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Foreword

You are an experienced C programmer who has heard about J, and you think you'd 
like to see what it's all about.  Congratulations!  You have made a decision that will 
change your programming life, if only you see it through.  The purpose of this book 
is to help you do that.

It won't be easy, and it certainly won't be what you're expecting.  You've learned 
languages before, and you know the drill: find out how variables are declared, learn 
the syntax for conditionals and loops, learn how to call a function, get a couple of 
examples to edit, and you're a coder.  Fuggeddaboutit!  In J, there are no 
declarations, seldom will you see a loop, and conditionals often go incognito.  As 
for coding from examples, well, most of our examples are only a couple of lines of 
code—you won't get much momentum from that!  You're just going to have to grit 
your teeth and learn a completely new way to write programs.

Why should you bother?  To begin with, for the productivity.  J programs are 
usually a fifth to a tenth as long as corresponding C programs, and along with that 
economy of expression comes coding speed.  Next, for the programming 
environment: J is an interpreted language, so your programs will never crash, you 
can modify code while it's running, you don't have to deal with makefiles and 
linking, and you can test your code simply by entering it at the keyboard and seeing 
what it does.

If you stick with it, J won't just help the way you code, it'll help the way you think.  
C is a computer language; it lets you control the things the computer does.  J is a 
language of computation: it lets you describe what needs to be done without getting 
bogged down in details (but in those details, the efficiency of its algorithms is 
extraordinary).  Because J expressions deal with large blocks of data, you will stop 
thinking of individual numbers and start thinking at a larger scale.  Confronted with 
a problem, you will immediately break it down into pieces of the proper size and 
express the solution in J—and if you can express the problem, you have a J 
program, and your problem is solved.

Unfortunately, it seems to be the case that the more experience you have as a C 
programmer, the less likely you are to switch to J.  This may not be because 
prolonged exposure to C code limits your vision and contracts the scope of your 
thinking to the size of a 32-bit word—though studies to check that are still under 



way and it might be wise for you to stop before it's too late—but because the better 
you are at C, the more you have to lose by switching to J.  You have developed a 
number of coding habits: for example, how to manage loops to avoid errors at 
extreme cases; how to manage pointers effectively; how to use type-checking to 
avoid errors.  None of that will be applicable to J.  J will take advantage of your skill 
in grasping the essence of a problem—indeed, it will develop that skill considerably 
by making it easier for you to express what you grasp—but you will go through a 
period during which it will seem like it takes forever to get things done.

During that period, please remember that to justify your choice of J, you don't have 
to be as expert in J as you were in C; you only have to be more productive in J than 
you were in C.  That might well happen within a month.  After you have fully 
learned J, it will usually be your first choice for describing a program.

Becoming a J programmer doesn't mean you'll have to give up C completely; every 
language has its place.  In the cases where you want to write code in C (either to use 
a library you have in C or to write a DLL for a function that is inefficiently 
computed in J), you will find interfacing J to DLLs to be simple and effective.

This book's goal is to explain rudimentary J using language familiar to a C 
programmer.  After you finish reading it, you should do yourself the honor of 
carefully reading the J Dictionary, in which you can learn the full language, one of 
the great creations in computer science and mathematics.
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                                                                                                                                  1.     Introduction

This book will tell you enough about J for you to use it as a language for developing 
serious applications, but it is about more than learning the J language: it is also 
about 'thinking big' in programming, and how programming in J is fundamentally 
different from programming in C.  C programs deal intimately with scalars (single 
numbers and characters), and even when they combine those scalars into arrays and 
structures, the operations on the arrays and structures are defined by operations on 
the scalars.  To ensure that each item of an array is operated on, loops are created 
that visit each element of the array and perform a scalar operation on the element.

Writing code in a scalar language makes you rather like a general who gives orders 
to his troops by visiting each one and whispering in his ear.  That touch-of-Harry 
kind of generalling can achieve victorious results, and it has the advantage that the 
orders can be tailored to the man, but its disadvantages are significant: the general 
spends much mental energy in formulating individual orders and much breath in 
communicating them individually; more significant, his limited attention is drawn 
toward individuals and away from the army as a whole.  Even the great Rommel 
was overtaxed at times.

The J programmer is, in contrast, a general who stands before his army and snaps 
out orders to the army as a whole.  Every man receives the same order, but the order 
itself contains enough detail for the individual men to act appropriately.  Such a 
general can command a corps as easily as a platoon, and always has the 'big picture' 
in mind.

OK, maybe you're not Rommel, but you are a working programmer, and you 
suspect that very few practical programs can be represented as array operations—
matrix multiplication maybe, or adding a list of numbers—and that, even if a wide 
range of programs were possible, the set of operations supported must be too vast to 
be practical: wouldn't we need an array operation for every possible program?

The first half of this book is devoted to showing you that it is indeed possible to 
write meaningful programs with array operations.  We take the approach of looking 
at the different ways loops are used, and seeing what facilities J has for producing 
the same result using array operations.  We will find that J contains a couple of 
dozen array-processing primitives and a dozen or so very cleverly chosen pipe-
fittings that allow those primitives to be connected together to provide the limitless 



supply of array-processing functions needed for practical programming.

Interspersed with the elaboration of more and more intricate array operations are 
treatments of other matters of use in practical programming: structure definition, 
input and output, performance measurement, calling DLLs, modular programming.  
Eventually we will see how to use if-then-else and do-while in J, though you will 
have learned more elegant ways to get the same results.

The last portion of the book is devoted to the optional topic of tacit programming, 
J's language for functional programming.  Tacit programming is an extremely terse 
way of expressing algorithms, one that allows programs that have been compressed 
from a page of C into a few lines of J to be compressed still further.
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                                                                                                                               2.     Preliminaries

Notation
C code is set in Arial font, like this: for(I = 0;I<10;I++)p[I] = q;

J code is set in Courier New font, like this: p =. 10 $ q

When J and C use different words for the same idea, the J word is used.  The first 
few times, the C word may be given in parentheses, in Arial font: verb (function).  
When a word is given a formal definition, it is set in bold italics: verb.

Terminology
To describe the elements of programming, J uses a vocabulary that will be familiar, 
though possibly frightening: the vocabulary of English grammar.  We will speak of 
nouns, verbs, and the like.  Don't worry, you're not going to have to write a book 
report!

Use of this terminology is not as strange as it may seem.  Take 'verb', for example, 
an idea that corresponds to the C 'function' or 'operator'.  Why not just say 
'operator'?  Well, that word is also used in mathematics and physics, with a meaning 
quite different from C's.  Even a C 'function' is not a true mathematical function—it 
can return different values after invocations with the same arguments.

J avoids imprecise usage by choosing a familiar set of words and giving them 
entirely new meanings.  Since J is a language, the vocabulary chosen is that of 
English grammar.  It is hoped that the familiarity of the words will provide some 
mnemonic value, but as long as you learn the J meanings you are free to forget the 
grammatical ones.  The following table may help:

J word C word

verb function or operator

noun object

copula assignment

punctuation separator



adverb (untranslatable)

conjunction (untranslatable)

In keeping with the grammatical flavor of the vocabulary, we say that every word 
(token) in a J program has a part of speech (name type) which is one of the 
following: noun, verb, adverb, adjective, copula, or punctuation.

The primary parts of speech are noun, verb, adverb, and conjunction.  Every name 
we can create, and every word defined by J except for the copulas (=. and =:) and 
punctuation, will be a definite one of the primary parts of speech.  In this book, the 
term entity is used to mean something that can be any of the primary parts of 
speech.  An entity can be assigned to a name, but most entities are anonymous, 
appearing and disappearing during the execution of a single sentence (just like 
intermediate results in the evaluation of C expressions).

A noun holds data; a verb operates on one or two nouns to produce a result which is 
a noun; an adverb operates on one noun or verb to produce a derived entity; a 
conjunction operates on two nouns or verbs to produce a derived entity.  Adverbs 
and conjunctions are called modifiers.

A word on punctuation under J's definition: it consists of the characters ( ) ' and 
end-of-line (written LF but representing either a single LF character or the CRLF 
combination), along with the comment delimiter NB. and a few other special words 
like if. and case. .  There are a lot of other characters that you think of as 
punctuation, namely [ ] , . " ; { }, that J uses to do work.  You will be 
especially surprised to find that [ ] and { } are independent rather than matched 
pairs, but you'll get used to it.

Sentences (statements)
The executable unit in J is called the sentence, corresponding to the C statement.  
The sentence delimiters in J (corresponding to the semicolon in C) are the linefeed 
LF and the control words like if. that we will learn about later.  A 
sentence comprises all the characters between sentence delimiters; since LF is a 
sentence delimiter, it follows that a J sentence must all fit on one line.  There is 
nothing corresponding to \<CR> in C that allows you to split a sentence across lines.

All comments start with NB. and run to the next LF .  The comment is ignored 
when the sentence is executed.



Word Formation (tokenizing rules)
J's names (identifiers) are formed much as in C.  Names must begin with an 
alphabetic, underscore is allowed, and upper- and lowercase letters are 
distinguished.  Names that end with an underscore or contain two consecutive 
underscores are special, and you should avoid them until you know what a locale is.

The ASCII graphic characters ('+', for example) are called primitives (operators) 
in J.  You will learn their meanings as we go on.

Any name or primitive (identifier or operator) can be made into a new primitive 
by adding '.' or ':' at the end.  Since all primitives are system-defined (i. e. they are 
reserved words), you may not put '.' or ':' in your names.  No space is required 
after a primitive.  The part of speech for each primitive is fixed.  Example primitives 
are:

+ +. +: { {: {:: i. i: for. select. case. end.

The first step in processing a sentence is to split it into words.  The words 
correspond roughly to C tokens, after making allowance for the special status of 
the '.' and ':' characters.  The space and TAB characters are treated as 
whitespace.  One big surprise will be that a sequence of numbers separated by 
spaces is treated as a single word which denotes the entire list of numbers.

We will be careful to distinguish periods used for English punctuation from the dot 
that may be at the end of a primitive.  When a J word comes at the end of an English 
sentence, we will be sure to leave a space before the period.  For example, the verb 
for Boolean Or is +., while the verb for addition is + .

Numbers
You do not need to trouble yourself with the distinction between integers, floats, 
and complex numbers.  If it's a number, J will handle it properly.  There are a great 
many ways to specify numbers; consult the Dictionary to learn details, including, 
among other things, complex numbers, extended-precision integers, and exponential 
forms.  Example numbers are:

2

_2 (underscore, not -, is the negative sign)

0.5 (since '.' is special, it must not be the first character of a number)



1e2

16b1f (equivalent to 0x1f)

_ (infinity)

__ (negative infinity, represented by two underscores)

A noun whose value is one of the numbers 0 and 1 is said to be Boolean.  Many 
verbs in J are designed to use or produce Boolean values, with 0 meaning false and 
1 meaning true, but there is no Boolean data type: any noun can be used as a 
Boolean if its values are 0 or 1.

A word is in order in defense of the underscore as the negative sign.  -x means 'take 
the negative of the number x'; likewise -5 means 'take the negative of the number 
5'.  In J, the number 'negative 5' is no cloistered companion, accessible only by 
reference to the number 5: it is a number in its own right and it deserves its own 
symbol: _5.

Characters
An ASCII string enclosed in single quotes is a constant of character type (examples: 
'a', 'abc').  There is no notation to make the distinction between C's single-
quoted character constants and double-quoted character strings.

There are no special escape sequences such as '\n'.  If you need a quote character 
inside a string, double the quote: 'cannot can be shortened to 
can''t'.  Character constants do not include a trailing NUL (\0) character, and 
NUL is a legal character within a string.

Valence of Verbs (Binary and Unary Operators)
C operators can be unary or binary depending on whether they have one or two 
operands; for example, the unary * operator means pointer dereferencing (*p), while 
the binary * operator means multiplication (x*y).

Similarly, when a J verb (function or operator) is executed with only one 
operand (i. e. without a noun or phrase that evaluates to a noun on its left) we say its 
invocation is monadic (unary); if there is a noun or noun-phrase on its left, that 
noun becomes a second operand to the verb and we say that the invocation is dyadic 
(binary).  In the case of programmer-defined verbs (functions), the versions 
handling the two cases are defined independently.  We use the term valence to 



describe the number of operands expected by a verb-definition: a verb-definition has 
monadic valence if it can be applied only monadically, dyadic valence if it can be 
applied only dyadically, and dual valence if it can be applied either way.  Since the 
definitions of the monadic and dyadic forms of a verb can be wildly different, when 
we name a verb we will be careful to indicate which version we are talking about: 
'monad $', 'dyad i.'.

Note that it is impossible to invoke a verb with no operands.  In C we can write 
func(), but in J we always must give an operand.

Note also that the syntax of J limits verbs (functions) to at most two operands.  
When you need a verb with more than two operands, you will represent it as a 
monad or dyad in which one of the verb's syntactic operands is an aggregate of the 
actual operands the verb will use during its execution.  The first thing the verb will 
do is to split its operand into the individual pieces.  J has primitives to make this 
process easy.

The value produced by any entity when it is applied to its operand(s) is called its 
result (returned value).

How Names (Identifiers) Get Assigned
Assignment in J is performed by expressions of the form
name =. entity  NB. private
and
name =: entity  NB. public

Names assigned by public assignment are visible outside the entity in which they 
are defined; names assigned by private assignment usually are not; we will learn the 
details when we discuss modular code.  The difference between the two forms of 
assignment is in the character following the = .  Just as in C, the assignment 
expression is considered to produce as its result the value that was assigned, so 
expressions like
a =. 1 + b =. 5
are legal.  J calls =. and =: copulas.  Just as in C, the entity that is assigned to the 
name can be the result of evaluating an expression.

There are a number of additional capabilities of J assignment that you can read 
about in the Dictionary.  One that has no counterpart in C is that the name being 
assigned can itself be a variable, i. e. you can calculate the name that you want to 
assign the value to.



The value assigned can be a noun (object), verb (function), adverb, or 
conjunction; the name then becomes whatever part of speech was assigned to it 
(even if it was previously defined as a different part of speech!).  For example,
n =: 5
creates a noun, and
v =: verb define
x. + y.
)
creates a verb (more below).

 Note: the J Dictionary uses the terms 'local' and 'global' instead of 'private' and 
'public'.  I think 'private' and 'public' are more accurate terms, because there is 
another dimension to name scope in J, using the J notions locale and path, that 
causes public variables to be visible only in certain entities.  It will be a long time 
before we learn about locales; until then, public names will be global.

Order of Evaluation
Forget the table of operator precedence!  All J verbs (functions and operators) 
have the same priority and associate right-to-left.  For example, a * b + c is 
equivalent to a * (b + c), not (a * b) + c.  Use care when copying 
mathematical formulas.  Note that the negative sign _ is a part of the number, not a 
verb.  _5 + _4 is _9, while -5 + -4 is _1.

The executable bits of a sentence (statement) are called fragments 
(subexpressions).  A verb with its operand(s) is a fragment, as is a copula with 
its name and value.  We will meet other types of fragment later.  Execution of a 
sentence consists of the right-to-left execution of its fragments, with the result of 
each fragment's execution replacing the fragment and being passed as an operand 
into the next fragment.  The result of the last execution becomes the result of the 
sentence.  This result is usually a noun but it can be any of the primary parts of 
speech.  As an example, execution of the sentence
   a =. 3 + b =. 4 * 5
consists of execution of the following fragments: 4 * 5 with result 20; b =. 20 
with result 20; 3 + 20 with result 23; a =. 23 with result 23 .  The names a 
and b are assigned when the assignment fragments are executed.

What a verb (function) looks like
As we saw, a J verb (function) is defined by lines that look like:



name =: verb define
J sentences here
)

The result of the verb define is a verb, and normally you will assign the result 
to a name so you can execute the verb by name when you need it.  Subsequent lines, 
starting with the one after verb define and ending before the next line 
containing only the word ')', are read and saved as the text of the verb (heaven 
help you if you leave out the )!).  The verb is not 'compiled'—only the most 
rudimentary syntax checking is performed; the text is saved and will be interpreted 
when the verb is executed.

Each line of the verb is a sentence (statement).  The result of the last sentence 
executed becomes the result of the whole verb (this is not precisely true but it's close 
enough for now—details will be revealed in 'Control Structures').

Since a J verb has only one or two operands, there is no need for you to provide a 
list of parameter names as you do in a function definition in C; instead, J names 
them for you.  At the start of a verb's execution, the private name y. is initialized 
with the value of the right operand of the verb.  If the verb is dyadic, the private 
name x. is initialized with the value of the left operand.  Many programmers like to 
start their verbs by assigning these values to more descriptive names.

If your verb is going to define only a monadic or dyadic form, you should use 
monad define or dyad define instead of verb define .  If you are 
going to define both valences, the way to do so is:
name =: verb define
monadic case here
:
dyadic case here
)
where a line with the single word : separates the two cases.  If you use 
verb define and don't have the :, the verb will be monadic.

If your verb is only one line long (not at all unusual in J!) you can define it all in 
one line by using the appropriate one of the forms
name =: monad : 'text of verb'
name =: dyad : 'text of verb'

Running a J program



No compiling.  No linking.  No makefiles.  No debugger.  You simply type J 
sentences and the interpreter executes them and displays any result.  At the very 
simplest, you can use it as a desk calculator:
   22 + 55
77

J prints 3 spaces as a prompt, so when you scroll through the log of a session, your 
input will be indented 3 spaces while J's typeout will be unindented.  The result of a 
sentence typed on the keyboard is displayed, except that to avoid excessive typeout 
nothing is displayed if the last fragment executed in the sentence is an assignment.  
If you are at the keyboard while you are reading this book, you can type the 
examples and see the responses, or experiment on your own.

Here is a simple program to add twice the left argument to three times the right 
argument:
   add2x3y =: dyad : '(2 * x.) + 3 * y.'
We can run this program by giving it operands:
   1 2 3 add2x3y 4 5 6
14 19 24
Instead of simply displaying the result, we can assign it to a noun:
   a =: 1 2 3 add2x3y 4 5 6
We can inspect the value assigned to the noun by typing the name of the noun:
   a
14 19 24
We can use the noun in an expression:
   2 * a
28 38 48
We can create a new verb that operates on the noun:
   twicea =: monad : '2 * a'
   twicea ''
28 38 48
Notice the '' after the invocation of twicea.  Remember, to invoke a verb you 
must give it an operand, even if the verb doesn't use an operand.  '' is just an 
empty string; 0 or any other value would work too.  If you leave out the operand, J 
will show you the value of the name; since twicea is a verb, its value is the 
definition of the verb:
   twicea
3 : '2*a'



Of course, in any practical application you will need to have most of your programs 
in a library so you can quickly make them all available to J.  J calls these libraries 
scripts (filename extension  '.ijs') and runs them with the load verb, for example:
load 'system\packages\misc\jforc.ijs'

load reads lines from the script and executes them.  These lines will normally be 
all the verb and noun definitions your application needs, possibly including load 
commands for other scripts.  A script may end with a line executing one of the verbs 
it defined, thereby launching the application; or, it may end after defining names, 
leaving you in control at the keyboard to type sentences for J to execute.

Note: Names defined by private assignment (using =.) when 
a script is loaded are not available outside the script.  If you 
want to define names for use elsewhere, make sure you use 

=: for your assignments within a script.

If you are used to debugging with Visual C++™ or the like, you will find the 
environment less glitzy and more friendly.  If you want to change a verb 
(function), you simply edit the script, using the editor of your choice (I use the 
built-in editor provided with J), and rerun it.  The verb will be updated, but all 
defined nouns (objects) will be unchanged.  Even if you are running a large 
application—yea, even if the application is in the middle of reading from an 
asynchronous socket—you can change the program, without recompiling, relinking, 
or reinitializing.  If you'd like to add some debugging code while the system is 
running, go right ahead.  This easy interaction with an executing program is one of 
the great benefits of programming in J.

Interrupting Execution
If a J verb is taking too long to run, press the BREAK key (Ctrl+BREAK, in 
Windows) to return control to the keyboard.

Errors
When a sentence contains an error, J stops and displays the sentence along with a 
terse error message.  Refer to the chapter on Error Messages for explanation of the 
error.

The Execution Window; Script Windows
When J starts it displays its execution window.  The title of the execution window 
ends with the characters '.ijx'.  The only way to have a sentence executed is to 



have the sentence sent to the execution window.  The simplest way to do that is by 
typing the sentence into the execution window, as we have been doing in the 
examples so far.

The execution window is an edit window and a session log as well as a place to type 
sentences for execution.  If you put the cursor on some line other than the last and 
press ENTER, the line you were on will be copied to the bottom of the session log 
as if you had typed it for execution.  You can then edit the line before pressing 
ENTER again to execute it.

For convenience in editing, you may create other windows which will be script 
windows.  Usually these windows will contain J scripts that you are working on: the 
editor that manages the script windows is familiar with the syntax of J.  You create a 
script window by clicking File on the Menu Bar and then selecting New ijs, Open, 
or Recent.

Sentences that you type into a script window are not automatically executed by J; 
you must copy them into the execution window to have them executed.  You can 
use the script-window editor to send lines from a script to the execution window: 
click Run on the Menu Bar and then File, Selection, or Window as appropriate.

To run a selection of lines from a script window, be sure to 
use Run|Selection rather than cut-and-paste.  If you paste a 
number of lines into the execution window, only the last one 

will be executed.

Names Defined at Startup
When J starts, a number of useful names are defined.  Rather than discuss them all, I 
will show you how they come to be defined so you can study them when you need 
to.

When J starts, it executes the script J-directory\system\extras\config
\profile.ijs which then executes the script J-directory\system
\extras\util\boot.ijs .  boot.ijs in turn executes a series of scripts in 
J-directory\system\main which define the starting environment.  Look at 
these scripts to see what they define.

If you want to add your own initial definitions, do so either by adding commands at 
the end of profile.ijs or by creating your own startup script in J-
directory\system\extras\config\startup.ijs .



Step-By-Step Learning: Labs
The Labs are interactive demos describing various topics in J.  To run the lab for 
printf, start a J session, on the menu bar select Studio|Labs…, then select the lab you 
are interested in, then press 'Run'.  The lab provides explanatory text interspersed 
with examples executed in your J session which you are free to experiment with as 
you step through the lab.

I recommend that every now and again you tarry a while among the labs, running 
whichever ones seem interesting.  Much of the description of the J system can be 
found only there.

J Documentation
The J documentation is available online.  Pressing F1 brings up the Vocabulary 
page, from which you can quickly go to the Dictionary's description of each J 
primitive.  At the top of each page of documentation are links to the manuals 
distributed with J: these are:

The Index to all documentation;

The User Manual which describes components of J that are not in the language 
itself, including system libraries and external interfaces;

The J Primer, an introduction to J;

J Phrases, a collection of useful fragments of J (you will need to finish this book 
before trying to use J Phrases);

The J Dictionary, the official definition of the language;

Release Notes for all releases of J;

A description of foreign conjunctions (!:);

A description of the operands to the wd verb (Windows interface).

Getting Help
Your first step in learning J should be to sign up for the J Forum at www.jsoftware.
com.  A great many experienced J users monitor messages sent to the Forum and are 
willing to answer your questions on J, from the trivial to the profound.

<<     >>     Contents     Help    



                                                                         3.     A First Look At J 
Programs

Before we get into learning the details of J, let's look at a couple of realistic, if 
simple, problems, comparing solutions in C to solutions in J.  The J code will be 
utterly incomprehensible to you, but we will nevertheless be able to see some of the 
differences between J programs and C programs.  If you stick with me through this 
book, you will be able to come back at the end and understand the J code presented 
here.

Average Daily Balance
Here is a program a bank might use.  It calculates some information on accounts 
given the transactions that were performed during a month.  We are given two files, 
each one containing numbers in lines ended by (CR,LF) and numeric fields 
separated by TAB characters (they could come from spreadsheets).  Each line in the 
Accounts file contains an account number followed by the balance in the account at 
the beginning of the month.  Each line in the Journal file contains an account 
number, the day of the month for a transaction, and the amount of the transaction 
(positive if money goes into the account, negative if money goes out).  The records 
in the Journal file are in order of date, but not in order of account.  We are to match 
each journal entry with its account, and print a line for each account giving the 
starting balance, ending balance, and average daily balance (which is the average of 
each day's closing balance).  The number of days in the month is an input to the 
program, as are the filenames of the two files.

I will offer C code and J code to solve this problem.  To keep things simple, I am 
not going to deal with file-I/O errors, or data with invalid format, or account 
numbers in the Journal that don't match anything in the Accounts file.

C code to perform this function might look like this:

 
#include <stdio.h>
#define MAXACCT 500
// Program to process journal and account files, printing
// start/end/avg balance.  Parameters are # days in current



// month, filename of Accounts file, filename of Journal file
void acctprocess(int daysinmo, char * acctfn, char *jourfn)
{
      FILE fid;
      int nacct, acctx;
      float acctno, openbal, xactnday, xactnamt
      struct {
            float ano;            // account number
            float openbal;    // opening balance
            float prevday;    // day number of last activity
            float currbal;      // balance after last activity
            float weightbal; // weighted balance: sum of closing balances
      } acct[MAXACCT];
 
      // Read initial balances; set day to start-of-month, sum of balances 
to 0
      fid = fopen(acctfn);
      for(nacct = 0;2 == fscanf(fid,"%f%f",acctno,openbal) {
            acct[nacct].ano = acctno;
            acct[nacct].openbal = openbal;
            acct[nacct].prevday = 1;
            acct[nacct].currbal = openbal;
            acct[nacct].weightbal = 0;
            ++nacct;
      }
      fclose(acctfn);
 
      // Process the journal: for each record, look up the account
      // structure; add closing-balance values for any days that
      // ended before this journal record; update the balance
      fid = fopen(jourfn);
      while(3 == fscanf(fid,"%f%f%f",acctno,xactnday,xactnamt) {
            for(acctx = 0;acct[acctx].ano != acctno;++acctx);
            acct[nacct].weightbal +=
                  acct[nacct].currbal * (xactnday - acct[nacct].prevday);
            acct[nacct].currbal += xactnamt;
            acct[nacct].prevday = xactnday;
      }



 
      // Go through the accounts.  Close the month by adding 
      // closing-balance values applicable to the final balance;
      // produce output record
      for(acctx = 0;acctx < nacct;++acctx) {
            acct[nacct].weightbal += 
                  acct[nacct].currbal * (daysinmo - acct[nacct].prevday);
            printf("Account %d: Opening %d, closing %d, avg %d\n",
                  acct[acctx].ano, acct[acctx].openbal, acct[acctx].currbal,
                   acct[acctx].weightbal/daysinmo);
      }
      fclose(fid);
}

The corresponding J program would look like this:
NB. Verb to convert TAB-delimited file into numeric 
array
rdtabfile =: (0&".;.2@:(TAB&,)@:}:);._2) @ ReadFile @<
 
NB. Verb to process journal and account files
NB. y. is (# days in current month);(Account filename);
NB.   (Journal filename)
acctprocess =: monad define
'ndays acctfn jourfn' =: y.
NB. Read files
'acctano openbal' =. |: rdtabfile acctfn
'jourano jourday jouramt' =. |: rdtabfile jourfn
 
NB. Verb: given list of days y., return # days that
NB. each balance is a day's closing balance
wt =. monad : '(-~ 1&(|.!.(>:ndays))) 0{"1 y.'
NB. Verb: given an Account entry followed by the Journal
NB. entries for the account, produce (closing balance),
NB.  (average daily balance)
ab =. monad : '(wt y.)({:@] , (%&ndays)@(+/)@:*)+/\1{"1 
y.'
 
NB. Create (closing balance),(average daily balance) for
NB. each account.  Assign the start-of-month day (1) to 



the
NB. opening balance
cavg =. (acctano,jourano) ab/.(1,.openbal),jourday,.
jouramt
 
NB. Format and print all results
s =. 'Account %d: Opening %d, closing %d, avg %d\n'
s&printf"1 acctano ,. openbal ,. cavg
''
)

Let's compare the two versions.  The first thing we notice is that the J code is mostly 
commentary (beginning with NB.).  The actual processing is done in 3 lines that 
read the files, 3 lines to perform the computation of closing and average balance, 
and 2 lines to print the results.  J expresses the algorithm much more briefly.

The next thing we notice is that there seems to be nothing in the J code that is 
looping over the journal records and the accounts.  The commentary says 'create 
balances for each account' and 'produce average daily balance for an account', tasks 
that clearly require loops, and yet there is nothing resembling loop indexes.  This is 
one of the miracles of J: loops are implied; in C terminology, they are 
expressions rather than statements, and so they can be assembled easily into 
single lines of code that replace many nested loops.  We will be spending a lot of 
time learning how to do this.

We also note that there is nothing in the J code corresponding to the 
#define MAXACCT 500 in the C.  This is one of the things that makes 
programming in J so pleasant: you don't have to worry about allocating storage, or 
freeing it, or wondering how long is long enough for a character-string variable, or 
how big to make an array.  Here, even though we don't know how many accounts 
there are until we have read the entire Accounts file, we simply read the file, split it 
into lines and numbers, and let the interpreter allocate as much storage as it needs to 
hold the resulting array.

The last thing to see, and perhaps the most important, is that the C version is just a 
toy program.  It searches through the Accounts information for every record in the 
Journal file.  We can test it with a small dataset and verify that it works, but if we 
scale it up to 10,000 accounts and 1,000,000 journal entries, we are going to be 
disappointed in the performance, because its execution time will be proportional to 
A*J where A is the number of accounts and J the number of journal entries.  It is 



every programmer's dread: a function that will have to be rewritten when the going 
gets tough.

The J version, in contrast, will have execution time proportional to (A+J)*log(A
+J).  We did nothing meritorious to achieve this better behavior; we simply 
expressed our desired result and let the interpreter pick an implementation.  Because 
we 'think big'—we treat the entire Journal and Accounts files as units—we give the 
interpreter great latitude in picking a good algorithm.  In many cases the interpreter 
makes better decisions than we could hope to, because it looks at the characteristics 
of the data before it decides on its algorithm.  For example, when we sort an array, 
the interpreter will use a very fast method if the range of numbers to be sorted is 
fairly small, where 'fairly small' depends on the number of items to be sorted.  The 
interpreter takes great care in its implementation of its primitives, greater care than 
we can normally afford in our own C coding.  In our example, it will use a high-
speed method for matching journal entries with accounts.

Calculating Chebyshev Coefficients
This algorithm for calculating coefficients of the Chebyshev approximation of a 
function is taken verbatim from Numerical Recipes in C.  I have translated it into J 
just so you can see how compact the J representation of an algorithm can be.  Again, 
the J code will be gobbledygook for now, but it's concentrated gobbledygook.
// Program to calculate Chebyshev coefficients
// Code taken from Numerical Recipes in C 1/e
#include <math.h>
#define PI 3.141592653589793
void chebft(a,b,c,n,func)
float a,b,c[ ];
float (*func)();
int n;
{
      int k,j;
      float fac,bpa,bma,f[300];
 
      bma = 0.5 * (b-a)
      bpa = 0.5 * (b+a)
      for(k = 0;k<n;k++) {
            float y = cos(PI*(k+0.5)/n);
            f[k] = (*func)(y*bma+bpa);



      }
      fac = 2.0/n;
      for (j = 0;j<n;j++) {
            double sum = 0.0;
            for(k = 0;k<n;k++)
                  sum += f[k] * cos(PI*j*(k+0.5)/n);
            c[j] = fac*sum;
      }
}

J version:
chebft =: adverb define
:
f =. u. 0.5 * (+/y.) - (-/y.) * 2 o. o. (0.5 + i. x.) % 
x.
(2 % x.) * +/ f * 2 o. o. (0.5 + i. x.) *"0 1 (i. x.) % 
x.
)
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                                                                                                                                  4.     Declarations

J has no declarations.  Good riddance!  No more will you have to warn the computer 
of all the names you intend to use, and their types and sizes.  No more will your 
program crash if you step outside an array bound.  You specify the calculations you 
want to perform; if, along the way, you want to assign a result to a name, J will 
allocate enough space for the data.  It will free the space when the name is no longer 
needed.

Seasoned C programmers have learned to use declarations to create a web of type-
checking, making sure that objects pointed to are of the expected type.  This is an 
example of making a virtue of necessity.  Since J solves the problem much more 
directly—by not having pointers at all—you will soon lose your uneasiness with 
weak typing.

Arrays
But, you ask, without declarations, how does the computer know that a name 
represents an array?  For that matter, how do I know that a name represents an array?

The answer affords a first glimpse of the power of J.  Every J verb, whether a 
primitive (operator) or a user-written verb (function), accepts arguments that can 
be arrays, even multidimensional arrays.  How is this possible?  Like this: Suppose 
you write a verb that works with 2-dimensional arrays.  Part of your verb definition 
will indicate that fact.  If your verb is executed with an argument that is a 3-
dimensional array, J will automatically split the 3-dimensional array into a sequence 
of 2-dimensional arrays, call your verb, and put the pieces back together into an 
array of results.

We will very soon go into this procedure in great detail.  For now, you should learn 
the vocabulary J uses to deal with arrays.

What C calls an n-dimensional array of rank i×j×…×k is in J an array of rank 
n with axes of length i,j,…,k.

Every noun (variable or object) has a shape which is the array (of rank 1) made 
by concatenating the lengths of all its axes.  For example, if q is the array 
corresponding to the C array defined by the declaration

int q[4][5][6];



its shape is the array 4 5 6 .  As you can see, the number of items in the shape is 
exactly the rank.

Note: a sequence of numbers written with no intervening 
punctuation defines a numeric array of rank 1 (i. e. a list).  

You may have to use parentheses if you have adjacent 
numbers that you don't want to have made into a list.

Unlike in C, an array in J may have one or more axes of length 0.  Such an array has 
no atoms, but its rank is still the number of its axes.

A single number or character is called an atom (object of basic type) which is 
said to have the type numeric or character as appropriate.  (Actually, there are types 
other than number and character, including a type that resembles a structure, but 
we won't get to them for a while).  An atom is also called a scalar.  An atom is 
defined to have rank 0; therefore, its shape is an array with 0 items, i. e. an empty 
array of rank 1.

Just as in C, every atom of an array must have the same type. 

Cells
Because the execution of every J verb involves breaking the argument into pieces, 
presenting the pieces to the verb, and assembling results, J has a vocabulary for 
describing these operations.

A rank-3 array of shape 4 5, 6 such as the one defined in C by the declaration
      int q[4][5][6];
can be thought of as an array of 4 elements, each with rank 2 and shape 5 6, or as a 
4×5 array of elements, each with rank 1 and shape 6, or as a 4×5×6 array of rank-0 
atoms.  The term cell is used to indicate the rank of the elements that will be 
operated on.  A 0-cell is an atom, a 1-cell is an element of rank 1, a 2-cell is an 
element of rank 2, and so on.



Once you have picked a cell size, you can think of your noun as an array of cells; 
the shape of that array is called the frame of the noun relative to the chosen rank of 
cell.  It follows that the frame, concatenated with the shape of the cells, will be 
equal to the shape of the noun.  The frame itself (like all shapes) is an array of rank 
1.

The diagram illustrates cells of different ranks.  Note that the twenty 6-atom 1-cells 
are arranged in a 4×5 array; this is the meaning of the frame of the 1-cells.  The four 
5×6 2-cells are arranged as a vector of 2-cells; this is the meaning of their frame.

A selected cell is analogous to the subarray selected by indexing in C.  Using q as 
defined above, in C q[3] is a 5×6 array (i. e. a 2-cell); q[1][0] is a 6-element vector 
(i. e. a 1-cell); q[2][0][3] is a scalar (0-cell).

The noun q we have been using as an example can be thought of in any of the 
following 4 ways:

 Frame Cells

as an array of Length Value Rank Shape

0-cells 3 4 5 6 0 (empty)

1-cells 2 4 5 1 6

2-cells 1 4 2 5 6

3-cells 0 (empty) 3 4 5 6

Choosing Axis Order



Because J verbs operate on cells of nouns, you should choose an order of axes that 
makes the cells meaningful for your application.  Referring to the figure, we can see 
that the groups of items that fall into horizontal strips (1-cells) or horizontal slabs (2-
cells) will be easy to operate on individually.  Vertical strips or slabs will not 
correspond to cells and so will not be accessible individually; to work on them we 
may have to reorder the axes of the noun to make them correspond to cells.  Such 
reordering of axes is easy in J but it can often be avoided by ordering the axes 
properly in the first place.

Negative Cell-Rank; Items
In some cases, you may know the length of the frame and want to define the cells to 
have whatever rank is left over (for example, you may have a noun with one cell per 
employee, but you may not know the rank of the cells).  We say that you are 
selecting the cells of the noun relative to the given frame.  Negative cell-ranks 
indicate this.  A _1-cell has the shape corresponding to a frame of length 1 (5 6 in 
our example), a _2-cell has the shape corresponding to a frame of length 2 (6 in our 
example), and so on.  If the specified frame is longer than the rank of the noun, the 
entire shape of the noun is used for the frame (and the cells are 0-cells, i. e. atoms).  
In our example, a _3-cell, a _4-cell, a _5-cell, etc., all refer to atoms.  As an 
important case of this, the _1-cell of an atom is the atom itself.

_1-cells are so important in J that they are given the name items.  Our example has 4 
items, each of shape 5 6 .  An atom has one item, itself.

Remember: an atom has one item: itself.

The index of an item in an array is the sequence number of the item from the 
beginning of the array.  The first item in an array has the index 0, just as in C.

Lists
When we choose to view an array as a collection of its items, we say that the array 
is a list of its items.  In our example above, the items of the 4×5×6 array are 5×6 
arrays, and we say that the whole array is a list of 4 items each with shape 
5 6 (equivalently, we say that it is a list of four 5×6 arrays).  So many of J's 
primitives operate on items of their operands that we will find ourselves usually 
thinking of an array as a list of its items.

When the word 'list' is used without any indication of what the list contains, the list 
is assumed to contain atoms.  So, 'the list x' refers to an array of rank 1 (one-
dimensional array).  0 3 5 is a numeric list.



Note that J's use of the term 'list' has nothing to do with linked lists such as you are 
familiar with, where an element in the list contains a pointer to other elements.  
Since J has no pointers at all, you will not need that meaning, and you can get used 
to calling rank-1 arrays 'lists'.  A list can also be called a vector.

Phrases To Memorize
An array is a list of its items.

An atom has one item, itself.

The rank of a noun is the length of its shape.

The shape of an atom is the empty list.

The suffixes of the shape of a noun give the shapes of its cells: the k trailing atoms 
of the shape of a noun give the shape of its k-cell.

The frame of a noun with respect to k-cells is the shape of the noun with the last 
k atoms removed.

Constant Lists
A character or numeric list can be created simply by including the list in a sentence.  
We have seen that a sequence of numbers separated by spaces is recognized as a 
single word representing the list.  Similarly, a character or a character list can be 
represented directly by a quoted string.  C distinguishes between single-character 
constants (such as 'a') and strings (such as "abc"), using single quotes for 
characters and double quotes for strings.  J uses only single quotes for defining 
character constants (the " character is a primitive in its own right).  If exactly one 
character is between the quotes, the value is an atom; if none or more than one, the 
result is a list.

Array-creating verbs
Now that we know how to talk about arrays, we might as well create a few and see 
what they look like.  As mentioned earlier, every J verb can be used to create an 
array—there are no special 'declaration' verbs—but we will start with a couple that 
do little else.  The J lines are taken from an interpreter session; you can type them 
into your own session and get the same results.  The indented lines were typed into 
J, and the unindented ones are J's responses.

Dyad $ ($hape) and monad $ ($hape Of)



The verb dyad $ is invoked as x $ y .  The result of dyad $ has the frame x 
relative to the rank of the items of y, and is made up of the items of y, repeated 
cyclically as needed.  It follows that the shape of this result is x concatenated with 
the shape of an item of y .

We will have to work together on this.  Confronted with a definition like that, you 
might: (a) decide that J must be a language for tax accountants, and give up; (b) 
decide the definition is Greek and go on, hoping it will make sense later; (c) try a 
few examples to get an idea for what the definition means; (d) read it over and over 
again until you understand it.  I hope you will eschew (a) and (b), and settle for no 
less than full understanding.  For my part, I will offer a few useful examples that 
you can compare against the definition.  Not everything in J will be as abstract as 
this.
   5 $ 2
2 2 2 2 2
The simplest case, creating (and displaying) a list of 5 items, each of which is 2 .  
Let's see how this result matches the definition.  y is a scalar, so it has one item, 
which is also a scalar.  Therefore, the result has the shape 5 (x (i. e. 5) concatenated 
with the shape of an item of y; the shape of a scalar item of y is the empty list; 5 
concatenated with an empty list is a list with the single element 5).  The scalar is 
repeated to fill the 5 items of the result.  J displays a 1-cell on a single line, as 
shown.
   5 $ 'ab'
ababa
Now y is a list, but its items are still scalars, with rank 0 and shape empty; so the 
result still has the shape 5 .  The 5 items come from the items of y, cyclically.

We can distill the foregoing analysis above to the observation that when y is an 
atom or a list, x specifies the shape of x $ y .

   4 4 $ 'There is a tide in the affairs of men'
Ther
e is
 a t
ide
The items of y are still scalars, with rank 0 and shape empty; the result has the 
shape 4 4 .  The 16 items come from the items of y, cyclically.  Not all items of y 



are used.  J displays a rank-2 array as a sequence of lines, one for each 1-cell.
   0 $ 2
 
(The display is a single blank line)  Just like 5 $ 2, but the resulting list has 0 
items, i. e. it is an empty list.
   1 $ 2
2
Similarly, a 1-item list.
   (0 $ 2) $ 2
2
Here (0 $ 2) produces an empty list, as we saw above, and that is the x to the 
second $ .  The items of y are still scalars, so the result has shape empty (an 
empty list concatenated with an empty list), i. e. it is a scalar.

The displays of a scalar and a 1-item list are identical.  Does that mean that a scalar 
is the same thing as a 1-item list?  No.  I mean no.  NO!  They are not (I say this 
with the same resignation as when I tell my kids not to rollerblade too fast down our 
street, knowing that only painful experience will drive the message home).  How 
can you tell them apart?  What we need is a way to see the shape of a noun.

That way is monad $ .  The result of $ y is the shape of y (always a numeric list).  
For example:
   $ 1 2 3 4
4
A 4-item list has the shape 4 .  Did you forget that 1 2 3 4 is a single list rather 
than 4 separate numbers?  You can ask the interpreter how it splits a line into words 
by using monad ;: :
   ;: '$ 1 2 3 4'
+-+-------+
|$|1 2 3 4|
+-+-------+
The words are shown in boxes.  The list 1 2 3 4 is recognized as a single word.

   $ 6
 
The shape of a scalar is a 0-length list, as we have seen.
   $ 1 $ 2



1
Remember, all sentences are executed right-to-left, so this is $ (1 $ 2), which 
gives the shape of the 1-item list.  When a verb can be invoked dyadically, it is, so 
the rightmost $ is executed as a dyad, not as a monad.

   $ (0 $ 2) $ 2
 
Here, we get the shape of the scalar—an empty list.
   $ 'a'
 
A single character is an atom, whose shape is the empty list.
   $'abc'
3
A 3-item list, one item for each character.
   $ ''
0
'' is the empty character string, which you will see a lot of.  Because it is easy to 
type, it is the value most often used when an empty list of any type will do.

Executing monad $ twice gives the rank: $ $ y is the rank of y (as a single-item 
list).  I suggest you not read on until you understand why.

Resuming our inquiries into dyad $, we have

   2 5 $ 1 10
 1 10  1 10  1
10  1 10  1 10
Again y is a list, so the items of y are scalars.  The shape of the result is 2 5, and 
the items of y are repeated to fill that shape.  Note that the corresponding atoms in 
each cell are aligned in the display.
   1 5 $ 1 10
1 10 1 10 1
Similarly, but now the result has shape 1 5.  This is not the same as a 5-item list, 
which has shape 5 .  Again, monad $ shows the shape:
   $ 1 5 $ 1 10
1 5

When y is not a scalar or a list, its items are not scalars, and x does not give the 
shape of the result.  Let us work through an example using the definition of 



x $ y :
   3 $ 1 5 $ 1 10
1 10 1 10 1
1 10 1 10 1
1 10 1 10 1
Remember, this is processed as 3 $ (1 5 $ 1 10).  The parenthesized part 
produces an array of shape 1 5; since this has rank 2, its items are its 1-cells, each 
with shape 5.  The shape of the overall result is x concatenated with the shape of an 
item of y, to wit 3 5.  This is populated with the cells of y, of which there is only 1.

   3 $ 2 5 $ 'There is a tide in the affairs of men'
There
 is a
There
You should be able to explain where each line came from, and you should note that 
in general, x specifies the frame of x $ y with respect to items of y .  When y 
is a list or an atom, its items are atoms and x gives the entire shape of the result.

   2 2 $ 2 5 $ 1 10
 1 10  1 10  1
10  1 10  1 10
 
 1 10  1 10  1
10  1 10  1 10
   $ 2 2 $ 2 5 $ 1 10
2 2 5
Now the shape of the result is 2 2 5, a rank-3 array.  J displays the 2-cells with a 
blank line in between.  Similarly, a rank-4 array is displayed as all the 3-cells with 2 
blank lines in between, and so on for higher ranks.

We have seen that the display of a zero-length list is a single blank line: proper, as 
there is one list, and it has no items.  The display of a rank-2 array with no items is 
different: here we have zero lists, so we should expect no lines at all.  This is indeed 
what happens:
   0 0$0
(there is no blank line).  This is the result you should produce if you want a function 
to display nothing.

Here are two exercises.  Once you can explain each result, you will be well on your 
way to becoming a J programmer.  What will each of these sentences produce 



(answer on the next page)?
   3 1 $ 2 5 $ 1 10
   2 3 $ 2 5 $ 1 10 15
 
Solutions:
   3 1 $ 2 5 $ 1 10
 1 10  1 10  1
 
10  1 10  1 10
 
 1 10  1 10  1

   2 3 $ 2 5 $ 1 10 15
 1 10 15  1 10
15  1 10 15  1
 1 10 15  1 10
 
15  1 10 15  1
 1 10 15  1 10
15  1 10 15  1

Monad # (Tally)
The result of  # y is a scalar, the number of items in y .  This is the first item in 
the list $y, except that if y is an atom, $y is empty but #y is 1 (because, remember, 
an atom has one item, itself).  If y is a list, #y is the length of the list.  Quiz 
question: What is the difference between the results of $ 1 2 3  and  # 1 2 3?
   $ 1 2 3
3
   # 1 2 3
3
Answer: the result of monad $ is always a list, but the result of monad # is a scalar:
   $ $ 1 2 3
1
   $ # 1 2 3
 

#$y, like $$y, gives the rank of y .  Since monad # produces a scalar rather than 
a list, #$y is usually preferred.  Just remember that the length of the shape is the 



rank.

Monad i. (Integers)
Monad i. has infinite rank and creates an array.  i. y produces the same result as 
y $ ints, where ints is the list of all nonnegative integers in order.  Examples:

   i. 5
0 1 2 3 4
A list of 5 items; the items are ascending integers.
   i. 2 3
0 1 2
3 4 5
A rank-2 result.
   i. 2 3 4
 0  1  2  3
 4  5  6  7
 8  9 10 11
 
12 13 14 15
16 17 18 19
20 21 22 23
A rank-3 result.
   i. 0
 
A list of 0 items.
   i. _5
4 3 2 1 0
If the argument is negative, the absolute value is used for the shape, but the items 
run in reverse order.
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                                                   5.     Loopless Code I—Verbs Have 
Rank

Most J programs contain no loops equivalent to while and for in C.  J does contain while. 
and for. constructs, but they carry a performance penalty and are a wise choice only when 
the body of the loop is a time-consuming operation.  You are just going to have to learn to 
learn to code without loops.

I think this is the most intimidating thing about learning J—more intimidating even than 
programs that look like a three-year-old with a particular fondness for periods and colons was 
set before the keyboard.  You have developed a solid understanding of loops, and can hardly 
think of programming without using them.  But J is a revolutionary language, and all that is 
solid melts into air: you will find that most of your loops disappear altogether, and the rest are 
replaced by small gestures to the interpreter indicating your intentions.

Come, let us see how it can be done.  I promise, if you code in J for 6 months, you will no 
longer think in loops, and if you stay with it for 2 years, you will see that looping code was an 
artifact of early programming languages, ready to be displayed in museums along with 
vacuum tubes, delay lines, and punched cards.  Remember, in the 1960s programmers 
laughed at the idea of programming without gotos!

