReadFile Y.

)

Suppose our user complains that we needs improvement: specifically, it should also

return the number of charactersin the file, should not count multiple consecutive
whitespace characters (including TAB) as separate words, and should treat the
trailing LF asaword delimiter aswell asaline delimiter. In C, we would respond
by adding afew more tests and flags, but in Jwe realize that a magjor change to the
program's function calls for a thorough rethinking.

To ignore multiple whitespace characters we need to define what an ignored
whitespace is, without using flags and loops. This part of the problem often calls
for creative thought; here we realize that a whitespace character isto be ignored if
the previous character is whitespace. That's easy, then: we just calculate a Boolean
vector, 1 if the character is whitespace, and then use shift and Boolean AND to

ignore multiple whitespace. The code to do thisisworth looking at; it is

sw= (-. 1]. w * w= f e ' ', TAB LF

wheref isthe contents of thefile. Note that we assign avalue to wjust before we
right-shift w . Thisislegal in J sentences are processed right-to-left, and the
interpreter has not seen the reference to wat thetimewis assigned. A similar
statement in C, for examplex = w + (w = 4); , would be undefined. Of course,
even though it'slegal in J, some would cavil—we will eventually learn waysto do
this without defining a variable at all—but | leave it to you to decide how far you
will detour to avoid jaywalking. Once sw has been calculated, the rest of the

programistrivial. Thefinal resultis:
NB. Version 2. D scard nultiple whitespace,

NB. and return (#chars), (#words), (#l i nes)

wc2 =: nonad define

f =. ReadFile vy.

sw= (-. 1]. w * w= f e. "' ', TAB,LF
(#f),(+/ sw,(+ LF = 1)

)

<< >> Contents Help

10. Compound Verbs

On New Year's Day my rich uncle gives me x dollars, which | add to they dollars |

aready have earning 4% interest. How much money will | have at the end of the
year? Simplein J—I just write1. 04 * x + vy, and| havethe answer, whether x

andy are scalarsor arrays. That's nice, but here's my problem: | expect hislargesse

to continue, and in my anticipation | have estimated his gifts for the next few years
asthelist x; | want to know what I'll be left with at the end. | need to pass each

year's starting balance into the calculation for the next year. | know what | want the
result to look like: it'll bev/ (| .Xx) , y whichwill beevaluatedasxn v ...

x2 v x1 v x0 vy .Butwhaisv? Theproblemwithl. 04 * x + yis

that it contains 2 verbs and a constant, and | need it all lumped into asingle verb so
that | can have the adverb dyad / modify the whole thing. One solution would be to
create the verb

v = dyad : '1.04 * x. +vy.'

after whichv/ (] .x),y works, but it's a shame to have to interrupt a J sentence

just to define a verb with such a puny function—I want magic words to let me say
(1.04 * + abracadabra..conbine!)/ (].x),y . Jhassuchmagic

words, and we will learn afew now.

The magic words will join verbs and nouns together, so they must be modifiers:
adverbs and conjunctions. Before we start, we need alittle notation to help with the
different cases we will encounter. Given aconjunction ¢ or adverb a, we call its

left operand mif itisanoun, or u if itisaverb. Similarly we call aconjunction's
right operand n if itis noun, v if averb. There are four possible waysto invoke a
conjunction(u ¢ v,mc v,u ¢ n,andm c n)andtwo foranadverb (u a
and m a) and they are defined independently. Moreover, the derived verb

produced by the invocation (the derived entity may be a noun, adverb, or
conjunction too but that isunusual) can beused asadyad (e.g.X u ¢ n y)oras

amonad (e. g. m a Yy), and those cases are defined independently aswell. You

won't get the cases mixed up, because verbs and nouns are so different that it will
seem natural for u ¢ n to bedifferent fromu ¢ v; just be aware that the variants

are many and that we will be learning atiny subset of Jstoolkit. Theadverb/ isan
example: we have learned about monad u/ , but dyad u/ isvery different, asism .

Verb Sequences—u@ v and u@

u@ v creates aderived verb of infinite rank that appliesv to its argument(s) and
then applies u to the result. In other words, u@v vy isthesameasu v y and
X u@v yisthesameasu x v y . Examples:

{. @/: 3141509
1

Monad/ : produced the permutation1 3 0 2 4 5 of which wetook the first
item.
123 +H@* 123
14
Dyad * produced1 4 9 whoseitemswe then summed. f ndi spl ay showsthe

details:
defverbs 'plus"O tines"0'

1 2 3 plus/@tines 1 2 3

u@ islikeu@ v except that the rank of the derived verb isthe rank of v (also
expressibleas (u@ v) " v because u" v is defined to have the function of u with

therank of v). My adviceisto stick to @ and avoid @unless you're sure you need
it.

The Difference Between u@ v and u@

Because u@ v and u@ have very similar definitions, and produce identical results

In many cases, almost every beginning J programmer confounds the two. The key
Isto remember that each sequence produces a new verb which hasarank. Inu@ v,

thisrank isinfinite, sothatinx u@v vy, thederived verb u@ v is applied to the
entirex and 'y, meaning that v is applied to theentire x andy and u is applied to
the entireresult of v . Inthe other case, the rank of u@ istherank of v, soin

X u@ vy theverbu@ isappliedtoindividual cellsof x andy, where the cell-size
isgiven by therank of v : for each of those cells, v is applied followed by u, and
the results from the cells are collected into an array.

If we try to take the sum-of-products using u@ instead of u@ v, we seethe

difference between the two forms:
123 +@ 123
1409

What happened? We thought we were multiplying the vectors and then taking the
sum. Because we used @rather than @ , the derived verb had the rank of dyad *,

namely 0, which means that the derived verb was applied to each cell: at each cell
we multiplied and then took the sum of the single cell. Inf ndi spl ay form,
defverbs 'plus"0O tines"0'
1 2 3 plus/@ines 1 2 3

pl us never got executed, because pl us/ was applied to 1-element lists, leaving in
each case the single element.

Many J programmers think of @and @ as establishing a different kind of
connection between u and v, with u@ v applying u to the entire result of v and
u@ applying u to result cells of v (where aresult cell is the output produced by
applying v to asingle operand cell). Such an interpretation makes it easy to
understand the operation of +/ @ : +/ isapplied on result cells of * , which are
scalars.

The connection interpretation of u@ correctly accounts for the results produced by

J, but as you use it you should be aware that it is inaccurate because it suggests that
Vv is executed against the operand(s) in their entirety. The actual cell-at-a-time

execution of u@ isdifferent in two ways. it is slower because the verb v must be
restarted for each cell; and if the temporary space required by u or v islarge, cell-at-

artime execution uses less space because the temporary space for each cell is freed
before the next cell is processed.

Making a Monad Intoa Dyad: TheVerbs[and |

The characters[and] arenot paired in J; each is an independent verb. Thisis
jarring at first but you'll get used to it.

[and] areidentity verbs: they haveinfiniterank, and] y and[vy both resultin
y . Asdyads, they pick oneoperand: x [yisx,andx] yisy . Theycanbe
useful when you have a monadic verb that for one reason or another must be used as
adyad with an unwanted operand: thenx v@ [y appliesvtox,andx v@] vy

appliesv toy . Example:
123{.@[] 456
1

Here are someother usesof [and] . We have aready met the first one, whichis
to display the result of an assignment:

a= 123
produces no typeout, but
Ja= 123

12 3

Second, [can be used to put multiple assignments on the same line, since each

application of [ignoreswhat isto itsright:
a= 5[b= "abc" [c = 0

Finally,] can be used instead of parentheses to separate numbers that would
otherwise be treated as a list:

5,"01 2
| syntax error
| 5 , "0 1 2
5,"0 (1 2)
51
52
5,"0] 12
51
52

Making a Dyad Into a Monad: u&n and m&v

A dyadic verb takes two operands, but if you know you are going to hold one fixed,
you can create a monadic verb out of the combination of the dyad and the fixed
operand; the monad's operand will be applied to whichever operand of the dyad was
not held fixed. The conjunction &, when one of its operandsis a noun, fixes an

operand to adyad: m&v Yy hasinfiniterank andisequivaenttom v y; u&n y has

infiniterank andisequivalenttoy u n . Examples:
286 01 2 3

1248
(-&2) 4 56

2 34

Now we can solve our original problem, whichwastoput 1. 04 * x + y into

thefoomx v y . v should be

1.04& @ +

which we can verify using f ndi spl ay as
defverbs 'plus”0 tines"0'
def nouns 'x y'
X 1.04&inmes @ plus vy

and to get my total savings after receiving all payments| use monad/ to apply that

verb for each payment, giving the expression:
1.04& @ +/ (].x) , vy

L et's take a moment to understand the parsing and execution of
1.04& @ + / . Theleft operand of amodifier includesall preceding

words up to and including the nearest noun or verb that isnot immediately
preceded by a conjunction. Thisisaprecise way of saying that modifiers
associate left toright. Inthephrasel. 04&* @ + /,thel. 04 isnot preceded

by a conjunction, so it isthe beginning of all the conjunctions' left operands, and the
verbisparsed asif it werewritten (((1. 04&) @ +) [/)

Note that |eft-to-right association of modifiers corresponds to right-to-left
execution. When thederivedverbmonad (((1. 04&*) @ +) /) is

executed, it performs according to the definition of monad u/ , with

((1.04&) @ +) astheu; execution of monad u/ insertsu between items, so
((1.04&) @ +) isexecuted betweenitems; at each such execution the dyad
+ is executed first, followed by the monad 1. 04&* . Fortunately, the result of the

parsing rulesis that conjunctions and adverbs, just like verbs, should be read right-
to-left.

If | wanted to spend half of my uncle's money , the amount | would be left with is
0.5 * 1.04& @ +/ (].x) , vy

No parentheses are needed, because 1. 04 isstill not preceded by a conjunction
andsol.04& @ + / (|.x),y isstll evauated beforethat valueis
multiplied by 0. 5 .

Once you get the hang of it, you will be able to understand and build composite
verbs of great power. That will be a useful skill to develop, because you never
know when you are going to want to make some sequence of functions the operand
of amodifier, and then you're going to have to be able to express the sequencein a
single compound verb. It will take alot of practice, as well as coding techniques to
break a gristly mass of conjunction-bound words into digestible pieces (we'll learn
them later). For the time being, be content if you can understand the ssmple
examples shown above.

<< >> Contents Help

11. Boxing
(structures)

The nouns we have encountered so far have all had items with identical shapes, and
with all atoms of the same type, either numeric or character. Y ou may be afraid that
such regular arrays are all that J supports and that you will have to forgo C
structures; and you may wonder how Jwill fare in the rough-and-tumble of the real
world where datais not so regular. This chapter will put those fears to rest.

| think we should get aformal understanding of boxing in J before wetry to relate it
to structuresin C, because the ideas are just different enough to cause confusion.
The box is an atomic data type in J, along with number and character. Aswith the
other types, asingle box is a scalar, with rank 0 and empty shape. Just as a numeric
or character atom has avalue, so a boxed atom has avalue, caled its contents. The
box is specia in that its contents can be an array while the box itself is an atom.
The boxing protects the contents and allows them to be treated as an atom.

Arrays of boxes are alowed, and as aways all the atomsin an array must have
the sametype: if any element is boxed, all must be boxed.

Various verbs create boxes. Monad < hasinfinite rank and exists for the sole

purpose of boxing its operand: < y creates abox whose contents are y, for example:
<1l

When abox is displayed, the contents are surrounded by the boxing characters as
seen in the examples.

Only certain primitives can accept boxes as operands; generally, you cannot perform
arithmetic on boxes but you can do other things like monad and dyad #, monad and

dyad $, and other primitives that do not perform arithmetic. The significant
exception to thisrule isthat you can use monad and dyad / : and\ : to order boxed
arrays. Comparison for equality between two atomsis not strictly an arithmetic
operation—you can compare two characters or a character and a number for
equality, for example—and it is allowed on boxes, both explicitly using dyad = and
dyad - : or implicitly usingdyad i . and dyad e. ; but there is an arithmetic flavor
to the operation: if the contents of corresponding components of the boxes are both
numbers, tolerant comparison is used.

Most primitives that accept boxes as operands do not examine the contents of the
boxes, but instead perform their operation on the box atoms themselves. Any
deviation from this behavior will be noted in the definition of the verb (we have not
encountered any yet). Examples:
3 $ < abc'
g &
| abc| abc| abc]
g &
The dyad $ was applied to the box, creating alist of identical boxes.
(<1 2),(<5), (< abc")
F-- o - - - -+
| 1 2| 5| abc|
F-- o - - - -+
The boxes were concatenated, resulting in alist of boxes. Note that the contents of

the boxes do not have to have the same shape or type.
1 01# (<1 2),(<5), (< abc")
+---4---+

| 1 2| abc]
+---4---+

The selection performed by dyad # is performed on the boxes, not on their contents.

Since applying averb may result in the addition of verb fills and framing fills, we
need to meet the fill element used for boxed nouns. Itisthenouna: . a: is
defined to be <0$0, i. e. an atom which is abox containing an empty numeric list

(note that thisis not the same thing as abox containing an empty string or an empty

boxed list).
a:

++

++
3 {. <5

+- +++

| 5] ||

+- +++

a. was used for thefills added by overtaking from this boxed noun.

The contents of abox can be any noun, including a box or array of boxes:
<< 23

|+ - 4]
112 3]
[+ 4]

The contents of abox can be recovered by opening the box with monad > .
Monad > has rank O (since it operates only on boxes, which are atoms), and its
result is the contents of the box:
> < 'abc'
abc
The contents of the box is the character string.
a = (<1 2),(<<5), (<" abc")
>0 { a
12
>1{ a
+- +
| 5]
+- +
Here we recover the contents of the selected box (which may be a box).
> (<1 2 3),(<4)
12 3

400
Remember that monad > hasrank O, so it is applied to each box and the results are
collected using the frame. Here framing fills were added to the shorter result. 0
was used as the framing fill because the contents of the boxes were numeric.

>a
| domai n error
| >a
Here the results on the different cells were of different types, so it wasimpossible to
collect them into an array.

If y isunboxed, theresult of > y isy .

Terminology

Before we go further with boxes, let's agree on some terminology. Because every
atom in an array must have the same type, it is reasonable to speak of an array as
being 'boxed' if its atoms are boxed, 'unboxed' otherwise (some writers use 'open’ as
asynonym for 'unboxed'). Trouble arises with aphrase like 'boxed list'. If | box a
list (e. 9. <1 2 3), doesthat give me aboxed list? If | have alist whose atoms are
boxes, (e.g. (<1), (<2)), isthat also aboxed list? Unfortunately, writerson J

have not agreed on terminology for these cases.

In this book, a boxed list will be alist that has been put into abox (it istherefore an
atom), and alist of boxesisalist each atom of which isabox. Higher ranks are
described similarly. If we say that a noun 'is boxed', that simply means that its
atoms are boxes.

Boxing Asan Equivalent For Structures InC

A C struct correspondsto alist of boxesin J, where each box in the list
corresponds to one structure element. Referencing a structure elementinC
corresponds to selecting and opening an itemin J. For example,
struct {
int f[] ={1,2,3};
char g[] ="abc";
float h = 1.0;
)
Isequivalent to
(<123, (<abc') , (<1.0)

A Cn-dimensional array of structures isequivalent to aJarray of boxes of

rank n+1. Thelast axis of the Jarray corresponds to the structure, and its length is
the number of structure elementsin the C structure.

C has no exact equivalent for a single box.

<< >> Contents Hep

12. Empty Operands

Every programmer knows that errors lurk near boundaries. for example, at the
beginning and end of arrays, or at the point in execution where an array becomes
empty. Our discussion of verb rank omitted one important situation: suppose there
are no cells? An operand with no cellsis said to be empty, and it gets special
treatment in J.

The definition of an empty operand is not as obvious as you might think. An array
iIsempty if it hasno atoms (i. e. hasaO in its shape), but whether an operand is

empty depends on the rank of itscells: it isempty if thereisaO in the frame with

respect to the cells operated on by theverb. Consider an array with shape
3 0 4 . Thisisan empty array, because it has no atoms. Asan operand of averb

withrank O, it hasframe 3 0 4, so there are no cells and the array is an empty
operand. Asan operand of averb withrank 1, it hasframe3 0 and againis
empty. Asan operand of averb with rank 2, though, it has frame 3 and is not
empty: there are 3 cells, each of which hasshape0 4 . Inthiscase each cell isan

empty array, but the operand is not empty. As an operand of averb with rank 3 or
higher, the frame is empty and each cell hasshape 3 0 4, so thereisone cell and

the operand is not empty, though each cell isan empty array. Y ou can see that an
operand may have items and yet be an empty operand, if the verb operates on cells
smaller than items, asisthe case in this example for averb of rank O or 1.

We are | eft with the question, What is executed when an operand is empty? For
something must be executed. It isfundamental in Jthat if averb produces a result
with shape s when applied to asingle cell, executing that verb over an array of that
cell—even an array of none of them—produces an array of results each with shape
s. The only way to find out what shape averb is going to produce isto execute it
and see—and that iswhat J does.

Execution On a Cdl Of Fills

If an operand isempty, i. e. its frame contains a0 and it therefore has no cells, the

verb is executed on acell c of fills. The shape of cisthe shape of acell of the
corresponding operand, and the value of each atom is the appropriate fill for that
operand: O for numeric operands,’ ' for characters, a: for boxes. The shapes

and typet of the result of executing the verb on c are noted. Then, the shape of the

overall result is the frame of the operand (the longer frame, for dyads) concatenated
with s, and the result is given type t. The result will necessarily be empty, because
it will have a0 inits shape (from the frame, which contained a0). Example:

$ +/"2 (3034 % 100)
304
Remember that a cell has a shape, even if there are none of them! Here the verb
monad +/ " 2 isapplied to 2-cells, each with shape3 4 . Theframe3 0 contains
a0, so the verb is executed on thefill cell cwhichis(3 4 $ 0). Monad +/ adds
the items of the cell, producing alist with shape4 . Theframe3 0 is
concatenated with 4 to give the shape of theresult,3 0 4 .

31:0 +/"2 (3 0 3 4 % 100)
4
Theverb 3! : 0 (one of dozens of special goodies provided by the! : conjunction
and documented under Foreigns) tells you the type of its operand. Here, 4 means
numeric type: theresult hasshape3 0 4 and numeric type.

$ <2 (3034 % 100)
30

31:0 <"2 (3034 9% 100
32
Here the verb monad < was applied to the samefill-cell c (3 4 $ 0) but it
produced a boxed scalar result (shape empty), so the shape of the overall result is
the frame 3 0 concatenated with an empty list, i. e. shape 3 0 and type boxed (as
indicated by the 32 returned by 3! : 0).

Note that the contents of each box in an empty array of boxes are all empty. Inthe
example<"2 (3 0 3 4 $ 100), execution on thefill-cell produced
(<3 4 $ 0), andif the frame weren't empty the box would contain an array; but
when the frame is empty, the value of the result is discarded; all that remainsisits
type.
If executing the verb on a cell of fills resultsin an error, execution continues as if
the verb had returned the scalar O :

5+ "
| domai n error
| 5 +
Trying to add 5 to a space is nonsense...

5+ "

$5+ "
0

(3!:0) 5+ '
4
...but adding 5 to an empty list of characters produces an empty numeric list. The
addition is attempted with a cell of fills for the empty operand (the values added are
5 ontheleft,” ' ontheright), the addition fails, and the error-fallback result of

scalar 0 is used; appending the longer frame (0) gives shape 0, numeric. Note that
y hereisan empty operand, but it nonethel ess has the longer frame (the scalar x has
empty shape and perforce empty frame).

Note: there is much special code in the interpreter to handle the cases of empty
operands. To improve performance, the interpreter recognizes a great many
combinations of verb, operand shape, and type, handling each with separate code.

In most cases the interpreter produces its result in accordance with the rules given

above, but in afew exotic casesit deviates. You are quite unlikely to encounter
these cases in practice; the most important oneis
$ > 0%a:
0
where the rules given above would predict ashapeof 0 0 . Enough applications

rely on shape O to keep this deviation in the system, at least as of release 5.01.

Empty cells

Aswe discussed above, acell, like any array, is called empty if it hasaO inits
shape. Whether the cells of an operand are empty isindependent of whether the
operand itself is empty.

How averb handles an empty cell is entirely up to the verb; the fill-cell processing
we discussed above does not apply. The J primitives generally preserve the type of
empty liststhat are 'data’ but ignore the type of empty lists that are ‘control
information’. So, even though characters are not allowable |eft operands of
dyad|.,"' |. i. 5 producesthesameresultas(0$0) |. i. 5, because
the rotation count is 'control information’. Incontrast,3 {. "' producesa3-
character string, while3 {. (0$0) produces a 3-item numeric list, because the
right operand of dyad { . is'data. The distinction between 'control information' and
'data is not clear-cut, but in all cases the interpreter does what you'd want it to, and
you should experiment if you need reassurance.

If Fill-Cells Are Not Enough

Sometimes executing averb on acell of fills smply won't do: maybe your verb
produces a side effect, or maybe it will go berserk if itsoperandisO . Inthose
cases, you must take stepsto ensure that it is not executed on an empty list. To help
you out with the most common case, in which the only way alist can be empty isto
have no items (that is another way of saying that the first item of the shapeis0), |

offer you a set of adverbs and conjunctions which you can have by executing
| oad ' system packages\m sc\jforc.ijs'

u | fany appliesthe verb u (which may be monadic or dyadic) provided y has
items; if y hasOitems, theresultof u | fany isy :
$(,/)i. 04
0
$(,/) Ifany i. 0 4
0 4
Sincei . 0 4 hasnoitems, | f any caused it to be passed through unchanged.

X u Ifanyx y producesx u Yy if x hasitems, ory if x hasno items.

The conjunctionu But i f nul I n can bemonadic or dyadic; it appliesu if y has

items; if y hasno itemsit producesaresult of n .
5+ Butifnull 6 (0)

5
5 + Butifnull 6 (0%$0)

6

X u Butifxnull n yproducesx u Yy if x hasitems, or n if x has no items.

<< >> Contents Help

13. Loopless Code | | | —Adverbs
\ and\.

We have learned about ordinary verbs that operate on the cells of an operand, and
we have learned u/ which operates between all the cells of its operand. In between

those extremes are verbs that operate on subsets of the cells of its operand. Inthis
chapter we will learn a couple of adverbs that apply verbs to subsets of cells chosen
according to simple rules; in later chapters we will learn how to form irregular
subsets.

u\ vy hasinfinite rank and applies u to successive prefixesof y . It appliesu to
thefirstitemofy (i.eu 1 {. y)toproducethefirstitem of theresult; it then
appliesu to thefirst 2itemsof y (i.e.u 2 {. y) to produce the second item of
the result; and so on, with the last item of theresult beingu (#y) {. vy .
Example:

9 8 7 6
1234
Thisjust gives the length of each prefix, not aterribly edifying result. The details
can beseenusing f ndi spl ay:

defverbs 'tally’

tally\ 9 8 7 6

Note that u is aways applied to lists, because{ . always producesalist. In
particular, the first item of the result comes from applying u to a 1-item list;
conversely, evenify isascaar, (#y) {. yisal-itemlist. Notealsothat if the
applications of u produce results of different shapes, framing fills are added to bring

the results to a common shape, just asif they were the results from applying a verb

to different cdlls:
]I\ 1. 3

cNeoNe!
=
N OO

The result is the prefixes themselves, assembled as items of arank-2 array.

u\ ismost often used when u isof theformu/ ,i.e. asu/\ . Thentheverbu/ is

applied to the successive prefixes. Here are some commonly-used forms:
+\ i. 6

0136 10 15
+/ means 'total theitems,so+/\ i. 6is(0), (0+1), (0+1+2), (0+1+2+3)
... 1. € therunning total of theitemsof y .

>/\ 95310 3 2 20
9 99 10 10 10 20

For each item of y, theresult is the largest item occurring in the list up to that item
ofy .

</\ 0000110010
0000100000

</\ y onaBooleanlist (i. e. one containing only O or 1) isatricky way to turn off
al 1sfollowing thefirst. See how it works: </ 'y will produce aresult of 1 only in
the case wherethelast item of y is1 andtherest are0,i.e.0 < 0.0 < 1,s0</

\ y producesal for that prefix and O for all the others.
*/\V111100111
111100000

Keep theleading 1sof y, but set therestto O .

u\. yissimilartou\ vy, exceptthatitappliesu tosuffixesofy . Itappliesu to
dlofy (i.e.u 0 }. vy)toproducethefirstitem of theresult; it then appliesu to
al but thefirstitemofy (i.e.u 1 }. y)to produce the second item of the result;
and so on, with the last item of theresult beingu ((#y)-1) }. y (thatis u
applied to the last item of y). Example:

+\. 1. 6
15 15 14 12 9 5
The running total now starts at the end and runs backward. f ndi spl ay showsthe
details, and points out a subtlety of u/ \

defverbs ' pl us"0O'

plus/\. <"0i. 4

Up till now we have applied unboxed inputs to verbs defined by def ver bs and

gotten useful results. Why then must we box the atomsof i . 4 before giving them
topl us/\ . ? Thereason isthat theresult of averb defined by def ver bs is

boxed. Normally itisjoined in an array with other boxed outputs. Here, the last
result, the one containing just the cell 3, is not produced by pl us; rather, since

pl us/ isapplied to al-element list, the cell isthe unmodified input cell. If we
had not boxed theatomsof i . 4 (i. e. if wehad executed pl us/\. 1. 4),the
unboxed 3 would be joined to the other boxed results, and that would have given us
adomain error. Whenever youuseu/\ y oru/\. Yy youmust make sure that the
result of u has the same type (character, numeric, or boxed) asy .

Thedyadicformx u\ y hasrank O _ and appliesu toinfixesof y . Aninfixis
a seguence of adjacent items. x givesthe length of the infixes. Thefirst item of the
result comes from the infix of length | x (that is, the absolute value of x) starting
with the first item of y, and subsequent items of the result come from subsequent
infixes. If X ispositive, successive infixes start at successive itemsof y (therefore,
they overlap), and the last infix is the one that ends with thelast item of y; if X is
negative, infixes do not overlap: each one starts with the item following the last item
of the previousinfix, and the last infix may be shorter than | x . Examples:

2]\ 100 2 110 6 120 8 130 3
100 2
110 6
120 8
130 3

Thisisaconvenient way to reshape alist to have 2 items per row when you don't

know how many rows there will be.
2 -/\ 10 8 6 4 2

2222

2 -~/\ 10 8 6 4 2
2 2 2 2
Applying - / between each pair of items (with adjacent pairs overlapping) takes the
backward difference of each pair. To take the forward difference, subtract the first
from the second using - ~/

3>/\12382315431232
3888355512 12 12

This takes the maximum over arolling window 3 items wide.

X u\. yissmilarto x u\ vy, butitoperateson outfixeswhich contain all of y

except the corresponding infix. Itsuses are few.

The interpreter treats empty operands with care, so that you don't have to worry
about them as special cases. If you simply must know the details, here they are: If u

\ or u\. isapplied where there are no applicable subsets of y (either becausey is
empty or because it is too short to muster even asingleinfix), u isapplied to alist
of fillsf and the result has 0 items, each with the shape and type of the result of
uf . Theitemsof f have the shape of itemsof y, and the length of f isO for
monad u\ or u\ . , or the length of an infix or outfix for dyad u\ oru\. . For
example:

$2]\Vi. 13
023
We were looking for infixes of length 2; each one would have had shape 2 3, but
with only oneitem iny we have insufficient datafor an infix. So, we create a 2x3
array of fillsand apply theverb] toit; the verb returns shape 2 3 and the overall
result isalist of O items with that shape.

$JVi. 023
0023
The cellsof y have shape 2 3 so we apply theverb] toalist of O of them (i. e.
withshape 0 2 3). Theresult of] hasthe same shape as the input, and the final
result isalist of O items each with shape 0 2 3, 1. e. with overall shape
002 3.

<< >> Contents Help

14. Verbsfor
Arithmetic

It's time to build your J vocabulary with afew more verbs.

Dyads

x !y (rank 0 0) number of waysto choose x things from a population of y
things. Moregeneraly, ('y) % (!'x) * (!'y-Xx)

X % vy (rank 0 0) Thexthroot of y

X #. y (rank1 1)y evaluated inbasex, i. e. theatomsof y aredigitsin the
base-x representation. X and y must have the same length, unless x isascalar in
which caseitisreplicated to thelength of y . A place-valuelist p is calculated,
in which each item is the product of all the subsequent corresponding items of x;
formally, thisisp=. */\ . }. x, 1 (thelast item of p isaways 1 and the first
item of x isimmaterial). Then eachiteminy is multiplied by its place value and
the results are summed to give theresult (formally thisis+/ 'y * p). Inthe

simplest case x isascalar:
10 #. 2 3 4

234

Thedigits2 3 4 interpreted as base-ten digits.
16 #. 2 3 4

564

The same interpreted as base-sixteen digits.
16b234

564

as expected (16b234 is 234 in base 16, equivalent to 0x234).

Hereis an example where x isalist, converting time in hours/minutes/seconds to

seconds since midnight:
24 60 60 #. 12 30 O

45000
Thelist p was3600 60 1 . Thefirstiteminx has no effect on the result.

X #. y (rank1 0) Thisistheinverseof x #. vy exceptthat if thefirst digit
of the result is not between O and { . X, it ischanged (modulo x) to lie within that

range. For example,
24 60 60 #: 45000

12 30 O

The normal case, converting the number of seconds since midnight back to hours/

minutes/seconds.
24 60 60 #. 36 30 O

131400
24 60 60 #: 131400
12 30 O

Here the result would have been 36 30 0O, but 36 isoutside the range O to 24,
soitisreplaced by 24| 36, whichis12 . If you want thefirst item of the result

to be unconstrained, make the first item of x either O or _ :
0 60 60 #: 131400
36 30 0

Note that monad #: and monad #. are similar to the dyadic formswith x set to

2 . Tokeep#: and#. straight in your mind, remember that the one with asingle
dot (#.) produces a single scalar result, while the one with multiple dots (#:)
produces a list result.

Monads (all rank 0)

Iy factorial of y (more generally, the gamma function I"(1+y))

Ay same as (the base of natural logarithmse) ~ 'y

N

same as (the base of natural logarithmse) ~. vy
+: sameasy * 2
- sameasy % 2

sameasy " 2

%

< K <K K

sameas2 % vy

Y ou can see the common feature in the arithmetic primitivesending in : .

15. Loopless Code |V

In our quest to write loopless code, we first learned about Js implicit looping, which
we can use to replace loops in which the same function is performed on each cell;
then we learned monad / which lets us accumulate an operation across all the items

of anoun, and\ and\ . which apply verbs to certain regular subsets of anoun. We

now examine cases in which the operations on the cells are different, but where
there is no sharing of information between cells.

A Few J Tricks

In these irregular cases, the J solution isto create an array that contains control
information describing the difference between the cells, and then create a dyadic
operation that produces the desired result when given a cell of control information
and acell of data. Writing code thisway can seem ingeniously clever or awkwardly
roundabout, depending on your point of view; we will ssmply accept it asa
necessary part of coding in J, and we will learn to be effective with it. What follows
Is a hodgepodge of tricksto treat cellsindividualy. If wewerewritingin C, we
would use if statements, but since if by necessity involves a scalar comparison we
will avoiditin J.

To add one to the elements of y whose values are even:
y+0=21]yvy

To double al the elements of y whose values are even:
y *1+0=21]1vYy

To create an array whose even-numbered elements come from y and whose odd-
numbered elements come from x :

(x * -.sv) +y *svo= (#y) $10

which, homely asit is, isastandard idiomin J. This expression works only for
numeric operands; for general operands we can select using a selection vector sv
with

sv {" 1x,.Yy

To replace lowercase 'a through 'f' with uppercase ‘A’ through 'F' in a string that
contains only ‘a through 'f":
(' abcdef' i. y) { ' ABCDEF

Extending the previous example: to replace lowercase 'a through 'f' with uppercase

‘A’ through 'F' leaving other characters unchanged:
(('abcdef' , a.) i. y) { 'ABCDEF , a.

To understand this you need to know the special noun a. which isthe character

string containing all the ASCII charactersin order. Work through a simple example
until you understand how this works—it's a good example of how Jthinking differs
from C thinking.

A similar problem: given alist of keysy and alist of dataz, with each item of y
corresponding to an item of z; and another list of search keys x; and a default
elementd : returntheiteminz corresponding to theitem of y that matches the
item of x, or d if theitem of x didn't match anythinginy :

(yi.x){z,d

To evaluate the polynomial defined by x, so that if for examplex is2 1 5 the
result is 5y2+y+1:

+ X *'y MNi. # X

(and now you can seewhy 0”0 is1).

