Learning J

draft 8, August 2002, still not finished

ABOUT THIS BOOK

This book is meant to help the reader to learn the computer-programming language
J.

The book isintended to be read with enjoyment by both the beginning programmer
and the experienced programmer alike. The only prerequisite is an interest on the
part of the reader in learning a programming language.

The emphasis is on making the J language accessible to a wide readership. Careis
taken to introduce only one new idea at atime, to provide examples at every step,
and to make examples so simple that the point can be grasped immediately. Even
s, the experienced programmer will find much to enjoy in the radical simplicity
and power of the J notation.

The scope of this book is the core J language common to the many
implementations of J available on different computers. The coverage of the core
language is meant to be relatively complete, covering (eventually) most of the J
Dictionary.

Hence the book does not cover topics such as graphics, plotting, GUI, and database
access covered in the JUser Guide. It should also be stated what the aims of the
book are not: neither to teach principles of programming as such, nor to study
algorithms, or topics in mathematics or other subjects using Jas avehicle, nor to
provide definitive reference material.

The book is organised as follows. Part 1 is an e ementary introduction which
touches on avariety of themes. The aim isto provide the reader, by the end of part
1, with an overview and a general appreciation of the Jlanguage. The themes
introduced in Part 1 are then developed in more depth and detail in the remainder

of the book.

Feedback

Please send comments and criticisms to rstokes@dial .pipex.com

Acknowledgements

| am grateful to readers of earlier drafts for encouragement and for valuable
criticisms and suggestions.

These web pages are also available in asingle downloadable zip file. Thereisa
version in PDF format on Skip Cave's web page.

Copyright © Roger Stokes 2002. This material may be freely reproduced, provided that this copyright notice,
including this provision, is also reproduced.

last updated 16 Aug 2002

file:///C|/j501rbeta/user/temp/learning/book.zip
http://home1.gte.net/res057qw/APL_J/

Contents

Basics
Listsand Tables
Defining Functions
Scripts and Explicit Functions
Building Arrays
Indexing
Ranks
Composing Verbs
Trains of Verbs
Conditional and Other Forms
Tacit Verbs Concluded
Explicit Verbs
13 Explicit Operators
14 Gerunds
15 Tacit Operators
16 Rearrangements
17 Patterns of Application
18 Sets, Classes and Relations
19 Numbers
20 Scadar Numerical Functions
21 Factors and Polynomials
22 Vectors and Matrices
23 Namesand Locales
24 OOP

25 Script Files
26 Evaluating Expressions

© 0o ~NOOOTL A~ WN P

=
o

o
=

=
N

pl

Chapter 1: Basics

These first four chapters make up Part 1 of this book. Part 1 isaquick tour, giving
afirst look at some of the main features of J. In later chapters we will take up again
themes which are introduced in Part 1.

1.1 Interactive Use

The user types aline at the keyboard. Thisinput line may be an expression, such as
2+2. When the line is entered (by pressing the "enter" or "carriage return" key), the

value of the expression is computed and displayed on the next line.
242
4

The user is then prompted for another line of input. The prompt is seen by the
cursor being positioned a few spaces from the left margin. Thusin this book, aline
indented by afew spaces represents input typed by a user, and afollowing line, not
indented, represents the corresponding outpuit.

1.2 Arithmetic

The symbol for multiplication is* (asterisk).
2*3
6

If wetry thisagain, thistimetyping 2 space * space 3
2 * 3
6

the result is the same as before, showing that the spaces here are optional. Spaces
can make an expression more readable.

The symbol for division is %(percent).
3 %4
0.75

For subtraction, we have the familiar - symbol:
3 - 2
1

The next example shows how a negative number is represented. The negative sign
isaleading _ (underscore) symbol, with no space between the sign and the digits
of the number. Thissign is not an arithmetic function: it is part of the notation for
writing numbers, in the same way that a decimal point is part of the notation.
2 -3
1

The symbol for negation is -, the same symbol as for subtraction:
-3
3

The symbol for the power function is~ (caret). 2 cubed is 8:
2 "3
8

The arithmetic function to compute the square of a number has the symbol *:
(asterisk colon).

* 4
16

1.3 Some Terminology: Function,
Argument, Application, Value

Consider an expression suchas2 * 3. We say that the multiplication function * is
applied to its arguments. The left argument is 2 and the right argument is 3. Also, 2
and 3 are said to be the values of the arguments.

1.4 List Values

Sometimes we may wish to repeat the same computation several times for several
different numbers. A list of numberscan begivenas1 2 3 4, for example,
written with a space between each number and the next. To find the square of each
number in thislist we could say:

*: 1234
149 16

Here we see that the " Square" function (*:) applies separately to each itemin the
list. If afunction such as + is given two list arguments, the function applies
separately to pairs of corresponding items:

123+ 10 20 30
11 22 33

If one argument isalist and the other asingle item, the single item isreplicated as
needed:

1+ 10 20 30
11 21 31

123+ 10
11 12 13

Sometimesit is helpful, when we are looking at a new function, to see how a
pattern in alist of arguments givesrise to a pattern in the list of results.

For example, when 7 isdivided by 2 we can say that the quotient is 3 and the
remainder is 1. A built-in Jfunction to compute remaindersis| (vertical bar),

called the "Residue” function. Patterns in arguments and results are shown by:
2|1 01234567
01010101

3] 01234567
01201201

The Residue function islike the familiar "mod" or "modulo" function, except that
wewrite(2 | 7) ratherthan (7 nod 2)

1.5 Parentheses

An expression can contain parentheses, with the usual meaning; what isinside

parenthesesis, in effect, a separate little computation.
(2+1) *(2+2)
12

Parentheses are not always needed, however. Consider the J expression: 3*2+1.

Doesit mean (3*2) +1, that is, 7, or does it mean 3* (2+1) thatis, 9 ?
3*2+1

9

In school mathematics we learn a convention, or rule, for writing expressions:
multiplication is to be done before addition. The point of thisruleisthat it reduces
the number of parentheses we need to write.

Thereisin Jno rule such as multiplication before addition. We can always write
parentheses if we need to. However, thereis, in J, a parenthesis-saving rule, asthe
example of 3*2+1 above shows. Therule, isthat, in the absence of parentheses, the
right argument of an arithmetic function is everything to the right. Thusin the case

of 3*2+1, theright argument of * is2+1. Hereis another example:
1+3 %4
1.75

We can see that %is applied before +, that is, the rightmost function is applied first.

This"rightmost first" ruleis different from, but plays the same role as, the common
convention of "multiplication before addition”. It is merely a convenience: you can

ignore it and write parentheses instead. Its advantage is that there are, in J, many
(something like 100) functions for computation with numbers and it would be out
of the question to try to remember which function should be applied before which.

In this book, | will on occasion show you an expression having some parentheses
which, by the "rightmost first" rule, would not be needed. The aim in doing thisis
to emphasize the structure of the expression, by setting off parts of it, so asto make
it more readable.

1.6 Variables and Assignments

The English-language expression:
let x be 100

can berendered in J as:
x =: 100

This expression, called an assignment, causes the value 100 to be assigned to the
name x. We say that avariable called x is created and takes on the value 100.
When aline of input containing only an assignment is entered at the computer,
then nothing is displayed in response (because you probably don't need to see again
right away the value you just typed in.)

A name with an assigned value can be used wherever the valueis wanted in

following computations.
x -1
99

The value in an assignment can itself be computed by an expression:
y =1 x -1

Thusthe variabley is used to remember the results of the computation x- 1 . To see
what value has been assigned to a variable, enter just the name of the variable. This
Is an expression like any other, of a particularly simple form:

y

99

Assignments can be made repeatedly to the same variable; the new value
supersedes the current value:

z 6

z 8

V4

The value of avariable can be used in computing a new value for the same
variable:

z =z +1

V4

It was said above that avalue is not displayed when aline consisting of an
assignment is entered. Nevertheless, an assignment is an expression: it does have a

value which can take part in alarger expression.
1+ (u = 99

100
u

99

Here are some examples of assignments to show how we may choose names for
variables:

X = 0
X = 1
K9 = 2
finaltotal = 3
Fi nal Tot al = 4
average_annual _rainfall = 5

Each name must begin with aletter. It may contain only letters (upper-case or
lower-case), numeric digits (0- 9) or the underscore character (_). Note that upper-
case and lower-case letters are distinct; x and X are the names of distinct variables:

1.7 Terminology: Monads and Dyads

A function taking a single argument on the right is called a monadic function, or a
monad for short. An exampleis"Square", (*:) . A function taking two arguments,
one on the left and one on theright, is called adyadic function or dyad. An
exampleis+.

Subtraction and negation provide an example of the same symbol (-) denoting two
different functions. In other words, we can say that - has a monadic case
(negation) and a dyadic case (subtraction). Nearly all the built-in functions of J
have both a monadic and a dyadic case. For another example, recall that the
division function is % or as we now say, the dyadic case of %. The monadic case of

%is the reciprocal function.
% 4
0. 25

1.8 More Built-In Functions

The aim in this section is to convey alittle of the flavor of programming in J by
looking at a small further selection of the many built-in functions which J offers,

Consider the English-language expression: add together the numbers 2, 3, and 4, or
more briefly:

add together 234
We expect aresult of 9. Thisexpressionisrenderedin Jas:

+/ 2 3 4
9

Comparing the English and the J, "add" is conveyed by the + and "together" is
conveyed by the/ . Similarly, the expression:

multiply together 2 3 4

should give aresult of 24. Thisexpression isrendered in Jas
* | 234
24

Weseethat +/2 3 4 means2+3+4 and*/2 3 4 means2*3*4. Thesymbol / is
called "insert”, because in effect it inserts whatever function is on its left between
each item of thelist on itsright. The general schemeisthat if Fisany dyadic
functionand L isalist of numbersa, b, ¢, vy, zthen:

F/ L means aFbF.... FyFz

Moving on to further functions, consider these three propositions:

2 islarger than 1 (whichisclearly true)

2isequal to 1 (whichisfase)

2 islessthan 1 (whichisfase)

InJ, "true" isrepresented by the number 1 and and "false”" by the number 0. The

three propositions are rendered in J as:
2 >1

If x isalist of numbers, for example:
Xx = 54109

we can ask: which numbersin x are greater than 27?
X > 2
1101

Evidently, the first, second and last, as reported by the 1'sintheresult of x > 2.1s
it the case that all numbersin x are greater than 2?