You are not used to classifying loops according to their function, but I am going to do so as a 
way of introducting J's primitives. We will treat the subject of loopless iteration in 6 scattered 
chapters, showing how to replace different variants of loops:

1.      Loops where each iteration of the loop performs the same operation on different 
data;

2.      Loops that apply an operation between all the items of the array, for example 
finding the largest item;

3.      Loops where the operation to be performed on each cell is different;

4.      Loops that are applied to regularly-defined subsets of the data;

5.      Loops that are applied to subsets of the data defined irregularly;

6.      Loops that accumulate information between iterations of the loop.

The simplest case is the most important, and we start with a few experiments.

Examples of Implicit Loops
   2 + 3 4 5
5 6 7



The verb dyad + is addition, and we have our first example of an implicit loop: the left 
argument 2 was added to each atom in the right argument.

   1 2 3 + 4 5 6
5 7 9
And look!  If each operand is a list, the respective items are added.  We wonder if the 
behavior of 2 + 3 4 5 was because items of the shorter operand are repeated cyclically:

   1 2 + 4 5 6
|length error
|   1 2    +4 5 6
Evidently not.  A 'length error' means that the operands to + did not 'agree' (and you get an 
error if you try to add them).  We will shortly understand exactly what this means.
   i. 2 3
0 1 2
3 4 5
A reminder of what monad i. does.

   0 100 + i. 2 3
  0   1   2
103 104 105
Whoa!  The atoms of the left operand were applied to rows of the right operand.  Interesting.  
This seems to be some kind of nested implicit loop.

Let's learn a couple of more verbs, monad #. and monad #: .  Monad #: creates the binary 
representation of an integer (i. e. a list of 0s and 1s), and monad #. is its inverse, creating the 
integer from the binary representation.  For the longest time I couldn't remember which was 
which, but at last I saw the mnemonic: the verb with the single dot (#.) creates an atom from 
a list; the verb with multiple dots (#:) creates a list from an atom:

   #: 5
1 0 1
   #. 1 0 1
5
Yes, they seem to perform as advertised.  They can be applied to arrays:
   ]a =. #: 5 9
0 1 0 1
1 0 0 1
Look: the result is not a rank-1 list, but rather a rank-2 array, where each item has the binary 
representation of one operand value (and notice, an extra leading zero was added to the 
representation of 5).  The little trick with ]a =. will be explained later, but for now just 
think of ]a =. as 'assign to a and display the result'.  With a assigned, we have:
   #. a



5 9

This seems to be the desired result, but on reflection we are puzzled: how did the interpreter 
know to apply #. to each 1-cell rather than to each 0-cell?  Contrast this result with the result 
of the verb monad +:, which means 'multiply by 2':

   +: a
0 2 0 2
2 0 0 2
Evidently the verbs themselves have some attribute that affects the rank of cell they are 
applied to.  It's time for us to stop experimenting and learn what that attribute is.

The Concept of Verb Rank
Every verb has a rank—the rank of the cells to which it is applied.  If the rank of the verb's 
operand is smaller than the rank of the verb, the verb is applied to the entire operand and it is 
up to the author of the verb to ensure that it produces a meaningful result in that case.

Dyads have a rank for each operand, not necessarily the same.

A verb's rank can be infinite (_), in which case the verb is always applied to the operand in its 
entirety.  In other words, if a verb has infinite rank for an operand, that operand is always 
processed as a single cell (having the rank of the operand).

If you don't know the rank of a verb, you don't know the verb.  Using a verb of unknown rank 
is like wiring in a power-supply of unknown voltage—it will do something when you plug it 
in; it might even work; but if the voltage is wrong it will destroy what it's connected to.  
Avoid embarrassment!  Know the rank of the verbs you use.

The definition page of each J verb gives the ranks of the verbs defined on the page, right at 
the top of the page after the name of the verb.  Since most pages define both a monad and a 
dyad, you will usually find 3 numbers: the first is the rank of the monad, the other two are the 
left and right rank of the dyad.  For example, click up the page for #: and you will see

#:  _ 1 0
which means that monad #: has infinite rank, while dyad #: has left rank 1 and right rank 0.  
For any verb, including user-written verbs, you can ask the interpreter the rank by typing 
verbname b. 0 :
   #: b. 0
_ 1 0

Verb Execution—How Rank Is Used (Monads)
The implicit looping in J results from the interplay of verb rank and noun rank.  For monads, 
it goes like this:

1.      Figure out the rank r of the cells that will be operated on; this will be the smaller of 
rank of the verb and the rank of the operand.  This rule applies even if the verb has 



infinite rank: r will be the rank of the operand, which is another way of saying that the 
verb applies to the operand in its entirety.

2.      Find the frame f of the operand with respect to cells of rank r.

3.      Think of the operand as an array with shape f whose items are cells of rank r.  
Apply the verb to each r-cell, replacing each cell with the result of the verb.  Obviously, 
this will yield an array of shape f whose items have the shape of the result of applying 
the verb to an r-cell.

Let's look at some simple examples:
   i. 2 2
0 1
2 3
This will be the right operand.
   +: i. 2 2
0 2
4 6
The steps to get this result are:

The verb rank is 0 and the noun rank is 2, so we will be applying the verb 
to 0-cells.  The frame f is 2 2

Think of the operand as a 2×2 array of 0-cells:
0 1

2 3

The verb is applied to each cell: 0 2

4 6

Since each result is an atom, i. e. a 0-cell, the result 
is a 2×2 array of 0-cells, i. e. an array of shape 2 2

0 2
4 6

Figure 1.  Execution of +: i. 2 2

 

Another example:
   ]a =. 2 2 4 $ 0 0 1 1  0 0 0 1  0 1 0 0  0 0 1 0
0 0 1 1
0 0 0 1
 
0 1 0 0
0 0 1 0



This is a rank-3 array.
   #. a
3 1
4 2

The verb rank is 1 and the noun rank is 3, so we will be applying the verb to 1-
cells.  The frame f is 2 2

Think of the operand as a 2×2 array of 1-cells: 0 0 1 1 0 0 0 1

0 1 0 0 0 0 1 0

The verb is applied to each cell: 3 1

4 2

Since each result is an atom, i. e. a 0-cell, the result 
is a 2×2 array of 0-cells, i. e. an array of shape 2 2

3 1
4 2

Figure 2.  Execution of #. 2 2 4 $ 0 0 1 1  0 0 0 1  0 1 0 0  0 0 1 0

 

Controlling Verb Execution By Specifying a Rank
The implicit loops we have used so far are interesting, but they are not powerful enough for 
our mission of replacing all explicit loops.  To understand the deficiency and its remedy, 
consider the new verb monad +/, which creates the total of the items of its operand (just think 
of it as 'monad SumItems'):

   +/ 1 2 3
6
The result was 1 + 2 + 3, as expected.

   i. 2 3
0 1 2
3 4 5
   +/ i. 2 3
3 5 7
The result was 0 1 2 + 3 4 5, as expected (remember that the items are added, and the 
items of i. 2 3 are 1-cells).  Adding together a pair of 1-cells adds the respective atoms, as 
we will soon learn.

This application of monad +/ to a rank-2 array corresponds to the C code fragment:
      for(j = 0;j<3;++j)sum[j] = 0;



      for(i = 0;i<2;++i)
            for(j = 0;j<3;++j)sum[j] += array[i][j];

Suppose we wanted to add up the items of each row, as in the C code fragment
      for(i = 0;i<2;++i) {
            sum[i] = 0;
            for(j = 0;j<3;++j)sum[i] += array[i][j];
      }
to produce the result 3 12?  How can we do it in J?  What we have learned so far is not 
enough, but if we had a way to make monad +/ apply to 1-cells—if we could make monad 
+/ have rank 1—our problem would be solved: the implicit looping would cause each row to 
be summed and the results collected.

You will not be surprised to learn that J does indeed provide a way to apply monad +/ on 1-
cells.  That way is the rank conjunction " .

We will learn all about conjunctions later on—the syntax is a little different than for verbs—
but for now, we'll try to understand this " .  It's used like this:
   u"n
to produce a new verb that is u applied to n-cells individually.  This is a simple idea, but its 
ramifications spread wide.  As a first example:
   +/"1 i. 2 3
3 12
This is what we were looking for.  It happened this way:

The verb rank is 1 and the noun rank is 2, so we will be applying the verb 
to 1-cells.  The frame f is 2

Think of the operand as a list of 2  1-cells: 0 1 2 3 4 5

The verb monad +/ is applied to each cell: 3 12

Since each result is an atom, i. e. a 0-cell, the result is 
a list of 2  0-cells, i. e. an array of shape 2

3 12

Figure 3.  Execution of +/"1 i. 2 3

 

Examples Of Verb Rank
Here are some more examples using a rank-3 array as data:
   i. 2 3 4
 0  1  2  3
 4  5  6  7



 8  9 10 11
 
12 13 14 15
16 17 18 19
20 21 22 23

 
   +/"1 i. 2 3 4
6 22 38
54 70 86

The verb rank is 1 and the noun rank is 3, so we will be applying the verb to 1-
cells.  The frame f is 2 3

Think of the operand as a 2×3 
array of 1-cells:

0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23

The verb monad +/ is applied 
to each cell:

6 22 38

54 70 86

Since each result is an atom, 
i. e. a 0-cell, the result is a 2×3 
array of  0-cells, i. e. an array 

of shape 2 3

6 22 38
54 70 86

Figure 4.  Execution of +/"1 i. 2 3 4

 
   +/"2 i. 2 3 4
12 15 18 21
48 51 54 57

The verb rank is 2 and the noun rank is 3, so we will be applying the verb to 2-
cells.  The frame f is 2

Think of the operand as a list 
of 2  2-cells:

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23



The verb monad +/ is applied 
to each cell.  As we have 

learned, this sums the items, 
making each result a rank-1 

list 

12 15 18 21 48 51 54 57

Since each result is a rank-1 
list, i. e. a 1-cell, the result is a 
list of 2  1-cells, i. e. an array 

of shape 2 4

12 15 18 21
48 51 54 57

Figure 5.  Execution of +/"2 i. 2 3 4

 
   +/"3 i. 2 3 4
12 14 16 18
20 22 24 26
28 30 32 34
The verb is applied to the single 3-cell.  Its items, which are 2-cells, are added, leaving a 
single 2-cell as the result.

How about i."0 (2 2 2)—can you figure out what that will produce?  (Notice I put 
parentheses around the numeric list 2 2 2 so that the rank 0 wouldn't be treated as part of 
the list)

The verb rank is 0 and the noun rank is 1, so we will be applying the verb 
to 0-cells.  The frame f is 3

Think of the operand as a list of 3 0-cells (i. e. atoms): 2 2 2

The verb monad i. is applied to each cell: 0 1 0 1 0 1

Since each result is a list, i. e. a 1-cell, the result is a 
list of 3 1-cells each with shape 2, i. e. an array of 

shape 3 2

0 1
0 1
0 1

Figure 6.  Execution of i."0 (2 2 2)

 
   i."0 (2 2 2)
0 1
0 1
0 1

If you worked through that, it might have occurred to you that the shape of each result cell 



depended on the value of the operand cell, and that if those cells had not been identical, there 
would be some rough edges showing when it came time at the end to join the dissimilar result 
cells together.  If so, full marks to you!  That can indeed happen.  If it does, then just before 
the cells are joined together to make the final result, the interpreter will bulk up the smaller 
results to bring them up to the shape of the largest.  First, if the ranks of the results are not 
identical, each result will have leading axes of length 1 added as needed to bring all the 
results up to the same rank (e. g. if one result has shape 2 5 and another has shape 5, the 
second will be converted to shape 1 5, leaving the data unchanged).  Then, if the lengths of 
the axes are not identical, the interpreter will extend each axis to the maximum length found 
at that axis in any result: this requires adding atoms, called fills, which are always 0 for 
numeric results and ' ' for literal results.  Example:
   i."0 (0 1 2 3)
0 0 0   NB. original result was empty list; 3 fills added
0 0 0   NB. original result was 0; 2 fills added
0 1 0   NB. original result was 0 1; 1 fill added
0 1 2   NB. this was the longest result, no fill added

fndisplay—A Utility for Understanding Evaluation
J contains a script that we will use to expose the workings of evaluation.  You define verbs 
which, instead of operating on their operands, accumulate character strings indicating what 
operations were being performed.  This gives you a way of seeing the operations at different 
cells rather than just the results.

Start by loading the script:
   load 'system/packages/misc/fndisplay.ijs'
Then, select the type of display you want.  We will be using
   setfnform 'J'
Then, give the names of the verbs you want to use.  If you want to assign a rank, you may do 
so by appending "r to the name:
   defverbs 'SumItems plus"0'
Optionally, define any names you want to use as nouns.  The value assigned to the noun is the 
noun's name:
   defnouns 'x y'
You are free to use other nouns in expressions, but they will be replaced by their values.

With these definitions, you can explore J's evaluations:
   x (plus) y
+--------+
|x plus y|
+--------+ 
The result of the evaluation is a description of the evaluation that was performed.  The result 
is displayed in a box so that a sentence with multiple evaluations shows each in its proper 



place:
   SumItems"1 i. 2 3
+--------------+--------------+
|SumItems 0 1 2|SumItems 3 4 5|
+--------------+--------------+
Here we see that SumItems was applied twice, once on each 1-cell.

fndisplay cannot produce a valid result in cases where the rank of a verb is smaller than 
the rank of the result-cells of the preceding verb, because then the operation would be 
performed on part of a result cell, and the result cell is just a descriptive string which cannot 
be meaningfully subdivided.

In this book, if we give an example that starts with defverbs it is implied that 
load fndisplay and setfnform 'J' have been executed.

If you prefer to see the order of evaluation expressed in functional form like that used in C, 
you may issue setfnform 'math' before you execute your sentences:
   setfnform 'math'
   1 plus 2 plus y
+-----------------+
|plus(1,plus(2,y))|
+-----------------+

Negative Verb Rank
Recall that we defined the _1-cell of a noun n to be the cells with rank one less than the rank 
of n, and similarly for other negative ranks.  If a verb is defined with negative rank r, it means 
as usual that the verb will apply to r-cells if possible, but with r negative the rank of those r-
cells will depend on the rank of the operand.  After the first step of processing the verb, which 
decides what rank of cell the verb will be applied to, verbs with negative rank are processed 
just like verbs of positive rank.
   +/ "_1 i. 3
0 1 2
Here the _1-cells are atoms, so applying monad SumItems on each one has no effect.

   +/ "_1 i. 2 3
3 12
The operand has rank 2, so this expression totals the items in each 1-cell.
   +/ "_2 i. 2 2 3
 3 12
21 30
The operand has rank 3, so this totals the items in each 1-cell, leaving a 2×2 array of totals.

Verb Execution—How Rank Is Used (Dyads)



We are at last ready to understand the implicit looping that is performed when J processes a 
dyadic verb.  Because a dyadic verb has two ranks (one for each operand), and these two 
ranks interact with each other as well as the ranks of the operands, you should not read further 
until you thoroughly understand what we have covered already.

We have learned that the rank conjunction u"n is used to specify the rank of a verb.  Since 
each verb has the potential of being invoked monadically or dyadically, the rank conjunction 
must specify the ranks for both valences.  This requires 3 ranks, since the monad has a single 
rank and the dyad a left and a right rank.  The ranks n may comprise from 1 to 3 items: if 3 
ranks are given they are, in order, the monad's rank, the dyad's left rank, and the dyad's right 
rank.  If two ranks are given, the first is the dyad's left rank and the second is used for the 
dyad's right rank and the rank of the monad.  If there is only one item in the list, it is used for 
all ranks.  So, v"0 1 has monad rank 1, dyad left rank 0, and dyad right rank 1 .  As usual, 
J primitives themselves have the ranks shown in the Dictionary.

Processing of a dyad follows the same overall plan as for monads, except that with two 
operands there are two cell-sizes (call them lr and rr) and two frames (call them lf and rf).  If 
the left and right frames are identical, the operation can be simply described: the lr-cells of 
the left operand match one-to-one with the rr-cells of the right operand; the dyad is applied to 
those matched pairs of cells, producing a result for each pair; those results are collected as an 
array with frame lf.  We illustrate this case with an example:
   (i. 2 2) + i. 2 2
0 2
4 6
The verb has left rank 0, and the left operand has rank 2, so the operation will be applied to 0-
cells of the left operand.  The verb has right rank 0, and the right operand has rank 2, so the 

operation will be applied to 0-cells of the right operand.  The left frame is 2 2, the right 
frame is 2 2 .

Think of the left operand as a 
2×2 array of 0-cells, and the 

right operand as a 2×2 array of 
0-cells:

0 1
2 3

0 1
2 3

The corresponding left and 
right operand cells are paired:

0 0 1 1

2 2 3 3



The operation dyad + is 
performed on each pair of 

cells:

0 2

4 6

Since each result is an atom, 
and the frame is 2 2, the 

result is an array with shape 
2 2

0 2
4 6

Figure 7.  Execution of (i. 2 2) + i. 2 2

 

Using fndisplay, we have
   load'system\packages\misc\fndisplay.ijs'
   setfnform 'J'
   defverbs 'plus"0'
   (i. 2 2) plus i. 2 2
+--------+--------+
|0 plus 0|1 plus 1|
+--------+--------+
|2 plus 2|3 plus 3|
+--------+--------+

As you can see, we were correct when we asserted that the sum of two cells of the same shape 
is taken by adding their respective items.

Concatenating Lists: Dyad , (Append)
For a second example we will introduce a new verb, dyad , (the verb is the comma 
character).  x , y creates an array whose leading items are the items of x and whose trailing 
items are the items of y; in other words, it concatenates x and y .  
   1 2 3 , 6
1 2 3 6
   1 2 3 , 1 2 3
1 2 3 1 2 3
   4 , 6
4 6
   1 2 3 , 0$6
1 2 3
   (i. 2 3) , (i. 3 3)
0 1 2
3 4 5
0 1 2



3 4 5
6 7 8
In the last example the items of x and y are 3-element lists, so x , y is a list of 3-element 
lists, containing the items of x followed by the items of y .

Dyad , has infinite rank, which means that it applies to its operands in their entirety and so its 
detailed operation is defined not by the implicit looping we have been learning, but instead by 
the definition of the verb in the Dictionary.  The discussion given above describes the 
operation of dyad , when the operands have identically-shaped items (items, mind you—the 
shapes of x and y may differ, if one has more items than the other).  In a later chapter we will 
learn about x , y when the items have different shapes; for now we will be dealing with 
operands that are scalars and lists, for both of which the items are scalars.

Now see if you can figure out what (i. 3 3) ,"1 0 i. 3 will do before reading the 
explanation that follows:
The verb (dyad ,"1 0) has left rank 1, and the left operand has rank 2, so the operation will 
be applied to 1-cells of the left operand.  The verb has right rank 0, and the right operand has 
rank 1, so the operation will be applied to 0-cells of the right operand.  The left frame is 3, 

the right frame is 3 .
Think of the left operand as a 
list of 3 1-cells, and the right 
operand as a list of 3  0-cells:

0 1 2 3 4 5 6 7 8 0 1 2

The corresponding left and 
right operand cells are paired:

0 1 2 0 3 4 5 1 6 7 8 2

The operation dyad , is 
performed on each pair of 

cells:

0 1 2 0 3 4 5 1 6 7 8 2

Since each result is a 1-cell of 
shape 4, and the frame is 3, 

the result is an array with 
shape 3 4

0 1 2 0
3 4 5 1
6 7 8 2

Figure 8.  Execution of (i. 3 3) ,"1 0 i. 3

 

 
   defverbs 'comma'



    (i. 3 3) comma"1 0 i. 3
+-------------+-------------+-------------+
|0 1 2 comma 0|3 4 5 comma 1|6 7 8 comma 2|
+-------------+-------------+-------------+

   (i. 3 3) ,"1 0 i. 3
0 1 2 0
3 4 5 1
6 7 8 2

When Dyad Frames Differ: Operand Agreement
The processing of dyads has an extra step not present for monads, namely the pairing of 
corresponding cells of the left and right operands.  As long as the frames lf and rf are the 
same, as in the examples so far, this is straightforward.  If the frames are different, J may still 
be able to pair left and right cells, using another level of implicit looping, one that provides 
considerable additional programming power.  The formal description that follows is not easy 
to follow—you might want to skim over it and read it in detail after you have studied the 
examples that follow.

J requires that one of the frames be a prefix of the other (if the frames are identical, each is a 
prefix of the other and all the following reduces to the simple case we have studied).  The 
common frame cf is the part of the frames that is identical, namely the shorter of the two 
frames; its length is designated rcf.  If we look at the cells of the operands relative to this 
common frame (i. e. the (-rcf)-cells), we see that for the operand with the shorter frame, these 
cells are exactly the rank that will be operated on, while for the operand with the longer 
frame, each (-rcf)-cell contains multiple operand cells.

First, the (-rcf)-cells of the two operands are paired one-to-one (because they have the same 
frame), leaving each shorter-frame operand cell paired with a longer-frame (-rcf)-cell.  Then, 
the longer-frame (-rcf)-cells are broken up into operand cells, with each operand cell being 
paired with a copy of the shorter-frame operand cell that was paired with the (-rcf)-cell (an 
equivalent statement is that the cells of the shorter-frame operand are replicated to match the 
surplus frame of the longer-frame operand).  This completes the pairing of operand cells, and 
the operation is then performed on the paired operand cells, and collected using the longer 
frame.  Maybe some examples will help.
   100 200 + i. 2 3
100 101 102
203 204 205

The verb (dyad +) has left rank 0, and the left operand has rank 1, so the operation will be 
applied to 0-cells of the left operand.  The verb has right rank 0, and the right operand has 
rank 2, so the operation will be applied to 0-cells of the right operand.  The left frame is 2, 

the right frame is 2 3 .



The common frame is 2, with length 1, 
so think of each operand as a list of 2  

_1-cells
100 200 0 1 2 3 4 5

The _1-cells of the operands are paired: 100 0 1 2 200 3 4 5

The longer-frame operand (the right 
one) is broken up into operand 0-cells, 
each being paired with a copy of the 

shorter-frame operand cell.  Each paired 
_1-cell becomes a row of paired 

operand cells:

100 0 100 1 100 2

200 3 200 4 200 5

The operation dyad + is performed on 
each pair of cells:

100 101 102

203 204 205

Since each result is an atom, and the 
longer frame is 2 3, the result is an 

array with shape 2 3

100 101 102
203 204 205

Figure 9.  Execution of 100 200 + i. 2 3

 
   defverbs 'plus"0'
   100 200 plus i. 2 3
+----------+----------+----------+
|100 plus 0|100 plus 1|100 plus 2|
+----------+----------+----------+
|200 plus 3|200 plus 4|200 plus 5|
+----------+----------+----------+

The simplest and most common case of different-length frames is when the shorter frame is of 
zero length; in other words, when one of the operands has only one cell.  In that case, the 
single cell is replicated to match every cell of the longer operand.  An easy way to force an 
operand to be viewed as a single cell is to make the verb have infinite rank for that operand.  
This is not a special case—the behavior follows from the rules already given—but it's worth 
an example:
   'abc' ,"_ 0 'defg'
abcd
abce
abcf
abcg



The verb (dyad ,"_ 0) has left rank _, and the left operand has rank 1, so the operation will 
be applied to 1-cells of the left operand.  The verb has right rank 0, and the right operand has 

rank 1, so the operation will be applied to 0-cells of the right operand.  The left frame is 
(empty), the right frame is 4 .

The common frame is (empty), 
with length 0, so take each 

operand in its entirety:
abc defg

The cells of the operands are 
paired:

abc defg

The longer-frame operand (the 
right one) is broken up into 
operand 0-cells, each being 

paired with a copy of the shorter-
frame operand cell:

abc d abc e abc f abc g

The operation dyad , is 
performed on each pair of cells:

abcd abce abcf abcg

Since each result is a 1-cell with 
length 4, and the longer frame is 
4, the result is an array with 

shape 4 4

abcd
abce
abcf
abcg

Figure 10.  Execution of 'abc' ,"_ 0 'defg'

 
   defverbs 'comma'
   'abc' comma"_ 0 'defg'
+-----------+-----------+-----------+-----------+
|abc comma d|abc comma e|abc comma f|abc comma g|
+-----------+-----------+-----------+-----------+

You must thoroughly understand this example, where one operand has only one cell, because 
it occurs frequently.  The handling of the general case of dissimilar frames is uncommon 
enough that you do not need to understand it perfectly right now—you'll know when you 
need it, and you can sweat out the solution the first few times.  Here are a few observations 
that may help when that time comes:

It is always entire cells of the operand with the shorter frame that are replicated.  A cell is 
never tampered with; nothing inside a cell will be replicated.  And, it is not the entire shorter-
frame operand that is replicated, but cells singly, to match the surplus frame of the other 
operand.



This fact, that single operand cells are replicated, is implied by the decision that the shorter 
frame must be a prefix of the longer frame: the single cell is the only unit that can be 
replicated, since the surplus frame is at the end of the frame rather than the beginning.  Take a 
moment to see that this was a good design decision.  Why should the following fail?
   1 2 3 + i. 2 3
|length error
|   1 2 3    +i.2 3

The 'length error' means that the operands do not agree, because the frame-prefix rule is not 
met.  Your first thought might be that adding a 3-item list to an array of 2 3-item lists should 
be something that a fancy language like J would do without complaining; if so, think more 
deeply.  J does give you a way to add lists together—just tell J to apply the verb to lists:
   1 2 3 +"1 i. 2 3
1 3 5
4 6 8

Operands in which one shape is a suffix of the other, as in this example, are handled by 
making the verb have the rank of the lower-rank operand; that single operand cell will then be 
paired with all the cells of the other operand.  By requiring dissimilar frames to match at the 
beginning, J gives you more control over implicit looping, because each different verb-rank 
causes different operand cells to be paired.  If dissimilar frames matched at the end, the 
pairing of operand cells would be the same regardless of verb-rank.

Order of Execution in Implied Loops
Whenever a verb is applied to an operand whose rank is higher than the verb's rank, an 
implied loop is created, as we have discussed above.  The order in which the verb is 
applied to the cells is undefined.  The order used on one machine may not be that used on 
another one, and the ordering may not be predictable at all.  If your verb has side effects, you 
must insure that they do not depend on the order of execution.

Current versions of the interpreter apply the verb to cells in order, but that may change in 
future releases.

A Mistake To Avoid
Do not fall into the error of thinking that v"r is 'v with the rank changed to r'.  It is not.  
Nothing can ever change the rank of the verb v—v"r is a new verb which has the rank r.  
This distinction will become important presently as we discuss nested loops.  Consider the 
verb v"1"2,which is parsed as (v"1)"2 .  If v"r changed the rank of v, it would follow 
that v"1"2 would be 'v with the rank changed to 1 and then to 2', i. e. identical to v"2  .  
But it is not: actually, v"1"2 applies v"1 on the 2-cells of the operand, while v"2 applies v 
on those same cells—and we have seen that v and v"1 are very different verbs:
   +/"1"2 i. 2 3 4



 6 22 38
54 70 86
   +/"2 i. 2 3 4
12 15 18 21
48 51 54 57
Summing the 2-cells (+/"2) is not the same as summing the 1-cells within each 2-cell 
(+/"1"2).  Make sure you see why.

Ah, you may say, but +/"1"2 is equivalent to +/"1 .  You are right for the monadic case, 
but not for the dyadic:
   (i. 3 4) +"1"2 i. 2 3 4
 0  2  4  6
 8 10 12 14
16 18 20 22
 
12 14 16 18
20 22 24 26
28 30 32 34
   (i. 3 4) +"1 i. 2 3 4
|length error
|   (i.3 4)    +"1 i.2 3 4
Dyad +"1"2 is executed as (+"1)"2, i. e. it has rank 2.  So, there is only one 2-cell of the 
left operand i. 3 4, and that cell is replicated to match the shape of the right operand.  The 
operands then agree, and the 1-cells can be added.  Trying to add the 1-cells directly with 
+"1 fails, because the frames of the operands with respect to 1-cells do not agree.

The situation becomes even more complicated if the assigned left and right ranks are not the 
same.  My advice to you is simple: remember that u"r is a new verb that executes u on r-
cells.
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                                                                                                  6.     Starting To Write 
In J

It's time to write some simple J programs.  Writing code without loops will be a 
shock at first.  Many accomplished C programmers give up because they find that 
writing every program is a struggle, and they remember how easy it was in C.  I 
hope you will have more persistence.  If you do, you will soon stop thinking in 
loops, translating each one into J; instead, you will think directly about operand 
cells, and the code will flow effortlessly.

In C, when you are going to operate on some array, say x[3][4][5], you write the 
code from the outside in.  You know you are going to need 3 nested loops to touch 
all the cells; you write the control structure for each loop (possibly after thinking a 
bit about the order of nesting); finally, you fill in code at whatever nesting level it 
fits.  Even if all your work is in the innermost loop, you have to write all the 
enclosing layers just to be able to index the array.  When I was writing in C, I made 
sure my output was measured in lines of code, so that I could call this 'productivity'.

In J, you grab the heart of the watermelon rather than munching your way in starting 
at the rind.  You decide what rank of operand cell you are going to work on, and you 
write the verb to operate on a cell.  You give the verb the rank of the cells it operates 
on, and then you don't care about the shape of the operand, because J's implicit 
looping will apply the verb to all the cells, no matter how many there are.  A 
pleasant side effect of this way of coding is that the verbs you write can be applied 
to operands of any shape: write a verb to calculate the current value of a loan, and 
you can use that very verb to calculate the current value of all loans at a branch, or 
at all branches in the city, or all over the state.

We will write a number of J verbs starting from their C counterparts so you can see 
how you need to change your thinking.  For these examples, we will imagine we are 
in the payroll department of a small consulting business, and we will answer certain 
questions concerning some arrays defined as follows:

empno[nemp] (in J, just empno) - employee number for each member of 
the staff.  The number of employees is nemp.

payrate[nemp] - number of dollars per hour the employee is paid



billrate[nemp] - number of dollars per hour the customer is billed for the 
services of this employee

clientlist[nclients] - every client has a number; this is the list of all of 
them.  The number of clients is nclient.

emp_client[nemp] - number of the client this employee is billed to

hoursworked[nemp][31] - for each employee, and for each day of the 
month, the number of hours worked

To get you started thinking about cells rather than loops, I am going to suggest that 
you use C-style pseudocode written in a way that is easily translatable into J.  Your 
progress in J will be measured by how little you have to use this crutch.

Problem 1: How many hours did each employee work?  The C code for this is:
void emphours(hrs)
int hrs[ ];  // result: hrs[i] is hours for employee i
{
      int i, j;
      for(i = 0;i<nemp;++i)
            for(j = 0,hrs[i] = 0;j<31;++j)hrs[i] += hoursworked[i][j];
}

The first step in translating this into J is to write the loops, but without loop indexes: 
instead, indicate what elements will be operated on:
for (each employee)
      for(each day)take the sum of hoursworked

Now, figure out what ranks the operands have.  The hoursworked items that are 
added are scalars, so we will be looping over a list of them; that means we want the 
sum of items of a rank-1 list.  So the inner loop is going to be +/"1 .  What about 
the outer loop?  The information for each employee has rank 1 (each employee is 
represented in hoursworked by a single row), so a verb applied to each employee 
should have rank 1.  Note that we don't worry about the actual shape of 
hoursworked—once we figure out that our verb is going to operate on 1-cells, 
we let J's implicit looping handle any additional axes.  We build up the loops by 
applying the rank conjunction for each one, so we have the inner loop +/"1 and 
the outer loop of rank 1; combined, they are +/"1"1 .  The "1"1 can be changed 
to a single "1, and we get the final program: 
emphours =: monad : '+/"1 hoursworked'



Problem 2: How much did each employee earn in wages?  The C code is:
void empearnings(earns)
int earns[ ];  // result: earns[i] is wages for employee i
{
      int i, j;
      for(i = 0;i<nemp;++i) {
            for(j = 0,earns[i] = 0;j<31;++j)earns[i] += hoursworked[i][j];
            earns[i] *= payrate[i];
      }
}

When we write the pseudocode, we will change the algorithm just a bit: rather than 
multiplying each total by the billing rate just after the total is calculated, we will 
make one loop to calculate the totals, and then a second pass to multiply by the 
billing rate.  This is a case where good J practice differs from good C practice.  
Because of the implicit looping that is performed on all verbs, you get better 
performance if you let each verb operate on as much data as possible.  You may at 
first worry that you're using too much memory, or that you might misuse the 
processor's caches; get over it.  Apply verbs to large operands.  The pseudocode is:
for (each employee)
      for(each day)take the sum of hoursworked
for(each pair of wage_rate and sum)multiply the pair

The first two loops are just +/"1 hoursworked as before.  The last loop clearly 
multiplies scalars, so it is *"0 .  We note that dyad * has rank 0, so we don't need 
to specify the rank, and we get the final program:
empearns =: monad : 'payrate * +/"1 hoursworked'

Problem 3: How much profit did each employee bring in?  C code:
void empprofit(profit)
int profit[ ];  // result: profit[i] is profit from employee i
{
      int i, j, temp;
      for(i = 0;i<nemp;++i) {
            for(j = 0, temp = 0;j<31;++j)temp += hoursworked[i][j];
            profit[i] = temp * (billrate[i] - payrate[i]);
      }
}
 



Again, we create a new loop to calculate the list of profit for each employee:
for (each employee)
      for(each day)take the sum of hoursworked
for (each employee)take billing_rate - wage_rate;
for(each pair of profit and sum)multiply the pair

The profit is clearly a difference of scalars applied to two lists, therefore it will be 
-"0 or equivalently simply - .  The program then is 
empprofit =: monad define
(billrate - payrate) * +/"1 hoursworked
)
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                                                                                                                                     7.     More Verbs

Before we can write more complex programs, we need to learn some more verbs.  
We will group them into classes and give a few mnemonic hints.

Before we start, I should point out a convention of J: if a dyadic verb is asymmetric, 
you should think of x as operating on y, i. e. x is control information and y is data.  
We will note the exceptions to this rule—%, /:, \:, -, -., and e.—and the 
reasons for the exception.

Arithmetic Dyads
All these verbs have rank 0 and produce a scalar result, so if they are applied to two 
operands of equal shape the result will also have that shape; if applied to two 
operands that agree, the result has the shape of the larger operand.

x + y addition

x - y subtraction (y operates on x to match the mathematical definition)

x * y multiplication

x % y division  Note that the slash has another use, so % is division.  You don't 
have to worry about division by zero: it produces _ (infinity) or __ (negative 
infinity) except for 0%0, which yields 0 .

x ^ y exponentiation (x to the power y).  0^0 yields 1 .

x ^. y logarithm (base-x logarithm of y)

x | y modulus (remainder when y is divided by x .  For the longest time I had 
trouble remembering dyad |; it seemed that the divisor should be y by analogy 
to dyad % .  The inconsistency is that J defines x % y as 'x divided by y' to 
match accepted practice in mathematics; that makes dyad % anomalous in J, 
because we have y operating on x).

 

The comparison verbs have rank 0, and produce Boolean results in which 1 means 
true, 0 means false.  They use tolerant comparison, which means that two values 
that are very close to equal are considered equal.  This saves you the trouble of 



adding small amounts to mask the effects of floating-point rounding: 
1 = 3 * 1 % 3 is 1, unlike 1.0 == 3.0 * 1.0 / 3.0 whose value depends on the 
compiler.  If you need exact comparison, append !.0 to the verb.  Look under 
'Comparison Tolerance' for details.

x = y  equal

x ~: y  not equal (if you squint the colon looks like an equal sign)

x > y  greater-than

x < y less-than

x >: y  greater-than or equal (if you squint the colon looks like an equal sign)

x <: y less-than or equal

Boolean Dyads
These verbs have rank 0 and are applied to Boolean arguments to produce Boolean 
results:

x *. y  Boolean AND

x +. y  Boolean OR

x = y  Boolean XNOR (1 if the operands are equal)

x ~: y  Boolean XOR (1 if operands differ)

Min and Max Dyads
These verbs are useful for performing tests, because they perform the operation item-
by-item, replacing a C loop that does a test for each atom.  They have rank 0 and 
produce a scalar in each cell, so the result has the shape of the larger operand.

x >. y the greater of x and y

x <. y the lesser of x and y

Arithmetic Monads
These verbs have rank 0.

>: y  increment (y+1)



<: y  decrement (y-1)

<. y  the largest integer not greater than y (floor function)

>. y  the smallest integer not less than y (ceiling function)

| y  absolute value of y

* y  signum of y (_1 if y is negative, 0 if y is tolerantly close to 0, 1 if y is 
positive)

x o. y  trigonometric function.  Think of dyad o. as a monad, selecting the 
function based on x .  For example, 1 o. y is sin(y), and _3 o. y is arctan
(y).  The functions are: 0 sqrt(1-sqrt(y)); 1 sin(y); 2 cos(y); 3 tan(y); 4 sqrt
((y*y)+1); 5 sinh(y); 6 cosh(y); 7 tanh(y); 8 sqrt(-(1+y*y)); 9 Re(y); 
10 Mag(y); 11 Im(y); 12 Angle(y).  (-x) o is the inverse of x o, with the 
exceptions _8 -sqrt(-(1+y*y)); _9 y; _10 Conj(y); _11 j. y; _12 ^j. y .  
For mnemonic purposes, note that the odd numbers specify odd functions.

-. y  1-y

Boolean Monad
-. y  (rank 0) Negate y This is simply the boolean interpretation of 1-y .

Operations on Arrays
These verbs operate on entire arrays; they have infinite right rank (so they look at 
the entire y), and they have left rank as appropriate for the operation performed.  I 
am going to give a highly simplified definition of the functions of these verbs; 
consult the Dictionary to see all they can do.

Dyads
Selection: { # -.

x { y (From)

No, nothing was left out!  { is not paired with }; it is a verb and stands by itself.

The left rank is 0; the result is item number x of y .  One of the great insights of 
J is the realization that selection, which in most other languages requires a 
special syntax like C's y[x], is really just a dyadic verb like any other.  Examples:



   2 { 3 1 4 1 5 9
4
y has rank 1; its items have rank 0; item number 2 is 4 .

   2 4 { 3 1 4 1 5 9
4 5
The left frame is 2; each atom of x selects an item of y (each an atom), and the 
results are made into a 2-item list.
   1 { i. 3 3
3 4 5
y has rank 2; its items have rank 1; item number 1 is 3 4 5 .

   2 1 { i. 3 3
6 7 8
3 4 5
The left frame is 2; each atom of x selects an item of y (each a list), and the 
results are made into a 2×3-item array.

   0 { 5
5
You are allowed to select item 0 of a scalar.  This follows from the definition that 
a scalar has a single item which is the scalar itself.  Selecting any other item is an 
error.

There are many variations on the format of x, providing for multidimensional 
indexing where each index can be a list.  You will have to wait a bit to learn 
them, but I will note here that a negative index counts back from the end of the 
array:
   _1 { 3 1 4 1 5 9
9

 
x # y (Copy)

Left rank is 1.  If x is a list whose items are all 0 or 1, the result has the same 
rank as y, and contains just the items of y for which the corresponding item of x 
is 1.  For example:

   1 0 1 0 0 0 # 3 1 4 1 5 9
3 4
   0 0 1 # i. 3 4
8 9 10 11



 
x -. y (Remove)

Left rank is infinite.  Any items of x that match items of y are removed:
   1 2 3 4 5 4 3 -. 2 4
1 3 5 3

The verb is defined with y operating on x because of the analogy with - .  If x 
and y are sets, x -. y is the set difference.

Indexing: i. e.

x i. y (Index Of) and x i.!.0 y (Intolerant Index Of)

The left rank is infinite.  x i. y looks through the items of x to find one that 
matches y; the result is the item number of the first match.  Examples:
   3 1 4 1 5 9 i. 5
4
   (i. 4 3) i. 6 7 8
2

It may occur to you that for y to match an item of x, the rank of y must be the 
same as the rank of an item of x (call that rix, which is one less than the rank of 
x (namely #$x) unless x is an atom; formally, rix is (0 >. (#$x) - 1) or, 
more cleverly, #${.x).  If y is of higher rank, each rix-cell of y is matched 
against items of x .  Formally, x i. y is equivalent to x i."(_,rix) y .  
Example:
   3 1 4 1 5 9 i. 1 5
1 4
   (i. 3 3) i. (i. 2 3)
0 1

If an rix-cell of y matches none of the items of x, the result value for that cell is 
#x, i. e. one more than the largest valid item-number of x :
   3 1 4 1 5 9 i. 8 4 _1
6 2 6

To be hair-splittingly accurate we must say that x i. y is equivalent to 
x i."(_,rix)"_ y because the rank of dyad i. is infinite.  This distinction 
will matter eventually.



The comparison is dyad i. is tolerant, that is, numeric operands that are very 
close to equal are considered equal.  The special form i.!.0 is like i., except 
that the comparison is intolerant.  i.!.0 uses a different algorithm from i., 
and may be faster even if the operands are not numeric.

 
x e. y (Element Of)

The left rank is infinite.  x e. y is a lightweight version of y i. x; the result 
is 1 if x matches an item of y, 0 if not.  The verb is applied to riy-cells of x 
(where riy is the rank of an item of y).  Formally, x e. y is the same as 
(#y) ~: y i. x .  Dyad e. is an exception to the rule that x is control 
information and y is data.  It was defined to be reminiscent of mathematical 
epsilon meaning 'element of'.

Take and Drop: {. }.

x {. y (Take)
x }. y (Drop)

The left rank is 1, but the verb handles scalars also; we will consider only the 
case where x is a scalar.  x {. y (take) takes the first x items of y, i. e. it 
produces a result which consists of the first x items of y; x }. y (drop) 
discards the first x items of y .  If x is negative, x {. y takes the last (|x) 
items of y, and x }. y discards the last (|x) items (remember, |x is the 
absolute value of x).  The rank of the result is always the same as the rank of y, 
and in all cases the order of items is unchanged.  Examples:
   2 {. 3 1 4 1 5 9
3 1
   2 }. 3 1 4 1 5 9
4 1 5 9
   _2 {. 3 1 4 1 5 9
5 9
   _1 }. i. 3 3
0 1 2
3 4 5

x {. y always gives you as many items as you asked for.  If you overtake by 
asking for more than #y items, J will create extra ones, filling them with 0 or 
' ' as appropriate:



   5 {. 3 1 4
3 1 4 0 0
   _5 {. 'abc'
  abc  NB. Negative overtake: fills added at front

We have met fills before; they were added to bring the results from different cells 
of a verb up to a common shape so that they could be made into an array.  The 
fills added by overtake are different: they are part of the execution of the verb 
itself.  We will distinguish the two types of fill, calling the ones added by the 
verb itself verb fills and the ones added to make cell-results compatible framing 
fills.  Framing fills are always 0 or ' ', but you can specify the value to use for 
a verb fill, using the fit conjunction !. :
   5 {.!.9 (3 1 4)
3 1 4 9 9
   _5 {.!.'x' 'abc'
xxabc

The fit conjunction creates a new verb; in this case {.!.f is a verb that looks 
just like {. but uses f for the verb fill.  

The fit conjunction is by no means reserved for specifying verb fills: it is 
available for use on any primitive to make a small change to the operation of the 
primitive.  If !. has a meaning for a primitive, that meaning is given in the 
Dictionary entry for the primitive.

Joining Arrays: ,. ,:

x ,. y (Stitch)

The left rank is infinite.  x ,. y is equivalent to x ,"_1 y .  That means 
that dyad , is applied to the corresponding items of x and y, making each 
item of the overall result the concatenation of the corresponding items.  
Example:
   3 4 5 ,. 7 8 9
3 7
4 8
5 9
 

x ,: y (Laminate)

The left rank is infinite.  x ,: y is a list of 2 items: item 0 is x and item 1 is y .  



If x and y do not have the same shape, they are brought to a common rank and 
padded with fills to a common shape.  Dyad ,: concatenates x and y along an 
added axis, in contrast to dyad , which concatenates them along their leading axis:
   3 4 5 ,: 7 8 9
3 4 5
7 8 9
Contrast this with dyad ,. above or dyad , which would produce 
3 4 5 7 8 9 .
   1 2 , 3 4 ,: 5 6
1 2
3 4
5 6

Take a moment to understand why in this example the first verb is dyad , and the 
second is dyad ,: .

Rotate Left and Shift Left: |.

x |. y (Rotate Left)

The left rank is 1, but we will discuss only the case where x is a scalar.  The 
result has the same shape as y, with the items of y rotated x places to the left 
(with wraparound).  If x is negative, the items are rotated to the right.  Examples:
   2 |. 3 1 4 1 5 9
4 1 5 9 3 1
   _1 |. i. 3 3
6 7 8
0 1 2
3 4 5
 

x |.!.f y (Shift Left)

When the fit conjunction is used, any item that is rotated across the beginning of 
y is replaced by the fill f .  This turns the rotate into a shift where f gives the 
value to be shifted in: 
   2 |.!.'x' 'abcde'
cdexx
   _2 |.!.'x' 'abcde'
xxabc



Sort: /: \:

x /: y (Sort Up Using)
x \: y (Sort Down Using)

The left rank is infinite.  x and y must have the same number of items.  The 
items of x are records and the items of y are keys; x /: y is the records x 
sorted into ascending order of corresponding keys y .  x \: y sorts into 
descending order.  Examples:
   3 1 4 1 5 9 /: 0 1 2 3 4 5
3 1 4 1 5 9
y was already in order.

   3 1 4 1 5 9 /: 5 4 3 2 1 0
9 5 1 4 1 3
Sorting into reverse order.
   3 1 4 1 5 9 /: 0 10 1 20 2 30
3 4 5 1 1 9
x in order of ascending y .

   (i. 4 3) /: 10 20 1 2
6  7  8
9 10 11
0  1  2
3  4  5
Items of x in order of ascending y .

   1 3 5 /: 7 8 , 1 2 ,: 4 5
3 5 1
The keys y do not have to be single numbers; they don't even have to be 
numeric.  Here, 1 2 is lowest, then 4 5, then 7 8 .  The Dictionary gives 
complete rules for ordering y .

Because sorting is not so easy in C, C programmers are not quick to recognize 
applications of /: and \: .  The J implementation of /: and \: runs in linear 
time for most y and should not be avoided.

According to our general principle, we would expect that in dyad /: x held the 
keys and y the data.  Dyad /: is an exception to the rule.



y /: y
y \: y

When x and y are the same, you have the simple case of sorting y into ascending 
or descending order.

Match: -:

x -: y (Match)

The left rank is infinite.  The result is 1 if x and y are the same, 0 otherwise, 
except: (1) if they are numeric, the comparison is tolerant; (2) for some reason I 
don't understand, if they are empty, they are considered to match even if the 
types are different, which means that getting a result of 1 from x -: y is no 
guarantee that x and y will behave identically:
   (0$0) -: ''
1
   (1 {. 0$0) -: (1 {. '')
0

The important difference between dyad -: and dyad = is that dyad -: has 
infinite rank so you get a single result covering the entire array, and it won't fail 
if the shapes of x and y do not agree.

Monads
Enfile: ,

, y (Enfile)

, y consists of all the atoms of y, made into a list.  The order is row-major 
order , i. e. all the atoms of item 0 of the original y come first, followed by atoms 
of item 1, and so on; within each item the ordering similarly preserves the order 
of subitems.  Examples:
   , i. 2 3
0 1 2 3 4 5
The atoms were made into a list.
   a =. 2 2 3 $ 'abcdefghijkl'
   a
abc
def
 



ghi
jkl
   ,a
abcdefghijkl
y of any shape produces a list.

Recall that a single quoted character is an atom rather than a list:
   $'x'
 
To get a 1-character list, use monad , :
   $,'x'
1

The official name for monad , is the quaint but unedifying 'ravel', meaning 
'separate or undo the texture of'.  I prefer the equally quaint but more descriptive 
'enfile', which means 'arrange in a line (as if on a string)'.

Reverse and Transpose: |. |:

|. y (Reverse)

The items of y are put into reverse order:
   |. i. 5
4 3 2 1 0
 

|: y (Transpose)

The axes of y are reversed.  This is difficult to visualize for high ranks but easy 
for the most common case, rank 2:
   |: i. 3 4
0 4  8
1 5  9
2 6 10
3 7 11

Take and Drop Single Item: {. {: }. }:

{. y (Head)
{: y (Tail)
}. y (Behead)
}: y (Curtail)



The operations performed are simple; the biggest problem is remembering which 
primitive does what.  Remember that { means take and } means drop, and 
that . means beginning and : means end.  So, {.y is the first item of y, {:y is 
the last item of y, }.y is all of y except the first item, }:y is all of y except the 
last item:
   {. 3 4 5
3
   {: i. 3 4
8 9 10 11
   }. 3 4 5
4 5

}.y is identical to 1}.y and }:y is identical to _1}.y .  {.y is not identical 
to 1{.y, because 1{.y has the same rank as y while {.y has the rank of an 
item of y .