To evaluate the polynomial defined by x going the other direction, so that if for

examplex is2 1 5 theresult is 2y2+y+5:
y #. X

The last example, due to Roger Hui, has a power and economy that amount to
sorcery. Suppose you had alist, and you wanted to know, for each item in the list,

how many identical items appeared earlier inthelist. Y ou could find out this way:
y = 2221214642

t - (i.~y) {t = [:1]:y
012031001414
Take alittle time—maybe a long time—to see how thisworks. The/: /: yisan
idiom we discussed earlier—did you figure it out? It givesthe ordinal of each item
of y, in other words the rank of the item among theitemsof y . If there are equa
items, they will occupy a block of successive ordinals. In this example you can see
that t doesindeed hold the ordinals:

t
2340517986
(1.~ y) takestheindex of eachitem of y withiny itself, in other words, for each

item, the index of the first item with the same value:
(i.~y)

0003036760
Sincetheidentical itemsof y are ablock of successive ordinals,and (i . ~ y)

comprisesindexes of first itemsin blocks, we can find relative positions in blocks
by subtracting the ordinal of the first item with a value from the ordinals of all the
other items with the same value. That iswhat this expression does. Lovely!

In addition to the foregoing ad hoc means of varying the operation cell-by-cell Jhas
some language features expressly designed for that purpose:

Power/If/DoWhile Conjunction u”: nand u”: v

u”: n y hasinfiniterank. It appliesthe verb u toy, then appliesu to that result,
and so on, for atotal of n applications of u, ; in other wordsu u u...
(n tinmes) y,asweseewhenitisused withthe>: (increment) primitive:

> 5
6

>: N2 (5)
7

>N 3 (5)
8

f ndi spl ay givesapicture of what is happening:
defverbs '"incr"OQ
i ncr™: 3 (5)

X u™:n yasohasinfiniterank. Itevaluatesx u x u..(n tinmes) y . A
simpler way to say thisisto say that it isequivalent to x&u”™: n y, sincex&u Yy is
equivalenttox u vy .

2 * 2*2*2*5
80

2 *N 4 (5)
80
ur:v yandx u”:v y aredefined smilarly: first v is evauated (monadically or
dyadically as appropriate), and thenresultisused asn . Formally, u™: v y isu”:
(v y) yadx ur: v yisx u: (x v y) y . Withdyad u”: v, it will be
rarethat x and y both make sense as an operand into both u and v, and you will

usually use @[and @] to causeu or v to operate on only one operand. For
example, to coalesce the x+1 leading axes of y into one axis, you could usex , /

@)™ [y:
1,/@]™~[i. 223
0 1 2
3 4 5
6 7 8
9 10 11

2 . /@]™~[i. 223
0123456789 10 11

Thisis hardly acommonplace usage, but let's analyze it, since conjunctions are still
new tous. Theverbisparenthesized ((,/) @]) ~: [, sothefirst thing executed

iIsu™: v wherevis[. x [yisjustx, sox isgoing to tell ushow many timesto
apply X&((, /) @]) . Now,x& (,/) @]) vy isjustthesameas,/ v,
because the purpose of the @] isto ignore the left argument that was put on by

X& . Weremember monad, / from our discussion of monad u/ : it combines the
2leadingaxesofy . So,x ,/ @] ”:[Yy will combinethe 2 leading axesof y, x
times; in other words, combine the x+1 leading axesof y .

Our interest in u”: n isnot in applying averb several times—usually we could just
write the instances out if we needed to—but rather in 4 specia valuesofn : 1,0,
1,and _ (infinity). u”: O, meaning apply u 0 times, issimple: it does nothing, with
the result y in both dyadic and monadic forms. u”: 1 means apply u once.
Thinking about that, we see that if n isrestricted to the valuesO or 1, *: n means
"If n' :u™:n yisy, but modified by application of u if nis1. If wewantto
apply the verb u only on theitems of y for which x is1, wecanwritex u@] ”:
[" 1y :

100210>@"["_1(12 3 4)5)
22355

Whennis_,u”: means'keep applying u until the result doesn't change'. Thisis
obvioudly a splendid way to perform a numerical calculation that converges on a
result; for example if you take ...cos(cos(cos(cos(y)))) until the result stops
changing, you get the solution of the equation y=cos(y):

2 0.":_ (0)
0. 739085

but that's not why welove”: . Consider theverb u”: v~: _ (either monad or
dyad), with the understanding that v always produces a Boolean result of O or 1 . It
isparenthesized (u”: v) . _,i.e u”: v repeated until the result stops changing.
Now, if v evaluatesto O, theresult of u”™: v will certainly be the same as its input
because u will not be executed; if v is1, u™: v causesu to be executed once. So

this construct islike C'swhile(v(y))y = u(y); (except that the Jversion also stopsiif
theresult of u y isthesameasy). The great thing about having a verb to do this

loop rather than a statement is that we can give the verb arank and apply it to cells,
with independent loop control on each cell:
2 *M(100&&@])"™: "0 (12357 9 11)
128 192 160 112 144 176
Read this as 'for each atom of y, double it aslong as the value is less than 100'.

u”: 1 isalsoof great interest but we will discussit later.

One last point:
> N1 2 4 (5)
6 79

Asyou can see, n may be an array, inwhich caseu”: nl vy isrepeatedly evaluated,
with n1 assuming the value of each atom of n, and the results are assembled using
the shape of n asthe frame with framing fills added as needed. Pop quiz: express
the preceding English sentencein J.

Solution: u™: n yisequivaentton u@]":["0 _ y,andx u™:n yis
equivalentton x&uU@] ":["0 _ vy . If you can make sense of the answer, you

should be content with your progress. If you came up with either half on your own,
you are entitled to claim Apprentice Guru status.

Tieand Agenda (switch)

TheTieConjunctionu v un mv mn

The backquote character * isthe conjunction named Ti e. = isone of the few

conjunctions that produce anoun, so it is neither monadic or dyadic. If an operand
of * isaverb, it isconverted to its atomic representation which is a noun form from

which the verb can be recovered; then the two operands mand n (both nouns now
since any verb was converted to anoun) are joined by executingm n . So, the
result of = applied between the members of a sequence of verbsisalist of special

nouns, each of which is the atomic representation of averb. We are not concerned
with the format of the atomic representation, nor will we create or modify an atomic
representation (that's Advanced-Guru work); we will be content to use the values
produced by © . Anexampleis:

R 05 (+)
S ST +
<] 9 +-+- - 4]
| [/] +-+]]
|1 T+
|
|
+

+

[[+ +]
| +- +- - - +|
B +

+ - - — +

+- +-
| +| -
| |
| |
| |
||
+- +-

What makes the result of © special is not the boxing, but the fact that what'sin the

boxesis not just any old data, but data in the format that can be used to recover the
original verbs. Once created, theresult of © can be operated on like any other noun:

a=. +. - "*0(+)
3{ a
+- +
| %
+- +
00101#a
S N TR +
|] - 4o 4]
RIGER]
RIRIEN
IR
|44
S N TR +

In English grammar, agerund is aform of averb that is used as anoun, for example
the word cooking in Cooking isfun. Theresult of * inJisaso called agerund, and
we can see that the nameis apt: agerund in Jisaset of Jverbs put into aform that
can be used asa Jnoun. It hasthe latent power of the verbs put into a portable
form, like nitroglycerine that has been stabilized by kieselguhr to become

dynamite. The blasting cap that setsit off is

The Agenda (switch) conjunction m@ v

M@ v (either monad or dyad) uses the result of v to select averb from thelist of
verbs m and then executes that verb.

M@ v requires that mbe avalid gerund. It produces a verb which can be used

monadically or dyadically and whose ranks are the ranks of v . The operation of
thisverbisasfollows: v y (if monadic)orx v y (if dyadic)isevaluated; it
must produce ascalar result r thatisavaidindexintomi.e. (-#m <: r and
r < #m . Then, itemr { mis selected—it is the atomic representation of one of
the verbs that went into m—and that atomic representation is converted to averb

u . Findly,u y (if monadic)orx u y (if dyadic)isexecuted, anditsresultis
the result of the execution of M@ v .

So,ver b0 verbl verb2 @ v y evauaesv vy, resultinginr, andthen
executesver br y . Thedyadiccasex verbO verbl verb2 @ v y
evaluatesx Vv Yy, resultinginr, and then executesx ver br y . Theverbsmay
be any valid verb: a primitive, acompound verb, or a named verb.

Examples:
(1&+) (-&)@(2&) "0 i. 6
1 13153

This added 1 to each even number and subtracted 2 from each odd number. Note
that we had to assign rank 0O to the overall combined verb, because otherwise the
rank of (1&+) (- &) @ (2&|) would have been therank of 2& whichis

infinite because m&v has infinite rank.
5 3 1135+ -@(0&&@["0) 2
7 5 3357
Subtract 2 from elements of x that are negative, add 2 to elements that are
nonnegative. Here we assigned the rank to the selector verb in m@ v ; that rank was

then inherited by mM@ v .

5 uname’+] @ (*@]"0) 505
(Remember that monad * isthe signum function returning 1 for negative, O for
zero, and 1 for positive operands) For each atom of y, execute5 unane y ify is
zero,5 + y ify ispositive, and passy throughunchanged (5] y)ifyis
negative. uname must be defined elsewhere. This expression makes use of
negative indexing: if * y isnegative, verb number _1 (thelast item) istaken from

the gerund.

M@ v obviously can be used with asmall rank to afford great control over what

operation is performed cell-by-cell, but if you do that it will have to apply J verbs on
small operands, which isinefficient. After all we've been through, | feel confident
that | can trust you not to use m@ v with small rank unlessit's absolutely necessary.

<< >> Contents Help

16. MoreVerbs For
Boxes

Dyad ; (Link) And Monad ; (Raze)

Dyad ; hasinfinite rank. It boxesits operands and concatenates the boxes:
‘abc' ; 1 2 3

Dyad ; isthe easiest way to create alist of boxes:
‘abc' ; 123 ; (i. 2 2)

| abc| 1 2 3|0 1
| |2 3]

Did you notice that | gave you an inaccurate definition? If dyad ; just boxed the

operands and concatenated, its result would be like
dyadsem colon = dyad : '(<x.) , (<y.)'
‘abc' dyadsemicolon 1 2 3 dyadsem colon (i. 2 2)

| abc| +----- +- - -+
| 111230 1]

o1 123
I R

That's not the list of boxes we wanted! Actually dyad; ismoresubtle:x ; vy
always boxes x, but it boxesy only if y isunboxed. That produces the behavior we

want most of the time; the exception iswhen the last item in the list is boxed
aready:
(<"abc'); (<" def');(<' ghi")

| +---+| +---+| ghi |
| | abc|||def|] |

R E RPN

If we expected all the items to be boxed the same, we are disappointed. We must
develop the habit that when we use a sequence of dyad ; swe box the last operand
(unlesswe are sureit is unboxed, and even then we might do it to reinforce our
habit):

(<"abc'); (< def');<(< ghi")

| +-- -+ +---+] +- - - +|

| [abc]| | [def ||| ghi]]|
| +-- -+ +---+] +- - - +|

Monad ; (infinite rank) removes one level of boxing from an array of boxes,

concatenating the contents of all the boxesinto onelong list. The shape of the
operand of ; isimmaterial. If the items do not have a common shape—the items of

the contents of the operand boxes, mind you, not the contents themselves—they are

brought up to a common shape as described below. Examples:
‘abc';'d' ;"' ef’

F- - o - - -+

| abc| d| ef |

F- - o - - -+

A list of boxes.
, ‘abc';'d";'ef’

abcdef

The items, which are scalars, are joined into one long list.
1, 2 3 4

1234

It works for numbers too.
(1. 23) ; (i. 2 3)

012
345
012
345
Theitems are lists, so the lists are concatenated into arank-2 array.
, 12 1. 23
120
012

345

Here the second box contains arank-2 array, while the first box contains a rank-1
array. Theitemsof highest rank have rank 1, which means that rank-1 items are
going to be lined up as the items of arank-2 result. Any contents of lower rank are
brought up to the rank of the highest-rank contents, by adding single-length leading
axes, after that operation, the items of all the modified contents have the same rank
(but not necessarily the same shape). If the shapes of any of those items differ, verb
fills are added to bring each axis up to the length of the longest axis; then the items
are assembled into alist whose rank is 1 higher than the rank of an item. Inthis
example the concatenated items have rank 1, and verb fill was added to bring the
single item of the first box up to alength of 3.

1, ,. 234
111
2 34

There is one amendment to the processing as described above: if any of the contents

Isan atom, it isreplicated to bring it up to the shape of an item of the result before

items are concatenated. Herethe atom 1 wasreplicated tobecomel 1 1 .
 (,1) ; ,: 234

100

2 3 4

Here the first box was a 1-item list rather than an atom, so it was padded with fills
rather than replicated.

When you have an array of boxes, the difference between opening it with monad >
and with monad ; isthat monad > keeps the frame of the array of boxes, and brings
every opened box up to the same shape, while monad ; just runs the items of the
contents together into one long list with no regard for the shape of the array of boxes.

Dyad, Revisited—the Case of Dissimilar Items

When we discussed dyad , we glossed over the treatment of operands with items of
different shapes. Now we can reveal that the padding and replication for dyad, is
just like what monad ; does on the contents of boxes. Infact, x , Yy isequivaent

to; (<x),(<y)
VerbsWith More Than 2 Operands—M ultiple Assignment

Dyad ; ispart of the standard J method of passing many operandsto averb. The
invocation of the verb normally looks like this:

verbnanme opl ; op2 ...;< opn
(the < isneeded only if opn isboxed), and the verb that is so invoked looks like:
ver bname =: nonad defi ne

‘opl op2 ...opn' =. Y.

remai nder of verb

)

Theline' opl op2 ...opn' =. y. isJshandy multiple assignment. When

the target of the assignment is a string, the string is broken into words and the words
are matched with items of the value being assigned (they must match one-for-one or
alength error results). Then, each word from the string is used as a name which is
assigned the corresponding item of the value. If the value being assigned is boxed,
each item is unboxed before it is assigned.

When defined and invoked as shown above, the variablesopl, op2, etc. during
execution of the called verb will hold the values of op1, op2, etc. in the calling
verb.

Multiple assignment is not restricted to parameter-passing; you may useit asyou
seefit, if only to save typing. | have found it very useful in loading configuration
parameters from afile: the file contains both noun-names and the values, with the
values being assigned to the names by multiple assignment. Such adesigniseasily
portable from release to release of a product, since the file has no 'format'—it simply
defines all the names it understands.

A multiple assignment can produce verbs and modifiers aswell as nouns. You put a
' ° ' character before your list of names:

' “nanel nane2.. =. list of atom c representations
and each nane is assigned the entity described by theat om ¢
represent ati on. Each atomic representation isanoun, but it may describe any
kind of entity. Usually your entities will be verbs, and then they can be converted to
atomic representations by ~ , asin

‘“add subtract mult div' = + - * %

Dyad { Revisited

Now that we know about boxes, we can understand the full description of the
selection verb dyad{ . Inthe general form, theleft argument of x { y isabox

whose contentsis alist of boxes. Pictoridly, itis

We will cal the inner boxes (i. e. the items of the contents of the box x) the

selectors. Thefirst selector gives the indexes to be selected along the first axis (i. e.
axis 0); the second selector gives the selections for axis 1; and so on.

1. 22 3
O 1 2
3 4 5
6 7 8
9 10 11
<0;1;1
+----co-- +
| +- +- +- +|
| [O] 1] 1] |
| +- +- +- +|
+----co-- +
(<0;2;1) {i. 223
4

If not all axes are specified, the selectors are applied starting with the leading axis
and any axes |eft over at the end are taken in full:

(<0;1) {i. 223
345

Each of the selectors may contain either ascalar or alist. If aselector containsa
scalar, the corresponding axis will disappear from the shape of the result, asin the
examples above. If aselector containsalist, even alist with only one item, the
corresponding axis will remain in the shape of the result (its length will be the
length of the selection list):

(<0;10 {i1. 223
345
012
We select two rows of item number 0. The rows stay in the order we requested
them, and the result has rank 2.

(<0 2;10;2) {i. 223
5 2
11 8

Understand where each number came from. We aretaking a2x2 array of 1-cells,
but only item 2 from each 1-cell. That leaves a 2x2 result.
(<0;,1) {i. 223
345
$(<0;1) {i. 223
3
$(<0;,1) {i. 223
13
In the last example we are requesting alist of 1-cells; even though the list has only
oneitem, itsaxis remainsin the result.

If aselector contains a box (rather than the usual numeric), it calls for
complementary selection along that axis: the contents of that box (i. e. the contents
of the contents of the selector) indicate the indexes to exclude from the selection,
and all other indexes are selected. Such a selector is considered to be specifying the
list of non-excluded indexes, so the corresponding axis remainsin the result.
Example;

(<0; 1; <<1)

R S
O] 1| +-+[|
| 121

|
||+
R S

(<0;1;<<1) {i. 223
35
We select asingle 2-cell, and from that a single 1-cell, and within that we select all
except item 1. TheresultisaZ2-item list. Note that we had to put an extra< after
thelast ; to ensure that the contents of the last selector was boxed.

(<0; (<0%$0); 2)

| +- +- - +- +|
|| O] ++| 2| |
NENERR Y

[T T++ T

| +- +- - +- +|

(<0;(<0%0);2) {i. 22 3
25
Complementary indexing can be used to select al of an axis, asin this example.
We request all of axis 1 except the named items, and then we name an empty list:
we get al theitems. Thistrick iscalled for when we need to specify a selector for
some axis after the axis we want to take completely (trailing axes can be taken in
full smply by omitting their selectors).

If our useof x { Yy doesnot require any selector to specify alist (i. e. each selector

isascalar), we are allowed to omit the boxing of the selectors. Thisleavesx asa

boxed numeric list (or scalar) in which the successive items indicate the single index
to be selected from each axis. Thisform, inwhichx is<i , j, k.., corresponds to

C'sarray[i][jl[k]... .
<0 1
+---+
|10 1]
+---+
<0:1
+--- - - +
| +- +- +|
| 10]1]]
| +- +- +|
+--- - - +
(<0 {i. 223
345
(<0;1) {i. 223
345

Theresults areidentical.

Asafina ssimplification, if the selection isjust asingle item from axis 0, the | eft
operand of dyad { may be left unboxed. Thisisthe form in which we first met
dyad{ . Now that you havelearned dyad { completely, take this quiz: what isthe
differencebetween0 1 { yand(<<0 1) { y?

0O1{i. 6
01

(<<0 1) {i. 6

01

Answer: the results are identical, but because the left rank of dyad{ is0,0 1 { vy
appliesdyad { twice, once for each atom of 0 1, and collects the results into an
array, while(<<0 1) { vy appliesdyad{ just once.

Split String IntoJ Words: Monad ; :

Monad ; : splitsastring of charactersinto Jwords, putting each word into a box of
itsown. Each word isalist of characters, so the result of monad ; : isalist of

boxed lists:

. "Whrds, words; and nore words.'
+----- +-4----- I e +
| Wor ds|, | wor ds| ; | and| nor e| wor ds. |
+----- +-4----- I e +

Monad ; : isahandy way to get boxed character strings, or to break an input stream

into words if your language has word-formation rules similar to Js. Be aware that if
the operand has an unmatched quote, monad ; : will fail.

Fetch From Structure: Dyad { : :

Dyad {: : (thisisasingle primitive) hasleft rank 1, right rank infinite. It selects an
atom from an array of boxes and opensit; it is therefore analogousto the . (class

member) operator in C:

1 {:: '"abc';1 2 3; i. 2 2
123
Item 1 was selected and opened.

x {:: vy cangothrough multiplelevelsof structurereferencing at once. If x isa
list of boxes, the first box must be avalid left argument to dyad { ; it is used to select
an item of y, which is then opened; the next box of x selects an item from that

opened box of y, which item is then opened; and so on till x is exhausted:
structl =: '"abc' ; 1 2 3

]struct2 =: "'def';structl;4 5 6
T +----- +
| def | +---+----- +|4 5 6|
| [labc|1 2 3]| |
I e |

Here we have a structure in which item 1 is another structure.
1 {:: struct?2

We select and open item 1, resulting in the enclosed structure.
(1;1) {:: struct?2
12 3
We select and open item 1 of st r uct 2, and then open item 1 of the enclosed

structure.
(1;,<<1 0) {:: struct?2

If the last selection specifiesalist of items, as in this example, the selected boxes
are not opened. Note that the Dictionary's description of dyad { : : incorrectly

indicates that the boxes are opened.
(1,<<,1) {:: struct2

Even if the list contains only one item, it is not opened.

Only the last box of x may specify selection of alist of boxes:
]Ja = <"0i. 33

+- - +- +

| 0] 1] 2]

+- - +- +

| 3] 4] 5]

+- - +- +

| 6] 7] 8|

+- - +- +

a isa3x3 array of boxes.
(1;1) {:: a

| rank error

| (1;1) {.:a

Thefirst selection took item 1 of a . Thiswasa 3-item list of boxes, and it is

inadmissible to open the list and perform further selections.

Notethat if x isunboxed, dyad{: : first boxesit and then usesit for selection. The
Dictionary's description does not mention the boxing step.

Report Boxing Level: Monad L.

Monad L. hasinfinite rank and tells you the boxing level of its operand. Boxing
level is defined recursively: if y is unboxed or empty, its boxing level isO;
otherwise its boxing level is one greater than the maximum of the boxing levels of

its opened items:
1l ;<2 ;<3 ;<4

S N R +
| 1] +-+----- +|
| |]2] +-+-+]|
|11 [13[4]]]
IR
I RSESEEREE
S T SRR +

L. 1 ;<2 ;<3 ;<4
3

L. {. 1 ;<2 ;<3 ;<4
1

Y ou can use monad L. to decide how many levels of boxing to remove:
>N L. <<<6
6

Note that an empty boxed list shows boxing level of O, but the type revealed by
3!: 0is'boxed. Also, fill elements for an empty boxed list are the boxed fill

element a :

L. O$a:
0

3:0 (0%a:)
32

3 {. O%a:
++++
111
++++

<< >> Contents Hep

17. Verb-Definition
Revisited

Before we discuss verbs in more detail, let me point out that the colon character (:),

which you have seen used mostly as a suffix to create new primitives, has its own
meaning when it is used alone or asthe first character of aprimitive: : isa

conjunction,andsoare: . and:: . Thedot (.) aso hasameaning but we won't
be discussing it for awhile. If youwant. or: not to be treated as a suffix, make
sureyou precedeit by aspace: 3 : 'y.' definesaverb, while3: 'vy.' applies

theverb 3: tothenoun'y. ' producingtheresult 3 .

What really happensduringm : nand ver b
def i ne

Now that you're getting older it's time we had alittle talk. About verbs. Up till now
the verb-definition sequence has been exotic and peculiar, with aunique form; a
possessor of great power but shrouded in mystery. We know only that it somehow
breathes life into lines of text:

nane =: verb define

verb definition

)

or

nane =: verb : 'verb definition

leaving nane averb.

With alayer of cosmetics scrubbed off it is more approachable. I1n both casesthe
conjunction m : n isat work. mmust be a number, and n may be either a character

string or the special number O (aboxed list is aso possible but we consider it a
curiosity). m : n executes the conjunction : with the arguments mand n; the result

of this execution is an entity which can be any of the primary parts of speech (noun,
adverb, conjunction, verb), and mindicates which one: m=0 means noun, 1 means
adverb, 2 means conjunction, 3 means verb, 4 means dyadic verb; 10-13 have
meanings we will learn later. Y ou can remember the numbers 0-2 because nouns
take no operands, adverbs 1, and conjunctions 2; verbs are last in the precedence

order so they get number 3, and dyadic verbs with their extra operand get number 4.
If n isacharacter string, it supplies the text of the entity (which, again, is given the

part of speech indicated by m); if n isO, the interpreter interrupts what it's doing at
the moment it executesthe : conjunction, and reads lines from its input source until
it finds one that contains only theword ') ' ; execution of the interrupted sentence
then continues, with the text of those lines becoming the right argument to: and

thence the text of the defined noun/adverb/conjunction/verb. If the verb is defined
in ascript file, the input source (for linesto satisfy m : 0) isthe script file;

otherwise the input source is the keyboard. If you forget the) in adefinition at the

end of ascript file, the interpreter will switch over to keyboard input and you will
find the system unresponsive until you satisfy it by typing)

So what'swith this'ver b def i ne'lingo? Simple: when you start J, you get afew
names defined automatically, and ver b and def i ne are two of them—as you can

see by asking the interpreter what their values are:
verb
3
defi ne
: 0
—sowhenyouusever b defi ne youarereally executing 3 : O to produce a
verb; similarly dyad : 'one-line definition' isthesameas
4 : 'one-line definition' whichexecutesthe: conjunction to produce a
dyadic-verb result.

The point is that a verb-definition sequenceisjust an instance of acompound verb
produced by a conjunction, and the resulting verb can appear anywhere averbis
allowed. You may assign the verb to a name but that's not required. Here are some
examples showing how adefinition is just an ordinary part of a sentence:

addrow = nmonad : '+y.' "1
We define the verb, using the : conjunction, and then we give the resulting verb a
rank using the" conjunction. Thisisaprincipleto live by: Always make sure any
verb you define hasthe proper rank. Following thisrule will save you untold
trouble by guaranteeing that the verb is applied to the rank of cell that you intended.
The verb produced by the : conjunction hasinfinite rank; here, we expect to apply
our verb on lists, so we assign arank of 1 before we assign the verb to the name
addr ow .

(3 : "+/y.") i. 6

15

See? we define averb, then we execute it. It doesn't have to be assigned to a name.
The distinction between code and datais not sharp asitisin C.

a=. "+ ";"*
b = (0{::a),'y.’
(3: b))y 123456

21

bis'+/y."' sowecanuseit asthetext of averb which we then execute.
b = (1{::a),'y.'
(3: b)) 123456

720

Herebis' */y."' . Inalater chapter we will explore the delights that result from
being able to change the text of a program while you are executing it.

Remember: make sure the verbs you define have the proper
rank.

Compound Verbs Can Be Assigned

Since we now understand that ver b def i ne isjust a conjunction producing a

verb result, and we know that we can assign its result to a name, we wonder whether
we are allowed to assign any compound verb to aname. Y esindeed, we can, aswe
saw in the assignment to addr owin the previous section. Any verb can be
assigned to a name:

dotprod = +/ @*"1
Dot-product of two listsis the sum of the products of respective pairs of elementsin

thelists.
1 2 3 dotprod 1 2 3

14
dot pr od takes the dot-product.
veclength = % @ (dotprod~)"1

The length of avector isthe square root of its dot-product with itself.
veclength 1 2 3

3. 74166

Dual-Valenceverbs. u : v

u : v asodefinesaverb of infinite rank but it is completely different fromm :
n . Thedefined verbisu if it isused monadically, but v if used dyadically:

bv =. (nonad : '"+/y.") : (dyad : 'y. - x.")
bv i. 7

21
2 bvi. 7

2 101234

Y ou can see that the appropriate valence was chosen based on whether the verb was
executed as adyad or as a monad.

u : v isoften used to assign a default |left operand to a dyadic verb:
pw =: 2&w : (dyad : 'X.”y.')
If you execute pwr asadyad you get xy . If you execute it as a monad you get
2 pw Yy whichisthen executed (using the dyadic valence of pwr) to become
2 Ny
3 pw 4
81
pw 4
16

The SuicideVerb [:

Theverb [: falsif itisexecuted. Useit asonesideof u : v to produce averb
that failsif it is used with the wrong valence. Example:
i. 100 110 120 130
| out of nenory
| i.100 110 120 130

Oops, we thought we were looking those values up in alist. We're lucky that we
just ran out of memory—sometimes using the wrong valence of averb can have
catastrophic consequences. To prevent it, use

dyadi =: [: : i.

dyadi 100 110 120 130
| val ence error: dyadi
| dyadi 100 110 120 130

100 130 150 dyadi 100 110 120 130
0331

[: also has a special meaning when it appears in afork, which we will encounter
later.

Multi-Line CommentsUsing0 : 0

We know that all commentsin Jstart with NB. and go only to the end of the line.

Thereis no way to extend a comment to more than one line, but thereisaway to
put a series of non-executing lines into a script without having to have NB. in each

of them. You simply defineanounusing O : 0 and put your comment inside the

noun:
0 :0

This is the first [ine of a comment.

The lines of the comment will becone a noun; but,

since the noun is not assigned to anything, it sinply
di sappears.

)
Final Reminder

Remember: make sure the verbs you define have the proper
rank.

<< >> Contents Help

18.u”: 1,ué& v, and
u:..v

TheObverseu”: 1

What would it mean to apply averb a negative number of times? Applying averb
1 times should undo the effect of applying the verb once. In J, u™: n appliesthe

;erb u n times, and u”: _1 isdefined as the verb that undoes the effect of applying
uonce. u™: 1 iscaledtheobverseinJ, and where possibleit is the same asthe
mathematical inverse of u (or x&u in the dyadic case). Examples:

> 4
5
>N 1 (5)
4
Monad >: adds 1; its obverse subtracts 1.
*&2™: 1 (10)
5
Monad * &2 multiplies by 2; its obverse divides by 2.
2 *N: 1 (10)
5

In the dyadic case, the obverse of x&u isapplied. The obverseof 2&* is%&2 .

Not al verbs have obverses; you can see the obverse of averb v, if thereis one, by
typingv b. 1 :
+&2 b. 1
- &2
(9%R5) @ (+&1) b. 1
-&1@ (5&*)
$b. 1
| domai n error
Thereisno obversefor monad $.

Some of Js obverses are very ingenious, and you can have a pleasant afternoon
experimenting to find them. Most of them are listed in the Dictionary under the *:

conjunction.
Apply Under Transformation: u& v and u&. : v

Using its ability to apply the obverse of averb, J provides a feature of great
elegance and power with the conjunction u&. v (monadic or dyadic). u&. v (al of

whose ranks are the ranks of monad v) executes u after atemporary changein

representation given by monadv . Formally, u& v yisv®: _l@Q@ v;

informally, x u& v yisv”®: 1 (v x) u (v y) appliedtoeach cell of x and

y, with the results collected as usual (we will learn aformal notation for this later).

Theideaisthat you change the operands using the transformation given by v; then

do your work with u; then invert the transformation withv”: 1 . Examples:
(<1l) +& > 4;5;6

+- - +- +

| 51 6] 7]

+- - +- +

We add x toy; the transformation is that we remove the boxing before we add, and

put it back after we finish. The verb +&. > hasrank O (since monad > has rank 0),

so here the scalar x isreplicated to the shape of y before the unboxing occurs.

f ndi spl ay showsthe details, where open’ meansthe inverse of open :
defverbs ' plus"0 open"0O'
(<1) plusé& open 4;5

| open” (open 1) plus open 4|open (open 1) plus open 5|

<. & (10&*) 4 4.43 4.89
4 4.4 4.8

<. Y findsthe largest integer not greater than y; by temporarily multiplying by 10
we truncate y to the next-lower tenth.

We can easily define averb to take the arithmetic mean (i. e. the average) of alist:

mean =. nonad : '(+/ y.) %#y.'
mean 1 2 4
2.33333

If we want to take the geometric mean, we could define a new verb to multiply and
take the root, or we could just take the arithmetic mean of the logarithms and then

undo the logarithm:
mean& (*."_) 1 2 4

2

Note that we had to use averb of infinite rank asv so that u would be applied to the
entirelist. Thisisacommon enough pattern that the conjunction &. : isprovided
whichisjust like & but with infinite rank. We could have used nean&. : . here.

To add 10 minutes to atime represented as hours,minutes,seconds, we can

transform to seconds after midnight, do the addition, and transform back:
0 10 0 +& (24 60 60&#.) 13 55 0

14 5 0

Suppose we had alist of boxed scalar numbers, and we wanted to add them and
|leave the result boxed. How can we do it?

]Ja = <"0i. 6
+- +- - +- - +- +

| O] 1] 2] 3] 4] 5]
+- +- - +- - +- +
The easy way is
< +/ > a
+- -+
| 15]
+- -+
but after you get used to &. , you will find that
+/& > a
+- -+
| 15]
+- -+

seems clearer, because it expresses the temporary nature of the unboxing/reboxing.

As an exercise, take the time to see why
+& >/ a

gives the same answer but
+/ & > a

does not.
Defined obverses. u : . v

u : .V hasthe sameranksasu, and it produces the same result as u, except that the
obverseof u :. visv . By defining verbs with appropriate obverses, you make

it possibletouse & and”: 1 with them. For example, in afinance application it

IS necessary to deal with datesin both (year,month,day) form and 'market day' form
(for example, if Friday is market day number 1200, the following Monday will be
market day number 1201). If you have written routines to convert between them:
ynmdtond =: dyad : 'definition'

mdtoynd =: dyad : 'definition'

you would be well advised to make them obverses of each other:

yndtond = dyad : 'definition' :. ndtoynd

mdtoynd =: dyad : 'definition' :. yndtond

so that if you want to find the (y,m,d) date of the next market day after the date
ynd, you simply code

1&+& ynmdt ond ynd

and Jwill convert ynd to a market day, add one, and convert back to (y,m,d) form.

u& v and ué&v

X u& v Yy hasinfiniterank andisthesameas(v x) u (v y) . ltresembles
ué&. y but without the application of the obverse. Itisjust away of saving afew
keystrokes. x u&v Yy islikex u& v Yy exceptthat itsranks are both the same as
therank of monadv . Aswith @ and @ you are advised to stick to u&: v unless
you are sure you need u&v .