* [x> 2
0

No, because we saw that x>2is1 1 0 1. The presence of any zero ("false") means
the the multiplication (here 1* 1* 0* 1) cannot produce 1.

How many items of x are greater than 2? We add together the 1'sin x>2:
+/ x> 2
3

How many numbers are there altogether in x? We could add together the 1'sin
X=X.
X
5419
X =X
1111
+/ X =X
4

but thereisabuilt-in function # (called "Tally") which gives the length of alist:
X
4

1.9 Side By Side Displays

When we are typing J expressions into the computer, expressions and results

follow each other down the screen. Let me show you the last few lines again:
X
54109

Now, sometimes in this book | would like to show you afew lines such as these,
not one below the other but side by side across the page, like this:

X X = X +/ X = X # X

5419 1111 4 4

This means: at this stage of the proceedings, if you type in the expression x you
should seetheresponse5 4 1 9.If younow typeinx = x youshouldsee1 1 1
1, and so on. Side-by-side displays are not afeature of the J system, but merely
figures, or illustrations, in this book. They show expressions in the first row, and
corresponding values below them in the second row.

When you type in an assignment (x=: somret hi ng), the J system does not show the
value. Nevertheless, an assignment is an expression and has avalue. Now and
again it might be helpful to see, or to be reminded of, the values of our
assignments, so | will often show them in these side-by-side displays. To illustrate:

Xx = 1+234 X = X +/ X = X # X

345 111 3 3

Returning now to the built-in functions, suppose we have alist. Then we can
choose items from it by taking them in turn and saying "yes, yes, no, yes, no" for
example. Our sequence of choices can berepresentedas1 1 0 1 0. Such alist of
O'sand 1'sis called abit-string (or sometimes bit-list or bit-vector). The function
which applies the choicesis the dyadic case of # which can take a bit-string as | eft
argument:

y= 678910 | 11010#y

6 78 9 10 6 79

We can select from y just those items which satisfy some condition, such as: those
which are greater than 7

y y >7 (y >7) #y

6 789 10 00111 8 9 10

1.10 Comments

Inaline of J, the symbol NB. (capital N, capital B dot) introduces a comment.

Anything following NB. to the end of the line is not evaluated. For example
NB. this is a whole line of annotation

6 + 6 NB. ought to produce 12
12

1.11 Naming Scheme for Built-In
Functions

Each built-in function of J has an informal and aformal name. For example, the
function with the formal name + has the informal name of "Plus’. Further, we have
seen that there may be monadic and dyadic cases, so that the formal name -
corresponds to the informal names "Negate" and "Minus'.

The informal names are, in effect, short standard descriptions, usually one word.
They are not recognised by the J software, that is, expressions in J use always the
formal names. In this book, the informal names will be quoted, thus: "Minus"'.

Nearly al the built-in functions of J have formal names with one character or two
characters. Examplesarethe* and *: functions. The second character is aways
either : (colon) or . (dot, full stop, or period). A two-character name is meant to
suggest some relationship to a basic one-character function. Thus"Square”" (*:) is
related to "Times" (*).

Hence the built-in J functions tend to come in families of up to 6 related functions.
There are the monadic and dyadic cases, and for each case there are the basic, the
colon and dot variants. Thiswill be illustrated for the > family.

Dyadic > we have already met as"Larger Than".
Monadic > we will come back to later.

Monadic >. rounds its argument up to an integer. Note that rounding is always

upwards as opposed to rounding to the nearest integer. Hence the name: "Ceiling"
> 1.711.7
112

Dyadic >. selectsthe larger of its two arguments
3> 135
335

We can find the largest number in alist by inserting "Larger Of" between the
items, using / . For example, the largest number inthelist 1 6 5 isfound by
evaluating (>. / 1 6 5).Thenext few lines are meant to convince you that this
should give 6. The comments show why each line should give the same result as

the previous.

> |/ 165
6

1> 6> 5 NB. by the neaning of /
6

1> (6 > 5 NB. by rightnost-first rule
6

1> (6) NB. by the neaning of >.
6

1> 6 NB. by the neaning of ()
6

6 NB. by the neaning of >.

Monadic >: isinformally called "Increment”. It adds 1 to its argument:
> 2356.3
1467.3

Dyadic >: is"Larger or Equal”
3> 135
110

Thisisthe end of Chapter 1.

Copyright © Roger Stokes 2001. This material may be freely reproduced, provided that this copyright noticeis aso
reproduced.

last updated 22Sep01

Chapter 2: Lists and Tables

Computations need data. So far we have seen data only as single numbers or lists
of numbers. We can have other things by way of data, such as tables for example.
Thingslike lists and tables are called "arrays".

2.1 Tables

A table with, say, 2 rows and 3 columns can be built with the $ function:
table == 23 $ 567 8910
tabl e

7

5 6
8 9 10

The scheme here isthat the expression (x $ y) builds atable. The dimensions of
the table are given by the list x which is of the form number-of-rows followed by
number-of-columns. The elements of the table are supplied by thelist y.

Items fromy are taken in order, so asto fill the first row, then the second, and so
on. Thelisty must contain at least one item. If there are too few itemsiny to fill
the whole table, then y is re-used from the beginning.

24%$56789 22%$1

© Ul
U1 o
o~
~
[
[

The $ function offers one way to build tables, but there are many more ways. see
Chapter 05 p5.

Functions can be applied to whole tables exactly as we saw earlier for lists:

tabl e 10 * table table + table

50 60 70 10 12 14
80 90 100 16 18 20

o o1
(@R

1

One argument can be atable and one alist:

tabl e 01 * table

oo Ul
(ol o)}
o O
© O
o o

In this last example, evidently the items of thelist 0 1 are automatically matched
against the rows of the table, 0 matching the first row and 1 the second. Other
patterns of matching the arguments against each other are al'so possible - see
Chapter 07 p7.

2.2 Arrays

A tableis said to have two dimensions (namely, rows and columns) and in this
sense alist can be said to have only one dimension.

We can have table-like data objects with more than two dimensions. The left
argument of the $ function can be alist of any number of dimensions. The word
"array" is used as the general name for a data object with some number of
dimensions. Here are some arrays with one, two and three dimensions:

3%$1 23%$567 223%$5678

111

o a1
o o
~N ~
0o Ul
oo
o~

(2N
~ 0o
o 01

The 3-dimensional array in the last exampleis said to have 2 planes, 2 rows and 3
columns and the two planes are displayed one below the other.

Recall that the monadic function # gives the length of alist.

6 7 # 6 7 8

The monadic function $ gives the list-of-dimensions of its argument:

L= 5617 $L T

23%1 $T

567 3 111 2 3

Hence, if x isan array, the expression (# $ x) yieldsthe length of the list-of -
dimensions of x, that is, the dimension-count of x, whichis1 for alist, 2 for atable
and so on.

L $L #3$L T $T #$T

567 3 1 111 2 3 2
111

If we take x to be a single number, then the expression (# $ x) gives zero.
#$ 17
0

We interpret thisto mean that, while a table has two dimensions, and alist has one,

asingle number has none, because its dimension-count is zero. A data object with
adimension-count of zero will be called ascalar. We said that "arrays" are data
objects with some number of dimensions, and so scalars are also arrays, the
number of dimensions being zero in this case.

Wesaw that (# $ 17) is0. We can also conclude from this that, since a scalar has
no dimensions, its list-of-dimensions (given hereby $ 17) must be a zero-length,
or empty, list. Now alist of length 2, say can be generated by an expression such
as2 $ 99 and so an empty list, of length zero, can be generated by 0 $ 99 (or
indeed, 0 $ any number)

The value of an empty list is displayed as nothing:

2 $ 99 0% 99 $ 17

99 99

Notice that ascalar, (17 say), isnot the samething asalist of lengthone(eg. 1 $
17), or atable with onerow and onecolumn(e.g.1 1 $ 17). The scalar hasno
dimensions, the list has one, the table has two, but all three look the same when

displayed on the screen:
S = 17
L= 1% 17
T=118% 17

S L T #$ S #$ L #$T

17 17 17 0 1 2

A table may have only one column, and yet still be a 2-dimensional table. Here't
has 3 rows and 1 column.

t == 31%$567 $t # 9t

(6]
w

1 2

(o]

2.3 Terminology

The property we called "dimension-count” isin J called by the shorter name of of
"rank", so asingle number isasaid to be arank-0 array, alist of numbers arank-1
array and so on. The list-of-dimensions of an array is called its "shape”.

The mathematical terms "vector" and "matrix" correspond to what we have called
"lists" and "tables" (of numbers). An array with 3 or more dimensions (or, aswe
now say, an array of rank 3 or higher) will be called a"report".

A summary of terms and functions for describing arraysis shown in the following
table.