Grade (Create Ordering Permutation): /: \:

/: y (Grade Up)
\: y (Grade Down)

/: y creates a numeric list with #y items, such that i{/:y is the index of the 
ith-largest item of y .  (/:y){y gives y sorted into ascending order.  /:y is a 
permutation vector, i. e. it contains each integer in the range 0 to (#y)-1.  \: 
is similar but works in descending order.  Example:
   /: 3 1 4 1 5 9
1 3 0 2 4 5
Read this result as follows: the smallest item of y is item 1 (with value 1), the 
next-smallest is item 3 (1), then item 0 (3), then item 2 (4), then item 4 (5), then 
item 5 (9).  Monad /: defined this way turns out to be surprisingly useful.  As a 
limbering-up exercise in the use of permutation vectors, and an example of how 
compactly J can express ideas, see if you can describe in words what two 
applications of monad /: will give:
   /: /: 3 1 4 1 5 9
2 0 3 1 4 5

Add An Axis: ,: (Itemize)

,: y



The result of ,: y has rank one higher than the rank of y, with one item, which 
is y .  The shape of ,: y is the shape of y with 1 prepended (in plain J, $,:y 
is 1,$y).

Constant Verb
m"n

We have met the rank conjunction " applied to verb left arguments; applied to 
noun left arguments it produces a verb whose result is always the value of the 
noun.  The created verb (which can be used as either a monad or a dyad) has 
ranks, given as the right operand of " .  Examples:

   5"_ i. 4 4
5
The simplest and most common case.  Since the verb has infinite rank, it operates 
on the entire operand and produces the scalar value.
   5"0 i. 3
5 5 5
Here the verb is applied to each 0-cell of the list, giving the scalar result for each 
cell.
   1 2 3"0 i. 3
1 2 3
1 2 3
1 2 3
Here the result at each cell is the left argument of " , the list 1 2 3 .  If you 
were expecting the 3 to be repeated, remember that you can look at the words as 
J sees them:
   ;: '1 2 3"0 i. 3'
+-----+-+-+--+-+
|1 2 3|"|0|i.|3|
+-----+-+-+--+-+
1 2 3 is a single word.

_9:…_1: 0: 1:…9: _: __:

For a few special values, namely the integers _9 through 9, infinity _, and 
negative infinity __, you can create an infinite-rank verb to produce the value by 
following the constant value with : .  This is equivalent to value"_ .



   3: 'abc'
3
The operand 'abc' was ignored, and the result was 3 .

<<     >>     Contents     Help    



                                                   8.     Loopless Code II—
Adverbs / and ~

The monad +/, which sums the items of its operand, is a special case of the use of 
the adverb / .  It is time to learn about adverbs, and other uses of this one.

Modifiers
An adverb is a modifier.  It appears to the right a noun or verb; the prototype is u a 
where u is the noun or verb and a is the adverb.  The compound u a is a new 
entity, and not necessarily the same part of speech as u .  When the compound u a 
is executed, it performs the function given by the definition of a and has access to u 
during its execution.  If u a is a verb, then it also has access to the operands of the 
verb during its execution; the verb u a will then be invoked as u a y if monadic 
or x u a y if dyadic.

You will note that I didn't have to write x (u a) y .  While J gives all verbs 
equal precedence and executes them right-to-left, it does give modifiers (adverbs 
and conjunctions) higher precedence than verbs, in the same way that C and 
standard mathematical notation give multiplication precedence over addition.  We 
will discuss the parsing rules in detail later; for now, know that modifiers are bound 
to their operands before verbs are executed, and that if the left operand of a modifier 
has a conjunction to its left (e. g. x c y a), the conjunction is bound to its 
arguments first, and the result of that becomes the left argument to the modifier: 
x c y a is (x c y) a, not x c (y a) .  In other words, modifiers associate 
left-to-right.  So, +"1/ (in which " is a conjunction and / is an adverb) is the same 
as (+"1)/, not +"(1/) .  The phrase | +/"1 (4) + i. 3 3 is executed as 
| ((+/"1) ((4) + (i. 3 3))), in accordance with the rule: right-to-left 
among verbs, but applying modifiers first.  Note that I had to put parentheses around 
the 4, because "1 4 would have been interpreted as rank 1 4 : collecting adjacent 
numbers into a list is done before anything is executed.

J includes a rich set of modifiers and even allows you to write your own, though 
many J programmers will never write a modifier.  We will begin our study of 
modifiers with the adverb monad u/ which goes by the mnemonic 'Insert'.



The Adverb Monad u/
Monad u/ (by which we mean / with a verb left operand, used as u/ y rather than 
as x u/ y which is dyad u/ and is completely different; note that m/ y where m 
is a noun is different yet), inserts u between items of y .  Monad u/ has infinite 
rank.  As a simple example, +/ 1 2 3 is equivalent to 1 + 2 + 3 :
   +/ 1 2 3
6
As usual, we can use fndisplay to explain what's happening:
   defverbs 'plus"0'
   plus/ 1 2 3
+---------------+
|1 plus 2 plus 3|
+---------------+

The great power of the adverb concept is that u can be any verb; it's not restricted to 
+, -, or any other subset of verbs (it can even be a user-written verb).  What would 
monad >./ mean?  Well, >./ 1 2 3 would be equivalent to 1 >. 2 >. 3; 
since each >. picks the larger operand, the result is going to be the largest number; 
so monad >./ means 'maximum':
   >./ 3 1 4 1 5 9
9
and of course 'minimum' is similar:
   <./ 3 1 4 1 5 9
1

What about monad ,/?  Convince yourself that it combines the first two axes of its 
operand:
   ,/ i. 2 3
0 1 2 3 4 5
   defverbs 'comma'
   comma/ i. 2 3
+-------------------+
|(0 1 2) comma 3 4 5|
+-------------------+
   i. 2 3 4
 0  1  2  3



 4  5  6  7
 8  9 10 11
 
12 13 14 15
16 17 18 19
20 21 22 23
   $ ,/ i. 2 3 4
6 4
   ,/ i. 2 3 4
 0  1  2  3
 4  5  6  7
 8  9 10 11
12 13 14 15
16 17 18 19
20 21 22 23

How many atoms are in y?  Why, */ $ y :
   */ $ i. 2 3 4
24

We can verify that the rows and columns of the following magic square sum to the 
same value:
   +/ 3 3 $ 8 1 6  3 5 7  4 9 2
15 15 15
   +/"1 (3 3) $ 8 1 6  3 5 7  4 9 2
15 15 15

As this last example shows, the items can be of any shape.  Applying +/ to the rank-
2 array added up 1-cells, while applying +/"1 added up the 0-cells within each 1-
cell.

Have you wondered what would happen if there is no cell or only 1?  Good on you 
if you did.  The answer is: if there is only 1 cell, the result is just that cell; if there is 
no cell, the result is a cell of identity elements.  The identity element i for a dyadic 
verb v is that value of i such that i v y is y for any choice of y .  For example, 
the identity element for + is 0, because 0 + y is always y .  The identity element 
for * is 1, and for <. is _ .  If there is no identity element for a verb v (for 
example, $ has no identity element), you will get a domain error if you apply v/ to 
an empty list.  Examples:



   +/ 0$0
0
   */ 0$0
1
Empty list; result is the identity element.
   +/ 1 3 $ 3 5 7
3 5 7
There is 1 1-cell, so the result is that cell.  This result has shape 3, not 1 3 .

   +/ 0 3 $ 0
0 0 0
There are 0 1-cells, so the result is a cell of identity elements.  Note that even 
though there are no cells, the cell still has a shape which is made visible by +/ .

   $/ 0$0
|domain error
|       $/0$0

If you don't want to figure out what an identity element for a verb v is you can ask 
the interpreter by typing v/ 0$0 .

Before we move on you should note that since v/ 1 2 3 is equivalent to 
1 v 2 v 3, 2 v 3 is evaluated first: the operation starts at the end of the list 
and moves toward the beginning.

The adverb ~
~ is an adverb.  Like all adverbs, it has a monadic and dyadic form.  The dyadic 
form x u~ y is equivalent to y u x; in other words, the operands of u are 
reversed.  The ranks of dyad u~ are the same as those of dyad u, but with left and 
right rank interchanged.  For advanced J dyad ~ is indispensable; even in ordinary 
use it can save time and obviate the need for parentheses:
   (10 + 2) % 3
4
   3 %~ 10 + 2
4

Using %~ to mean 'y divided by x', we can have right-to-left execution without 
parentheses.
   -~/ 2 4



2
When we know y contains exactly  2 items, -/ y is a convenient shorthand to 
subtract the second from the first without having to write ({.y) - ({:y) .  To 
subtract the first from the second, we simply invert the order of subtraction with -
~ .

The monadic form u~ y has infinite rank and is equivalent to y u y, i. e. it 
applies dyad u with both the left and the right operands equal to the one operand of 
monad u~ .  As with dyad u~, most uses of monad u~ are esoteric, but we know 
one already: we can sort y into ascending order with either y /: y or our new 
equivalent /:~ y :
   /:~ 3 1 4 1 5 9
1 1 3 4 5 9
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                                                                                         9.     Continuing to Write 
in J

Now that we have a formidable battery of verbs at our command, let's continue 
writing programs in J.  The data definitions are repeated here for convenience:

empno[nemp] (in J, just empno) - employee number for each member of 
the staff.  The number of employees is nemp.

payrate[nemp] - number of dollars per hour the employee is paid

billrate[nemp] - number of dollars per hour the customer is billed for the 
services of this employee

clientlist[nclients] - every client has a number; this is the list of all of 
them.  The number of clients is nclient.

emp_client[nemp] - number of the client this employee is billed to

hoursworked[nemp][31] - for each employee, and for each day of the 
month, the number of hours worked

Problem 4: Find the amount to bill a given client.  C code:
int billclient(cno)
int cno;  // number of client we are looking up
{
      int i, j, temp, total;
      total = 0;
      for(i = 0;i<nemp;++i) {
            if(emp_client[i]==cno) {
                  for(j = 0, temp = 0;j<31;++j)temp += hoursworked[i][j];
            total += billrate[i] * temp;
      }
return(total);
}

The function is implemented in C by looping over the employees and picking the 
ones that are working for the specified client.  In J we deal with entire arrays rather 
than with elements one at a time, and the general plan is:



get the mask of employees billed to the requested client;
select the hoursworked records for the applicable employees;
for(each employee) // 1
      for(each day) accumulate total hours; // 2
for(each employee)multiply hours by billing rate;
for(each employee)get total billing;

This example is the first one in which an argument is passed into the J verb.  Within 
the verb the right argument is referred to as y. and the left argument (if the verb is a 
dyad) is referred to as x. .  As usual in C we might use fewer big loops, but in J we 
stick to small loops.  The mask of employees billed to the client is given by 
emp_client = y. which is a mask with 1 for the selected employees, 0 for the 
others (remember that = is a test for equality, not an assignment).  We can select the 
hoursworked items for the specified client by 
(emp_client = y.) # hoursworked; then the sum for each day will be a 
sum within each 1-cell, resulting in a list of hours for each selected employee.  The 
line +/"1 (emp_client = y.) # hoursworked performs the functions of 
loops 1 and 2 in the pseudocode: loop 1 within each cell and loop 2 in the implied 
loop over the cells.  Then, it is a simple matter to select the billing rates for the 
employees, multiply each billing rate by the number of hours worked, and take the 
total over all employees billed to the customer.  The solution (using a temporary 
variable to hold the mask) is
billclient =: monad define
mask =. emp_client = y.
+/ (mask # billrate) * +/"1 mask # hoursworked
)

Problem 5: For each day, find the worker who billed the most hours.  C code:
int dailydrudge(drudges)
int drudges[31]; // result: empno of worker with most hours each day
{
      int i, j, highhours;
      for(i = 0;i<31;++i) {
            highhours = -1;
            for(j = 0;j<nemp;++j)
                  if(hoursworked[j][i]>highhours) {
                        drudges[i] = empno[j];
                        highhours = hoursworked[j][i];



                  }
            }
      }
}

We note that the inner loop, which records the employee number of any employee 
who worked more than the previous high, does not correspond to any of our J 
verbs.  So, we break this loop into operations that do correspond to J verbs:
for(each day)find the maximum number of hours worked; // 1
for(each day)find the index of the employee who worked that much; // 2
for(each day)translate the index to an employee number; // 3

Loop 1 is simply >./ hoursworked .  Loop 2 calls for dyad i. to perform the 
search, but there is a little problem: each search must go through a column of 
hoursworked, giving the hours worked by each employee on that day, but the 
column is not an item of hoursworked; each item is a row, giving hours worked 
on each day by one employee.  The solution is to transpose hoursworked (by 
|: hoursworked), making the items correspond to days rather than employees.  
Then we match up the resulting1-cells with the 0-cells of the maximum found by 
loop 1 and find the index of each maximum, using i."1 0 or the equivalent 
i."_1 .  Loop 3 is a simple application of dyad { .  The final code is
dailydrudge =: monad define
((|: hoursworked) i."_1 >./ hoursworked) { empno
)

Problem 6: Order the employees by the amount of profit produced.  This is a 
bagatelle for J and we won't even bother with C code.  We have a verb that returns 
the profit for each employee, so we call it and use the result as the keys for sorting 
the employee numbers into descending order.  Note that a verb must be given an 
argument when it is executed; we use 0 as a convenient value.  The final J code is
producers=: monad : 'empno \: empprofit 0'
which makes use of the verb we defined earlier:
empprofit =: monad define
(billrate - payrate) * +/"1 hoursworked
)

Problem 7 is similar: Order the clients by the amount of profit produced.  It requires 
more ingenuity, and the C code would be more than I want to show, so let's try to 
write in J directly.  We start with the list of clients clientlist, the list that tells 



which client each employee worked for emp_client, and the profit per employee 
given by empprofit 0 .  For each client, we need to find the employees that 
worked for the client and add up the profit they brought in.  For this kind of problem 
we want an array with employees for one axis and clients for the other, with a 1 in 
the positions where the employee is assigned; then we can do 
array * empprofit 0 and do some suitable summing of the result.  Let's 
work out what array must look like.  Since dyad * has rank 0, 
array * empprofit 0 is going to replicate 0-cells of the shorter-frame 
argument (empprofit 0) which means that a single profit value is going to 
multiply an entire 1-cell of array .  So we see that the leading axis of array must 
be clients and the second axis must be employees; each item will have the client 
mask for one employee.  The way to create that is by 
clientlist ="1 0 emp_client which will compare the entire client list 
against each 0-cell of emp_client and form the results into an array.  Then, 
(clientlist ="1 0 emp_client) * empprofit 0 will have one item 
per employee, each item having the amount billed to each client; we sum these 
items to produce a list with the profit from each client, and use that to order the 
client numbers.  Solution:
custbyprofit =: monad define
clientlist \: +/ (clientlist="1 0 emp_client) * 
empprofit 0
)

For our final problem in the payroll department, consider how to calculate 
withholding tax on each employee's earnings.  The tax rate within tax brackets will 
be assumed to be the same for all employees.  C code for this would look like:
int renderuntocaesar(shekels)
float shekels[ ]; // result: withholding for each employee
{
      // tax-bracket table: start of each bracket, ending with high value
      float bktmin[4] = {0,10000,20000,1e9};
      // tax-bracket table: rate in each bracket
      float bktrate[3] = {0.05,0.10,0.20};
      int earns[nemp];
      int i, j;
      empearnings(earns);  // get earnings for each employee
      for(i = 0;i<nemp;++i) {



            shekels[i]= 0.0;
            for(j = 0;j<sizeof(bktrate)/sizeof(bktrate[0]);++j) {
                  if(earns[i] > bktmin[j]) {
                        float bktval = bktmin[j+1];
                        if(earns[i] < bktval)bktval = earns[i];
                        shekels[i] += bktval * bktrate[j];
                  }
            }
      }
}

In J, we will sum over the tax brackets and we must create a suitable array for the 
summation.  The items in this array will be the amounts earned in each tax bracket.  
Corresponding to the two if statements we will use conditional operators to discard 
amounts earned outside the tax bracket.  The conditionals will operate on each row, 
so they will have rank 1, and they will look something like 
0 >. (bracket_top <. earned) - bracket_bottom which will give 
the amount earned in the bracket, set to 0 if the earnings are below the bracket and 
to the size of the bracket if above.  We will create bracket_top by shifting the 
brackets left and filling with infinity (this corresponds to the bktmin[j+1] reference 
in the C code).  We could create earned by replicating the earnings for each 
employee to form a 1-cell for each bracket—the code for this would be (#bktmin)
$"0 empearnings ''—but it's not necessary to create that array explicitly: we 
just use the implicit looping to cause each cell of empearnings '' to be 
replicated during the comparison with bracket_top.  Making all these 
substitutions, noting that all the operations have rank 1, and summing at the end 
over the items within each 1-cell, we get the final code:
renderuntocaesar =: monad define
bktmin =. 0 10000 20000
bktrate =. 0.05 0.10 0.20
t=. ((1 |.!._ bktmin) <."1 0 empearnings '') -"1 bktmin
+/"1 bktrate *"1 (0) >. t
)
We used the temporary variable t so our sentences would fit on the page.

Let's write a program to count the lines and words in a file.  This is a simple task, 
and in C it might look like:
int[2] wc(f)



char *f;  /* pointer to filename */
{
      FILE fid;
      int ct[2];  /* # words, # lines */
      char c;
 
      fid = fopen(f);
      while(EOF != (c = fgetc(fid)) {
            if(c == ' ')++ct[0];
            if(c == LF)++ct[1];
      }
      return (ct);
}

Rather than loop for each character, in J we process files by reading the whole file 
into a list of characters and then operating on the list.  The monad ReadFile 
(defined in the script jforc.ijs) has infinite rank; it takes a filename y and 
yields as result the contents of the file, as a list of characters.  Once the file is a list, 
it is trivial to compare each character against space and linefeed, yielding for each a 
list of 1s at each position filled by the character; then summing the list gives the 
number of each character.  J code to do this is:
NB. y. is string filename, result is (#words),(#lines)
wc =: monad define
+/"1 (' ',LF) ="0 1 ReadFile y.
)

Suppose our user complains that wc needs improvement: specifically, it should also 
return the number of characters in the file, should not count multiple consecutive 
whitespace characters (including TAB) as separate words, and should treat the 
trailing LF as a word delimiter as well as a line delimiter.  In C, we would respond 
by adding a few more tests and flags, but in J we realize that a major change to the 
program's function calls for a thorough rethinking.

To ignore multiple whitespace characters we need to define what an ignored 
whitespace is, without using flags and loops.  This part of the problem often calls 
for creative thought; here we realize that a whitespace character is to be ignored if 
the previous character is whitespace.  That's easy, then: we just calculate a Boolean 
vector, 1 if the character is whitespace, and then use shift and Boolean AND to 
ignore multiple whitespace.  The code to do this is worth looking at; it is 



sw =. (-. _1 |. w) *. w =. f e. ' ',TAB,LF
where f is the contents of the file.  Note that we assign a value to w just before we 
right-shift w .  This is legal in J: sentences are processed right-to-left, and the 
interpreter has not seen the reference to w at the time w is assigned.  A similar 
statement in C, for example x = w + (w = 4); , would be undefined.  Of course, 
even though it's legal in J, some would cavil—we will eventually learn ways to do 
this without defining a variable at all—but I leave it to you to decide how far you 
will detour to avoid jaywalking.  Once sw has been calculated, the rest of the 
program is trivial.  The final result is:
NB.Version 2.  Discard multiple whitespace,
NB.and return (#chars),(#words),(#lines)
wc2 =: monad define
f =. ReadFile y.
sw =. (-. _1 |. w) *. w =. f e. ' ',TAB,LF
(#f),(+/sw),(+/ LF = f)
)
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                                                                                                             10. Compound Verbs

On New Year's Day my rich uncle gives me x dollars, which I add to the y dollars I 
already have earning 4% interest.  How much money will I have at the end of the 
year?  Simple in J—I just write 1.04 * x + y, and I have the answer, whether x 
and y are scalars or arrays.  That's nice, but here's my problem: I expect his largesse 
to continue, and in my anticipation I have estimated his gifts for the next few years 
as the list x; I want to know what I'll be left with at the end.  I need to pass each 
year's starting balance into the calculation for the next year.  I know what I want the 
result to look like: it'll be v/ (|.x) , y which will be evaluated as xn v …
x2 v x1 v x0 v y .  But what is v?  The problem with 1.04 * x + y is 
that it contains 2 verbs and a constant, and I need it all lumped into a single verb so 
that I can have the adverb dyad / modify the whole thing.  One solution would be to 
create the verb
v =: dyad : '1.04 * x. + y.'
after which v/ (|.x),y works, but it's a shame to have to interrupt a J sentence 
just to define a verb with such a puny function—I want magic words to let me say 
(1.04 * + abracadabra…combine!)/ (|.x),y .  J has such magic 
words, and we will learn a few now.

The magic words will join verbs and nouns together, so they must be modifiers: 
adverbs and conjunctions.  Before we start, we need a little notation to help with the 
different cases we will encounter.  Given a conjunction c or adverb a, we call its 
left operand m if it is a noun, or u if it is a verb.  Similarly we call a conjunction's 
right operand n if it is  noun, v if a verb.  There are four possible ways to invoke a 
conjunction (u c v, m c v, u c n, and m c n) and two for an adverb (u a 
and m a) and they are defined independently.  Moreover, the derived verb 
produced by the invocation (the derived entity may be a noun, adverb, or 
conjunction too but that is unusual) can be used as a dyad (e. g. x u c n y) or as 
a monad (e. g. m a y), and those cases are defined independently as well.  You 
won't get the cases mixed up, because verbs and nouns are so different that it will 
seem natural for u c n to be different from u c v; just be aware that the variants 
are many and that we will be learning a tiny subset of J's toolkit.  The adverb / is an 
example: we have learned about monad u/, but dyad u/ is very different, as is m/ .



Verb Sequences—u@:v and u@v
u@:v creates a derived verb of infinite rank that applies v to its argument(s) and 
then applies u to the result.  In other words, u@:v y is the same as u v y and 
x u@:v y is the same as u x v y .  Examples:

   {. @: /: 3 1 4 1 5 9
1
Monad /: produced the permutation 1 3 0 2 4 5 of which we took the first 
item.
   1 2 3 +/@:* 1 2 3
14
Dyad * produced 1 4 9 whose items we then summed.  fndisplay shows the 
details:
   defverbs 'plus"0 times"0'
   1 2 3 plus/@:times 1 2 3
+-------------------------------------------+
|(1 times 1) plus (2 times 2) plus 3 times 3|
+-------------------------------------------+

u@v is like u@:v except that the rank of the derived verb is the rank of v (also 
expressible as (u@:v)"v because u"v is defined to have the function of u with 
the rank of v).  My advice is to stick to @: and avoid @ unless you're sure you need 
it.

The Difference Between u@:v and u@v
Because u@:v and u@v have very similar definitions, and produce identical results 
in many cases, almost every beginning J programmer confounds the two.  The key 
is to remember that each sequence produces a new verb which has a rank.  In u@:v, 
this rank is infinite, so that in x u@:v y, the derived verb u@:v is applied to the 
entire x and y, meaning that v is applied to the entire x and y and u is applied to 
the entire result of v .  In the other case, the rank of u@v is the rank of v, so in 
x u@v y the verb u@v is applied to individual cells of x and y, where the cell-size 
is given by the rank of v : for each of those cells, v is applied followed by u, and 
the results from the cells are collected into an array.

If we try to take the sum-of-products using u@v instead of u@:v, we see the 



difference between the two forms:
   1 2 3 +/@* 1 2 3
1 4 9
What happened? We thought we were multiplying the vectors and then taking the 
sum.  Because we used @ rather than @:, the derived verb had the rank of dyad *, 
namely 0, which means that the derived verb was applied to each cell: at each cell 
we multiplied and then took the sum of the single cell.  In fndisplay form,
   defverbs 'plus"0 times"0'
   1 2 3 plus/@times 1 2 3
+---------+---------+---------+
|1 times 1|2 times 2|3 times 3|
+---------+---------+---------+
plus never got executed, because plus/ was applied to 1-element lists, leaving in 
each case the single element.

Many J programmers think of @ and @: as establishing a different kind of 
connection between u and v, with u@:v applying u to the entire result of v and 
u@v applying u to result cells of v (where a result cell is the output produced by 
applying v to a single operand cell).  Such an interpretation makes it easy to 
understand the operation of +/@* : +/ is applied on result cells of *, which are 
scalars.

The connection interpretation of u@v correctly accounts for the results produced by 
J, but as you use it you should be aware that it is inaccurate because it suggests that 
v is executed against the operand(s) in their entirety.  The actual cell-at-a-time 
execution of u@v is different in two ways: it is slower because the verb v must be 
restarted for each cell; and if the temporary space required by u or v is large, cell-at-
a-time execution uses less space because the temporary space for each cell is freed 
before the next cell is processed.

Making a Monad Into a Dyad: The Verbs [ and ]
The characters [ and ] are not paired in J; each is an independent verb.  This is 
jarring at first but you'll get used to it.

[ and ] are identity verbs: they have infinite rank, and ] y and [ y both result in 
y .  As dyads, they pick one operand: x [ y is x, and x ] y is y .  They can be 
useful when you have a monadic verb that for one reason or another must be used as 
a dyad with an unwanted operand: then x v@:[ y applies v to x, and x v@:] y 



applies v to y .  Example:
   1 2 3 {.@:[ 4 5 6
1

Here are some other uses of [ and ] .  We have already met the first one, which is 
to display the result of an assignment:
   a =. 1 2 3
produces no typeout, but
   ]a =. 1 2 3
1 2 3

Second, [ can be used to put multiple assignments on the same line, since each 
application of [ ignores what is to its right:
   a =. 5 [ b =. 'abc' [ c =. 0

Finally, ] can be used instead of parentheses to separate numbers that would 
otherwise be treated as a list:
   5 ,"0 1 2
|syntax error
|   5    ,"0 1 2
   5 ,"0 (1 2)
5 1
5 2
   5 ,"0 ] 1 2
5 1
5 2

Making a Dyad Into a Monad: u&n and m&v
A dyadic verb takes two operands, but if you know you are going to hold one fixed, 
you can create a monadic verb out of the combination of the dyad and the fixed 
operand; the monad's operand will be applied to whichever operand of the dyad was 
not held fixed.  The conjunction &, when one of its operands is a noun, fixes an 
operand to a dyad: m&v y has infinite rank and is equivalent to m v y; u&n y has 
infinite rank and is equivalent to y u n .  Examples:
   2&^ 0 1 2 3
1 2 4 8
   (-&2) 4 5 6
2 3 4



 

Now we can solve our original problem, which was to put 1.04 * x + y into 
the form x v y .  v should be
1.04&* @: +
which we can verify using fndisplay as
   defverbs 'plus"0 times"0'
   defnouns 'x y'
   x  1.04&times @: plus  y
+-------------------+
|1.04 times x plus y|
+-------------------+
and to get my total savings after receiving all payments I use monad / to apply that 
verb for each payment, giving the expression:
1.04&* @: + / (|.x) , y

Let's take a moment to understand the parsing and execution of 
1.04&* @: + / .  The left operand of a modifier includes all preceding 
words up to and including the nearest noun or verb that is not immediately 
preceded by a conjunction.  This is a precise way of saying that modifiers 
associate left to right.  In the phrase 1.04&* @: + /, the 1.04 is not preceded 
by a conjunction, so it is the beginning of all the conjunctions' left operands, and the 
verb is parsed as if it were written (((1.04&*) @: +) / ) .

Note that left-to-right association of modifiers corresponds to right-to-left 
execution.  When the derived verb monad (((1.04&*) @: +) / ) is 
executed, it performs according to the definition of monad u/, with 
((1.04&*) @: +) as the u; execution of monad u/ inserts u between items, so 
((1.04&*) @: +) is executed between items; at each such execution the dyad 
+ is executed first, followed by the monad 1.04&* .  Fortunately, the result of the 
parsing rules is that conjunctions and adverbs, just like verbs, should be read right-
to-left.

If I wanted to spend half of my uncle's money , the amount I would be left with is
0.5 * 1.04&* @: + / (|.x) , y

No parentheses are needed, because 1.04 is still not preceded by a conjunction 
and so 1.04&* @: + / (|.x),y is still evaluated before that value is 
multiplied by 0.5 .



Once you get the hang of it, you will be able to understand and build composite 
verbs of great power.  That will be a useful skill to develop, because you never 
know when you are going to want to make some sequence of functions the operand 
of a modifier, and then you're going to have to be able to express the sequence in a 
single compound verb.  It will take a lot of practice, as well as coding techniques to 
break a gristly mass of conjunction-bound words into digestible pieces (we'll learn 
them later).  For the time being, be content if you can understand the simple 
examples shown above.
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                                                                                                      11. Boxing 
(structures)

The nouns we have encountered so far have all had items with identical shapes, and 
with all atoms of the same type, either numeric or character.  You may be afraid that 
such regular arrays are all that J supports and that you will have to forgo C 
structures; and you may wonder how J will fare in the rough-and-tumble of the real 
world where data is not so regular.  This chapter will put those fears to rest.

I think we should get a formal understanding of boxing in J before we try to relate it 
to structures in C, because the ideas are just different enough to cause confusion.  
The box is an atomic data type in J, along with number and character.  As with the 
other types, a single box is a scalar, with rank 0 and empty shape.  Just as a numeric 
or character atom has a value, so a boxed atom has a value, called its contents.  The 
box is special in that its contents can be an array while the box itself is an atom.  
The boxing protects the contents and allows them to be treated as an atom.

Arrays of boxes are allowed, and as always all the atoms in an array must have 
the same type: if any element is boxed, all must be boxed.  

Various verbs create boxes.  Monad < has infinite rank and exists for the sole 
purpose of boxing its operand: < y creates a box whose contents are y, for example:
   <1
+-+
|1|
+-+
   <1 2 3
+-----+
|1 2 3|
+-----+
   <'abc'
+---+
|abc|
+---+
When a box is displayed, the contents are surrounded by the boxing characters as 
seen in the examples.



Only certain primitives can accept boxes as operands; generally, you cannot perform 
arithmetic on boxes but you can do other things like monad and dyad #, monad and 
dyad $, and other primitives that do not perform arithmetic.  The significant 
exception to this rule is that you can use monad and dyad /: and \: to order boxed 
arrays.  Comparison for equality between two atoms is not strictly an arithmetic 
operation—you can compare two characters or a character and a number for 
equality, for example—and it is allowed on boxes, both explicitly using dyad = and 
dyad -:or implicitly using dyad i. and dyad e.; but there is an arithmetic flavor 
to the operation: if the contents of corresponding components of the boxes are both 
numbers, tolerant comparison is used.

Most primitives that accept boxes as operands do not examine the contents of the 
boxes, but instead perform their operation on the box atoms themselves.  Any 
deviation from this behavior will be noted in the definition of the verb (we have not 
encountered any yet).  Examples:
   3 $ <'abc'
+---+---+---+
|abc|abc|abc|
+---+---+---+
The dyad $ was applied to the box, creating a list of identical boxes.
   (<1 2),(<5),(<'abc')
+---+-+---+
|1 2|5|abc|
+---+-+---+
The boxes were concatenated, resulting in a list of boxes.  Note that the contents of 
the boxes do not have to have the same shape or type.
   1 0 1 # (<1 2),(<5),(<'abc')
+---+---+
|1 2|abc|
+---+---+
The selection performed by dyad # is performed on the boxes, not on their contents.

Since applying a verb may result in the addition of verb fills and framing fills, we 
need to meet the fill element used for boxed nouns.  It is the noun a: .  a: is 
defined to be <0$0, i. e. an atom which is a box containing an empty numeric list 
(note that this is not the same thing as a box containing an empty string or an empty 
boxed list).
   a:



++
||
++
   3 {. <5
+-+++
|5|||
+-+++
a: was used for the fills added by overtaking from this boxed noun.

The contents of a box can be any noun, including a box or array of boxes:
   < < 2 3
+-----+
|+---+|
||2 3||
|+---+|
+-----+
   (<'abc'),(<<1 2)
+---+-----+
|abc|+---+|
|   ||1 2||
|   |+---+|
+---+-----+

The contents of a box can be recovered by opening the box with monad > .  
Monad > has rank 0 (since it operates only on boxes, which are atoms), and its 
result is the contents of the box:
   > < 'abc'
abc
The contents of the box is the character string.
   a =. (<1 2),(<<5),(<'abc')
   > 0 { a
1 2
   > 1 { a
+-+
|5|
+-+
Here we recover the contents of the selected box (which may be a box).
   > (<1 2 3),(<4)
1 2 3



4 0 0
Remember that monad > has rank 0, so it is applied to each box and the results are 
collected using the frame.  Here framing fills were added to the shorter result.  0 
was used as the framing fill because the contents of the boxes were numeric.
   >a
|domain error
|       >a
Here the results on the different cells were of different types, so it was impossible to 
collect them into an array.

If y is unboxed, the result of > y is y .

Terminology
Before we go further with boxes, let's agree on some terminology.  Because every 
atom in an array must have the same type, it is reasonable to speak of an array as 
being 'boxed' if its atoms are boxed, 'unboxed' otherwise (some writers use 'open' as 
a synonym for 'unboxed').  Trouble arises with a phrase like 'boxed list'.  If I box a 
list (e. g. <1 2 3), does that give me a boxed list?  If I have a list whose atoms are 
boxes, (e. g. (<1),(<2)), is that also a boxed list?  Unfortunately, writers on J 
have not agreed on terminology for these cases.

In this book, a boxed list will be a list that has been put into a box (it is therefore an 
atom), and a list of boxes is a list each atom of which is a box.  Higher ranks are 
described similarly.  If we say that a noun 'is boxed', that simply means that its 
atoms are boxes.

Boxing As an Equivalent For Structures In C
A C struct corresponds to a list of boxes in J, where each box in the list 
corresponds to one structure element.  Referencing a structure element in C 
corresponds to selecting and opening an item in J.  For example,
struct {
      int f[ ] = {1,2,3};
      char g[ ] = "abc";
      float h = 1.0;
)
is equivalent to
(<1 2 3) , (<'abc') , (<1.0)



A C n-dimensional array of structures is equivalent to a J array of boxes of 
rank n+1.  The last axis of the J array corresponds to the structure, and its length is 
the number of structure elements in the C structure.

C has no exact equivalent for a single box.
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                                                                                                              12. Empty Operands

Every programmer knows that errors lurk near boundaries: for example, at the 
beginning and end of arrays, or at the point in execution where an array becomes 
empty.  Our discussion of verb rank omitted one important situation: suppose there 
are no cells?  An operand with no cells is said to be empty, and it gets special 
treatment in J.

The definition of an empty operand is not as obvious as you might think.  An array 
is empty if it has no atoms (i. e. has a 0 in its shape), but whether an operand is 
empty depends on the rank of its cells: it is empty if there is a 0 in the frame with 
respect to the cells operated on by the verb.  Consider an array with shape 
3 0 4 .  This is an empty array, because it has no atoms.  As an operand of a verb 
with rank 0, it has frame 3 0 4, so there are no cells and the array is an empty 
operand.  As an operand of a verb with rank 1, it has frame 3 0 and again is 
empty.  As an operand of a verb with rank 2, though, it has frame 3 and is not 
empty: there are 3 cells, each of which has shape 0 4 .  In this case each cell is an 
empty array, but the operand is not empty.  As an operand of a verb with rank 3 or 
higher, the frame is empty and each cell has shape 3 0 4, so there is one cell and 
the operand is not empty, though each cell is an empty array.  You can see that an 
operand may have items and yet be an empty operand, if the verb operates on cells 
smaller than items, as is the case in this example for a verb of rank 0 or 1.

We are left with the question, What is executed when an operand is empty?  For 
something must be executed.  It is fundamental in J that if a verb produces a result 
with shape s when applied to a single cell, executing that verb over an array of that 
cell—even an array of none of them—produces an array of results each with shape 
s.  The only way to find out what shape a verb is going to produce is to execute it 
and see—and that is what J does.

Execution On a Cell Of Fills
If an operand is empty, i. e. its frame contains a 0 and it therefore has no cells, the 
verb is executed on a cell c of fills.  The shape of c is the shape of a cell of the 
corresponding operand, and the value of each atom is the appropriate fill for that 
operand: 0 for numeric operands, ' ' for characters, a: for boxes.  The shape s 
and type t of the result of executing the verb on c are noted.  Then, the shape of the 



overall result is the frame of the operand (the longer frame, for dyads) concatenated 
with s, and the result is given type t.  The result will necessarily be empty, because 
it will have a 0 in its shape (from the frame, which contained a 0).  Example:
   $ +/"2 (3 0 3 4 $ 100)
3 0 4
Remember that a cell has a shape, even if there are none of them!  Here the verb 
monad +/"2 is applied to 2-cells, each with shape 3 4 .  The frame 3 0 contains 
a 0, so the verb is executed on the fill cell c which is (3 4 $ 0).  Monad +/ adds 
the items of the cell, producing a list with shape 4 .  The frame 3 0 is 
concatenated with 4 to give the shape of the result, 3 0 4 .
   3!:0 +/"2 (3 0 3 4 $ 100)
4
The verb 3!:0 (one of dozens of special goodies provided by the !: conjunction 
and documented under Foreigns) tells you the type of its operand.  Here, 4 means 
numeric type: the result has shape 3 0 4 and numeric type.
   $ <"2 (3 0 3 4 $ 100)
3 0
   3!:0 <"2 (3 0 3 4 $ 100)
32
Here the verb monad < was applied to the same fill-cell c (3 4 $ 0) but it 
produced a boxed scalar result (shape empty), so the shape of the overall result is 
the frame 3 0 concatenated with an empty list, i. e. shape 3 0 and type boxed (as 
indicated by the 32 returned by 3!:0).

Note that the contents of each box in an empty array of boxes are all empty.  In the 
example <"2 (3 0 3 4 $ 100), execution on the fill-cell produced 
(<3 4 $ 0), and if the frame weren't empty the box would contain an array; but 
when the frame is empty, the value of the result is discarded; all that remains is its 
type.

If executing the verb on a cell of fills results in an error, execution continues as if 
the verb had returned the scalar 0 :
   5 + ' '
|domain error
|   5    +' '
Trying to add 5 to a space is nonsense…
   5 + ''
 



   $ 5 + ''
0
   (3!:0) 5 + ''
4
…but adding 5 to an empty list of characters produces an empty numeric list.  The 
addition is attempted with a cell of fills for the empty operand (the values added are 
5 on the left, ' ' on the right), the addition fails, and the error-fallback result of 
scalar 0 is used; appending the longer frame (0) gives shape 0, numeric.  Note that 
y here is an empty operand, but it nonetheless has the longer frame (the scalar x has 
empty shape and perforce empty frame).

Note: there is much special code in the interpreter to handle the cases of empty 
operands.  To improve performance, the interpreter recognizes a great many 
combinations of verb, operand shape, and type, handling each with separate code.  
In most cases the interpreter produces its result in accordance with the rules given 
above, but in a few exotic cases it deviates.  You are quite unlikely to encounter 
these cases in practice; the most important one is
   $ > 0$a:
0
where the rules given above would predict a shape of 0 0 .  Enough applications 
rely on shape 0 to keep this deviation in the system, at least as of release 5.01.

Empty cells
As we discussed above, a cell, like any array, is called empty if it has a 0 in its 
shape.  Whether the cells of an operand are empty is independent of whether the 
operand itself is empty.

How a verb handles an empty cell is entirely up to the verb; the fill-cell processing 
we discussed above does not apply.  The J primitives generally preserve the type of 
empty lists that are 'data' but ignore the type of empty lists that are 'control 
information'.  So, even though characters are not allowable left operands of 
dyad |., '' |. i. 5 produces the same result as (0$0) |. i. 5, because 
the rotation count is 'control information'.  In contrast, 3 {. '' produces a 3-
character string, while 3 {. (0$0) produces a 3-item numeric list, because the 
right operand of dyad {. is 'data'.  The distinction between 'control information' and 
'data' is not clear-cut, but in all cases the interpreter does what you'd want it to, and 
you should experiment if you need reassurance.



If Fill-Cells Are Not Enough
Sometimes executing a verb on a cell of fills simply won't do: maybe your verb 
produces a side effect, or maybe it will go berserk if its operand is 0 .  In those 
cases, you must take steps to ensure that it is not executed on an empty list.  To help 
you out with the most common case, in which the only way a list can be empty is to 
have no items (that is another way of saying that the first item of the shape is 0), I 
offer you a set of adverbs and conjunctions which you can have by executing
load 'system\packages\misc\jforc.ijs'

u Ifany applies the verb u (which may be monadic or dyadic) provided y has 
items; if y has 0 items, the result of u Ifany is y :
   $ (,/) i. 0 4
0
   $ (,/) Ifany i. 0 4
0 4
Since i. 0 4 has no items, Ifany caused it to be passed through unchanged.

x u Ifanyx y produces x u y if x has items, or y if x has no items.

The conjunction u Butifnull n can be monadic or dyadic; it applies u if y has 
items; if y has no items it produces a result of n .
   5 + Butifnull 6 (0)
5
   5 + Butifnull 6 (0$0)
6

x u Butifxnull n y produces x u y if x has items, or n if x has no items.
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                                        13. Loopless Code III—Adverbs 
\ and \.

We have learned about ordinary verbs that operate on the cells of an operand, and 
we have learned u/ which operates between all the cells of its operand.  In between 
those extremes are verbs that operate on subsets of the cells of its operand.  In this 
chapter we will learn a couple of adverbs that apply verbs to subsets of cells chosen 
according to simple rules; in later chapters we will learn how to form irregular 
subsets.

u\ y has infinite rank and applies u to successive prefixes of y .  It applies u to 
the first item of y (i. e. u 1 {. y) to produce the first item of the result; it then 
applies u to the first 2 items of y (i. e. u 2 {. y) to produce the second item of 
the result; and so on, with the last item of the result being u (#y) {. y .  
Example:
   #\ 9 8 7 6
1 2 3 4
This just gives the length of each prefix, not a terribly edifying result.  The details 
can be seen using fndisplay:
   defverbs 'tally'
   tally\ 9 8 7 6
+-------+---------+-----------+-------------+
|tally 9|tally 9 8|tally 9 8 7|tally 9 8 7 6|
+-------+---------+-----------+-------------+

Note that u is always applied to lists, because {. always produces a list.  In 
particular, the first item of the result comes from applying u to a 1-item list; 
conversely, even if y is a scalar, (#y) {. y is a 1-item list.  Note also that if the 
applications of u produce results of different shapes, framing fills are added to bring 
the results to a common shape, just as if they were the results from applying a verb 
to different cells:
   ]\ i. 3
0 0 0
0 1 0
0 1 2



The result is the prefixes themselves, assembled as items of a rank-2 array.

u\ is most often used when u is of the form u/, i. e. as u/\ .  Then the verb u/ is 
applied to the successive prefixes.  Here are some commonly-used forms:
   +/\ i. 6
0 1 3 6 10 15
+/ means 'total the items', so +/\ i. 6 is (0),(0+1),(0+1+2),(0+1+2+3)
…, i. e. the running total of the items of y .
   >./\ 9 5 3 10 3 2 20
9 9 9 10 10 10 20
For each item of y, the result is the largest item occurring in the list up to that item 
of y .
   </\ 0 0 0 0 1 1 0 0 1 0
0 0 0 0 1 0 0 0 0 0
</\ y on a Boolean list (i. e. one containing only 0 or 1) is a tricky way to turn off 
all 1s following the first.  See how it works: </ y will produce a result of 1 only in 
the case where the last item of y is 1 and the rest are 0, i. e. 0 < 0…0 < 1, so </
\ y produces a 1 for that prefix and 0 for all the others.
   *./\ 1 1 1 1 0 0 1 1 1
1 1 1 1 0 0 0 0 0
Keep the leading 1s of y, but set the rest to 0 .

u\. y is similar to u\ y, except that it applies u to suffixes of y .  It applies u to 
all of y (i. e. u 0 }. y) to produce the first item of the result; it then applies u to 
all but the first item of y (i. e. u 1 }. y) to produce the second item of the result; 
and so on, with the last item of the result being u ((#y)-1) }. y (that is, u 
applied to the last item of y).  Example:
   +/\. i. 6
15 15 14 12 9 5
The running total now starts at the end and runs backward.  fndisplay shows the 
details, and points out a subtlety of u/\ :
   defverbs 'plus"0'
   plus/\. <"0 i. 4
+----------------------+---------------+--------+-+
|0 plus 1 plus 2 plus 3|1 plus 2 plus 3|2 plus 3|3|
+----------------------+---------------+--------+-+
Up till now we have applied unboxed inputs to verbs defined by defverbs and 



gotten useful results.  Why then must we box the atoms of i. 4 before giving them 
to plus/\.?  The reason is that the result of a verb defined by defverbs is 
boxed.  Normally it is joined in an array with other boxed outputs.  Here, the last 
result, the one containing just the cell 3, is not produced by plus; rather, since 
plus/ is applied to a 1-element list, the cell is the unmodified input cell.  If we 
had not boxed the atoms of i. 4 (i. e. if we had executed plus/\. i. 4), the 
unboxed 3 would be joined to the other boxed results, and that would have given us 
a domain error.  Whenever you use u/\ y or u/\. y you must make sure that the 
result of u has the same type (character, numeric, or boxed) as y .

The dyadic form x u\ y has rank 0 _ and applies u to infixes of y .  An infix is 
a sequence of adjacent items.  x gives the length of the infixes.  The first item of the 
result comes from the infix of length |x (that is, the absolute value of x) starting 
with the first item of y, and subsequent items of the result come from subsequent 
infixes.  If x is positive, successive infixes start at successive items of y (therefore, 
they overlap), and the last infix is the one that ends with the last item of y; if x is 
negative, infixes do not overlap: each one starts with the item following the last item 
of the previous infix, and the last infix may be shorter than |x .  Examples:
   _2 ]\ 100 2 110 6 120 8 130 3
100 2
110 6
120 8
130 3
This is a convenient way to reshape a list to have 2 items per row when you don't 
know how many rows there will be.
   2 -/\ 10 8 6 4 2
2 2 2 2
   2 -~/\ 10 8 6 4 2
_2 _2 _2 _2
Applying -/ between each pair of items (with adjacent pairs overlapping) takes the 
backward difference of each pair.  To take the forward difference, subtract the first 
from the second using -~/ .
   3 >./\ 1 2 3 8 2 3 1 5 4 3 12 3 2
3 8 8 8 3 5 5 5 12 12 12
This takes the maximum over a rolling window 3 items wide.

x u\. y is similar to x u\ y , but it operates on outfixes which contain all of y 



except the corresponding infix.  Its uses are few.

The interpreter treats empty operands with care, so that you don't have to worry 
about them as special cases.  If you simply must know the details, here they are:  If u
\ or u\. is applied where there are no applicable subsets of y (either because y is 
empty or because it is too short to muster even a single infix), u is applied to a list 
of fills f and the result has 0 items, each with the shape and type of the result of 
u f .  The items of f have the shape of items of y, and the length of f is 0 for 
monad u\ or u\., or the length of an infix or outfix for dyad u\ or u\. .  For 
example:
   $ 2 ]\ i. 1 3
0 2 3
We were looking for infixes of length 2; each one would have had shape 2 3, but 
with only one item in y we have insufficient data for an infix.  So, we create a 2×3 
array of fills and apply the verb ] to it; the verb returns shape 2 3 and the overall 
result is a list of 0 items with that shape.
   $ ]\ i. 0 2 3
0 0 2 3
The cells of y have shape 2 3 so we apply the verb ] to a list of 0 of them (i. e. 
with shape 0 2 3).  The result of ] has the same shape as the input, and the final 
result is a list of 0 items each with shape 0 2 3, i. e. with overall shape 
0 0 2 3 .
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                                                                                                  14. Verbs for 
Arithmetic

It's time to build your J vocabulary with a few more verbs.

Dyads
x ! y  (rank 0 0) number of ways to choose x things from a population of y 
things.  More generally, (!y) % (!x) * (!y-x)

x %: y  (rank 0 0) The xth root of y

x #. y  (rank 1 1) y evaluated in base x, i. e. the atoms of y are digits in the 
base-x representation.  x and y must have the same length, unless x is a scalar in 
which case it is replicated to the length of y .  A place-value list p is calculated, 
in which each item is the product of all the subsequent corresponding items of x; 
formally, this is p=.*/\.}.x,1 (the last item of p is always 1 and the first 
item of x is immaterial).  Then each item in y is multiplied by its place value and 
the results are summed to give the result (formally this is +/ y * p).  In the 
simplest case x is a scalar:
   10 #. 2 3 4
234
The digits 2 3 4 interpreted as base-ten digits.
   16 #. 2 3 4
564
The same interpreted as base-sixteen digits.
   16b234
564
as expected (16b234 is 234 in base 16, equivalent to 0x234).