The monadicformsu&v y andu& v y areequivaenttou@ y andu@v y
respectively. | recommend that you use the @forms rather than the & forms,
because your code will be full of m&v and u&n and it will reduce confusion if you
don't have unnecessary u&v aswell.

An observation about dyadic verbs

We noted earlier that usually if adyad x v y isnot symmetric (i. e. if x andy are
treated differently), the x operand is the one which is more like control information
and they operand isthe one more like data. We can see now that thisisa
consequence of the definitionof x u”: v y :theverbthat isapplied repeatedly,
or the verb whose obverse is taken, is x&u; only the value of y changes between
executions of u . When you define dyadic verbs, you should take care to follow
the same rule in assigning the left and right operands.

<< >> Contents Help

19. Performance:
Measurement & Tips

Jlets you express your ideastersely, but it is up to you to make sure they are good
ideas. Since each keystroke in a J sentence can summon up billions of machine
cycles, you must make sure that you don't force the interpreter into a bad choice of
algorithm. Thiswill be hard at first, when you are struggling to figure out what the
interpreter is doing, never mind how it is doing it; fortunately the interpreter gives
you tools to measure the performance of your code.

Timing Individual Sentences

If you run the Jf or C script with
| oad ' system packages\m sc\jforc.ijs’
it will definetheverb Ts. Ts standsfor 'time and space’ and it tells you how long it

takes to run a given J sentence, and how much space the interpreter used during the

execution. For example:
a3 =. i. 1000

Ts '+/\ a3'
4.3581e 5 5248

We define anoun a3, and we calculate the running total of itsitems. It took

0.00004 seconds to create the 1000-item running total, and used 5248 bytes. We
could have done the whole operationinonelinewithTs ' +/\ i. 1000', but

themonad i . usestime and space too, so if we want to find out only what is used
by +/\ , we make sure that's all we measure.

We can use Ts to start to understand what can make J programs slow. Let'sdefine a
verb to do the addition operation:

sum=: dyad : 'x. +y.'""0
sumis an exact replacement for dyad +, having the same rank and function.
Replacing + with sumdoes not change the result of a sentence:

+H\ 0. 7
0136 10 15 21
sum\ 1. 7

0136 10 15 21

But the performance is quite different, as we can measure:
alo =. i. 10
1000 Ts '+/\ al0

2.68191e_5 1280

Because +/ \ issofast, wegive Ts aleft argument to report the average time over

1000 runs. If we just ran the sentence once, the result would be corrupted by small
timing variations introduced by the operating system. suni \ isnot so fast so we
run it only once:

Ts 'suml\ alO’
0.00181867 3648

Quite adifference: in this running total sumseems to be about 50 times slower than
+ . Let'sjust try adding alist to itself (remember that u~ vy isequivaent to
y uy):

1000 Ts '+~ all'
2.68191e 5 896

100 Ts 'sum~ all'
0. 00033021 2560
Y es, sumis definitely slower than +, though only by afactor of 10 or so thistime.
Why should it be sSlower? The answer is, Because it deals with atoms. Since J verb-
definitions are not compiled, but interpreted line-by-line on each execution, every
single time we add two numbers with sum the interpreter hasto parse’ x. + y.'
and perform the addition. Why, it'samiracle that it only slows down by afactor of
10! Thelessonisthat if you define verbs with small rank, the interpretive overhead
will be significant.

Still, that doesn't fully explain why suni \ isso much slower than +/\ . Let's
Investigate further by increasing the size of the operand:
a20 = i. 20
1000 Ts '+/\ a20'
2.68191e 5 1280
Ts 'sunf\ a20'
0. 00728641 3648

+/ '\ isunchanged when we moveto alist of 20 items—the operation is so fast that
time is being spent starting the verb rather than running it—but sum' \ slows down

noticeably. Interesting; let'stry bigger and bigger operands:
a40 =. i. 40
1000 Ts '+/\ a40'

2.76572e_5 1408

Ts 'sum\ a40'
0. 0299561 4160

aloo =. i. 100
1000 Ts '+/\ al00'
2.76572e_ 5 1664
Ts 'suni\ alO0'
0. 185741 5184

a400 =. 1. 400

1000 Ts '+/\ a400'
3.77143e_5 3200

Ts 'suni\ a400'
3.00367 11328

Holy cow! On a400-itemlist, sum \ is80000 times slower than +/ \ | What
happened?

Recall what monad sunt \ isreally doing. It applies monad suni to thefirst item

of the list; then to the list made of the first 2 items; then the list made of the first 3
items; and so on. At each evaluation of monad sun , thedyad sumverbis

interleaved between the items and the result is evaluated right-to-left. The problem
IS, the interpreter doesn't analyze sumto know that it is associative—that

X sum (y sum z) isthesameas(x sumy) sum z—so it doesn't know
that it can use the result from one subset as an input to the operation for the next

subset, and it winds up performing every single addition: for the 400t item it adds
all 400 numberstogether. That's why its time increases as the square of the length
of thelist.

Monad +/ \ isfast because the interpreter knows that dyad + is associative, and

therefore it reuses the result from one subset as input to the next, producing each
item of the result with a single addition.

WEell then, can we give ahint to the interpreter that sumis associative? Alas, no,
but we have another trick up our sleeve. Consider monad sun \ . , which applies
monad sum’ to successive suffixes. If theinterpreter is clever, it will notice that if

it starts with the smallest suffix—the one made up of just the last item—and
processes the suffixesin order of increasing size, it will always be evaluating
X sum (previous suffix result),andright-to-left evaluation implies

that the result of the previous suffix can always be used as the right operand to each

application of monad sum without needing any knowledge of associativity. Let me
tell you, thisinterpreter is nothing if not clever, and that's just what it does. All we

have to do isto convert our sum \ into avariant of suni\ . . Theway to do that
iIssimple: we reverse the order of the items, apply suni \ . , and reverse the order
again:

sum\. & |. 1. 7

0136 10 15 21

This arises enough to be a standard Jidiom: use it whenever you need to apply an

associative verb on prefixes. It's much faster:
Ts '"suml\. & |. a400'

0. 014805 59264
Still not asfast as+/ \ , but the suffix version uses time proportional to the number
of items rather than the square of the number of items.

Compounds Recognized by the Interpreter

The interpreter recognizes a great many compounds and has special code to perform
the compound functions. For example, we have learned that u@ v Yy givesthe

sameresult asu v Y, but it does not follow that the two forms are identical: +/
@, yisfasterthan+/ , y . How doknow what forms are handled with
specia code?

An appendix to the Dictionary gives alist of special code in the interpreter (press F1
to bring up help; then click on 'Dic' at the top of the page to bring up the Contents
page; the appendices are listed at the end of the contents). There we see that thereis
specia codefor f/ @, soweknow to usethat form. Similarly, farther along we

seethat X i .&1@ < y hasspecia coding, so we know to prefer that form over
(x <vy) i. 1 . Thislist changesfrom releaseto release, so you should review
it occasionally.

Jsperformanceis very good even if you pay no attention whatsoever to which
compounds have special coding, but if you're going to code alot of Jyou might as
well learn the interpreter's preferred idioms.

Use Large Verb-Ranks! and Integrated Rank
Support

‘Think big' is awatchword not just for program design, but for coding as well.

Starting a primitive has a small cost, but if you start a primitive for each atom of a
large array, the cost will add up. To reduce the time spent starting primitives, apply
them to the biggest operands possible. This means, Use aslarge a verb-rank as

you can. See what a difference atiny change can make:
a =. i. 100000 10

Ts 'a -@ &'
3.96384 4.19552e6

Ts 'a -@+ a'
0. 12801 8. 3895e6
These two verbs produce identical results, but - @ is 30-fold slower than- @ + on
thislarge operand. Thereasonisthat - @ hasrank O (taken from the rank of +),
while - @ + hasinfinite rank. Rank 0 means that each pair of atomsisfed
individually through the verb. So, when - @ is executed, two primitives are started
for each pair of atoms, one to add and the other to change the sign. Execution of - @
+ requires only two primitive-starts for the entire array.

Y ou do not need to worry much about the ranks at which individual primitives are
applied, because of an important feature of J called integrated rank support. When
averb with integrated rank support isused astheu inu" n, the resulting verb runs

with asingle primitive-start and the application of the verb on the proper cellsis
handled within the primitive. S0,

100 Ts "a + a'
0. 0623949 4. 19501e6

100 Ts "a +"0 a'
0. 248846 4. 19526€e6

100 Ts "a +"1 a'
0. 0681035 4. 19526e6

100 Ts '"a +"2 a'
0. 0626361 4. 1952e6
All these forms produce identical results. The weak dependence of the speed on the
rank istypical of averb with integrated rank support. Fastest execution is achieved
when the verb is used alone, but the form u" n still runs fast, and the higher the
rank, the less the loop-control overhead. The Special Code page referred to in the
previous section includes the long list of the primitives with integrated rank
support. You will seetherethat u/ , u/\ , and the like are also taken care of.

The practical effect of integrated rank support is that you don't need to worry much
about using the largest possible rank for primitives. In compounds and verbs that

you write, you do need to keep the rank high:
Ts '"(<a:;1) { &
0. 00939758 525568
Ts "1 {"1 &
0. 00952329 525184
Integrated rank support in dyad { givesthe two forms equal performance. Look
what happens when we replace the { by a user-defined verb with the same function:
from=. ({
Ts '(<a:;1) froma'
0. 00953335 525760
Ts "1 fronfl a'
0. 365966 525696

f r omlacksintegrated rank support, even though it is defined to have the same
function as{ , and it sufferswhen it is applied to each 1-cell. Thisisagood reason
for you to learn the J primitives and not replace them with mnemonic equivalents.

Shining aLight: The J Performance Monitor

A magnet makes it easy to pick up aneedle, but it won't much help you find a
needlein a haystack. Likewise, being able to time and tune individual sentences
will not suffice to let you improve the performance of alarge J program. A large
program spends most of its time executing a small subset of its code, and any
improvements you make to other areas are simply wasted effort. | remember a case
where a 20,000-line assembl er-language program was spending 30% of itstime
executing a single machine instruction—and that instruction turned out to be
unnecessary! What you need is atool that will direct your attention to the areas
where a speedup will really matter.

The J Performance Monitor will show you how much time is spent executing each
line of your application. Y ou can run the Lab on the Performance Monitor to see all
the facilities available, or you can jump right into timing your code with the ssimple
sequence

| oad ' j pmi
Do thisonceto load the tool. Then, for each timing run, execute

start_jpm_ 1le7
357142
Theoperand of st art _j pm_ isthe size in bytes of the trace buffer, and the result

Isthe number of trace entries that can fit in the buffer. A trace entry is added for
each line executed, and for entry and exit of explicit definitions (i. e. verbs defined

withver b defi ne).

run the code you want to tine
viewtotal jpm "'

Jwill display a popup window with information about the time spent in each verb.
An exampledisplay is

S T F-- - - - - S SRS I +----- +-- o - - -+
| nanme | | ocal e| al | | here | her e%g cunfg r ep|
S T F-- - - - - S SRS I +----- +-- o - - -+

accpay	base	0.001435	0.000829	57.8	58	1
intrep	base	0.000213	0.000213	14.8	73	1
acci nt	base	0.000393	0.000147	10.2	83	1
stretch	base	0.000142	0.000142] 9.9 93	1	
i nt expand	base	0.000105] 0. 000105 7.3/100	1			
[total]			0. 001435] 100. 0] 100			
+

The columns contain the following information:

name the name of the verb

locale the locale the verb was running in (we will discusslocalesin alater
chapter)

all the amount of time spent in this verb including time spent in verbs called by
thisverb

here the amount of time spent in this verb but not including time spent in verbs
called by thisverb

here% the heretime as a percentage of total time
cum% cumulative total of here%
rep the number of times the verb was executed

Y ou should focus your attention on the here column. If you see averb that istaking
longer than you think it should, double-click on its name to look at the details of its
execution. Double-clicking on accpay will pop up another window showing

| al | | here | rep|
accpay

o +
| 0. 000041| 0. 000041|1 |

nonad |

| 0. 000040] 0. 000040| 1 |[8] if. 4~:#y.
do. |

| 0. 000000| 0. 000000|0 |[9] '"inmmfrqgq int pay' return.
T896g0054|0.000054|1 |[10] 'mf i p'=
Tb.000116|0.000116ll | [11] [en=. $p=. f#p%
{0.000724|0.000121|1 |[12] j=.}.len accint f intrep
;0.0%0322|0.000322|1 |[13] r=.j*+/\p%}.1, (m1)}.
10.0001g7|0.000137|1 | [14] (len$(-f){.1)
fg.001435|0.000821|1 | t ot al

nonad |

We see that line 13 takes the most time. Clicking on the column heading will sort
the lines using that column as a key, making it easy for you to concentrate on the
individual lines that are taking the most time.

The J Performance Monitor makes it easy to give your code a good finish by
pounding down the nails that are sticking up. Asof Release 5.01athere are afew
quirks you need to work around: you cannot have averb with the same name as a
locale; you must close a detail window before you create a new one; and time spent
in explicit modifiersis not correctly accounted for.

<< >> Contents Hep

20. Input And
Output

Foreigns
In J, al file operations are handled by foreigns which are created by the foreign
conjunction ! : . Theforeigns are a grab-bag of functions and you would do well

to spend some time glancing over their descriptionsin the Dictionary so you'll have
anideawhat isavailable. All theforeigns defined to datein Jare of theformm : n

with numeric mand n, and they are organized with midentifying the class of the
foreign. For example, the foreigns for operations on files have m=1.

File Operations 1! : n; Error Handling

Theforeigns 1! : n perform file operations. For ease of use | have given several of
themnamesinj forc.ijs . Toseethedetailsof what they do, read the
Dictionary.

Monad 1! : 1 (ReadFi | e) hasrank 0 . 1!:1 y takesafilenameasy and

produces aresult that isalist of characters containing the text of thefile. Inour
examples, the filename is a boxed character string; y can be afile number but we

won't get into that.
s =. 1!:1 < system packages\m sc\jforc.ijs'
S

NB. File definitions for'J For C Progranmers'

NB. Copyright (c) 2002 Henry H Rich

Dyad1!:2 (WiteFile)hasrank _ 0 . 1!:2 y writestothefiley, using
the character string x to provide the contents. Any existing filey is overwritten.

y isaboxed character string or afile number.
(' Test Data',CR LF) 11:2 < c:\Tenp\tenp. dat'

Dyad 1! : 3 (AppendFi | e)hasrank _ 0 . x 1!:3 vy appendsthe character

string X to the of filey (creating thefileif it does not exist):
('"Line 2°,CR LF) 1!I:3 <'c:\Tenp\tenp. dat'

Monad 1! : 55 (Er aseFi | e) hasrank O . 1! : 55 y erasesthefiley with no

prompting. Be careful: the power of Jmakesit possible for you to delete every
file on your system with one sentence.

The special file number 2 sends output to the screen. The verb monad Di spl ay in
jforc.ijs usesfilenumber 2 to display its operand (which must be a character
string) on the screen; you can put Di spl ay sentencesin along verb to see
intermediate results. In most cases you will prefer touse pri nt f , described bel ow.

There are many other 1! : n foreigns to manage file locks, query directories, handle

index read/write, and do other useful things. The Dictionary describes them, and |
will add only that the description of 1! : 12 is misleading: the length to be written is

implied by the string argument x and must not be included in y; therefore item 1 of
y isaboxed scalar, rather than aboxed list of 2 integersasfor 1! : 11 .

Error Handling:u ::v,13!:11,and9!: 8

When you deal with files you have to expect errors, which will look something like
s = 1!:1 < c:\xxx\yyy.dat'

| file name error

| S=. 1! 1< c: \ xxx\yyy. dat"'

indicating that the file was not found.

Y ou can set up your verbsto catch errorsinstead of interrupting with a message at
the console. We will learn one way here and another later when we study control
structures for Jverbs. The compound u : : v hasinfinite rank, and can be applied

either monadically or dyadically. u : : v executesthe verb u first (monad or dyad,
as appropriate); if u completes without error, its result becomestheresult of u : :
v; but if u encounters an error, v isthen executed, and its result becomes the result
ofu ::v :

rerr = 11:1 :: (13!:11@"'"'"))
rerr y will executel! : 1 toready; if that failsit will execute the foreign
13!1:11 "' . 13!:11 "' produces asresult the error number of the last error
encountered. Thismeansthat if 1! : 1 succeeds, theresult of r er r will be astring,

whileif 1! : 1 fails, the result will be a number:

rerr < system packages\m sc\jforc.ijs'
NB. File definitions for'J For C Progranmers'
NB. Copyright (c) 2002 Henry H Rich

rerr <' c:\xxx\yyy.dat'
25

You could use 3! : 0 to see whether the result of r er r isastring or a number (2
means string, 1, 4, 8, or 16 means number). If you want to see the error message
associated with an error number, there'saforeign 9! : 8 to give you thelist of

errors.
25 { 91:8 '

Treating a Fileasa Noun: Mapped Files

Rather than reading a file and assigning the data to a noun, you can leave the datain
afile and create a noun that points to the data. The datawill be read only when the
noun isreferred to. Thisis called mapping the file to a noun.

Jsfacilities for mapping files are described in the Lab 'Mapped Files. A quick
example of amapped fileis

require 'jnf'

JCHAR map jnf_ 'text'; 'system packages\m sc\jforc.
Ijs'
after which the noun t ext containsthe datain thefile:

45 {. text

NB. File definitions for'J For C Progranmers'
Moreover, if you assign anew valuetot ext , thefile will be modified.

If you are dealing with large files, especially read-only files or files that don't
change much, mapping the files can give a huge performance improvement because
you don't have to read the whole file. Y ou must be very careful, though, if you map
files to nouns, because there are unexpected side effects. If we executed

tenp =: text

tenp =: 'abcdef gh'
we would find that the value of t ext had changed too! (If you try this, use afile
you don't mind losing). The assignment of t ext tot enp did not create a copy of
dataof t ext , and whent enp was modified, the change was applied to the shared

data. If afileis mapped to anoun, you have to make sure that the noun, or any copy

made of the noun in any verb you pass the noun to, is not changed unless you are
prepared to have some or all of the other copies changed. Thistopic isexaminedin
greater depth under 'Aliasing of Variables in the chapter on DLLs.

If the faster execution is enticement enough for you to take that trouble, you can
consult the Lab to get all the detalils.

Format Data For Printing: Monad And Dyad " :

Since Jreads and writes all files as character strings, you will need to be able to
convert numbers to their character representation. Dyad " : hasrank 1 . y may
be numeric or boxed, of any rank (we will not consider boxed y here). If x isa
scalar itisreplicated to the length of a1-cell of y . If y isnumeric, each 1-cell of y
produces a character-list result, with each atom in the 1-cell of y being converted to
a character string as described by the corresponding atom of x and with the results
of adjacent O-cells being run together; the results from all 1-cells are collected into
an array using the frame with respect to 1-cells. That sounds like the description of
averb with rank 1; almost so but not quite, because " : looks at the entirey and
adds extra spaces as necessary to make all the columns line up neatly.

A field descriptor in x needstwo numbers, wand d . These are represented as the

real and imaginary parts of a complex number, so that only asingle scalar is needed
to hold the field descriptor. Thereal part of the field descriptor isw, and it givesthe
width of the field in characters. If the result will not fit into the field, the entire field
isfilled with asterisks; to prevent this you may use aw of 0 which will cause the
interpreter to make the field as wide as necessary. The imaginary part of the field
descriptor isd, giving the number of digits following the decimal point. If either w
or d islessthan zero, the result isin exponential form (and the absolute value of w
or d gives the corresponding width), otherwise the result is in standard form.
Examples:
O":i. 414

O 1 2 3

4 5 6 7

8 9 10 11
12 13 14 15

Note that extra spaces were added to the one-digit values to make them line up.
Note also that 'enough space' includes a leading space to keep adjacent results from

running together.
1":i. 44

0123

4567

89**

* k k%

When you specify awidth, you are expected to mean it, and no extra spaceis

added. Here two-digit results would not fit and were replaced with ' *' .
0030 _3": 100 % i. 33

0 0.010 2.000e_2

0 0.040 5.000e_2

0 0.070 8.000e_2

A complex number hasits partsseparated by ' | ' . Herethefirst fieldisan

integer, the second has 3 decimal places, and the third isin exponential form.

Whendyad " : isapplied to an array, the result hasthe samerank asy . If you

need to write that result to afile, you will need to use monad , to convert it to alist,
possibly after adding CR or LF characters at the ends of lines.

Monad " :

Monad " : resemblesdyad " : with adefault x, except that x depends on the value
of the corresponding atom of y . The simple description of monad " : isthat it

formats numbers the way you'd like to see them formatted. The full descriptionis
asfollows: The precision d is given by a system variable that can be set by the
foreign9! : 11 y (and queried by 9! : 10 y; initially itis6) ; asaquick override
you may use the fit conjunction " : ! . d to specify the value of d for asingle use of
" . If anatom of y isan integer, afield descriptor of O isapplied; if the atom has
significance in the first 4 decimal places, afield descriptor of 0j d is applied,;
otherwise afield descriptor of O] _3 isapplied. Trailing zeros below the decimal
point are omitted.

9l.10 "'
6

": 0 0.01 0.001 0.000015 0.12345678 2
0 0.01 0.001 1.5e_5 0.123457 2
In spite of all the detail | gave about the default formatting, in practice you just
apply monad " : to any numeric operand and you get agood result. Monad " :
accepts character arguments as well and |eaves them unchanged:

; ":& > "Today ';'is ';2002 1 24
Today is 2002 1 24

We went inside the boxes with & > and formatted each box's contents with
monad " : ; thismade all the contents strings and we could run them together using
monad :

Monad " : also converts boxed operands to the character arrays, including boxing
characters, that we have seen in the display of boxed nouns.

Format binary data: 3! : n

If you need to write numbersto filesin binary format, you need something that will
coerce your numbersinto character strings without changing the binary
representation. Jprovidestheforeigns3! : 4 and 3! : 5 for thispurpose. Eachisa
family of conversions, invoked as a dyad where the left operand selects the
conversion to be performed.

2 (3!:4) vy convertsthe numeric listy to acharacter string, representing each
item of y by 4 characters whose values come from the binary values of the low-
order 32 bitsof y :

16b31424334
826426164
Thisis an integer whose value is 0x31424344. \We can convert it to a character
string:

2 (3!':4) 826426164
4CB1
The 4 characters (with values 0x34, 0x43, 0x42, 0x31) correspond to the bits of
the number 826426164 in little-endian order.

Wecanusea. i . tolook at the codesfor each character in case they are not
printable:
a. i. 2 (3':4) 1000 100000

232 3 0 0 160 134 1 0
232 3 0 O correspondsto 1000 and 160 134 1 0to 100000 .

2 (3':4) yistheinverseof 2 (3!:4) vy, converting acharacter string to

integers:
2 (3':4) '4CB15CB1
826426164 826426165

The other integer conversionsaresimilar. 1 (3! :4) y convertsthe low-order 16
bits of each item of y to 2 characters,and _1 (3! :4) vy convertsback to

integers, 2 charactersper integer. 0 (3!:4) yislike_1 (3!:4) y butthe
integers are unsigned (i. e. in the range 0- 65535).

The floating-point conversions are analogous. 2 (3! :5) y convertseach item of
y to 8 characters representing long floating-point form,and _2 (3!:5) vy
convertsback; 1 (3!:5) yand 1 (3!:5) vy used4-character short floating-
point form.

printf,sprintf,andqprintf

When you need formatted lines for printing you may feel at home using pri nt f
andspri nt f, whichwork liketheir C counterparts. pri ntf displaysaline,
whilespri nt f producesastring result:

' The population of % is %\n' printf
' Ral ei gh'; 240000
The popul ati on of Raleigh is 240000

s =. '"The total of % is %l.\n'" sprintf 1 2 3;+/1 2 3
S
The total of 1 2 3 is 6.

Y ou need to execute
| oad 'printf’

togetthepri ntf verbsdefined. Jspri ntf containsafew features beyond C's
such asthe % field type seen above. Y ou should run the Lab 'Formatting with
printf' for details.

One feature with no analoguein Cisqgpr i nt f , which produces handy typeout for

debugging:
a=345]
gprintf 'a b

a=3 4 5 b=

e o

| abc| def | 5]

e o

C

b = 'abc';'def';5 [¢c = 1. 33
c

o wo
~N D e
0 01N

gpri ntf isdescribed in the 'Formatting with printf' |ab.

Convert Character To Numeric: Dyad " .

Dyad". hasinfiniterank. x ". y looksfor numbersin the words of y, which
must be a character array. Words representing valid numbers are converted to
numbers; words not representing valid numbers arereplaced by x . If 1-cellsof y
have differing numbers of numbers, x is used to pad short rows. 'Valid numbers to
dyad" . areanything you could type into J as a number, and more: the negative
signmay be' -' ratherthan' ' ; numbers may contain commas, which are

ignored; and a number may start with a decimal point rather than requiring a digit
before the decimal point. With the relaxed rules you can import numbers from a
Spreadsheet into J, using x&" . to convert them to numbers:

999 ". '"12 .5 3.6 -4 1,000 x25'
12 0.5 3.6 _4 1000 999

All legal numbers except for ' x25'

<< >> Contents Help

21. Callinga DLL Under
Windows

Interfacing to aDLL is one thing you can do the old-fashioned way: by getting a
copy of aworking program and editing it. Y ou can find starter programsin the J
distribution. A good one to start withis\ syst em packages\ w napi
\registry.ijs. Youcan glance through this program to see what it does. It
starts with
require "dl I’
which definestheverb cd . Callstothe DLL appear inlineslike
rc = ' Advapi 32 RegCreat eKeyExA i I *c i *c i 1 1 *i
*i !

cd root; key;0;"'"';0;samO; (, _1);(,_1)
(thisisasinglelinein the program; | have shown it here as 2 lines because it won't
fit on the page asasingleline)

This example exhibits the elements of acall toaDLL. Theleft operand of cd isa

character list describing the function to be called and what argumentsit is
expecting. Here we are calling the entry point RegCreateKeyEXA inthelibrary
Advapi32. The sequence of i sand * csdescribesthe interface to the function.

Thefirst item in that sequence describes the type of value returned by the function;
the other items are the arguments to the function and are a one-for-one rendering of
the argument list that would be passed in C. S0, the line above is appropriate for
calling afunction defined with the prototype

int RegCreateKeyExA(int, char *, int , char *, int, int, int, int *, int *);

The descriptors can bec (char), s (short) ,i (int),f (float), d (double), j
(complex), or n (placeholder—a value of O isused and the result isignored); all but
n can be preceded by * to indicate an array of that type. * by itself indicates an
array of unspecified type.

The right operand of cd isthe actual arguments to be passed to the called function.

It must be alist of boxes in which the contents of each box holds one argument to
the called function (there is no box to correspond to the returned value). An
argument whose description does not include * must correspond to a boxed scalar

of the appropriate type. An argument described with * must correspond to a box

whose contents are either an array or a boxed memory address (see below). The
address of the array or memory areais passed to the DLL and the DLL may modify
the array or memory area; thisis how you return an array from the function.

s andf arenot native Jtypes. A scalar argument described by s or f is converted
by the interpreter to the correct form, while an argument described by *s or *f is
assumed to point to a memory areawith the correct format.

I and d descriptors pose abit of aproblem. They both correspond to numbersin J,

but unfortunately it is up to you to ensure that the Jinternal representation of the
number matches the type expected by the DLL. Thereis no officially-sanctioned
way to do this, but as of J5.02 you can use monad <. to ensurethat avalueisan

integer (fori) and monad _&<. to ensure that avalueisfloating-point (for d).

Note that if you get things wrong and the function scribbles outside the bounds of an
array, Jmay crash. Note also that avector of Osand 1sisheld inside J as a vector

of Booleans, which are chars. When the function calls for avector of ints, Jwill
convert any Booleanto int. Inthe example above, (, 1) reserved space for an
int; (, 0) would have worked too but would require a conversion.

When the function returns, its returned value will be boxed and appended to the
front of the boxed list that was the right operand of cd to produce the result of the

execution of cd . You may usethisreturned value as you seefit. Any box that

contained an array may have had its contents modified by the function; you may
open the box to get the changed value.

If Jwas unableto call the DLL, the cd verb faillswith adomain error. Y ou can then
execute the sentencecder ' ' which will return a 2-element list indicating what

went wrong. The User Guide gives acomplete list of errors; the most likely ones
are4 0 (the number of arguments did not match the number of declarations), 5 x

(declaration number x was invalid—the count starts with the declaration of the
returned value which is number 0), and 6 x (argument number x did not match its

declaration—the count starts with the first argument which is number 0 and must
match the second declaration).

Memory Management

Passing arrays into the called function is adequate only for ssmple functions. If the
function expects an argument to be a structure, possibly containing pointers to other
structures, you will have to allocate memory for the structures, fill the structures

appropriately, and free the memory when it is no longer needed. J provides a set of
verbs to support such memory management.

Allocate memory: mema

mema | engt h allocatesamemory areaof | engt h bytes. Theresult isthe
address of the memory area, asan integer. ItisO if the alocation failed. nerma has
infinite rank.

Y ou must box the memory address before using it as an operandtocd . Do not
box the address for use as an operand to nenf , menw, or nenr

Free memory: memf

menf address freesthe memory areapointed to by addr ess . addr ess
must be avalue that was returned by nenma . Result of 0 means success, 1 means
failure. menf hasinfinite rank.

Writelntoa Memory Area: memw

dat a nmenw addr ess, byt eof f set, count, type

causes dat a to be written, starting at an offset of byt eof f set from the area
pointed to by addr ess, for alength of count itemswhose typeis given by
type . typeis2 for characters, 4 for integers, 8 for floating-point numbers, 16

for complex numbers; if omitted, thedefaultis2 . Ift ype is2, count may be
one more than the length of dat a to cause a string-terminating NUL (\O) to be
written after thedat a .

Read From a Memory Area: memr

menr address, byt eof fset, count, type

produces asits result the information starting at an offset of byt eof f set from the
area pointed to by addr ess, for alength of count itemswhose typeis given by
type . typeis2 for characters, 4 for integers, 8 for floating-point numbers, 16
for complex numbers; if omitted, the defaultis2 . Theresultisalist with count
items of thetypegivenby t ype .Iftypeis2,count may be 1 which causes
the read to be terminated before the first NUL (\O) character encountered.

Aliasing of Variables

When anoun is assigned the value of another noun, asin
a= b= 5

asingle memory areais used to hold the value common to both nouns, and the two
nouns are said to be aliases of each other. Aliasing obviously reduces the time and
space used by a computation. The interpreter takes care to ensure that aliasing is
invisible to the programmer; if after the statement above we execute

b= 6
the interpreter will assign the new value to b only, leaving a unchanged. What
actually happensisthat the new value s created in a data block of its own and the
descriptor for the noun b is changed to point to the new block. (Almost all verbs

create their outputs in newly-allocated data blocks. As of release 5.03 the
exceptionsare] , [, and, and u} when used in one of the forms that produces in-
place modification. Increasing the number of cases recognized for in-place
execution is a continuing activity of the J developers).

If there were nothing more to say about aliasing, | would not single it out for
mention from among the dozens of performance-improving tricks used by the
interpreter. What makes it worth considering is the effect aliasing has when
elements outside the J language touch Js nouns. This can occur in two ways. when
anoun is mapped to afile and when anoun is modified by aDLL.

Aliasing of Mapped Nouns

When a noun is mapped to afile, the descriptor for the noun points to the file's data
and that pointer is never changed even if avalue is assigned to the variable: the
whole point of mapping the noun to the file is to cause changes in the noun to be
reflected in the file, so any assignment to the noun causes the data to be copied into
the area that is mapped to thefile.

In addition, when b is a noun mapped to afile and is assigned to another noun as
with

a=>
the noun a, which isaliased to b, also inherits the 'mapped-to-file' attribute. This
behavior is necessary to make mapped files useful, because assignmentsto x. and
y. areimplicit whenever averb isinvoked and it would defeat the whole purpose

of mapping if the data of the file had to be copied every time the mapped noun was
passed to averb. The combination of aliasing and mapping means that any
assignment to a mapped noun also changes the values of al other nouns which share
the same mapping: for example, if you pass a mapped noun a as the right operand

of averb that modifiesitsy. ,y. , a, and the datain the file will all be modified.
Keeping track of the aliasing is the price you pay for using mapped files. If you

need to copy a noun making sure you get a fresh, unmapped data block, you must
not assign the mapped noun directly, but instead assign the result of some verb that
creates its output in anew data block. For example, as of release 5.01 the
assignment

a = 1&t Db
will create a new data block containing the data of b, and a will point to that new
block.

Aliasing of DLL Operands

The Jinterpreter uses aliasing for boxed cells of an array, so that if you execute
b = i. 10000 10000

a = Db;5
item O of a simply contains a pointer to the data block of b rather than a fresh copy
of the 400MB array. In addition, when alist of boxesis used as the right operand of
cd, asin

*dl | -spec’ cd root; key;0;"'';0;samO; (, _1);(, _1)
any array operandsto the DLL function are passed via a pointer to the datain the
boxed list, with no separate copy of the data being made. This meansthat if the
DLL modifies one of its arguments, any nouns aliased to that argument will also be
modified: if the DLL function called above modifiesits argument 1, the noun key

and any noun aliased to key (possibly including private nouns in suspended verbs)
will be changed. To protect yourself from such side-effects, you can use (1#key)
in place of key intheinvocation of cd .