Fom e m oo - Fom e m oo - Fom e e e H--m - - - +
| | Exanpl e| Shape | Rank |
Fom e m oo - Fom e m oo - Fom e e e H--m - - - +
I | x | $ X | # $ x|
Fom e m oo - Fom e m oo - Fom e e e H--m - - - +
| Scalar | 6 | enmpty list| O |
Fom e m oo - Fom e m oo - Fom e e e H--m - - - +
| List | 456 | 3 | 1 |
Fom e m oo - Fom e m oo - Fom e e e H--m - - - +
| Table |0 1 2 | 2 3 | 2 |
I 1345 | I I
Fom e m oo - Fom e m oo - Fom e e e H--m - - - +
| Report |O 1 2| 2 23 | 3 |
I |3 4 5| I I
I I I I I
I |6 7 8| I I
| [9 10 11 | | |
Fom e m oo - Fom e m oo - Fom e e e H--m - - - +

This table above was in fact produced by asmall J program, and is a genuine
"table", of the kind we have just been discussing. Its shapeis6 4. However, it is
evidently not just atable of numbers, since it contains words, list of numbers and

so on. We now look at arrays of things other than numbers.

2.4 Arrays of Characters

Characters are letters of the alphabet, punctuation, numeric digits and so on. We
can have arrays of characters just as we have arrays of numbers. A list of
charactersis entered between single quotes, but is displayed without the quotes.
For example:

title =t "My Ten Years in a Quandary'

title
My Ten Years in a Quandary

A list of charactersis called a character-string, or just astring. A single quotein a

string is entered as two successive single quotes.
"What'''s new?
VWhat's new?

2.5 Some Functions for Arrays

At thispoint it will be useful to look first at some functions for dealing with arrays.
Jisvery rich in such functions: here we look at ajust afew.

2.5.1 Joining

The built-in function, (comma) is called "Append". It joins things together to
make lists.

a = 'rear'

b = 'ranged

a, b
rearranged

The"Append" function joins lists or single items.

X =123 0, X X, O 0, O X , X

123 0123 1230 00 123123

The"Append" function can take two tables and join them together end-to-end to
form alonger table:

Tl=: 2 3 $ 'catdog T2=: 2 3 $ 'ratpig T1, T2

cat r at cat
dog pi g dog
r at
pig

Now atable can be regarded as a list where each item of thelist isarow of the
table. Thisis something we will find useful over and over again, so let me
emphasize it: the items of atable are itsrows.

With thisin mind, we can say that in general (x , y) isalist consisting of the
items of x followed by the items of y. For more information about "Append”, see
Chapter 05 p5.

2.5.2 Selecting

Now we look at selecting items from alist. Positionsin alist are numbered 0, 1,
2 and so on. The first item occupies position 0. To select an item by its position we
usethe{ (left brace) function.

y =: "abcd 0O{vy 1{y { vy

abcd a b d

A position-number is called an index. The{ function can take as left argument a
single index or alist of indices:

y 0{vy 01{vy 301{y

abcd a ab dab

Thereisabuilt-in functioni . (letter-i dot). The expression (i . n) generatesn
successive integers from zero.

0123 012345 123

If x isalist, theexpression (i. # x) generates all the possible indexesinto the
list x.

x = 'park’ # X . # X

par k 4 0123

With alist argument, i . generates an array:
i. 23

012

345

Thereisadyadicversionof i ., caled "Index Of". The expression (x i. y) finds
the position, that is, index, of y in x.

"park’ i. "k’
3

Theindex found isthat of the first occurrence of y in x.
"parka’ i. 'a'
1

If y isnot present in x, the index found is 1 greater than the last possible position.
"park' i. 'j'
4

For more about the many variations of indexing, see Chapter 06 p6.

2.6 Arrays of Boxes

2.6.1 Linking

Thereisabuilt-in function ; (semicolon, called "Link"). It links together its two
arguments to form alist. The two arguments can be of different kinds. For example
we can link together a character-string and a number.

A = '"The answer is' ; 42
A

Fom e e e oo +- -+

| The answer i s| 42|

Fom e e e oo +- -+

Theresult Aisalist of length 2, and is said to be alist of boxes. Inside the first box
of Aisthestring' The answer is'.Insidethe second box isthe number 42. A
box is shown on the screen by arectangle drawn round the value contained in the
box.

A 0{ A

R +- -+ R +
| The answer is| 42| | The answer i s|
R +- -+ R +

A box isascalar whatever kind of value isinside it. Hence boxes can be packed
into regular arrays, just like numbers. ThusAisalist of scalars.

| The answer i s| 42| | 42|
Fomm e +- -+ +- -+

The main purpose of an array of boxesisto assemble into asingle variable several
values of possibly different kinds. For example, a variable which records details of
a purchase (date, amount, description) could be built as alist of boxes:

P =18 12 1998 ; 1.99 ; 'baked beans
P

Fomm oo oo Fom e e oo oo +

| 18 12 1998| 1. 99| baked beans|

Fomm oo oo Fom e e oo oo +

Note the difference between "Link" and "Append". While "Link" joins values of
possibly different kinds, "Append" always joins values of the same kind. That is,
the two arguments to "Append" must both be arrays of numbers, or both arrays of
characters, or both arrays of boxes. Otherwise an error is signalled.

“answer is'; 42 “answer is' , 42
R +- -+ error

| answer i s| 42|

T +- -+

On occasion we may wish to combine a character-string with a number, for
example to present the result of a computation together with some description. We
could "Link" the description and the number, as we saw above. However a
smoother presentation could be produced by converting the number to a string, and
then Appending this string and the description, as characters.

Converting a number to a string can be done with the built-in "Format" function " :
(double-quote colon). In the following example n is asingle number, while s, the

formatted value of n, isastring of characters of length 2.

n = 42 s = ":'n # s ‘answer is ' , s

42 42 2 answer is 42

For more about "Format", see Chapter 19 p19. Now we return to the subject of
boxes.

Because boxes are shown with rectangles drawn round them, they lend themselves

to presentation of results on-screen in asimple table-like form.
41%$1234
41%$3011

23%$" p" ;" q' ;" ptq' ; p; q; ptq

asrDN DS

2.6.2 Boxing and Unboxing

Thereis abuilt-in function < (left-angle-bracket, called "Box"). A single boxed

value can be created by applying < to the value.
< 'baked beans'

Although a box may contain a number, it is not itself a number. To perform
computations on avalue in a box, the box must be, so to speak "opened” and the
value taken out. The function (> (right-angle-bracket) is called "Open".

It may be helpful to picture < as afunnel. Flowing into the wide end we have data,
and flowing out of the narrow end we have boxes which are scalars, that is,
dimensionless or point-like. Conversely for > .

Since boxes are scalars, they can be strung together into lists of boxes with the
comma function, but the semicolon function is more convenient because it
combines the stringing-together and the boxing:

(<11, (<22 , (<33 |11;22; 33

N S N S
|1 1]2 2|3 3 |1 1|2 2|3 3
N S N S

2.7 Summary

In conclusion, every data object in Jis an array, with zero, one or more
dimensions. An array may be an array of numbers, or an array of characters, or an
array of boxes (and there are further possibilities).

This brings us to the end of Chapter 2.

Copyright © Roger Stokes 2002. This material may be freely reproduced, provided that this copyright noticeis also
reproduced.

last updated 18 Aug 2002

Chapter 3: Defining Functions

J comes with a collection of functions built-in; we have seen afew, such as* and
+. In this section we take afirst ook at how to put together these built-in functions,
in various ways, for the purpose of defining our own functions.

3.1 Renaming

The simplest way of defining afunction isto give a name of our own choiceto a
built-in function. The definition is an assignment. For example, to define squar e

to mean the same as the built-in *: function:
square =: *:

square 1 2 3 4
149 16

The point here is that we might prefer our own name as more memorable. We can
use different names for the monadic and dyadic cases of the same built-in function:
Ceiling = >.
Max = >,

Ceiling 1.7 3 Max 4

3.2 Inserting

Recall that (+/ 2 3 4) means2+3+4, and similarly (*/ 2 3 4) means2*3*4.

We can define afunction and give it a name, say sum with an assignment:
sum=: + /

sum?2 3 4

Here, sum =: +/ showsusthat +/ isby itself an expression which denotes a
function.

Thisexpression +/ can be understood as. "Insert" (/) applied to the function + to
produce a list-summing function.

That is, / isitself akind of function. It takes one argument, on its left. Both its
argument and its result are functions.

3.3 Terminology: Verbs, Operators and
Adverbs

We have seen functions of two kinds. Firstly, there are "ordinary"” functions, such
as + and *, which compute numbers from numbers. In Jthese are called "verbs".

Secondly, we have functions, such as/ , which compute functions from functions.
Functions of this kind will here be called "operators", to distinguish them from
verbs.

(The word "operator” is not used in the official Jliterature. However, in this book,
for the purpose of explanation, it will be convenient to have a single word,
"operator”, to describe any kind of function which is not a verb. Then we may say
that every function in Jis either averb or an operator.)

Operators which take one argument are called "adverbs®. An adverb always takes
its argument on the left. Thus we say that in the expression (+ /) theadverb/ is
applied to the verb + to produce a list-summing verb.

The terminology comes from the grammar of English sentences: verbs act upon
things and adverbs modify verbs.

3.4 Commuting

Having seen one adverb, (/) , let uslook at another. The adverb ~ has the effect of

exchanging left and right arguments.

ab ba

The scheme isthat for adyad f with argumentsx and y
X f~vy nmeans y f x

For another example, recall theresidue verb | where2 | 7 means, in conventional
notation, "7 mod 2". We can define anod verb:
nmod = | ~

7md2 | 2] 7

Let me draw some pictures. Firstly, hereisadiagram of function f applied to an
argument y to produce aresult (f y) . Inthediagram the functionf isdrawn asa
rectangle and the arrows are arguments flowing into, or results flowing out of, the
function. Each arrow is labelled with an expression.