Here is an example where x is a list, converting time in hours/minutes/seconds to 
seconds since midnight:
   24 60 60 #. 12 30 0
45000
The list p was 3600 60 1 .  The first item in x has no effect on the result.



x #: y  (rank 1 0)  This is the inverse of x #. y except that if the first digit 
of the result is not between 0 and {.x, it is changed (modulo x) to lie within that 
range.  For example,
   24 60 60 #: 45000
12 30 0
The normal case, converting the number of seconds since midnight back to hours/
minutes/seconds.
   24 60 60 #. 36 30 0
131400
   24 60 60 #: 131400
12 30 0
Here the result would have been 36 30 0, but 36 is outside the range 0 to 24, 
so it is replaced by 24|36, which is 12 .  If you want the first item of the result 
to be unconstrained, make the first item of x either 0 or _ :
   0 60 60 #: 131400
36 30 0

Note that monad #: and monad #. are similar to the dyadic forms with x set to 
2 .  To keep #: and #. straight in your mind, remember that the one with a single 
dot (#.) produces a single scalar result, while the one with multiple dots (#:) 
produces a list result.

Monads (all rank 0)
! y  factorial of y (more generally, the gamma function Γ(1+y))

^ y  same as (the base of natural logarithms e) ^ y

^. y  same as (the base of natural logarithms e) ^. y

+: y  same as y * 2

-: y  same as y % 2

*: y  same as y ^ 2

%: y  same as 2 %: y

You can see the common feature in the arithmetic primitives ending in : .

 



                                                                                                             15. Loopless Code IV

In our quest to write loopless code, we first learned about J's implicit looping, which 
we can use to replace loops in which the same function is performed on each cell; 
then we learned monad / which lets us accumulate an operation across all the items 
of a noun, and \ and \. which apply verbs to certain regular subsets of a noun.  We 
now examine cases in which the operations on the cells are different, but where 
there is no sharing of information between cells.

A Few J Tricks
In these irregular cases, the J solution is to create an array that contains control 
information describing the difference between the cells, and then create a dyadic 
operation that produces the desired result when given a cell of control information 
and a cell of data.  Writing code this way can seem ingeniously clever or awkwardly 
roundabout, depending on your point of view; we will simply accept it as a 
necessary part of coding in J, and we will learn to be effective with it.  What follows 
is a hodgepodge of tricks to treat cells individually.  If we were writing in C, we 
would use if statements, but since if by necessity involves a scalar comparison we 
will avoid it in J.

To add one to the elements of y whose values are even:
y + 0 = 2 | y

To double all the elements of y whose values are even:
y * 1 + 0 = 2 | y

To create an array whose even-numbered elements come from y and whose odd-
numbered elements come from x :
(x * -.sv) + y * sv =. (#y) $ 1 0
which, homely as it is, is a standard idiom in J.  This expression works only for 
numeric operands; for general operands we can select using a selection vector sv 
with
sv {"_1 x ,. y

To replace lowercase 'a' through 'f' with uppercase 'A' through 'F' in a string that 
contains only 'a' through 'f':
('abcdef' i. y) { 'ABCDEF'



Extending the previous example: to replace lowercase 'a' through 'f' with uppercase 
'A' through 'F' leaving other characters unchanged:
(('abcdef' , a.) i. y) { 'ABCDEF' , a.
To understand this you need to know the special noun a. which is the character 
string containing all the ASCII characters in order.  Work through a simple example 
until you understand how this works—it's a good example of how J thinking differs 
from C thinking.

A similar problem: given a list of keys y and a list of data z, with each item of y 
corresponding to an item of z; and another list of search keys x; and a default 
element d : return the item in z corresponding to the item of y that matches the 
item of x, or d if the item of x didn't match anything in y :
(y i. x) { z , d

To evaluate the polynomial defined by x, so that if for example x is 2 1 5 the 
result is 5y2+y+1:
+/ x * y ^ i. # x
(and now you can see why 0^0 is 1).

To evaluate the polynomial defined by x going the other direction, so that if for 
example x is 2 1 5 the result is 2y2+y+5:
y #. x

The last example, due to Roger Hui, has a power and economy that amount to 
sorcery.  Suppose you had a list, and you wanted to know, for each item in the list, 
how many identical items appeared earlier in the list.  You could find out this way:
   y =. 2 2 2 1 2 1 4 6 4 2
   t - (i.~ y) { t =. /: /: y
0 1 2 0 3 1 0 0 1 4
Take a little time—maybe a long time—to see how this works.  The /: /: y is an 
idiom we discussed earlier—did you figure it out?  It gives the ordinal of each item 
of y, in other words the rank of the item among the items of y .  If there are equal 
items, they will occupy a block of successive ordinals.  In this example you can see 
that t does indeed hold the ordinals:
   t
2 3 4 0 5 1 7 9 8 6
(i.~ y) takes the index of each item of y within y itself, in other words, for each 
item, the index of the first item with the same value:
   (i.~ y)



0 0 0 3 0 3 6 7 6 0
Since the identical items of y are a block of successive ordinals, and (i.~ y) 
comprises indexes of first items in blocks, we can find relative positions in blocks 
by subtracting the ordinal of the first item with a value from the ordinals of all the 
other items with the same value.  That is what this expression does.  Lovely!

In addition to the foregoing ad hoc means of varying the operation cell-by-cell J has 
some language features expressly designed for that purpose:

Power/If/DoWhile Conjunction u^:n and u^:v
u^:n y has infinite rank.  It applies the verb u to y, then applies u to that result, 
and so on, for a total of n applications of u, ; in other words u u u…
(n times) y, as we see when it is used with the >: (increment) primitive:
   >: 5
6
   >:^:2 (5)
7
   >:^:3 (5)
8
fndisplay gives a picture of what is happening:
   defverbs 'incr"0'
   incr^:3 (5)
+----------------+
|incr incr incr 5|
+----------------+

x u^:n y also has infinite rank.  It evaluates x u x u…(n times) y .  A 
simpler way to say this is to say that it is equivalent to x&u^:n y, since x&u y is 
equivalent to x u y .
   2 * 2 * 2 * 2 * 5
80
   2 *^:4 (5)
80

u^:v y and x u^:v y are defined similarly: first v is evaluated (monadically or 
dyadically as appropriate), and then result is used as n .  Formally, u^:v y is u^:
(v y) y and x u^:v y is x u^:(x v y) y .  With dyad u^:v, it will be 
rare that x and y both make sense as an operand into both u and v, and you will 



usually use @:[ and @:] to cause u or v to operate on only one operand.  For 
example, to coalesce the x+1 leading axes of y into one axis, you could use x ,/
@:]^:[ y :
   1 ,/@:]^:[ i. 2 2 3
0  1  2
3  4  5
6  7  8
9 10 11
   2 ,/@:]^:[ i. 2 2 3
0 1 2 3 4 5 6 7 8 9 10 11

This is hardly a commonplace usage, but let's analyze it, since conjunctions are still 
new to us.  The verb is parenthesized ((,/)@:])^:[, so the first thing executed 
is u^:v where v is [ .  x [ y is just x, so x is going to tell us how many times to 
apply x&((,/)@:]) .  Now, x&((,/)@:]) y is just the same as ,/ y, 
because the purpose of the @:] is to ignore the left argument that was put on by 
x& .  We remember monad ,/ from our discussion of monad u/ : it combines the 
2 leading axes of y .  So, x ,/@:]^:[ y will combine the 2 leading axes of y, x 
times; in other words, combine the x+1 leading axes of y .

Our interest in u^:n is not in applying a verb several times—usually we could just 
write the instances out if we needed to—but rather in 4 special values of n : _1, 0, 
1, and _ (infinity).  u^:0, meaning apply u 0 times, is simple: it does nothing, with 
the result y in both dyadic and monadic forms.  u^:1 means apply u once.  
Thinking about that, we see that if n is restricted to the values 0 or 1, ^:n means 
'If n' : u^:n y is y, but modified by application of u if n is 1.  If we want to 
apply the verb u only on the items of y for which x is 1, we can write x u@:]^:
["_1 y :
   1 0 0 1 0 >:@]^:["_1 (1 2 3 4 5)
2 2 3 5 5

When n is _, u^:_ means 'keep applying u until the result doesn't change'.  This is 
obviously a splendid way to perform a numerical calculation that converges on a 
result; for example if you take …cos(cos(cos(cos(y)))) until the result stops 
changing, you get the solution of the equation y=cos(y):
   2 o.^:_ (0)
0.739085



but that's not why we love ^:_ .  Consider the verb u^:v^:_ (either monad or 
dyad), with the understanding that v always produces a Boolean result of 0 or 1 .  It 
is parenthesized (u^:v)^:_, i. e. u^:v repeated until the result stops changing.  
Now, if v evaluates to 0, the result of u^:v will certainly be the same as its input 
because u will not be executed; if v is 1, u^:v causes u to be executed once.  So 
this construct is like C's while(v(y))y = u(y); (except that the J version also stops if 
the result of u y is the same as y).  The great thing about having a verb to do this 
loop rather than a statement is that we can give the verb a rank and apply it to cells, 
with independent loop control on each cell:
   2 *^:(100&>@:])^:_"0 (1 3 5 7 9 11)
128 192 160 112 144 176
Read this as 'for each atom of y, double it as long as the value is less than 100'.

u^:_1 is also of great interest but we will discuss it later.

One last point:
   >:^:1 2 4 (5)
6 7 9

As you can see, n may be an array, in which case u^:n1 y is repeatedly evaluated, 
with n1 assuming the value of each atom of n, and the results are assembled using 
the shape of n as the frame with framing fills added as needed.  Pop quiz: express 
the preceding English sentence in J.

Solution: u^:n y is equivalent to n u@:]^:["0 _ y, and x u^:n y is 
equivalent to n x&u@:]^:["0 _ y .  If you can make sense of the answer, you 
should be content with your progress.  If you came up with either half on your own, 
you are entitled to claim Apprentice Guru status.

Tie and Agenda (switch)
The Tie Conjunction u`v u`n m`v m`n
The backquote character ` is the conjunction named Tie.  ` is one of the few 
conjunctions that produce a noun, so it is neither monadic or dyadic.  If an operand 
of ` is a verb, it is converted to its atomic representation which is a noun form from 
which the verb can be recovered; then the two operands m and n (both nouns now 
since any verb was converted to a noun) are joined by executing m,n .  So, the 
result of ` applied between the members of a sequence of verbs is a list of special 



nouns, each of which is the atomic representation of a verb.  We are not concerned 
with the format of the atomic representation, nor will we create or modify an atomic 
representation (that's Advanced-Guru work); we will be content to use the values 
produced by ` .  An example is:
   +`-`*`%`(+/)
+-+-+-+-+-------+
|+|-|*|%|+-+---+|
| | | | ||/|+-+||
| | | | || ||+|||
| | | | || |+-+||
| | | | |+-+---+|
+-+-+-+-+-------+

What makes the result of ` special is not the boxing, but the fact that what's in the 
boxes is not just any old data, but data in the format that can be used to recover the 
original verbs.  Once created, the result of ` can be operated on like any other noun:
   a =. +:`-`*`%`(+/)
   3 { a
+-+
|%|
+-+
   0 0 1 0 1 # a
+-+-------+
|*|+-+---+|
| ||/|+-+||
| || ||+|||
| || |+-+||
| |+-+---+|
+-+-------+

In English grammar, a gerund is a form of a verb that is used as a noun, for example 
the word cooking in Cooking is fun.  The result of ` in J is also called a gerund, and 
we can see that the name is apt: a gerund in J is a set of J verbs put into a form that 
can be used as a J noun.  It has the latent power of the verbs put into a portable 
form, like nitroglycerine that has been stabilized by kieselguhr to become 
dynamite.  The blasting cap that sets it off is

The Agenda (switch) conjunction m@.v



m@.v (either monad or dyad) uses the result of v to select a verb from the list of 
verbs m, and then executes that verb.

m@.v requires that m be a valid gerund.  It produces a verb which can be used 
monadically or dyadically and whose ranks are the ranks of v .  The operation of 
this verb is as follows: v y (if monadic) or x v y (if dyadic) is evaluated; it 
must produce a scalar result r that is a valid index into m; i. e. (-#m) <: r and 
r < #m .  Then, item r{m is selected—it is the atomic representation of one of 
the verbs that went into m—and that atomic representation is converted to a verb 
u .  Finally, u y (if monadic) or x u y (if dyadic) is executed, and its result is 
the result of the execution of m@.v .

So, verb0`verb1`verb2 @. v y evaluates v y, resulting in r, and then 
executes verbr y .  The dyadic case x verb0`verb1`verb2 @. v y 
evaluates x v y, resulting in r, and then executes x verbr y .  The verbs may 
be any valid verb: a primitive, a compound verb, or a named verb.

Examples:
   (1&+)`(-&2)@.(2&|) "0 i. 6
1 _1 3 1 5 3
This added 1 to each even number and subtracted 2 from each odd number.  Note 
that we had to assign rank 0 to the overall combined verb, because otherwise the 
rank of (1&+)`(-&2)@.(2&|) would have been the rank of 2&| which is 
infinite because m&v has infinite rank.

   _5 _3 _1 1 3 5 +`-@.(0&>@:["0) 2
_7 _5 _3 3 5 7
Subtract 2 from elements of x that are negative, add 2 to elements that are 
nonnegative.  Here we assigned the rank to the selector verb in m@.v; that rank was 
then inherited by m@.v .

   5 uname`+`] @. (*@:]"0) _5 0 5
(Remember that monad * is the signum function returning _1 for negative, 0 for 
zero, and 1 for positive operands)  For each atom of y, execute 5 uname y if y is 
zero, 5 + y if y is positive, and pass y through unchanged (5 ] y) if y is 
negative.  uname must be defined elsewhere.  This expression makes use of 
negative indexing: if * y is negative, verb number _1 (the last item) is taken from 



the gerund.

m@.v obviously can be used with a small rank to afford great control over what 
operation is performed cell-by-cell, but if you do that it will have to apply J verbs on 
small operands, which is inefficient.  After all we've been through, I feel confident 
that I can trust you not to use m@.v with small rank unless it's absolutely necessary.  
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                                                                                             16. More Verbs For 
Boxes

Dyad ; (Link) And Monad ; (Raze)
Dyad ; has infinite rank.  It boxes its operands and concatenates the boxes:
   'abc' ; 1 2 3
+---+-----+
|abc|1 2 3|
+---+-----+
Dyad ; is the easiest way to create a list of boxes:
   'abc' ; 1 2 3 ; (i. 2 2)
+---+-----+---+
|abc|1 2 3|0 1|
|   |     |2 3|
+---+-----+---+

Did you notice that I gave you an inaccurate definition?  If dyad ; just boxed the 
operands and concatenated, its result would be like
   dyadsemicolon =: dyad : '(<x.) , (<y.)'
   'abc' dyadsemicolon 1 2 3 dyadsemicolon (i. 2 2)
+---+-----------+
|abc|+-----+---+|
|   ||1 2 3|0 1||
|   ||     |2 3||
|   |+-----+---+|
+---+-----------+

That's not the list of boxes we wanted!  Actually dyad ; is more subtle: x ; y 
always boxes x, but it boxes y only if y is unboxed.  That produces the behavior we 
want most of the time; the exception is when the last item in the list is boxed 
already:
   (<'abc');(<'def');(<'ghi')
+-----+-----+---+
|+---+|+---+|ghi|
||abc|||def||   |



|+---+|+---+|   |
+-----+-----+---+
If we expected all the items to be boxed the same, we are disappointed.  We must 
develop the habit that when we use a sequence of dyad  ;s we box the last operand 
(unless we are sure it is unboxed, and even then we might do it to reinforce our 
habit):
   (<'abc');(<'def');<(<'ghi')
+-----+-----+-----+
|+---+|+---+|+---+|
||abc|||def|||ghi||
|+---+|+---+|+---+|
+-----+-----+-----+

Monad ; (infinite rank) removes one level of boxing from an array of boxes, 
concatenating the contents of all the boxes into one long list.  The shape of the 
operand of ; is immaterial.  If the items do not have a common shape—the items of 
the contents of the operand boxes, mind you, not the contents themselves—they are 
brought up to a common shape as described below.  Examples:
   'abc';'d';'ef'
+---+-+--+
|abc|d|ef|
+---+-+--+
A list of boxes.
   ; 'abc';'d';'ef'
abcdef
The items, which are scalars, are joined into one long list.
   ; 1 ; 2 3 4
1 2 3 4
It works for numbers too.
   ; (i. 2 3) ; (i. 2 3) 
0 1 2
3 4 5
0 1 2
3 4 5
The items are lists, so the lists are concatenated into a rank-2 array.
   ; 1 2 ; i. 2 3
1 2 0
0 1 2



3 4 5
Here the second box contains a rank-2 array, while the first box contains a rank-1 
array.  The items of highest rank have rank 1, which means that rank-1 items are 
going to be lined up as the items of a rank-2 result.  Any contents of lower rank are 
brought up to the rank of the highest-rank contents, by adding single-length leading 
axes; after that operation, the items of all the modified contents have the same rank 
(but not necessarily the same shape).  If the shapes of any of those items differ, verb 
fills are added to bring each axis up to the length of the longest axis; then the items 
are assembled into a list whose rank is 1 higher than the rank of an item.  In this 
example the concatenated items have rank 1, and verb fill was added to bring the 
single item of the first box up to a length of 3.
   ; 1 ; ,: 2 3 4
1 1 1
2 3 4
There is one amendment to the processing as described above: if any of the contents 
is an atom, it is replicated to bring it up to the shape of an item of the result before 
items are concatenated.  Here the atom 1 was replicated to become 1 1 1 .
   ; (,1) ; ,: 2 3 4
1 0 0
2 3 4
Here the first box was a 1-item list rather than an atom, so it was padded with fills 
rather than replicated.

When you have an array of boxes, the difference between opening it with monad > 
and with monad ; is that monad > keeps the frame of the array of boxes, and brings 
every opened box up to the same shape, while monad ; just runs the items of the 
contents together into one long list with no regard for the shape of the array of boxes.

Dyad , Revisited—the Case of Dissimilar Items
When we discussed dyad , we glossed over the treatment of operands with items of 
different shapes.  Now we can reveal that the padding and replication for dyad , is 
just like what monad ; does on the contents of boxes.  In fact, x , y is equivalent 
to ; (<x),(<y) .

Verbs With More Than 2 Operands—Multiple Assignment
Dyad ; is part of the standard J method of passing many operands to a verb.  The 
invocation of the verb normally looks like this:



   verbname op1 ; op2 … ;< opn
(the < is needed only if opn is boxed), and the verb that is so invoked looks like:
verbname =: monad define
'op1 op2 … opn' =. y.
remainder of verb
)

The line 'op1 op2 … opn' =. y. is J's handy multiple assignment.  When 
the target of the assignment is a string, the string is broken into words and the words 
are matched with items of the value being assigned (they must match one-for-one or 
a length error results).  Then, each word from the string is used as a name which is 
assigned the corresponding item of the value.  If the value being assigned is boxed, 
each item is unboxed before it is assigned.

When defined and invoked as shown above, the variables op1, op2, etc. during 
execution of the called verb will hold the values of op1, op2, etc. in the calling 
verb.

Multiple assignment is not restricted to parameter-passing; you may use it as you 
see fit, if only to save typing.  I have found it very useful in loading configuration 
parameters from a file: the file contains both noun-names and the values, with the 
values being assigned to the names by multiple assignment.  Such a design is easily 
portable from release to release of a product, since the file has no 'format'—it simply 
defines all the names it understands.

A multiple assignment can produce verbs and modifiers as well as nouns.  You put a 
'`' character before your list of names:
   '`name1 name2…' =. list of atomic representations
and each name is assigned the entity described by the atomic 
representation.  Each atomic representation is a noun, but it may describe any 
kind of entity.  Usually your entities will be verbs, and then they can be converted to 
atomic representations by `, as in
   '`add subtract mult div' =. +`-`*`%

Dyad { Revisited
Now that we know about boxes, we can understand the full description of the 
selection verb dyad { .  In the general form, the left argument of x { y is a box 
whose contents is a list of boxes.  Pictorially, it is
+---------------------------------------+



|+-----------------+-----------------+-+|

||axis-0 selections|axis-1 selections|…||

|+-----------------+-----------------+-+|

+---------------------------------------+

We will call the inner boxes (i. e. the items of the contents of the box x) the 
selectors.  The first selector gives the indexes to be selected along the first axis (i. e. 
axis 0); the second selector gives the selections for axis 1; and so on.
   i. 2 2 3
0  1  2
3  4  5
 
6  7  8
9 10 11
   <0;1;1
+-------+
|+-+-+-+|
||0|1|1||
|+-+-+-+|
+-------+
   (<0;1;1) { i. 2 2 3
4

If not all axes are specified, the selectors are applied starting with the leading axis 
and any axes left over at the end are taken in full:
   (<0;1) { i. 2 2 3
3 4 5

Each of the selectors may contain either a scalar or a list.  If a selector contains a 
scalar, the corresponding axis will disappear from the shape of the result, as in the 
examples above.  If a selector contains a list, even a list with only one item, the 
corresponding axis will remain in the shape of the result (its length will be the 
length of the selection list):
   (<0;1 0) { i. 2 2 3
3 4 5
0 1 2
We select two rows of item number 0.  The rows stay in the order we requested 
them, and the result has rank 2.



   (<0 1;1 0;2) { i. 2 2 3
 5 2
11 8
Understand where each number came from.  We are taking a 2×2 array of 1-cells, 
but only item 2 from each 1-cell.  That leaves a 2×2 result.
   (<0;,1) { i. 2 2 3
3 4 5
   $ (<0;1) { i. 2 2 3
3
   $ (<0;,1) { i. 2 2 3
1 3
In the last example we are requesting a list of 1-cells; even though the list has only 
one item, its axis remains in the result.

If a selector contains a box (rather than the usual numeric), it calls for 
complementary selection along that axis: the contents of that box (i. e. the contents 
of the contents of the selector) indicate the indexes to exclude from the selection, 
and all other indexes are selected.  Such a selector is considered to be specifying the 
list of non-excluded indexes, so the corresponding axis remains in the result.  
Example:
   (<0;1;<<1)
+---------+
|+-+-+---+|
||0|1|+-+||
|| | ||1|||
|| | |+-+||
|+-+-+---+|
+---------+
   (<0;1;<<1) { i. 2 2 3
3 5
We select a single 2-cell, and from that a single 1-cell, and within that we select all 
except item 1.  The result is a 2-item list.  Note that we had to put an extra < after 
the last ; to ensure that the contents of the last selector was boxed.
   (<0;(<0$0);2)
+--------+
|+-+--+-+|
||0|++|2||
|| |||| ||



|| |++| ||
|+-+--+-+|
+--------+
   (<0;(<0$0);2) { i. 2 2 3
2 5
Complementary indexing can be used to select all of an axis, as in this example.  
We request all of axis 1 except the named items, and then we name an empty list: 
we get all the items.  This trick is called for when we need to specify a selector for 
some axis after the axis we want to take completely (trailing axes can be taken in 
full simply by omitting their selectors).

If our use of x { y does not require any selector to specify a list (i. e. each selector 
is a scalar), we are allowed to omit the boxing of the selectors.  This leaves x as a 
boxed numeric list (or scalar) in which the successive items indicate the single index 
to be selected from each axis.  This form, in which x is <i,j,k…, corresponds to 
C's array[i][j][k]… .
   <0 1
+---+
|0 1|
+---+
   <0;1
+-----+
|+-+-+|
||0|1||
|+-+-+|
+-----+
   (<0 1) { i. 2 2 3
3 4 5
   (<0;1) { i. 2 2 3
3 4 5
The results are identical.

As a final simplification, if the selection is just a single item from axis 0, the left 
operand of dyad { may be left unboxed.  This is the form in which we first met 
dyad { .  Now that you have learned dyad { completely, take this quiz: what is the 
difference between 0 1 { y and (<<0 1) { y?
   0 1 { i. 6
0 1
   (<<0 1) { i. 6



0 1
Answer: the results are identical, but because the left rank of dyad { is 0, 0 1 { y 
applies dyad { twice, once for each atom of 0 1, and collects the results into an 
array, while (<<0 1) { y applies dyad { just once.

Split String Into J Words: Monad ;:
Monad ;: splits a string of characters into J words, putting each word into a box of 
its own.  Each word is a list of characters, so the result of monad ;: is a list of 
boxed lists:
   ;: 'Words, words; and more words.'
+-----+-+-----+-+---+----+------+
|Words|,|words|;|and|more|words.|
+-----+-+-----+-+---+----+------+

Monad ;: is a handy way to get boxed character strings, or to break an input stream 
into words if your language has word-formation rules similar to J's.  Be aware that if 
the operand has an unmatched quote, monad ;: will fail.

Fetch From Structure: Dyad {::
Dyad {:: (this is a single primitive) has left rank 1, right rank infinite.  It selects an 
atom from an array of boxes and opens it; it is therefore analogous to the . (class 
member) operator in C:
   1 {:: 'abc';1 2 3; i. 2 2
1 2 3
Item 1 was selected and opened.

x {:: y can go through multiple levels of structure referencing at once.  If x is a 
list of boxes, the first box must be a valid left argument to dyad {; it is used to select 
an item of y, which is then opened; the next box of x selects an item from that 
opened box of y, which item is then opened; and so on till x is exhausted:
   struct1 =: 'abc' ; 1 2 3
   ]struct2 =: 'def';struct1;4 5 6
+---+-----------+-----+
|def|+---+-----+|4 5 6|
|   ||abc|1 2 3||     |
|   |+---+-----+|     |
+---+-----------+-----+



Here we have a structure in which item 1 is another structure.
   1 {:: struct2
+---+-----+
|abc|1 2 3|
+---+-----+
We select and open item 1, resulting in the enclosed structure.
   (1;1) {:: struct2
1 2 3
We select and open item 1 of struct2, and then open item 1 of the enclosed 
structure.
   (1;<<1 0) {:: struct2
+-----+---+
|1 2 3|abc|
+-----+---+
If the last selection specifies a list of items, as in this example, the selected boxes 
are not opened.  Note that the Dictionary's description of dyad {:: incorrectly 
indicates that the boxes are opened.
   (1;<<,1) {:: struct2
+-----+
|1 2 3|
+-----+
Even if the list contains only one item, it is not opened.

Only the last box of x may specify selection of a list of boxes:
   ]a =. <"0 i. 3 3
+-+-+-+
|0|1|2|
+-+-+-+
|3|4|5|
+-+-+-+
|6|7|8|
+-+-+-+
a is a 3×3 array of boxes.
   (1;1) {:: a
|rank error
|   (1;1)    {::a
The first selection took item 1 of a .  This was a 3-item list of boxes, and it is 
inadmissible to open the list and perform further selections.



Note that if x is unboxed, dyad {:: first boxes it and then uses it for selection.  The 
Dictionary's description does not mention the boxing step.

Report Boxing Level: Monad L.
Monad L. has infinite rank and tells you the boxing level of its operand.  Boxing 
level is defined recursively: if y is unboxed or empty, its boxing level is 0; 
otherwise its boxing level is one greater than the maximum of the boxing levels of 
its opened items:
   1 ;< 2 ;< 3 ;< 4
+-+---------+
|1|+-+-----+|
| ||2|+-+-+||
| || ||3|4|||
| || |+-+-+||
| |+-+-----+|
+-+---------+
   L. 1 ;< 2 ;< 3 ;< 4
3
   L. {. 1 ;< 2 ;< 3 ;< 4
1

You can use monad L. to decide how many levels of boxing to remove:
   >^:L. <<<6
6

Note that an empty boxed list shows boxing level of 0, but the type revealed by 
3!:0 is 'boxed'.  Also, fill elements for an empty boxed list are the boxed fill 
element a: :
   L. 0$a:
0
   3!:0 (0$a:)
32
   3 {. 0$a:
++++
||||
++++
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                                                                                  17. Verb-Definition 
Revisited

Before we discuss verbs in more detail, let me point out that the colon character (:), 
which you have seen used mostly as a suffix to create new primitives, has its own 
meaning when it is used alone or as the first character of a primitive: : is a 
conjunction, and so are :. and :: .  The dot (.) also has a meaning but we won't 
be discussing it for a while.  If you want . or : not to be treated as a suffix, make 
sure you precede it by a space: 3 : 'y.' defines a verb, while 3: 'y.' applies 
the verb 3: to the noun 'y.' producing the result 3 .

What really happens during m :n and verb 
define
Now that you're getting older it's time we had a little talk.  About verbs.  Up till now 
the verb-definition sequence has been exotic and peculiar, with a unique form; a 
possessor of great power but shrouded in mystery.  We know only that it somehow 
breathes life into lines of text:
name =: verb define
verb definition
)
or
name =: verb : 'verb definition'
leaving name a verb.

With a layer of cosmetics scrubbed off it is more approachable.  In both cases the 
conjunction m :n is at work.  m must be a number, and n may be either a character 
string or the special number 0 (a boxed list is also possible but we consider it a 
curiosity).  m :n executes the conjunction : with the arguments m and n; the result 
of this execution is an entity which can be any of the primary parts of speech (noun, 
adverb, conjunction, verb), and m indicates which one: m=0 means noun, 1 means 
adverb, 2 means conjunction, 3 means verb, 4 means dyadic verb; 10-13 have 
meanings we will learn later.  You can remember the numbers 0-2 because nouns 
take no operands, adverbs 1, and conjunctions 2; verbs are last in the precedence 



order so they get number 3, and dyadic verbs with their extra operand get number 4.  
If n is a character string, it supplies the text of the entity (which, again, is given the 
part of speech indicated by m); if n is 0, the interpreter interrupts what it's doing at 
the moment it executes the : conjunction, and reads lines from its input source until 
it finds one that contains only the word ')'; execution of the interrupted sentence 
then continues, with the text of those lines becoming the right argument to : and 
thence the text of the defined noun/adverb/conjunction/verb.  If the verb is defined 
in a script file, the input source (for lines to satisfy m :0) is the script file; 
otherwise the input source is the keyboard.  If you forget the ) in a definition at the 
end of a script file, the interpreter will switch over to keyboard input and you will 
find the system unresponsive until you satisfy it by typing ) .

So what's with this 'verb define' lingo?  Simple: when you start J, you get a few 
names defined automatically, and verb and define are two of them—as you can 
see by asking the interpreter what their values are:
   verb
3
   define
:0
—so when you use verb define you are really executing 3 :0 to produce a 
verb; similarly dyad : 'one-line definition' is the same as 
4 : 'one-line definition' which executes the : conjunction to produce a 
dyadic-verb result.

The point is that a verb-definition sequence is just an instance of a compound verb 
produced by a conjunction, and the resulting verb can appear anywhere a verb is 
allowed.  You may assign the verb to a name but that's not required.  Here are some 
examples showing how a definition is just an ordinary part of a sentence:
   addrow =: monad : '+/y.' "1
We define the verb, using the : conjunction, and then we give the resulting verb a 
rank using the " conjunction.  This is a principle to live by: Always make sure any 
verb you define has the proper rank.  Following this rule will save you untold 
trouble by guaranteeing that the verb is applied to the rank of cell that you intended.  
The verb produced by the : conjunction has infinite rank; here, we expect to apply 
our verb on lists, so we assign a rank of 1 before we assign the verb to the name 
addrow .
   (3 : '+/y.') i. 6



15
See?  we define a verb, then we execute it.  It doesn't have to be assigned to a name.  
The distinction between code and data is not sharp as it is in C.
   a =. '+/';'*/'
   b =. (0{::a),'y.'
   (3 : b) 1 2 3 4 5 6
21
b is '+/y.' so we can use it as the text of a verb which we then execute.
   b =. (1{::a),'y.'
   (3 : b) 1 2 3 4 5 6
720
Here b is '*/y.' .  In a later chapter we will explore the delights that result from 
being able to change the text of a program while you are executing it.

Remember: make sure the verbs you define have the proper 
rank.

Compound Verbs Can Be Assigned
Since we now understand that verb define is just a conjunction producing a 
verb result, and we know that we can assign its result to a name, we wonder whether 
we are allowed to assign any compound verb to a name.  Yes indeed, we can, as we 
saw in the assignment to addrow in the previous section.  Any verb can be 
assigned to a name:
   dotprod =: +/@:*"1
Dot-product of two lists is the sum of the products of respective pairs of elements in 
the lists.
   1 2 3 dotprod 1 2 3
14
dotprod takes the dot-product.
   veclength =: %:@:(dotprod~)"1
The length of a vector is the square root of its dot-product with itself.
   veclength 1 2 3
3.74166

Dual-Valence verbs: u :v
u :v also defines a verb of infinite rank but it is completely different from m :
n .  The defined verb is u if it is used monadically, but v if used dyadically:



   bv =. (monad : '+/y.') : (dyad : 'y. - x.')
   bv i. 7
21
   2 bv i. 7
_2 _1 0 1 2 3 4
You can see that the appropriate valence was chosen based on whether the verb was 
executed as a dyad or as a monad.

u :v is often used to assign a default left operand to a dyadic verb:
   pwr =: 2&pwr : (dyad : 'x.^y.')
If you execute pwr as a dyad you get x^y .  If you execute it as a monad you get 
2 pwr y which is then executed (using the dyadic valence of pwr) to become 
2 ^ y :
   3 pwr 4
81
   pwr 4
16

The Suicide Verb [:
The verb [: fails if it is executed.  Use it as one side of u :v to produce a verb 
that fails if it is used with the wrong valence.  Example:
   i. 100 110 120 130
|out of memory
|       i.100 110 120 130
Oops, we thought we were looking those values up in a list.  We're lucky that we 
just ran out of memory—sometimes using the wrong valence of a verb can have 
catastrophic consequences.  To prevent it, use
   dyadi =: [: : i.
   dyadi 100 110 120 130
|valence error: dyadi
|       dyadi 100 110 120 130
   100 130 150 dyadi 100 110 120 130
0 3 3 1

[: also has a special meaning when it appears in a fork, which we will encounter 
later.

Multi-Line Comments Using 0 :0



We know that all comments in J start with NB. and go only to the end of the line.  
There is no way to extend a comment to more than one line, but there is a way to 
put a series of non-executing lines into a script without having to have NB. in each 
of them.  You simply define a noun using 0 :0 and put your comment inside the 
noun:
   0 :0
This is the first line of a comment.
The lines of the comment will become a noun; but,
since the noun is not assigned to anything, it simply
disappears.
)

Final Reminder
Remember: make sure the verbs you define have the proper 

rank.
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                                                                                18. u^:_1, u&.v, and 
u :.v

The Obverse u^:_1
What would it mean to apply a verb a negative number of times?  Applying a verb 
_1 times should undo the effect of applying the verb once.  In J, u^:n applies the 
verb u n times, and u^:_1 is defined as the verb that undoes the effect of applying 
u once.  u^:_1 is called the obverse in J, and where possible it is the same as the 
mathematical inverse of u (or x&u in the dyadic case).  Examples:
   >: 4
5
   >:^:_1 (5)
4
Monad >: adds 1; its obverse subtracts 1.

   *&2^:_1 (10)
5
Monad *&2 multiplies by 2; its obverse divides by 2.

   2 *^:_1 (10)
5
In the dyadic case, the obverse of x&u is applied.  The obverse of 2&* is %&2 .

Not all verbs have obverses; you can see the obverse of a verb v, if there is one, by 
typing v b. _1 :
   +&2 b. _1
-&2
   (%&5)@:(+&1) b. _1
-&1@:(5&*)
   $ b. _1
|domain error
There is no obverse for monad $ .

Some of J's obverses are very ingenious, and you can have a pleasant afternoon 
experimenting to find them.  Most of them are listed in the Dictionary under the ^: 



conjunction.

Apply Under Transformation: u&.v and u&.:v
Using its ability to apply the obverse of a verb, J provides a feature of great 
elegance and power with the conjunction u&.v (monadic or dyadic).  u&.v (all of 
whose ranks are the ranks of monad v) executes u after a temporary change in 
representation given by monad v .  Formally, u&.v y is v^:_1@u@v y; 
informally, x u&.v y is v^:_1 (v x) u (v y) applied to each cell of x and 
y, with the results collected as usual (we will learn a formal notation for this later).  
The idea is that you change the operands using the transformation given by v; then 
do your work with u; then invert the transformation with v^:_1 .  Examples:
   (<1) +&.> 4;5;6
+-+-+-+
|5|6|7|
+-+-+-+
We add x to y; the transformation is that we remove the boxing before we add, and 
put it back after we finish.  The verb +&.> has rank 0 (since monad > has rank 0), 
so here the scalar x is replicated to the shape of y before the unboxing occurs.  
fndisplay shows the details, where open` means the inverse of open :
   defverbs 'plus"0 open"0'
   (<1) plus&.open 4;5
+--------------------------+--------------------------+
|open` (open 1) plus open 4|open` (open 1) plus open 5|
+--------------------------+--------------------------+
 
   <.&.(10&*) 4 4.43 4.89
4 4.4 4.8
<. y finds the largest integer not greater than y; by temporarily multiplying by 10 
we truncate y to the next-lower tenth.

We can easily define a verb to take the arithmetic mean (i. e. the average) of a list:
   mean =: monad : '(+/ y.) % #y.'
   mean 1 2 4
2.33333
If we want to take the geometric mean, we could define a new verb to multiply and 
take the root, or we could just take the arithmetic mean of the logarithms and then 



undo the logarithm:
   mean&.(^."_) 1 2 4
2
Note that we had to use a verb of infinite rank as v so that u would be applied to the 
entire list.  This is a common enough pattern that the conjunction &.: is provided 
which is just like &. but with infinite rank.  We could have used mean&.:^. here.

To add 10 minutes to a time represented as hours,minutes,seconds, we can 
transform to seconds after midnight, do the addition, and transform back:
   0 10 0 +&.(24 60 60&#.) 13 55 0
14 5 0

Suppose we had a list of boxed scalar numbers, and we wanted to add them and 
leave the result boxed.  How can we do it?
   ]a =. <"0 i. 6
+-+-+-+-+-+-+
|0|1|2|3|4|5|
+-+-+-+-+-+-+
The easy way is
   < +/ > a
+--+
|15|
+--+
but after you get used to &., you will find that
   +/&.:> a
+--+
|15|
+--+
seems clearer, because it expresses the temporary nature of the unboxing/reboxing.  
As an exercise, take the time to see why
   +&.>/ a
gives the same answer but
   +/&.> a
does not.

Defined obverses: u :.v
u :.v has the same ranks as u, and it produces the same result as u, except that the 
obverse of u :. v is v .  By defining verbs with appropriate obverses, you make 



it possible to use &. and ^:_1 with them.  For example, in a finance application it 
is necessary to deal with dates in both (year,month,day) form and 'market day' form 
(for example, if Friday is market day number 1200, the following Monday will be 
market day number 1201).  If you have written routines to convert between them:
ymdtomd =: dyad : 'definition'
mdtoymd =: dyad : 'definition'
you would be well advised to make them obverses of each other:
ymdtomd =: dyad : 'definition' :. mdtoymd
mdtoymd =: dyad : 'definition' :. ymdtomd
so that if you want to find the (y,m,d) date of the next market day after the date 
ymd, you simply code
1&+&.ymdtomd ymd
and J will convert ymd to a market day, add one, and convert back to (y,m,d) form.

u&:v and u&v
x u&:v y has infinite rank and is the same as (v x) u (v y) .  It resembles 
u&.y but without the application of the obverse.  It is just a way of saving a few 
keystrokes.  x u&v y is like x u&:v y except that its ranks are both the same as 
the rank of monad v .  As with @: and @, you are advised to stick to u&:v unless 
you are sure you need u&v .

The monadic forms u&v y and u&:v y are equivalent to u@v y and u@:v y 
respectively.  I recommend that you use the @ forms rather than the & forms, 
because your code will be full of m&v and u&n and it will reduce confusion if you 
don't have unnecessary u&v as well.

An observation about dyadic verbs
We noted earlier that usually if a dyad x v y is not symmetric (i. e. if x and y are 
treated differently), the x operand is the one which is more like control information 
and the y operand is the one more like data.  We can see now that this is a 
consequence of the definition of x u^:v y : the verb that is applied repeatedly, 
or the verb whose obverse is taken, is x&u; only the value of y changes between 
executions of u .  When you define dyadic verbs, you should take care to follow 
the same rule in assigning the left and right operands.
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                                               19. Performance: 
Measurement & Tips

J lets you express your ideas tersely, but it is up to you to make sure they are good 
ideas.  Since each keystroke in a J sentence can summon up billions of machine 
cycles, you must make sure that you don't force the interpreter into a bad choice of 
algorithm.  This will be hard at first, when you are struggling to figure out what the 
interpreter is doing, never mind how it is doing it; fortunately the interpreter gives 
you tools to measure the performance of your code.

Timing Individual Sentences
If you run the JforC script with
load 'system\packages\misc\jforc.ijs'
it will define the verb Ts.  Ts stands for 'time and space' and it tells you how long it 
takes to run a given J sentence, and how much space the interpreter used during the 
execution.  For example:
   a3 =. i. 1000
   Ts '+/\ a3'
4.3581e_5 5248
We define a noun a3, and we calculate the running total of its items.  It took 
0.00004 seconds to create the 1000-item running total, and used 5248 bytes.  We 
could have done the whole operation in one line with Ts '+/\ i. 1000', but 
the monad i. uses time and space too, so if we want to find out only what is used 
by +/\, we make sure that's all we measure.

We can use Ts to start to understand what can make J programs slow.  Let's define a 
verb to do the addition operation:
   sum =: dyad : 'x. + y.'"0
sum is an exact replacement for dyad +, having the same rank and function.  
Replacing + with sum does not change the result of a sentence:
   +/\ i. 7
0 1 3 6 10 15 21
   sum/\ i. 7
0 1 3 6 10 15 21



But the performance is quite different, as we can measure:
   a10 =. i. 10
   1000 Ts '+/\ a10'
2.68191e_5 1280
Because +/\ is so fast, we give Ts a left argument to report the average time over 
1000 runs.  If we just ran the sentence once, the result would be corrupted by small 
timing variations introduced by the operating system.  sum/\ is not so fast so we 
run it only once:
   Ts 'sum/\ a10'
0.00181867 3648
Quite a difference: in this running total sum seems to be about 50 times slower than 
+ .  Let's just try adding a list to itself (remember that u~ y is equivalent to 
y u y):
   1000 Ts '+~ a10'
2.68191e_5 896
   100 Ts 'sum~ a10'
0.00033021 2560
Yes, sum is definitely slower than +, though only by a factor of 10 or so this time.  
Why should it be slower?  The answer is, Because it deals with atoms.  Since J verb-
definitions are not compiled, but interpreted line-by-line on each execution, every 
single time we add two numbers with sum, the interpreter has to parse 'x. + y.' 
and perform the addition.  Why, it's a miracle that it only slows down by a factor of 
10!  The lesson is that if you define verbs with small rank, the interpretive overhead 
will be significant.

Still, that doesn't fully explain why sum/\ is so much slower than +/\ .  Let's 
investigate further by increasing the size of the operand:
   a20 =. i. 20
   1000 Ts '+/\ a20'
2.68191e_5 1280
   Ts 'sum/\ a20'
0.00728641 3648
+/\ is unchanged when we move to a list of 20 items—the operation is so fast that 
time is being spent starting the verb rather than running it—but sum/\ slows down 
noticeably.  Interesting; let's try bigger and bigger operands:
   a40 =. i. 40
   1000 Ts '+/\ a40'
2.76572e_5 1408



   Ts 'sum/\ a40'
0.0299561 4160
 
   a100 =. i. 100
   1000 Ts '+/\ a100'
2.76572e_5 1664
   Ts 'sum/\ a100'
0.185741 5184
 
   a400 =. i. 400
   1000 Ts '+/\ a400'
3.77143e_5 3200
   Ts 'sum/\ a400'
3.00367 11328
Holy cow!  On a 400-item list, sum/\ is 80000 times slower than +/\!  What 
happened?

Recall what monad sum/\ is really doing.  It applies monad sum/ to the first item 
of the list; then to the list made of the first 2 items; then the list made of the first 3 
items; and so on.  At each evaluation of monad sum/, the dyad sum verb is 
interleaved between the items and the result is evaluated right-to-left.  The problem 
is, the interpreter doesn't analyze sum to know that it is associative—that 
x sum (y sum z) is the same as (x sum y) sum z—so it doesn't know 
that it can use the result from one subset as an input to the operation for the next 
subset, and it winds up performing every single addition: for the 400th item it adds 
all 400 numbers together.  That's why its time increases as the square of the length 
of the list.

Monad +/\ is fast because the interpreter knows that dyad + is associative, and 
therefore it reuses the result from one subset as input to the next, producing each 
item of the result with a single addition.

Well then, can we give a hint to the interpreter that sum is associative?  Alas, no, 
but we have another trick up our sleeve.  Consider monad sum/\., which applies 
monad sum/ to successive suffixes.  If the interpreter is clever, it will notice that if 
it starts with the smallest suffix—the one made up of just the last item—and 
processes the suffixes in order of increasing size, it will always be evaluating 
x sum (previous suffix result), and right-to-left evaluation implies 
that the result of the previous suffix can always be used as the right operand to each 



application of monad sum, without needing any knowledge of associativity.  Let me 
tell you, this interpreter is nothing if not clever, and that's just what it does.  All we 
have to do is to convert our sum/\ into a variant of sum/\. .  The way to do that 
is simple: we reverse the order of the items, apply sum/\., and reverse the order 
again:
   sum/\.&.|. i. 7
0 1 3 6 10 15 21

This arises enough to be a standard J idiom: use it whenever you need to apply an 
associative verb on prefixes.  It's much faster:
   Ts 'sum/\.&.|. a400'
0.014805 59264
Still not as fast as +/\, but the suffix version uses time proportional to the number 
of items rather than the square of the number of items.

Compounds Recognized by the Interpreter
The interpreter recognizes a great many compounds and has special code to perform 
the compound functions.  For example, we have learned that u@:v y gives the 
same result as u v y, but it does not follow that the two forms are identical: +/
@:, y is faster than +/ , y .  How do know what forms are handled with 
special code?

An appendix to the Dictionary gives a list of special code in the interpreter (press F1 
to bring up help; then click on 'Dic' at the top of the page to bring up the Contents 
page; the appendices are listed at the end of the contents).  There we see that there is 
special code for f/@:, so we know to use that form.  Similarly, farther along we 
see that x i.&1@:< y has special coding, so we know to prefer that form over 
(x < y) i. 1 .  This list changes from release to release, so you should review 
it occasionally.

J's performance is very good even if you pay no attention whatsoever to which 
compounds have special coding, but if you're going to code a lot of J you might as 
well learn the interpreter's preferred idioms.

Use Large Verb-Ranks! and Integrated Rank 
Support
'Think big' is a watchword not just for program design, but for coding as well.  



Starting a primitive has a small cost, but if you start a primitive for each atom of a 
large array, the cost will add up.  To reduce the time spent starting primitives, apply 
them to the biggest operands possible.  This means, Use as large a verb-rank as 
you can.  See what a difference a tiny change can make:
   a =. i. 100000 10
   Ts 'a -@+ a'
3.96384 4.19552e6
   Ts 'a -@:+ a'
0.12801 8.3895e6
These two verbs produce identical results, but -@+ is 30-fold slower than -@:+ on 
this large operand.  The reason is that -@+ has rank 0 (taken from the rank of +), 
while -@:+ has infinite rank.  Rank 0 means that each pair of atoms is fed 
individually through the verb. So, when -@+ is executed, two primitives are started 
for each pair of atoms, one to add and the other to change the sign. Execution of -@:
+ requires only two primitive-starts for the entire array.

You do not need to worry much about the ranks at which individual primitives are 
applied, because of an important feature of J called integrated rank support.  When 
a verb with integrated rank support is used as the u in u"n, the resulting verb runs 
with a single primitive-start and the application of the verb on the proper cells is 
handled within the primitive.  So,
   100 Ts 'a + a'
0.0623949 4.19501e6
   100 Ts 'a +"0 a'
0.248846 4.19526e6
   100 Ts 'a +"1 a'
0.0681035 4.19526e6
   100 Ts 'a +"2 a'
0.0626361 4.1952e6
All these forms produce identical results.  The weak dependence of the speed on the 
rank is typical of a verb with integrated rank support.  Fastest execution is achieved 
when the verb is used alone, but the form u"n still runs fast, and the higher the 
rank, the less the loop-control overhead.  The Special Code page referred to in the 
previous section includes the long list of the primitives with integrated rank 
support.  You will see there that u/, u/\, and the like are also taken care of.