<< >> Contents Hep

22. Socket
Programming

J provides the standard set of socket functions. This chapter assumes you already
understand socket programming and provides a description of Jsfacilities.

First, you must load the script that defines the socket interface:
requi re 'socket’

(requi reislikel oad but if the file has already been | oaded it does nothing).
Thiswill define a number of variablesinside J. Y ou must make the variables
visible to your program, and the easiest way to do that is with the verb
Def Socket s definedinsyst eml packages\ m sc\jforc.ijs:

Def Sockets "'

Y ou are then ready to create a socket:
sdsocket AF_I NET, SOCK_STREAM 0
+-+- -+

| O] 96]
+-4- -+

sdsocket returnsr et urn_code; socket nunber . Nonzero return codes
indicate errors; look inJ_di rect ory/ syst ent mai n/ socket.ij s for

definitions. The valid address families and socket types are defined in
J directory/system nmai n/ def s/ netdefs_YourCS.ijs.

sdsel ect

Y ou check the status of sockets with

sdselect read |list;wite |list;error_|ist;nmaxtine
The threelists are lists of sockets and maxt i me isatimein milliseconds.
sdsel ect will delay for amaximum of maxt i me milliseconds until it seesa
socketinread_| i st thatisready for reading, oroneinwrite_| i st thatis
ready for writing, or oneinerror | i st that hasan error. Whenit finds a
qualifying socket, or when the time limit is reached, it returns
result code;read ready list;wite ready list;error_Iist
which lists all the qualifying sockets. A maxt i ne of O always returns
immediately, giving the current status of the specified sockets.

If sdsel ect isinvoked with an empty operand (sdsel ect ' '), it checksal
sockets with amaxt i me of 0.

Asynchronous Socketsand socket handl er

By default, sockets created by sdsocket are blocking sockets; an operation on
such a socket waits until datais available. Thiscan tie up your J session while the
remote computer is responding, so if you are serious about your socket
programming you will want to make your sockets nonblocking. You do so with
sdasync socket nunber

which marks that socket as nonblocking and requests notification of changesin its
status. All operations to a nonblocking socket return immediately (with the error
code EWOUL DBL OCK if the operation cannot be immediately completed). When

there is a change in the status of a nonblocking socket, the interpreter executes
socket handl er

anditisuptoyoutohaveasocket handl er definedthat will usesdsel ect
to see what sockets are ready for transfers and then execute those transfers.

Names and | P Addresses

Sockets are addressed by |P address and port number. To translate a domain name
to an IP address, use
sdget host bynane domai n_nane

for example,
sdget host bynane ' www. j sof t war e. coni
T U +
| 0] 2] 216. 122. 139. 159
T U +

wheretheresultisr et urn_code; address_fam | y; address . If the
domain is unknown an address of * 255. 255. 255. 255" isreturned.

sdget host byaddr address fam | y; address
will trandate an I P address back to a domain name.

The name of your machineis given by
sdget host nane '’

(resultisr et ur n_code; nane) so you can get your own | P address by
sdget host bynane 1 {:: sdget hostnane "'

If you have a socket with an active connection you can get some information about
the machine on the other end with
sdget peer nane socket nunber

wheretheresultisret urn_code; address famly;renote | P_addr;
renote_port

Y ou can get information about your own end of a connected socket with
sdget socknane socket nunber

wheretheresultisret urn_code; address _fam |l y; | ocal | P_addr;
| ocal port

Connecting

Reading from a Web site, you use the sequence sdsocket /sdconnect /sdsend/
sdrecv/sdcl ose .

sdconnect socket; address famly;| P _addr; port
will connect your socket to the remote machine addressed by addr ess_fami | y;
| P_addr; port . If thesocketisblocking, sdconnect completes when the
connection has been made. If the socket is nonblocking, sdconnect will return
immediately with the error code EANOULDBLOCK and socket _handl er will be

called when the connection has been made. An exampleis
sdconnect 184; 2;' 64. 58. 76. 229' ; 80

With the connection established, you can send data with
data sdsend socket; fl ags

wherethef | ags areany of the M5G_ valuesfrom socket . i j s, usualy 0. The

resultisr et ur n_code; nunber _of bytes sent . Fewer bytes may be sent
than were in your data; you will have to resend the excess.

Y ou receive data with
sdrecv socket, count, fl ags

where count isthe maximum number of bytes you will accept and f | ags are any
of the MSG_ valuesfromsocket . ij s, usualy 0. Theresultisr et ur n_code;

dat a . If thesocket isblocking, sdr ecv will wait until it isready for reading; if
the socket is nonblocking, sdr ecv will immediately return (presumably you issued
thesdr ecv only after using sdsel ect to verify that the socket was ready for
reading). In either case, sdr ecv will return with dat a if it has any; if the length

of dat a is 0, that means that the connection was closed by the peer and all data sent
by the peer has been received.

When you have finished all you data transfers for a socket, ,you must close it with
sdcl ose socket

which has as result an unboxed r et ur n_code .
Listening

If you want to wait for aremote machine to get in touch with you, use the sdbi nd/
sdl i st en/sdaccept sequenceinstead of sdconnect . Thesequenceis:

sdbi nd socket; address_fam | y; | P_addr; port
to establish a connection between the socket and the address given by
address fam |ly; | P_addr;port . IflP_addr is'',thesocket canbe
used to listen for a connection to any address on the machine. If port isO, the
system will assign a port number. The result of sdbi nd is an unboxed
return_code .

sdl i sten socket; connection_limt

causes the operating system to start listening for connections to the address bound to
socket . Theresultisanunboxedr et urn_code .A maximum of

connection_Ilimt connections can be queued awaiting sdaccept . Whena

connection is made to alistening socket's address, the socket is shownin
sdsel ect asready to read, and you should issue

sdaccept socket
which will returnr et ur n_code; cl one_socket wherecl one_socket isa

new socket, with all the attributes of socket but additionally with a connection to
the remote host. Y ou should direct all your sdsend, sdr ecv, and sdcl ose
operationstothecl one_socket

Other Socket Verbs

Datagrams

The sequences given above apply to sockets of type SOCK _STREAM e. g. TCP
sockets. Connectionless sockets with type SOCK DGRAMare aso supported, and
could be used for UDP transfers. The verbs to use to transfer datagrams are

sdrecvfrom socket; count; fl ags

where count isthe maximum number of bytes you will accept and f | ags are any
of the M5G_valuesfromsocket . i s, usualy 0. Theresultisr et ur n_code;

dat a; sendi ng_addr ess . If thesocket isblocking, sdr ecvf r omwill wait
until it isready for reading; if the socket is nonblocking, sdr ecvf r omwill
immediately return (presumably you issued the sdr ecvf r omonly after using
sdsel ect to verify that the socket was ready for reading). Thereturned dat a is
the datagram, which may have alength of 0.

data sdsendto socket; flags;address fam|ly;|P_addr;
port
wherethef | ags areany of the M5G_ valuesfromsocket . ij s, usualy 0. The
datagram is sent to the remote address given by addr ess_fam | y; | P_addr;
port,andtheresultisr et ur n_code; nunber of bytes sent .

Socket Options

Verbs to query and set socket options are

sdget sockopt socket; option_| evel; opti on_nane
withresultr et ur n_code; opti on_val ue . Examples:

sdget sockopt sk; SOL_SOCKET; SO DEBUG

sdget sockopt sk; SCL_SOCKET; SO LI NGER

sdset sockopt socket, option_| evel, opti on_nane,
val ue |1 st
(note that the operand is an unboxed list) The option is set, and the result is
return_code; option_val ue . Examples:
sdset sockopt sk, SOL_SOCKET, SO _DEBUG, 1

sdset sockopt sk, SO._SOCKET, SO LI NGER, 1 66

sdi oct| socket, option, val ue

reads or sets control information (resultisr et ur n_code; val ue). Examples:
sdioctl sk,FIONBIO 0 NB. set blocking
sdioctl sk,FIONBIO 1 NB. set non-blocking
sdi octl sk, FIONREAD, 0 NB. count ready data

Housekeeping
sdget sockets '

Theresultisreturn_code; list_of all _active _socket nunbers .
sdcl eanup "'

All sockets are closed and the socket system isreinitialized. TheresultisO .

<< >> Contents Help

23. Loopless Code V—
Partitions

The adverb\ operated on subsets of the operand y that were taken in aregular
way. Now we will take the next step, and operate on irregular subsetsof y . This
will finally give us the chance to do interesting work with character strings.

Find Unigque Items. Monad ~. and Monad ~:

Monad ~. hasinfiniterank. ~. y isy with duplicate items removed and is called
thenubof y. Theitemsof ~. y areinthe order of their first appearanceiny
~. "Geen grow the lilacs'
Gren gowt hli acs
Jla== _2]1]V011201231312
01
12
01
2 3
13
12
~.a
01
12
2 3
13
y can have any rank, and ~. y givesthe unique items.
Monad ~: hasinfinite rank and tells you which items monad ~. would pick. ~: vy
iIsaBoolean list where each element is 1 if the corresponding item of y would have
been selected for thenub of y
~. "G een grow the lilacs'
111011101101100110111
~. a
110110

(~: a) # a

RN O
W wnN k-

~. yisequivaentto(~: y) # vy .
Apply On Subsets. Dyad u/ .

Dyad u/ . hasinfiniterank. x u/. vy appliesu to subsetsof y for which the
corresponding items of x (called the keys) areidentical. | will skip the formal
description in favor of averbal one: First find the nub of x, call it nx . Then, for
each item of nx, find all matching items of x; make an array of the corresponding
items of y (thisarray will always have rank one more than the rank of an item of y),
and apply u to that array; the result becomes oneitem of theresultof x u/. vy .
Theitemsof x u/. y thuscorrespond to items of the nub of x . Note that the
subsets of y may have different shapes (they will all have the same rank, being
made of items of y, but each subset may have a different number of items). For this

reason, we usually have u produce a boxed result to avoid framing fills.
]Jla==20102¢</. "Hello

+--+--+-+

| Hol el | I']

+--+--+-+

The subsets were created, and each one was boxed. Note that each subset isalist,

even the one with only one element:
$& > a

+- - +-+

| 2] 2| 1]

+- - +-+

30303+//. 100 1 200 2 300
600 3

The summing was performed for each subset. Note that the result is sorted not on
the value of the keys, but rather on the smallest index of each key inx .

]Ja = 2]\ "Fred;100;"'Joe'; 200;"' Fred'; 50;"' Sam ; 30
T

| Fr ed| 100]
T

| Joe | 200|
e

| Fred| 50 |
S

| Sam | 30 |
R

A small database of amounts we owe. We can quickly get atotal for each creditor:
]Jb = ({."1a +H@>. ({:"1 a)

150 200 30

({."1 a) givesthelist of names, which we use as keys for the data given by

({:"1 a) . For each subset, we open the boxes and add up the results. Note that

+/ @/ . would not do in place of +/ @ >/ . , and understand why.

It would be nice to have names associated with the totals:
(~. {."1a) ,. <'Ob
R

| Fr ed| 150]
Fom - - -+

| Joe | 200]
Fom - - -+

| Sam | 30 |

Fom - - -+

We box the totals using <" O before we join items of the totalsto the items of the
nub. Recall that x , . Yy concatenates each item of x with the corresponding item
of y .We take advantage of the fact that the results of u/ . have the same order as
the nub.

Apply On Partitions: Monad u; . 1 and u; . 2

Unlike dyad u/ . which appliesu to scattered subsets of y, u; . n appliesu to
sequential subsetsof y . In monad u; . n, the subsets are computed from
information iny itself; indyad u; . n, x specifiesthe subsets. u; . nisrealy 4
different cases distinguished by the number n; we will start with the case wheren is
1,2, 1,or 2 .

Avoid the error of thinking that an operation on a subset of y somehow modifies
y . Never happens. InJ, theresult of averbisawaysanew noun. You may
assign that noun to the same name as one of the operands, but until you do, the old

operand is unchanged, and both it and the result of the verb are available for further
use.

u; . 1 y partitionsy by finding the items of y that match thefirstitemofy (i.e. 0
{y); each such item, called afret, isthe start of an interval of y which runs from the
fret to the last item before the next fret (the last interval runsto the end of y).

Monad u is applied to each interval (which isawaysalist of itemsof y), and the

results of u become the items of theoverall resultof u; . 1 y .
<;.1"' alist of words '

+- - - - - - - S IR S +- +
| al list| of| words| |
+- - - - - - - S IR S +- +
Each' ' character, even the one at the end, started a new interval. We are not

restricted to boxing the intervals:
#,.1 ' a list of words '

25361
Here we report the length of each word.

u;. 1 yislikeu; .1 y except that the fret itself is omitted from the interval.

Theinterval could be empty in that case:
<. 1" alist of words '

T I S - ++
| a] | i st| of | words] |
T I S - ++
#,. 1 ' a list of words '
14250

u,;.2 yandu;. 2 yarelikeu;.1 yandu;. 1 y exceptthatthefretsare

those items of y that match its last item, and each marks the end of an interval:
<;.2 'Mssissippi'

e S

| M | ssi | ssi| ppi]

e S

Useu; . 2 vy to split alist when you know the ending marker for the intervals:
o 5. 2 (0 0

Fred 500

Joe 200

Fred 50

Sam 30
)

N S S

| Fr ed| 500|
S

| Joe | 200|
R

| Fred| 50 |
N S S

| Sam | 30 |

T

Here (0 : 0) createsanoun from the linesthat follow. Each line endswith an
unseen LF character which provides a convenient fret for splitting the lines. We
use; . 2 toapply monad; : to thetext of each line (not including the fret, which
iIsdropped by ; . _2). Monad ; : splits each string into words and boxes the words.

The result is not the same as the array we created earlier, because the second column
Is character rather than numeric. We could have written noun def i ne instead of

(0 : 0).

Monad u; . nhasrank 1 _whennisl,2, 1,or 2 .

Apply On Specified Partitions: Dyad u; . 1 and
u; .2

Whennisl,2, 1,or 2,x u;.n Yy hasinfiniterank and, in the one-
dimensional case where x isaBoolean list of Osand 1s, resemblesu; . n y . The
difference isthat the frets are given by the positions of 1sin x rather than by values
of theitemsof y . Wecandefineu; .1 yas(({.y)="_ 1vy) u;.1lyvy,
and u; . n for the other values of n similarly.

01010 +/:.1 (20 30 40 50 60)
70 110

Asin this example, some leading items of y may not be in any interval.

In the general case x isalist of boxed Boolean lists, withj {: : x supplying the frets

for axisj . The partition isthen multidimensional:
(011;1001) <;.2i. 34

|4 56 |7 |

In both the monadic and dyadic casesof u; . 1,u; . _1,u;.2,andu; . _2,the
partitions to which u is applied have the same rank asy (but the shapes along the
leading axes are reduced by the partitioning).

Find Sequence Of Items. Dyad E.

Dyad E. hasinfinite rank and is used to slide a pattern across an array and look for
positions at which the pattern matches the items of the array. x andy should have
the same rank, and the sliding occurs along all axes of y, giving a Boolean result
with the same shapeasy . Wewill consider only the caseswherey isalist.

‘is'" E. 'Mssissippi'’
010010000O00O0
The 1sin theresult tell where the pattern starts. The result of E. is often used as
inputtou; . 1 :

("is'" E. "Mssissippi') <;.1 'Mssissippi'

A more ambitious example:

htm =. 0: O
<t h>Press here to go back</th>
<t h>Press here to go hone</th>
<t h>Press here to go away</th>
</t abl e>

</center>
)

('<a" E htm) {.@(<@(8&}.);. 1)@('>&);.1 htm
R S R +
| ' pagel. ht Ml ' | ' page2. html ' |' page3. htm ' |
R S R +

That looks like a useful result, but what a mess to produceit! If you want, you may
try to understand that, but a better approach isto break it up:

extracthref = <@(8&.) ;. 1 @('> &)
This seems understandable, with effort: the execution order is((<@ (8&}.)) ;.

1) @('> &);weprepend' >' toy,thenweuse; . 1 onthestring. That
will make the prepended ' >' the fret, and so we will break the string into parts that
start with' >' | throw away the first 8 characters of each part, and box each trimmed-

down part. We can eventry it on atest bit:
extracthref 'abcdef ghij kl >xxx'
+--- - ++

| i] kI
- - - - ++

Now we can look again at our original line, rewritten:
('<a'" E. html) {.@extracthref ;.1 htmi

This makes some sense now. Theexecutionorderis('<a' E. html) ({. @
extracthref ;.1) html .WeuseE. tofind all the starting positions of

' <a' tags; then, for each one, we split what followsthe' <a' into blocks
terminated by ' >' , and then we take the first one, which will have the data before
the' >' that matched the' <a'

Multidimensional Partitions

The left argument to the partitioning dyadsu; . n can be alist of boxes. In this case

the first box contains the partition marks for axis O, then next box contains the
marks for axis 1, and so on. If aset of partition marksis an empty list, the
corresponding axis will be unpartitioned.

Apply On Subarray: Dyad u; . O

Dyadu; . O hasrank2 _ . x u; .0 y usesx to specify asubarray of y; the
subarray is extracted, and u is applied to it to produce the final result. We will
discuss the simple case where x isarank-2 array.

Thefirst item of x (call that s) givesthe starting corner of the subarray. The second
item of x gives the length of each axis of the subarray. If x isshorter than the rank
of y, unspecified axes are taken in full. For example:

]la= a {~(a. 1. "a) +i. 4 4
abcd
ef gh
Ikl

mop
A cute little expression in its own right. See why this produces the 4x4 array of
characters shown. Remember that a. isthe alphabet of all ASCII charactersin
order. An even more elegant way to produce the sameresult wouldbe(i. 4 4) &
+& (a. & .) "a .

(00 ,: 22)];.0a
ab
ef
Starting corner 0 0O; lengths2 2; result is a2x2 subarray, left unchanged by
monad] .
(L2,: 32)];.0a
gh
Kl
op
Starting corner 1 2; lengths 3 2; result is a 3x2 subarray, left unchanged by
monad] . You get theidea

If anitem of s is negative, the corresponding axis of the subarray extends backward
from the starting point (and its absolute value is used as the starting position):

(2 2 ,: 22)]1;.0a
j k
no
Starting corner 2 2 (the character ' k'); lengths2 2, but running backward in
axis 1; result isa 2x2 subarray, left unchanged by monad] . Note that the axis
extends backward, but the items retain their normal order—you have merely
specified the interval by its endpoint rather than its beginning point. If you want to
reverse the order of the axis, you can do that too, by making the corresponding
length negative:

(2 2 ,: 2 2)]1;.0a
K]
on
Starting corner 2 2 (the character ' k'); lengths2 2, but running backward in

axis 1; result is a 2x2 subarray with axis 1 reversed, left unchanged by monad]

The subarray must end at the limits of the array. If the length requests more than
that, the subarray will be shorter than was requested. A lengthof _or _ will

always fetch from the starting point to the limit of the array.

Dyad u; . O isagreat way to pick out asubarray to work on. Always consider
using it whenever you find yourself using more than one applicationof { . and} . to
select aportion of an array. Evenif you are working with alist, usingdyad u; . O is

agood way to work on a portion of the list without copying any part you aren't
working on.

Apply On All Subarrays. Dyad u; . 3and u; . 3

X U;._3 y appliesu to subarrays of y as specified by x . The operationis
similar to dyad u/ (infix), but dyad u/ dlides a one-dimensional window acrossy
to select sequences of items of y, whiledyad u; . 3 moves a multidimensional
window throughout y to select multidimensional regions. When the window has
only one dimension, the operation islike dyad u/ but with alittle extra control over
the positions of the window.

The second item of x (actually, | 1{x) givesthe size of the window (if anitemis
negative the corresponding axis is reversed before u is applied to the window; an
infinite value means 'take al the way to the end of the array'). Thefirst item of x (O
{ x) isthe movement vector: the window is positioned at every point at which each
item of the window position is an integral multiple of the corresponding item of the
movement vector, as long as the window fitsinsidey . If anitem of the movement
vector is smaller than the corresponding item of the size, the windows will overlap
along that axis.

Dyad u; . 3 isuseful inimaging applications. The following example averages
2x2-pixel regionsin an image using a simple box filter:
]Jimage =. ? 8 8 $ 100
31 88 65 15 68 38 38 49
14 58 84 59 95 55 14 98
40 14 56 25 48 46 96 12
19 31 62 12 65 62 80 24
47 38 20 2 90 42 14 94
41 13 88 9 16 7 36 25
13 78 45 34 45 80 93 65
21 67 90 25 86 47 50 60
(2 2,:2 2) (*&0.25@(+)@, ;. _3 inmage
47.75 55.75 64 49.75
26 38.75 55.25 53

34.75 29.75 38.75 42.25
44.75 48.5 64.5 67

The rank of each operand presented to u isthe same astherank of y . The shape
of each operand presented to u is the shape of y with the leading items replaced by |
1{ x (formally, thisis(| 1{x), (#x)}. $y).

If X hasrank lessthan 2, it is processed asif it were 1, : x which will try the
window at all possible locations.

X U;.3 yissmilartox u;. 3 vy, butthewindow ispositioned at every
starting point that iswithiny, even if the entire window will not fit withiny . For
those positions at which the window will not fit, the operand to u is truncated.

Extracting Variable-Length Fields Using *:
and ;. 1

Breaking a string of variable-length fields into itsindividual fields seemsto be a
problem requiring aloop. How can you find the second field until you have
examined the length of the first? There happens to be agood way to do thisin
loopless J. We will use as an example a set of character-string records where each
record is preceded by a one-digit length (maximum string length is 9 characters).
For example, the string

data =. '5There2i sladti de2i n3t he7affai rs2of 3men’

contains 9 records, each containing a single English word. How do we split the
string into its records?

First, we examine each possible starting position and calculate how long arecord
would beif it started at that position. The calculated length must be the entire
record length including that of the length field itself. Obviously, we will be
calculating spurious lengths at the places that turn out not to be record-start points,
but that is the small price we pay for loopless coding. Here, the datalength is given
by the difference between the ASCII value of each byte and the ASCII value of
' 0' , and we add one to account for the length of the length field:

]l == > (a. i. data) - a. i. '0
6 37 57 54 67 54 3 58 68 2 50 5 69 58 53 54 3 ...

Next, we calculate, for each position, where the next record will start assuming that
arecord starts at that position. Clearly, we do this by adding the putative record
length to the offset of the position. If the resulting total is past the end of the string,

we limit the position to one character past the end of the string:
In = (#) <. | +i. #I|
6 38 38 38 38 38 9 38 38 11 ...

Now for the trick. The first record starts at offset 0. The next record starts at offset
O{ n . Therecord after that starts at offset (0{ n) { n, and so on. To get thelist of
all the starting positions, we use

]pos = (n,_1) {~":a: O
06 911 16 19 23 31 34 38 _1
The special power u”: a: means ‘keep applying u until the result stops changing,
and return the vector of results'. Itislikeu”: _inthat it appliesu until the result
stops changing, but u”: a: returns all the intermediate results from u, not just the
last one. Theresult from{ ~": a: isthelist of start-of-record positions, and all that

remainsisto collect the records. We discard record pointers that are off the end,
and box the records starting at thepositions given. We do this by converting the list
of valid record-start points to a Boolean vector, and using the partitioning functions
to box the records:

((i. #data) e. pos) <;._1 data
+----- TN Iy U +--+---+
| There|is|a|tide|in|the|affairs|of|nen|
+----- T, IS U +--+---+

<< >> Contents Help

24. When Programs Are
Data

One characteristic of maturity in programming is readiness to pass a program as an
argument. A well-designed program does not exhibit a megalomanic urge to do
everything the user may desire; it is content to perform alimited function well, and
to leave other functions to other programs. A suite of such programs can be
variously connected to perform a great variety of functions, with each program
doing its bit and passing control to the next one.

In C aprogram is passed to another program by pointer reference, and invoked by
(*pfi)(arguments). Jhasno pointers, but it has a great many ways to pass
executable nuggets around the system. We will learn them now.

Calling a Published Name

The ssmplest way to get averb f to pass control to another program g isto define f
to call averb with apublic name, say f _subf n, and then to definef _subf n to be
g . InC, thiswould beridiculous, because it would imply that f _subf nis
permanently bound to asingle value of g, with the result that all callstof from
anywhere in your program would be stuck with the sasmevalueof g .

J overcomes this objection by allowing redefinition of f _subfn . Each
invocation of f looks like

f _subfn = ¢

f argunents
When f isinvoked elsewhere, the correct value of f _subf n will be assigned
similarly, so each invocation of f can pass control properly.

| find this technique hideous, but | have to admit it is effective. Jusesit to get
callbacksfrom DLLs. It must not beused if f _subf nisgoingto be calledin

response to an event, since its value may have been redefined by the time the event
OCCUrs.

Using the Argument To a Modifier

If the verb isn't going to call a name of its own choosing, you have to tell it what to

call. Thesimplest way to do thisisto change the verb into a modifier; then when it
executes it has access to its operands, which can be verbs. So, instead of

f = verb : "definition'

you write

f =: adverb define

nonadi ¢ definition

dyadi c definition

)
and within the definition of f you can refer to the left operand of the adverb, which
goesby thenameu. . If you decideto write a conjunction instead, its right

operandisv. . Thenoun operandsof thederivedverb(u f oru f v)arex.
andy. , asusua. Wewill discuss user-defined modifiersin alater chapter.

In Chapter 3 this technique was used to calculate the Chebyshev coefficients of a
function. The function to be approximated is one of the inputsto this calculation, so
we write an adverb and let its left operand be the function. With chebft defined
asin the example, an example of itsuseis:

10 (2&0.) chebft 0 1
1.64717 _0.232299 0.0537151 0.00245824 0.000282119...

Here the function to be approximated is the cosine function 2&0. , evaluated for 10
Chebyshev coefficientsover theinterval 0 1 .

When you define a modifier, you have no way to specify that you are defining only
the dyadic case as you can for averb withdyad defi ne . Instead, you usethe
form given above, in which the monadic definition (if any) is separated from the
dyadic by alinecontaining asingle' : ' character. chebft didthis, sinceits
derived verb is always dyadic.

Invokinga Gerund: m : 6

Sometimes you want to use a noun rather than a verb to designate a verb to be
called. An asynchronous socket handler is an example: the socket handler will have
many transfers going on at once, each one with a callback to be executed when the
transfer is complete. The callbacks must be put into a table along with other
information about the transfer; in other words, the callbacks must be nouns.

We have already met nouns that carried verbs; we called them gerunds. We found
that gerunds were created by the conjunction ™ and executed by m@ v . While

these tools are adequate to allow verbs to be passed as arguments, some
simplifications are available that we will discuss now.

A gerund created by u” v isaways alist (each element of which, aswe learned, is

an atomic representation of a verb which we will treat as untouchable). Even if
thereisonly one verb, the result of = isalist:
+‘ LI |

It makes sense for the gerund created by ~ to be alist, sinceit contains alist of verb-
representations one of which is selected for execution by m@ v . But when we are

passing a single verb-as-noun as an argument, it is OK for it to be a scalar box.
And, it can beinvoked using the " : conjunction: m : 6 converts the gerund minto a

verb. S0, in our example, we pass the callback as one box in a parameter list, and
then we select it, turn it into averb with m : 6, and execute it, aswe can seeina

stripped-down example. The gerund operations are not difficult so | am going to
keep your interest with a couple of new tricks:

cal l back =: dyad : '(x.) = y.'
Howzat? (x.) =:? Yeah, thismeansthat the value of x. tellswhat variable will
be assigned. x. can beany valid assignment target: a name, a multiple assignment,
or other exotic forms given in the Dictionary.

calledfn = nmonad : "(0O { vy.) :6 (1 {:: vy.)'
So cal | edf n isexpecting an argument of (at least) 2 boxes. Thefirst onewill be

the gerund to execute, and the second one will be the argument to passto that verb.
We open the second box (with { : :) but we leave the first asabox so that * : 6 can

turn it into averb.
cal l edf n 'vbl' &cal | back = (<25)

Thefirst challengeis figuring out what the argumenttocal | edf nis. ~ seesa

verb on its left; it convertsthat to agerund. It seesanoun to itsright, so it appends

it unchanged to the gerund from the left. This produces
"vbl ' &cal | back = (<25)

Thefirst box isthe atomic representation of the verb, just as mysterious as it was

billed to be, and the second box has the 25. Now what do we get when we pass that

in asthe argument to cal | edf n (try to work it out before you peek at the answer)?
cal l edfn 'vbl' &cal | back =~ (<25)

25
Did you get it? Weexecuted' vbl ' &cal | back 25 which then executed
vbl =: 25 which hastheresult 25, which comes back as the result of
cal | edf n . Theassignment was public:

vbl
25

Passing the Definition Of aVerb: 128! : 2 (Apply)

As an alternative to passing a gerund and invoking it withm : 6, you could pass the
string representation of averb and makeaverb out of itwith3 :nor4 . n .

Better yet, if you can make do with amonadic verb, you can use the foreign
dyad 128! : 2 whichhasrank 1 _ and goes by the name Apply. x 128!:2 vy

takes the string x which must describe a verb, and applies the verb so described to y
(asamonad). Itisthereforesimilarto (3 : ' x') vy withtherestriction that x

must describe a one-line verb without assignments. The advantage of using
128! : 2 rather than the method in the next section isthat y does not have to be

converted to its string representation.

Passing an Executable Sentence: Monad " . and
ol 5

Asthe ultimate in flexibility, you can pass an entire J sentence as a character string
and then execute it withmonad " . . Itisexecuted exactly asif it had been aline

of the executing verb (or from the keyboard if that'swhere" . was entered). For

example:
"L 'ta = 0. 4

0123

The sentence was executed.
a

0123
The assignment was performed.
.Y+, " a
6
The operand of monad " . must be a string, so before we can take its total we must
convert a to a sequence of charactersthat will have the value of a when executed.

For alarge operand, converting to string form adds overhead that might steer you
towardsusing agerund or 128! : 2 instead.

| think C programmers are likely to overlook opportunities to use monad " .

because it is so foreign to their experience. It isequivalent to compiling and
executing a code segment as part of the running program—it's just unthinkable. But
in J, it's commonplace.

If you are going to use monad " . you will face the problem of converting your

nouns to string form. Here's the display of a noun: what character string would you
execute to produce a noun with that value?

| +---+--+---+|0 2.25 4.5 6.75 9 11.25 13.5 15. 75|
| | abc| de] f gh] | |

| +---+--+--- 4 |

Fortunately, you don't have to worry about it. The foreign monad 5! : 5 takesasy

a boxed name (not avalue) and produces a string which when executed has the
same value asthe variablenamed by y . So:
55 <a'
(<<;._1 "' abc de fgh'),<2.25* .8
...and if you tell me you came up with the same string, I'm not going to believe you.

<< >> Contents Help

25. Loopless Code
VI

The algorithms that are hardest to put into loopless form are the ones that chug
through the items of an array, modifying a set of temporary variables that control
the operation at each step. | am going to show you how to put one example of such
an algorithm into loopless form. The resulting structure can be used for many such
problems.

The example problem isasimulation. 1n acertain church most of the worshippers
are devout, but the front pew is always packed with knaves. Collection istaken
every Sunday. Each knave brings two coinsto throw in, but, being a knave, he first
removes the two most-valuable coins from the plate before adding hisown. Given
p, the contents of the plate when it reaches the front row (alist of coin-values) and
k, the coins brought by the knaves (an nx2 array), what is the final contents of the
plate, and what does each knave make off with? For test data, we will use
p =. 100 25 100 50 5 10
giving the contents of the plate asit enter the knaves' row, ,and
]k == 2]\ 50 50 100 25 5 10 25 50 25 10
50 50
100 25
5 10
25 50
25 10

as the coinsto be thrown in by the greedy knaves.

After trying for a clever solution for alittle while we give up and decide we are
going to have to simulate the action of each knave. We start by writing averb
knave to perform aknave's action. The design of thisverb requires alittle careful

joinery to make it useful later: we will invokeitasx knave y wherex isanitem
of k, i. e. theinput for one knave, and y isthe result from applying knave for the
previous knave; the result of knave must have the same format asthey operand of
knave; finaly, the result of knave must include whatever we want as the final
solution of the problem.

The trick isthat the result of knave, which will be the input to the next invocation

of knave, must carry all the information needed by the next invocation of knave;

thisisthe way information is passed from knave to knave. The main design
decision is to figure out what the format of they operand of knave will be.

Obviously we need to know the contents of the plate asit is given to each knave.
Also, the purpose of knave isto calculate what coins are removed, so those coins

should be part of the result. We decide that they operand of knave will consist of
those two things, inthe order (coi ns renoved), (pl ate contents), and
we already know that the x operand will have the format of anitem of k, i. e. the
knave's two coins. Now we areready to codeknave .