XK—™ =+ "

Hereisasimilar diagram for adyadic f applied to arguments x and y to produce

(x f y).
_F
_F

1

Here now isadiagram for the function (f ~) , which can be pictured as containing
inside itself the function f , together with a crossed arrangement of arrows.

Eal »

3.5 Bonding

Suppose we wish to define averb doubl e such that doubl e x meansx * 2. That

IS, doubl e isto mean "multiply by 2". We define it like this:
double = * & 2

doubl e 3

Here we take adyad, *, and produce from it amonad by fixing one of the two
arguments at a chosen value (in this case, 2). The & operator forms a bond between
afunction and a vaue for one argument. The bonding operation is also known as
"currying". Instead of fixing the right argument we could fix the left. For example,
suppose that the rate of sales tax is 10%, then a function to compute the tax, from

the purchase-priceis:
tax =1 0.10 & *

tax 50

Hereisadiagram illustrating function ké&f .

e X1

= -

1T

3.6 Terminology: Conjunctions and
Nouns

The expression (* &2) can be described by saying that the & operator is afunction
which is applied to two arguments (the verb * and the number 2), and the result is
the "doubling" verb.

A two-argument operator such as & iscalled in Ja"conjunction”, because it
conjoins its two arguments. By contrast, recall that adverbs are operators with only
one argument.

Every function in J, whether built-in or user-defined, belongs to exactly one of the

four classes: monadic verbs, dyadic verbs, adverbs or conjunctions. Here we regard
an ambivalent symbol such as- as denoting two different verbs. monadic negation
or dyadic subtraction.

Every expression in J has avalue of sometype. All values which are not functions
are data (in fact, arrays, as we saw in the previous section).

In J, datavalues, that is, arrays, are called "nouns’, in accordance with the English-
grammar analogy. We can call something a noun to emphasize that it's not a verb,
or an array to emphasize that it may have several dimensions.

3.7 Composition of Functions

Consider the English language expression: the sum of the squares of the numbers 1
2 3,thatis, (1+4+9), or 14. Since we defined above verbs for sumand squar e,

we arein aposition to write the J expression as:
sum square 1 2 3
14

A single sum-of-the-squares function can be written as a composite of sumand

squar e:
sunsqg = sum @ square
sunsq 1 2 3

14

The symbol @ (at colon) is called a"composition" operator. The schemeisthat if
f and g are verbs, then for any argument y
(f @ 9) vy means f (g y)

Here isadiagram for the scheme:

FCg vy

l<—--|ﬂ—--h—h-

At this point, the reader may be wondering why we write (f @ g) and not simply
(f g) todenote composition. The short answer isthat (f g) means something
else, which we will come to.

For another example of composition, atemperature in degrees Fahrenheit can be
converted to Celsius by composing together functions s to subtract 32 and m
tomultiply by 5%98.

S _

m
convert

3
(

* 1

& 32
& (5%9)
@ s

m

s 212 ms 212 convert 212

180 100 100

For clarity, these examples showed composition of named functions. We can of

course compose expressions denoting functions:
conv = (* & (5%9)) @ (- & 32)
conv 212

100

We can apply an expression denoting a function, without giving it a name:
(* & (599)) @ (- & 32) 212
100

The examples above showed composing a monad with a monad. The next example
shows we can compose a monad with a dyad. The general schemeis:
x (f @ g) y neans f(xgy)

For example, the total cost of an order for several itemsis given by multiplying

guantities by corresponding unit prices, and then summing the results. To illustrate:

= 23 NB. prices

= 1 100 NB. quantities
total =2 sum @ *
P Q P*Q sumP * Q Ptotal Q
2 3 1 100 2 300 302 302

For more about composition, see Chapter 08 p8.

3.8 Trains of Verbs

Consider the expression "no pain, no gain”. Thisis acompressed idiomatic form,
guite comprehensible even if not grammatical in construction - it is not a sentence,
having no main verb. J has asimilar notion: a compressed idiomatic form, based
on a scheme for giving meaning to short lists of functions. We look at this next.

3.8.1 Hooks

Recall the verb t ax we defined above to compute the amount of tax on a purchase,
at arate of 10%. The definition is repeated here:
tax =1 0.10 & *

The amount payable on a purchase is the purchase-price plus the computed tax. A
verb to compute the amount payable can be written:
payable =1 + tax

If the purchase priceis, say, $50, we see:

tax 50 50 + tax 50 payabl e 50

5 55 55

In the definition (payabl e =: + tax) we have a sequence of two verbs +
followed by t ax. This sequence isisolated, by being on the right-hand side of the
assignment. Such an isolated sequence of verbsis called a“train”, and atrain of 2
verbsiscalled a"hook".

We can also form a hook just by isolating the two verbs inside parentheses:
(+ tax) 50
55

The general scheme for ahook isthat if f isadyad and g isamonad, then for any
argument y:
(f g) vy means y f (g vy)

Hereisadiagram for the scheme:

v £ Ca w)
f Y

CfF g)d Ll

i

h

For another example, recall that the "floor" verb <. computes the whole-number
part of its argument. Then to test whether a number is a whole number or not, we

can ask whether it is equal to itsfloor. A verb meaning "equal-to-its-floor" is the
hook (= <.) :
whol enunber = = <

y = 3 2.7 <.y y = <.y whol enunber vy

3 2.7 3 2 10 10

3.8.2 Forks

The arithmetic mean of alist of numbersL is given by the sum of L divided by the
number of itemsin L. (Recall that number-of-items is given by the monadic verb
#.)

L= 35729 sum L # L (sumL) % (# L)

35709 24 4 6

A verb to compute the mean as the sum divided by the number of items can be

written as a sequence of three verbs: sumfollowed by %followed by # .
mean =: sum % #

mean L

An isolated sequence of three verbsis called afork. The general schemeisthat if f
iIsamonad, g isadyad and h isamonad then for any argument y,
(f gh)y means (f y) g (hy)

Hereisadiagram of this scheme:

CF w2 g Ch y)

T

CF g hD o9

i

_F

8
I
»
Hooks and forks are sequences of verbs, also caled "trains of verbs. For more
about trains, see Chapter 09 p9.

3.9 Putting Things Together

Let us now try alonger example which puts together several of the ideas we saw
above.

Theideaisto define averb to produce asimple display of agiven list of numbers,
showing for each number what it is as a percentage of the total.

L et me begin by showing you a complete program for this example, so you can see
clearly where we are going. | don't expect you to study thisin detail now, because
explanation will be given below. Just note that we are looking at a a program of 8

lines, defining averb called di spl ay and its supporting functions.
NB. display verb: tabul ate as percentages

percent = (100 & *) @ (% +/)

round = <. @ (+&0.5)

conp = round @ percent

br = ,. ; (,. @ comp)

tr = ('Data';'Percentages') &,
reshape =1 22 & $

di spl ay reshape @ tr @ br

To show that this verb displays the data as given and as computed percentages:
di splay 15 30 15

T +
| Dat a| Per cent ages|
T +
15	25
30	50
15	25
T +

The verb per cent computes the percentages, dividing each number by the total,
with the hook (% +/) and then multiplying by 100. To save you looking

backwards and forwards, the definition of per cent isrepeated here:
percent = (100 & *) @ (% +/)

To illustrate with simple data:
data =: 3 5

dat a data % +/ data (% +/) data percent data

35 0.375 0.625 0.375 0.625 37.5 62.5

L et us round the percentages to the nearest whole number, by adding 0. 5 to each

and then taking the floor (the integer part) with theverb <. Theverbround is:
round = <. @ (+&0.5)

Then the verb to compute the displayed values from the datais:
conp = round @ percent

dat a conp data

35 38 63

Now we want to show the data and computed values in columns. To make a 1-
column table out of alist, we can use the built-in verb, . (commadot, called
"Ravel Items").

dat a ,. data ,. conp data

35

w

38
63

(62}

To make the bottom row of the display, we define verb br asafork which links
together the data and the computed values, both as columns:
br = ,. ; (,. @ conp)

dat a br data

35 +- - -+
| 3] 38|
| 5] 63|
+- - -+

To make the top row of the display (the column headings), here is one possible
way. The bottom row will be alist of two boxes. On the front of this list we stick
two more boxes for the top row, giving alist of 4 boxes. To do thiswe define a
verbtr:

tr =: ('Data';'Percentages') &,

dat a br data tr br data

35 +- +- -+ S +- +- -+
| 3| 38| | Dat a] Per cent ages| 3| 38|
| 5] 63] | | | 5] 63]
+- +- -+ S +- +- -+

All that remainsisto reshape this list of 4 boxesinto a2 by 2 table, using the
r eshape verb defined as:
reshape = 22 & $

reshape tr br data
Fom e e e m oo +

| Dat a| Per cent ages|

and so we put everything together:
di splay =: reshape @ tr @ br

di spl ay data
Fom e e e m oo +
| Dat a| Per cent ages|
Fom e e e m oo +
|3 |38 I
| 5 | 63 |
Fom e e e m oo +

Thisdi spl ay verb has two aspects:. the function conp which computes the values
(the rounded percentages), and the remainder which is concerned to present the
results. By changing the definition of conp, we can di spl ay atabulation of the
values of other functions. Suppose we define conp to be the built-in square-root
verb (%) .

comp =1 %

We would also want to change the column-headings in the top row, specified by
thetr verb:
tr = (' Nunbers';'Square Roots') &,

display 1 4 9 16
1 I
4 I
9 | 3 I
6 I

In review, we have seen a small J program with some characteristic features of J:
bonding, composition and afork. Aswith al J programs, thisis only one of the
many possible waysto writeit.