The practical effect of integrated rank support is that you don't need to worry much 
about using the largest possible rank for primitives.  In compounds and verbs that 



you write, you do need to keep the rank high:
   Ts '(<a:;1) { a'
0.00939758 525568
   Ts '1 {"1 a'
0.00952329 525184
Integrated rank support in dyad { gives the two forms equal performance.  Look 
what happens when we replace the { by a user-defined verb with the same function:
   from =. {
   Ts '(<a:;1) from a'
0.00953335 525760
   Ts '1 from"1 a'
0.365966 525696
from lacks integrated rank support, even though it is defined to have the same 
function as {, and it suffers when it is applied to each 1-cell.  This is a good reason 
for you to learn the J primitives and not replace them with mnemonic equivalents.

Shining a Light: The J Performance Monitor
A magnet makes it easy to pick up a needle, but it won't much help you find a 
needle in a haystack.  Likewise, being able to time and tune individual sentences 
will not suffice to let you improve the performance of a large J program.  A large 
program spends most of its time executing a small subset of its code, and any 
improvements you make to other areas are simply wasted effort.  I remember a case 
where a 20,000-line assembler-language program was spending 30% of its time 
executing a single machine instruction—and that instruction turned out to be 
unnecessary!  What you need is a tool that will direct your attention to the areas 
where a speedup will really matter.

The J Performance Monitor will show you how much time is spent executing each 
line of your application.  You can run the Lab on the Performance Monitor to see all 
the facilities available, or you can jump right into timing your code with the simple 
sequence
   load 'jpm'
Do this once to load the tool.  Then, for each timing run, execute
   start_jpm_ 1e7
357142
The operand of start_jpm_ is the size in bytes of the trace buffer, and the result 
is the number of trace entries that can fit in the buffer.  A trace entry is added for 
each line executed, and for entry and exit of explicit definitions (i. e. verbs defined 



with verb define).
   run the code you want to time
   viewtotal_jpm_ ''

J will display a popup window with information about the time spent in each verb.  
An example display is
+---------+------+--------+--------+-----+----+---+
|name     |locale|all     |here    |here%|cum%|rep|
+---------+------+--------+--------+-----+----+---+
|accpay   |base  |0.001435|0.000829| 57.8| 58 |1  |
|intrep   |base  |0.000213|0.000213| 14.8| 73 |1  |
|accint   |base  |0.000393|0.000147| 10.2| 83 |1  |
|stretch  |base  |0.000142|0.000142|  9.9| 93 |1  |
|intexpand|base  |0.000105|0.000105|  7.3|100 |1  |
|[total]  |      |        |0.001435|100.0|100 |   |
+---------+------+--------+--------+-----+----+---+

The columns contain the following information:
 

name  the name of the verb

locale  the locale the verb was running in (we will discuss locales in a later 
chapter)

all  the amount of time spent in this verb including time spent in verbs called by 
this verb

here  the amount of time spent in this verb but not including time spent in verbs 
called by this verb

here%  the here time as a percentage of total time

cum%  cumulative total of here%

rep  the number of times the verb was executed

You should focus your attention on the here column.  If you see a verb that is taking 
longer than you think it should, double-click on its name to look at the details of its 
execution.  Double-clicking on accpay will pop up another window showing
+--------+--------+---
+----------------------------------+
|all     |here    |rep|
accpay                            |



+--------+--------+---
+----------------------------------+
|0.000041|0.000041|1  |
monad                             |
|0.000040|0.000040|1  |[8] if. 4~:#y. 
do.                |
|0.000000|0.000000|0  |[9] 'imm frq int pay' return. 
end.|
|0.000054|0.000054|1  |[10] 'm f i p'=.
y.                |
|0.000116|0.000116|1  |[11] len=.$p=.f#p%
f               |
|0.000724|0.000131|1  |[12] j=.}.len accint f intrep 
i   |
|0.000322|0.000322|1  |[13] r=.j*+/\p%m}.1,(m-1)}.
j      |
|0.000137|0.000137|1  |[14] (len$(-f){.1)
#r              |
|0.001435|0.000841|1  |total 
monad                       |
+--------+--------+---
+----------------------------------+
We see that line 13 takes the most time.  Clicking on the column heading will sort 
the lines using that column as a key, making it easy for you to concentrate on the 
individual lines that are taking the most time.

The J Performance Monitor makes it easy to give your code a good finish by 
pounding down the nails that are sticking up.  As of Release 5.01a there are a few 
quirks you need to work around: you cannot have a verb with the same name as a 
locale; you must close a detail window before you create a new one; and time spent 
in explicit modifiers is not correctly accounted for.
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                                                                                                           20. Input And 
Output

Foreigns
In J, all file operations are handled by foreigns which are created by the foreign 
conjunction !: .  The foreigns are a grab-bag of functions and you would do well 
to spend some time glancing over their descriptions in the Dictionary so you'll have 
an idea what is available.  All the foreigns defined to date in J are of the form m!:n 
with numeric m and n, and they are organized with m identifying the class of the 
foreign.  For example, the foreigns for operations on files have m=1.

File Operations 1!:n; Error Handling
The foreigns 1!:n perform file operations.  For ease of use I have given several of 
them names in jforc.ijs .  To see the details of what they do, read the 
Dictionary.

Monad 1!:1 (ReadFile) has rank 0 .  1!:1 y takes a filename as y and 
produces a result that is a list of characters containing the text of the file.  In our 
examples, the filename is a boxed character string; y can be a file number but we 
won't get into that.
   s =. 1!:1 <'system\packages\misc\jforc.ijs'
   s
NB. File definitions for'J For C Programmers'
NB. Copyright (c) 2002 Henry H. Rich
…

Dyad 1!:2 (WriteFile) has rank _ 0 .  1!:2 y writes to the file y, using 
the character string x to provide the contents.  Any existing file y is overwritten.  
y is a boxed character string or a file number.
   ('Test Data',CR,LF) 1!:2 <'c:\Temp\temp.dat'

Dyad 1!:3 (AppendFile) has rank _ 0 .  x 1!:3 y appends the character 
string x to the of file y (creating the file if it does not exist):
   ('Line 2',CR,LF) 1!:3 <'c:\Temp\temp.dat'



Monad 1!:55 (EraseFile) has rank 0 .  1!:55 y erases the file y with no 
prompting.  Be careful: the power of J makes it possible for you to delete every 
file on your system with one sentence.

The special file number 2 sends output to the screen.  The verb monad Display in 
jforc.ijs uses file number 2 to display its operand (which must be a character 
string) on the screen; you can put Display sentences in a long verb to see 
intermediate results.  In most cases you will prefer to use printf, described below.

There are many other 1!:n foreigns to manage file locks, query directories, handle 
index read/write, and do other useful things.  The Dictionary describes them, and I 
will add only that the description of 1!:12 is misleading: the length to be written is 
implied by the string argument x and must not be included in y; therefore item 1 of 
y is a boxed scalar, rather than a boxed list of 2 integers as for 1!:11 .

Error Handling: u ::v, 13!:11, and 9!:8
When you deal with files you have to expect errors, which will look something like
   s =. 1!:1 <'c:\xxx\yyy.dat'
|file name error
|   s=.    1!:1<'c:\xxx\yyy.dat'
indicating that the file was not found.

You can set up your verbs to catch errors instead of interrupting with a message at 
the console.  We will learn one way here and another later when we study control 
structures for J verbs.  The compound u ::v has infinite rank, and can be applied 
either monadically or dyadically.  u ::v executes the verb u first (monad or dyad, 
as appropriate); if u completes without error, its result becomes the result of u ::
v; but if u encounters an error, v is then executed, and its result becomes the result 
of u ::v :
   rerr =: 1!:1 :: (13!:11@(''"_))
rerr y will execute 1!:1 to read y; if that fails it will execute the foreign 
13!:11 '' .  13!:11 '' produces as result the error number of the last error 
encountered.  This means that if 1!:1 succeeds, the result of rerr will be a string, 
while if 1!:1 fails, the result will be a number:
   rerr <'system\packages\misc\jforc.ijs'
NB. File definitions for'J For C Programmers'
NB. Copyright (c) 2002 Henry H. Rich
…



 
   rerr <'c:\xxx\yyy.dat'
25

You could use 3!:0 to see whether the result of rerr is a string or a number (2 
means string, 1, 4, 8, or 16 means number).  If you want to see the error message 
associated with an error number, there's a foreign 9!:8 to give you the list of 
errors:
   25 { 9!:8 ''
+-----------------+
|file number error|
+-----------------+

Treating a File as a Noun: Mapped Files
Rather than reading a file and assigning the data to a noun, you can leave the data in 
a file and create a noun that points to the data.  The data will be read only when the 
noun is referred to.  This is called mapping the file to a noun.

J's facilities for mapping files are described in the Lab 'Mapped Files'.  A quick 
example of a mapped file is
   require 'jmf'
   JCHAR map_jmf_ 'text'; 'system\packages\misc\jforc.
ijs'
after which the noun text contains the data in the file:
   45 {. text
NB. File definitions for'J For C Programmers'
Moreover, if you assign a new value to text, the file will be modified.

If you are dealing with large files, especially read-only files or files that don't 
change much, mapping the files can give a huge performance improvement because 
you don't have to read the whole file.  You must be very careful, though, if you map 
files to nouns, because there are unexpected side effects.  If we executed
   temp =: text
   temp =: 'abcdefgh'
we would find that the value of text had changed too!  (If you try this, use a file 
you don't mind losing).  The assignment of text to temp did not create a copy of 
data of text, and when temp was modified, the change was applied to the shared 
data.  If a file is mapped to a noun, you have to make sure that the noun, or any copy 



made of the noun in any verb you pass the noun to, is not changed unless you are 
prepared to have some or all of the other copies changed.  This topic is examined in 
greater depth under 'Aliasing of Variables' in the chapter on DLLs.

If the faster execution is enticement enough for you to take that trouble, you can 
consult the Lab to get all the details.

Format Data For Printing: Monad And Dyad ":
Since J reads and writes all files as character strings, you will need to be able to 
convert numbers to their character representation.  Dyad ": has rank 1 _ .  y may 
be numeric or boxed, of any rank (we will not consider boxed y here).  If x is a 
scalar it is replicated to the length of a 1-cell of y .  If y is numeric, each 1-cell of y 
produces a character-list result, with each atom in the 1-cell of y being converted to 
a character string as described by the corresponding atom of x and with the results 
of adjacent 0-cells being run together; the results from all 1-cells are collected into 
an array using the frame with respect to 1-cells.  That sounds like the description of 
a verb with rank 1; almost so but not quite, because ": looks at the entire y and 
adds extra spaces as necessary to make all the columns line up neatly.

A field descriptor in x needs two numbers, w and d .  These are represented as the 
real and imaginary parts of a complex number, so that only a single scalar is needed 
to hold the field descriptor.  The real part of the field descriptor is w, and it gives the 
width of the field in characters.  If the result will not fit into the field, the entire field 
is filled with asterisks; to prevent this you may use a w of 0 which will cause the 
interpreter to make the field as wide as necessary.  The imaginary part of the field 
descriptor is d, giving the number of digits following the decimal point.  If either w 
or d is less than zero, the result is in exponential form (and the absolute value of w 
or d gives the corresponding width), otherwise the result is in standard form.  
Examples:
   0 ": i. 4 4
 0  1  2  3
 4  5  6  7
 8  9 10 11
12 13 14 15
Note that extra spaces were added to the one-digit values to make them line up.  
Note also that 'enough space' includes a leading space to keep adjacent results from 
running together.
   1 ": i. 4 4



0123
4567
89**
****
When you specify a width, you are expected to mean it, and no extra space is 
added.  Here two-digit results would not fit and were replaced with '*'.
   0 0j3 0j_3 ": 100 %~ i. 3 3
0 0.010  2.000e_2
0 0.040  5.000e_2
0 0.070  8.000e_2
A complex number has its parts separated by 'j' .  Here the first field is an 
integer, the second has 3 decimal places, and the third is in exponential form.

When dyad ": is applied to an array, the result has the same rank as y .  If you 
need to write that result to a file, you will need to use monad , to convert it to a list, 
possibly after adding CR or LF characters at the ends of lines.

Monad ":
Monad ": resembles dyad ": with a default x, except that x depends on the value 
of the corresponding atom of y .  The simple description of monad ": is that it 
formats numbers the way you'd like to see them formatted.  The full description is 
as follows: The precision d is given by a system variable that can be set by the 
foreign 9!:11 y (and queried by 9!:10 y; initially it is 6) ; as a quick override 
you may use the fit conjunction ":!.d to specify the value of d for a single use of 
": .  If an atom of y is an integer, a field descriptor of 0 is applied; if the atom has 
significance in the first 4 decimal places, a field descriptor of 0jd is applied; 
otherwise a field descriptor of 0j_3 is applied.  Trailing zeros below the decimal 
point are omitted.
   9!:10 ''
6
   ": 0 0.01 0.001 0.000015 0.12345678 2
0 0.01 0.001 1.5e_5 0.123457 2
In spite of all the detail I gave about the default formatting, in practice you just 
apply monad ": to any numeric operand and you get a good result.  Monad ": 
accepts character arguments as well and leaves them unchanged:
   ; ":&.> 'Today ';'is ';2002 1 24
Today is 2002 1 24



We went inside the boxes with &.> and formatted each box's contents with 
monad ":; this made all the contents strings and we could run them together using 
monad ; .  

Monad ": also converts boxed operands to the character arrays, including boxing 
characters, that we have seen in the display of boxed nouns.

Format binary data: 3!:n
If you need to write numbers to files in binary format, you need something that will 
coerce your numbers into character strings without changing the binary 
representation.  J provides the foreigns 3!:4 and 3!:5 for this purpose.  Each is a 
family of conversions, invoked as a dyad where the left operand selects the 
conversion to be performed.

2 (3!:4) y converts the numeric list y to a character string, representing each 
item of y by 4 characters whose values come from the binary values of the low-
order 32 bits of y :
   16b31424334
826426164
This is an integer whose value is 0x31424344.  We can convert it to a character 
string:
   2 (3!:4) 826426164
4CB1
The 4 characters (with values 0x34, 0x43, 0x42, 0x31) correspond to the bits of 
the number 826426164 in little-endian order.
      We can use a. i. to look at the codes for each character in case they are not 
printable:
   a. i. 2 (3!:4) 1000 100000
232 3 0 0 160 134 1 0
232 3 0 0 corresponds to 1000 and 160 134 1 0 to 100000 .

_2 (3!:4) y is the inverse of 2 (3!:4) y, converting a character string to 
integers:
   _2 (3!:4) '4CB15CB1'
826426164 826426165

The other integer conversions are similar.  1 (3!:4) y converts the low-order 16 
bits of each item of y to 2 characters, and _1 (3!:4) y converts back to 



integers, 2 characters per integer.  0 (3!:4) y is like _1 (3!:4) y but the 
integers are unsigned (i. e. in the range 0-65535).

The floating-point conversions are analogous.  2 (3!:5) y converts each item of 
y to 8 characters representing long floating-point form, and _2 (3!:5) y 
converts back; 1 (3!:5) y and _1 (3!:5) y use 4-character short floating-
point form.

printf, sprintf, and qprintf
When you need formatted lines for printing you may feel at home using printf 
and sprintf, which work like their C counterparts.  printf displays a line, 
while sprintf produces a string result:
   'The population of %s is %d\n' printf 
'Raleigh';240000
The population of Raleigh is 240000
 
   s =. 'The total of %j is %d.\n' sprintf 1 2 3;+/1 2 3
   s
The total of 1 2 3 is 6.

You need to execute
load 'printf'
to get the printf verbs defined.  J's printf contains a few features beyond C's 
such as the %j field type seen above.  You should run the Lab 'Formatting with 
printf' for details.

One feature with no analogue in C is qprintf, which produces handy typeout for 
debugging:
   a =. 3 4 5 [ b =. 'abc';'def';5 [ c =: i. 3 3
   qprintf 'a b c '
a=3 4 5 b=
+---+---+-+
|abc|def|5|
+---+---+-+
 c=
0 1 2
3 4 5
6 7 8



qprintf is described in the 'Formatting with printf' lab.

Convert Character To Numeric: Dyad ".
Dyad ". has infinite rank.  x ". y looks for numbers in the words of y, which 
must be a character array.  Words representing valid numbers are converted to 
numbers; words not representing valid numbers are replaced by x .  If 1-cells of y 
have differing numbers of numbers, x is used to pad short rows.  'Valid numbers' to 
dyad ". are anything you could type into J as a number, and more: the negative 
sign may be '-' rather than '_'; numbers may contain commas, which are 
ignored; and a number may start with a decimal point rather than requiring a digit 
before the decimal point.  With the relaxed rules you can import numbers from a 
spreadsheet into J, using x&". to convert them to numbers:
   999 ". '12 .5 3.6 -4 1,000 x25'
12 0.5 3.6 _4 1000 999
All legal numbers except for 'x25' .
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                                                               21. Calling a DLL Under 
Windows

Interfacing to a DLL is one thing you can do the old-fashioned way: by getting a 
copy of a working program and editing it.  You can find starter programs in the J 
distribution. A good one to start with is \system\packages\winapi
\registry.ijs.  You can glance through this program to see what it does.  It 
starts with
require 'dll'
which defines the verb cd .  Calls to the DLL appear in lines like
rc =. 'Advapi32 RegCreateKeyExA i   i *c i *c i i i *i 
*i'
      cd   root;key;0;'';0;sam;0;(,_1);(,_1)
(this is a single line in the program; I have shown it here as 2 lines because it won't 
fit on the page as a single line)

This example exhibits the elements of a call to a DLL.  The left operand of cd is a 
character list describing the function to be called and what arguments it is 
expecting.  Here we are calling the entry point RegCreateKeyExA in the library 
Advapi32.  The sequence of is and *cs describes the interface to the function.  
The first item in that sequence describes the type of value returned by the function; 
the other items are the arguments to the function and are a one-for-one rendering of 
the argument list that would be passed in C.  So, the line above is appropriate for 
calling a function defined with the prototype
int RegCreateKeyExA(int, char *, int , char *, int, int, int, int *, int *);

The descriptors can be c (char), s (short) , i (int), f (float), d (double), j 
(complex), or n (placeholder—a value of 0 is used and the result is ignored); all but 
n can be preceded by * to indicate an array of that type.  * by itself indicates an 
array of unspecified type.

The right operand of cd is the actual arguments to be passed to the called function.  
It must be a list of boxes in which the contents of each box holds one argument to 
the called function (there is no box to correspond to the returned value).  An 
argument whose description does not include * must correspond to a boxed scalar 
of the appropriate type.  An argument described with * must correspond to a box 



whose contents are either an array or a boxed memory address (see below).  The 
address of the array or memory area is passed to the DLL and the DLL may modify 
the array or memory area; this is how you return an array from the function.

s and f are not native J types.  A scalar argument described by s or f is converted 
by the interpreter to the correct form, while an argument described by *s or *f is 
assumed to point to a memory area with the correct format.

i and d descriptors pose a bit of a problem.  They both correspond to numbers in J, 
but unfortunately it is up to you to ensure that the J internal representation of the 
number matches the type expected by the DLL.  There is no officially-sanctioned 
way to do this, but as of J5.02 you can use monad <. to ensure that a value is an 
integer (for i) and monad _&<. to ensure that a value is floating-point (for d).

Note that if you get things wrong and the function scribbles outside the bounds of an 
array, J may crash.  Note also that a vector of 0s and 1s is held inside J as a vector 
of Booleans, which are chars.  When the function calls for a vector of ints, J will 
convert any Boolean to int.  In the example above, (,_1) reserved space for an 
int; (,0) would have worked too but would require a conversion.

When the function returns, its returned value will be boxed and appended to the 
front of the boxed list that was the right operand of cd to produce the result of the 
execution of cd .  You may use this returned value as you see fit.  Any box that 
contained an array may have had its contents modified by the function; you may 
open the box to get the changed value.

If J was unable to call the DLL, the cd verb fails with a domain error.  You can then 
execute the sentence cder '' which will return a 2-element list indicating what 
went wrong.  The User Guide gives a complete list of errors; the most likely ones 
are 4 0 (the number of arguments did not match the number of declarations), 5 x 
(declaration number x was invalid—the count starts with the declaration of the 
returned value which is number 0), and 6 x (argument number x did not match its 
declaration—the count starts with the first argument which is number 0 and must 
match the second declaration).

Memory Management
Passing arrays into the called function is adequate only for simple functions.  If the 
function expects an argument to be a structure, possibly containing pointers to other 
structures, you will have to allocate memory for the structures, fill the structures 



appropriately, and free the memory when it is no longer needed.  J provides a set of 
verbs to support such memory management.

Allocate memory: mema

mema length allocates a memory area of length bytes.  The result is the 
address of the memory area, as an integer.  It is 0 if the allocation failed.  mema has 
infinite rank.

You must box the memory address before using it as an operand to cd .  Do not 
box the address for use as an operand to memf, memw, or memr .

Free memory: memf

memf address frees the memory area pointed to by address .  address 
must be a value that was returned by mema .  Result of 0 means success, 1 means 
failure.  memf has infinite rank.

Write Into a Memory Area: memw
data memw address,byteoffset,count,type 
causes data to be written, starting at an offset of byteoffset from the area 
pointed to by address, for a length of count items whose type is given by 
type .  type is 2 for characters, 4 for integers, 8 for floating-point numbers, 16 
for complex numbers; if omitted, the default is 2 .  If type is 2, count may be 
one more than the length of data to cause a string-terminating NUL (\0) to be 
written after the data .

Read From a Memory Area: memr
memr address,byteoffset,count,type 
produces as its result the information starting at an offset of byteoffset from the 
area pointed to by address, for a length of count items whose type is given by 
type .  type is 2 for characters, 4 for integers, 8 for floating-point numbers, 16 
for complex numbers; if omitted, the default is 2 .  The result is a list with count 
items of the type given by type .If type is 2, count may be _1 which causes 
the read to be terminated before the first NUL (\0) character encountered.

Aliasing of Variables
When a noun is assigned the value of another noun, as in
   a =. b =. 5



a single memory area is used to hold the value common to both nouns, and the two 
nouns are said to be aliases of each other.  Aliasing obviously reduces the time and 
space used by a computation.  The interpreter takes care to ensure that aliasing is 
invisible to the programmer; if after the statement above we execute
   b =. 6
the interpreter will assign the new value to b only, leaving a unchanged.  What 
actually happens is that the new value is created in a data block of its own and the 
descriptor for the noun b is changed to point to the new block.  (Almost all verbs 
create their outputs in newly-allocated data blocks.  As of release 5.03 the 
exceptions are ], [, and , and u} when used in one of the forms that produces in-
place modification.  Increasing the number of cases recognized for in-place 
execution is a continuing activity of the J developers).

If there were nothing more to say about aliasing, I would not single it out for 
mention from among the dozens of performance-improving tricks used by the 
interpreter.  What makes it worth considering is the effect aliasing has when 
elements outside the J language touch J's nouns.  This can occur in two ways: when 
a noun is mapped to a file and when a noun is modified by a DLL.

Aliasing of Mapped Nouns
When a noun is mapped to a file, the descriptor for the noun points to the file's data 
and that pointer is never changed even if a value is assigned to the variable: the 
whole point of mapping the noun to the file is to cause changes in the noun to be 
reflected in the file, so any assignment to the noun causes the data to be copied into 
the area that is mapped to the file.

In addition, when b is a noun mapped to a file and is assigned to another noun as 
with
   a =. b
the noun a, which is aliased to b, also inherits the 'mapped-to-file' attribute.  This 
behavior is necessary to make mapped files useful, because assignments to x. and 
y. are implicit whenever a verb is invoked and it would defeat the whole purpose 
of mapping if the data of the file had to be copied every time the mapped noun was 
passed to a verb.  The combination of aliasing and mapping means that any 
assignment to a mapped noun also changes the values of all other nouns which share 
the same mapping: for example, if you pass a mapped noun a as the right operand 
of a verb that modifies its y., y., a, and the data in the file will all be modified.

Keeping track of the aliasing is the price you pay for using mapped files.  If you 



need to copy a noun making sure you get a fresh, unmapped data block, you must 
not assign the mapped noun directly, but instead assign the result of some verb that 
creates its output in a new data block.  For example, as of release 5.01 the 
assignment
   a =. 1&# b
will create a new data block containing the data of b, and a will point to that new 
block.

Aliasing of DLL Operands
The J interpreter uses aliasing for boxed cells of an array, so that if you execute
   b =. i. 10000 10000
   a =. b;5
item 0 of a simply contains a pointer to the data block of b rather than a fresh copy 
of the 400MB array.  In addition, when a list of boxes is used as the right operand of 
cd, as in
   'dll-spec' cd   root;key;0;'';0;sam;0;(,_1);(,_1)
any array operands to the DLL function are passed via a pointer to the data in the 
boxed list, with no separate copy of the data being made.  This means that if the 
DLL modifies one of its arguments, any nouns aliased to that argument will also be 
modified: if the DLL function called above modifies its argument 1, the noun key 
and any noun aliased to key (possibly including private nouns in suspended verbs) 
will be changed.  To protect yourself from such side-effects, you can use (1#key) 
in place of key in the invocation of cd .
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                                                                                                 22. Socket 
Programming

J provides the standard set of socket functions.  This chapter assumes you already 
understand socket programming and provides a description of J's facilities.

First, you must load the script that defines the socket interface:
   require 'socket'
(require is like load but if the file has already been loaded it does nothing).  
This will define a number of variables inside J.  You must make the variables 
visible to your program, and the easiest way to do that is with the verb 
DefSockets defined in system\packages\misc\jforc.ijs:
   DefSockets ''
You are then ready to create a socket:
   sdsocket AF_INET,SOCK_STREAM,0
+-+--+
|0|96|
+-+--+

sdsocket returns return_code;socket_number .  Nonzero return codes 
indicate errors; look in J_directory/system/main/socket.ijs for 
definitions.  The valid address families and socket types are defined in 
J_directory/system/main/defs/netdefs_YourOS.ijs.

sdselect
You check the status of sockets with
   sdselect read_list;write_list;error_list;maxtime
The three lists are lists of sockets and maxtime is a time in milliseconds.  
sdselect will delay for a maximum of maxtime milliseconds until it sees a 
socket in read_list that is ready for reading, or one in write_list that is 
ready for writing, or one in error_list that has an error.  When it finds a 
qualifying socket, or when the time limit is reached, it returns
result_code;read_ready_list;write_ready_list;error_list
which lists all the qualifying sockets.  A maxtime of 0 always returns 
immediately, giving the current status of the specified sockets.



If sdselect is invoked with an empty operand (sdselect ''), it checks all 
sockets with a maxtime of 0.

Asynchronous Sockets and socket_handler
By default, sockets created by sdsocket are blocking sockets; an operation on 
such a socket waits until data is available.  This can tie up your J session while the 
remote computer is responding, so if you are serious about your socket 
programming you will want to make your sockets nonblocking.  You do so with
   sdasync socket_number
which marks that socket as nonblocking and requests notification of changes in its 
status.  All operations to a nonblocking socket return immediately (with the error 
code EWOULDBLOCK if the operation cannot be immediately completed).  When 
there is a change in the status of a nonblocking socket, the interpreter executes
   socket_handler ''
and it is up to you to have a socket_handler defined that will use sdselect 
to see what sockets are ready for transfers and then execute those transfers.

Names and IP Addresses
Sockets are addressed by IP address and port number.  To translate a domain name 
to an IP address, use
   sdgethostbyname domain_name
for example,
   sdgethostbyname 'www.jsoftware.com'
+-+-+---------------+
|0|2|216.122.139.159|
+-+-+---------------+
where the result is return_code;address_family;address .  If the 
domain is unknown an address of '255.255.255.255' is returned.

   sdgethostbyaddr address_family;address
will translate an IP address back to a domain name.

The name of your machine is given by
   sdgethostname ''
+-+-----+
|0|1qfe3|
+-+-----+



(result is return_code;name) so you can get your own IP address by
   sdgethostbyname 1 {:: sdgethostname ''
+-+-+-----------+
|0|2|65.80.203.8|
+-+-+-----------+

If you have a socket with an active connection you can get some information about 
the machine on the other end with
   sdgetpeername socket_number
+-+-+------------+--+
|0|2|64.58.76.229|80|
+-+-+------------+--+
where the result is return_code;address_family;remote_IP_addr;
remote_port .

You can get information about your own end of a connected socket with
   sdgetsockname socket_number
+-+-+-----------+----+
|0|2|65.80.203.8|2982|
+-+-+-----------+----+
where the result is return_code;address_family;local_IP_addr;
local_port .

Connecting
Reading from a Web site, you use the sequence sdsocket/sdconnect/sdsend/
sdrecv/sdclose .

   sdconnect socket;address_family;IP_addr;port
will connect your socket to the remote machine addressed by address_family;
IP_addr;port .  If the socket is blocking, sdconnect completes when the 
connection has been made.  If the socket is nonblocking, sdconnect will return 
immediately with the error code EWOULDBLOCK and socket_handler will be 
called when the connection has been made.  An example is
   sdconnect 184;2;'64.58.76.229';80

With the connection established, you can send data with
   data sdsend socket;flags
where the flags are any of the MSG_ values from socket.ijs, usually 0.  The 



result is return_code;number_of_bytes_sent .  Fewer bytes may be sent 
than were in your data; you will have to resend the excess.

You receive data with
   sdrecv socket,count,flags
where count is the maximum number of bytes you will accept and flags are any 
of the MSG_ values from socket.ijs, usually 0.  The result is return_code;
data .  If the socket is blocking, sdrecv will wait until it is ready for reading; if 
the socket is nonblocking, sdrecv will immediately return (presumably you issued 
the sdrecv only after using sdselect to verify that the socket was ready for 
reading).  In either case, sdrecv will return with data if it has any; if the length 
of data is 0, that means that the connection was closed by the peer and all data sent 
by the peer has been received.

When you have finished all you data transfers for a socket, ,you must close it with
   sdclose socket
which has as result an unboxed return_code .

Listening
If you want to wait for a remote machine to get in touch with you, use the sdbind/
sdlisten/sdaccept sequence instead of sdconnect .  The sequence is:

   sdbind socket;address_family;IP_addr;port
to establish a connection between the socket and the address given by 
address_family;IP_addr;port .  If IP_addr is '', the socket can be 
used to listen for a connection to any address on the machine.  If port is 0, the 
system will assign a port number.  The result of sdbind is an unboxed 
return_code .

   sdlisten socket;connection_limit
causes the operating system to start listening for connections to the address bound to 
socket .  The result is an unboxed return_code .A maximum of 
connection_limit connections can be queued awaiting sdaccept .  When a 
connection is made to a listening socket's address, the socket is shown in 
sdselect as ready to read, and you should issue

   sdaccept socket
which will return return_code;clone_socket where clone_socket is a 



new socket, with all the attributes of socket but additionally with a connection to 
the remote host.  You should direct all your sdsend, sdrecv, and sdclose 
operations to the clone_socket .

Other Socket Verbs
Datagrams
The sequences given above apply to sockets of type SOCK_STREAM, e. g. TCP 
sockets.  Connectionless sockets with type SOCK_DGRAM are also supported, and 
could be used for UDP transfers.  The verbs to use to transfer datagrams are

   sdrecvfrom socket;count;flags
where count is the maximum number of bytes you will accept and flags are any 
of the MSG_ values from socket.ijs, usually 0.  The result is return_code;
data;sending_address .  If the socket is blocking, sdrecvfrom will wait 
until it is ready for reading; if the socket is nonblocking, sdrecvfrom will 
immediately return (presumably you issued the sdrecvfrom only after using 
sdselect to verify that the socket was ready for reading).  The returned data is 
the datagram, which may have a length of 0.

   data sdsendto socket;flags;address_family;IP_addr;
port
where the flags are any of the MSG_ values from socket.ijs, usually 0.  The 
datagram is sent to the remote address given by address_family;IP_addr;
port, and the result is return_code;number_of_bytes_sent .

Socket Options
Verbs to query and set socket options are

   sdgetsockopt socket;option_level;option_name
with result return_code;option_value .  Examples:
   sdgetsockopt sk;SOL_SOCKET;SO_DEBUG
   sdgetsockopt sk;SOL_SOCKET;SO_LINGER

   sdsetsockopt socket,option_level,option_name,
value_list
(note that the operand is an unboxed list)  The option is set, and the result is 
return_code;option_value .  Examples:
sdsetsockopt sk,SOL_SOCKET,SO_DEBUG,1



sdsetsockopt sk,SOL_SOCKET,SO_LINGER,1 66

   sdioctl socket,option,value
reads or sets control information (result is return_code;value).  Examples:
   sdioctl sk,FIONBIO,0  NB. set blocking
   sdioctl sk,FIONBIO,1  NB. set non-blocking
   sdioctl sk,FIONREAD,0  NB. count ready data

Housekeeping
   sdgetsockets  ''
The result is return_code;list_of_all_active_socket_numbers .
   sdcleanup ''
All sockets are closed and the socket system is reinitialized.  The result is 0 .
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                                                                      23. Loopless Code V—
Partitions

The adverb \ operated on subsets of the operand y that were taken in a regular 
way.  Now we will take the next step, and operate on irregular subsets of y .  This 
will finally give us the chance to do interesting work with character strings.

Find Unique Items: Monad ~. and Monad ~:
Monad ~. has infinite rank.  ~. y is y with duplicate items removed and is called 
the nub of y.  The items of ~. y are in the order of their first appearance in y :
   ~. 'Green grow the lilacs'
Gren gowthliacs
   ]a =. _2 ]\ 0 1 1 2 0 1 2 3 1 3 1 2
0 1
1 2
0 1
2 3
1 3
1 2
   ~.a
0 1
1 2
2 3
1 3
y can have any rank, and ~. y gives the unique items.

Monad ~: has infinite rank and tells you which items monad ~. would pick.  ~: y 
is a Boolean list where each element is 1 if the corresponding item of y would have 
been selected for the nub of y :
   ~: 'Green grow the lilacs'
1 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1
   ~: a
1 1 0 1 1 0
   (~: a) # a



0 1
1 2
2 3
1 3

~. y is equivalent to (~: y) # y .

Apply On Subsets: Dyad u/.
Dyad u/. has infinite rank.  x u/. y applies u to subsets of y for which the 
corresponding items of x (called the keys) are identical.  I will skip the formal 
description in favor of a verbal one: First find the nub of x, call it nx .  Then, for 
each item of nx, find all matching items of x; make an array of the corresponding 
items of y (this array will always have rank one more than the rank of an item of y), 
and apply u to that array; the result becomes one item of the result of x u/. y .  
The items of x u/. y thus correspond to items of the nub of x .  Note that the 
subsets of y may have different shapes (they will all have the same rank, being 
made of items of y, but each subset may have a different number of items).  For this 
reason, we usually have u produce a boxed result to avoid framing fills.
   ]a =. 2 0 1 0 2 </. 'Hello'
+--+--+-+
|Ho|el|l|
+--+--+-+
The subsets were created, and each one was boxed.  Note that each subset is a list, 
even the one with only one element:
   $&.> a
+-+-+-+
|2|2|1|
+-+-+-+

   3 0 3 0 3 +//. 100 1 200 2 300
600 3
The summing was performed for each subset.  Note that the result is sorted not on 
the value of the keys, but rather on the smallest index of each key in x .

   ]a =. _2 ]\ 'Fred';100;'Joe';200;'Fred';50;'Sam';30
+----+---+
|Fred|100|
+----+---+



|Joe |200|
+----+---+
|Fred|50 |
+----+---+
|Sam |30 |
+----+---+
A small database of amounts we owe.  We can quickly get a total for each creditor:
   ]b =. ({."1 a) +/@:>/. ({:"1 a)
150 200 30
({."1 a) gives the list of names, which we use as keys for the data given by 
({:"1 a) .  For each subset, we open the boxes and add up the results.  Note that 
+/@>/. would not do in place of +/@:>/., and understand why.

It would be nice to have names associated with the totals:
   (~. {."1 a) ,. <"0 b
+----+---+
|Fred|150|
+----+---+
|Joe |200|
+----+---+
|Sam |30 |
+----+---+
We box the totals using <"0 before we join items of the totals to the items of the 
nub.  Recall that x ,. y concatenates each item of x with the corresponding item 
of y .We take advantage of the fact that the results of u/. have the same order as 
the nub.

Apply On Partitions: Monad u;.1 and u;.2
Unlike dyad u/. which applies u to scattered subsets of y, u;.n applies u to 
sequential subsets of y .  In monad u;.n, the subsets are computed from 
information in y itself; in dyad u;.n, x specifies the subsets.  u;.n is really 4 
different cases distinguished by the number n; we will start with the case where n is 
1, 2, _1, or _2 .

Avoid the error of thinking that an operation on a subset of y somehow modifies 
y .  Never happens.  In J, the result of a verb is always a new noun.  You may 
assign that noun to the same name as one of the operands, but until you do, the old 



operand is unchanged, and both it and the result of the verb are available for further 
use.

u;.1 y partitions y by finding the items of y that match the first item of y (i. e. 0
{y); each such item, called a fret, is the start of an interval of y which runs from the 
fret to the last item before the next fret (the last interval runs to the end of y).  
Monad u is applied to each interval (which is always a list of items of y), and the 
results of u become the items of the overall result of u;.1 y .
   <;.1 ' a list of words '
+--+-----+---+------+-+
| a| list| of| words| |
+--+-----+---+------+-+
Each ' ' character, even the one at the end, started a new interval.  We are not 
restricted to boxing the intervals:
   #;.1 ' a list of words '
2 5 3 6 1
Here we report the length of each word.

u;._1 y is like u;.1 y except that the fret itself is omitted from the interval.  
The interval could be empty in that case:
   <;._1 ' a list of words '
+-+----+--+-----++
|a|list|of|words||
+-+----+--+-----++
   #;._1 ' a list of words '
1 4 2 5 0

u;.2 y and u;._2 y are like u;.1 y and u;._1 y except that the frets are 
those items of y that match its last item, and each marks the end of an interval:
   <;.2 'Mississippi'
+--+---+---+---+
|Mi|ssi|ssi|ppi|
+--+---+---+---+

Use u;.2 y to split a list when you know the ending marker for the intervals:
   ;: ;._2 (0 : 0)
Fred 500
Joe 200
Fred 50



Sam 30
)
+----+---+
|Fred|500|
+----+---+
|Joe |200|
+----+---+
|Fred|50 |
+----+---+
|Sam |30 |
+----+---+
Here (0 : 0) creates a noun from the lines that follow.  Each line ends with an 
unseen LF character which provides a convenient fret for splitting the lines.  We 
use ;._2 to apply monad ;: to the text of each line (not including the fret, which 
is dropped by ;._2).  Monad ;: splits each string into words and boxes the words.  
The result is not the same as the array we created earlier, because the second column 
is character rather than numeric.  We could have written noun define instead of 
(0 : 0) .

Monad u;.n has rank 1 _ when n is 1, 2, _1, or _2 .

Apply On Specified Partitions: Dyad u;.1 and 
u;.2
When n is 1, 2, _1, or _2, x u;.n y has infinite rank and, in the one-
dimensional case where x is a Boolean list of 0s and 1s, resembles u;.n y .  The 
difference is that the frets are given by the positions of 1s in x rather than by values 
of the items of y .  We can define u;.1 y as (({.y)="_ _1 y) u;.1 y, 
and u;.n for the other values of n similarly.
   0 1 0 1 0 +/;.1 (20 30 40 50 60)
70 110
As in this example, some leading items of y may not be in any interval.

In the general case x is a list of boxed Boolean lists, with j{::x supplying the frets 
for axis j .  The partition is then multidimensional:
   (0 1 1;1 0 0 1) <;.1 i. 3 4
+------+--+
|4 5 6 |7 |



+------+--+
|8 9 10|11|
+------+--+

In both the monadic and dyadic cases of u;.1, u;._1, u;.2, and u;._2, the 
partitions to which u is applied have the same rank as y (but the shapes along the 
leading axes are reduced by the partitioning).

Find Sequence Of Items: Dyad E.
Dyad E. has infinite rank and is used to slide a pattern across an array and look for 
positions at which the pattern matches the items of the array.  x and y should have 
the same rank, and the sliding occurs along all axes of y, giving a Boolean result 
with the same shape as y .  We will consider only the cases where y is a list.
   'is' E. 'Mississippi'
0 1 0 0 1 0 0 0 0 0 0
The 1s in the result tell where the pattern starts.  The result of E. is often used as 
input to u;.1 :
   ('is' E. 'Mississippi') <;.1 'Mississippi'
+---+-------+
|iss|issippi|
+---+-------+

A more ambitious example:
   html =. 0 : 0
<th><a href='page1.html'>Press here to go back</a></th>
<th><a href='page2.html'>Press here to go home</a></th>
<th><a href='page3.html'>Press here to go away</a></th>
</table>
</center>
)
   ('<a' E. html) {.@:(<@:(8&}.);._1)@:('>'&,);.1 html
+------------+------------+------------+
|'page1.html'|'page2.html'|'page3.html'|
+------------+------------+------------+
That looks like a useful result, but what a mess to produce it!  If you want, you may 
try to understand that, but a better approach is to break it up:
   extracthref =: <@:(8&}.) ;._1 @:('>'&,)
This seems understandable, with effort: the execution order is ((<@:(8&}.)) ;.



_1) @:('>'&,); we prepend '>' to y, then we use ;._1 on the string.  That 
will make the prepended '>' the fret, and so we will break the string into parts that 
start with '>', throw away the first 8 characters of each part, and box each trimmed-
down part.  We can even try it on a test bit:
   extracthref 'abcdefghijkl>xxx'
+----++
|ijkl||
+----++
Now we can look again at our original line, rewritten:
   ('<a' E. html) {.@:extracthref ;.1 html
+------------+------------+------------+
|'page1.html'|'page2.html'|'page3.html'|
+------------+------------+------------+
This makes some sense now.  The execution order is ('<a' E. html) ({.@:
extracthref ;.1) html . We use E. to find all the starting positions of 
'<a' tags; then, for each one, we split what follows the '<a' into blocks 
terminated by '>', and then we take the first one, which will have the data before 
the '>' that matched the '<a' .

Multidimensional Partitions
The left argument to the partitioning dyads u;.n can be a list of boxes.  In this case 
the first box contains the partition marks for axis 0, then next box contains the 
marks for axis 1, and so on.  If a set of partition marks is an empty list, the 
corresponding axis will be unpartitioned.

Apply On Subarray: Dyad u;.0
Dyad u;.0 has rank 2 _ .  x u;.0 y uses x to specify a subarray of y; the 
subarray is extracted, and u is applied to it to produce the final result.  We will 
discuss the simple case where x is a rank-2 array.

The first item of x (call that s) gives the starting corner of the subarray.  The second 
item of x gives the length of each axis of the subarray.  If x is shorter than the rank 
of y, unspecified axes are taken in full.  For example:
   ]a =. a. {~ (a. i. 'a') + i. 4 4
abcd
efgh
ijkl



mnop
A cute little expression in its own right.  See why this produces the 4×4 array of 
characters shown.  Remember that a. is the alphabet of all ASCII characters in 
order.  An even more elegant way to produce the same result would be (i. 4 4)&
+&.(a.&i.) 'a' .
   (0 0 ,: 2 2) ];.0 a
ab
ef
Starting corner 0 0; lengths 2 2; result is a 2×2 subarray, left unchanged by 
monad ] .
   (1 2 ,: 3 2) ];.0 a
gh
kl
op
Starting corner 1 2; lengths 3 2; result is a 3×2 subarray, left unchanged by 
monad ] .  You get the idea.

If an item of s is negative, the corresponding axis of the subarray extends backward 
from the starting point (and its absolute value is used as the starting position):
   (2 _2 ,: 2 2) ];.0 a
jk
no
Starting corner 2 2 (the character 'k'); lengths 2 2, but running backward in 
axis 1; result is a 2×2 subarray, left unchanged by monad ] .  Note that the axis 
extends backward, but the items retain their normal order—you have merely 
specified the interval by its endpoint rather than its beginning point.  If you want to 
reverse the order of the axis, you can do that too, by making the corresponding 
length negative:
   (2 _2 ,: 2 _2) ];.0 a
kj
on
Starting corner 2 2 (the character 'k'); lengths 2 2, but running backward in 
axis 1; result is a 2×2 subarray with axis 1 reversed, left unchanged by monad ] .

The subarray must end at the limits of the array.  If the length requests more than 
that, the subarray will be shorter than was requested.  A length of _ or __ will 
always fetch from the starting point to the limit of the array.



Dyad u;.0 is a great way to pick out a subarray to work on.  Always consider 
using it whenever you find yourself using more than one application of {.and }. to 
select a portion of an array.  Even if you are working with a list, using dyad u;.0 is 
a good way to work on a portion of the list without copying any part you aren't 
working on.

Apply On All Subarrays: Dyad u;.3 and u;._3
x u;._3 y applies u to subarrays of y as specified by x .  The operation is 
similar to dyad u/ (infix), but dyad u/ slides a one-dimensional window across y 
to select sequences of items of y, while dyad u;._3 moves a multidimensional 
window throughout y to select multidimensional regions.  When the window has 
only one dimension, the operation is like dyad u/ but with a little extra control over 
the positions of the window.

The second item of x (actually, | 1{x) gives the size of the window (if an item is 
negative the corresponding axis is reversed before u is applied to the window; an 
infinite value means 'take all the way to the end of the array').  The first item of x (0
{x) is the movement vector: the window is positioned at every point at which each 
item of the window position is an integral multiple of the corresponding item of the 
movement vector, as long as the window fits inside y .  If an item of the movement 
vector is smaller than the corresponding item of the size, the windows will overlap 
along that axis.

Dyad u;._3 is useful in imaging applications.  The following example averages 
2×2-pixel regions in an image using a simple box filter:
   ]image =. ? 8 8 $ 100
31 88 65 15 68 38 38 49
14 58 84 59 95 55 14 98
40 14 56 25 48 46 96 12
19 31 62 12 65 62 80 24
47 38 20  2 90 42 14 94
41 13 88  9 16  7 36 25
13 78 45 34 45 80 93 65
21 67 90 25 86 47 50 60
   (2 2,:2 2) (*&0.25)@:(+/)@:, ;._3 image
47.75 55.75    64 49.75
   26 38.75 55.25    53



34.75 29.75 38.75 42.25
44.75  48.5  64.5    67

The rank of each operand presented to u is the same as the rank of y .  The shape 
of each operand presented to u is the shape of y with the leading items replaced by |
1{x (formally, this is (|1{x),(#x)}.$y).

If x has rank less than 2, it is processed as if it were 1,:x which will try the 
window at all possible locations.

x u;.3 y is similar to x u;._3 y, but the window is positioned at every 
starting point that is within y, even if the entire window will not fit within y .  For 
those positions at which the window will not fit, the operand to u is truncated.

Extracting Variable-Length Fields Using ^: 
and ;.1
Breaking a string of variable-length fields into its individual fields seems to be a 
problem requiring a loop.  How can you find the second field until you have 
examined the length of the first?  There happens to be a good way to do this in 
loopless J.  We will use as an example a set of character-string records where each 
record is preceded by a one-digit length (maximum string length is 9 characters).  
For example, the string
   data =. '5There2is1a4tide2in3the7affairs2of3men'
contains 9 records, each containing a single English word.  How do we split the 
string into its records?

First, we examine each possible starting position and calculate how long a record 
would be if it started at that position.  The calculated length must be the entire 
record length including that of the length field itself.  Obviously, we will be 
calculating spurious lengths at the places that turn out not to be record-start points, 
but that is the small price we pay for loopless coding.  Here, the data length is given 
by the difference between the ASCII value of each byte and the ASCII value of 
'0', and we add one to account for the length of the length field:
   ]l =. >: (a. i. data) - a. i. '0'
6 37 57 54 67 54 3 58 68 2 50 5 69 58 53 54 3 ...

Next, we calculate, for each position, where the next record will start assuming that 
a record starts at that position.  Clearly, we do this by adding the putative record 
length to the offset of the position.  If the resulting total is past the end of the string, 



we limit the position to one character past the end of the string:
   ]n =. (#l) <. l + i. # l
6 38 38 38 38 38 9 38 38 11 ...

Now for the trick.  The first record starts at offset 0.  The next record starts at offset 
0{n .  The record after that starts at offset (0{n){n, and so on.  To get the list of 
all the starting positions, we use
   ]pos =. (n,_1) {~^:a: 0
0 6 9 11 16 19 23 31 34 38 _1
The special power u^:a: means ‘keep applying u until the result stops changing, 
and return the vector of results’.  It is like u^:_ in that it applies u until the result 
stops changing, but u^:a: returns all the intermediate results from u, not just the 
last one.  The result from {~^:a: is the list of start-of-record positions, and all that 
remains is to collect the records.  We discard record pointers that are off the end, 
and box the records starting at thepositions given.  We do this by converting the list 
of valid record-start points to a Boolean vector, and using the partitioning functions 
to box the records:
   ((i. #data) e. pos) <;._1 data
+-----+--+-+----+--+---+-------+--+---+
|There|is|a|tide|in|the|affairs|of|men|
+-----+--+-+----+--+---+-------+--+---+
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                                                                                 24. When Programs Are 
Data

One characteristic of maturity in programming is readiness to pass a program as an 
argument.  A well-designed program does not exhibit a megalomanic urge to do 
everything the user may desire; it is content to perform a limited function well, and 
to leave other functions to other programs.  A suite of such programs can be 
variously connected to perform a great variety of functions, with each program 
doing its bit and passing control to the next one.