It should look at the plate-contents portion of its right argument, sort it into order of
size, take the two biggest values as the result of interest, and use the rest (with the
knave's own coins added) as the plate contents to be passed to the next knave. The
coins that were removed are put into their place at the beginning of the result
vector. In Jthiswill be:

knave =: dyad defi ne
xlen =. #x. NB. nunber of coins added/renoved
splate =. \:~ xlen }. y. NB. extract plate contents,
sort

(xlen {. splate) , (xlen }. splate) , x. NB. build
resul t

)

Let'stestit. They operand to the first invocation of knave will have a couple of

placeholders in the place where the coins removed by the previous knave would be,
followed by theinitial contents of the plate. In other words,

Jinity = ({:k),p
25 10 100 25 100 50 5 10

Here we used the last item of k as a placeholder. The values don't matter but we

want the right shape so the program will still work if we change the number of coins
ink . Applying thisvalue to the first knave we get

50 50 knave inity
100 100 50 25 10 5 50 50
Y es, that's right: the first two items of the result are the two dollar coins the knave
took, and he threw his coinsin at the end.

Before we go on we can't help noticing that taking the first two items of spl at e
and then dropping those same items—that's needless work. We can simplify

knave to
knave =: dyad : "(\:~ (#x.) }. y.) , X.

Now we need to apply knave sequentially on all itemsof k . We have learned

enough Jto write a sentence to do that, but because thisis arecurring problem |
have written a conjunction LoopW t hl ni ti al to hide the complexity (we'll ook
at its detailsin amoment). This conjunction takes the verb knave, theinitial value
I ni ty,andthearray k and appliesknave repeatedly, with each item of k taking a
turn as x with they set to the result from the previous invocation of knave

]res =. knave LoopWthlnitial inity Kk
100 100 50 25 10 5 50 50

50 50 50 25 10 5 100 25
100 50 25 25 10 5 5 10
25 25 10 10 5 5 25 50
50 25 10 10 5 5 25 10

We see the result after each application of knave (if you want to see the input
aongside theresult, typek , &" 1 res). The contents of the plate are included
inr es aswell; we can extract the desired result simply as

2 {."1 res
100 100
50 50
100 50
25 25
50 25

Once you have defined the verb and theinitial value, you can use
LoopWt hl ni ti al to solve problems of thiskind.

Y ou may skip the rest of this chapter if you are not curious about how
LoopW t hl ni ti al works. It performsthe following steps:

LoopWthlnitial = conjunction define
by =. <" 1. NB. 1 box itens of y
ry = |. by NB. 2 reverse order for \.
ey =. ry , <n. NB. 3 append initial value
r = u.&>\. ey NB. 4 apply u. in boxes
er = }:.r NB. 5 renove initial value
rr = |. er NB. 6 put in original order
>rr NB. 7 renove boxing

)

Sincetheinitial value is going to be appended to they operand, and they have
dissimilar shapes, it is necessary to box each item of y aswell astheinitial value.
Oncetheitemsof y are boxed, they are put into reverse order, because as we have
seenu/\ . ismuch faster thanu/\ . Thentheinitial valueis appended to the
reversed boxedy . With that preparation complete, the operation can be
performed: u. & >/\. appliesu. & > (in words: unbox each operand, apply u. ,
and rebox) starting at the end of thereversedy . Thefirst application of u. & >
will be between the original first element of y and the initial value; the next
application will be between the original second element of y and the result of the
first application; and so on. The results from the applications of u. & > are

collected in an array. Finally, the preparation steps are undone, discarding the initial
value, reversing the array into original order, and unboxing the result.

The actual implementation of LoopW t hl ni ti al isabit more elegant than that

schematic representation. Observe that step 7 isthe inverse of step 1, step 6 of 2,
and step 5 of 3; each pair is an opportunity to use u&. v, and the actual verb
produced by LoopW thlnitial is

knave LoopWthinitial inity
knave& >/\. & (, & <25 10 100 25 100 50 5 10))& |. & (<"_1)
which performs al the steps of the longer form. We will examine this conjunction
in alater chapter.

Y ou may object that since the left operand of LoopW t hl ni ti al isappliedto
each item, it still has to be interpreted for each item, so nothing is gained by
avoiding the loop. An astute observation, but in the second part of this book we will
learn how to write verbs that are not reinterpreted for each item.

Finally, you may observe that the temporary vector, which only needsto be alist,
turnsinto arank-2 array by the time we have passed it through each item. Doesn't
that waste a lot of space? Yes, it does, and if your problem is big enough that the
space matters, you may have avalid application for aloop. An alternative would be
to make the temporary vector a public variable accessed by knave in the same way

that temporary variables would be used in C.

<< >> Contents Help

26. L oopless Code VII—Seguential
Machines

Jprovides a primitive to handle one class of programs, ill-suited for parallel processing,
that can be described systematically: sequential machines. Dyad ; : takes a sequential-

machine description in X and a stream of input iny, and produces the result called for
the the machine description.

A brief overview isasfollows. The output array isinitialized to empty. Aninitia row
number (also called a state number) is chosen. Each item of input is converted into a
column number. The column numbers are processed, one per iteration. In an iteration,
the next column number is supplied to the row/action table: the row number and column
number specify an item of the table, which is a 2-element vector giving the new row
number and an action code. The action is performed and the row number is updated,
completing the iteration. Execution continues until a‘quit’ action is encountered or all
the column numbers have been supplied. At that point the output array, which contains
the accumulated results of the actions performed, becomes the result of the verb.

Toillustrate the use of dyad ; : we will build a machine to recognize hex constantsin
character input. A hex constant will be ‘0x’ followed by any positive number of
hexadecimal digits; we will extract the digits and discard the ‘0Ox’.

Thex argumenttodyad ; : isaboxedlistf;s;mijr . mandijr may beomitted.

mcontrols the conversion of the items of y to column numbers. In the genera case, mis
alist of boxes; then the column number produced for an item of y isthe index of the
first box of mwhose contents have an item equal to the item of y (if thereis no such
box, a column number of #misused). If y isastring, mmay be anumeric list
containing one column number for each character code and the column numbers are

(a. i. y) { m.Ifyisnumeric, mmay be empty or omitted, and y specifiesthe
column numbers directly.

In our example problem, we see that the input characters are in 4 classes:. the character
0; the character x, the hexadecimal characters0123456789abcdef ABCDEF, and all
other characters. We will assign these column numbers 3, 2, 1, and O respectively. The
conversion control mcan be generated by the statements

m=. a. e. '0x123456789abcdef ABCDEF'

m= m+ a e. '0Ox

m= m+ a. e. '0

and can be verified by
(a. i. "0x2aq') { m
32110

I j r givestheinitia values of 3 variables used by the sequential machine: the input
pointer i, the word pointer j, and the row number r. Theinput pointer istheindex iny

of the next item to be processed, incremented by 1 at the end of each iteration. The
word pointer istheindex iny of thefirst item in the current word; when the action code

calls for producing output, the output will start with itemj. Whenjis_1, thereisno
current word. The row number, as noted above, is used to index the row/action table. |If
I j r isomitted, it defaultstoO 1 0, which means start processing the first item of y,
with no current word, and starting in row number 0. This default is acceptable for our
example problem.

s givestherow/action table. Thistable has as many rows as needed to encode all the
states of the sequential machine, and as many columns as there are possible columns
numbers of mapped input. Each 1-cell of s isa2-element list. Thefirst element will
become the row number for the next iteration. The second is the action code, indicating

the action to be performed. The action code is a number from 0 to 6, with meanings as
follows:

Action code |Addition to output array Change tfoj tﬁa;ftoelrjtzrllﬁ/)addition

0 none none

1 none] =1

2 add single word j=.i

3 add single word j=. 1

4 add multiple words j=.i

5 add multiple words j=. 1

6 stop—no further iterations are performed

Executing an ‘add’ action when j is 1 produces adomain error.

The action code indicates when a value is appended to the output array. The value that
is appended depends onthef parameter (which came from the x argument to dyad ; :)

and the values of the iteration variables. The values appended for different values of f
are (r=row number, c=column number, j=word pointer, i=input pointer):

0 the items of y between j and i-1, boxed Boxed word of y
1 theitems of y between j and i-1 Unboxed word of y
2 e Index and length of word
3 ¢+ r* number of columnsins Coded row and column
o _ Index and length of word, and

4 j,(-]),c+r* number of columnsins coded row and column

Input pointer, word pointer,
5 i,j,r,c,(<ro{s row, column,

new row, action

The indicated data is appended to the output array whenever an ‘add single word’ action
isexecuted. The ‘add multiple words' action also adds the data to the output except that
a sequence of consecutive ‘add multiple words' actions executed from the same row
causes only asingle item to be added to the output array. The ‘add multiple words'
actions executed after the first modify the item that was added by the first, appending
the new word within the previously appended item.

After the last iteration, if no ‘stop’ action has been encountered and j isnot 1, onefinal
‘emit multiple words' action is performed.

We can build the state table s for our sample problem now. There will be 4 rows. First,
we wait for 0; then we expect x; then we expect a hexadecimal digit, signaling start-of -

word if we seeit; then we wait for a non-hexadecimal-digit, and output the word when
we get one. The state table will look like this;

Row Description Cocl)tjrzgrn 0 Col umn 1| Column 2 | Column 3
number hexdigit X 0
0 Waiting for O 00 00 00 10
1 Expecting x 00 00 20 00
2 Expecting first digit 00 31 00 31

‘ 3 ‘Waitingfornondigit 03 ‘ 30 ‘ 03 ‘ 30 ‘

This state table is generated by:

s=142%$00000010
s= s, 42%$00002000
s= s, 42%$00310031
s= s, 42%$03300330
and we use it with
(0;s;mM ;: '"gqqOx30x30x40x0xxxX'
- - -+
| 30| 40|
- 4o+
(0;s;mM ;: 'gqgqOx30x30x40x0x34a'
s
| 30| 40| 344

T

<< >> Contents Help

27. Modifying an array:
nt

Modification of a portion of an array, performed in C by the simple expression x
[m] =y, fitsuneasily into J. To begin with, 3 pieces of information are needed: the
array X, theindex m and the replacement datay . Since Jverbstake only 2

operands, that means the primitive to modify the array will be an adverb so that its
left operand can hold one of the 3; the verb derived from the adverb and its operand
will perform the modification.

Moreover, the adverb cannot be a modifier of the array's name as[m] isamodifier
of x inx[m] =y. InJ, thearray x may not have aname. Whilein C every array is
declared and named, in J we summon up anonymous arrays in the blink of ani . ,

use them, and let them disappear. We expect modification of a subarray to be like
other primitivesin this regard, which means that it must not be aform of
assignment to aname using acopula(=. or =:), but instead a (derived) verb
operating on an array to produce a result.

What will the result of the assignment be? Thisis not much of anissuein C. There
the result of the assignment isy, but it is seldom used: in C, after we have employed
x[m] = expression; we are usually content to put down the pencil, satisfied that
we have described a statement's worth of computation. In Jwe routinely use
weapons of larger bore: after we have modified the array we expect to be able to
sort it, or add it to another array, or the like. It isclear that the result of the
modification of the array must be the entire modified array.

Thisreasoning justifies Jsdesign. } isan adverb. Modification of an array is
performed by dyad n} which produces a derived verb of infiniterank. x n} vy
creates a copy of y and installs the atoms of x into the positions selected by m . m
specifies portions of y in the same way as the left operand of n{y . Even though
dyad { hasleft rank O, mmay have any shape: the atoms of mare processed to
accumulate alist of selected portionsof y . x must either have the same shape as
the selected portion(s) mi{ y or have the same shape as some cell of n{ y in which
case X isreplicated to come up to the shape of n{y . Examplesare arecap of the
forms of the left operand of dyad { , with a couple of twists:

11)} 44%$5

The simplest example. We select an atom and modify it.
0123 (0} 44%$5

QRGNS N
oo g
QEGEGEN

QL OO O W

e modifying a selected row.
)} 4 4%5

T
=
©<
—~ D

o1 o1 010
o1 o1 010
o1 o101 © O

0
5
5
5
X

is shorter than n{ y but x can be replicated to match the shape of n{y .
01 (0} 44%$5
| l ength error
| 01 (0)}4 4%5
Here the shape of x is2 while the shape of { y is4, so the operands do not agree.

12(11;22)}) 448$5

o1 01 O1 O1
o1 01 = Ol
o1 N 01 O
o1 01 O1 O1

Here mhas 2 atoms, each selecting asingleatom of y . x hastwo atoms and they

are stored into the selected positions.
12(11;11)} 44%5

o1 o1 01 O1
o101 N Ol
o1 o1 01 O1
o1 o1 01 O1

The same element is modified twice. Asit happens, the modifications are
performed in order, and the last one survivesin theresult. Do not rely on this
behavior! Asageneral rulein J, the order in which aparallel operationis

performed is undefined and may change from release to release or from machine to
machine.

The interpreter may incorrectly modify the first atom in the array if the atoms of m

select portions of y that do not have the same shape. Y ou should avoid such m :
0123(2;,11} 4489%5

5555
Don't even try to figure out what happened; avoid mixed m .
Monad | . —Indexes of the 1sin a Boolean Vector

If you have a Boolean list with 1s representing items to be modified, you will need
to create the list of indexes of the 1s (for selection you would just usex # vy, but

for modification you must use n} which needs the indexes rather than the Boolean
list).

Monad | . (rank 1) performsthisfunction. | . y producesy # i. # y,for

example:
1. 1001011

0356
indicating where the 1s are.

You should usel . , rather than any equivalent phrase, to perform this function,
because the interpreter recognizes compounds such as| . @ > and handles them
with special fast code.

M odification I n Place

It is fundamental to the design of Jthat, in general, verbs produce output in a
separate memory block from theinputs. Thus, if | execute >: vy, theresult will be

in adifferent memory areafromy . Thistakes more space than incrementingy in
place, but not much additional computation, since every atom of y must be visited

and incremented either way. Usually the extramemory usage isimmateria to
overall performance. Sometimes we regret having to make a new copy for the
output, for example when we just remove the end of along list with} : vy or add a

single character to theend of along string withx , ' '

Dyad n} 's profligacy with memory bandwidth reaches an extreme: evenif y ishuge
and only one atom is modified, the whole y must be copied to produce the result.

Sometimes this can be a noticeable drag on performance. To help out in those
cases, the interpreter recognizes the specific forms

nanme =. X n} nane
nane =: X n} nane
nane =. nane , X
nane = nane , X

and executes the modification in place, i. e. without creating a new copy of nane .
For the modification to be in-place, there must be nothing else in the sentence either
before or after the form shown above, and the two appearances of nane must be
identical. x and mmay be any expressions that eval uate to nouns.

<< >> Contents Help

28. Control
Structures

Y our reward for persevering through two dozen chapters on Jisto be shown the
direct equivalent of if/then/else, for, and while. | have waited until | am sure you
realize that you don't need them, and will choose them not because you see no other
way to solve a problem, but because you think they are the best way.

I f.,whil e.,andtherest are classified as control wordsin J. Their part of
speech is 'punctuation’, like a parenthesis or LF character. They are allowed only
inside definitions, that isto say inside right operands of the : conjunction. If you
want to use them from the keyboard or in a script, you must define a verb/adverb/
conjunction and then executeit. A control word ends any sentence to itsleft, asif
the control word started with an end-of-line character. We will cover only afew
important control sequences here; to find the rest, bring up the JVocabulary by
pressing F1 and click on Controls which is hidden in plain view next to the heading
"V ocabulary".

for./do. /end. andfor _x./do. /end.

The allowed forms are:
for. T-block do. block end.

for x. T-block do. bl ock end.

The T- bl ock isevaluated and itsresult A (that is, the result of the last sentencein
the T- bl ock) issaved. bl ock isexecuted once for each item (item, not atom) of
A . If youusethehandy f or _x. form (where x represents any valid name of your
choice), the private variablesx and x_i ndex are created, and every timebl ock is
executed, X _i ndex isassigned theindex of an item of A and x is assigned
Xx_index { A.

Thebr eak. andconti nue. control words do what you would expect.

whi | e. /do. /end. andwhi | st. /do. /end.

The allowed forms are;
while. T-block do. bl ock end.

whi | st. T-bl ock do. bl ock end.

whi | e. correspondsto while andwhi | st. correspondsto do while. The
'st' inwhi |l st. standsfor 'skip test' (the first time through), so you get one free
pass through the loop, just aswith do while.

Thebr eak. andcont i nue. control words do what you would expect.

| f./do. /el se. /end. ,i1f./do. /el seif./do./
end.

The allowed forms (with optional components underlined) are:
I f. T-block do. block else. block end.

i1 f. T-block do. block elseif. T-block do. block...end.

The flow of control is asyou would expect. T- bl ocksand bl ocksare both
sequences of zero or more J sentences. The result of the last sentenceinaT-

bl ock providesthe result of the T- bl ock . Theresult of aT- bl ock teststrue if
itsfirst atom is nonzero, or if it isempty, or if the T- bl ock wasempty. The flow
of control is as you would expect based on the tests. The sequenceel sei f. T-
bl ock do. bl ock may berepeated as often as desired, but you will be surprised
to learn that once you codean el sei f. you are not allowedto useel se. inthe
same control structure: useel sei f. 1 instead.

My antipathy for f or . andwhi | e. has scarcely been concealed, but | harbor no
il will towardi f. . Aslongasyoudon't apply itinaloop,i f. makesthe

structure of code obvious and you may use it without remorse. Examples are
legion; the form
If. # nane =. sentence to create an array

code to process nane, which is now known to have itens
end.

Isthe most common in my code, used to guarantee that a block of code is executed
only when a certain noun has a nonzero number of items.

When we first learned about verb definitions we said that the result of averb was
the result of the last sentence executed. Now we must emend that statement:
sentencesin T- bl ocksdo not affect the result of the verb.

try./catch./end. andcatcht./t hrow.

The simplest form (see the Dictionary for others) is:
try. blockl catch. bl ock2 end.

try. /cat ch. /end. isthecontrol-structure equivalentof u ::v . bl ock2is
executed only if there was an error during the execution of bl ock1 .

If you want to signal an error, execute the foreign 13! : 8 y wherey isthe error
number you want to signal. You can usethisinat ry. block to transfer execution
to the corresponding cat ch. block.

t hr ow. , when executedinat ry. block (or in afunction executed by thatt ry.
block), returns control to thecat cht . block of thetry. . Justasanerrorin
execution causesthe cat ch. block to be executed, at hr ow. causesthe

cat cht . tobe executed.

sel ect. /case. /f case. /end.

Theformis:
select. T-blockO case. T-blockl do. blockl...end.

T- bl ockO isevauated; then the T- bl ocksof thecase. control words are
evaluated sequentially until one is found that matches the result of T- bl ockO; the
following bl ock isthen executed, after which control passes to the sentence
following the end.

f case. islikecase. exceptthat after thebl ock of anf case. isexecuted,
control passesto the next bl ock rather than to the sentence following the end.

A T- bl ockn matchestheresult of T- bl ockO if theresult of T- bl ockO isan
element of the result of the T- bl ockn. So, aT- bl ockn couldbe?2; 3; 5 and

any of those three values would match it. Before this check is made, each side of
the comparison is boxed if it isnot boxed already. An empty T- bl ockn matches
anything.

return.

ret ur n. endsexecution of the definition that isrunning. The result of the last
sentence notinaT- bl ock istheresult. Example:

if. T-block do. return-value return. end.

assert.

assert. sentence

assert. falswithanassertion fail ure errorif theresult of executing the
sentence contains any atoms that are not equal to 1. Note that thereisno end.
corresponding to theasser t . , so there may be only a single sentence rather than a
T- bl ock.

<< >> Contents Help

29. Modular Code

Separating your code into independent modul es boils down to segmenting the space
of variable names into subspaces that overlap to the extent you want. We will
discuss how J handles namespaces, and then see how this corresponds to the
classes and objects provided by C++.

L ocales And L ocatives

Every public named entity in Jisamember of asingle locale. Each locale hasa
name which isalist of characters. A locative is aname containing asimple name
(the only kind of name we have encountered so far) and an explicit locale, in one of
thetwo formssi npl enane_| ocal enane_ andsi npl enane__var . Inthe
formsi npl enane_| ocal enane_, | ocal enane isthe name of the explicit
locale; intheform si npl enane___var , thevariable var must be a scalar boxed
string whose opened contents provide the name of the explicit locale. Examples:

abc_z issmplenameabc andlocaez

vv = <'|nange'

def _vv issmplenamedef andlocalel nane
Note that a simple name may contain an underscore; it may not end with an
underscore or contain two underscoresin arow.

(Note: J makes a distinction between named |ocales whose names are valid J
variable names not including an underscore, and numbered local es whose names
are strings representing nonnegative decimal integers with no leading zeroes. The
difference between the two is small and we will ignore it).

The current locale is avalue kept by Jand used to influence the processing of
names. We will learn what causesit to change. The current locale is the name of a
locale. When J starts, the current localeissetto' base'

Assignment

Anassignment isprivateif it is of theform si npl enane=. val ue andis

executed while an explicit definition is running (an explicit definition is the result of
the: conjunction, for example averb definedby 3 : ' text' oramodifier

defined by adver b defi ne). An entity assigned by private assignment is not

part of any locale and is accessible only by sentences executed by the explicit
definition that was running when the entity was assigned. Theideaisthis: thereisa
pushdown stack of namespaces in which private entities are assigned. When an
explicit definition E is executed, it starts with a new empty namespace that will be

destroyed when E finishes. Any private assignments made while E isrunning are
made in this private namespace. Any private variables referred to by E or by tacitly-
defined entities invoked by E are taken from this private namespace. |If E invokes
another explicit definition F, F starts off with its own private namespace and has no
access to elements of E's private namespace. When F finishes, returning control to
E, F's private namespace is destroyed. E is said to be suspended while F is running.

Assignments that are not private (because they assign to alocative, use=: , or are

executed when no explicit definition is running) are public. Assignment to a
locative creates an entity having the ssmple name in the locative, residing in the
explicit locale given by thelocative. A public assignment to a simple name creates
the named entity in the current locale. Entitiesin alocale are not affected by
completion of an explicit definition; they have alife of their own and can be
referred to by any verb that knows how to reach the locale they arein. The
following examplesillustrate assignments; the interpretation given is correct if the
lines are entered from the keyboard:

sinpl =. 5 NB. public (outside of explicit
definition)

vbl =: verb define NB. public

Isinmp =. sinpl NB. private, referring to public sinpl
sinmpl =. 8 NB. private (=. inside definition)
locl z =. 10 NB. public (locative)
sinmp2 = 12 NB. public (=)
I sinp, sinpl NB. result
)
vbl "' NB. execute vbl, see result
5 8

Notethat si npl was set to 8 by the explicit definition. Because thiswas a private
assignment, the public value was not changed:

sinpl

5

The public valueis still 5, as it was before the explicit definition was executed.
|l ocl z

10

Si np2

12

The other public assignments leave their resultsin the locale they were assigned to.
i sinp

| val ue error: isinp

The entities assigned by private assignment were destroyed when vb1 finished.

Note that the| oad verb (which runs scripts) is an explicit definition. Any
assignment using =. executed during | oad will belost. Use=: to define namesin
scripts.

Name L ookup

Names and locatives used to refer to entities ook just like names appearing as
targets of assignments, but there is an additional level of complexity for references.
Each locale has a search path (usually called simply the path) whichisalist of
boxed locale names. The path is set and queried by the foreign 18! : 2 which goes
by thealiascopat h . Examples:

('locl ;'loc2';'z") 18!:2 <l oc3
Setsthe path for locale' | oc3' to' | ocl' followed by ' | oc2' (andthe
obligatory ' z').

copath <'|oc3
R T o -
| oc1| | oc2| z]|
R T o -

Queriesthe path for ' | oc 3’

Every reference to a name implicitly uses apath. A reference to alocative looks for
the ssmple name in the explicit locale; if the name is not found there, the locales in
the path of the explicit locale are examined one by one until the simple nameis
found (if the nameis not found in any locale in the path, it is an undefined name).

A reference to asimple nameis similar, but first the private namespace of the
executing explicit definition (if any) is searched, and only if that search fails are
locales searched, starting in the current locale and continuing if necessary in the
locales in the current local€'s path.

Note that only the path of the starting locale (either the current locale or the explicit
locale) specifies the search order. No other paths are used.

Examples of references:

('locl ;'loc2';'z") 18!:2 <l oc3

alocl = 'a
aloc2 = "'b
c loc3_ = 'c
c loc2 = "'d
a |l oc3_

a
The namewas not definedin' | oc3' so the path was used, and the name was
foundin' | ocl’

a loc2

b

Thevaluein' | oc2' canberetrieved if we start the search there.
c loc3_

C

If the value isfound in the starting locale, no search is performed.
c locl

| val ue error: c_locl_
We have not defined apathfor' | ocl' ,s0' | oc2' isnot searched.

Changing The Current Locale

The current locale can be changed in two ways: explicitly by executing the
cocurrent verb whose purposeisto change the current locale, and implicitly by

executing averb named by alocative.

cocurrent y setsthecurrentlocaletoy . Simpleasthat. cocurrent uses
theforeign 18! : 4 . Donot use 18! : 4 directly! Itisintended to be used under
an alias, and it has side effects.

Executing an entity named by alocative (almost always averb, but it could be a
modifier as well) saves the current locale, changes the current locale to the explicit
locale of the locative before starting the entity, and resets the current locale to the
saved value when the entity finishes. Note that the entity alwaysrunsin the
explicit locale of the locative, even if the search for the name found the entity in
some other locale in the search path.

Whenever a named entity finishes execution, the locale is restored to its original
value, even if the entity changed the current locale.

Here are examples of actions affecting the current locale:

| oad "printf’

18!:5 "

+----+

| base|

+----+

Thisishow you query the name of the current locale. Next we define two verbs.
vl z =: verb define

‘Locale at start of viis %' printf 18!/:5 "'

gprintf 'nl '

v2 result = v2 locl_ nl

'Val ue returned by v2 is %' printf <v2 result
‘Locale in vl after calling v2is %' printf 18!:5 "'
gprintf 'nl'
)
cocurrent <'|oc2
v2 =: verb define
‘Locale at start of v2is %' printf 18!/:5 "'
gprintf 'nlvy. '
cocurrent <'loc2

gprintf 'nl'

‘Locale at end of v2is %' printf 18!':5 "'
nl

)

Theverb vl wasdefined inlocale' z' because it was an assignment to alocative;
theverb v2 wasdefined inlocale' | oc2' becauseit was an assignment to asimple
name and the current locale at the time of its assignment was' | oc2'

cocurrent <'|oc3

v2 = [:
Now theverbv2 isdefined in both locale’ | oc2' and' | oc3' . Next wedefine
the noun nl in each of our locales, so we can see which locale a name was found in:

nl locl =: 'nlin locl
nl loc2 =: 'nlin loc2
nl loc3_ = 'nlin |loc3

Now run the verbs. | will insert interpretation of the execution.
Vl 11

Jsearches for the smplenamev 1 inthe current locale' | oc3' ; not finding it there
itlooksin' l ocl','loc2',and’ z',findly findingitin' z' . Jexecutesthe

definition of the verb found in* z' , but without changing the current locale.

Locale at start of vl is |loc3
Yes, the current localeisstill ' | oc3!

nl=nl in | oc3
...and a name lookup uses the current locale as the starting point.

Locale at start of v2 is locl

vl hasexecutedv2 | ocl . Jstartssearching for thenamev?2 inlocae

'l ocl' anditspath, eventualy findingitin' z' . v2 isexecuted, using the
definitionfound in' z' , but with the current locale set to the explicit locale of the
locative, namely ' | oc1l' . Notethat v2 wasalso definedin' | oc3' (as]:
which would give an error), but ' | oc3' was never searched. The operand of v2
was n1; note that the lookup for n1 is completely independent of the lookup for v2;
nl issought and foundin' | oc3' anditisthat valuethat becomesy. at the start
of executionof v2 .

nl=nl in locl y.=nl1 in loc3
Simple name lookups start in the current locale' | oc1l' . The private namey.
has the value it was given on entry.

nl=nl in loc2

Here we have switched the current localeto ' | oc2' using cocur r ent , and the
name is found in the new current locale.

Locale at end of v2 is |loc2

Val ue returned by v2 is nl in loc2

Here v2 hasfinished and control hasreturnedtovl . Note that the value returned
by v2 issimply the result of the last sentence executed; it isanoun. Hereitisthe
value of nl at the end of v2, at which time the current localewas' | oc?2'

Locale in vl after calling v2 is loc3
Note that when v 2 finished the current locale was restored to its value before
executionof v2 . Thecocurrent inv2 hasno effect oncev?2 finishes.

nl=nl in | oc3
Execution of theverb v1 iscomplete. We should be back inlocale' | oc3' from

which we executed vl :
18!:5 "'
+--- -+

| I oc3|
+----+

The Shared Locale' z'

It isaJconvention, universally adhered to, that every local€'s search path must end
withthelocale' z' . Any nameinthe' z' locale can then bereferredto by a

simple name from any locale, making namesinthe' z' localetruly globa names.

Using L ocales

Y ou have my sympathy for having to read through that detailed description of name
processing; | refuse to apologize, though, because you really can't write programs if
you don't know what names mean. But, you wonder, How do | use locales?

Y ou won't go far wrong to think of alocale asakinto aclass in C++. When you
have a set of functions that go together as a module, define all their verbs and nouns
inasinglelocale. The easiest way to do thisisto put aline

cocl ass <'local enane’

at the beginning of each source file for the module (cocl ass islikecocurr ent

but it supportsinheritance). Then, every public assignment in the file will
automatically be madein thelocalel ocal enane .

The names defined in the locale are the equivalent of the private portion of class.
To provide the public interface to the class, you need to put those namesin a place
where they can be found by other modules. The traditional way to do thisisto
definetheminthelocale' z' by ending each file with lineslike

epnane_z_=: epnane_| ocal enane_

Here epnane isthe name of averb, and | ocal enane isthe name of the modul€e's
locale. Take aminute to see what happens when some other locale invokes
epnane . Thename search for epnane will endinthelocale' z' wherethis
definition isfound. Execution of this definition immediately results in execution of
epnane_I| ocal enane_ which switchesthe current localeto | ocal enane and
runs the definition of epnane found there. The benefit is that the calling module
doesn't need to know the locale that epnane is going to be executed in.

If you tire of writing out the public definitions one by one, | have included in
jforc.ijs averbtodoitforalist of entry pointsusing a sentence like
Publ i shEntryPoi nts 'publicl public2 public3

If you want to create multiple copies of objects derived from a class, you should
consult the Lab on Object Oriented Programming. There you will learn about
numbered locales and how to create and destroy objects. We will not discuss these
topics here.

By following the guidelines given above you will be able to emulate the class
facilities of C++. Because Jisinterpreted, you can do much moreif you want: you
can change search paths dynamically; you can use locales and paths to create a high-
performance network database; you can pass locales as data and use them to direct
processing; you can peek at amodul€e's private data. Y ou can even modify a

modul €'s private data from outside the module, but if you are struck by lightning
after doing so the coroner will find it was suicide.

Using locale-names as data allows for dynamic separation of namespaces. For
example, the processing of formsin Jrequires definition of verbs for a great many
events. You may let these verbs all share the same locale; but if you want to
segregate them, the Window Driver will remember what locale was running when
each form was displayed, and direct events for aform to the locale handling the
form.

<< >> Contents Help

30. Writing Your Own
Modifiers

If you find that you are coding recurring patterns of operations, you can write a
modifier that represents the pattern. Y ou will find that reading your code is easier
when the patterns are exhibited with names of your choosing.

Y ou write amodifier like you write averb, using conj uncti on defi ne or
adverb define,or2 :norl :nforoneliners. When you assign the

modifier to a name, that name becomes a conjunction or adverb, and it will be
invokedasu nane v y (monad)orx u nane v Yy (dyad)ifitisa

conjunction, or u nanme y (monad)or x u nanme Yy (dyad) if itisan adverb.

When amodifier isinvoked, the lines of the modifier are executed one by one, just
as when averb isinvoked, and the result of the last sentence executed becomes the
result of the modifier. Theu (and v, for conjunctions) operand(s) of the modifier

are assigned to thelocal namesu. (andv.) when the modifier starts execution (in
addition, if u isanoun, it isassigned to thelocal namem andif v isanounitis
assigned ton.)

User-written modifiers are of two types: those that refer to the variablesx. andy. ,
and those that do not.

Modifiers That Do Not Refer Tox. Ory.

If the modifier does not refer tox. ory. , itstext isinterpreted when its operands
(u and, for conjunctions, v) are supplied, and its result is an entity which may be

any of the four principal parts of speech. The result replaces the modifier and its
operands in the sentence, and execution of the sentence continues.

Usually you will want to create a verb, but nothing keeps you from writing a
conjunction whose result is another conjunction. Here we will confine ourselvesto
verb results.

If amodifier doesnot refer tox. ory. , it can beinvoked without any x. ory. ;
only theu. (andv. , for conjunctions) are used. Thetext of the modifier is
executed and the resulting verb replaces the modifier and its operands in the

execution of the sentence.