Thisisthe end of Chapter 3.

Copyright © Roger Stokes 2001. This material may be freely reproduced, provided that this copyright noticeis also
reproduced.

last updated 05Jun01

Chapter 4. Scripts and Explicit
Functions

What is called a"script" is a sequence of lines of Jwhere the whole sequence can
be replayed on demand to perform a computation. The themes of this chapter are
scripts, functions defined by scripts, and scriptsin files.

4.1 Text

Hereis an assignment to the variable t xt :
txt == 0: O

What is called a "script” is

a sequence of |ines of J.

)

Theexpression0 : 0 means"asfollows’, thatis, 0 : 0 isaverb which takes as
its argument, and delivers as its result, whatever lines are typed following it, down
to the line beginning with the solo right- parenthesis.

Thevalue of t xt isthesetwo lines, in asingle character string. The string contains
line-feed (LF) characters, which causet xt to be displayed as several lines. t xt has

acertain length, itisrank 1, that is, just alist, and it contains 2 line-feed characters.
t xt

What is called a "script" is

a sequence of lines of J.

$ txt # $ txt +/ txt = LF

55 1 2

Let ussay that t xt isa"text" variable, that is, a character string with zero or more
line-feed characters.

4.2 Scripts for Procedures

Here we look at computations described as step-by-step procedures to be followed.
For avery simple example, the Fahrenheit-to-Celsius conversion can be described
in two steps. Given some temperature T say in degrees Fahrenheit:

T = 212

then the first step is subtracting 32. Call theresult t, say.
t = T- 32

The second step is multiplying t by 590 to give the temperature in degrees Celsius.
t *5 %9
100

Suppose we intend to perform this computation several times with different values
of T. We could record this two-line procedure as a script which can be replayed on
demand. The script consists of the lines of J stored in atext variable, thus:
script == 0: 0
T- 32
5 %9

* 1

t
t
)

Scripts like this can be executed with the built-inJverb 0 ': 111 which we can

cal, say, do.
do = 0 !: 111

do script

We should now see the lines on the screen just as though they had been typed in

from the keyboard:
t = T - 32
t *5 %9
100

We can run the script again with adifferent value for T

T = 32

do scri pt

t == T - 32
t *5 %9

4.3 Explicitly-Defined Functions

Functions can be defined by scripts. Here is an example, the Fahrenheit-to-Celsius

conversion as averb.
Celsius =2 3 : 0

t = y. - 32

t *5 %9

)

Cel sius 32 212 1 + Celsius 32 212

0 100 1 101

Let uslook at this definition more closely.

4.3.1 Heading

The function is introduced with the expression 3 : 0 which means: "averb as
follows". (By contrast, recall that 0 : 0 means"acharacter string as follows").

Thecolonin3 : 0 isaconjunction. Itsleft argument (3) means "verb". Itsright
argument (0) means "linesfollowing". For more details, see Chapter 12 p12. A

function introduced in thisway is called "explicitly-defined", or just "explicit".

4.3.2 Meaning

The expression (Cel si us 32 212) appliesthe verb Cel si us to the argument 32
212, by carrying out a computation which can be described, or modelled, like this:

y. = 32 212
t = vy. - 32
t *5 %9

0 100

Notice that, after the first line, the computation proceeds according to the script.

4.3.3 Argument Variable(s)

The value of the argument (32 212) issupplied to the script as a variable named
y. (letter-y dot). This"argument variable" isaways namedy. inamonadic
function. (In adyadic function, as we shall see below, the right argument is always
namedy. andtheleftisx.)

4.3.4 Local Variables

Hereis our definition of Cel si us repeated:
Celsius =0 3: 0

Dy, - 32

5 %9

* 1

t
t
)

We see it contains an assignment to avariablet . Thisvariableis used only during
the execution of Cel si us. Unfortunately thisassignment tot interferes with the
value of any other variable also called t , defined outside Cel si us, which we

happen to be using at the time. To demonstrate:
t =2 '"hello

Cel sius 212
100

t
180

We see that the variablet with original value (' hel | o') has been changed in
executing Cel si us. To avoid this undesirable effect, we declare that t inside
Cel si us isto be agtrictly private affair, distinct from any other variable called t .

For this purpose there is a special form of assignment, with the symbol =. (equal

dot). Our revised definition becomes:
Celsius =2 3: 0

y. - 32

5 %9

* 1

t
t
)

and we say that t in Cel si us isalocal variable, or that t islocal to Cel si us. By
contrast, a variable defined outside afunction is said to be global. Now we can
demonstrate that in Cel si us assignment to local variablet does not affect any

global variablet
t =2 "hello

Cel sius 212
100

t
hell o

The argument-variabley. isaso alocal variable. Hence the evaluation of
(Cel sius 32 212) ismore accurately modelled by the computation:

y. = 32 212
t = vy. - 32
t *5 %9

0 100

4.3.5 Dyadic Verbs

Cel si us iIsamonadic verb, introduced with 3 : 0 and defined in terms of the
single argument y. . By contrast, adyadic verb isintroduced with4 : 0. Theleft
and right arguments are always named x. andy. respectively. Hereis an example.
The "positive difference" of two numbersisthe larger minus the smaller.

posdiff =2 4 : O
larger =. x. >. y.
smaller =. x. <. y.
| arger - smaller

)

3 posdi ff 4 4 posdiff 3

4.3.6 One-Liners

A one-line script can be written as a character string, and given asthe right

argument of the colon conjunction.
PosDiff = 4 : "(x. > y.) - (x. <. y.)'
4 PosDiff 3

4.3.7 Flow of Control

In the examples we have seen so far of functions defined by scripts, execution
begins with the first line, proceeds to the next, and so on to the last. This straight-
through path is not the only path possible. The path can be controlled by conditions
which can be tested in the course of the computation.

Hereisasimple example, avariation of PosDi f f where the course of the
computation is guided by the presence of what are called the "control words" i f .
do. el se. end. .

POSDIFF =: 4 : 0
if. X. > Y.
do. X. - Y.
else. y. - X.

end.

)

1

3 POSDI FF 4

See Chapter 12 p12 for more on control words.

4.4 Tacit and Explicit Compared

We have now seen two different styles of function definition. The explicit style,
introduced in this chapter, is so called because it explicitly mentions variables
standing for arguments. Thusin POSDI FF above, the variabley. isan explicit
mention of an argument.

By contrast, the style we looked at in the previous chapter is called "tacit”, because
there is no mention of variables standing for arguments. For example, compare

explicit and tacit definitions of the positive-difference function:
epd =2 4 : "(x. > y.) - (x. <. y.)'

tpd = > - <

Many functions defined in the tacit style can also be defined explicitly, and vice
versa. Which styleis preferable depends on what seems most natural, in the light
of however we conceive the function to be defined. The choice lies between
breaking down the problem into, on the one hand, a scripted sequence of steps or
on the other hand into a collection of smaller functions.

The tacit style allows a compact definition. For this reason, tacit functions lend
themselves well to systematic analysis and transformation. Indeed, the J system
can, for abroad class of tacit functions, automatically compute such
transformations as inverses and derivatives.

4.5 Functions as Values

A function isavalue, and a value can be displayed by entering an expression. An
expression can be as simple as a name. Here are some values of tacit and explicit

functions;
- & 32

i
|-1& 32|
i

epd
I T +

[4]:[(x. > y.) - (x. <. y.)]
T I +

Cel si us
e +

[3[:]t = y. - 32|
[| [t *5%9 |
oo m e e e e oo +

The value of each function is here represented as a boxed structure. Other
representations are available: see Chapter 27.

4.6 Script Files

We have seen scripts (lines of J) used for definitions of single variables: text
variables or functions. By contrast, afile holding lines of J as text can store many
definitions. Such afileis caled ascript file, and its usefulnessis that all its
definitions together can be executed by reading thefile.

Hereis an example. Create afile on your computer called, say, nyscri pt. Usea
text-editor of your choice to create the file. The file should contain 2 lines of text
like the following:

squareroot = %
z = 1, (2+2) , (4+5)

Having created this 2-line script file, we can execute it by typing at the keyboard:
0!':1 < "nyscript'

and we should now see the lines on the screen just as though they had been typed

from the keyboard.
squareroot = %
z = 1 ,(2+2), (4+5)

We can now compute with the definitions we have just loaded in from the file:
V4
1409

squar eroot z
123

The activitiesin aJ session will be typically a mixture of editing script files,
loading or rel oading the definitions from script files, and initiating computations at
the keyboard. What carries over from one session to another is only the script files.
The state, or memory, of the J system itself disappears at the end of the session,
along with all the definitions entered during the session. Hence it is a good idea to
ensure, before ending a J session, that any script fileis up to date, that is, it
contains all the definitions you wish to preserve.

At the beginning of a session the J system will automatically load a designated
script file, called the "profile". (See Chapter 26 p25 for more details). The profile
can be edited, and is a good place to record any definitions of your own which you
find generally useful.

We have now come to the end of Chapter 4 and of Part 1. The following chapters
will treat, in more depth and detail, the themes we have touched upon in Part 1.

Copyright © Roger Stokes 2002. This material may be freely reproduced, provided that this copyright noticeis also
reproduced.

last updated 18 Aug 2002

p5

Chapter 5: Building Arrays

This chapter is about building arrays. First we look at building arrays from lists,
and then at joining arrays together in various ways to make larger arrays.