In C a program is passed to another program by pointer reference, and invoked by 
(*pfi)(arguments).  J has no pointers, but it has a great many ways to pass 
executable nuggets around the system.  We will learn them now.

Calling a Published Name
The simplest way to get a verb f to pass control to another program g is to define f 
to call a verb with a public name, say f_subfn, and then to define f_subfn to be 
g .  In C, this would be ridiculous, because it would imply that f_subfn is 
permanently bound to a single value of g, with the result that all calls to f from 
anywhere in your program would be stuck with the same value of g .

J overcomes this objection by allowing redefinition of f_subfn .  Each 
invocation of f looks like
   f_subfn =: g
   f arguments
When f is invoked elsewhere, the correct value of f_subfn will be assigned 
similarly, so each invocation of f can pass control properly.

I find this technique hideous, but I have to admit it is effective.  J uses it to get 
callbacks from DLLs.  It must not be used if f_subfn is going to be called in 
response to an event, since its value may have been redefined by the time the event 
occurs.

Using the Argument To a Modifier
If the verb isn't going to call a name of its own choosing, you have to tell it what to 



call.  The simplest way to do this is to change the verb into a modifier; then when it 
executes it has access to its operands, which can be verbs.  So, instead of
f =: verb : 'definition'
you write
f =: adverb define
monadic definition
:
dyadic definition
)
and within the definition of f you can refer to the left operand of the adverb, which 
goes by the name u. .  If you decide to write a conjunction instead, its right 
operand is v. .  The noun operands of the derived verb (u f or u f v) are x. 
and y., as usual.  We will discuss user-defined modifiers in a later chapter.

In Chapter 3 this technique was used to calculate the Chebyshev coefficients of a 
function.  The function to be approximated is one of the inputs to this calculation, so 
we write an adverb and let its left operand be the function.  With chebft defined 
as in the example, an example of its use is:
   10 (2&o.) chebft 0 1
1.64717 _0.232299 _0.0537151 0.00245824 0.000282119…
Here the function to be approximated is the cosine function 2&o., evaluated for 10 
Chebyshev coefficients over the interval 0 1 .

When you define a modifier, you have no way to specify that you are defining only 
the dyadic case as you can for a verb with dyad define .  Instead, you use the 
form given above, in which the monadic definition (if any) is separated from the 
dyadic by a line containing a single ':' character.  chebft did this, since its 
derived verb is always dyadic.

Invoking a Gerund: m`:6
Sometimes you want to use a noun rather than a verb to designate a verb to be 
called.  An asynchronous socket handler is an example: the socket handler will have 
many transfers going on at once, each one with a callback to be executed when the 
transfer is complete.  The callbacks must be put into a table along with other 
information about the transfer; in other words, the callbacks must be nouns.

We have already met nouns that carried verbs; we called them gerunds.  We found 
that gerunds were created by the conjunction ` and executed by m@.v .  While 



these tools are adequate to allow verbs to be passed as arguments, some 
simplifications are available that we will discuss now.

A gerund created by u`v is always a list (each element of which, as we learned, is 
an atomic representation of a verb which we will treat as untouchable).  Even if 
there is only one verb, the result of ` is a list:
   +`''
+-+
|+|
+-+
   $ +`''
1

It makes sense for the gerund created by ` to be a list, since it contains a list of verb-
representations one of which is selected for execution by m@.v .  But when we are 
passing a single verb-as-noun as an argument, it is OK for it to be a scalar box.  
And, it can be invoked using the `: conjunction: m`:6 converts the gerund m into a 
verb.  So, in our example, we pass the callback as one box in a parameter list, and 
then we select it, turn it into a verb with m`:6, and execute it, as we can see in a 
stripped-down example.  The gerund operations are not difficult so I am going to 
keep your interest with a couple of new tricks:
   callback =: dyad : '(x.) =: y.'
Howzat?  (x.) =:?  Yeah, this means that the value of x. tells what variable will 
be assigned.  x. can be any valid assignment target: a name, a multiple assignment, 
or other exotic forms given in the Dictionary.
   calledfn =: monad : '(0 { y.)`:6 (1 {:: y.)'
So calledfn is expecting an argument of (at least) 2 boxes.  The first one will be 
the gerund to execute, and the second one will be the argument to pass to that verb.  
We open the second box (with {::) but we leave the first as a box so that `:6 can 
turn it into a verb.
   calledfn 'vbl'&callback ` (<25)
The first challenge is figuring out what the argument to calledfn is.  ` sees a 
verb on its left; it converts that to a gerund.  It sees a noun to its right, so it appends 
it unchanged to the gerund from the left.  This produces
   'vbl'&callback ` (<25)
+----------------------+--+
|+-+------------------+|25|
||&|+-------+--------+||  |



|| ||+-+---+|callback|||  |
|| |||0|vbl||        |||  |
|| ||+-+---+|        |||  |
|| |+-------+--------+||  |
|+-+------------------+|  |
+----------------------+--+
The first box is the atomic representation of the verb, just as mysterious as it was 
billed to be, and the second box has the 25.  Now what do we get when we pass that 
in as the argument to calledfn (try to work it out before you peek at the answer)?
   calledfn 'vbl'&callback ` (<25)
25
Did you get it?  We executed 'vbl'&callback 25 which then executed 
vbl =: 25 which has the result 25, which comes back as the result of 
calledfn .  The assignment was public:
   vbl
25

Passing the Definition Of a Verb: 128!:2 (Apply)
As an alternative to passing a gerund and invoking it with m`:6, you could pass the 
string representation of a verb and make a verb out of it with 3 :n or 4 :n .  
Better yet, if you can make do with a monadic verb, you can use the foreign 
dyad 128!:2 which has rank 1 _ and goes by the name Apply.  x 128!:2 y 
takes the string x which must describe a verb, and applies the verb so described to y 
(as a monad).  It is therefore similar to (3 : 'x') y with the restriction that x 
must describe a one-line verb without assignments.  The advantage of using 
128!:2 rather than the method in the next section is that y does not have to be 
converted to its string representation.

Passing an Executable Sentence: Monad ". and 
5!:5
As the ultimate in flexibility, you can pass an entire J sentence as a character string 
and then execute it with monad ". .  It is executed exactly as if it had been a line 
of the executing verb (or from the keyboard if that's where ". was entered).  For 
example:
   ". 'a =. i. 4'



0 1 2 3
The sentence was executed.
   a
0 1 2 3
The assignment was performed.
   ". '+/' , ": a
6
The operand of monad ". must be a string, so before we can take its total we must 
convert a to a sequence of characters that will have the value of a when executed.  
For a large operand, converting to string form adds overhead that might steer you 
towards using a gerund or 128!:2 instead.

I think C programmers are likely to overlook opportunities to use monad ". 
because it is so foreign to their experience.  It is equivalent to compiling and 
executing a code segment as part of the running program—it's just unthinkable.  But 
in J, it's commonplace.

If you are going to use monad ". you will face the problem of converting your 
nouns to string form.  Here's the display of a noun: what character string would you 
execute to produce a noun with that value?
   a
+------------+----------------------------------+
|+---+--+---+|0 2.25 4.5 6.75 9 11.25 13.5 15.75|
||abc|de|fgh||                                  |
|+---+--+---+|                                  |
+------------+----------------------------------+
Fortunately, you don't have to worry about it.  The foreign monad 5!:5 takes as y 
a boxed name (not a value) and produces a string which when executed has the 
same value as the variable named by y .  So:
   5!:5 <'a'
(<<;._1 ' abc de fgh'),<2.25*i.8
…and if you tell me you came up with the same string, I'm not going to believe you.
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                                                                                                              25. Loopless Code 
VI

The algorithms that are hardest to put into loopless form are the ones that chug 
through the items of an array, modifying a set of temporary variables that control 
the operation at each step.  I am going to show you how to put one example of such 
an algorithm into loopless form.  The resulting structure can be used for many such 
problems.

The example problem is a simulation.  In a certain church most of the worshippers 
are devout, but the front pew is always packed with knaves.  Collection is taken 
every Sunday.  Each knave brings two coins to throw in, but, being a knave, he first 
removes the two most-valuable coins from the plate before adding his own.  Given 
p, the contents of the plate when it reaches the front row (a list of coin-values) and 
k, the coins brought by the knaves (an n×2 array), what is the final contents of the 
plate, and what does each knave make off with?  For test data, we will use
   p =. 100 25 100 50 5 10
giving the contents of the plate as it enter the knaves' row, ,and
   ]k =. _2 ]\ 50 50 100 25 5 10 25 50 25 10
 50 50
100 25
  5 10
 25 50
 25 10
as the coins to be thrown in by the greedy knaves.

After trying for a clever solution for a little while we give up and decide we are 
going to have to simulate the action of each knave.  We start by writing a verb 
knave to perform a knave's action.  The design of this verb requires a little careful 
joinery to make it useful later: we will invoke it as x knave y where x is an item 
of k, i. e. the input for one knave, and y is the result from applying knave for the 
previous knave; the result of knave must have the same format as the y operand of 
knave; finally, the result of knave must include whatever we want as the final 
solution of the problem.

The trick is that the result of knave, which will be the input to the next invocation 



of knave, must carry all the information needed by the next invocation of knave; 
this is the way information is passed from knave to knave.  The main design 
decision is to figure out what the format of the y operand of knave will be.

Obviously we need to know the contents of the plate as it is given to each knave.  
Also, the purpose of knave is to calculate what coins are removed, so those coins 
should be part of the result.  We decide that the y operand of knave will consist of 
those two things, in the order (coins removed),(plate contents), and 
we already know that the x operand will have the format of an item of k, i. e. the 
knave's two coins.  Now we are ready to code knave .

It should look at the plate-contents portion of its right argument, sort it into order of 
size, take the two biggest values as the result of interest, and use the rest (with the 
knave's own coins added) as the plate contents to be passed to the next knave.  The 
coins that were removed are put into their place at the beginning of the result 
vector.  In J this will be:
   knave =: dyad define
xlen =. #x.  NB. number of coins added/removed
splate =. \:~ xlen }. y.  NB. extract plate contents, 
sort
(xlen {. splate) , (xlen }. splate) , x.  NB. build 
result
)

Let's test it.  The y operand to the first invocation of knave will have a couple of 
placeholders in the place where the coins removed by the previous knave would be, 
followed by the initial contents of the plate.  In other words,
   ]inity =. ({:k),p
25 10 100 25 100 50 5 10
Here we used the last item of k as a placeholder.  The values don't matter but we 
want the right shape so the program will still work if we change the number of coins 
in k .  Applying this value to the first knave we get
   50 50 knave inity
100 100 50 25 10 5 50 50
Yes, that's right: the first two items of the result are the two dollar coins the knave 
took, and he threw his coins in at the end.

Before we go on we can't help noticing that taking the first two items of splate 
and then dropping those same items—that's needless work.  We can simplify 



knave to
   knave =: dyad : '(\:~ (#x.) }. y.) , x.'

Now we need to apply knave sequentially on all items of k .  We have learned 
enough J to write a sentence to do that, but because this is a recurring problem I 
have written a conjunction LoopWithInitial to hide the complexity (we'll look 
at its details in a moment).  This conjunction takes the verb knave, the initial value 
inity, and the array k and applies knave repeatedly, with each item of k taking a 
turn as x with the y set to the result from the previous invocation of knave :
   ]res =. knave LoopWithInitial inity   k
100 100 50 25 10 5  50 50
 50  50 50 25 10 5 100 25
100  50 25 25 10 5   5 10
 25  25 10 10  5 5  25 50
 50  25 10 10  5 5  25 10
We see the result after each application of knave (if you want to see the input 
alongside the result, type k ,&<"_1 res).  The contents of the plate are included 
in res as well; we can extract the desired result simply as
   2 {."1 res
100 100
 50  50
100  50
 25  25
 50  25

Once you have defined the verb and the initial value, you can use 
LoopWithInitial to solve problems of this kind.

You may skip the rest of this chapter if you are not curious about how 
LoopWithInitial works.  It performs the following steps:
   LoopWithInitial =: conjunction define
by =. <"_1 y.     NB. 1 box items of y
ry =. |. by       NB. 2 reverse order for \.
ey =. ry , <n.    NB. 3 append initial value
r  =. u.&.>/\. ey NB. 4 apply u. in boxes
er =. }: r        NB. 5 remove initial value
rr =. |. er       NB. 6 put in original order
>rr               NB. 7 remove boxing
)



Since the initial value is going to be appended to the y operand, and they have 
dissimilar shapes, it is necessary to box each item of y as well as the initial value.  
Once the items of y are boxed, they are put into reverse order, because as we have 
seen u/\. is much faster than u/\ .  Then the initial value is appended to the 
reversed boxed y .  With that preparation complete, the operation can be 
performed: u.&.>/\. applies u.&.> (in words: unbox each operand, apply u., 
and rebox) starting at the end of the reversed y .  The first application of u.&.> 
will be between the original first element of y and the initial value; the next 
application will be between the original second element of y and the result of the 
first application; and so on.  The results from the applications of u.&.> are 
collected in an array.  Finally, the preparation steps are undone, discarding the initial 
value, reversing the array into original order, and unboxing the result.

The actual implementation of LoopWithInitial is a bit more elegant than that 
schematic representation.  Observe that step 7 is the inverse of step 1, step 6 of 2, 
and step 5 of 3; each pair is an opportunity to use u&.v, and the actual verb 
produced by LoopWithInitial is:
   knave LoopWithInitial inity
knave&.>/\.&.(,&(<25 10 100 25 100 50 5 10))&.|.&.(<"_1)
which performs all the steps of the longer form.  We will examine this conjunction 
in a later chapter.

You may object that since the left operand of LoopWithInitial is applied to 
each item, it still has to be interpreted for each item, so nothing is gained by 
avoiding the loop.  An astute observation, but in the second part of this book we will 
learn how to write verbs that are not reinterpreted for each item.

Finally, you may observe that the temporary vector, which only needs to be a list, 
turns into a rank-2 array by the time we have passed it through each item.  Doesn't 
that waste a lot of space?  Yes, it does, and if your problem is big enough that the 
space matters, you may have a valid application for a loop.  An alternative would be 
to make the temporary vector a public variable accessed by knave in the same way 
that temporary variables would be used in C.
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                            26. Loopless Code VII—Sequential 
Machines

J provides a primitive to handle one class of programs, ill-suited for parallel processing, 
that can be described systematically: sequential machines.  Dyad ;: takes a sequential-
machine description in x and a stream of input in y, and produces the result called for 
the the machine description.

A brief overview is as follows.  The output array is initialized to empty.  An initial row 
number (also called a state number) is chosen.  Each item of input is converted into a 
column number.  The column numbers are processed, one per iteration.  In an iteration, 
the next column number is supplied to the row/action table: the row number and column 
number specify an item of the table, which is a 2-element vector giving the new row 
number and an action code.  The action is performed and the row number is updated, 
completing the iteration.  Execution continues until a ‘quit’ action is encountered or all 
the column numbers have been supplied.  At that point the output array, which contains 
the accumulated results of the actions performed, becomes the result of the verb.

To illustrate the use of dyad ;: we will build a machine to recognize hex constants in 
character input.  A hex constant will be ‘0x’ followed by any positive number of 
hexadecimal digits; we will extract the digits and discard the ‘0x’.

The x argument to dyad ;: is a boxed list f;s;m;ijr .  m and ijr may be omitted.

m controls the conversion of the items of y to column numbers.  In the general case, m is 
a list of boxes; then the column number produced for an item of y is the index of the 
first box of m whose contents have an item equal to the item of y (if there is no such 
box, a column number of #m is used).  If y is a string, m may be a numeric list 
containing one column number for each character code and the column numbers are 
(a. i. y) { m .  If y is numeric, m may be empty or omitted, and y specifies the 
column numbers directly.

In our example problem, we see that the input characters are in 4 classes: the character 
0; the character x, the hexadecimal characters 0123456789abcdefABCDEF, and all 
other characters.  We will assign these column numbers 3, 2, 1, and 0 respectively.  The 
conversion control m can be generated by the statements
   m =. a. e. '0x123456789abcdefABCDEF'
   m =. m + a. e. '0x'



   m =. m + a. e. '0'
and can be verified by
   (a. i. '0x2aq') { m
3 2 1 1 0

ijr gives the initial values of 3 variables used by the sequential machine: the input 
pointer i, the word pointer j, and the row number r.  The input pointer is the index in y 
of the next item to be processed, incremented by 1 at the end of each iteration.  The 
word pointer is the index in y of the first item in the current word; when the action code 
calls for producing output, the output will start with item j.  When j is _1, there is no 
current word.  The row number, as noted above, is used to index the row/action table.  If 
ijr is omitted, it defaults to 0 _1 0, which means start processing the first item of y, 
with no current word, and starting in row number 0.  This default is acceptable for our 
example problem.

s gives the row/action table.  This table has as many rows as needed to encode all the 
states of the sequential machine, and as many columns as there are possible columns 
numbers of mapped input.  Each 1-cell of s is a 2-element list.  The first element will 
become the row number for the next iteration.  The second is the action code, indicating 
the action to be performed.  The action code is a number from 0 to 6, with meanings as 
follows:

Action code Addition to output array Change to j (after any addition 
to the output)

0 none none

1 none j =. i

2 add single word j =. i

3 add single word j =. _1

4 add multiple words j =. i

5 add multiple words j =. _1

6 stop—no further iterations are performed

Executing an ‘add’ action when j is _1 produces a domain error.

The action code indicates when a value is appended to the output array.  The value that 
is appended depends on the f parameter (which came from the x argument to dyad ;:) 



and the values of the iteration variables.  The values appended for different values of f 
are (r=row number, c=column number, j=word pointer, i=input pointer):

f Value appended Description

0 the items of y between j and i-1, boxed Boxed word of y

1 the items of y between j and i-1 Unboxed word of y

2 j , i-j Index and length of word

3 c + r * number of columns in s Coded row and column

4 j , (i-j) , c + r * number of columns in s
Index and length of word, and 

coded row and column

5 i , j, r , c , (<r,c){s
Input pointer, word pointer, 

row, column, 
new row, action

The indicated data is appended to the output array whenever an ‘add single word’ action 
is executed.  The ‘add multiple words’ action also adds the data to the output except that 
a sequence of consecutive ‘add multiple words’ actions executed from the same row 
causes only a single item to be added to the output array.  The ‘add multiple words’ 
actions executed after the first modify the item that was added by the first, appending 
the new word within the previously appended item.

After the last iteration, if no ‘stop’ action has been encountered and j is not _1, one final 
‘emit multiple words’ action is performed.

We can build the state table s for our sample problem now.  There will be 4 rows.  First, 
we wait for 0; then we expect x; then we expect a hexadecimal digit, signaling start-of-
word if we see it; then we wait for a non-hexadecimal-digit, and output the word when 
we get one.  The state table will look like this:

Row 
number Description

Column 0 
other

Column 1 
hexdigit

Column 2 
x

Column 3 
0

0 Waiting for 0 0 0 0 0 0 0 1 0

1 Expecting x 0 0 0 0 2 0 0 0

2 Expecting first digit 0 0 3 1 0 0 3 1



3 Waiting for nondigit 0 3 3 0 0 3 3 0

This state table is generated by:
   s =. 1 4 2 $ 0 0 0 0 0 0 1 0
   s =. s , 4 2 $ 0 0 0 0 2 0 0 0
   s =. s , 4 2 $ 0 0 3 1 0 0 3 1
   s =. s , 4 2 $ 0 3 3 0 0 3 3 0
and we use it with
   (0;s;m) ;: 'qqq0x30x30x40x0xxxx'
+--+--+
|30|40|
+--+--+
   (0;s;m) ;: 'qqq0x30x30x40x0x34a'
+--+--+---+
|30|40|34a|
+--+--+---+
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                                                                                        27. Modifying an array: 
m}

Modification of a portion of an array, performed in C by the simple expression x
[m] = y, fits uneasily into J.  To begin with, 3 pieces of information are needed: the 
array x, the index m, and the replacement data y .  Since J verbs take only 2 
operands, that means the primitive to modify the array will be an adverb so that its 
left operand can hold one of the 3; the verb derived from the adverb and its operand 
will perform the modification.

Moreover, the adverb cannot be a modifier of the array's name as [m] is a modifier 
of x in x[m] = y.  In J, the array x may not have a name.  While in C every array is 
declared and named, in J we summon up anonymous arrays in the blink of an i., 
use them, and let them disappear.  We expect modification of a subarray to be like 
other primitives in this regard, which means that it must not be a form of 
assignment to a name using a copula (=. or =:), but instead a (derived) verb 
operating on an array to produce a result.

What will the result of the assignment be?  This is not much of an issue in C.  There 
the result of the assignment is y, but it is seldom used: in C, after we have employed 
x[m] = expression; we are usually content to put down the pencil, satisfied that 
we have described a statement's worth of computation.  In J we routinely use 
weapons of larger bore: after we have modified the array we expect to be able to 
sort it, or add it to another array, or the like.  It is clear that the result of the 
modification of the array must be the entire modified array.

This reasoning justifies J's design.  } is an adverb.  Modification of an array is 
performed by dyad m} which produces a derived verb of infinite rank.  x m} y 
creates a copy of y and installs the atoms of x into the positions selected by m .  m 
specifies portions of y in the same way as the left operand of m{y .  Even though 
dyad { has left rank 0, m may have any shape: the atoms of m are processed to 
accumulate a list of selected portions of y .  x must either have the same shape as 
the selected portion(s) m{y or have the same shape as some cell of m{y in which 
case x is replicated to come up to the shape of m{y .  Examples are a recap of the 
forms of the left operand of dyad {, with a couple of twists:



   0 (<1 1)} 4 4 $ 5
5 5 5 5
5 0 5 5
5 5 5 5
5 5 5 5
The simplest example.  We select an atom and modify it.
   0 1 2 3 (0)} 4 4 $ 5
0 1 2 3
5 5 5 5
5 5 5 5
5 5 5 5
Here we are modifying a selected row.
   0 (0)} 4 4 $ 5
0 0 0 0
5 5 5 5
5 5 5 5
5 5 5 5
x is shorter than m{y but x can be replicated to match the shape of m{y .
   0 1 (0)} 4 4 $ 5
|length error
|   0 1    (0)}4 4$5
Here the shape of x is 2 while the shape of m{y is 4, so the operands do not agree.

   1 2 (1 1;2 2)} 4 4 $ 5
5 5 5 5
5 1 5 5
5 5 2 5
5 5 5 5
Here m has 2 atoms, each selecting a single atom of y .  x has two atoms and they 
are stored into the selected positions.
   1 2 (1 1;1 1)} 4 4 $ 5
5 5 5 5
5 2 5 5
5 5 5 5
5 5 5 5
The same element is modified twice.  As it happens, the modifications are 
performed in order, and the last one survives in the result.  Do not rely on this 
behavior!  As a general rule in J, the order in which a parallel operation is 



performed is undefined and may change from release to release or from machine to 
machine.

The interpreter may incorrectly modify the first atom in the array if the atoms of m 
select portions of y that do not have the same shape.  You should avoid such m :
   0 1 2 3 (2;1 1)} 4 4 $ 5
3 5 5 5
5 0 5 5
0 1 2 3
5 5 5 5
Don't even try to figure out what happened; avoid mixed m .

Monad I.—Indexes of the 1s in a Boolean Vector
If you have a Boolean list with 1s representing items to be modified, you will need 
to create the list of indexes of the 1s (for selection you would just use x # y, but 
for modification you must use m} which needs the indexes rather than the Boolean 
list).

Monad I. (rank 1) performs this function.  I. y produces y # i. # y, for 
example:
   I. 1 0 0 1 0 1 1
0 3 5 6
indicating where the 1s are.

You should use I., rather than any equivalent phrase, to perform this function, 
because the interpreter recognizes compounds such as I.@:> and handles them 
with special fast code.

Modification In Place
It is fundamental to the design of J that, in general, verbs produce output in a 
separate memory block from the inputs.  Thus, if I execute >: y, the result will be 
in a different memory area from y .  This takes more space than incrementing y in 
place, but not much additional computation, since every atom of y must be visited 
and incremented either way.  Usually the extra memory usage is immaterial to 
overall performance.  Sometimes we regret having to make a new copy for the 
output, for example when we just remove the end of a long list with }: y or add a 
single character to the end of a long string with x , ' ' .



Dyad m}'s profligacy with memory bandwidth reaches an extreme: even if y is huge 
and only one atom is modified, the whole y must be copied to produce the result.  
Sometimes this can be a noticeable drag on performance.  To help out in those 
cases, the interpreter recognizes the specific forms
name =. x m} name
name =: x m} name
name =. name , x
name =: name , x
and executes the modification in place, i. e. without creating a new copy of name .  
For the modification to be in-place, there must be nothing else in the sentence either 
before or after the form shown above, and the two appearances of name must be 
identical.  x and m may be any expressions that evaluate to nouns.
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                                                                                                         28. Control 
Structures

Your reward for persevering through two dozen chapters on J is to be shown the 
direct equivalent of if/then/else, for, and while.  I have waited until I am sure you 
realize that you don't need them, and will choose them not because you see no other 
way to solve a problem, but because you think they are the best way.

if., while., and the rest are classified as control words in J.  Their part of 
speech is 'punctuation', like a parenthesis or LF character.  They are allowed only 
inside definitions, that is to say inside right operands of the : conjunction.  If you 
want to use them from the keyboard or in a script, you must define a verb/adverb/
conjunction and then execute it.  A control word ends any sentence to its left, as if 
the control word started with an end-of-line character.  We will cover only a few 
important control sequences here; to find the rest, bring up the J Vocabulary by 
pressing F1 and click on Controls which is hidden in plain view next to the heading 
"Vocabulary".

for./do./end. and for_x./do./end.
The allowed forms are:
for. T-block do. block end.
for_x. T-block do. block end.
The T-block is evaluated and its result A (that is, the result of the last sentence in 
the T-block) is saved.  block is executed once for each item (item, not atom) of 
A .  If you use the handy for_x. form (where x represents any valid name of your 
choice), the private variables x and x_index are created, and every time block is 
executed, x_index is assigned the index of an item of A and x is assigned 
x_index { A .

The break. and continue. control words do what you would expect.

while./do./end. and whilst./do./end.
The allowed forms are:
while. T-block do. block end.



whilst. T-block do. block end.
while. corresponds to while and whilst. corresponds to do while.  The 
'st' in whilst. stands for 'skip test' (the first time through), so you get one free 
pass through the loop, just as with do while.

The break. and continue. control words do what you would expect.

if./do./else./end., if./do./elseif./do./
end.
The allowed forms (with optional components underlined) are:
if. T-block do. block else. block end.
if. T-block do. block elseif. T-block do. block… end.

The flow of control is as you would expect.  T-blocks and blocks are both 
sequences of zero or more J sentences.  The result of the last sentence in a T-
block provides the result of the T-block .  The result of a T-block tests true if 
its first atom is nonzero, or if it is empty, or if the T-block was empty.  The flow 
of control is as you would expect based on the tests.  The sequence elseif. T-
block do. block may be repeated as often as desired, but you will be surprised 
to learn that once you code an elseif. you are not allowed to use else. in the 
same control structure: use elseif. 1 instead.

My antipathy for for. and while. has scarcely been concealed, but I harbor no 
ill will toward if. .  As long as you don't apply it in a loop, if. makes the 
structure of code obvious and you may use it without remorse.  Examples are 
legion; the form
if. # name =. sentence to create an array
  code to process name, which is now known to have items
end.
is the most common in my code, used to guarantee that a block of code is executed 
only when a certain noun has a nonzero number of items.

When we first learned about verb definitions we said that the result of a verb was 
the result of the last sentence executed.  Now we must emend that statement: 
sentences in T-blocks do not affect the result of the verb.

try./catch./end. and catcht./throw.



The simplest form (see the Dictionary for others) is:
try. block1 catch. block2 end.

try./catch./end. is the control-structure equivalent of u ::v .  block2 is 
executed only if there was an error during the execution of block1 .

If you want to signal an error, execute the foreign 13!:8 y where y is the error 
number you want to signal.  You can use this in a try. block to transfer execution 
to the corresponding catch. block.

throw., when executed in a try. block (or in a function executed by that try. 
block), returns control to the catcht. block of the try. .  Just as an error in 
execution causes the catch. block to be executed, a throw. causes the 
catcht. to be executed.

select./case./fcase./end.
The form is:
select. T-block0 case. T-block1 do. block1… end.

T-block0 is evaluated; then the T-blocks of the case. control words are 
evaluated sequentially until one is found that matches the result of T-block0; the 
following block is then executed, after which control passes to the sentence 
following the end. .

fcase. is like case. except that after the block of an fcase. is executed, 
control passes to the next block rather than to the sentence following the end. .

A T-blockn matches the result of T-block0 if the result of T-block0 is an 
element of the result of the T-blockn.  So, a T-blockn could be 2;3;5 and 
any of those three values would match it.  Before this check is made, each side of 
the comparison is boxed if it is not boxed already.  An empty T-blockn matches 
anything.

return.
return. ends execution of the definition that is running.  The result of the last 
sentence not in a T-block is the result.  Example:

if. T-block do. return-value return. end.

assert.



assert. sentence

assert. fails with an assertion failure error if the result of executing the 
sentence contains any atoms that are not equal to 1.  Note that there is no end. 
corresponding to the assert., so there may be only a single sentence rather than a 
T-block.
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                                                                                                                       29. Modular Code

Separating your code into independent modules boils down to segmenting the space 
of variable names into subspaces that overlap to the extent you want.  We will 
discuss how J handles namespaces, and then see how this corresponds to the 
classes and objects provided by C++.

Locales And Locatives
Every public named entity in J is a member of a single locale.  Each locale has a 
name which is a list of characters.  A locative is a name containing a simple name 
(the only kind of name we have encountered so far) and an explicit locale, in one of 
the two forms simplename_localename_ and simplename__var .  In the 
form simplename_localename_, localename is the name of the explicit 
locale; in the form simplename__var, the variable var must be a scalar boxed 
string whose opened contents provide the name of the explicit locale.  Examples:
abc_z_  is simple name abc and locale z
vv =. <'lname'
def__vv   is simple name def and locale lname

Note that a simple name may contain an underscore; it may not end with an 
underscore or contain two underscores in a row.

(Note: J makes a distinction between named locales whose names are valid J 
variable names not including an underscore, and numbered locales whose names 
are strings representing nonnegative decimal integers with no leading zeroes.  The 
difference between the two is small and we will ignore it).

The current locale is a value kept by J and used to influence the processing of 
names.  We will learn what causes it to change.  The current locale is the name of a 
locale.  When J starts, the current locale is set to 'base' .

Assignment
An assignment is private if it is of the form simplename=.value and is 
executed while an explicit definition is running (an explicit definition is the result of 
the : conjunction, for example a verb defined by 3 : 'text' or a modifier 
defined by adverb define).  An entity assigned by private assignment is not 



part of any locale and is accessible only by sentences executed by the explicit 
definition that was running when the entity was assigned.  The idea is this: there is a 
pushdown stack of namespaces in which private entities are assigned.  When an 
explicit definition E is executed, it starts with a new empty namespace that will be 
destroyed when E finishes.  Any private assignments made while E is running are 
made in this private namespace.  Any private variables referred to by E or by tacitly-
defined entities invoked by E are taken from this private namespace.  If E invokes 
another explicit definition F, F starts off with its own private namespace and has no 
access to elements of E's private namespace.  When F finishes, returning control to 
E, F's private namespace is destroyed.  E is said to be suspended while F is running.

Assignments that are not private (because they assign to a locative, use =:, or are 
executed when no explicit definition is running) are public.  Assignment to a 
locative creates an entity having the simple name in the locative, residing in the 
explicit locale given by the locative.  A public assignment to a simple name creates 
the named entity in the current locale.  Entities in a locale are not affected by 
completion of an explicit definition; they have a life of their own and can be 
referred to by any verb that knows how to reach the locale they are in.  The 
following examples illustrate assignments; the interpretation given is correct if the 
lines are entered from the keyboard:
   simp1 =. 5  NB. public (outside of explicit 
definition)
   vb1 =: verb define  NB. public
isimp =. simp1  NB. private, referring to public simp1
simp1 =. 8      NB. private (=. inside definition)
loc1_z_ =. 10   NB. public (locative)
simp2 =: 12     NB. public (=:)
isimp,simp1     NB. result
)
   vb1 ''       NB. execute vb1, see result
5 8
Note that simp1 was set to 8 by the explicit definition.  Because this was a private 
assignment, the public value was not changed:
   simp1
5
The public value is still 5, as it was before the explicit definition was executed.
   loc1_z_
10



   simp2
12
The other public assignments leave their results in the locale they were assigned to.
   isimp
|value error: isimp
The entities assigned by private assignment were destroyed when vb1 finished.

Note that the load verb (which runs scripts) is an explicit definition.  Any 
assignment using =. executed during load will be lost.  Use =: to define names in 
scripts.

Name Lookup
Names and locatives used to refer to entities look just like names appearing as 
targets of assignments, but there is an additional level of complexity for references.  
Each locale has a search path (usually called simply the path) which is a list of 
boxed locale names.  The path is set and queried by the foreign 18!:2 which goes 
by the alias copath .  Examples:
   ('loc1';'loc2';'z') 18!:2 <'loc3'
Sets the path for locale 'loc3' to 'loc1' followed by 'loc2' (and the 
obligatory 'z').
   copath <'loc3'
+----+----+-+
|loc1|loc2|z|
+----+----+-+
Queries the path for 'loc3' .

Every reference to a name implicitly uses a path.  A reference to a locative looks for 
the simple name in the explicit locale; if the name is not found there, the locales in 
the path of the explicit locale are examined one by one until the simple name is 
found (if the name is not found in any locale in the path, it is an undefined name).  
A reference to a simple name is similar, but first the private namespace of the 
executing explicit definition (if any) is searched, and only if that search fails are 
locales searched, starting in the current locale and continuing if necessary in the 
locales in the current locale's path.

Note that only the path of the starting locale (either the current locale or the explicit 
locale) specifies the search order.  No other paths are used.

Examples of references:



   ('loc1';'loc2';'z') 18!:2 <'loc3'
   a_loc1_ =: 'a'
   a_loc2_ =: 'b'
   c_loc3_ =: 'c'
   c_loc2_ =: 'd'
   a_loc3_
a
The name was not defined in 'loc3' so the path was used, and the name was 
found in 'loc1' .
   a_loc2_
b
The value in 'loc2' can be retrieved if we start the search there.
   c_loc3_
c
If the value is found in the starting locale, no search is performed.
   c_loc1_
|value error: c_loc1_
   We have not defined a path for 'loc1', so 'loc2' is not searched.

Changing The Current Locale
The current locale can be changed in two ways: explicitly by executing the 
cocurrent verb whose purpose is to change the current locale, and implicitly by 
executing a verb named by a locative.

cocurrent y sets the current locale to y .  Simple as that.  cocurrent uses 
the foreign 18!:4 .  Do not use 18!:4 directly!  It is intended to be used under 
an alias, and it has side effects.

Executing an entity named by a locative (almost always a verb, but it could be a 
modifier as well) saves the current locale, changes the current locale to the explicit 
locale of the locative before starting the entity, and resets the current locale to the 
saved value when the entity finishes.  Note that the entity always runs in the 
explicit locale of the locative, even if the search for the name found the entity in 
some other locale in the search path.

Whenever a named entity finishes execution, the locale is restored to its original 
value, even if the entity changed the current locale.

Here are examples of actions affecting the current locale:



   load 'printf'
   18!:5 ''
+----+
|base|
+----+
This is how you query the name of the current locale.  Next we define two verbs.
   v1_z_ =: verb define
'Locale at start of v1 is %j' printf 18!:5 ''
qprintf 'n1 '
v2_result =. v2_loc1_ n1
'Value returned by v2 is %s' printf <v2_result
'Locale in v1 after calling v2 is %j' printf 18!:5 ''
qprintf 'n1 '
)
   cocurrent <'loc2'
   v2 =: verb define
'Locale at start of v2 is %j' printf 18!:5 ''
qprintf 'n1 y. '
cocurrent <'loc2'
qprintf 'n1 '
'Locale at end of v2 is %j' printf 18!:5 ''
n1
)
The verb v1 was defined in locale 'z' because it was an assignment to a locative; 
the verb v2 was defined in locale 'loc2' because it was an assignment to a simple 
name and the current locale at the time of its assignment was 'loc2' .
   cocurrent <'loc3'
   v2 =: [:
Now the verb v2 is defined in both locale 'loc2' and 'loc3' .  Next we define 
the noun n1 in each of our locales, so we can see which locale a name was found in:
   n1_loc1_ =: 'n1 in loc1'
   n1_loc2_ =: 'n1 in loc2'
   n1_loc3_ =: 'n1 in loc3'
Now run the verbs.  I will insert interpretation of the execution.
   v1 ''
J searches for the simple name v1 in the current locale 'loc3'; not finding it there 
it looks in 'loc1', 'loc2', and 'z', finally finding it in 'z' .  J executes the 



definition of the verb found in 'z', but without changing the current locale.

Locale at start of v1 is loc3
Yes, the current locale is still 'loc3' …

n1=n1 in loc3
…and a name lookup uses the current locale as the starting point.
Locale at start of v2 is loc1
v1 has executed v2_loc1_ .  J starts searching for the name v2 in locale 
'loc1' and its path, eventually finding it in 'z' .  v2 is executed, using the 
definition found in 'z', but with the current locale set to the explicit locale of the 
locative, namely 'loc1' .  Note that v2 was also defined in 'loc3' (as [: 
which would give an error), but 'loc3' was never searched.  The operand of v2 
was n1; note that the lookup for n1 is completely independent of the lookup for v2; 
n1 is sought and found in 'loc3' and it is that value that becomes y. at the start 
of execution of v2 .

n1=n1 in loc1 y.=n1 in loc3
Simple name lookups start in the current locale 'loc1' .  The private name y. 
has the value it was given on entry.
n1=n1 in loc2
Here we have switched the current locale to 'loc2' using cocurrent, and the 
name is found in the new current locale.
Locale at end of v2 is loc2
Value returned by v2 is n1 in loc2
Here v2 has finished and control has returned to v1 .  Note that the value returned 
by v2 is simply the result of the last sentence executed; it is a noun.  Here it is the 
value of n1 at the end of v2, at which time the current locale was 'loc2' .

Locale in v1 after calling v2 is loc3
Note that when v2 finished the current locale was restored to its value before 
execution of v2 .  The cocurrent in v2 has no effect once v2 finishes.

n1=n1 in loc3
Execution of the verb v1 is complete.  We should be back in locale 'loc3' from 
which we executed v1 :
   18!:5 ''
+----+



|loc3|
+----+

The Shared Locale 'z'
It is a J convention, universally adhered to, that every locale's search path must end 
with the locale 'z' .  Any name in the 'z' locale can then be referred to by a 
simple name from any locale, making names in the 'z' locale truly global names.

Using Locales
You have my sympathy for having to read through that detailed description of name 
processing; I refuse to apologize, though, because you really can't write programs if 
you don't know what names mean.  But, you wonder, How do I use locales?

You won't go far wrong to think of a locale as akin to a class in C++.  When you 
have a set of functions that go together as a module, define all their verbs and nouns 
in a single locale.  The easiest way to do this is to put a line
coclass <'localename'
at the beginning of each source file for the module (coclass is like cocurrent 
but it supports inheritance).  Then, every public assignment in the file will 
automatically be made in the locale localename .

The names defined in the locale are the equivalent of the private portion of class.  
To provide the public interface to the class, you need to put those names in a place 
where they can be found by other modules.  The traditional way to do this is to 
define them in the locale 'z' by ending each file with lines like
epname_z_ =: epname_localename_
Here epname is the name of a verb, and localename is the name of the module's 
locale.  Take a minute to see what happens when some other locale invokes 
epname .  The name search for epname will end in the locale 'z' where this 
definition is found.  Execution of this definition immediately results in execution of 
epname_localename_ which switches the current locale to localename and 
runs the definition of epname found there.  The benefit is that the calling module 
doesn't need to know the locale that epname is going to be executed in.

If you tire of writing out the public definitions one by one, I have included in 
jforc.ijs a verb to do it for a list of entry points using a sentence like
PublishEntryPoints 'public1 public2 public3'



If you want to create multiple copies of objects derived from a class, you should 
consult the Lab on Object Oriented Programming.  There you will learn about 
numbered locales and how to create and destroy objects.  We will not discuss these 
topics here.

By following the guidelines given above you will be able to emulate the class 
facilities of C++.  Because J is interpreted, you can do much more if you want: you 
can change search paths dynamically; you can use locales and paths to create a high-
performance network database; you can pass locales as data and use them to direct 
processing; you can peek at a module's private data.  You can even modify a 
module's private data from outside the module, but if you are struck by lightning 
after doing so the coroner will find it was suicide.

Using locale-names as data allows for dynamic separation of namespaces.  For 
example, the processing of forms in J requires definition of verbs for a great many 
events.  You may let these verbs all share the same locale; but if you want to 
segregate them, the Window Driver will remember what locale was running when 
each form was displayed, and direct events for a form to the locale handling the 
form.
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                                                                      30. Writing Your Own 
Modifiers

If you find that you are coding recurring patterns of operations, you can write a 
modifier that represents the pattern.  You will find that reading your code is easier 
when the patterns are exhibited with names of your choosing.

You write a modifier like you write a verb, using conjunction define or 
adverb define, or 2 :n or 1 :n for one-liners.  When you assign the 
modifier to a name, that name becomes a conjunction or adverb, and it will be 
invoked as u name v y (monad) or x u name v y (dyad) if it is a 
conjunction, or u name y (monad)or x u name y (dyad) if it is an adverb.

When a modifier is invoked, the lines of the modifier are executed one by one, just 
as when a verb is invoked, and the result of the last sentence executed becomes the 
result of the modifier.  The u (and v, for conjunctions) operand(s) of the modifier 
are assigned to the local names u. (and v.) when the modifier starts execution (in 
addition, if u is a noun, it is assigned to the local name m. and if v is a noun it is 
assigned to n.)

User-written modifiers are of two types: those that refer to the variables x. and y., 
and those that do not.

Modifiers That Do Not Refer To x. Or y.
If the modifier does not refer to x. or y., its text is interpreted when its operands 
(u and, for conjunctions, v) are supplied, and its result is an entity which may be 
any of the four principal parts of speech.  The result replaces the modifier and its 
operands in the sentence, and execution of the sentence continues.

Usually you will want to create a verb, but nothing keeps you from writing a 
conjunction whose result is another conjunction.  Here we will confine ourselves to 
verb results.

If a modifier does not refer to x. or y., it can be invoked without any x. or y.; 
only the u. (and v., for conjunctions) are used.  The text of the modifier is 
executed and the resulting verb replaces the modifier and its operands in the 



execution of the sentence.

Let's write some of the utility modifiers referred to in earlier chapters.  Ifany was 
an adverb that executed u if y had a nonzero number of items:
   9!:3 (5)  NB. Do this once to select simplified 
display
   Ifany =: 1 : 'u. ^: (*@#@])'
   < Ifany
<^:(*@#@])
Ifany does not need to look at y.; it creates a verb that executes u only if y has 
items.  Here we have executed the adverb Ifany with the left operand <, and the 
result is a verb—the compound verb <^:(*@#@]) .  We can execute that verb on 
a noun operand:
   < Ifany 1 2 3
+-----+
|1 2 3|
+-----+
Remember that Ifany is an adverb, so it has precedence and the line is executed as 
if (< Ifany) 1 2 3 .  The verb (< Ifany), which has the value <^:
(*@#@]), is applied to 1 2 3 and produces the boxed result.
   < Ifany ''
 
An empty y is left unboxed.

u Butifnull n was a conjunction that applied u if y had items, otherwise it 
produced a result of n .  It could be written:
   Butifnull =: 2 : 'n."_ ` u. @. (*@:#@:])'
Again (*@:#@:]) will check whether y has items, and this time the result will be 
used to select the appropriate verb to execute.
   < Butifnull 5
5"_`<@.(*@:#@:])
When Butifnull is executed with operands, it produces a verb.
   < Butifnull 5  'abc'
+---+
|abc|
+---+
   < Butifnull 5  ''
5



The verb it produces can be applied to its own noun operands.

Example: Creating an Operating-System-Dependent Verb
The great thing about modifiers that do not refer to x. or y. is that they are fully 
interpreted before the x and y operands are supplied, so there is no interpretive 
overhead during the processing of the data.  Here is a more complex example taken 
from the J system.  The goal is to define a verb playsound that can be used to 
play a .wav file under Windows:
NB. y. is the file data to be played
playsound =: '' adverb define
select. 9!:12 NIL
case. 2 do.
  'winmm.dll sndplaysound i *c i' & (15!:0) @ (;&1)
case. 6 do.
NB. 2=nodefault + 4=memory  +  16b20000 = file
  'winmm.dll PlaySound i *c i i' & (15!:0) @ (;&(0;4))
end.
)
To begin with, let's make sense of this odd sequence '' adverb define .  The 
adverb define defines an adverb, but what's the ''?  Simple—it's the left 
argument to the adverb that was defined: the adverb is executed with u. set to 
'' .  The result of that execution of the adverb is what gets assigned to 
playsound .
      So, what happens when the adverb is executed?  The adverb calls the foreign 
9!:12 to see what operating system is running, and executes a selected line that 
contains the definition of a compound verb.  Since that line is the last one executed, 
it becomes the result of the adverb; so the result of the adverb is the selected verb, 
and that is what is assigned to playsound .  On my system, this leaves 
playsound defined as a single compound verb:
   playsound
'winmm.dll PlaySound i *c i i'&(15!:0)@(;&(0;4))
Lovely!  No check for operating system needs to be made when I invoke 
playsound; the check was made when playsound was defined.

Example: The LoopWithInitial Conjunction
The conjunction LoopWithInitial that we learned about earlier can be written 
as



   LoopWithInitial =: 2 : 'u.&.>/\.&.(,&(<v.))&.|.&.
(<"_1)'
It's just one application of &. after another.  We can use it to illustrate a subtlety 
about modifiers that you should be aware of.  Consider an invocation of 
LoopWithInitial :
   vb =. +
   init =. 4 5
   vb LoopWithInitial init
vb&.>/\.&.(,&(<4 5))&.|.&.(<"_1)
The verb that is produced seems in order, but notice one point: the verb contains the 
value of init, but the name of vb .  This is a rule: the name of a verb argument 
is passed into a modifier, but the value of a noun argument is passed.  Note that 
if these lines appear inside a verb, the verb vb, which is assigned by private 
assignment, is not defined inside LoopWithInitial, because 
LoopWithInitial is running in a different explicit definition from the one in 
which vb was assigned.  As we see above, LoopWithInitial can pass vb into 
other modifiers, but if LoopWithInitial tried to execute vb it would fail. 

Before we move on I want to point out one tiny example of the beauty of J.  For &.
(,&(<4 5)) to work, there must be some obverse of ,&(<4 5) that undoes its 
effect.  What would that be?  We can see what the interpreter uses:
   ,&(<4 5) b. _1
}: :.(,&(<4 5))
It undoes the addition of a trailing item with }: which discards the last item.  Yes, 
that makes sense (the obverse has its own obverse which is the original verb).