Let's write some of the utility modifiersreferred to in earlier chapters. | f any was

an adverb that executed u if y had a nonzero number of items:
91:3 (5) NB. Do this once to select sinplified

di spl ay
Ifany =3 1 : 'u. ~: (*@@)'
< | fany

<M (rer@)

| f any doesnot needtolook aty. ; it creates averb that executesu only if y has
items. Here we have executed the adverb | f any with the left operand <, and the
result is averb—the compound verb <: (* @¥@) . We can execute that verb on

anoun operand.:
<|fany 1 2 3

Remember that | f any isan adverb, so it has precedence and the line is executed as
if(< Ifany) 1 2 3 . Theverb(< | fany), which hasthevalue <*:

(*@@) ,isappliedtol 2 3 and produces the boxed resuilt.
< lfany "'

An empty y isleft unboxed.

u Butifnull nwasaconjunction that applied u if y had items, otherwise it
produced aresult of n . It could be written:

Butifnull = 2 : 'n"_ "~ u @ (*Q@#@])'
Agan(*@#@]) will check whether y has items, and this time the result will be
used to select the appropriate verb to execute.

< Butifnull 5
5"_<@(*@#@])

When But i f nul | isexecuted with operands, it produces a verb.

< Butifnull 5 'abc’
+---+
| abc|
+---+

< Butifnull 5 "'

5

The verb it produces can be applied to its own noun operands.
Example: Creating an Operating-System-Dependent Verb

The great thing about modifiers that do not refer tox. ory. isthat they arefully
interpreted before the x and y operands are supplied, so thereis no interpretive
overhead during the processing of the data. Here isamore complex example taken
from the J system. The goal isto define averb pl aysound that can be used to

play a.wav file under Windows:
NB. y. is the file data to be played

pl aysound =: '' adverb define
select. 9!:12 NIL
case. 2 do.

‘Wi nnmdll sndplaysound i *c i' & (15':0) @ (; &1)
case. 6 do.
NB. 2=nodefault + 4=nenory + 16b20000 = file

‘wnmmdll PlaySound i *c i i' & (15':0) @(; & 0;4))
end.
)
To begin with, let's make sense of thisodd sequence’ ' adverb define . The
adver b defi ne definesan adverb, but what'sthe' ' ? Simple—it'sthe left
argument to the adverb that was defined: the adverb is executed with u. set to
' . Theresult of that execution of the adverb iswhat gets assigned to
pl aysound .

So, what happens when the adverb is executed? The adverb calls the foreign
9! : 12 to see what operating system is running, and executes a selected line that
contains the definition of a compound verb. Since that lineisthe last one executed,
it becomes the result of the adverb; so the result of the adverb is the selected verb,
and that iswhat isassigned to pl aysound . On my system, thisleaves
pl aysound defined as a single compound verb:

pl aysound
‘wnmmdll PlaySound i *c i i'&(15!:0)@; &(0;4))
Lovely! No check for operating system needs to be made when | invoke
pl aysound; the check was made when pl aysound was defined.

Example: The LoopW t hl nitial Conjunction

The conjunction LoopW t hl ni ti al that we learned about earlier can be written
as

LoopWthlinitial = 2 : "u &>\.&(,&<v.))&|.&
(<"_1)°
It's just one application of &. after another. We can useit to illustrate a subtlety

about modifiers that you should be aware of. Consider an invocation of
LoopWthlnitial

vb = +

init =. 45

vb LoopWthlnitial init
vb& >/\. & (,&(<4 5))& |. & (<" _1)
The verb that is produced seems in order, but notice one point: the verb contains the
vaueof i ni t, butthenameof vb . Thisisarule: the name of a verb argument

Ispassed into a modifier, but the value of a noun argument is passed. Note that
If these lines appear inside averb, the verb vb, which is assigned by private

assignment, is not defined inside LoopW t hl ni ti al , because

LoopW t hl ni ti al isrunningin adifferent explicit definition from the onein
which vb was assigned. Aswe see above, LoopW t hl ni ti al canpassvb into
other modifiers, but if LoopW t hl ni ti al tried to executevb it would fail.

Before we move on | want to point out one tiny example of the beauty of J. For &.
(, & <4 5)) towork, there must be some obverse of , & <4 5) that undoesits

effect. What would that be? We can see what the interpreter uses:
, & <4 5) b. 1
Yoo (,&(<4 5))
It undoes the addition of atrailing item with } : which discards the last item. Yes,
that makes sense (the obverse has its own obverse which is the original verb).

Example: A Conjunction that Analyzesu and v

The conjunction u&. v expresses with great clarity the sequence of applying a
transformation v, then applying the operation u, then inverting the transformation
v . Thedyadx u&. v y appliesthe same transformation to both x andy, but in

many cases the transformation is meaningful only on one operand, and what we
would likeisaconjunction Under y suchthat x u Undery v y producesv”:
1 x u v y . Forexample, to encipher the characters of y by replacing each
one by the letter x positions earlier, we would use

513 2 -~ Undery ('abcdefghijkl"& ."0) "'hijk'
to perform the function

t =. 'abcdefghijkl'& ."0 "hijk'

5132 -~1t

t =
t { 'abcdefghijkl’

chgi

With that x stuck inthe middle of thedesiredresultv*: 1 X u v y itappears
that we will haveto refer to x. in our conjunction, but actually we can use an
advanced feature of Jto makethe x. disappear. The sequence (u v) producesa

verb that, when executed asthedyad x (u v) vV, givestheresultofx u v y

(you will learn about this and more if you persevere with the part of the book
devoted to tacit programming). So, the verb we are looking for isv”:

1 @ (u v) andwecanwrite

Undery =1 2 : 'v.*. 1 @ (u. v.)'

5132 -~ Undery ('abcdefghijkl"'& ."0) 'hijk'
chgi

Before we pat ourselves on the back for this achievement, we should consider
whether the verb produced by Under y hasthe proper rank. We see that it does not:

Undery appliesv to the entirey, and u to the entire x and the result of u y, when
really we should be performing the operation on cells of x andy, where the cell-size
of x isgiven by the left rank of u and the cell-size of y is given by the right rank of
v . For example, if we wanted to take the - x least-significant bits of y, we could
use

3 {."0 1 Undery #:. 30
12
(remember that monad #: converts an integer y to its binary representation,
producing a Boolean list—we are taking x bits of that and then converting back to
integer) The binary codefor 30is11110, the 3 low-order bitsare 110, and the
result is6. But when we have list arguments, we get an incorrect result:

3 4 3{."0 1 Undery #: 32 31 30
0 15 12
Theresult for 30 iswrong: because #: was applied to the entirey, 110 was
extended with framing fills to become 1100, and the result is 12 instead of the
expected 6. To get the right result we need to apply the verb to cells of the correct

size:
3 4 3 ({. Undery #:"0) 32 31 30
0 15 6

and naturally we would like to make Under y automatically produce a verb with the

correct rank.

The way to find the rank of theverb u isto executeu b. 0 . Inour conjunction
u. andv. areverbs, and we can use their ranksto produce an Under y that gives
the correct rank:

Undery = 2 :'(v.* _1)@(u. v.)"((1{u.b.0),2{v.b.0)’
We have selected the left rank of u and the right rank of v, and put them asthe

ranks of the verb produced by Undery . This produces the desired result:
3 4 3 {."0 1 Undery #: 32 31 30
0 15 6

and we can see the verb produced by Under y, with its ranks:
{."0 1 Undery #:
#.N 1@ ({."0 1 #)"0 0

Thisversion of Under y produces correct results, but we should add one small
improvement: the inverse of monad #: should be monad #. rather than monad #:
A1, because the two forms are different. One difference is obvious: the rank of
#. N _lisinfinite, whiletherank of #. is1; but that isimmaterial in Undery .

The other difference is subtle but it could be significant: the two forms may have
different performance in compounds. The interpreter recognizes certain compounds
for special handling; the list grows from release to release, but it's a pretty safe bet
that #. will be selected for special treatment before#: ~: 1 (and < before>": 1,

and so on). So, wewould liketo replacethev. ~: 1 with the actual inverseof v .
We can get theinverse of v by lookingatv b. 1 which produces a character-
string representation of theinverse of v . We can then convert this string to averb

by making it the result of an adverb (we can't make it the result of averb, because
the result of averb must be anoun). So, we areled to

Undery=:2 :'"(a: 1 :(v.b. D)@ (u.v.)"((2{u.b.0), 2{v.
b.0)'
where we defined theadverb 1 : (v. b. 1) andthenimmediately executed it
with an ignored left operand a: to create the desired verb form. Now we have

{."0 1 Undery #:

#.@({."0 1 #)"00

which we can be content with.
An Exception: Modifiersthat Do Not Refer tou. or v.

In very early versions of J, modifiers could not refer to their x. andy. operands.

In those days, a modifier used the namesx. andy. to mean what we now mean by
u. andv. . Modernversionsof Jcontinue to execute the old-fashioned modifiers

correctly by applying the following rule: if amodifier does not contain any
referencetou. ,v.,m,orn. ,itisassumed to be an old-style modifier, and

referencesto x. andy. aretreated asif they wereu. andv. . You may

encounter old code that relies on this rule, but you should not add any new examples
of your own.

Modifiers That Refer Tox. Ory.

Most of the modifiers you write will berefertox. andy. . Thenamesx. andy.

refer to the noun operands that are supplied when the modifier isinvoked as
[X] u adverb yor[x] u conjunction v vy .

Hereisan example, whichisinvokedas [x] u I nLocales n y,whereuisa
verb and n isalist of locale names; it executesu y (or x u Y if theinvocationis
dyadic) ineach localeof n :
| nLocales =: 2 : O
|1 = 18!:5 "'
for |. n. do.
cocurrent |
u. v.
end.
cocurrent 11

|1 = 18!:5 "'

for |. n. do.
cocurrent |
X. U. Y.
end.

cocurrent |1

)
Thisillustrates the important points. The text of the definition is not interpreted
until thex. andy. areavailable, in other words until the verb defined by

u I nLocal es nisinvoked. Since that invocation may be either monadic or
dyadic, two versions of the conjunction are given, one for each valence. The result

of the execution must be a noun, because the definition defines averb and the result
of averb isawaysanoun.

That last point isimportant and | want to emphasizeit. Itistruethat | nLocal es

iIsaconjunction, and yet its text definesaverb. How isthis possible? Because
| nLocal es isexecuted as a conjunction at thetimeit getsitsu and n

operands, but itstext isnot interpreted until the derived verb (which consists
of u, n, and thetext of | nLocal es) getsitsx and y operands. When

| nLocal es issupplied with u and n, it is executed to produce a verb which
consists of thetext of | nLocal es along with u and thevalueof n . Thisderived
verb is hidden inside the interpreter where it waits to be applied to ay (and possibly
x). When the derived verb is given its operands, it starts interpreting the text of

| nLocal es (which was unusable until thetimethat y. and x. could be given
values) and initializesu. and n. from the values that were saved when

u I nLocal es n wasexecuted. Thusthetext of | nLocal es describesaverb
operatingony. and X.

Y our modifiers should refer tox. andy. only if necessary. | f any from the
previous section could have been written

|fany = 1 : '"u. ™ (*#y.) vy.'
which would produce exactly the same result as the other definition, but it would
usually be slower, because the text could not be interpreted until x. andy. could

be defined. If the conjunction happensto be used in averb of low rank, the result
could be soporific.

Here's a puzzle that may be of interest to those readers whose eventual goal is Full
Guru certification. Why did | nLocal es save and restore the current locale?

Didn't we say that completion of any named entity restores the original locale?
L et's see what happens when we don't restore, using a simple testcase:

t == 1:0
cocurrent u.

y.
)

(<"abc') t O
0

18!:5 "
+---+

| abc|

+---+
Sure enough, the current locale was changed! But see what happens when we give a

name to the verb created by the execution of t
cocurrent <' base'

tt =2 (<'abc') t
tt O

0
18!:5 '

+----+

| base]

+----+

The current locale was restored. What causes the difference?

The answer isthat inthe sentence (<' abc') t 0, thenamed adverbt is
executed when it isgiven itsoperand <' abc' . Theresult of that execution isthe
derived verb (<' abc') t which hasno name. When the derived verb is executed
with the operand 0, the text isinterpreted, causing a change to the current locale,

and when the derived verb finishes, the current locale is not restored because the
derived verb is anonymous. If we givethat derived verb aname (t t here), it

restores the current locale on completion.

The observed behavior reinforces the point that the text of a modifier that refersto
X. ory. isnot interpreted when the modifier is executed; it isinterpreted only

when thederived verb is executed.

<< >> Contents Help

31. Applied Mathematics
inJ

Complex Numbers

All the mathematical functions can be applied to complex numbers. A complex
constant is written with the letter | separating the real and imaginary parts, e. g.

0j 1 isthesqguare-root of 1 . Alternatively, a constant can be written in polar
form in which the lettersar (or ad) separate the magnitude of the number from the

anglein radians (or degrees) between the real axis and aline in the complex plane

from the origin to the point representing the number:
larl

0. 540302j 0. 841471
1ad90
0j 1
A number of verbs are available for operations on components of complex
numbers. All have rank O.

+ y conjugate of y
+. y createsa2-atom list of the real and imaginary components of y

*. 'y createsaZ2-atom list of the length and angle in radians of the polar
formof y

| y magnitudeof y

iy 0j1~*y

r.y NOjl Ry

X j.y X + j. y(i.e xisthered part, y istheimaginary part)

X r.y X * r. y(i.e polar form, wherex isthe magnitude and y
the angle in radians)

Iy factorid of y (more generally, the gamma function I (1+y))

Matrix Operations

J has primitive verbs for operations on matrices, some using the conjunction .

-/ . * ygivesthedeterminantof y; x +/ .* vy isthematrix product of x and
y; % vy isthematrix inverse of y (providedy isnonsingular); X % Yy isthe
projection of x ontoy .

Inx +/ .* y,arank-1x istreated as amatrix with onerow, and arank-1y is

treated as a matrix with one column; but the result rank, which is 2 when rank-2
matrices are multiplied, is 1 when one operand has rank 1 and 0 when both do.

X % vy isarough-and-ready way to get aleast-squares approximation of X asa
linear combination of the columnsof y . If your y issingular or closeto it, avoid
% and use methods based on singular value decomposition.

Polynomials: p.

J supports 3 different ways of specifying a polynomial:

1. asalist of coefficients of increasing powers, starting with power 0 (i. e. a
constant term), where each coefficient multiplied by the corresponding power
of the variable produces aterm; the polynomial isthe sum of the terms. This
form is an unboxed numeric list.

2. asamultiplier mand alist of rootsr , representing the polynomial m(x-rg)
(X-ry)...(x-r). ThisformisaZ2-item list of boxesm r (if mis1it may be
omitted, leaving just <r).

3. (for multinomials) amultinomial of nvariablesis represented as alist of
terms, each term consisting of a coefficient and alist of n exponents (one
exponent per variable). The multinomial isthe sum of theterms. Theformis
a boxed rank-2 array in which each item is a coefficient followed by the list of
n exponents. This form is distinguished from the multiplier-root form by the
rank of the boxed array. (It is possible to have multiple multinomials that
share a common exponent array, by having more than one coefficient
preceding each list of exponents, but we will not pursue that here)

For example, three ways of expressing the polynomial 3x3-12x (which can be
written 3x(x+2)(x-2))are0 _12 0 3,3; 2 0 2,and<2 2% 12 1 3 3 .

p. Yy hasrank 1 and converts between coefficient and multiplier-root form of the
polynomia y . Note that converting from coefficient form to multiplier-root form

solves for the roots of the polynomial.

p. 0 12 0 3
R +
13]2 2 0]
R +

p. 3:20 2
0 120 3

If the multinomial form has only one variable (i. e. each item has length 2),
monad p. will convert it to coefficient form:

p. <2 2$ 12 1 3 3
0 12 0 3

Dyad p. hasrank 1 0 andis used to evaluate a polynomial in any of these forms.
If X isapolynomial in coefficient or multiplier-root form, x p. vy evaluatesit with

y giving the value of the variable:

0O 1203 p. 1
9

(3; 202 p. 2 1012
090 90

(the second evaluation applied the polynomial to 5 different values of the variable).

If x isamultinomial, x p. <y evauatesit withthelisty giving the values of the
variables (y must be boxed because the right rank of dyad p. is0 and in this case

there is more than one variable). So to evaluate the binomial x3+3x2y+3xy2+y3 with

x=2 and y=3 we have
(<4 331 30 321 312 103 p. <23

125
as expected.

Calculus. d. ,D.,D: ,andp. .

J provides support for differential and integral calculus. u d. n producesthe verb

that givesthe nth derivativeof u :
*1odo 1

*: yisy squared; the derivativeis+: y whichisy doubled.
N"&3 d. 1
3& @ "&2)

N&3 vy isy cubed; the derivativeis3 * y N 2 .

N&3 d. 2

3"0 * +:

Second derivativeis3 * 2 * y .
*» d 1

0 0 0 0.333338&p.
The 1%t derivative istheindefinite integral, whichis(y ~ 3) % 3 . Theform
the interpreter usesis the polynomial form.

f = *:

f d. _1 (6)
72

g = *:@:

gd _1(6)
288

u d. n producesordinary derivatives, and evaluatesitsu with rank 0. For partia
derivatives, useu D. n whereu hasrank greater than 0. Each cell of y produces

an array of results, one result for each atom of the cell, giving the partial derivative
with respect to that atom. For example, the length of avector is given by
veclength =1 +/ & :*:"1
which sguares the atoms, adds them, and takes the square root:
veclength 3 4 5
7.07107

The derivative of the vector length with respect to the individual componentsis
given by:

veclength D. 1 (3 4 5)
0. 424264 0.565685 0. 707107

The result of u need not be ascalar. Here we define the cross product:
xp =: dyad : " ((1].x.)*(_1].y.)) - ((_1].x.)*(1].
y.)) "1
002&p D. 1 (4 20
020
200
00O
Each row is the vector-valued partial derivative of the cross product
(O 0 2 xp 4 2 0)withrespect to one componentof y .

The interpreter will bend every effort to find a derivative for your function, but it

may fail, or you may not like the derivative it chooses. m D. n, when misa

gerund u” v, produces a new verb which executes like u but whose nth derivativeis
Vo
a= *:]1D 1
Herea isdefined to be *: except that its derivativeis]
a
*:7]1D. 1
aD 1(5)
5
Sure enough, the derivativeis]

If you don't want to express the derivative, you can have the interpreter approximate
itforyou. x u D: n y approximatesthe derivativeat y by evaluating u at y and

y+x . Boththeleft and right ranksof u D:. n arethe monadic rank of u, so you
can specify different step-sizesfor different atomsof y (if x isascalar, it isused for
the step-size at all atoms of y).

Y ou can do calculus on polynomials by manipulating the polynomial forms without
having to create the verbs that operate on those forms. p. . y (rank 1) takes

polynomial y in either coefficient or multiplier-root form and produces the
coefficient form of the derivativeofy . x p.. y (rank O 1) producesthe
coefficient form of the integral of y with constant term x .

Taylor Series: t. ,t:,and T.

With derivatives available, Taylor seriesare anatural next step. u t. y istheyth
Taylor coefficient of u expanded about O,andx u t. Yy evaluatesthat term at the
point X, inotherwordsx u t. yisx?y * ut. y . Allranksofu t. areO.

u T. nisaverbwhichisthe n-term Taylor approximation to u (expanded about
0).

ut: yis(ly) *ut. y.
Hyper geometric Function with H.

The generalized hypergeometric function is specified by two lists of numbers, a
numerator list and adenominator list. The generalized hypergeometric function is
the sum over al k of the (infinite) generalized hypergeometric series, whichisa

power series in which the coefficient of the yk term is the product of the rising
factorials of length k of the numerator items divided by a similar product for the
denominator items, and then divided by ! k .

The conjunction H. isused intheformm H. n where misthe numerator list and n
Isthe denominator list. Theresultingverbm H. n hasrank 0. The monad

m H. n vy takesthe limit of the sum of the generalized hypergeometric series; the
dyadx m H. n y takesthe sum of thefirst x terms. Formally, the generalized
hypergeometric function is

where

If mcontains 2 itemsand n contains 1 item, m H. n defines a hypergeometric
function.

Generalized hypergeometric functions can be used to calculate a great many
functions of interest: Legendre polynomials, Laguerre polynomials, Chebyshev
polynomials, and Bessel functions of the first kind are all special cases of
hypergeometric functions. Ewart Shaw, in http://www.ewartshaw.co.uk/data/jhyper.
doc, gives anumber of examples of usesof H. . For example, the error function

and the cumulative distribution function are given by
erf = 3 : '"(((2p_0.5*Y.) % (*:y.)) * 1 H 1.5 *:

n0lcdf = 3 : '-: > erf y. % %2 NB. CDF of N
(0, 1)

where | have rewritten Shaw's formulasto use elementary J. 2p_0. 5 is 2/sgrt(1).

Sparse Arrays: Monad and Dyad $.

Y.

$. y convertsthearray y into a sparse-matrix representation which can save alot
of space and time if most of the atoms of y havethesamevaue. $. *: 1 vy
converts sparse y back to normal (dense) form. A large but incomplete subset of
operations is supported on sparse arrays; look at the description of $. if you think
you'd like to use them.

Random Numbers; ?

Monad ? hasrank 0. If y is0, ? y isarandom floating-point number uniformly
distributed intheinterval 0<=7? y <1. Ify ispositive, ? y isarandom e ement
ofi. y . Anexampleuseis

? 3 3 % 1000
755 458 532
218 47 678
679 934 383

Dyad ? hasrank 0. x ? vy isalist of x items selected without repetition from

I . y,asifthelisti. y wereshuffled andthefirst x elementswere taken:
5 7? 52
24 8 48 46 22

The ? verbs use Knuth's GB_FLIP generator.

Plot

Jincludes a great package for making 2-D and 3-D plots. Check out the Lab named

Plot Package to see how to useit. For aquick preview, enter
| oad 'plot nuneric trig'

‘surface' plot sin */~ steps 0 3 30
to see how easy it isto get a plot of sin(x*y).

Computational Addons

The web site at www.jsoftware.com has several addons that you can download.
These are executable libraries, along with J scripts to call functions in them, that
offer efficient implementations of often-used functions. Two of interest in applied
mathematics are the LAPACK addon and the FFT addon. If you want a fast
implementation of the singular value decomposition referred to earlier, install the

LAPACK addon; then you can use
requi re 'addons\ | apack\| apack’

requi re 'addons\ | apack\ dgesvd’
dgesvd j | apack yourmatri x
which will quickly return the desired singular values and singular vectors.

Useful Scripts Supplied With J

Thedirectory your Jdi r ect ory/ syst eml packages contains a number of
subdirectories full of useful scripts. The/ mat h and/ st at s subdirectories have

scripts for mathematics and statistics; other subdirectories cover topics such as
finance, printing, graphics, and interfacing to Windows.

32. Elementary
Mathematicsin J

Verbsfor Mathematics

All the verbshaverank 0 O .
X *. y Lowest common multiple of x andy
X +. y Greatest common divisor of x andy

X !y number of waysto choose x things from a population of y things.
Moregenerdly, (!'y) % (!x) * (!y-X)

Theverbsdyad e. (Member of) and dyad - . (set difference) are useful in working
with sets.

Extended I ntegers, Rational Numbers, and x:

In J, numbers are not limited to 32-bit integers or 64-bit floating point. Extended
integer and rational are atomic data types (like numeric, literal, and boxed) that
allow representation of numbers with arbitrary accuracy. An extended integer
constant is defined by a sequence of digits with the letter x appended; arationa
constant is two strings of digits (numerator and denominator) separated by the letter
r; examplesare 123x and4r5 .

The various representations of numbersin J can be given apriority order:
boolean (low) - integer - extended integer - rationa - floating point - complex (high)

When a dyadic arithmetic operation is performed on operands of different priorities,
the lower-priority operand is converted to the higher-priority representation. The

simplest example arisesin alist constant:
12345678901234567890 4r5

12345678901234567890 4r5

The integer was made into arational number so it keeps its precision.
3.0 4r5

3 0.8
The floating-point constant forces the rational number to floating point.

2 * 3r4
3r2
The operation was performed on rational operands with arational result.

Results of verbs are given ahigher-priority representation if necessary:
% 4r9

2r 3
% 5r9
0. 745356

Explicit conversions between extended/rational and floating-point can be performed
by theinfinite-rank verb x: . x: 'y convertsfloating-point y to rational or integer

y to extended integer. Theinverse, x: ~: 1 vy, convertsin the other direction.

A rational number can be split into numerator and denominator by 2 x: 'y (rank 0):
2 x: 1r3 5

13

51

Factorsand Primes. Monad p: , Monad and Dyad
g.

p: Yy (rank 0) gives the yth prime (prime number O is 2).

g: v (rank 0) givesthe prime factors of y

X Q. Y (rank 0) with positive x isthefirst x items (or al items, if X is_) inthe
list of exponents in the prime factorization of y
_qg: 700
2021
* (p: 0123 ~2021
700

X Q. Yy withnegative x returns a2-row table. The second row is the nonzero
itemsof (| Xx) q: v (i. e the nonzero exponentsin the prime factorization); the

first row isthe corresponding prime numbers:
__q: 700

257

221

Permutations. A. and C.

In the direct representation of a permutation p each item i { p of the permutation
vector indicates the item number that moves to positioni when the permutation is
applied. Applying the permutation in the direct formisas simple aswritingp{y .

The standard cycle representation of a permutation gives the permutation as a list
of cycles (sets of elementsthat are replaced by other elements of the set). The
standard cycleformisalist of boxes, one for each cycle, with each cycle starting
with the largest element and the cyclesin ascending order of largest element.

Monad C. vy (rank 1) converts between direct and standard-cycle representations of
the permutationy :

/- 3141509
130245

C /: 3141509

C C /: 3141509
130245

x C. y(rank1) permutestheitemsof y according to the permutation x which

may be in either standard-cycle or direct form; other nonstandard forms are also
supported as described in the Dictionary.

Thereare! n possible permutations on n items, so it is possible to give each one a
number between 0 and <: ! n . Imagine the table of al possible permutations in

lexicographic order; the anagram index of a permutation isitsindex in that table.
A. y (rank 0) givesthe anagram index for the permutation y, which may be in
either direct or standard-cycleform. x A. y (rank O _) permutestheitemsof y
according to the permutation whose anagram index isx

a= /: 314159

A a
168

acC 12
241356

168 A. 1 23456
241356

3456

Themonad C. ! . 2 y givesthe parity of y : 1 if an even number of pairwise

exchanges are needed to convert y to the identity permutationi . #y, 1 if an odd
number are needed, O if y is not a permutation.

<< >> Contents Help

33. Odds And Ends

To keep my discussion from wandering too far afield | left out a number of useful
features of J. | will discuss some of them briefly here.

Dyad # Revisited

X # y doesnot requirethat x be aBoolean list. Theitemsof x actually tell how

many copies of the corresponding item of y to include in the result:
1202#56 78
56 6 88

Boolean x, used for simple selection, isa specia case. If anitem of x iscomplex,

the imaginary part tells how many cells of fill to insert after making the copies of
theitemofy . Thefill atomistheusua 0,' ' ,ora: depending onthetypeofy,

but the fit conjunction ! . f may be used to specify f asthefill:
12 1 0j1 2 #56 7 8

50060 8 8
12 1 0j1 2 (#'.99) 56 7 8

599 99 6 99 8 8

Finally, ascalar x isreplicated to thelengthof y . Thisisagood way to take all
itemsof y if x is1, or noitemsif x isO .

Boxed wordsto string: Monad ; : *: 1

;oM 1 y convertsy from alist of boxed stringsto a single character string with
spaces between the boxed strings.

oM 1 (ta ' list'tof') twords')
a list of words
Spread: #": 1

X #7. 1 y createsan array with theitems of y in the positions corresponding to
nonzero items of the Boolean vector x, and fillsin the other items. +/ x must equal
#y .
110014# _1"abc
ab ¢

Y ou can specify afill atom, but if you do you must bond x to # rather than giving it

as aleft operand:
1100 1&#": 11.'x" 'abc'
abxxc

Choose From Lists Item-By-Item: monad n

Suppose you have two arrays a and b and a Boolean list m and you want to create a
composite list from a and b using each item of mto select the corresponding item of
either a (if theitem of mis0) or b (if 1). You could simply write

m{" 1a,. b
and have the answer. There's nothing wrong with that, but J has alittle doodad that
Isfaster and uses less space, aslong as you want to assign the result to aname. You
write

nane =. n} a,: b
(assignment with =: workstoo). Thisform does not create the intermediate result
fromdyad, : . If nane isthesameasa or b, the whole operation is done in-place.

More than two arrays may be merged this way, using the form

name =. m a, b, ..,: c

in which each item of mselectsfromoneof a, b, ..., ¢ . Theoperation is not done
in-place but it avoids forming the intermediate result.

Recursion: $:

In tacit verbs, recursion can be performed elegantly using the verb $: , which stands
for the longest verb-phrase it appearsin (that is, the anonymous verb, created by
parsing the sentence containing the $: , whose execution resulted in executing the
$:). Recursion is customarily demonstrated with the factorial function, which we

can write as:

factorial = (* factorial @:) ": (1l&)

factorial 4
24
factorial(n) is defined as n*factorial(n-1), except that factorial(1) is1. Here wejust
wrote out the recursion by referringtof act ori al by name. Using $: , we can
recur without a name:

(* $: @) N (1&) 4
24

$. standsfor the whole verb containing the $: , namely (* $:

@:) M (1lé&s)
Makea Table: Adverb dyad u/

X u/ yisx u"(lu,) ywherel uistheleftrank of u . Thus, each cell of x
individually, and the entire 'y, are supplied as operandstou .

The definition is simplicity itself, and yet many J programmers stumble learning it.
| think the problem comes from learning dyad u/ by the example of a multiplication
table.

The key isto note that each cell of x isapplied to the entirey : cell, not item or
atom. Therank of acell depends on the left rank of u . The multiplication table

comes from averb with rank O:
123* 123

wWN -
OB~ DN
O o w

Youc

(

=

control the result by specifying the rank of u :
2 2) ,"1/ 89

N O

1809
3809
(i. 22 ,"0 / 89

0 8
18
289
389

These results follow directly from the definition of dyad u/ . f ndi spl ay shows
the details:

defverbs ' comma'

(i. 2 2) conmm"1/ 8 9

|0 conmma 8 9|1 comma 8 9|

Boolean Functions. Dyad m b.

Functions on Boolean operands

| will just illustrate Boolean dyad m b. by example. m b. isaverb with rank 0.

m when in the range 0-15, selects the Boolean function:
9 b./~01

10

01

u/ ~ 0 1 isthefunction table with x values running down the left and y values
running along the top. 91is 1001 binary (in J, 2b1001), and the function table of

9 b. isl 0 0 1ifyouenfileitintoavector. Similarly:
, 14 b./~ 01
1110

Youcanusem b. in place of combinations of Boolean verbs. Unfortunately,
comparison verbslike > and <: have better performance thanm b. , so you may
have to pay a performance penalty if you write, for example, 2 b. instead of >,

even though they give the same results on Booleans:
>~ 01

00

10

Jverb-equivalentsfor thecasesof m b. are: 00" 0;1*.;2>;3["0;4<;5]"0;
6~ ;7+.;8+;9=10-.@"0;11>:;12-. @"0;13<:;14*:;151"0 .

Bitwise Boolean Operations on Integers

When misintherange 16-31, dyad m b. specifies a bitwise Boolean operation in
which the operation (m 16) b. isapplied to corresponding bitsof x andy .

Since6 b. isexclusveOR, 22 b. ishitwiseexclusive OR:
5 (22 b.) 7

2

The XOR operation is performed bit-by-bit.

Dyad 32 b. ishitwise left rotate: bits shifted off the end of the word are shifted
into vacated positions at the other end.

Dyad 33 b. ishitwise unsigned left shift. x isthe number of bitsto shifty
(positive x shifts left; negative x shiftsright; in both cases zeros are shifted into

vacated bit positions):
2 (33 b.) 5
20

Dyad 34 b. isbitwise signed left shift: it differs from the unsigned shift only
when x and y are both negative (i. e. right shift of a negative number), in which
case the vacated bit positions are filled with 1).

If you use shift and rotate, you may need to know the word-size of your machine.

Oneway todo that is
> 27 | 1(32hb.) 1
32

OperationsinsdeBoxes.u L: n,u S n

u&. > isthe recommended way to perform an operation on the contents of a box,

leaving the result boxed. It istheidiom used most often by J coders and the first
one to be supported by special code when performance improvements are made in
the interpreter.

Sometimes your operations inside boxes require greater control than u&. > can

provide. For example, you may need to operate on the innermost boxes where the
boxing level varies from box to box. Inthese casesconsider usingu L: n which

hasinfinite rank. It goesinside the operands and applies u to contents at boxing
level n .