5.1 Building Arrays by Shaping Lists

The dyadic verb $ (dollar) iscalled "Shape". The expression (x $ y) produces an
array of theitems of the list y, with shape x, that is, with dimensions given by the
list x. For example:

22%$0123 2 3 $ ' ABCDEF

ABC
DEF

N O
w

If thelist y contains fewer than the number of items needed, theny isre-used in
cyclical fashion to make up the number of items needed. This means that an array
can be built to show some simple patterning, such as al elements being the same,
for example.

2 3% 'ABCD 22%1 33%$1000

ABC 11 100
DAB 11 010
001

Instead of re-using values fromy, avaueto fill the array can be specified with the

"Customize" conjunction (! .) (exclamation-mark dot).
23($!. ') "ap

ab*
* % %

The "Shape" verb, dyadic $, has a companion verb, " ShapeOf" (monadic $), which
yields the list-of-dimensions, that is, shape, of its argument. To illustrate:

A= 23 $% 'ABCDEF $A | a= 'pgr' $ a
ABC 2 3 pqr 3
DEF

An array can be of length zero in any of itsdimensions. If EL is a zero-length, or
empty, list then it has no items, and so, after appending an item to it, the result will
have one item.

EL =: 0%0 # EL EL , 1

Similarly, if ET isan empty table with no rows, and say, 3 columns, then after
adding arow, the result will have one row.

ET = 03 $ 'x' $ ET | $ ET, 'pgr'

03 13

It sometimes occurs that we need to build ascaar. A scalar has no dimensions, that
IS, itsdimension-list is empty. We can give an empty list as the left argument of $
to make ascaar:

(0$0) $ 99
99

Wesaidthat (x $ y) produces an x-shaped array of theitemsof y. If y isatable,
then each item of y will itself be alist (arow). Hence in general the shape of
(x$y) will be not just x, but rather x followed by the shape of anitem of y.

A 3$A | $3S%A
ABC ABC 3 3
DEF DEF

ABC

The next sections look at building new arrays by joining together arrays we already
have.

5.2 Appending, or Joining End-to-End

Recall that any array can be regarded as alist of items, so that for example the
items of atable areitsrows. Theverb, (comma) iscaled "Append". The
expression (x, y) isalist of theitems of x followed by theitemsof y.

B=23%"'UMKYZ
b =: 3% 'uvw
a b a b A B A B

pqr uvw pqr uvw ABC UVW | ABC
DEF XYz DEF

XYZ

In the example of (A, B) above. theitemsof A arelists of length 3, and so are the
items of B. Hence items of A are compatible with, that is, have the same rank and
length asitems of B. What if they do not? In this case the "Append" verb will
helpfully try to stretch one argument to fit the other, by bringing them to the same
rank, padding to length, and replicating scalars as necessary. Thisis shown the

following examples.

5.2.1 Bringing To Same Rank

Suppose we want to append arow to atable. For example, consider appending the
3-character list b (above) to the 2 by 3 table A (above) to form a new row.

ABC uvw ABC
DEF DEF
uvw

Notice that we want the two items of A to be followed by the single item of b, but b
Isnot a 1-item affair. We could do it by reshaping b into a1 by 3 table, that is, by
raising the rank of b. However, thisis not necessary, because, as we see, the
"Append" verb has automatically stretched the low-rank argument into a 1-item
array, by supplying leading dimension(s) of 1 as necessary.

A b A, (133%$Db) A, b b, A

ABC uvw ABC ABC uvw

DEF DEF DEF ABC
uvw uvw DEF

5.2.2 Padding To Length

When the items of one argument are shorter than the items of the other, they will
be padded out to length. Characters arrays are padded with the blank character,
numerical arrays with zero.

A A, 'XY | (23%$1) , 909

ABC ABC 111
DEF DEF 111
XY 990

5.2.3 Replicating Scalars

A scalar argument of "Append" is replicated as necessary to match the other
argument. In the following example, notice how the scalar ' ** isreplicated, but
thevector (1 $ ' *') ispadded.

A A, '* A, 183%"'*
ABC ABC ABC
DEF DEF DEF

* k% *

5.3 Stitching, or Joining Side-to-Side

Theverb, . (commadot) iscalled "Stitch". In the expression (x ,. y) eachitem
of x has the corresponding item of y appended.

a b a,. b A B A,. B

pqr uvw pu ABC Uuvw | ABCUVW
qv DEF XYZ DEFXYZ
rw

5.4 Laminating, or Joining Face-to-Face

Theverb, : (commacolon) iscaled "Laminate". Inthe expression (x ,: vy),if x
andy are, say, two similar tables, then we can imagine the result as one table laid
on top of the other to form a 3-dimensional array. Thus the arguments are joined
along a new dimension, always of length 2. The result has two items, of which the
firstisx and the second isy. This means that the new dimension is thefirst.

pqr uvw pqr ABC UVW | ABC
uvw DEF XYZ DEF

UvW

XYZ

5.5 Linking

Theverb ; (semicolon) iscalled "Link". It is convenient for building lists of boxes.

‘good' ; ' norning' 5; 12 ; 1995
SRS + S
| good| nor ni ng| | 5] 12| 1995]|
SRS + S

Notice how the example of 5; 12; 1995 showsthat (x; y) isnot invariably just (<
x), (< y) . Since"Link" isintended for building lists of boxes, it recognises when
itsright argument is already alist of boxes. If we define a verb which does produce

(< x),(<y)
foo = 4: '(<x.), (<y.)"

we can compare these two:

1; 2:; 3 1 foo 2 foo 3

+- +- -+ S SR +
| 11 2] 3] | 1] +- +- +|
et] 1203

|44
S SR +

5.6 Unbuilding Arrays

We have looked at four dyadic verbs: "Append"” (,), "Stitch" (, .), "Laminate"
(,:) and"Link" (;) . Each of these has a monadic case, which we now look at.

5.6.1 Razing

Monadic ; iscalled "Raze". It unboxes elements of the argument and assembles
theminto alist.

B=22%1;2;3;4 . B $: B
+- +- + 1234 4
| 1] 2|
- 4- 4
| 3| 4]
- 4- 4
5.6.2 Ravelling

Monadic, iscalled "Ravel". It assembles elements of the argument into alist.

B B $, B
+-+-+ +- - - -+ 4

| 1] 2] | 11 2| 3| 4]

+-+-+ +- - - -+

| 3] 4]

+-+-+

5.6.3 Ravelling Items

Monadic, . iscalled "Ravel Items". It separately ravels each item of the argument
to form atable.

k == 223%i. 12 , .k

wo
I NG
aN
oo
~N e
0o N
© w
o
(NN

(o)}
~
(o)

"Ravel Items" is useful for making a 1-column table out of alist.

b .. b
uvw u
\'
W

5.6.4 Itemizing

Monadic, : makesa 1-item array out of any array, by adding aleading dimension
of 1.

A .o A $.,: A

ABC ABC 123
DEF DEF

5.7 Arrays Large and Small

For small arrays, where the contents can be listed on asingleline, there are
aternatives to using $, which avoid the need to give the dimensions explicitly.

>12; 34, 56 12, 34,: 56

g1 w
o R~DN
g1 w
o BR~DN

To build large tables, a convenient method is as follows. First, hereisa"utility"
verb (that is, averb which is useful for present purposes, but we don't need to study
its definition now.)

ArrayMaker =1 ". ;. _2

The purpose of ArrayMaker isto build a numeric table row by row from the lines
of a script.
table =: ArrayMaker 0 : O

— N AR
0© U1 N
© o w

t abl e $ table

33

~ AR
o o1 N
[(olNe)RNVV]

(See Chapter 17 pl7 for an explanation of how Ar r ayMaker works). Arrays of

boxes can aso be entered from a script in the same way:
X = ArrayMaker 0 : O

"hello” ; 123 ; 8

‘Waldo' ; 456 ; 9

)

S R S R +-+ 2 3
|hello|1 2 3| 8|

S R S R +-+

| Wl do| 4 5 6] 9|

S R S R +-+

We have reached the end of Chapter 5.

Copyright © Roger Stokes 2000. This material may be freely reproduced, provided that this copyright notice and
provision is also reproduced.

last updated 17Mar00

Chapter 6: Indexing

Indexing is the name given to selecting of elements of arrays by position. This
topic includes selecting elements, rearranging selected elements to form new
arrays, and amending, or updating, selected elements of arrays.

6.1 Selecting

Theverb { (left-brace) iscalled "From". The expression (x { y) selects elements
fromy according to positions given by x. For example, recall from Chapter 2 that
iIf L isalist, then the positions of items of L are numbered 0 1 and so on. The
expression (0 { L) givesthevalue of thefirstitemof L and1 { L givesthe
second item.

L =: 'abcdef’ O{ L 1{L

abcdef a b

The left argument of { iscalled the "index".
6.1.1 Common Patterns of Selection.
Several items may be selected together:

L 024{L

abcdef ace

Items selected from L may be replicated and re-ordered:

L 5443 (L

abcdef f eed

Anindex value may be negative: avalue of _1 selectsthe last item, _2 selectsthe
next-to-last item and so on. Positive and negative indices may be mixed.

L 1{L | 21{L

abcdef f eb

A single element of atable at, say, row 1 column 2 is selected with anindex (< 1
2).

T = 33 $ 'abcdefghi’ (<1; 2 {T
abc f

def

ghi

We can select from atable all elementsin specified rows and columns, to produce
asmaller table (called a subarray). To select a subarray consisting of, for example
rows1 and 2 and columns0 and 1, weuseanindex (< 1 2; 0 1)

T (<1201 {T
abc de

def gh

ghi

A complete row or rows may be selected from atable. Recall that atableisalist of

items, each item being arow. Thus selecting rows from tablesis just like selecting
items from lists,

T 1{ T 2 1 { T
abc def ghi

def def

ghi

To select acomplete column or columns, a straightforward way is to select all the
rows:

T (<012; 1){T
abc beh

def

ghi

but there are other possibilities. see below.