Example: A Conjunction that Analyzes u and v
The conjunction u&.v expresses with great clarity the sequence of applying a 
transformation v, then applying the operation u, then inverting the transformation 
v .  The dyad x u&.v y applies the same transformation to both x and y, but in 
many cases the transformation is meaningful only on one operand, and what we 
would like is a conjunction Undery such that x u Undery v y produces v^:
_1 x u v y .  For example, to encipher the characters of y by replacing each 
one by the letter x positions earlier, we would use
   5 1 3 2 -~ Undery ('abcdefghijkl'&i."0) 'hijk'
to perform the function
   t =. 'abcdefghijkl'&i."0 'hijk'



   t =. 5 1 3 2 -~ t
   t { 'abcdefghijkl'
chgi

With that x stuck in the middle of the desired result v^:_1 x u v y  it appears 
that we will have to refer to x. in our conjunction, but actually we can use an 
advanced feature of J to make the x. disappear.  The sequence (u v) produces a 
verb that, when executed as the dyad x (u v) y, gives the result of x u v y 
(you will learn about this and more if you persevere with the part of the book 
devoted to tacit programming).  So, the verb we are looking for is v^:
_1 @: (u v) and we can write
   Undery =: 2 : 'v.^:_1 @: (u. v.)'
   5 1 3 2 -~ Undery ('abcdefghijkl'&i."0) 'hijk'
chgi

Before we pat ourselves on the back for this achievement, we should consider 
whether the verb produced by Undery has the proper rank.  We see that it does not: 
Undery applies v to the entire y, and u to the entire x and the result of u y, when 
really we should be performing the operation on cells of x and y, where the cell-size 
of x is given by the left rank of u and the cell-size of y is given by the right rank of 
v .  For example, if we wanted to take the -x least-significant bits of y, we could 
use
   _3 {."0 1 Undery #: 30 
12
(remember that monad #: converts an integer y to its binary representation, 
producing a Boolean list–we are taking x bits of that and then converting back to 
integer)  The binary code for 30 is 11110, the 3 low-order bits are 110, and the 
result is 6.  But when we have list arguments, we get an incorrect result:
   _3 _4 _3 {."0 1 Undery #: 32 31 30 
0 15 12
The result for 30 is wrong: because #: was applied to the entire y, 110 was 
extended with framing fills to become 1100, and the result is 12 instead of the 
expected 6.  To get the right result we need to apply the verb to cells of the correct 
size:
   _3 _4 _3 ({. Undery #:"0) 32 31 30 
0 15 6
and naturally we would like to make Undery automatically produce a verb with the 



correct rank.

The way to find the rank of the verb u is to execute u b. 0 .  In our conjunction 
u. and v. are verbs, and we can use their ranks to produce an Undery that gives 
the correct rank:
   Undery =: 2 :'(v.^:_1)@:(u. v.)"((1{u.b.0),2{v.b.0)'
We have selected the left rank of u and the right rank of v, and put them as the 
ranks of the verb produced by Undery .  This produces the desired result:
   _3 _4 _3 {."0 1 Undery #: 32 31 30 
0 15 6
and we can see the verb produced by Undery, with its ranks:
   {."0 1 Undery #:
#:^:_1@:({."0 1 #:)"0 0

This version of Undery produces correct results, but we should add one small 
improvement: the inverse of monad #: should be monad #. rather than monad #:
^:_1, because the two forms are different.  One difference is obvious: the rank of 
#:^:_1 is infinite, while the rank of #. is 1; but that is immaterial in Undery .  
The other difference is subtle but it could be significant: the two forms may have 
different performance in compounds.  The interpreter recognizes certain compounds 
for special handling; the list grows from release to release, but it's a pretty safe bet 
that #. will be selected for special treatment before #:^:_1 (and < before >^:_1, 
and so on).  So, we would like to replace the v.^:_1 with the actual inverse of v .  
We can get the inverse of v by looking at v b. _1 which produces a character-
string representation of the inverse of v .  We can then convert this string to a verb 
by making it the result of an adverb (we can't make it the result of a verb, because 
the result of a verb must be a noun).  So, we are led to
  Undery=:2 :'(a: 1 :(v.b._1))@:(u.v.)"((1{u.b.0),2{v.
b.0)'
where we defined the adverb 1 :(v.b._1) and then immediately executed it 
with an ignored left operand a: to create the desired verb form.  Now we have
   {."0 1 Undery #:
#.@:({."0 1 #:)"0 0
which we can be content with.

An Exception: Modifiers that Do Not Refer to u. or v.
In very early versions of J, modifiers could not refer to their x. and y. operands.  



In those days, a modifier used the names x. and y. to mean what we now mean by 
u. and v. .  Modern versions of J continue to execute the old-fashioned modifiers 
correctly by applying the following rule: if a modifier does not contain any 
reference to u., v., m., or n., it is assumed to be an old-style modifier, and 
references to x. and y. are treated as if they were u. and v. .  You may 
encounter old code that relies on this rule, but you should not add any new examples 
of your own.

Modifiers That Refer To x. Or y.
Most of the modifiers you write will be refer to x. and y. .  The names x. and y. 
refer to the noun operands that are supplied when the modifier is invoked as 
[x] u adverb y or [x] u conjunction v y .

Here is an example, which is invoked as [x] u InLocales n y, where u is a 
verb and n is a list of locale names; it executes u y (or x u y if the invocation is 
dyadic) in each locale of n :
InLocales =: 2 : 0
l1 =. 18!:5 ''
for_l. n. do.
  cocurrent l
  u. y.
end.
cocurrent l1
''
:
l1 =. 18!:5 ''
for_l. n. do.
  cocurrent l
  x. u. y.
end.
cocurrent l1
''
)
This illustrates the important points.  The text of the definition is not interpreted 
until the x. and y. are available, in other words until the verb defined by 
u InLocales n is invoked.  Since that invocation may be either monadic or 
dyadic, two versions of the conjunction are given, one for each valence.  The result 



of the execution must be a noun, because the definition defines a verb and the result 
of a verb is always a noun.

That last point is important and I want to emphasize it.  It is true that InLocales 
is a conjunction, and yet its text defines a verb.  How is this possible?  Because 
InLocales is executed as a conjunction at the time it gets its u and n 
operands, but its text is not interpreted until the derived verb (which consists 
of u, n, and the text of InLocales) gets its x and y operands.  When 
InLocales is supplied with u and n, it is executed to produce a verb which 
consists of the text of InLocales along with u and the value of n .  This derived 
verb is hidden inside the interpreter where it waits to be applied to a y (and possibly 
x).  When the derived verb is given its operands, it starts interpreting the text of 
InLocales (which was unusable until the time that y. and x. could be given 
values) and initializes u. and n. from the values that were saved when 
u InLocales n was executed.  Thus the text of InLocales describes a verb 
operating on y. and x. .

Your modifiers should refer to x. and y. only if necessary.  Ifany from the 
previous section could have been written
   Ifany =: 1 : 'u.^:(*#y.) y.'
which would produce exactly the same result as the other definition, but it would 
usually be slower, because the text could not be interpreted until x. and y. could 
be defined.  If the conjunction happens to be used in a verb of low rank, the result 
could be soporific.

Here's a puzzle that may be of interest to those readers whose eventual goal is Full 
Guru certification.  Why did InLocales save and restore the current locale?  
Didn't we say that completion of any named entity restores the original locale?

Let's see what happens when we don't restore, using a simple testcase:
   t =: 1 : 0
cocurrent u.
y.
)
   (<'abc') t 0
0
   18!:5 ''
+---+
|abc|



+---+
Sure enough, the current locale was changed!  But see what happens when we give a 
name to the verb created by the execution of t :
   cocurrent <'base'
   tt =: (<'abc') t
   tt 0
0
   18!:5 ''
+----+
|base|
+----+

The current locale was restored.  What causes the difference?

The answer is that in the sentence (<'abc') t 0, the named adverb t is 
executed when it is given its operand <'abc' .  The result of that execution is the 
derived verb (<'abc') t which has no name.  When the derived verb is executed 
with the operand 0, the text is interpreted, causing a change to the current locale, 
and when the derived verb finishes, the current locale is not restored because the 
derived verb is anonymous.  If we give that derived verb a name (tt here), it 
restores the current locale on completion.

The observed behavior reinforces the point that the text of a modifier that refers to 
x. or y. is not interpreted when the modifier is executed; it is interpreted only 
when the derived verb is executed.

<<     >>     Contents     Help    



                                                                                31. Applied Mathematics 
in J

Complex Numbers
All the mathematical functions can be applied to complex numbers.  A complex 
constant is written with the letter j separating the real and imaginary parts, e. g. 
0j1 is the square-root of _1 .  Alternatively, a constant can be written in polar 
form in which the letters ar (or ad) separate the magnitude of the number from the 
angle in radians (or degrees) between the real axis and a line in the complex plane 
from the origin to the point representing the number:
   1ar1
0.540302j0.841471
   1ad90
0j1

A number of verbs are available for operations on components of complex 
numbers.  All have rank 0.

+ y    conjugate of y

+. y    creates a 2-atom list of the real and imaginary components of y

*. y    creates a 2-atom list of the length and angle in radians of the polar 
form of y

| y    magnitude of y

j. y    0j1 * y  

r. y    ^ 0j1 * y  

x j. y    x + j. y (i. e. x is the real part, y is the imaginary part)

x r. y    x * r. y (i. e. polar form, where x is the magnitude and y 
the angle in radians)

! y    factorial of y (more generally, the gamma function Γ(1+y))

Matrix Operations



J has primitive verbs for operations on matrices, some using the conjunction . .  
-/ .* y gives the determinant of y; x +/ .* y is the matrix product of x and 
y; %. y is the matrix inverse of y (provided y is nonsingular); x %. y is the 
projection of x onto y .

In x +/ .* y, a rank-1 x is treated as a matrix with one row, and a rank-1 y is 
treated as a matrix with one column; but the result rank, which is 2 when rank-2 
matrices are multiplied, is 1 when one operand has rank 1 and 0 when both do.

x %. y is a rough-and-ready way to get a least-squares approximation of x as a 
linear combination of the columns of y .  If your y is singular or close to it, avoid 
%. and use methods based on singular value decomposition.

Polynomials: p.
J supports 3 different ways of specifying a polynomial:

1.      as a list of coefficients of increasing powers, starting with power 0 (i. e. a 
constant term), where each coefficient multiplied by the corresponding power 
of the variable produces a term; the polynomial is the sum of the terms.  This 
form is an unboxed numeric list.

2.      as a multiplier m and a list of roots r, representing the polynomial m(x-r0)

(x-r1)…(x-rn).  This form is a 2-item list of boxes m;r (if m is 1 it may be 

omitted, leaving just <r).

3.      (for multinomials) a multinomial of n variables is represented as a list of 
terms, each term consisting of a coefficient and a list of n exponents (one 
exponent per variable).  The multinomial is the sum of the terms.  The form is 
a boxed rank-2 array in which each item is a coefficient followed by the list of 
n exponents.  This form is distinguished from the multiplier-root form by the 
rank of the boxed array.  (It is possible to have multiple multinomials that 
share a common exponent array, by having more than one coefficient 
preceding each list of exponents, but we will not pursue that here)

For example, three ways of expressing the polynomial 3x3-12x (which can be 
written 3x(x+2)(x-2))are 0 _12 0 3, 3;_2 0 2, and <2 2$_12 1 3 3 .

p. y has rank 1 and converts between coefficient and multiplier-root form of the 
polynomial y .  Note that converting from coefficient form to multiplier-root form 



solves for the roots of the polynomial.
   p. 0 _12 0 3
+-+------+
|3|2 _2 0|
+-+------+
   p. 3;2 0 _2
0 _12 0 3
If the multinomial form has only one variable (i. e. each item has length 2), 
monad p. will convert it to coefficient form:
   p. <2 2$_12 1 3 3
0 _12 0 3

Dyad p. has rank 1 0 and is used to evaluate a polynomial in any of these forms.  
If x is a polynomial in coefficient or multiplier-root form, x p. y evaluates it with 
y giving the value of the variable:
   0 _12 0 3 p. 1
_9
   (3;_2 0 2) p. _2 _1 0 1 2
0 9 0 _9 0
(the second evaluation applied the polynomial to 5 different values of the variable).

If x is a multinomial, x p. <y evaluates it with the list y giving the values of the 
variables (y must be boxed because the right rank of dyad p. is 0 and in this case 
there is more than one variable).  So to evaluate the binomial x3+3x2y+3xy2+y3 with 
x=2 and y=3 we have
   (<4 3$1 3 0  3 2 1  3 1 2  1 0 3) p. <2 3
125
as expected.

Calculus: d., D., D:, and p..
J provides support for differential and integral calculus.  u d. n produces the verb 
that gives the nth derivative of u :
   *: d. 1
+:
*: y is y squared; the derivative is +: y which is y doubled.
   ^&3 d. 1
3&*@(^&2)



^&3 y is y cubed; the derivative is 3 * y ^ 2 .
   ^&3 d. 2
3"0 * +:
Second derivative is 3 * 2 * y .
   *: d. _1
0 0 0 0.33333&p.
The _1st derivative is the indefinite integral, which is (y ^ 3) % 3 .  The form 
the interpreter uses is the polynomial form.
   f =. *:
   f d. _1 (6)
72
   g =. *:@+:
   g d. _1 (6)
288

u d. n produces ordinary derivatives, and evaluates its u with rank 0.  For partial 
derivatives, use u D. n where u has rank greater than 0.  Each cell of y produces 
an array of results, one result for each atom of the cell, giving the partial derivative 
with respect to that atom.  For example, the length of a vector is given by
   veclength =: +/&.:*:"1
which squares the atoms, adds them, and takes the square root:
   veclength 3 4 5
7.07107
The derivative of the vector length with respect to the individual components is 
given by:
   veclength D. 1 (3 4 5)
0.424264 0.565685 0.707107

The result of u need not be a scalar.  Here we define the cross product:
   xp =: dyad : '((1|.x.)*(_1|.y.)) - ((_1|.x.)*(1|.
y.))'"1
   0 0 2&xp D. 1 (4 2 0)
 0 2 0
_2 0 0
 0 0 0
Each row is the vector-valued partial derivative of the cross product 
(0 0 2 xp 4 2 0) with respect to one component of y .

The interpreter will bend every effort to find a derivative for your function, but it 



may fail, or you may not like the derivative it chooses.  m D. n, when m is a 
gerund u`v, produces a new verb which executes like u but whose nth derivative is 
v :
   a =. *:`] D. 1
Here a is defined to be *: except that its derivative is ] .
   a
*:`]D.1
   a D. 1 (5)
5
Sure enough, the derivative is ] .

If you don't want to express the derivative, you can have the interpreter approximate 
it for you.  x u D: n y approximates the derivative at y by evaluating u at y and 
y+x .  Both the left and right ranks of u D: n are the monadic rank of u, so you 
can specify different step-sizes for different atoms of y (if x is a scalar, it is used for 
the step-size at all atoms of y).

You can do calculus on polynomials by manipulating the polynomial forms without 
having to create the verbs that operate on those forms.  p.. y (rank 1) takes 
polynomial y in either coefficient or multiplier-root form and produces the 
coefficient form of the derivative of y .  x p.. y (rank 0 1) produces the 
coefficient form of the integral of y with constant term x .

Taylor Series: t., t:, and T.
With derivatives available, Taylor series are a natural next step.  u t. y is the yth 
Taylor coefficient of u expanded about 0, and x u t. y evaluates that term at the 
point x, in other words x u t. y is x^y * u t. y .  All ranks of u t. are 0.

u T. n is a verb which is the n-term Taylor approximation to u (expanded about 
0).

u t: y is (!y) * u t. y .  

Hypergeometric Function with H.
The generalized hypergeometric function is specified by two lists of numbers, a 
numerator list and a denominator list.  The generalized hypergeometric function is 
the sum over all k of the (infinite) generalized hypergeometric series, which is a 



power series in which the coefficient of the yk term is the product of the rising 
factorials of length k of the numerator items divided by a similar product for the 
denominator items, and then divided by !k .

The conjunction H. is used in the form m H. n where m is the numerator list and n 
is the denominator list.  The resulting verb m H. n has rank 0.  The monad 
m H. n y takes the limit of the sum of the generalized hypergeometric series; the 
dyad x m H. n y takes the sum of the first x terms.  Formally, the generalized 
hypergeometric function is

 where 

If m contains 2 items and n contains 1 item, m H. n defines a hypergeometric 
function.

Generalized hypergeometric functions can be used to calculate a great many 
functions of interest: Legendre polynomials, Laguerre polynomials, Chebyshev 
polynomials, and Bessel functions of the first kind are all special cases of 
hypergeometric functions.  Ewart Shaw, in http://www.ewartshaw.co.uk/data/jhyper.
doc, gives a number of examples of uses of H. .  For example, the error function 
and the cumulative distribution function are given by
   erf =: 3 : '(((2p_0.5)*y.) % (^*:y.)) * 1 H. 1.5 *: 
y.'
   n01cdf =: 3 : '-: >: erf y. % %:2'   NB. CDF of N
(0,1)
where I have rewritten Shaw's formulas to use elementary J.  2p_0.5 is 2/sqrt(π).

Sparse Arrays: Monad and Dyad $.
$. y converts the array y into a sparse-matrix representation which can save a lot 
of space and time if most of the atoms of y have the same value.  $.^:_1 y 
converts sparse y back to normal (dense) form.  A large but incomplete subset of 
operations is supported on sparse arrays; look at the description of $. if you think 
you'd like to use them.

Random Numbers: ?
Monad ? has rank 0.  If y is 0, ? y is a random floating-point number uniformly 
distributed in the interval 0 <= ? y < 1.  If y is positive, ? y is a random element 
of i. y .  An example use is



   ? 3 3 $ 1000
755 458 532
218  47 678
679 934 383

Dyad ? has rank 0.  x ? y is a list of x items selected without repetition from 
i. y, as if the list i. y were shuffled and the first x elements were taken:
   5 ? 52
24 8 48 46 22

The ? verbs use Knuth's GB_FLIP generator.

Plot
J includes a great package for making 2-D and 3-D plots.  Check out the Lab named 
Plot Package to see how to use it.  For a quick preview, enter
load 'plot numeric trig'
'surface' plot sin */~ steps 0 3 30
to see how easy it is to get a plot of sin(x*y).

Computational Addons
The web site at www.jsoftware.com has several addons that you can download.  
These are executable libraries, along with J scripts to call functions in them, that 
offer efficient implementations of often-used functions.  Two of interest in applied 
mathematics are the LAPACK addon and the FFT addon.  If you want a fast 
implementation of the singular value decomposition referred to earlier, install the 
LAPACK addon; then you can use
   require 'addons\lapack\lapack'
   require 'addons\lapack\dgesvd'
   dgesvd_jlapack_ yourmatrix
which will quickly return the desired singular values and singular vectors.

Useful Scripts Supplied With J
The directory yourJdirectory/system/packages contains a number of 
subdirectories full of useful scripts.  The /math and /stats subdirectories have 
scripts for mathematics and statistics; other subdirectories cover topics such as 
finance, printing, graphics, and interfacing to Windows.

 



                                                                    32. Elementary 
Mathematics in J

Verbs for Mathematics
All the verbs have rank 0 0 .

x *. y   Lowest common multiple of x and y

x +. y   Greatest common divisor of x and y

x ! y    number of ways to choose x things from a population of y things.  
More generally, (!y) % (!x) * (!y-x)

The verbs dyad e. (Member of) and dyad -. (set difference) are useful in working 
with sets.

Extended Integers, Rational Numbers, and x:
In J, numbers are not limited to 32-bit integers or 64-bit floating point.  Extended 
integer and rational are atomic data types (like numeric, literal, and boxed) that 
allow representation of numbers with arbitrary accuracy.  An extended integer 
constant is defined by a sequence of digits with the letter x appended; a rational 
constant is two strings of digits (numerator and denominator) separated by the letter 
r; examples are 123x and 4r5 .

The various representations of numbers in J can be given a priority order:

boolean (low) - integer - extended integer - rational - floating point - complex (high)

When a dyadic arithmetic operation is performed on operands of different priorities, 
the lower-priority operand is converted to the higher-priority representation.  The 
simplest example arises in a list constant:
   12345678901234567890 4r5
12345678901234567890 4r5
The integer was made into a rational number so it keeps its precision.
   3.0 4r5
3 0.8
The floating-point constant forces the rational number to floating point.



   2 * 3r4
3r2
The operation was performed on rational operands with a rational result.

Results of verbs are given a higher-priority representation if necessary:
   %: 4r9
2r3
   %: 5r9
0.745356

Explicit conversions between extended/rational and floating-point can be performed 
by the infinite-rank verb x: .  x: y converts floating-point y to rational or integer 
y to extended integer.  The inverse, x:^:_1 y, converts in the other direction.

A rational number can be split into numerator and denominator by 2 x: y (rank 0):
   2 x: 1r3 5
1 3
5 1

Factors and Primes: Monad p:, Monad and Dyad 
q:
p: y (rank 0) gives the yth prime (prime number 0 is 2).

q: y (rank 0) gives the prime factors of y

x q: y (rank 0) with positive x is the first x items (or all items, if x is _) in the 
list of exponents in the prime factorization of y :
   _ q: 700
2 0 2 1
   */ (p: 0 1 2 3) ^ 2 0 2 1
700

x q: y with negative x returns a 2-row table.  The second row is the nonzero 
items of (|x) q: y (i. e. the nonzero exponents in the prime factorization); the 
first row is the corresponding prime numbers:
   __ q: 700
2 5 7
2 2 1

Permutations: A. and C.



In the direct representation of a permutation p each item i{p of the permutation 
vector indicates the item number that moves to position i when the permutation is 
applied.  Applying the permutation in the direct form is as simple as writing p{y .

The standard cycle representation of a permutation gives the permutation as a list 
of cycles (sets of elements that are replaced by other elements of the set).  The 
standard cycle form is a list of boxes, one for each cycle, with each cycle starting 
with the largest element and the cycles in ascending order of largest element.

Monad C. y (rank 1) converts between direct and standard-cycle representations of 
the permutation y :
   /: 3 1 4 1 5 9
1 3 0 2 4 5
   C. /: 3 1 4 1 5 9
+-------+-+-+
|3 2 0 1|4|5|
+-------+-+-+
   C. C. /: 3 1 4 1 5 9
1 3 0 2 4 5

x C. y (rank 1 _) permutes the items of y according to the permutation x which 
may be in either standard-cycle or direct form; other nonstandard forms are also 
supported as described in the Dictionary.

There are !n possible permutations on n items, so it is possible to give each one a 
number between 0 and <:!n .  Imagine the table of all possible permutations in 
lexicographic order; the anagram index of a permutation is its index in that table.  
A. y (rank 0) gives the anagram index for the permutation y, which may be in 
either direct or standard-cycle form.  x A. y (rank 0 _) permutes the items of y 
according to the permutation whose anagram index is x :
   a =. /: 3 1 4 1 5 9
   A. a
168
   a C. 1 2 3 4 5 6
2 4 1 3 5 6
   168 A. 1 2 3 4 5 6
2 4 1 3 5 6

The monad C.!.2 y gives the parity of y : 1 if an even number of pairwise 



exchanges are needed to convert y to the identity permutation i.#y, _1 if an odd 
number are needed, 0 if y is not a permutation.
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                                                                                                                   33. Odds And Ends

To keep my discussion from wandering too far afield I left out a number of useful 
features of J.  I will discuss some of them briefly here.

Dyad # Revisited
x # y does not require that x be a Boolean list.  The items of x actually tell how 
many copies of the corresponding item of y to include in the result:
   1 2 0 2 # 5 6 7 8
5 6 6 8 8
Boolean x, used for simple selection, is a special case.  If an item of x is complex, 
the imaginary part tells how many cells of fill to insert after making the copies of 
the item of y .  The fill atom is the usual 0, ' ', or a: depending on the type of y, 
but the fit conjunction !.f may be used to specify f as the fill:
   1j2 1 0j1 2 # 5 6 7 8
5 0 0 6 0 8 8
   1j2 1 0j1 2 (#!.99) 5 6 7 8
5 99 99 6 99 8 8

Finally, a scalar x is replicated to the length of y .  This is a good way to take all 
items of y if x is 1, or no items if x is 0 .

Boxed words to string: Monad ;:^:_1
;:^:_1 y converts y from a list of boxed strings to a single character string with 
spaces between the boxed strings.
   ;:^:_1 ('a';'list';'of';'words')
a list of words

Spread: #^:_1
x #^:_1 y creates an array with the items of y in the positions corresponding to 
nonzero items of the Boolean vector x, and fills in the other items.  +/x must equal 
#y .
   1 1 0 0 1 #^:_1 'abc'
ab  c



You can specify a fill atom, but if you do you must bond x to # rather than giving it 
as a left operand:
   1 1 0 0 1&#^:_1!.'x' 'abc'
abxxc

Choose From Lists Item-By-Item: monad m}
Suppose you have two arrays a and b and a Boolean list m, and you want to create a 
composite list from a and b using each item of m to select the corresponding item of 
either a (if the item of m is 0) or b (if 1).  You could simply write
   m {"_1 a ,. b
and have the answer.  There's nothing wrong with that, but J has a little doodad that 
is faster and uses less space, as long as you want to assign the result to a name.  You 
write
   name =. m} a ,: b
(assignment with =: works too).  This form does not create the intermediate result 
from dyad ,: .  If name is the same as a or b, the whole operation is done in-place.

More than two arrays may be merged this way, using the form
name =. m} a , b , … ,: c
in which each item of m selects from one of a, b, …, c .  The operation is not done 
in-place but it avoids forming the intermediate result.

Recursion: $:
In tacit verbs, recursion can be performed elegantly using the verb $:, which stands 
for the longest verb-phrase it appears in (that is, the anonymous verb, created by 
parsing the sentence containing the $:, whose execution resulted in executing the 
$:).  Recursion is customarily demonstrated with the factorial function, which we 
can write as:
   factorial =: (* factorial@<:) ^: (1&<)
   factorial 4
24
factorial(n) is defined as n*factorial(n-1), except that factorial(1) is 1.  Here we just 
wrote out the recursion by referring to factorial by name.  Using $:, we can 
recur without a name:
   (* $:@<:) ^: (1&<) 4
24



$: stands for the whole verb containing the $:, namely (* $:
@<:) ^: (1&<) .

Make a Table: Adverb dyad u/
x u/ y is x u"(lu,_) y where lu is the left rank of u .  Thus, each cell of x 
individually, and the entire y, are supplied as operands to u .

The definition is simplicity itself, and yet many J programmers stumble learning it.  
I think the problem comes from learning dyad u/ by the example of a multiplication 
table.

The key is to note that each cell of x is applied to the entire y : cell, not item or 
atom.  The rank of a cell depends on the left rank of u .  The multiplication table 
comes from a verb with rank 0:
   1 2 3 */ 1 2 3
1 2 3
2 4 6
3 6 9

You can control the result by specifying the rank of u :
   (i. 2 2) ,"1/ 8 9
0 1 8 9
2 3 8 9
   (i. 2 2) ,"0 _/ 8 9
0 8 9
1 8 9
 
2 8 9
3 8 9

These results follow directly from the definition of dyad u/ .  fndisplay shows 
the details:
   defverbs 'comma'
   (i. 2 2) comma"1/ 8 9
+---------------+---------------+
|(0 1) comma 8 9|(2 3) comma 8 9|
+---------------+---------------+
   (i. 2 2) comma"0 _/ 8 9
+-----------+-----------+



|0 comma 8 9|1 comma 8 9|
+-----------+-----------+
|2 comma 8 9|3 comma 8 9|
+-----------+-----------+

Boolean Functions: Dyad m b.
Functions on Boolean operands
I will just illustrate Boolean dyad m b. by example.  m b. is a verb with rank 0.  
m, when in the range 0-15, selects the Boolean function:
   9 b./~ 0 1
1 0
0 1
u/~ 0 1 is the function table with x values running down the left and y values 
running along the top.  9 is 1001 binary (in J, 2b1001), and the function table of 
9 b. is 1 0 0 1 if you enfile it into a vector.  Similarly:
   , 14 b./~ 0 1
1 1 1 0

You can use m b. in place of combinations of Boolean verbs.  Unfortunately, 
comparison verbs like > and <: have better performance than m b., so you may 
have to pay a performance penalty if you write, for example, 2 b. instead of >, 
even though they give the same results on Booleans:
   >/~ 0 1
0 0
1 0

J verb-equivalents for the cases of m b. are: 0 0"0; 1 *.; 2 >; 3 ["0; 4 <; 5 ]"0; 
6 ~:; 7 +.; 8 +:; 9 =; 10 -.@]"0; 11 >:; 12 -.@["0; 13 <:; 14 *:; 15 1"0 .

Bitwise Boolean Operations on Integers
When m is in the range 16-31, dyad m b. specifies a bitwise Boolean operation in 
which the operation (m-16) b. is applied to corresponding bits of x and y .  
Since 6 b. is exclusive OR, 22 b. is bitwise exclusive OR:
   5 (22 b.) 7
2
The XOR operation is performed bit-by-bit.



Dyad 32 b. is bitwise left rotate: bits shifted off the end of the word are shifted 
into vacated positions at the other end.

Dyad 33 b. is bitwise unsigned left shift.  x is the number of bits to shift y 
(positive x shifts left; negative x shifts right; in both cases zeros are shifted into 
vacated bit positions):
   2 (33 b.) 5
20

Dyad 34 b. is bitwise signed left shift: it differs from the unsigned shift only 
when x and y are both negative (i. e. right shift of a negative number), in which 
case the vacated bit positions are filled with 1).

If you use shift and rotate, you may need to know the word-size of your machine.  
One way to do that is 
   >: 2 ^. | _1 (32 b.) 1
32

Operations Inside Boxes: u L: n, u S: n
u&.> is the recommended way to perform an operation on the contents of a box, 
leaving the result boxed.  It is the idiom used most often by J coders and the first 
one to be supported by special code when performance improvements are made in 
the interpreter.

Sometimes your operations inside boxes require greater control than u&.> can 
provide.  For example, you may need to operate on the innermost boxes where the 
boxing level varies from box to box.  In these cases consider using u L: n which 
has infinite rank.  It goes inside the operands and applies u to contents at boxing 
level n .

The monadic case u L: n y is the simpler one.  It is defined recursively.  If the 
boxing level of y is no more than n, the result is u y  .  Otherwise, u L: n is 
applied to each opened atom of y, and the result of that is boxed.  The effect is that 
u is applied on each level-n subbox and the result replaces that subbox, with outer 
levels of boxing intact.  For example,
   ]a =. 0;(1 2;3 4 5);<<6;7 8;9
+-+-----------+-----------+
|0|+---+-----+|+---------+|
| ||1 2|3 4 5|||+-+---+-+||



| |+---+-----+|||6|7 8|9|||
| |           ||+-+---+-+||
| |           |+---------+|
+-+-----------+-----------+
A boxed noun.
   L. a
3
Its boxing level is 3.
   # L:0 a
+-+-----+---------+
|1|+-+-+|+-------+|
| ||2|3|||+-+-+-+||
| |+-+-+|||1|2|1|||
| |     ||+-+-+-+||
| |     |+-------+|
+-+-----+---------+
The contents of each innermost box (where boxing level is 0) is replaced by the 
number of items there.
   # L:1 a
+-+-+---+
|1|2|+-+|
| | ||3||
| | |+-+|
+-+-+---+
Each level-1 boxed entity is replaced by the number of items.
   # L:2 a
+-+-+-+
|1|2|1|
+-+-+-+
Similarly for level-2 entities.
   # L:_2 a
+-+-+---+
|1|2|+-+|
| | ||3||
| | |+-+|
+-+-+---+
Negative level -n means ((level of y) minus n).  Note that this does not mean 'n 
levels up from the bottom of each branch of y'.  That would result in u's being 



applied at different levels in the different items of y; instead, the level at which u is 
to be applied is calculated using the level of the entire y .

The dyadic case x u L: n y is similar, but you need to know how the items of x 
and y correspond.  During the recursion, as long as both x and y have a higher 
boxing level than the one specified in n, the atoms of x and y are matched as they 
would be matched in processing a verb with rank 0 0 (with replication of cells if 
necessary).  If either operand is at the specified level, it is not changed as the items 
of the other operand only are opened.  When both operands are at or below the 
specified boxing level, u is applied between them.  The results of each recursion are 
boxed; this will give each the deeper boxing level of the two operands at each 
application of u .An example:
   (0 1;<2;3) +L:0 (10 20)
+-----+-------------+
|10 21|+-----+-----+|
|     ||12 22|13 23||
|     |+-----+-----+|
+-----+-------------+
y was passed through and applied to each level-0 entity.
   (0 1;<2;3) +L:0 (<<10 20)
+-------+-------------+
|+-----+|+-----+-----+|
||10 21|||12 22|13 23||
|+-----+|+-----+-----+|
+-------+-------------+
Once again y was applied to each entity, but because it has boxing level 2, all the 
results have boxing level 2.

The conjunction S: is like L:, but instead of preserving the boxing of the operands 
it accumulates all results into a list:
   (0 1;<2;3) +S:0 (<<10 20)
10 21
12 22
13 23

Comparison Tolerance !.f
Like a diamond earring that adds a sparkle to any outfit, the fit conjunction !. is a 



general-purpose modifier whose interpretation is up to the verb it modifies.  We 
have seen !.f used to specify the fill atom for a verb, and to alter the formatting of 
monad ": .  Its other important use is in specifying the comparison tolerance for 
comparisons.  A comparison like x = y calls two operands equal if they are close, 
where close is defined as differing by no more than the comparison tolerance times 
the magnitude of the larger number.  If you want exact comparison, you can set the 
comparison tolerance to 0 using !.0 :
   1 (=!.0) 1.000000000000001
0
   1 = 1.000000000000001
1

Tolerant comparison is used in the obvious places—verbs like dyad =, dyad >, and 
dyad -:—and also in some unobvious ones, like the verbs monad ~., monad ~:, 
and dyad i., and the adverb /. .  For all of these you can specify comparison 
tolerance with !.f .  You may wonder whether an exact comparison using !.0 is 
faster than a tolerant comparison.  The answer is yes, but often not by much.  There 
is one important exception: if the comparison is used for finding equal items whose 
rank is greater than 0 (or are complex numbers), exact comparison can be much 
faster.  So, if x has rank 2 or higher, it's worth the trouble to write x u/.!.0 y or 
x i.!.0 y; similarly use ~.!.0 y, ~:!.0 y, and x e.!.0 y if y has rank 
greater than 0.

i.!.0 uses a completely different algorithm from dyad i. .  If performance 
analysis shows that dyad i. is taking a lot of time, you might get an improvement 
by using i.!.0, even if what you are comparing is not numeric.

The f in !.f can be no larger than about 2^_34 .  The reason for this is that there 
is much special code in J for handling integer operands, and for speed it assumes 
that comparison tolerance cannot affect integer comparisons.

The foreign 9!:19 y can be used to change the default comparison tolerance, and 
9!:18 '' will return the current setting.

Right Shift: Monad |.!.f
One of my personal favorites is the infinite-rank verb monad |.!.f , defined as 
_1&(|.!.f); in other words it shifts y right one place, discarding the last item 
and shifting an item of fs into the first position.



Generalized Transpose: Dyad |:
Dyad |: has rank 1 _ .  x |: y rearranges y so that the axes given in x become 
the last axes of the result.  So, if y has rank 3, 0 |: y puts the axes of y into the 
order 1 2 3 0 and 0 2 |: y puts them into the order 1 3 0 2 .  For 
example:
   i. 2 3 4
 0  1  2  3
 4  5  6  7
 8  9 10 11
 
12 13 14 15
16 17 18 19
20 21 22 23
   0 |: i. 2 3 4
 0 12
 1 13
 2 14
 3 15
 
 4 16
 5 17
 6 18
 7 19
 
 8 20
 9 21
10 22
11 23

Formally, putting the axes into an order p means that (<p{x) { p |: y is the 
same as (<x) { y .  I wish I could give you an intuitive definition but I can't.

An item of x can be negative to count axes from the end.  The Dictionary shows 
how you can use boxed x to take elements along diagonals of y .

Monad i: and Dyad i:
Monad i: is like monad i., but its interval is centered on 0 rather than starting at 0:



   i: 5
_5 _4 _3 _2 _1 0 1 2 3 4 5
   i: _5
5 4 3 2 1 0 _1 _2 _3 _4 _5
Monad i: can also take a complex operand to specify a different spacing between 
items of the result.

Dyad i: is like dyad i., but it gives the index of the last occurrence (or #x if there 
is none).

Fast String Searching: s: (Symbols)
If you find your program taking a lot of time matching strings, you can create 
symbols representing the strings and then match the symbols rather than the strings 
themselves.  The interpreter uses special code to make symbol-matching very fast.

Symbol is an atomic data type (like numeric, literal, and box).  In a noun of the 
symbol type, each atom represents a boxed character string.  You create a symbol 
with monad s: which has infinite rank.  s: y takes an array of boxed strings y and 
creates an array of symbols of the same shape as y :
   ]sym =. s: 2 2$'abc';'def';'ghi';'jk'
`abc `def
`ghi `jk 
   $sym
2 2
The '`' characters are a clue that sym is an array of symbols.  The value of the top-
left atom of sym is not '`abc' or 'abc'; it is a value understood only by the 
interpreter.  The interpreter chooses to display the text associated with the symbol, 
but that text is actually stored in the interpreter's private memory.

y in s: y can be a character string which is chopped into pieces using the leading 
character as a separator; each piece is then converted to a symbol.  This is a handy 
way of creating a short list of symbols:
   s: '`abc`ghi'
`abc `ghi

Symbols can be operands of any verb that does not perform arithmetic; in addition, 
comparison between symbols is allowed with 'less than' defined to mean 'earlier in 
alphabetical order'.
   a =. s: '`abc`def`ghi`jk'



defines a list of 4 symbols.
   a i. s:<'ghi'
2
We create a symbol to represent 'ghi' and find that in the list.
   a i. <'ghi'
4
Note: the boxed string <'ghi' is not a symbol, so it is not found in the list.

Dyad s: has a number of forms for operating on symbols.  The only one of interest 
to us here is 5 s: y which converts each symbol in y to its corresponding boxed 
string:
   5 s: 3 1 { a
+--+---+
|jk|def|
+--+---+

When a string is converted to a symbol, the interpreter allocates internal resources to 
hold the string's value and other information.  There is no way to tell the interpreter 
to free the resources for a single string; this can be a problem if your symbol table is 
large and changes dynamically.  It is possible to clear the entire symbol table (using 
y=.0 s: 10 and 10 s: y), but doing so invalidates any symbols previously 
created by s: y .

If you would like to do high-speed matching but what you want to match is not a 
string, consider converting to strings using 5!:5 <'y' which converts the 
variable named y to string form.

Unicode Characters: u:
2-byte unicode characters can be represented by variables that have the unicode 
atomic data type.  Such variables are created by the verb u: .  Its use is described 
in the Dictionary.

Window Driver And Form Editor
Designing user interfaces is quick and painless with J's Form Editor.  The Lab 
named Form Editor will show you how.
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                                                                                                                     34. Tacit Programs

There is another language within J, a microcode for J as it were.  Like Molière's M. 
Jourdain, who was astonished to find he had been speaking prose for forty years 
without knowing it, you have been using a small subset of this language unwittingly 
throughout our investigations.  The hidden language describes a way of coding 
called tacit programming, and it is time for you to learn it in full.  J's tacit language 
is the irreducible essence of a programming language.  It describes your algorithm 
using only the ordering of the J primitives you have already learned.  It has a 
grammar without words, which you use to write programs without visible operands; 
yet its renouncing these seemingly essential components is self-denial rather than 
self-mutilation, for it retains the vigor to express any algorithm.  It is as evanescent 
as the breeze and as powerful as the hurricane.  It is a sublime creation.

We begin our exploration with this simple program:
   -
The first step toward enlightenment is to realize that something so simple is a 
program.  You may object: But it can't be a program.  It has no parameters.  It has 
no name.  How would I invoke it?  It's a primitive, maybe.  Or a verb.  Or a 
typographical error.  But not a program.

Let me make the case that it is indeed a program.  I say that a bit of text deserves the 
title of 'program' if it produces a systematic result when executed with suitable 
arguments.  And I say that the program '-' satisfies this definition.  Certainly I can 
supply it with arguments
   5 7 - 2
3 5
and get the expected result.  The program does not refer to its operands explicitly, 
but as long as we make the agreement that the arguments to a program appear as 
nouns to its left and right, the program has no doubt about how to find its 
arguments.  Of course, we have been using this convention for verbs all along.

I can give this program a name:
   minus =: -
   5 7 minus 2
3 5
minus can be used in place of - anywhere.  When we look at the value of minus, 
we see what it contains:



   9!:3 (5)  NB. Do this once to select simplified 
display
 
   minus
-

minus is equivalent to - .  In J we call it a verb, but it has all the essential features 
of a program.  In fact, minus is two programs, because it can be executed 
monadically as well:
   minus 6 8
_6 _8

The point is that every J verb, even the primitives and the compound verbs, is a 
program in the usual sense.  Verbs like minus, that do not mention their operands 
by name but instead apply them according to J's parsing rules, are called tacit verbs.  
Verbs created by m :n, like dyad : '+/ y.', that mention their operands by 
name are called explicit verbs.  The compound verbs we have learned already are 
examples of tacit verbs.  Some of the verbs that we have had occasion to define so 
far can be written in tacit form:
addrow =: monad : '+/ y.'"1
could be rewritten as
addrow =: +/"1
and
v =: dyad : '1.04 * x. + y.'
is equivalent to
v =: 1.04&*@:+
as we have seen.  We have already encountered tacit definitions without noticing:
   dotprod =: +/@:*"1
   1 2 3 dotprod 1 2 3
14
and we can certainly define more.
   sortup =: /:~
defines a verb that sorts its operand into ascending order:
   sortup 31 41 59 26 53
26 31 41 53 59

Some of the verbs we have encountered seem too complex for a compound verb.  
For example, in
   mean =: monad : '(+/ y.) % #y.'



we need to perform two operations on y. and combine their results, something that 
is beyond the capabilities of the compound verbs we have encountered so far.  We 
will next learn how to produce a tacit equivalent for mean and a great many other 
verbs.
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                                                                                                     35. First Look At 
Forks

Before we learn the rules for making tacit forms, you should understand why you 
are going to the trouble of learning how to write programs that hide their operands.  
First, they are extraordinarily compact.  The explicit definitions we have written so 
far are laconically terse by the standards of most computer languages, but they will 
seem positively windy compared to the tacit forms.  Second, the shorter definitions 
are easier to combine with other verbs, and with the modifiers that add so much 
power to J expressions.  Third, the tacit definitions are parsed when they are 
defined, in contrast to explicit definitions, in which each line is parsed as it is 
executed; we reduce interpretive overhead by using tacit forms.  Fourth, in learning 
to write tacit verbs you are also learning to write tacit adverbs and conjunctions, 
with which you will be able to craft your own private toolkit of modifiers that you 
can use to combine verbs in ways that are useful to your application.

In what follows, Nx will represent a noun, Vx a verb, Cx a conjunction, and Ax an 
adverb, where x is any suffix.

We begin by observing that the rules we have learned so far give no meaning to 
some combinations of words.  Consider three verbs in a row, with no noun to 
operate on, as in the sequence
   (V0 V1 V2)
where each Vn represents a verb—an example would be ((+/) % #) .  Without 
some special rules, we have no way to interpret this sequence.  Such sequences of 
words that cannot immediately be executed to produce a result are called trains.  
Examples are C0 C1 A2, V0 V1, and the V0 V1 V2 we are considering now.

Understanding tacit programming will largely be a matter of understanding how 
trains are parsed and executed.  You will learn that (V0 V1 V2) is a new verb that 
can be applied to noun operands, and you will learn how it applies to nouns.  To 
begin with, observe that there is no reason that (V0 V1 V2) N should be the 
same as V0 V1 V2 N which as we know is (V0 (V1 (V2 N))) .

The meaning J assigns to (V0 V1 V2) Ny is:
   (V0 V1 V2) Ny  is  (V0 Ny) V1 (V2 Ny)



This substitution goes by the name monadic fork.  I think finding this definition was 
a stroke of brilliance in the design of J.  An example of the use of the fork is:
   (+/ % #) 4 6 8
6
which calculates the mean of the operand.  It is processed using the substitution rule 
above as
   (+/ 4 6 8) % (# 4 6 8)
6
which divides the sum of the items in the list by the number of items in the list.  
You can use fndisplay to help yourself see how the substitutions are made:
   defverbs 'plus"0 div"0 tally'
   (plus/ div tally) 4 6 8
+---------------------------------+
|(4 plus 6 plus 8) div tally 4 6 8|
+---------------------------------+

The sequence (+/ % #) is a verb.  It can therefore be assigned to a name:
   mean =: (+/ % #)
or
   mean =: +/ % #
and then used by that name:
   mean 12 18 24
18
Neat, eh?  With just 4 symbols we described a program to take the mean of a list of 
numbers (or a list of lists…).  The beauty and the power are in the way the operands 
and verbs are connected; that's what we'll be learning in the next few chapters.

At this point you may be impressed with the economy of the monadic fork but a bit 
confused about the details.  For example, we said that (V0 V1 V2) Ny is not the 
same as V0 V1 V2 Ny and yet we said that mean =: (+/ % #) is the same 
as mean =: +/ % # .  How can that be?  If we use the version without 
parentheses, why doesn't mean 12 18 24 get evaluated like
   +/ % # 12 18 24
0.333333
?

I could give you a simple rule of thumb, namely that you can always imagine an 
extra set of parentheses around any value assigned to a name.  That would be true 
but misleading, because it would encourage you to think that the values of defined 



names are substituted into a sentence before the sentence is executed.  That gets it 
backwards: in reality the operands are supplied to the stored definitions.  In fact, 
the execution of a J sentence is a subtle alternation between creating definitions and 
executing them.  We will take the next couple of chapters to give you a thorough 
understanding of execution, after which we will return to see what magic we can 
work with forks and their brethren.
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                                                                                       36. Parsing and 
Execution I

I hope your hunger for understanding will be enough to motivate you to read a 
couple of difficult chapters.  If you do, you will learn something few J programmers 
know—what really happens when J executes a sentence.  In this chapter we will 
analyze sentences from the top down, to get an idea for the order of execution.  In 
the next chapter we will follow the interpreter as it alternately parses and executes 
sentences from the bottom up.

Since the understanding of parsing and execution that you have developed during 
your work so far is probably a bit inaccurate, we will work through examples of 
increasing complexity.
   9!:3 (5)  NB. Do this once to select simplified 
display
 
   &.
&.
With only one word, there are no operands and nothing to execute, so the result of 
the sentence is the word itself: the conjunction &. .

   -:&.^.
-:&.^.
The result of executing -:&.^., i. e. executing &. with -: and ^. as operands, is 
an anonymous verb.  This anonymous verb will execute according to the definition 
of &., given its operands -: and ^. (i. e. -:&.^. y will be ^ -: ^. y ).
      Note that the conjunction &. is executed without reference to the operand of the 
anonymous verb (indeed, in this case there is no such operand and the anonymous 
verb is the result of the sentence).  We could assign the anonymous verb to a name, 
in which case it would no longer be anonymous (e. g. sqrt =: -:&.^.); 
without such an assignment we will refer to it here by the nickname av .  The value 
of av is the verb described by -:&.^. .

   -:&.^. 16
4
We know that this is executed as ^ -: ^. 16; let's see how that happens.  



Conjunctions are executed before verbs, so first -:&.^. will be executed to 
produce the anonymous verb we called av .  Then av is executed with the operand 
16 .  av operates according to the definition of &. : it produces the same result as 
^ -: ^. 16 (but it may use a different algorithm than executing ^ -: ^. 16 
directly).
      It appears that &. was executed twice: once to create av and then again during 
the execution of av .  No, it was executed only once, to create av .  av operates 
according to the definition of &., but it is av that is executing, not &. .  The 
confusion arises because of the way the interpreter displays av .  There is no better 
way to show a verb that performs the function -:&.^. than to show the way the 
verb was created, i. e. with the characters '-:&.^.', but you should think of this as 
an exhibition of the pedigree of av, and an assurance of its good behavior, rather 
than a list of functions to be executed.  In fact, part of the reason for J's good 
performance comes from its recognizing functions that can be combined efficiently 
and providing customized routines to handle anonymous verbs that call for those 
combinations.

Confusion between a conjunction and the anonymous verb it produces is most likely 
when the conjunction is one you wrote using conjunction define or 2 :
n .  In most cases the text of the conjunction actually describes a derived verb, and 
it is natural for you to say 'the conjunction C is executed with operands u., v., and 
y.' rather than the more accurate 'the anonymous verb created by the application of 
C to u and v is executed, with u. and v. available during the interpretation of the 
text of C and with y. as the operand'.  Such confusion is almost always harmless, 
but let's go through a few examples so you can see the layers of execution:
   2 : 'u.'
2 : 'u.'
We execute 2 : 'u.' and the result is an anonymous conjunction that we'll call 
ac1 .  The display of ac1 shows where it came from.  When ac1 is executed, its 
result will be its left operand.
   +: (2 : 'u.') -:
+:
Here 2 : 'u.' is executed first to produce ac1; then ac1 is executed with left 
operand of +: and right operand of -: .  The result is an anonymous verb that we'll 
call av1; its value is the verb +: which was the left operand to ac1 .
   +: (2 : 'u.') -:  5
10



Remember, (2 : 'u.') is a conjunction (the conjunction we have called ac1), 
and conjunctions are executed before verbs, so this is executed as 
(+: (2 : 'u.') -:) 5, which becomes av1 5 .  We execute av1 with the 
operand 5 .  Monad +: doubles its operand, and the result is 10 .