Themonadiccaseu L: n y isthesimpler one. Itisdefined recursively. If the
boxing level of y isno morethann, theresultisu y . Otherwise,u L: nis
applied to each opened atom of y, and the result of that is boxed. The effect isthat
u is applied on each level-n subbox and the result replaces that subbox, with outer

levels of boxing intact. For example,
]Ja = 0;(1 2,3 45);<<6;7 8;9

| |11 2|3 4 5||]|+-+---++|]|

| |-+ 1617 8] 9]
|| |||
|| | 4o +
oo e e e e e oo oo S +
A boxed noun.
L. a
3
Its boxing level is 3.
L:0 a
oo - - - SO +
| 1] +-+-+] +------- +|
| [12]3][]+-+-+-+]|
| [+-+-+[]2 2]1]]]
|| | | +-+-+-+ |
|| | +------- +
oo - - - SO +

The contents of each innermost box (where boxing level is0) isreplaced by the

number of items there.
L:1 a

+-+-+-- -+

| 1] 2| +- +|

| 1 113l

R

+-+-+-- -+

Each level-1 boxed entity is replaced by the number of items.
L:2 a

+- - +- +
| 11 2] 1
+- - +- +
Similarly for level-2 entities.
L: 2 a
+- - +-- -+
| 1] 2| +- +|
| 1 113l
|1 [+
+- - +-- -+
Negative level -n means ((level of y) minusn). Note that this does hot mean 'n
levels up from the bottom of each branch of y'. That would result in u's being

applied at different levelsin the different items of y; instead, the level at which u is
to be applied is calculated using the level of the entirey .

Thedyadiccasex u L: n vy issimilar, but you need to know how the items of x
andy correspond. During the recursion, aslong as both x and y have a higher
boxing level than the one specified in n, the atoms of x and y are matched as they
would be matched in processing averb with rank 0 O (with replication of cellsif

necessary). If either operand is at the specified level, it is not changed as the items
of the other operand only are opened. \WWhen both operands are at or below the
specified boxing level, u is applied between them. The results of each recursion are

boxed; thiswill give each the deeper boxing level of the two operands at each
application of u .An example:
(0 1;<2;3) +L:0 (10 20)

| |12 22|13 23||

y was passed through and applied to each level-0 entity.
(0 1;<2;3) +L:0 (<<10 20)

Once again y was applied to each entity, but because it has boxing level 2, al the
results have boxing level 2.

The conjunction S: islikeL: , but instead of preserving the boxing of the operands

it accumulates all resultsinto alist:
(0 1;<2;3) +S:0 (<<10 20)
10 21
12 22
13 23

Comparison Tolerance! . f

Like adiamond earring that adds a sparkle to any outfit, the fit conjunction! . isa

general-purpose modifier whose interpretation is up to the verb it modifies. We
have seen! . f used to specify thefill atom for averb, and to alter the formatting of

monad " : . Itsother important use isin specifying the comparison tolerance for
comparisons. A comparison likex = vy callstwo operands equal if they are close,

where close is defined as differing by no more than the comparison tolerance times
the magnitude of the larger number. If you want exact comparison, you can set the
comparison tolerancetoOusing! . O :

1 (=!.0) 1.000000000000001
0

1 = 1.000000000000001
1

Tolerant comparison is used in the obvious places—verbs like dyad =, dyad >, and
dyad - : —and also in some unobvious ones, like the verbs monad ~. , monad ~: ,
anddyadi . ,andtheadverb/. . For al of these you can specify comparison
tolerancewith! . f . You may wonder whether an exact comparisonusing! . 0 is

faster than atolerant comparison. The answer isyes, but often not by much. There
IS one important exception: if the comparison is used for finding equal items whose
rank is greater than O (or are complex numbers), exact comparison can be much

faster. So, if x hasrank 2 or higher, it's worth the trouble to writex u/.!.0 y or

X i.1.0 y;smilalyuse~.!'.0 y,~:!1.0 y,andx e.!.0 yify hasrank
greater than 0.

I . 1.0 usesacompletely different algorithm fromdyadi . . If performance
analysis showsthat dyadi . istaking alot of time, you might get an improvement
by usingi . ! . 0, evenif what you are comparing is not numeric.

Thef in! . f canbenolarger than about 2 34 . Thereason for thisisthat there

Ismuch specia codein Jfor handling integer operands, and for speed it assumes
that comparison tolerance cannot affect integer comparisons.

Theforeign 9! : 19 y can be used to change the default comparison tolerance, and
91': 18 ' " will return the current setting.

Right Shift: Monad | . ! . f

One of my personal favoritesistheinfinite-rank verb monad | . ! . f , defined as
_1&(| .. f);inother wordsit shiftsy right one place, discarding the last item
and shifting an item of f sinto the first position.

Generalized Transpose: Dyad | :

Dyad|: hasrank1 _ . x |: y rearrangesy so that the axes givenin x become
the last axes of theresult. So, if y hasrank 3,0 | : y putsthe axesof y into the
oderl 2 3 0andO 2 |: vy putsthemintotheorderl 3 0 2 . For

example:
i. 2 3

o N O
© U
P~ WA

2
6
10 1
12 13 14 15

16 17 18 19

20 21 22 23
0]:i. 234
12

13

14

15

wpNEFE O

16
17
18
19

~No o b~

8 20
9 21
10 22
11 23

Formally, putting the axesinto an order p meansthat (<p{x) { p |: Yy isthe
sameas(<x) { y . | wishl couldgiveyou an intuitive definition but | can't.

An item of x can be negative to count axes from the end. The Dictionary shows
how you can use boxed x to take elements along diagonalsof y .

Monadi : and Dyad i :

Monadi : islikemonadi . , but itsinterval is centered on O rather than starting at O:

I 5
5 4 3 2 1012345
i 5
543210 1 2 3 4 5
Monadi : can also take a complex operand to specify adifferent spacing between
items of the result.

Dyadi : islikedyadi . , but it givesthe index of the last occurrence (or #x if there
IS none).

Fast String Searching: s: (Symbols)

If you find your program taking alot of time matching strings, you can create
symbols representing the strings and then match the symbols rather than the strings
themselves. Theinterpreter uses special code to make symbol-matching very fast.

Symbol is an atomic data type (like numeric, literal, and box). In anoun of the
symbol type, each atom represents a boxed character string. Y ou create a symbol
with monad s: which hasinfiniterank. s: vy takesan array of boxed stringsy and

creates an array of symbols of the same shapeasy
]sym=. s: 2 2% abc';"'def';"'ghi';"jk'

“abc " def
“ghi Tjk

$sym
2 2

The' ' charactersare aclue that symisan array of symbols. The value of the top-
left atom of symisnot' "~ abc' or' abc' ;itisavaue understood only by the

interpreter. The interpreter chooses to display the text associated with the symboal,
but that text is actually stored in the interpreter's private memory.

y ins: y can beacharacter string which is chopped into pieces using the leading

character as a separator; each piece isthen converted to asymbol. Thisisahandy
way of creating a short list of symbols:

s: ' abc ghi'
“abc " ghi

Symbols can be operands of any verb that does not perform arithmetic; in addition,
comparison between symbolsis allowed with 'less than' defined to mean 'earlier in
aphabetical order'.

a =. s: ' abc def ghi jk'

definesalist of 4 symbols.

ai. s:<gh'

2

We create a symbol to represent ' ghi ' and find that in the list.
ai. < gh'

4

Note: the boxed string <' ghi ' isnot asymbol, so it isnot found in thelist.

Dyad s: has anumber of forms for operating on symbols. The only one of interest
toushereis5 s: y which converts each symbol iny to its corresponding boxed
string:

5s: 31{ a
+--+---+
| j K| def |

S S

When a string is converted to a symbol, the interpreter allocates internal resourcesto
hold the string's value and other information. There is no way to tell the interpreter
to free the resources for a single string; this can be a problem if your symbol tableis
large and changes dynamically. It is possible to clear the entire symbol table (using
y=.0 s: 10and10 s: vy),butdoing soinvalidatesany symbols previously

created by s: vy .

If you would like to do high-speed matching but what you want to match is not a
string, consider converting to stringsusing 5! : 5 <'y' which converts the

variable named y to string form.

Unicode Characters: u:

2-byte unicode characters can be represented by variables that have the unicode
atomic datatype. Such variables are created by theverb u: . Itsuseis described

in the Dictionary.

Window Driver And Form Editor

Designing user interfacesis quick and painless with Js Form Editor. TheLab
named Form Editor will show you how.

<< >> Contents Hep

Tacit Programming

> Contents Help

34. Tacit Programs

There is another language within J, amicrocode for Jasit were. Like Moliere's M.
Jourdain, who was astonished to find he had been speaking prose for forty years
without knowing it, you have been using a small subset of this language unwittingly
throughout our investigations. The hidden language describes away of coding
called tacit programming, and it istime for you to learn it in full. Jstacit language
Isthe irreducible essence of a programming language. It describes your algorithm
using only the ordering of the J primitives you have already learned. It hasa
grammar without words, which you use to write programs without visible operands;
yet its renouncing these seemingly essential componentsiis self-denial rather than
self-mutilation, for it retains the vigor to express any algorithm. It is as evanescent
as the breeze and as powerful as the hurricane. It isasublime creation.

We begin our exploration with this simple program:

Thefirst step toward enlightenment is to realize that something so simpleisa
program. Y ou may object: But it can't be aprogram. It has no parameters. It has
no name. How would | invokeit? It'saprimitive, maybe. Or averb. Or a
typographical error. But not a program.

Let me make the case that it isindeed a program. | say that abit of text deservesthe
title of 'program'’ if it produces a systematic result when executed with suitable
arguments. And | say that the program ' - ' satisfiesthis definition. Certainly | can
supply it with arguments

57 - 2
35
and get the expected result. The program does not refer to its operands explicitly,
but as long as we make the agreement that the arguments to a program appear as
nouns to its left and right, the program has no doubt about how to find its
arguments. Of course, we have been using this convention for verbs all along.

| can give this program a name:
m nus = -
57 mnus 2
35
m nus can be used in place of - anywhere. When we look at the value of m nus,
we see what it contains:

91:3 (5) NB. Do this once to select sinplified
di spl ay

m nus
m nus isequivaentto- . InJwecal it averb, but it has all the essential features

of aprogram. Infact, m nus istwo programs, because it can be executed

monadically as well:
mnus 6 8

6 .8

The point isthat every Jverb, even the primitives and the compound verbs, isa
program in the usual sense. Verbslike m nus, that do not mention their operands
by name but instead apply them according to Js parsing rules, are called tacit verbs.
Verbscreatedby m : n, likedyad : ' +/ y.',that mention their operands by
name are called explicit verbs. The compound verbs we have learned already are

examples of tacit verbs. Some of the verbs that we have had occasion to define so
far can be written in tacit form:

addrow = nmonad : '+/ y.'"1
could be rewritten as

addrow =: +/"1

and

v = dyad : '1.04 * x. +vy.'

Isequivalent to

v = 1.04&8 @ +

aswe have seen. We have already encountered tacit definitions without noticing:
dotprod = +/ @*"1
1 2 3 dotprod 1 2 3

14

and we can certainly define more.
sortup = /:~

defines a verb that sortsits operand into ascending order:
sortup 31 41 59 26 53

26 31 41 53 59

Some of the verbs we have encountered seem too complex for a compound verb.

For example, in
mean =: nonad : '(+/ y.) %#y.'

we need to perform two operationsony. and combine their results, something that
Is beyond the capabilities of the compound verbs we have encountered so far. We
will next learn how to produce atacit equivalent for mean and a great many other
verbs.

<< >> Contents Help

35. First Look At
Forks

Before we learn the rules for making tacit forms, you should understand why you
are going to the trouble of learning how to write programs that hide their operands.
First, they are extraordinarily compact. The explicit definitions we have written so
far are laconically terse by the standards of most computer languages, but they will
seem positively windy compared to the tacit forms. Second, the shorter definitions
are easier to combine with other verbs, and with the modifiers that add so much
power to Jexpressions. Third, the tacit definitions are parsed when they are
defined, in contrast to explicit definitions, in which each lineis parsed asit is
executed; we reduce interpretive overhead by using tacit forms. Fourth, in learning
to write tacit verbs you are aso learning to write tacit adverbs and conjunctions,
with which you will be able to craft your own private toolkit of modifiers that you
can use to combine verbs in ways that are useful to your application.

In what follows, Nx will represent a noun, Vx averb, Cx aconjunction, and Ax an
adverb, where x is any suffix.

We begin by observing that the rules we have learned so far give no meaning to
some combinations of words. Consider three verbs in arow, with no noun to

operate on, as in the sequence
(VO V1 V2)

where each Vn represents averb—an examplewould be ((+/) % #) . Without

some special rules, we have no way to interpret this sequence. Such sequences of
words that cannot immediately be executed to produce aresult are called trains.
ExamplesareCO C1 A2,V0 V1,andtheVO V1 V2 we are considering now.

Understanding tacit programming will largely be a matter of understanding how
trains are parsed and executed. You will learnthat (VO V1 V2) isanew verb that

can be applied to noun operands, and you will learn how it appliesto nouns. To
begin with, observe that thereisno reason that (VO V1 V2) Nshould bethe

sameasV0 V1 V2 Nwhichasweknowis(VO (V1 (V2 N)))

The meaning Jassignsto (VO V1 V2) Ny is.
(MO V1 V2) Ny is (VO Ny) V1 (V2 Ny)

This substitution goes by the name monadic fork. | think finding this definition was
astroke of brilliance in the design of J. An example of the use of thefork is:
(+/ %#) 46 8
6
which calculates the mean of the operand. It is processed using the substitution rule
above as
(+/ 46 8) %(# 4 6 8)
6
which divides the sum of the itemsin the list by the number of itemsin thelist.
You canusef ndi spl ay to help yourself see how the substitutions are made:
defverbs 'plus”0 div"0 tally'
(plus/ div tally) 4 6 8

Thesequence (+/ % #) isaverb. It cantherefore be assigned to a name:
mean =. (+/ % #)
or
mean =. +/ %#
and then used by that name:
nmean 12 18 24
18
Neat, eh? With just 4 symbols we described a program to take the mean of alist of
numbers (or alist of lists...). The beauty and the power are in the way the operands
and verbs are connected; that's what we'll be learning in the next few chapters.

At this point you may be impressed with the economy of the monadic fork but a bit
confused about the details. For example, wesaidthat (VO V1 V2) Ny isnotthe
sameasVO0 V1 V2 Ny andyetwesaidthat nean =: (+/ % #) isthesame
asmean =: +/ %# . How canthat be? If we use the version without
parentheses, why doesn't nean 12 18 24 get evaluated like

+/ % # 12 18 24

0. 333333
”?

| could give you asimple rule of thumb, namely that you can always imagine an
extra set of parentheses around any value assigned to aname. That would be true
but misleading, because it would encourage you to think that the values of defined

names are substituted into a sentence before the sentence is executed. That gets it
backwards: in reality the operands ar e supplied to the stored definitions. In fact,
the execution of a J sentence is a subtle alternation between creating definitions and
executing them. We will take the next couple of chapters to give you athorough
understanding of execution, after which we will return to see what magic we can
work with forks and their brethren.

<< >> Contents Hep

36. Parsing and
Execution |

| hope your hunger for understanding will be enough to motivate you to read a
couple of difficult chapters. If you do, you will learn something few J programmers
know—what really happens when J executes a sentence. In this chapter we will
analyze sentences from the top down, to get an idea for the order of execution. In
the next chapter we will follow the interpreter asit alternately parses and executes
sentences from the bottom up.

Since the understanding of parsing and execution that you have developed during
your work so far is probably abit inaccurate, we will work through examples of
Increasing complexity.

91:3 (5) NB. Do this once to select sinplified
di spl ay

&.
&.

With only one word, there are no operands and nothing to execute, so the result of
the sentence is the word itself: the conjunction &.

-1 & N
-1 &N
The result of executing - : & . , 1. e. executing & with-: and”. asoperands, is
an anonymous verb. This anonymous verb will execute according to the definition
of & , givenitsoperands-: and”. (i.e.-: & . ywillbe™ -: .y).
Note that the conjunction &. is executed without reference to the operand of the
anonymous verb (indeed, in this case there is no such operand and the anonymous
verb isthe result of the sentence). We could assign the anonymous verb to a name,
in which case it would no longer be anonymous (e. g. sqrt = -: & *.);
without such an assignment we will refer to it here by the nicknameav . Thevalue
of av istheverb described by - : & *.
-: & N 16
4
We know that thisisexecuted as”™ -: ~. 16; let'ssee how that happens.

Conjunctions are executed before verbs, sofirst - : & . will be executed to

produce the anonymous verb we called av . Then av is executed with the operand
16 . av operates according to the definition of & : it produces the same result as
A o-:o N 16 (butit may use adifferent algorithm than executing” -: ~. 16

directly).

It appearsthat & was executed twice: once to create av and then again during
the execution of av . No, it was executed only once, to createav . av operates
according to the definition of &. , but it isav that isexecuting, not & . The
confusion arises because of the way the interpreter displaysav . Thereisno better
way to show averb that performs the function - : & . thanto show the way the
verb was created, i. e. with the characters'- : & . ', but you should think of thisas
an exhibition of the pedigree of av, and an assurance of its good behavior, rather
than alist of functions to be executed. In fact, part of the reason for Js good
performance comes from its recognizing functions that can be combined efficiently
and providing customized routines to handle anonymous verbs that call for those
combinations.

Confusion between a conjunction and the anonymous verb it producesis most likely
when the conjunction is one you wrote using conj uncti on define or2 :

n . In most cases the text of the conjunction actually describes a derived verb, and
it isnatural for you to say 'the conjunction Cis executed with operandsu. , v. , and
y. ' rather than the more accurate 'the anonymous verb created by the application of
Ctou andv isexecuted, withu. andv. available during the interpretation of the
text of Cand withy. astheoperand’. Such confusion isamost always harmless,

but let's go through a few examples so you can see the layers of execution:
2 0 "u!
2 0 'u.’
Weexecute2 : ' u.' andtheresult isan anonymous conjunction that we'll call
acl . Thedisplay of ac1l showswhereit camefrom. When acl isexecuted, its

result will beits left operand.
+ (2 'u.t) -

+:

Here2 : 'u.' isexecutedfirstto produceacl; thenacl isexecuted with |eft
operand of +: and right operand of - : . Theresult isan anonymous verb that welll
call avl; itsvalueistheverb +: which wasthe left operandtoacl .

+ (2 : 'u.') -1 5
10

Remember, (2 : 'u.') isaconjunction (the conjunction we have called ac 1),

and conjunctions are executed before verbs, so thisis executed as
(+: (2 : '"u.') -:) 5,whichbecomesavl 5 . Weexecuteavl withthe

operand5 . Monad +: doublesits operand, and theresultis10 .

We know that a conjunction can produce a conjunction result. That's how explicit
conjunctions are formed: executing the conjunction : with left operand 2, asin 2

n, produces a conjunction. Thereis nothing special about 2 : n : any conjunction
is allowed to produce a conjunction result:

2 '&
2 (,'&)
Weexecute2 . ' & andtheresultisan anonymous conjunction that we'll call

ac2 . Thedisplay of ac2 showswhereit camefrom. (the, inthedisplay of ac2
Is harmless, areminder that internally the anonymous entity resulting fromm : n
storesn asalist of characters.)

+: (2 '&) -:
&
We execute ac 2 with left operand of +: and right operand of - : . Theresultisan
anonymous conjunction that we'll call ac3 . ac3 isaconjunction because its
value & (the last sentence executed by ac2) isaconjunction. Yes, & by itself can

be aresult: modifiers can return any primary part of speech (but try to return a
conjunction from averb and you will get an error).
Note that thisisnot thesameasu. &v. : that would aso be avalid return

value from a conjunction, but u. andv. would be substituted and & would be
executed to make the returned value an anonymous verb with the description u&v .
Make sure you seewhy the +: and - : disappeared. First, the conjunction :
was executed with operands2 and' &' ; that produced a conjunction ac2 which
was then executed with operands +: and - : ; but the defining text of ac2 does not
look at its operands; it Ssmply producesthevalue & . So, the operandsto ac2

disappear without atrace, and the result of the whole phrase is a conjunction with
thevalue & .

2 (+: (2: '&) -:) *
28&*
Continuing the example, we executeac3 (which was just the conjunction &) with
left operand 2 and right operand * . The result is the anonymous verb av2 which
will execute as 2&*

2 (+: (2 : '&) -:) * 5
10
Finally, we execute av 2 with the operand 5, and get theresult 10 .

Explicit modifiers that refer to the operands of their derived verb (asx. ory.)
comein for special treatment. A simple example is the conjunction defined by

2 'u. v. y.'
2 'u. v. y.'
Weexecute2 : 'u. v. Yy.' andtheresultisan anonymous conjunction that
welll call ac4 . You can't tell it from the display, but ac4 isaspecial kind of
conjunction. Becauseit referstoy. , thetext of ac4 can be executed only asaverb
(only thenarex. andy. meaningful). The stored ac4 makes note of this fact.

+: (2 'u. v. y.") - 5
_10
When ac4 itself isexecuted (as+: (2 : 'u. v. y.') - hee—sinceac4is
aconjunction it is executed before its result is applied to the noun operand 5), the
text of ac4 isnot interpreted (as it wasin our other examples). Instead, the new
anonymous verb av 3 iscreated. av3 contains the defining text of ac4, along with
the operands that were givento ac4 (+: and - here). Whentheverbav3is
executed asin the line above, the text of ac4 isfinally interpreted, with the
operands of ac4 (+: and- here) availableasu. andv. , and the noun operands of
av3 (5 here) availableasy. (and x. if theinvocation is dyadic); the result isthe
resultof +: - 5 .

<< >> Contents Help

37. Parsing and Execution
|

Now that you understand what an anonymous verb/adverb/conjunction is, you are ready
to follow parsing and execution word by word. We will finally abandon all shortcuts and
process sentences exactly as the interpreter does.

In any compiled language, a program is broken into words (tokens) and then parsed, and
code is generated from the parsed result. Not so in J: a sentence is broken into words, but
the sentenceis not fully parsed; rather, parsing and execution proceed simultaneously,
scanning the text from right to left. Parsing finds patternsin the sentence that are then
executed. Execution includes the usual supplying of noun operands to verbsto obtain a
result from the verb, but also other actions. supplying verb and noun operands to
conjunctions and adverbs to produce derived entities, and recognition of other sequences
that we will learn soon. Execution of a bit of a sentence, which we will call afragment,
consists of replacing the fragment with an appropriate single word, namely the result of
executing the fragment. In the simple case, where the fragment is the invocation of a
verb (i. e. the fragment looks likever b noun or noun ver b noun), theword that
replaces it isthe noun that is the result of the verb. If the fragment isthe invocation of a
modifier, the result of executing it will be anoun or a derived verb/adverb/conjunction.

A noun is nothing but its value, but the derived verb/adverb/conjunction will itself
eventually be executed: it is called an anonymous verb/adverb/conjunction and is saved
by the interpreter in a private form, and the single word used to replace the fragment is a
reference to this anonymous verb/adverb/conjunction (for the case of an anonymous verb,
you may think of the single word as apointer to afunction that performs according to
the definition of the anonymous verb). In all casesthe word replacing the fragment has a
definite part of speech, and if it isaverb, adefinite rank.

TheParsing Table

Execution of a sentence begins by breaking the sentence into words. The words (with a
beginning-of-line marker, shown here as §, prepended) become the initial contents of the
unprocessed word list. A push-down stack will also be used during execution; it is
initially empty. Execution of the sentence is performed by repetition of the parsing step
which comprises: (1) examining the top 4 elements of the stack to seeif they match one
of the 10 executable patterns; (2) if amatch was found, executing the executable portion
of the stack (what we called the executable fragment in the last chapter), resulting in a
single word which replaces the fragment on the stack; (3) if no match was found, moving
the rightmost word of the unprocessed word list into the leftmost position of the stack,

pushing the rest of the stack to the right. Execution finishes when there are no
unprocessed words and the stack does not contain an executable pattern. Note that
execution of afragment may leave the stack matching one of the executable patterns, so
severa sequential parsing steps may perform an execution without moving anything onto
the stack. After all words have been processed, the stack should contain a beginning-of-
line marker followed by a single word which becomes the result of the sentence.

To follow the parsing we need to know what patterns at the top of the stack contain an
executable fragment. The parsing table below gives the completelist. More than one
symbol in a box means that any one of them matches the box. name means any valid
variable name, and C, A, V, and N stand for conjunction, adverb, verb, and noun

respectively.

leftmost stack word other stack words action
§=.=:(0 Monad
§=.=:(AVN 1 Monad
§=.=(AVN 2 Dyad
8§=.=.(AVN 3 Adverb
§=.=(AVN 4 Conj
8§=.=(AVN 5 Fork
§= = 6 Hook/Adverb
name N 71s
(8 Paren

Thelinesin the parsing table are processed inorder. If the leftmost 4 words on the stack
match alinein the table, the fragment (those words on the stack which are in boldfacein
the parsing table) is executed and replaced on the stack by the single word returned.
Because the fragment is always either two or three wordslong, it is officially known as a
bident or trident. The last column of the parsing table gives a description of what
execution of the fragment entails.

Y ou will have an easier time following the parsing if you note that the leftmost word in

the executable patternisusually oneof 8 =. = (A V N . Thismeansthat you can
scan from the right until you hit a word that matches one of those before you even start
checking for an executable pattern. If youfindoneof 8 =. = (A V Nandit

doesn't match an executabl e pattern, keep looking for the next occurrence.

Note that the leftmost stack word in the parsing table is never aconjunction. Thisisthe
ultimate source of our long-noted rule that conjunctions associate |eft-to-right: a
conjunction can be executed when it appears in the third stack position, but if another
conjunction isin the leftmost position then, the stack will always be pushed down to

examine that conjunction's left argument.

Examples Of Parsing And Execution

We will now follow afew sentences through parsing. We will represent anonymous
entities by namesin italics, with an indication of how the anonymous entity was created.
Up till now in this book we have scarcely noticed that the term 'verb' was used both for an
entity that can be applied to a noun to produce a noun result, and also for the name of that
entity. Thisambiguity will continue—being precise would be too cumbersome—but you
should be aware of it. When we say 'theresult is av, defined as +/', that means that an
anonymous verb was created whose function is described as +/ , and the nickname we are

giving it—the word, that is, that goes on the execution stack to betoken this verb—is av.
Sentence: +/ 2*a whereaisl 2 3

unprocessed word list stack line
8§+/2* g
8§+/2*123 (not executable)
§+/2* 123 (not executable)
8§+ /2* 123 (notexecutable)

8+ 2* 123 (result246) 2
8§+/246 (resultav, defined as +/) 3
8av246 (result12) 0
§12

The column labeled 'line’ indicates which line of the parsing table was matched by the
stack. The fragment is marked in boldface and underlined. Note that when the noun a

moved onto the stack, its value was moved; when a named verb, adverb, or conjunctionis
moved onto the stack, only the nameis moved. Note also that the noun'svalue(1 2 3

here) isasingle word.
From now on we will omit the lines that do not contain an executable fragment.

Sentence mean =: +/ % #

unprocessed word list stack line

S§mean=:+/%#

8mean=: +/%# (result avl, defined as +/) 3

8mean=. avl % # (result av2, defined as avl % #)

8§ mean =: av2 (result av2; nean isassigned av2) 7

8 av2

| want to emphasize that what is assigned to nean istheresult of parsing +/ % # . It
iIsnot the sequence +/ % #, but rather a single verb which performs the function

described by the fork. Now you see why putting parentheses around the definition doesn't
matter: av2 would be parsed the same either way.

unprocessed word list stack line

8mean456

8§mean 456 (result5) 0

§5

Sentence: nean 4 5 6
Since nean istheresult from parsing +/ % #, it is executed without further ado. As

you can see, asingle 'execution’ step can trigger a cascade of processing as each verb
referred to by an executing verb is executed in turn. Here, execution of mean does the

entire processing of the fork, returning theresult 5 . The verb to be executed can be

quite complex, and can have a mixture of named and anonymous components, asin the
next example.

Sentence: (nmean - (+/ % #)& (~."1)) 4 5 6 (findthedifference between
arithmetic and geometric mean)

unprocessed word list stack line
§(mean-(+/%#)&. (N"
1))456
8(mean-(+/%#)&|[("."1))456 (resultavl, defined as 4
n 1)
§(mean-(+/%#)&|(avl))456 (resultavl) 8
§(mean-(+/%#)&.avl)456 (resultavz, 3
defined as +/
8(mean-(av2% #) &.avl) 456 (result av3, 5
defined as av2 % #)
8(mean-(av3) &.avl) 456 (result avd)
8(mean-av3 &.avl) 456 (result av4, defined as 4
av3 &. avl)

g(mean - av4) 456 (result avb, defined as 5
mean - av4)

§(av5)456 (result avb)
§av5456 (result0. 0675759) 0
8 0.0675759

Again, there was only one execution of averb. It happened at the very end: after avb was
created, it was executed, and its execution included the execution of everything else.

({.a) & whereais4 5 6

Sentence: i nc

unprocessed word list stack line

ginc=:({.a)& +

ginc=|({{456)& + (result4)

8inc=|(4)& + (result4)

8inc=:4& + (result av, defined as4& +)

~N |~ |00 | O

8inc=: av (resultav;i nc isassigned av)

8 av

Thisillustrates an important point. Even in the middle of a complex definition, verbs are
applied to nouns wherever possible. And, the value of anoun in adefinition isthe value
at the time the definition was parsed. |f aparsed definition refersto averb, it does so by
name, so the value of averb isits value when it is executed.

The remaining examples are curiosities to show you that it's worth your trouble to learn
the intricacies of parsing.

Sentenceea + a =. 5
unprocessed word list stack line
§a+a=.5
8a+ta=.5 (resultis5; aisassigned 5) 0
§5+5 (resultis10) 2
8§10

a isassigned avalue just before that value is pushed onto the stack.
Sentence:2 +. (2 . '&') -: * 5

unprocessed word list stack line
8§2+:.(2:'&")-:*5
8§2+|(2:'&"')-:*5 (resultisacl, definedas?2:'&") 4
§2+j|(acl)-:*5 (resultisacl) 8
82+ acl-:*5 (resultisac2, defined as &) 4
§2ac2* 5 (resultisav, defined as2&*) 4
§av5 (resultis10) 0
8§10
Look at what happens when we omit the parentheses:
Sentence:2 +: 2 @ ‘& -1 * 5
unprocessed word list stack line
§2+:2:'&'-:* 5
§2+:2& -1*5 (resultis1) 1
§2+:2:'&"'-:1 (resultisacl, definedas?2:'&") 4
82+:acl-:1 (resultisac2, defined as &) 4
§2ac21 (domainerror: 2&1isillegal) 4

The omission produces a subtle but fatal change in the parsing order. Asthe Dictionary
says, "it may be necessary to parenthesize an adverbial or conjunctival phrase that
produces anything other than a noun or verb". Now you see why.

Undefined Words

If you try to execute a nonexistent verb, you get an error:
zZ 5

| val ue error: z
| z 5
However, that error occurs during execution of the name, not during its parsing. During
parsing, an undefined name is assumed to be averb of infinite rank. Thisalowsyou to
write verbs that refer to each other, and relieves you from having to be scrupul ous about
the order in which you define verbs. For example:

a =z
This produces averb a which, when executed, will execute z.

z = +

ab
5

With z defined, a executes correctly. Of course, it's OK to assign z to another verb too:

b = z
b5
5

Now, canyoutell mewhat+/ @ 1 2 3 will do? Take aminuteto figureit out (Hint:
note that | used @rather than @).
+H @ 123
123
Because b hasrank O, +/ @ aso hasrank zero, so the summing is applied to atoms

individually and we get alist result. Doyouthink +/ @ 1 2 3 will have the same
result?

+f@ 1 2 3
6
Even though a hasthe same value as b, itsrank is different. a's rank was assigned when
It was parsed, and at that time z was assumed to have infinite rank. b'srank was assigned
when it was parsed too, but by that time z had been defined with rank 0. You canwin a
lot of bar bets with this one if you hang out with the right crowd.

<< >> Contents Help

38. Forks, Hooks, and
Compound Adverbs

Now that you understand execution, and in particular how anonymous entities are
created and then executed, you are ready to see forks used in some practical
applications. Thiswill be arelief after the last two chapters of theory.

Y ou have learned the rule for the trident called the monadic fork:
(VO V1 V2) Ny is (VO Ny) V1 (V2 Ny)

Now learn the other 3 bidents/tridents involving only verbs. The dyadic fork:
Nx (VO V1 V2) Ny is (Nx VO Ny) V1 (Nx V2 Ny)
The monadic hook:
(VO V1) Ny is Ny VO (V1 Ny)
The dyadic hook:
Nk (VO V1) Ny is Nx VO (V1 Ny)

The purpose of taking you through the 2 preceding chapters was for you to
understand that 'is in these definitions is shorthand for 'replaces the parenthesized
part with an anonymous entity that when executed on an x andy produces the same

result as' (you don't have to be a politician to hesitate over the meaning of 'is).

It may be helpful to think of these bidents and tridents as ghostly conjunctions, with
no actual symbol, that create an entity (the bident/trident) out of the sequence of
verbs. The entity so created is quitereal: it is executed just like any anonymous
verb created by a modifier.