6.1.2 Take, Drop, Head, Behead, Tail, Curtail

Next we look at a group of verbs providing some convenient short forms of
indexing. Thereisabuilt-inverb {. (left brace dot, called "Take"). Thefirst n
items of list L areselected by (n {. L)

L 2 {. L

abcdef ab

If wetaken itemsfrom L with(n {. L), andn isgreater than the length of L, the
result is padded to length n, with zeros, spaces or empty boxes as appropriate.

For example, suppose we require to make a string of exactly 8 charactersfrom a
given string, a description of some kind, which may be longer or shorter than 8. If
longer, we shorten. If shorter we pad with spaces.

s = 'pasta’ # s z = 8{. s # z

past a 5 past a 8

Thereisabuilt-inverb} . (right-brace dot, called "Drop"). All but the first n items
of L areselectedby (n }. L).

L 2). L

abcdef cdef

Thelast n itemsof L areselected by (-n) {. L. All but thelast n are selected by
(-n) }. L

L 2 {. L 2). L

abcdef ef abcd

There are abbreviations of Take and Drop in the special case where n=1. Thefirst
item of alist is selected by monadic {. (left-brace dot, called "Head"). All but the
first are selected by } . (right-brace dot, called "Behead").

abcdef a bcdef

Thelast item of alist is selected by monadic {: (left-brace colon, called "Tail").

All but the last are selected by } : (right-brace colon, called "Curtail".

abcdef f abcde

6.2 General Treatment of Selection

It will help to have some terminology. In general we will have an n-dimensional
array, but consider a 3-dimensional array. A single element is picked out by giving
a plane- number, a row-number and a column-number. We say that the planes are
laid out in order along the first axis, and similarly the rows along the second axis,
and the columns aong the third.

Thereisno special notation for indexing; rather the left argument of { isadata
structure which expresses, or encodes, selections and rearrangements. This data
structure can be built in any way convenient. What follows is an explanation of
how to build it.

6.2.1 Independent Selections

The general expression for indexing is of theformi ndex { array.Herei ndex is
an array of scalars. Each scalar ini ndex givesrise to a separate independent
selection, and the results are assembled together.

L 01{L

abcdef ab

6.2.2 Shape of Index

The shape of the results depends on the shape of i ndex.

L index =2 22 %$2031 index { L

0 ca
1 db

Theindices must lie within the range - #L to (#L) - 1:

L #L 7 { L 6 { L
abcdef 6 error error
6.2.3 Scalars

Each scalar ini ndex iseither asingle number or abox (and of courseif oneisa
box, all are.) If the scalar isa single number it selects an item from arr ay.

A= 23 9% 'abcdef’ 1{ A
abc def
def

If the scalar ini ndex isabox however then it contains alist of selectors which are
applied to successive axes. To show where abox is used for this purpose, we can

use the name SuAx, say, for the box function.
SUAX =: <

The following example selects from A the element at row 1, column O.

A (SuAx 1 0) { A

abc d
def

6.2.4 Selections on One AXIs

Inalist of selectors for successive axes, of theform (SuAx p , r, c) say, each
of p, r and c isascalar. Thisscalar is either anumber or abox (and if oneis
boxed, all are). A number selects one thing on its axis: one plane, row or column as
appropriate, asin the last example.

However, if the selector isabox it contains alist of selections all applicable to the
same axis. To show where abox is used for this purpose we can use the name Sel

say, for the box function.
Sel = <

For example, to select from A elements at row 1, columns 0 2:

A (SuAx (Sel 1), (Sel 02)) { A
abc df
def

6.2.5 Excluding Things

Instead of selecting things on a particular axis, we can exclude things, by supplying
alist of thing-numbers enclosed in yet another level of boxing. To show where a

box is used for this purpose we can use the name Excl , say, for the box function.
Excl = <

For example, to select from A elements at row 0, all columns excluding column 1.

A (SuAx (Sel 0), (Sel (Excl 1))) { A

abc ac
def

We can select all things on a particular axis by excluding nothing, that is, giving an
empty list (0$0) asalist of thing-numbers to exclude. For example, to select from
A elements at row 1, all columns:

A (SuAx (Sel 1),(Sel (Excl 0%0))) { A
abc def
def

6.2.6 Simplifications

The expression (Excl 0$0) denotes a boxed empty list. Thereisabuilt-in J
abbreviation for this, namely (a:) (letter-acolon), which in this context we can
think of as meaning "all".

A (SuAx (Sel 1),(Sel a:)) { A

abc def

def
If in any index of theform (SuAx p,q, ..., z) , thelast selector z isthe "all"
form, (Sel (Excl 0$0)) or (Sel a:),thenitcan beomitted.

A (SuAx (Sel 1),(Sel a:)) {A (SuAx (Sel 1)) {A

abc def def

def

If in any index of theform (SuAx (Sel p),(Sel q),...),the"al" formis

entirely absent, then the index can be abbreviated to (SuAx p;q;...). For
example, to select elements at row 1, columns 0 and 2:

A (SuAx (Sel 1),(Sel 0 2)) {A (SuAx 1;0 2) {A
abc df df
def

Finally, as we have already seen, if selecting only one thing on each axis, asimple
unboxed list is sufficient. For example to select the element at row 1, column 2:

A (SuAx 1;2) { A (SuAx 1 2) { A
abc f f
def

6.2.7 Shape of the Result

Suppose that B is a 3-dimensional array:
B=i. 333

and we define p to select planes along the first axis of B, and r to select rows along
the second axis, and ¢ to select columns along the third axis:

p 12

r 12

c 01

We see that, selecting with p; r ; ¢, the shape of the result Ris the concatenation of
the shapesof p,r and c

B R= (<p;r;c) { B $R ($p), (r), (%$c)

0O 1 2 12 13 222 222
3 4 5 15 16
6 7 8
21 22
9 10 11 24 25
12 13 14
15 16 17
18 19 20
21 22 23
24 25 26

B is 3-dimensional, and so isR. Aswe would expect, this concatenati on-of-shapes
holds when a selector (r, say} isalist of length one:

r= 1%$1 | S= (<p;r;c){B | $5S ($p), ($r), ($c)
1 12 13 212 212
21 22

and the concatenation-of-shapes holds when selector r isascalar:

r = 1 T= (<p;r;c){B $T ($p), ($r), (%$0c) $r

1 12 13 2 2 2 2
21 22

Inthislast example, r isascaar, so the shape of r isan empty list, and so the axis
corresponding to r has disappeared, and so the result T is 2-dimensional.

6.3 Amending (or Updating) Arrays

Sometimes we need to compute an array which is the same as an existing array

except for new values at a comparatively small number of positions. We may
speak of 'updating' or ‘amending’ an array at selected positions. The J function for
amending arraysis} (right brace, called "Amend").

6.3.1 Amending with an Index
To amend an array we need three things:

. theorigina array

. aspecification of the position(s) at which the original isto be amended.
This can be an index exactly like the index we have seen above for selection
with { .

. hew valuesto replace existing elements at specified positions.

Consequently the J expression to perform an amendment may have the general
form:
newal ues index } original

For example: to amend list L to replace the first item (at index 0) with "

L new=:"'*' I ndex=: 0 new index } L

abcdef * 0 *pcdef

} isan adverb, which takesi ndex asits argument to yield the dyadic amending
verb (i ndex }).

Repl aceFirst = 0 }
"*' ReplaceFirst L
*pbcdef

(i ndex }) isaverblike any other, dyadic and yielding avaluein the usua way.
Therefore to change an array by amending needs the whole of the result to be

reassigned to the old name. Thus amendment often takes place on the pattern:
A = newindex } A

The J system ensures that this is an efficient computation with no unnecessary
movement of data.

To amend atable at row 1 column 2, for example:

A 'R (< 12))} A
abc abc
def de*

To amend multiple elements, alist of new values can be supplied, and they are
taken in turn to replace alist of values selected by an index

L P 1 2} L

abcdef a* #def

6.3.2 Amending with a Verb

Suppose that y isalist of numbers, and we wish to amend it so that al numbers
exceeding agiven value x are replaced by x. (For the sake of this example, we here
disregard the built-in Jverb (<.) for thisfunction.)

Theindices at whichy isto be amended must be computed from x andy. Hereisa

function f to compute the indices:
f = 4: "(y. >x.) # (i. #vy.)'

x =: 100 y =: 98 102 101 99 y > X x fy

100 98 102 101 99 0110 12

The amending is done, in the way we have seen above, by supplying indices of (x
fy):

y x (x fy)}ly

98 102 101 99 98 100 100 99

The"Amend" adverb} allowstheexpression(x (x f y) } y) tobe abbreviated
as(x f } y).

x (xfy)ytry | xf}ly

98 100 100 99 98 100 100 99

Since} isan adverb, it can accept as argument either theindices(x f y) or the
verbf .
cap =: f }

10 cap 8 9 10 11
8 9 10 10

Notethat if verb f isto be supplied as argument to adverb }, then f must be a
dyad, although it may ignorex ory.

6.3.3 Linear Indices

We have just looked at amending lists with averb. The purpose of theverbisto
find the places at which to amend, that is, to compute from the valuesin alist the
indices at which to amend. With atable rather than alist, the indices would have to
be 2- dimensional, and the task of the verb in constructing the indices would be

correspondingly more difficult. It would be easier to flatten atable into alinear list,
amend it asalist, and rebuild the list into atable again.