We know that a conjunction can produce a conjunction result.  That's how explicit 
conjunctions are formed: executing the conjunction : with left operand 2, as in 2 :
n, produces a conjunction.  There is nothing special about 2 :n : any conjunction 
is allowed to produce a conjunction result:
   2 : '&'
2 : (,'&')
We execute 2 : '&' and the result is an anonymous conjunction that we'll call 
ac2 .  The display of ac2 shows where it came from. (the , in the display of ac2 
is harmless, a reminder that internally the anonymous entity resulting from m :n 
stores n as a list of characters.)
   +: (2 : '&') -:
&
We execute ac2 with left operand of +: and right operand of -: .  The result is an 
anonymous conjunction that we'll call ac3 .  ac3 is a conjunction because its 
value & (the last sentence executed by ac2) is a conjunction.  Yes, & by itself can 
be a result: modifiers can return any primary part of speech (but try to return a 
conjunction from a verb and you will get an error).
      Note that this is not the same as u.&v. : that would also be a valid return 
value from a conjunction, but u. and v. would be substituted and & would be 
executed to make the returned value an anonymous verb with the description u&v .
      Make sure you see why the +: and -: disappeared.  First, the conjunction : 
was executed with operands 2 and '&'; that produced a conjunction ac2 which 
was then executed with operands +: and -:; but the defining text of ac2 does not 
look at its operands; it simply produces the value & .  So, the operands to ac2 
disappear without a trace, and the result of the whole phrase is a conjunction with 
the value & .

   2 (+: (2 : '&') -:) *
2&*
Continuing the example, we execute ac3  (which was just the conjunction &) with 
left operand 2 and right operand * .  The result is the anonymous verb av2 which 
will execute as 2&* .



   2 (+: (2 : '&') -:) *   5
10
Finally, we execute av2 with the operand 5, and get the result 10 .

Explicit modifiers that refer to the operands of their derived verb (as x. or y.) 
come in for special treatment.  A simple example is the conjunction defined by
   2 : 'u. v. y.'
2 : 'u. v. y.'
We execute 2 : 'u. v. y.' and the result is an anonymous conjunction that 
we'll call ac4 .  You can't tell it from the display, but ac4 is a special kind of 
conjunction.  Because it refers to y., the text of ac4 can be executed only as a verb 
(only then are x. and y. meaningful).  The stored ac4 makes note of this fact.
   +: (2 : 'u. v. y.') -   5
_10
When ac4 itself is executed (as +: (2 : 'u. v. y.') - here—since ac4 is 
a conjunction it is executed before its result is applied to the noun operand 5), the 
text of ac4 is not interpreted (as it was in our other examples).  Instead, the new 
anonymous verb av3 is created.  av3 contains the defining text of ac4, along with 
the operands that were given to ac4 (+: and - here).  When the verb av3 is 
executed as in the line above, the text of ac4 is finally interpreted, with the 
operands of ac4 (+: and - here) available as u. and v., and the noun operands of 
av3 (5 here) available as y. (and x. if the invocation is dyadic); the result is the 
result of +: - 5 .
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                                                                                    37. Parsing and Execution 
II

Now that you understand what an anonymous verb/adverb/conjunction is, you are ready 
to follow parsing and execution word by word.  We will finally abandon all shortcuts and 
process sentences exactly as the interpreter does.

In any compiled language, a program is broken into words (tokens) and then parsed, and 
code is generated from the parsed result.  Not so in J: a sentence is broken into words, but 
the sentence is not fully parsed; rather, parsing and execution proceed simultaneously, 
scanning the text from right to left.  Parsing finds patterns in the sentence that are then 
executed.  Execution includes the usual supplying of noun operands to verbs to obtain a 
result from the verb, but also other actions: supplying verb and noun operands to 
conjunctions and adverbs to produce derived entities, and recognition of other sequences 
that we will learn soon.  Execution of a bit of a sentence, which we will call a fragment, 
consists of replacing the fragment with an appropriate single word, namely the result of 
executing the fragment.  In the simple case, where the fragment is the invocation of a 
verb (i. e. the fragment looks like verb noun or noun verb noun), the word that 
replaces it is the noun that is the result of the verb.  If the fragment is the invocation of a 
modifier, the result of executing it will be a noun or a derived verb/adverb/conjunction.  
A noun is nothing but its value, but the derived verb/adverb/conjunction will itself 
eventually be executed: it is called an anonymous verb/adverb/conjunction and is saved 
by the interpreter in a private form, and the single word used to replace the fragment is a 
reference to this anonymous verb/adverb/conjunction (for the case of an anonymous verb, 
you may think of the single word as a pointer to a function that performs according to 
the definition of the anonymous verb).  In all cases the word replacing the fragment has a 
definite part of speech, and if it is a verb, a definite rank.

The Parsing Table
Execution of a sentence begins by breaking the sentence into words.  The words (with a 
beginning-of-line marker, shown here as §, prepended) become the initial contents of the 
unprocessed word list.  A push-down stack will also be used during execution; it is 
initially empty.  Execution of the sentence is performed by repetition of the parsing step 
which comprises: (1) examining the top 4 elements of the stack to see if they match one 
of the 10 executable patterns; (2) if a match was found, executing the executable portion 
of the stack (what we called the executable fragment in the last chapter), resulting in a 
single word which replaces the fragment on the stack; (3) if no match was found, moving 
the rightmost word of the unprocessed word list into the leftmost position of the stack, 



pushing the rest of the stack to the right.  Execution finishes when there are no 
unprocessed words and the stack does not contain an executable pattern.  Note that 
execution of a fragment may leave the stack matching one of the executable patterns, so 
several sequential parsing steps may perform an execution without moving anything onto 
the stack.  After all words have been processed, the stack should contain a beginning-of-
line marker followed by a single word which becomes the result of the sentence.

To follow the parsing we need to know what patterns at the top of the stack contain an 
executable fragment.  The parsing table below gives the complete list.  More than one 
symbol in a box means that any one of them matches the box.  name means any valid 
variable name, and C, A, V, and N stand for conjunction, adverb, verb, and noun 
respectively.

leftmost stack word other stack words action
§ =. =: ( V N anything 0 Monad
§ =. =: ( A V N V V N 1 Monad
§ =. =: ( A V N N V N 2 Dyad
§ =. =: ( A V N V N A anything 3 Adverb
§ =. =: ( A V N V N C V N 4 Conj
§ =. =: ( A V N V V V 5 Fork
§ =. =: ( C A V N C A V N anything 6 Hook/Adverb
name N =. =: C A V N anything 7 Is
( C A V N ) anything 8 Paren

The lines in the parsing table are processed in order.  If the leftmost 4 words on the stack 
match a line in the table, the fragment (those words on the stack which are in boldface in 
the parsing table) is executed and replaced on the stack by the single word returned.  
Because the fragment is always either two or three words long, it is officially known as a 
bident or trident.  The last column of the parsing table gives a description of what 
execution of the fragment entails.

You will have an easier time following the parsing if you note that the leftmost word in 
the executable pattern is usually one of § =. =: ( A V N .  This means that you can 
scan from the right until you hit a word that matches one of those before you even start 
checking for an executable pattern.  If you find one of § =. =: ( A V N and it 
doesn't match an executable pattern, keep looking for the next occurrence.

Note that the leftmost stack word in the parsing table is never a conjunction.  This is the 
ultimate source of our long-noted rule that conjunctions associate left-to-right: a 
conjunction can be executed when it appears in the third stack position, but if another 
conjunction is in the leftmost position then, the stack will always be pushed down to 



examine that conjunction's left argument.

Examples Of Parsing And Execution
We will now follow a few sentences through parsing.  We will represent anonymous 
entities by names in italics, with an indication of how the anonymous entity was created.  
Up till now in this book we have scarcely noticed that the term 'verb' was used both for an 
entity that can be applied to a noun to produce a noun result, and also for the name of that 
entity.  This ambiguity will continue—being precise would be too cumbersome—but you 
should be aware of it.  When we say 'the result is av, defined as +/', that means that an 
anonymous verb was created whose function is described as +/, and the nickname we are 
giving it—the word, that is, that goes on the execution stack to betoken this verb—is av.

Sentence: +/2*a where a is 1 2 3

unprocessed word list stack line

§ + / 2 * a  

§ + / 2 *1 2 3   (not executable)  

§ + / 2* 1 2 3   (not executable)  

§ + /2 * 1 2 3   (not executable)  

§ +/ 2 * 1 2 3   (result 2 4 6) 2

 § + / 2 4 6   (result av, defined as +/) 3

 § av 2 4 6   (result 12) 0

 § 12  

The column labeled 'line' indicates which line of the parsing table was matched by the 
stack.  The fragment is marked in boldface and underlined.  Note that when the noun a 
moved onto the stack, its value was moved; when a named verb, adverb, or conjunction is 
moved onto the stack, only the name is moved.  Note also that the noun's value (1 2 3 
here) is a single word.

From now on we will omit the lines that do not contain an executable fragment.

Sentence: mean =: +/ % #

unprocessed word list stack line

§ mean =: + / % #  

§ mean=: + / % #   (result av1, defined as +/) 3

§ mean=. av1 % #   (result av2, defined as av1 % #) 5



 § mean =: av2   (result av2; mean is assigned av2) 7

 § av2  
I want to emphasize that what is assigned to mean is the result of parsing +/ % # .  It 
is not the sequence +/ % #, but rather a single verb which performs the function 
described by the fork.  Now you see why putting parentheses around the definition doesn't 
matter: av2 would be parsed the same either way.

unprocessed word list stack line

§ mean 4 5 6  

 § mean 4 5 6   (result 5) 0

 § 5  

Sentence: mean 4 5 6
Since mean is the result from parsing +/ % #, it is executed without further ado.  As 
you can see, a single 'execution' step can trigger a cascade of processing as each verb 
referred to by an executing verb is executed in turn.  Here, execution of mean does the 
entire processing of the fork, returning the result 5 .  The verb to be executed can be 
quite complex, and can have a mixture of named and anonymous components, as in the 
next example.

Sentence: (mean - (+/ % #)&.(^."1)) 4 5 6   (find the difference between 
arithmetic and geometric mean)

unprocessed word list stack line

§ ( mean - ( + / % # ) &. ( ^. " 
1 ) ) 4 5 6

  

§ ( mean - ( + / % # ) &.( ^. " 1 ) ) 4 5 6   (result av1, defined as 
^. " 1)

4

§ ( mean - ( + / % # ) &.( av1 ) ) 4 5 6   (result av1) 8

§ ( mean -( + / % # ) &. av1 ) 4 5 6   (result av2, 
defined as +/

3

§ ( mean -( av2 % # ) &. av1 ) 4 5 6   (result av3, 
defined as av2 % #)

5

§ ( mean -( av3 ) &. av1 ) 4 5 6   (result av3) 8

§ ( mean- av3 &. av1 ) 4 5 6   (result av4, defined as 
av3 &. av1)

4



§( mean - av4 ) 4 5 6   (result av5, defined as 
mean - av4)

5

§( av5 ) 4 5 6   (result av5) 8

 § av5 4 5 6   (result 0.0675759) 0

 § 0.0675759  
Again, there was only one execution of a verb.  It happened at the very end: after av5 was 
created, it was executed, and its execution included the execution of everything else.

Sentence: inc =: ({.a)&+ where a is 4 5 6

unprocessed word list stack line

§ inc =: ( {. a ) & +  

§ inc =:( {. 4 5 6 ) & +   (result 4) 0

§ inc =:( 4 ) & +   (result 4) 8

§ inc=: 4 & +   (result av, defined as 4&+) 4

§inc =: av   (result av; inc is assigned av) 7

 § av  
This illustrates an important point.  Even in the middle of a complex definition, verbs are 
applied to nouns wherever possible.  And, the value of a noun in a definition is the value 
at the time the definition was parsed.  If a parsed definition refers to a verb, it does so by 
name, so the value of a verb is its value when it is executed.

The remaining examples are curiosities to show you that it's worth your trouble to learn 
the intricacies of parsing.

Sentence: a + a =. 5

unprocessed word list stack line

§ a + a =. 5  

§ a +a =. 5   (result is 5; a is assigned 5) 0

 § 5 + 5   (result is 10) 2

 § 10  
a is assigned a value just before that value is pushed onto the stack.

Sentence: 2 +: (2 : '&') -: *   5



unprocessed word list stack line

§ 2 +: ( 2 : '&' ) -: * 5  

§ 2 +:( 2 : '&' ) -: * 5   (result is ac1, defined as 2 : '&') 4

§ 2 +:( ac1 ) -: * 5   (result is ac1) 8

§2 +: ac1 -: * 5   (result is ac2, defined as &) 4

 § 2 ac2 * 5   (result is av, defined as 2&*) 4

 § av 5   (result is 10) 0

 § 10  

Look at what happens when we omit the parentheses:

Sentence: 2 +: 2 : '&' -: *   5

unprocessed word list stack line

§ 2 +: 2 : '&' -: * 5  

§ 2 +: 2 :'&' -: * 5   (result is 1) 1

§ 2+: 2 : '&' -: 1   (result is ac1, defined as 2 : '&') 4

§2 +: ac1 -: 1   (result is ac2, defined as &) 4

 § 2 ac2 1   (domain error: 2&1 is illegal) 4
The omission produces a subtle but fatal change in the parsing order.  As the Dictionary 
says, "it may be necessary to parenthesize an adverbial or conjunctival phrase that 
produces anything other than a noun or verb".  Now you see why.

Undefined Words
If you try to execute a nonexistent verb, you get an error:
   z 5
|value error: z
|       z 5
However, that error occurs during execution of the name, not during its parsing.  During 
parsing, an undefined name is assumed to be a verb of infinite rank.  This allows you to 
write verbs that refer to each other, and relieves you from having to be scrupulous about 
the order in which you define verbs.  For example:
   a =: z
This produces a verb a which, when executed, will execute z.
   z =: +



   a 5
5
With z defined, a executes correctly.  Of course, it's OK to assign z to another verb too:
   b =: z
   b 5
5

Now, can you tell me what +/@b 1 2 3 will do?  Take a minute to figure it out (Hint: 
note that I used @ rather than @:).
   +/@b 1 2 3
1 2 3
Because b has rank 0, +/@b also has rank zero, so the summing is applied to atoms 
individually and we get a list result.  Do you think +/@a 1 2 3 will have the same 
result?
   +/@a 1 2 3
6
Even though a has the same value as b, its rank is different.  a's rank was assigned when 
it was parsed, and at that time z was assumed to have infinite rank.  b's rank was assigned 
when it was parsed too, but by that time z had been defined with rank 0.  You can win a 
lot of bar bets with this one if you hang out with the right crowd.
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                                    38. Forks, Hooks, and 
Compound Adverbs

Now that you understand execution, and in particular how anonymous entities are 
created and then executed, you are ready to see forks used in some practical 
applications.  This will be a relief after the last two chapters of theory.

You have learned the rule for the trident called the monadic fork:
   (V0 V1 V2) Ny  is  (V0 Ny) V1 (V2 Ny)

Now learn the other 3 bidents/tridents involving only verbs.   The dyadic fork:
   Nx (V0 V1 V2) Ny  is  (Nx V0 Ny) V1 (Nx V2 Ny)
The monadic hook:
   (V0 V1) Ny  is  Ny V0 (V1 Ny)
The dyadic hook:
   Nx (V0 V1) Ny  is  Nx V0 (V1 Ny)

The purpose of taking you through the 2 preceding chapters was for you to 
understand that 'is' in these definitions is shorthand for 'replaces the parenthesized 
part with an anonymous entity that when executed on an x and y produces the same 
result as' (you don't have to be a politician to hesitate over the meaning of 'is').

It may be helpful to think of these bidents and tridents as ghostly conjunctions, with 
no actual symbol, that create an entity (the bident/trident) out of the sequence of 
verbs.  The entity so created is quite real: it is executed just like any anonymous 
verb created by a modifier.

You can see that for both the hooks and the forks, the monadic case is derived from 
the dyadic: for forks by omitting Nx, and for hooks by replacing Nx with Ny .  The 
verbs produced by hooks and forks have infinite rank.

Using hooks and forks, assisted by all the modifiers we have learned, we can 
produce any function of 2 operands.  If we have more than 2 operands, we can link 
them together into a boxed list using dyad ; and then extract the pieces as needed 
using dyad {:: .  For the rest of this chapter we will show examples of functions 
turned into tacit verbs using hooks and forks.  If I don't show the expansion using 
the bident/trident rules, you should produce it yourself.



To find how much x has changed from y, as a percentage of y :
   pctchg =: 100&*@:(- % ])
   12 pctchg 10
20
This becomes 100 * (x - y) % y .  Note the use of ] to select the original y 
operand.  Similarly, [ can be used to select the original x operand.  Tacit verbs 
make heavy use of [ and ] .
      Another way to code pctchg is
   pctchg =: 100"_ * (- % ])
where we used the constant verb 100"_ which produces 100 no matter what its 
operands are.  Which of these forms you prefer is a matter of taste.

fndisplay is very helpful in understanding tacit verbs.  The two versions of 
pctchg are displayed as
   defverbs 'times"0 minus"0 div"0'
   defnouns 'x y'
   x 100&times@:(minus div ]) y
+---------------------------+
|100 times (x minus y) div y|
+---------------------------+
   x (100"_ times (minus div ])) y
+---------------------------+
|100 times (x minus y) div y|
+---------------------------+
I encourage you to use fndisplay to expand any tacit definitions that are 
troublesome.

To find the elements common to x and y, keeping the same order as in x :
   setintersect =: e. # [
   3 1 4 1 5 9 setintersect 4 6 9
4 9
This becomes (x e. y) # x .  You can see that the identity verbs [ and ] are 
useful for steering operands through hooks and forks.  As an exercise, see how the 
alternative version ([ -. -.) produces the same result.

To list all the indexes of the 1s in a Boolean list:
   booltondx =: (# i.@:#)"1
   booltondx 0 1 0 1 0 0 1
1 3 6



Note that we are careful to give our verb a rank of 1, since it works only with lists.  
The primitive I. has the same effect.

To find the difference between the largest and smallest items in a list:
   range =: (>./ - <./)"1
   range 3 1 4 1 5 9
8

To find the index of the largest item in a list:
   indexmax =: (i. >./)"1
   indexmax 3 1 4 1 5 9 2 6 5 3 5
5

To create a Boolean list with a 1 at each position that is different from the previous 
position:
   changeflag =: 1: , 2: ~:/\ ]
   changeflag 1 1 2 2 7 7 7 3 3 4 5 8 8
1 0 1 0 1 0 0 1 0 1 1 1 0
We could have done this without using forks, with (1&,)@:(2&(~:/\) .  
Which version you use is a matter of taste.  The number verbs _9: through 9: are 
very useful if you like forks rather than long conjunction chains.  Note that 
changeflag is executed as if parenthesized (1: , (2: (~:/\) ])) .  If 
you work with long trains of verbs like this you will soon notice that if you count 
the verbs from the right (starting at 0, of course), the even-numbered verbs have the 
original x and y applied, and the odd-numbered ones combine the results from the 
even-numbered.

To replace multiple spaces by a single space:
   delmb   =: ((#~ -.)  '  '&E.)"1
   delmb 'abc   nb'
abc nb

To create an array in which each item is a list of (value, number of times that value 
appeared):
histogram =: ~. ,. #/.~
   histogram 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9
3 2
1 2
4 1
5 3



9 3
2 1
6 1
8 1
7 1

To append the contents of the first item of x in front of y and the contents of the last 
item of x behind y :
    enclose =: >@:{.@:[ , ] , >@:{:@[
   '*' enclose 'xyz'
*xyz*
   '()' enclose 'abc'
(abc)

To produce 1 if all the items of y are equal, 0 if not
   allitemsequal =: -: 1&|.
   allitemsequal 1 1 1 1 1
1
   allitemsequal 1 1 1 2 1
0

To extend x to the length of y, where the items of y supply default values for the 
corresponding omitted items of x :
   default =: [ , (}.~ #)~
   ('abc';2) default 'Defname';0;'Deftype';100
+---+-+-------+---+
|abc|2|Deftype|100|
+---+-+-------+---+
   ('abc';2;'xyz';30) default 'Defname';0;'Deftype';100
+---+-+---+--+
|abc|2|xyz|30|
+---+-+---+--+

The verb [:, which we met as a way to cause an error, has a special meaning in a 
fork.  As the leftmost verb of the fork, [: means 'ignore the left branch'.  So, 
Nx ([: V1 V2) Ny is V1 Nx V2 Ny and ([: V1 V2) Ny is 
V1 V2 Ny .  In both cases, ([: V1 V2) is equivalent to V1@:V2 .  Almost 
always, the choice between one form or the other is a matter of taste.  Do not fear 
that the extra word in the fork leads to slower execution; the [: is not executed—it 



is recognized by the parser when it creates the anonymous verb for the fork.

As a final example, here is a definition of the word-counting example we wrote 
earlier.  See if you can convince yourself that it is equivalent to wc2 :
WS =: ' ',TAB,LF
wc3 =: (# , (*. -.@(|.!:0))@(e.&WS) , +/@(LF&=))
@ReadFile

I could go on with pages more of hooks and forks for you to study, but what you 
really need is to write some yourself.  It will be a frustrating experience for the first 
few weeks as you struggle to jigsaw your verbs into pieces that have one or two 
operands and yet fit together to perform a complex function.  It's not a necessary 
skill—you can get along acceptably in J writing mostly explicit definitions, with an 
occasional fork thrown in where obvious—but it is a useful, honorable, and 
satisfying one.  Learning to write tacit verbs is like learning to walk with a book 
balanced on your head: it will slow you down at first, but in the end you'll stand 
taller for it.

The book J Phrases, which is part of the J release, has dozens of interesting 
examples of tacit programs which you can use as exercises.

Tacit and Compound Adverbs
Adverbs as well as verbs can be defined tacitly.  Any sequence of adverbs is also an 
adverb, and applies the component adverbs one by one to its left operand.  For 
example,
   onprefixes =: /\
defines an adverb that applies / followed by \, as can be seen by
   + onprefixes 1 2 3 4
1 3 6 10

A conjunction with one operand also defines an adverb.  A conjunction needs two 
operands, but if you supply one, the combination is treated as an adverb that 
attaches its operand to the empty side of the conjunction.  For example, (2&) is an 
adverb, and + (2&) is equivalent to 2&+ .  For another example, the J startup 
scripts define
   each =: &.>
so that
   >: each 1 2 3
is equivalent to
   >:&.> 1 2 3



2 3 4

Referring To a Noun In a Tacit Verb
Suppose you want a verb v that returns the current value of the noun n (maybe it's a 
button handler).  Suppose you want v to be tacitly defined.  How would you do it?  
You can't use
   v =: n
because that would use the value of n at the time v is defined (in fact, v would be a 
noun), and you want the value of n when v is executed.  Use this trick:
   v =: ".@:('n'"_)
When this is executed, the operand is ignored and replaced by the string 'n', which 
is then executed by ". to produce the value of the noun n .
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                                                                               39. Readable Tacit 
Definitions

Heron's formula for the area of a triangle, given the lengths of the sides a, b, and c, 
is sqrt(s*(s-a)*(s-b)*s-c)) where s is (a+b+c)%2 .  This can be written
   triarea =: [: %: [: */ -:@:(+/) - 0: , ]
   triarea 3 4 5
6
Regardless of your diligence in commenting your code and the level of J expertise 
in you and the sorry wretches who will have to read it, long tacit definitions like this 
can become trackless wastelands, Saharas of verb following verb unendingly with 
nothing to suggest an interpretation of the intermediate results.  I know of two ways 
to mark a trail through such a definition.  The first is to develop a regimen for using 
spaces and parentheses to help the reader group the parts.  I would write
   triarea =: [: %: [: */  (-:@:(+/))   -   0:,]

The second way is to split the line into multiple lines, where each line can have a 
comment or a verb-name indicating what it produces.  This approach, carried almost 
to an extreme, would yield
   semiperimeter =: -:@:(+/)
   factors =: semiperimeter - 0:,]
   product =: [: */ factors
   triarea =: [: %: product
Combining the two approaches, you can find a comfortable level of complexity.

Flatten a Verb: Adverb f.
Splitting the definition into many lines has the unfortunate side-effect that all the 
names referred to by triarea must be defined when triarea is executed:
   triarea
[: %: product
triarea refers to product which refers to factors which refers to 
semiperimeter .  If you define many tacit verbs this way, the result is pollution 
of the namespace.  To leave a smaller footprint, use private assignment for all the 
names except the name that will be public, and use the adverb f. which replaces 
names in its operand with their definitions:



   semiperimeter =. -:@:(+/)
   factors =. semiperimeter - 0:,]
   product =. [: */ factors
   triarea =: ([: %: product) f.
   triarea
 [: %: [: */ -:@:(+/) - 0: , ]
If these verbs are run from a script, the temporary verbs will disappear (since they 
were assigned by private assignment), leaving only the main verb triarea .

f. is also used in initialization of objects, as you can learn in the Lab for Object-
Oriented Programming.

Note that f. has no effect on explicit definitions.

Using f. to improve performance
Flattening a verb has two beneficial effects on performance.  The first is easy to see 
by comparing two equivalent sentences:
   a =. i. 100000
   abs0 =: 3 : '| y.' "0
   6!:2 'abs0 a'
3.17136
   abs1 =: 3 : '| y.'
   6!:2 'abs1"0 a'
3.54908
To be sure, in each case we have committed the crime of applying an explicitly-
defined verb at a low rank (|"0 a executes in time 0.006), but that is not the 
point.  Why is abs1"0 slower than abs0?  Each one reinterprets its verb for each 
atom of a .

The answer is that when abs1"0 is executed, the definition of abs1 must be 
looked up for every atom of a (for all the interpreter knows, abs1 might be 
redefined during its execution).  The time spent doing this lookup accounts for the 
difference in time between abs0 and abs1"0 .  If we eliminate the lookup of the 
name abs1, that time is saved:
   6!:2 'abs1 f."0 a'
3.00941

The important lesson to learn from this is that you should define your verbs with the 
proper rank.  That will eliminate superfluous name lookups.  In exceptional cases 



you may use f. to avoid name lookups during execution of a complex verb.

The second case where f. can improve performance is useful only for those users 
who feel compelled to redefine the J primitives with mnemonic names.  This is a 
practice that I strongly deprecate, and if you don't heed my advice, the interpreter 
stands ready to punish you.  See the disaster that can result when the primitives are 
replaced by mnemonic names:
   tally =: #
   a =. 100000 $ i. 6
   b =. i. 100000 10
   6!:2 'a #/. b'
0.0157688
   6!:2 'a tally/. b'
0.154675
What happened is that #/. is handled by special code in the interpreter, but 
tally/. is not.  The fact that tally is defined to be # is immaterial: the 
interpreter doesn't know that at the time it creates the anonymous verb for 
tally/. .  The penalty is an almost-tenfold increase in execution time.
   6!:2 'a tally f./. b'
0.0167351
By flattening tally, we cause it to be replaced by its definition #, and then the 
special case #/. is recognized.

   b =. 0 = i. 100000
   6!:2 '(# i.@#) b'
0.0011616
   6!:2 '(tally index@tally) b'
0.00385943
Another example: (# i.@#) is handled by special code, but the names prevent the 
interpreter from recognizing the situation.
   6!:2 '(tally index@tally) f. b'
0.0011861
If we flatten every verb, we get good performance, but what an effort!  It's much 
better to use the J primitives directly, so the interpreter can do its job effectively.
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                                                                          40. Explicit-To-Tacit 
Converter

Q: What's the most common cause of blindness among J programmers?

A: Conjunctivitis.

 

In the early weeks, complex tacit definitions are torturous to write and next-to-
impossible to read; blurred vision and sleepless nights are the occupational hazard 
of the programmer who dives into tacit J.  If a co-worker is banging into doors as he 
stumbles to refill his tankard of coffee, here's how to check him out: hold up three 
fingers and ask him how many he sees.  If he says "three", he's merely fallen in love 
or is working to a deadline, and he will recover.  But if he replies "I see a list of 3 
items each of which is a finger", you can expect to start receiving emails that look 
like they've been encrypted.

You can offer as a temporary palliative J's mechanism for converting an explicit 
definition to a tacit one.  You request the conversion by using a left operand to : in 
the range 11 to 13  instead of 1 to 4 .
   9!:3 (5)  NB. Do this once to select simplified 
display
 
   3 : 'x. - y.'
3 : 'x.-y.'
We defined a verb, and since we didn't assign it to anything, we see its value, which 
is just what we defined it to be.
   13 : 'x. - y.'
-
by using 13 instead of 3, we ask the interpreter to try to find a tacit equivalent,  
which it did.

Here is another way to define the verb enclose from the previous chapter:
   13 : '(>{.x.) , y. , (>{:x.)'
([: > [: {. [) , ] , [: > [: {: [
The interpreter likes to use [: in its tacit definitions.  Note that you use 13 : to get 



an equivalent for both monadic and dyadic verbs; there is no 14 : .

I recommend that you use 13 : as your first choice for defining tacit verbs.  It will 
find all tacit equivalents that can be generated systematically, and the explicit 
definition is much easier to read than a tacit definition.  You will still have to use 
your tacit-definition skills for irregular cases, such as
   13 : '+:^:x. y.'
4 : '+:^:x. y.'
If x. or y. is used as an operand to a conjunction, as in this example, the tacit 
converter is not going to be able to make a tacit equivalent.  The result of 13 : is 
still a verb performing the requested function, but it is an explicit definition rather 
than a tacit one.  Note that the interpreter saw that the definition contained a 
reference to x., so it made the verb a dyad.
   2 (13 : '+:^:x. y.') 3 
12
This verb applies monad +: to y., x. times.  Knowing about u^:v, you might 
find the tacit equivalent +:@]^:[ :
   2 (+:@]^:[) 3
12

Special Verb-Forms Used in Tacit Definitions
It is impossible for a tacitly-defined verb to route one of its operands to an operand 
of a modifier inside the verb.  For example, if we want a verb to set element x of y 
to 0, we can try
   13 : '0 x.} y.'
4 : '0 x.}y.'
but we see that the converter was unable to find a tacit form.

Some modifiers have exotic forms that circumvent this problem.  One such is the 
adverb } which supports the form x value`selector`operand} y .  This 
produces the same result as 
(x value y) (x selector y)} (x operand y) so we could write
   a =. 13 : 'x. 0:`[`]} y.'
   a
0:`[`]}
   3 a 9 7 5 3 1
9 7 5 0 1



Other such forms are x m&v y and x u&n y which are equivalent to m&v^:x y 
and u&n^:x y respectively.

 

<<     >>     Contents     Help    



                                                                                                         41. Common 
Mistakes

Mechanics
Watch out for Adjacent Numbers
   >:"0   1{y
fails because the 0 and the 1 are considered part of the same list.  Use >:"0   (1
{y) or >:"0 ] 1{y .

Names in Sequence Do Not Form a List

0 1 is a 2-element list, but 0 y is an error even if y has the value 1 .  Use 0,y .

Remember Right-to-Left Evaluation When You Use J as a Desk Calculator

J makes a great desk calculator, but you have to remember to translate from 
mathematical notation to J correctly.  5 - 2 + 1 is 2, not 4 .

How to Remember the Monads {. {: }. }:

Remember that { means take (x takes from y), so } must be drop.  The single-dot 
means beginning, and the double-dot means end.  So, }. means 'drop the first item'.

How to Remember #. and #:

The single-dot produces a single (atomic) result; the multiple-dot produces a list.

Remember the Operand Order in e. i. and |

The normal J convention is that a dyad's y operand is the one that is more 'data-like' 
and its x operand is more 'control-like'.  Thus, in x i. y, x is a table and y is one 
or more values to be looked up in the table.  By this convention, x e. y is 
backwards: y is the table and x is the values.

Similarly, x | y seems backwards from x % y .

Leave a Space Before : When Used Alone

When you use : or . as a conjunction, you must remember to leave a space before 



the : or . so it will not be interpreted as an inflection.  The following are all errors: 
3:0, (+/ % #):* , and +/.* .

Use =: for Assignments Within Scripts

Code that runs perfectly well from the keyboard may not work if you put it into a 
script (.ijs) file.  The problem is usually that you have used =. for some 
assignments.  Entered from the keyboard, =. gives a public assignment, but to get 
the same effect in a script, you need to use =: .

Pasting Into an .ijx Window Does Not Execute

Remember that when you paste a block of text into an .ijx window, that text shows 
up in the window but it is not executed.  To execute the text, you need to select it 
and then use Run|Selection.

Don't Mix elseif. and else. in the Same Structure

The control structure if./do./elseif./do./else./end. is not legal.  Once 
you have used an elseif. you are not allowed to code else.; use 
elseif. do. instead of else. (the omitted condition always tests true).

Programming Errors
Remember the Asymmetry of Dyad ;

x ; y always boxes x, but it boxes y only if y is unboxed.  This gives you what 
you want when the operands are unboxed:
   1 ; 2 ; 3
+-+-+-+
|1|2|3|
+-+-+-+
But when the operands are boxed, you may be surprised at the result:
   (<1) ; (<2) ; (<3)
+---+---+-+
|+-+|+-+|3|
||1|||2|| |
|+-+|+-+| |
+---+---+-+

To have the last operand boxed, you should box it explicitly:
   (<1) ; (<2) ;< (<3)



+---+---+---+
|+-+|+-+|+-+|
||1|||2|||3||
|+-+|+-+|+-+|
+---+---+---+

Don't Give Two Operands to a Monadic Verb

When you start writing long tacit programs, you are likely to have trouble keeping 
track of whether a verb is being executed monadically or dyadically.  Suppose that 
x is a set of observations and y is a set of weights, and you want to weight each 
observation and divide by the total weight.  You might try
   x (* % +/) y
but that isn't right—the sum of the weights is +/ y and this is going to execute 
x +/ y .  What you meant was
   x (* % +/@:]) y

Some rules to remember: a train comprising an odd number of verbs is a fork, 
which can be invoked monadically or dyadically.  The first, third, etc.… verbs, 
including the last, are all executed with the same valence as the fork itself, and their 
operands are all the same, namely the operands of the fork itself.  The second, 
fourth, etc.… verbs are all executed dyadically, with operands that are results of 
other verbs in the train.

A train comprising an even number of verbs is a hook.  The first verb in the hook is 
always executed dyadically; the rest, taken as a train, are executed monadically on 
the y operand of the hook.

If any part of your train requires simultaneous access to the x and y operands of the 
train, you must make the train a fork rather than a hook.

Use @: Unless @ Is Necessary

u@:v has infinite rank, while u@v has the rank of v .  If you don't see what 
difference this makes, you should drop what you are doing and read the chapter on 
"Compound Verbs".  For practical programming, you should be in the habit of using 
@: unless you need u to be executed on each individual result-cell of v, in which 
case you may use @ .  The most common uses of @ are u@> to execute u on the 
contents of each box in a list, and <@v to box each individual result-cell of v .

Put Parentheses Around Compounds Inside Other Compounds



A modifier is greedy about what it takes for its left operand, hoovering up 
everything until it hits a left parenthesis or unmodified verb.  For example, if you 
want to add 2 to y and then double the result,
   +: @: 2&+ y
is going to disappoint you, because it is executed as (+:@:2)&+ y which isn't 
even legal.  You meant + @: (2&+) .  Be liberal in your use of parentheses inside 
compounds.  You may omit the parentheses around the leftmost compound—
another way to write the above would have been 2&* @: (2&+)—but you won't 
regret putting parentheses around all compounds, especially when you go to change 
your code.

I find it easy to forget the parentheses when one of the verbs is something like +/ 
that I use so much that I think of it as a primitive.  When something like >: @: +/ 
fails I am brought back to reality and I remember to write >: @: (+/) .

A Verb Is Always Executed, Even If Its Operand is Empty

J's primitives are defined to produce reasonable results when given empty operands.  
You should do as well with the verbs you write.  Remember that if a verb has an 
operand with no cells, the verb is still executed once, on a cell of fills.  The chapter 
"Empty Operands" explains what happens.

Dyad -: Does Not Check the Type of Empty Operands

Be aware that getting a result of 1 from x -: y does not guarantee that x and y 
are equivalent.  If they have the same shape and are empty, they are considered to 
match even if they have different types.  Subsequent operations such as {. would 
reveal the fact that the values are different, even though they 'match'.

x u/ y Applies u to Cells of x

To get x u/ y right, remember that it applies u to cells of x and the entire y .  
The rank of the cells of x is given by the left rank of u; use u"n/ to set the cell-
rank of x .

Modifiers That Refer To y. Have Monadic and Dyadic Valences

If your modifier contains x. or y., its text defines a verb which is executed when 
its noun operands are known.  This verb, like any explicit verb, can have both 
monadic and dyadic versions, separated by a line containing just a ':' character.  If 
you want the modifier to have a dyadic form, you must code one (by default the 



verb will be monadic only).

Tacit Code Does Not Simply Replace a Name By Its Definition

It is easy to develop an incorrect mental picture of how tacit programs are executed.  
One common error is to think that names are replaced by their definitions before a 
sentence is executed, in other words that if you have
   plus =: +
then a sentence
   1 plus 2
is converted to 1 + 2 and then executed.  This notion immediately leads to 
confusion when you encounter
   mean =: +/ % #
and you expect
   mean 1 2 3 4 5
to be executed like
   +/ % # 1 2 3 4 5
which is not how it works.  If you find yourself making this error, read the chapters 
on Tacit Programming to learn what really happens.

As a stopgap, you can imagine that each name's value is enclosed in parentheses 
before it is substituted.  This still isn't exactly right but it gets you the right result in 
all situations you are likely to encounter.  You would imagine that the sentence 
above is executed as
   (+/ % #) 1 2 3 4 5
which gives the correct answer.  You must realize that (+/ % #) is a fork, with its 
own rules for processing its operands.
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                                                                                                                                  42. Valedictory

You have learned enough J to understand J programs and to put your own ideas into 
J.  I hope you will now do two things: practice using J so that J becomes the 
language of your mind's ear, the way you naturally express algorithms; and read the 
Dictionary with care, so you can learn J fully.  It'll be like weight training: in a few 
months you'll look in the mirror and be amazed at the programmer you've turned 
into.

Good luck, and I hope to see you on the J Forum!
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                                                                                                                                            43. Glossary

Adverb  One of the primary parts of speech.  An adverb modifies the word or 
phrase to its left to produce a derived entity that can be any of the four primary 
parts of speech.

Anonymous  Having no name.  Said of the result of an execution.

Atom  Any single number, single character, or single box.  Also called a scalar.  
An atom is a noun with rank 0 .

Array  A noun comprising atoms arranged along one or more axes.  Each atom 
is identified by its index list.  J arrays are rectangular, meaning that all 1-cells 
contain an identical number of 0-cells, and all 2-cells contain an identical number 
of 1-cells, and so on.

Axis  One of the dimensions along which the atoms of an array are arranged.  
The atoms of every noun are arranged along zero or more axes where each axis 
has a corresponding length and each unique list of nonnegative integers in which 
each integer is less than the length of the corresponding axis designates a unique 
atom of the noun.

Boolean  Having a numeric value restricted to the values 0 and 1 .

Cell  A subarray of a noun consisting of all the atoms of the noun whose index 
lists have a given prefix.  For positive k, each k-cell of a noun whose shape is s 
has the shape ((- k <. #s) {. s) and together they can be assembled to 
reconstruct the noun.  For negative k, the k-cells are defined to be the 
(0 >. k + #s)-cells.

Conjunction  One of the primary parts of speech.  A conjunction modifies the 
words or phrases to its left and right to produce a derived entity that can be any 
of the four primary parts of speech.

Copula  One of the parts of speech, signifying an assignment of a value to a 
name.  The copulas are =. and =: .

Derived Entity  The result of executing an adverb or conjunction.  If the part of 
speech of a derived entity is known, it may be called, for example, a derived verb.

Dyad (dyadic)  A verb with left and right operands (which must be nouns).  Any 



verb may be used as a monad or dyad, depending on whether it has a left noun 
operand when it is executed.

Entity  A noun, verb, conjunction, or adverb

Execution  The process of replacing a verb and its operands on the execution 
stack with the result from applying the verb to those operands; or of converting a 
fragment into a derived entity in accordance with the definition of the fragment, 
and replacing the fragment on the execution stack by a single word referring to 
the derived entity.

Execution Stack  The set of words of a sentence that have been examined by 
parsing in its search for an executable fragment, as modified by the replacement 
performed by execution.

Fill  An atom appended to a noun to extend the length of the noun to a required 
length, especially when the noun must be extended because it is being made a 
cell in an array whose cells are longer than the noun.

Fragment  2 or 3 words on the execution stack in a context that makes them 
executable.

Frame  The frame of a noun with respect to k-cells is the shape of the noun 
with the last r items removed, where r is the rank of a k-cell of the noun.  When a 
noun is viewed as an array of k-cells, the frame with respect to k-cells is the 
shape of the array of k-cells.

Framing Fill  A fill added when the results from applying a verb on its operand 
cells are being joined into an array.  Framing fills are always 0, ' ', or a: 
depending on the type of the result.

Fret  A marker indicating the start or end of an interval.

Functional Programming  A method of writing programs that describes only 
the operations to be performed on the inputs to the programs, without the use of 
temporary variables to store intermediate results.  J's tacit programs are an 
example of functional programming.  Aficionados of functional programming 
consider it to be a purer statement of an algorithm than the usual statement in a 
procedural language; as the expert J programmer Randy MacDonald has said, "If 
you're not programming functionally, you're programming dysfunctionally".

Global  Of a name, accessible as a simple name by any verb.  In the J Dictionary 
the word 'global' has the meaning we have assigned to the word 'public'.



Index  In an array, an integer indicating position along an axis.  The index of the 
first atom along an axis is 0 .

Index List  A list of integers with the same length as the shape of a noun, 
designating an atom of the noun by giving its position along each axis.

Interval  A sequence of consecutive indexes or cells.

Item  A _1-cell of a noun.  An array is a vector of its items.  An atom has one 
item, itself.

List  An array of rank 1 .

List of  An array whose items are; as in 'list of 3-item lists'.

Local  See private.

Locale  A namespace in J.  The locale in which a public name is defined is an 
attribute of the name.  A locale is identified by a locale name which is a character 
string not containing an underscore.

Locative  A name including both a simple name and an explicit locale.

Modifier  An adverb or conjunction, which modifies its operand(s) to produce a 
derived entity.

Monad (monadic)  A verb with no left operand.  Any verb may be used as a 
monad or dyad, depending on whether it has a left noun operand when it is 
executed.

Name  Either a simple name or a locative, to which an entity can be assigned.

Noun  One of the primary parts of speech.  An atom or array of atoms.  Nouns 
hold the data that verbs operate on.

Parsing  The right-to-left search for suitable patterns in a sentence.  When a 
suitable pattern is found, that subset of it that constitutes an executable fragment 
is executed.

Part of Speech  One of the six categories into which words are classified; or, the 
word or entity so classified.  Every word has a part of speech: for primitives, the 
part of speech is defined by the language; for names, the part of speech is that of 
the entity assigned to the name.  The parts of speech are: noun, verb, conjunction, 
adverb, punctuation, and copula.  The primary parts of speech are noun, verb, 
conjunction, and adverb.

Partition  A selection of (possibly noncontiguous) items of an array, brought 



together as the items of a new array to be operated on by a verb.

Path  See search path.

Primitive  A word whose meaning is assigned by the J language.

Private  Of a name, assigned in the namespace of an explicit definition and 
accessible only within the explicit definition in which it was assigned.

Public  Of a name, assigned in a locale and accessible from any locale via a 
locative.

Punctuation  A part of speech.  Punctuation is not executed but it affects the 
execution of other words.  Punctuation in J comprises (, ), NB., and control 
words.

Rank  Of a noun, the number of axes along which the atoms of the noun are 
arranged; the number of items in the shape.  Of a verb, the highest rank of the 
noun operands that the verb can operate on.

Scalar  See atom.

Script  A file containing J sentences.

Search Path  Of a locale l, the list of the names of locales that will be searched 
to find the definition of a name originally sought but not found in l.

Sentence  An entire executable line.

Shape  The list of the lengths of the axes of a noun.

Simple Name  A list of letters, numbers, and underscores beginning with a letter, 
used to refer to an entity.

Train  A sequence of words that cannot immediately be executed to produce a 
noun result.

Type  An attribute of a noun: numeric, literal (also called string), or boxed.

Valence  Of a verb definition, an indication of the number of noun operands that 
the definition can accept: monadic if 1, dyadic if 2, dual-valence if either 1 or 2.

Vector  A sequence of cells arranged with a leading axis.  An array can be 
construed as a vector of its items.

Verb  One of the primary parts of speech.  A verb operates on the noun to its 
right (and its left, if a noun is to its left) to produce a noun result.



Verb Fill  Fill added during processing of a verb.  The fit conjunction !.f can 
often be used to specify the fill atom to be used for verb fill.

Word  A sequence of characters in a sentence, recognized as a lexical unit.  A word 
is either a name, a primitive, a constant (which may be a number or a character or a 
list of either), or a synthetic word used to refer to the result of an execution.
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                                                                                                                    44. Error Messages

When J encounters an error executing a sentence it stops and displays the sentence.  
The interpreter removes any excess spaces from the sentence and then adds three 
spaces before the word whose execution triggered the error.  For example:
   2 3 + 0 1 2 * 3 4 5
|length error
|   2 3    +0 1 2*3 4 5
The error occurred during the execution of the + verb.

The errors you are most likely to encounter are:

 
control error  You have an incomplete control structure, for example an if. 
without matching do./else./elseif. and end. .

domain error  An operand has a value that is not allowed, for example a string 
operand to an arithmetic operation, or an out-of-range numeric left operand to 
dyad o. .  One common source of domain error is trying to execute a verb when 
no definition exists for the valence (monadic or dyadic) that you are trying to 
execute.

      Errors encountered during execution of wd are reported as domain errors.

file name error  You specified a file name that is invalid, or attempted to read a 
nonexistent file.

file number error  You specified a number that is not the number of an open file.

ill-formed name  You used an illegal name, such as name_1ff_ (illegal 
because 1ff is not a valid locale name)

ill-formed number  You used an illegal number such as 14h .  A word that 
starts with a numeric character must be a valid number, and vice versa.

index error  You attempted to access an element outside the bounds of an array.

length error  You used a dyadic verb with operands that did not agree (i. e. one 
frame was not a prefix of the other).  Or, a verb expected an operand of a certain 
length and you gave an incorrect length (for example 1 2 3 {. 5 5)



limit error  You exceeded one of J's limits, for example by specifying a 
comparison tolerance greater than 2^_34 . The most common cause of a limit 
error is an infinite recursion that exhausts the available stack space.

nonce error  You tried to do something reasonable, but the system doesn't 
support it yet.  So, for the nonce, find another way to do it.

open quote  Your sentence contains an unmatched single-quote.

out of memory  The interpreter asked the operating system for enough memory 
to fulfill your request, but the operating system refused.  You need to use smaller 
nouns.

rank error  You specified an operand with an invalid rank.

spelling error  You typed an erroneous . or : to produce a meaningless word 
like +.. or fred. .

syntax error  Your sentence contains an invalid sequence of parts of speech, as 
in 5 + .  Or, you have an explicitly-defined verb whose last-executed sentence 
gives a result that is not a noun: that would make the verb have a non-noun 
result, which is intolerable.

value error  You have asked the interpreter to evaluate a name that has not been 
defined.  There is more to this definition than meets the eye.  A noun, adverb, or 
conjunction is evaluated when it is encountered during the right-to-left execution 
of a sentence.  A verb is evaluated when (a) it is executed with its noun operand
(s) or (b) when the name of the verb is typed as the only word in a sentence, at 
which time the verb is evaluated for display purposes.  For example, the sentence
   undefname
will result in a value error, because you are asking the interpreter to display the 
value of the undefined name.  However, the sentence
   name =: undefname
will not fail, because name is defined to be a reference to undefname, and 
undefname does not have to be evaluated (the undefined name is assumed to 
refer to a verb of infinite rank that will be defined later).  Subsequently,
   name
undefname
name is defined, but if we force the interpreter to use it:
   name 5
|value error: undefname



|       name 5
the underlying undefined name is exposed.

An important case is:
   undefname1 undefname2
undefname1 undefname2
Note that this did not result in a value error.  Recall that undefined names are 
assumed to be verbs; we defined a hook from the two presumed verbs and then 
asked the interpreter to display the hook.  The interpreter was able to do that 
without evaluating either name.  Either name by itself would produce a value 
error.

If you write an undefined name as the only word of a sentence in a script, the 
interpreter will have no need to evaluate the name (since it doesn’t have to 
display the result), and the sentence will be ‘executed’ without error.
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