Y ou can see that for both the hooks and the forks, the monadic case is derived from
the dyadic: for forks by omitting Nx, and for hooks by replacing Nx with Ny . The

verbs produced by hooks and forks have infinite rank.

Using hooks and forks, assisted by all the modifiers we have learned, we can
produce any function of 2 operands. If we have more than 2 operands, we can link
them together into a boxed list using dyad ; and then extract the pieces as needed
usingdyad{:: . Fortherest of thischapter we will show examples of functions
turned into tacit verbs using hooks and forks. If | don't show the expansion using
the bident/trident rules, you should produce it yourself.

To find how much x has changed fromy, asapercentageof y

pctchg = 100&& @(- %])

12 pctchg 10
20
Thisbecomes100 * (x - y) %y . Notetheuseof] toselect theorigina y
operand. Similarly, [can be used to select the original x operand. Tacit verbs
make heavy useof [and]

Another way to code pct chg is

pctchg =: 100" _ * (- %])
where we used the constant verb 100" _ which produces 100 no matter what its
operands are. Which of these forms you prefer is a matter of taste.

f ndi spl ay isvery helpful in understanding tacit verbs. The two versions of
pct chg aredisplayed as

defverbs '"tines"0 m nus"0 div"0'

def nouns 'x y'

X 100& inmes@(mnus div]) vy

| encourage you to usef ndi spl ay to expand any tacit definitions that are
troublesome.

To find the elements common to X and y, keeping the same order asin x
setintersect = e. # |
314159 setintersect 4 6 9

4 9

Thisbecomes(x e. y) # x . Youcanseethat theidentity verbs[and] are

useful for steering operands through hooks and forks. As an exercise, see how the
dternativeversion ([-. -.) producesthe same result.

To list dl the indexes of the 1sin aBoolean list:
booltondx = (#i.@#)"1
booltondx 0 1 01 00 1

1 36

Note that we are careful to give our verb arank of 1, since it works only with lists.
The primitive | . hasthe same effect.

To find the difference between the largest and smallest itemsin alist:
range = (>./ - <./)"1
range 3 141509

8

To find theindex of the largest itemin alist:
| ndexmax = (i. >./)"1
indexmax 31415926535
5

To create aBoolean list with a 1 at each position that is different from the previous
position:
changeflag = 1. , 2: I\]
changefla91122777334588
1010100101110
We could have done this without using forks, with (1&,) @ (2&(~: /\)
Which version you use is a matter of taste. The number verbs _9: through 9: are

very useful if you like forks rather than long conjunction chains. Note that
changef | ag isexecuted asif parenthesized (1: , (2: (~:/\) 1)) . If

you work with long trains of verbs like this you will soon notice that if you count
the verbs from the right (starting at O, of course), the even-numbered verbs have the
origina x andy applied, and the odd-numbered ones combine the results from the

even-numbered.

To replace multiple spaces by a single space:

del nb = ((#~-.) ' "&E.)"1
del mb ' abc nb'
abc nb

To create an array in which each item isalist of (value, number of timesthat value

appeared):

hi st ogram =: ~. #l . ~
hlstogram314159265358979

o b PF W
WEFEDNDN

~N 00 o N ©
PR PP W

To append the contents of the first item of x in front of y and the contents of the last

item of X behindy :
enclose =@ >@{.@[,] , >@{: @

'*' encl ose ' xyz'

XyZ
"()' enclose 'abc'

(abc)

To produce 1 if all theitemsof y are equal, O if not
allitemsequal = -:. 1¢&|.
allitemsequal 1 1 11 1

1
allitenmsequal 1 11 2 1

0

To extend x to the length of y, where the items of y supply default values for the

corresponding omitted items of x
default = [, (}.~ #)~
('abc';2) default 'Defnane';0;' Deftype'; 100

('abc'; 2;"'xyz';30) default 'Defnane';0;' Deftype'; 100
I
| abc| 2| xyz| 30|
I

Theverb[: , which we met as away to cause an error, has a special meaning in a
fork. Astheleftmost verb of thefork, [: means'ignore the left branch’. So,

Nx ([: V1 V2) NyisV1 Nx V2 Nyand([: V1 V2) Nyis

V1 V2 Ny . Inbothcases, ([: V1 V2) isequivalentto V1@ V2 . Almost

aways, the choice between one form or the other is a matter of taste. Do not fear
that the extraword in the fork leads to slower execution; the[: isnot executed—it

Is recognized by the parser when it creates the anonymous verb for the fork.

Asafina example, hereis adefinition of the word-counting example we wrote
earlier. Seeif you can convince yourself that it isequivalenttowc?2

W5 =: ' ', TAB, LF

w3 = (#, (*. -.@|.':0))@e. &N5) , + @LF&=))
@readFi | e

| could go on with pages more of hooks and forks for you to study, but what you
really need isto write some yourself. It will be afrustrating experience for the first
few weeks as you struggle to jigsaw your verbs into pieces that have one or two
operands and yet fit together to perform a complex function. It's not a necessary
skill—you can get along acceptably in Jwriting mostly explicit definitions, with an
occasional fork thrown in where obvious—but it is a useful, honorable, and
satisfying one. Learning to write tacit verbsislike learning to walk with a book
balanced on your head: it will slow you down at first, but in the end you'll stand
taler for it.

The book J Phrases, which is part of the Jrelease, has dozens of interesting
examples of tacit programs which you can use as exercises.

Tacit and Compound Adverbs

Adverbs aswell as verbs can be defined tacitly. Any sequence of adverbsisalso an
adverb, and applies the component adverbs one by oneto its left operand. For
example,

onprefixes = [\
defines an adverb that applies/ followed by \ , as can be seen by

+ onprefixes 1 2 3 4
1 36 10

A conjunction with one operand also defines an adverb. A conjunction needs two
operands, but if you supply one, the combination is treated as an adverb that
attaches its operand to the empty side of the conjunction. For example, (2&) isan
adverb, and+ (2&) isequivaentto 2&+ . For another example, the J startup
scripts define

each =1 & >
so that

> each 1 2 3

IS equivalent to
> & >1 2 3

2 34

Referring ToaNoun InaTacit Verb

Suppose you want averb v that returns the current value of the noun n (maybeit'sa
button handler). Suppose you want v to be tacitly defined. How would you do it?
You can't use

V = n
because that would use the value of n at thetime v is defined (in fact, v would be a
noun), and you want the value of n when v is executed. Use thistrick:

v = ".@('n")
When thisis executed, the operand isignored and replaced by the string' n' , which
Isthen executed by " . to produce the value of thenounn .

<< >> Contents Help

39. Readable Tacit
Definitions

Heron's formulafor the area of atriangle, given the lengths of the sides a, b, and c,
Issgri(s*(s-a)* (s-b)*s-c)) where sis (a+b+c)%2 . This can be written

triarea = [: % [: * -:@(+) - 0: ,]

triarea 3 4 5
6

Regardless of your diligence in commenting your code and the level of Jexpertise
in you and the sorry wretches who will have to read it, long tacit definitions like this
can become trackless wastelands, Saharas of verb following verb unendingly with
nothing to suggest an interpretation of the intermediate results. | know of two ways
to mark atrail through such a definition. Thefirst isto develop aregimen for using

spaces and parentheses to help the reader group the parts. | would write
triarea = [: % [: */ (-:@(+/)) - 0:,]

The second way isto split the line into multiple lines, where each line can have a
comment or averb-name indicating what it produces. This approach, carried almost
to an extreme, would yield

sem perineter = -:@(+/)
factors = sem perineter - 0:,]
product =: [: */ factors

triarea [: % product
Combining the two approaches, you can find a comfortable level of complexity.

Flatten aVerb: Adverb f .

Splitting the definition into many lines has the unfortunate side-effect that all the

namesreferredtoby t r i ar ea must be defined whent ri ar ea is executed:
triarea

[: % product

tri areareferstopr oduct whichreferstof act or s which refersto

sem peri nmeter . If youdefine many tacit verbs this way, the result is pollution

of the namespace. To leave asmaller footprint, use private assignment for all the
names except the name that will be public, and use the adverb f . which replaces

names in its operand with their definitions:

sem perineter =. -:@(+/)

factors =. sem perineter - 0:,]

product =. [: */ factors

triarea = ([: % product) f.

triarea
[: % [* -:@(+/) - 0: ,]
If these verbs are run from a script, the temporary verbs will disappear (since they
were assigned by private assignment), leaving only themainverbtri ar ea .

f . isasousedininitialization of objects, as you can learnin the Lab for Object-
Oriented Programming.

Notethat f . hasno effect on explicit definitions.
Usingf . toimprove performance

Flattening averb has two beneficial effects on performance. Thefirst is easy to see
by comparing two equivalent sentences:

a =. i. 100000
absO =2 3 : '"| y." "0
6!:2 'absO a'

3.17136
absl =2 3 : '] vy.'
6!:2 'abs1"0 a'

3. 54908

To be sure, in each case we have committed the crime of applying an explicitly-
defined verb at alow rank (| " O a executesintime 0. 006), but that is not the

point. Why isabs1" 0 slower than abs0? Each one reinterpretsits verb for each
aomof a .

The answer isthat when abs1" O is executed, the definition of abs1 must be
looked up for every atom of a (for all the interpreter knows, abs1 might be
redefined during its execution). The time spent doing this lookup accounts for the
difference in time between abs0 and abs1" 0 . If we eliminate the lookup of the
name abs1, that timeis saved:

6!:2 "absl1 f."0 a'
3.00941

The important lesson to learn from this is that you should define your verbs with the
proper rank. That will eliminate superfluous name lookups. In exceptional cases

you may usef . to avoid name lookups during execution of a complex verb.

The second case wheref . can improve performance is useful only for those users

who feel compelled to redefine the J primitives with mnemonic names. Thisisa
practice that | strongly deprecate, and if you don't heed my advice, the interpreter
stands ready to punish you. Seethe disaster that can result when the primitives are
replaced by mnemonic names:

tally = #
a =. 100000 $i. 6
b = i. 100000 10
6!:2 "a # . b
0. 0157688
6!:2 '"a tally/. b
0. 154675

What happened isthat #/ . ishandled by special code in the interpreter, but
tally/. isnot. Thefactthatt al | y isdefined to be# isimmateria: the
interpreter doesn't know that at the time it creates the anonymous verb for
tally/. . Thepenalty isan amost-tenfold increase in execution time.

6!:2 'atally f./. b
0.0167351
By flattening t al | y, we cause it to be replaced by its definition #, and then the

special case#/ . isrecognized.

b = 0=1i. 100000

6!:2 "(# 1.@) b
0. 0011616

6!:2 '"(tally index@ally) b
0. 00385943

Another example: (# 1. @) ishandled by specia code, but the names prevent the

interpreter from recognizing the situation.
6!:2 '"(tally index@ally) f. b’
0.0011861
If we flatten every verb, we get good performance, but what an effort! It's much
better to use the J primitives directly, so the interpreter can do itsjob effectively.

<< >> Contents Hep

40. Explicit-To-Tacit
Converter

Q: What's the most common cause of blindness among J programmers?

A: Conjunctivitis.

In the early weeks, complex tacit definitions are torturous to write and next-to-
impossible to read; blurred vision and sleepless nights are the occupational hazard
of the programmer who divesinto tacit J. If aco-worker isbanging into doors as he
stumblesto refill histankard of coffee, here's how to check him out: hold up three
fingers and ask him how many he sees. If he says "three", he's merely fallenin love
or isworking to adeadline, and he will recover. But if hereplies"| seealist of 3
items each of which isafinger”, you can expect to start receiving emails that ook
like they've been encrypted.

Y ou can offer as atemporary palliative Js mechanism for converting an explicit
definition to atacit one. Y ou request the conversion by using aleft operandto: in
therange11t013 insteadof 1to4 .

91:3 (5) NB. Do this once to select sinplified
di spl ay

3: 'x. - y.'
3 '"X.-y.'
We defined a verb, and since we didn't assign it to anything, we see its value, which

IS just what we defined it to be.
13 'x. - vy.'

by using 13 instead of 3, we ask the interpreter to try to find a tacit equivalent,
which it did.

Hereis another way to define the verb encl ose from the previous chapter:
13 . "(>.x.) , vy. , (>:x.)'
(b >0 4.0 1. 0> {1
Theinterpreter likestouse[: initstacit definitions. Notethat youuse13 : to get

an equivalent for both monadic and dyadic verbs; thereisno 14

| recommend that you use 13 : asyour first choice for defining tacit verbs. It will
find all tacit equivalents that can be generated systematically, and the explicit
definition is much easier to read than atacit definition. Y ou will still have to use
your tacit-definition skillsfor irregular cases, such as

13 @ "+ Mxe oyt
4 . "+:Mx. oyt
If Xx. ory. isused asan operand to aconjunction, asin this example, the tacit
converter is not going to be able to make atacit equivalent. Theresultof 13 : is
still averb performing the requested function, but it is an explicit definition rather
than atacit one. Note that the interpreter saw that the definition contained a
referenceto x. , so it made the verb adyad.

2 (13 : "+ M x. y.') 3
12
Thisverb appliesmonad +: toy. , x. times. Knowing about u”: v, you might
find the tacit equivalent +: @ ": [

2 (@™ [) 3
12

Special Verb-Forms Used in Tacit Definitions

It isimpossible for atacitly-defined verb to route one of its operands to an operand
of amodifier inside the verb. For example, if we want averb to set element x of y
to 0, wecantry

13 : '0 x.} y.'
4 : "0 x.}y.'
but we see that the converter was unable to find atacit form.

Some modifiers have exotic forms that circumvent this problem. One such isthe
adverb } which supportstheformx val ue” sel ect or " operand} y . This
produces the same result as

(x value y) (x selector y)} (x operand y) sowecouldwrite
a= 13 : 'x. 0:°'["]} vy."'

a
0: []}
3a97531
97501

Other suchformsarex m&v y andx u&n y which are equivalent to m&v”: x y
and u&n”: x 'y respectively.

<< >> Contents Help

41. Common
Mistakes

M echanics

Watch out for Adjacent Numbers

>:"0 {y
fails because the 0 and the 1 are considered part of the samelist. Use>: "0 (1

{y)or>"01] Ly .

Namesin Sequence Do Not Form aList

0 lisaz-elementlist, but 0 yisanerrorevenify hasthevaluel . UseO,y .
Remember Right-to-L eft Evaluation When You Use J asa Desk Calculator

Jmakes agreat desk calculator, but you have to remember to trandate from
mathematical notationto Jcorrectly. 5 - 2 + 1lis2,not4 .

How to Remember theMonads{. {: }. }:

Remember that { means take (x takesfromy), so} must be drop. The single-dot
means beginning, and the double-dot meansend. So, } . means 'drop the first item'.

How to Remember #. and #:
The single-dot produces a single (atomic) result; the multiple-dot produces alist.
Remember the Operand Order ine. i . and |

The normal J convention isthat adyad'sy operand isthe one that is more 'data-like'
and its x operand ismore ‘control-like’. Thus,inx 1. y,x isatableandy isone
or more values to be looked up in thetable. By thisconvention,x e. vy is
backwards: y isthetable and x isthe values.

Similarly, x | y seemsbackwardsfromx %y .
L eave a Space Before: When Used Alone

When you use: or. asaconjunction, you must remember to leave a space before

the : or. soitwill not beinterpreted as an inflection. The following are all errors:
3:0,(+ %#):* ,and+/.*

Use=: for Assignments Within Scripts

Code that runs perfectly well from the keyboard may not work if you put it into a
script (.ijs) file. The problem isusually that you have used =. for some

assignments. Entered from the keyboard, =. gives a public assignment, but to get
the same effect in a script, you need to use =:

Pasting Into an .ijx Window Does Not Execute

Remember that when you paste a block of text into an .ijx window, that text shows
up in the window but it is not executed. To execute the text, you need to select it
and then use Run|Selection.

Don't Mix el sei f. and el se. inthe Same Structure

The control structurei f./ do. /el seif./do./el se./end.isnotlegal. Once
you have used an el sei f. you arenot allowed to code el se. ; use
el sei f. do. instead of el se. (the omitted condition always tests true).

Programming Errors
Remember the Asymmetry of Dyad ;

X ; 'y awaysboxesx, but it boxesy only if y isunboxed. This givesyou what

you want when the operands are unboxed:
1; 2 ; 3

+- - +- +

| 1] 2| 3]

+- - +- +

But when the operands are boxed, you may be surprised at the result:
(<1) ; (<2) ; (<3)

R o

| -+ +-+| 3]

[T 2]] |

| -4+ |

R o

To have the last operand boxed, you should box it explicitly:
(<1) 5 (<2) ;< (<3)

R i I
| +- +| +- +| +- +|
[T 12] 1] 3]
| +- +| +- +| +- +|
R i I

Don't Give Two Operandsto a Monadic Verb

When you start writing long tacit programs, you are likely to have trouble keeping
track of whether averb is being executed monadically or dyadically. Suppose that
X isaset of observationsand y is aset of weights, and you want to weight each

observation and divide by the total weight. Y ou might try
X (" %+) y

but that isn't right—the sum of the weightsis+/ y and thisis going to execute

X +/ 'y . What you meant was
x (* %+ @) vy

Some rules to remember: atrain comprising an odd number of verbsisafork,
which can be invoked monadically or dyadically. Thefirgt, third, etc.... verbs,
including the last, are all executed with the same valence as the fork itself, and their
operands are al the same, namely the operands of the fork itself. The second,
fourth, etc.... verbs are all executed dyadically, with operands that are results of
other verbsin the train.

A train comprising an even number of verbsisahook. Thefirst verb in the hook is
aways executed dyadically; the rest, taken as atrain, are executed monadically on
they operand of the hook.

If any part of your train requires simultaneous access to the x and y operands of the
train, you must make the train afork rather than a hook.

Use @ Unless @l s Necessary

u@ v hasinfinite rank, whileu@ hastherank of v . If you don't see what

difference this makes, you should drop what you are doing and read the chapter on
"Compound Verbs'. For practical programming, you should be in the habit of using
@ unlessyou need u to be executed on each individual result-cell of v, in which

case you may use @ . The most common uses of @are u@ to execute u on the
contents of each box in alist, and <@ to box each individual result-cell of v .

Put Parentheses Around Compounds Inside Other Compounds

A modifier is greedy about what it takes for its |eft operand, hoovering up
everything until it hits aleft parenthesis or unmodified verb. For example, if you
want to add 2 to y and then double the result,

+. @ 2&t Yy
IS going to disappoint you, because it isexecuted as(+: @ 2) &+ y whichisn't
evenlega. Youmeant+ @ (2&t+) . Belibera inyour use of parenthesesinside

compounds. You may omit the parentheses around the leftmost compound—
another way to write the above would have been 2&* @ (2&+) —but you won't

regret putting parentheses around all compounds, especially when you go to change
your code.

| find it easy to forget the parentheses when one of the verbs is something like +/
that | use so much that | think of it asaprimitive. When something like>: @ +/
fails| am brought back to reality and | remember towrite>: @ (+/) .

A Verb Is Always Executed, Even If I1ts Operand is Empty

Js primitives are defined to produce reasonable results when given empty operands.
Y ou should do as well with the verbs you write. Remember that if averb has an
operand with no cells, the verb is still executed once, on acell of fills. The chapter
"Empty Operands' explains what happens.

Dyad - : DoesNot Check the Type of Empty Operands

Be awarethat getting aresult of 1 fromx -: 'y does not guarantee that x andy

are equivalent. If they have the same shape and are empty, they are considered to
match even if they have different types. Subsequent operations such as{. would

reveal the fact that the values are different, even though they ‘'match'.
x u/ y Appliesu to Celsof x

Togetx u/ vy right, remember that it appliesu to cellsof x and theentirey .
Therank of the cells of x isgiven by the left rank of u; useu" n/ to set the cell-
rank of x .

ModifiersThat Refer Toy. Have Monadic and Dyadic Valences

If your modifier containsx. ory. ,itstext definesaverb which is executed when

its noun operands are known. Thisverb, like any explicit verb, can have both
monadic and dyadic versions, separated by aline containing justa' : ' character. If

you want the modifier to have a dyadic form, you must code one (by default the

verb will be monadic only).
Tacit Code Does Not Simply Replace a Name By Its Definition

It is easy to develop an incorrect mental picture of how tacit programs are executed.
One common error isto think that names are replaced by their definitions before a
sentence is executed, in other words that if you have

plus = +
then a sentence

1 plus 2
Isconvertedtol + 2 andthen executed. Thisnotion immediately leadsto
confusion when you encounter

mean = + %#
and you expect

mean 1 2 3 4 5

to be executed like

+/ %# 12 345
which is not how it works. If you find yourself making this error, read the chapters
on Tacit Programming to learn what really happens.

As astopgap, you can imagine that each name's value is enclosed in parentheses
beforeit is substituted. Thisstill isn't exactly right but it gets you the right result in
all situations you are likely to encounter. Y ou would imagine that the sentence
aboveis executed as

(+/ %#) 12 345
which givesthe correct answer. You must realizethat (+/ % #) isafork, withits
own rules for processing its operands.

<< >> Contents Help

42. Valedictory

Y ou have learned enough Jto understand J programs and to put your own ideas into
J. 1 hope you will now do two things. practice using J so that J becomes the
language of your mind's ear, the way you naturally express algorithms; and read the
Dictionary with care, so you can learn Jfully. It'll belike weight training: in afew
months you'll look in the mirror and be amazed at the programmer you've turned
into.

Good luck, and | hope to see you on the J Forum!

<< >> Contents Hep

43. Glossary

Adverb One of the primary parts of speech. An adverb modifiesthe word or
phrase to its |eft to produce a derived entity that can be any of the four primary
parts of speech.

Anonymous Having no name. Said of the result of an execution.

Atom Any single number, single character, or single box. Also called a scalar.
Anatomisanounwithrank O .

Array A noun comprising atoms arranged along one or more axes. Each atom
Isidentified by itsindex list. Jarrays are rectangular, meaning that all 1-cells
contain an identical number of O-cells, and all 2-cells contain an identical number
of 1-cells, and so on.

Axis One of the dimensions along which the atoms of an array are arranged.
The atoms of every noun are arranged along zero or more axes where each axis
has a corresponding length and each unique list of nonnegative integersin which
each integer is less than the length of the corresponding axis designates a unique
atom of the noun.

Boolean Having a numeric value restricted to thevaluesO and 1 .

Cell A subarray of anoun consisting of all the atoms of the noun whose index
lists have a given prefix. For positive k, each k-cell of a noun whose shapeiss
hastheshape((- k <. #s) {. s) andtogether they can be assembled to
reconstruct the noun. For negative k, the k-cells are defined to be the

(0 > k + #s)-cdls

Conjunction One of the primary parts of speech. A conjunction modifies the
words or phrases to its left and right to produce a derived entity that can be any
of the four primary parts of speech.

Copula One of the parts of speech, signifying an assignment of avalueto a
name. Thecopulasare=. and=: .

Derived Entity The result of executing an adverb or conjunction. If the part of
speech of aderived entity is known, it may be called, for example, aderived verb.

Dyad (dyadic) A verb with left and right operands (which must be nouns). Any

verb may be used as amonad or dyad, depending on whether it has aleft noun
operand when it is executed.

Entity A noun, verb, conjunction, or adverb

Execution The process of replacing a verb and its operands on the execution
stack with the result from applying the verb to those operands; or of converting a
fragment into a derived entity in accordance with the definition of the fragment,
and replacing the fragment on the execution stack by a single word referring to
the derived entity.

Execution Stack The set of words of a sentence that have been examined by
parsing in its search for an executable fragment, as modified by the replacement
performed by execution.

Fill Anatom appended to a noun to extend the length of the noun to a required
length, especially when the noun must be extended because it is being made a
cell in an array whose cells are longer than the noun.

Fragment 2 or 3 words on the execution stack in a context that makes them
executable.

Frame The frame of a noun with respect to k-cells is the shape of the noun
with the last r items removed, wherer isthe rank of ak-cell of the noun. When a
noun isviewed as an array of k-cells, the frame with respect to k-cellsisthe
shape of the array of k-cells.

Framing Fill A fill added when the results from applying a verb on its operand
cellsare being joined into an array. Framing fillsareaways0,' ', ora:

depending on the type of the result.
Fret A marker indicating the start or end of an interval.

Functional Programming A method of writing programs that describes only
the operations to be performed on the inputs to the programs, without the use of
temporary variables to store intermediate results. Jstacit programs are an
example of functional programming. Aficionados of functional programming
consider it to be a purer statement of an algorithm than the usual statement in a
procedural language; as the expert J programmer Randy MacDonald has said, "If
you're not programming functionally, you're programming dysfunctionally".

Global Of aname, accessible as a simple name by any verb. In the J Dictionary
the word 'global’ has the meaning we have assigned to the word ‘public'.

Index Inan array, an integer indicating position along an axis. Theindex of the
first atom along an axisisO .

Index List A list of integers with the same length as the shape of a noun,
designating an atom of the noun by giving its position along each axis.

Interval A sequence of consecutive indexes or cells.

Item A _1-cell of anoun. An array isavector of itsitems. An atom has one
item, itself.

List Anarray of rank 1 .
List of Anarray whoseitemsare; asin'list of 3-item lists.
Local Seeprivate.

Locale A namespaceinJ. Thelocalein which apublic nameisdefinedisan
attribute of the name. A localeisidentified by alocale name which is a character
string not containing an underscore.

L ocative A name including both a simple name and an explicit locale.

Modifier Anadverb or conjunction, which modifies its operand(s) to produce a
derived entity.

Monad (monadic) A verb with no left operand. Any verb may be used asa
monad or dyad, depending on whether it has aleft noun operand when it is
executed.

Name Either asimple name or alocative, to which an entity can be assigned.

Noun One of the primary parts of speech. An atom or array of atoms. Nouns
hold the data that verbs operate on.

Parsing The right-to-left search for suitable patternsin a sentence. When a
suitable pattern is found, that subset of it that constitutes an executable fragment
IS executed.

Part of Speech One of the six categories into which words are classified; or, the
word or entity so classified. Every word has a part of speech: for primitives, the
part of speech is defined by the language; for names, the part of speech is that of
the entity assigned to the name. The parts of speech are: noun, verb, conjunction,
adverb, punctuation, and copula. The primary parts of speech are noun, verb,
conjunction, and adverb.

Partition A selection of (possibly noncontiguous) items of an array, brought

together as the items of a new array to be operated on by averb.
Path See search path.
Primitive A word whose meaning is assigned by the Jlanguage.

Private Of aname, assigned in the namespace of an explicit definition and
accessible only within the explicit definition in which it was assigned.

Public Of aname, assigned in alocale and accessible from any locale viaa
locative.

Punctuation A part of speech. Punctuation is not executed but it affects the
execution of other words. Punctuation in Jcomprises(,), NB. , and control

words.

Rank Of anoun, the number of axes along which the atoms of the noun are
arranged; the number of itemsin the shape. Of averb, the highest rank of the
noun operands that the verb can operate on.

Scalar See atom.
Script A file containing J sentences.

Search Path Of alocalel, thelist of the names of locales that will be searched
to find the definition of a name originally sought but not found in |.

Sentence An entire executableline.
Shape Thelist of the lengths of the axes of a noun.

Simple Name A list of letters, numbers, and underscores beginning with aletter,
used to refer to an entity.

Train A sequence of words that cannot immediately be executed to produce a
noun result.

Type An attribute of a noun: numeric, literal (also called string), or boxed.

Valence Of averb definition, an indication of the number of noun operands that
the definition can accept: monadic if 1, dyadic if 2, dual-valenceif either 1 or 2.

Vector A sequence of cells arranged with aleading axis. An array can be
construed as a vector of itsitems.

Verb One of the primary parts of speech. A verb operates on the noun to its
right (and its left, if anounisto itsleft) to produce a noun result.

Verb Fill Fill added during processing of averb. Thefit conjunction! . f can
often be used to specify the fill atom to be used for verb fill.

Word A sequence of charactersin a sentence, recognized as alexical unit. A word
Is either aname, a primitive, a constant (which may be a number or a character or a
list of either), or a synthetic word used to refer to the result of an execution.

<< >> Contents Help

44. Error Messages

When J encounters an error executing a sentence it stops and displays the sentence.
The interpreter removes any excess spaces from the sentence and then adds three

spaces before the word whose execution triggered the error. For example:
23+012*345

|l ength error
| 2 3 +0 1 2*3 4 5

The error occurred during the execution of the + verb.

The errors you are most likely to encounter are:

control error You have an incomplete control structure, for exampleani f .
without matching do. /el se. /el sei f. andend. .

domain error An operand has avalue that is not allowed, for example a string
operand to an arithmetic operation, or an out-of-range numeric left operand to
dyad 0. . One common source of domain error istrying to execute averb when

no definition exists for the valence (monadic or dyadic) that you are trying to
execute.

Errors encountered during execution of wd are reported as domain errors.

filenameerror You specified afile namethat isinvalid, or attempted to read a
nonexistent file,

filenumber error You specified a number that is not the number of an open file.

ill-formed name You used anillegal name, suchasnane_1ff _(illegal
because 1f f isnot avalid locale name)

ill-formed number You used anillega number suchas14h . A word that
starts with a numeric character must be avalid number, and vice versa.

index error You attempted to access an element outside the bounds of an array.

length error Y ou used adyadic verb with operands that did not agree (i. e. one
frame was not a prefix of the other). Or, averb expected an operand of a certain
length and you gave an incorrect length (for examplel 2 3 {. 5 5)

limit error You exceeded one of Jslimits, for example by specifying a
comparison tolerance greater than 2* 34 . The most common cause of alimit

error is an infinite recursion that exhausts the available stack space.

nonceerror You tried to do something reasonable, but the system doesn't
support it yet. So, for the nonce, find another way to do it.

open quote Y our sentence contains an unmatched single-quote.

out of memory The interpreter asked the operating system for enough memory
to fulfill your request, but the operating system refused. Y ou need to use smaller
nouns.

rank error You specified an operand with an invalid rank.

spelling error You typed an erroneous. or : to produce a meaningless word
like+. . orfred.

syntax error Your sentence contains an invalid sequence of parts of speech, as
in5 + . Or, you have an explicitly-defined verb whose |l ast-executed sentence

gives aresult that is not a noun: that would make the verb have a non-noun
result, which isintolerable.

valueerror You have asked the interpreter to evaluate a name that has not been
defined. Thereis more to this definition than meets the eye. A noun, adverb, or
conjunction is evaluated when it is encountered during the right-to-left execution
of asentence. A verbisevaluated when (a) it is executed with its noun operand
(s) or (b) when the name of the verb is typed as the only word in a sentence, at
which time the verb is evaluated for display purposes. For example, the sentence

undef nane
will result in avalue error, because you are asking the interpreter to display the
value of the undefined name. However, the sentence

nanme =: undef nane
will not fail, because nane is defined to be areference to undef nane, and
undef nane does not have to be evaluated (the undefined name is assumed to
refer to averb of infinite rank that will be defined later). Subsequently,

nane
undef nane
name isdefined, but if we force the interpreter to useit:

nanme 5
| val ue error: undefnane

| name 5
the underlying undefined name is exposed.

An important caseis:
undef nanel undef nane2

undef nanel undef nane2

Note that this did not result in avalue error. Recall that undefined names are
assumed to be verbs; we defined a hook from the two presumed verbs and then
asked the interpreter to display the hook. The interpreter was able to do that
without evaluating either name. Either name by itself would produce a value
error,

If you write an undefined name as the only word of a sentence in a script, the
interpreter will have no need to evaluate the name (since it doesn’'t have to
display the result), and the sentence will be ‘executed’ without error.

<< >> Contents Hep

	J for C Programmers
	Prelude
	Foreword
	Table of Contents

	Programming In J
	1. Introduction
	2. Preliminaries
	3. A First Look At J Programs
	4. Declarations
	5. Loopless Code I—Verbs Have Rank
	6. Starting To Write In J
	7. More Verbs
	8. Loopless Code II—Adverbs / and ~
	9. Continuing to Write in J
	10. Compound Verbs
	11. Boxing (structures)
	12. Empty Operands
	13. Loopless Code III—Adverbs \ and \.
	14. Verbs for Arithmetic
	15. Loopless Code IV
	16. More Verbs For Boxes
	17. Verb-Definition Revisited
	18. u^:_1, u&.v, and u :.v
	19. Performance: Measurement & Tips
	20. Input And Output
	21. Calling a DLL Under Windows
	22. Socket Programming
	23. Loopless Code V—Partitions
	24. When Programs Are Data
	25. Loopless Code VI
	26. Loopless Code VII—Sequential Machines
	27. Modifying an array: m}
	28. Control Structures
	29. Modular Code
	30. Writing Your Own Modifiers
	31. Applied Mathematics in J
	32. Elementary Mathematics in J
	33. Odds And Ends

	Tacit Programming
	34. Tacit Programs
	35. First Look At Forks
	36. Parsing and Execution I
	37. Parsing and Execution II
	38. Forks, Hooks, and Compound Adverbs
	39. Readable Tacit Definitions
	40. Explicit-To-Tacit Converter
	41. Common Mistakes

	Postlude
	42. Valedictory
	43. Glossary
	44. Error Messages