For example, suppose we have atable:
M= 22$ 312 11 4

Then, using our index-finding verb f , the flattening, amending and rebuilding is
shown by:

M LL = ,M | Z= 10f } LL | ($M $ Z
3 12 31211 4 | 3 10 10 4 3 10
11 4 10 4

However, there is a better way. First note that our index-finding verb f takes as
argument, not Mbut (LL =: , M . Thusinformation about the original shape of M
is not available to the index-finder f . In this example, this does not matter, but in
general we may want the index-finding to depend upon both the shape and the
valuesin M It would be better if f took the whole of Mas argument. In this case f
must do its own flattening. Thus we redefinef :

f == 4:0
y. = Y.
§y, >x.) # (i. #vy.)

M 10 f M
3 12 12
11 4

Now the index finder f takes an array as argument, and deliversindicesinto the
flattened array, so-called "linear indices'. The amending process, with thisnew f ,

is shown by:

M (M $ 10 (10f M} (L M

3 12 3 10
11 4 10 4

Finally, provided f deliverslinear indices, then (}) alowsthe last expression to be
abbreviated as:

M 10 f } M

3 12 3 10
11 4 10 4

6.4 Tree Indexing

So far we have looked at indexing into rectangular arrays. Thereis also aform of
indexing into boxed structures, which we can picture as "trees' having branches
and leaves. For example:

branch =: <
| eaf = <
branchO branch (leaf 'J S), (leaf 'Bach')

branchl =: branch (leaf 1), (leaf 2), (leaf 1777)

tree branchO, branchl
tree
Femmmmmaaa Femmmmmaaa +
| +---+----F] +-+-+--- -+
[1J S| Bach| || 1] 2| 1777|
| +---+----F] +-+-+--- -+
Femmmmmaaa Femmmmmaaa +

Then data can be fetched from the tree by specifying a path from the root. The path
Is a sequence of choices, given as left argument to theverb {: : (left-brace colon

colon,called "Fetch") The path 0 will fetch the first branch, while the path 0; 1
fetches the second leaf of the first branch:

0 {:: tree (0;1) {:: tree

LR T Bach
| J S| Bach|
-t - -+

Themonadicform{:: treeiscaledthe"Map" of t r ee. it has the same boxed
structure ast r ee and shows the path to each leaf.
{:: tree

[| +-+-+] +-+-+| || +- +-+]| +- -+ +-+- 4] |
Lo [Of 2 Iafor[1faf111l2]]]
[| +-+-+] +-+-+| || +- +-+]| +- -+ +-+- 4] |
I

Thisisthe end of Chapter 6.

Copyright © Roger Stokes 2001. This material may be freely reproduced, provided that this copyright noticeis also
reproduced.

last updated 4 Sep 01

Chapter 7. Ranks

Recall that the rank of an array isits number of dimensions. A scalar isof rank O, a
list of numbersis of rank 1, atable of rank 2, and so on.

The subject of this chapter is how the ranks of arguments are taken into account
when verbs are applied.

7.1 The Rank Conjunction

First, some terminology. An array can be regarded as being divided into "cells" in
several different ways. Thus, atable such as
M= 2 3 $ 'abcdef’
M
abc
def

may be regarded as being divided into 6 cells each of rank O, or divided into 2 cells
each of rank 1, or asbeing asingle cell of rank 2. A cell of rank k will be called ak-
cell.

7.1.1 Monadic Verbs

The box verb (monadic <) applies just once to the whole of the argument, to yield a
single box, whatever the rank of the argument.

L= 234 <L M < M
234 +----- + abc +---+
|2 3 4] def | abc]|
+----- + | def |
+-- -+

However, we may choose to box each cell separately. Using the rank-conjunction "
(double-quote), wewrite (< " 0) to box each scalar, that is, each O-cell.

M <" 0 M <" 1M <" 2 M
abc +-4+-+-+ +-- - -- -+ +---+
def | a| b| c| | abc| def | | abc]|
+- +- -+ o | def |
|dle|f| oot
+-+- -+

The general schemeisthat in the expression (u " k y), themonadicverbuis
applied separately to each k-cell of .

We can define a verb to exhibit the k-cells of an array, each cell in its own box::

cells = 4: '"<" x. y.'
M 0 cells M 1 cells M
abc +-4-+- 4+ oo
def | |alb|c] | abc| def |
+-+- +- + o e o 4
| d| e| f]
+- - +-+

7.1.2 Dyadic Verbs

Given atable, how do we multiply each row by a separate number? We multiply

withtheverb (* " 1 0) which can be understood as "multiply 1-cells by O-cells’,
For example,

Xx=22%$0123 y = 23 X (*" 10 vy

2 3

N O
w
o O
O N

The general schemeisthat the expression

x (u" (LR)) Yy

means. apply dyad u separately to each pair consisting of an L-cell from x and the
corresponding R-cell fromy.

To multiply each column by its own number, we combine each 1-cell of x with the
solitary 1-cell of y

X y x(*" 11 vy

2 3

N O
w
H O
O w

7.2 Intrinsic Ranks

In J, every verb has what might be called anatural, or intrinsic, rank for its
argument(s). Here are some examples to illustrate. For the first example, consider:

*: 2 *» 234

4 4 9 16

Here, the arithmetic function "square" naturally applies to a single number(a O-cell).
When arank-1 array (alist) is supplied as argument, the function is applied
separately to each O-cell of the argument. In other words, the natural rank of
(monadic) *: isO.

For another example, thereisabuilt-in verb #. (hash dot called "Base Twa"). Its
argument is a bit-string (alist) representing a number in binary notation, and it

computes the value of that number. For example, 1 0 1inbinaryiss
#. 101
5

Theverb #. applies naturally to alist of bits, that is, to a 1-cell. When arank-2
array (atable) is supplied as argument, the verb is applied separately to each 1-cell,
that is, to each row of the table.

:33%$101001011 #.0t

~—+
11

[—
o
H

513

loNe
=
el

Thus the natural rank of monadic #. is1.

For athird example, as we have already seen, the monadic case of < appliesjust
once to the whole of its argument, whatever the rank of its argument. The natural
rank of < isthus an indefinitely large number, that is, infinity, denoted by _ .

These examples showed monadic verbs. In the same way every dyadic verb will
have two natural ranks, one for each argument. For example, the natural ranks of
dyadic + are 0 0 since + takes a number (rank-0) on left and right.

In general, averb has both a monadic and a dyadic case, and hence altogther 3
ranks, called its "intrinsic ranks'. For any verb, itsintrinsic ranks can be seen by
applying the utility adverb RANKS (defined below), which gives the ranks in the

order: monadic, left, right.
RANKS =: 1 : '"x. b. O

*:1 RANKS #. RANKS < RANKS

00O 111 00

For convenience, the rank conjunction can accept a right argument consisting of a
single rank (for a monad) or two ranks (for adyad) or three ranks (for an
ambivalent verb).

One rank or two are automatically expanded to three as shown by:

(<"1) RANKS | (<"1 2) RANKS | (<"1 2 3) RANKS

111 212 123

7.3 Frames

Suppose u isaverb which sums all the numbersin atable. Evidently u has monadic
rank 2.
u=: (+) @ (+) " 2

w= 459%1 u w u RANKS

11111 20 222
11111
11111
11111

Suppose afour-dimensional array A hasshape2 3 4 5.
A= 23458%$i.7

We can regard A as a 2-by-3 array of 2-cells, each cell being 4-by-5. Now consider
computing (u A) . The verb u, being of rank 2, applies separately to each 2-cell,
giving us a 2-by-3 array of results.

Each result is a scalar (because u produces scalars), and hence the overall result will

be 2 by 3 scalars.

u A $uA

57 58 59 2 3
60 61 62

The shape2 3 iscalled the"frame" of A with respect to its 2-cells, or its 2-frame
for short. The k-frame of A is given by dropping the last k dimensions from the
shape of A, or equivalently, as the shape of the array of k-cells of A.

frame =1 4 : '"$ x. cellsy.

$ A 2 frame A

2345 2 3

In general, suppose that verb u has rank k, and from each k-cell it computes a cell
of shapes. (The sames, we are supposing, for each cell). Then the shape of the
overall result (u A) is: the k-frame of A followed by the shapes.

To demonstrate that thisis the case, we can find k from u, as the first (monadic)

rank of u:
k =2 0 { u RANKS

We can find the shape s by applying u to atypical k-cell of A, say thefirst.
s = $u O0{ >(, kcells A

In this example, the shape s isan empty list, because u produces scalars.

k S kfr = k frame A kfr, s $uA

Here we supposed that verb u gives the same-shaped result for each cell inits
argument. Thisis not necessarily the case - see the section on "Reassembly of
Results" below.

7.3.1 Agreement

A dyad has two intrinsic ranks, one for the left argument, one for the right. Suppose
these ranks are L and Rfor averb u.

When u is applied to arguments x and y, u is applied separately to each pair
consisting of an L-cell from x and the corresponding R-cell fromy. For example,
suppose dyad u hasranks (0 1) . It combinesa0O-cell from x and a1-cell fromy.

u= <@, " 01
X = 2 $ 'ab

y =2 2 3 $ ' ABCDEF
X y X uy

ab | ABC | 4----4----+
DEF | | aABC| bDEF|
S

Notice that here the O-frame of x isthe same as the 1-frame of y. These two frames
are said to agree.

X y $x Sy 0 frame x 1 frame y

ab ABC 2 2 3 2 2
DEF

What if these two frames are not the same? They can still agreeif oneisa prefix of
the other. That is, if one frame is the vector f , and the other frame can be written as
(f, g) for some vector g. Hereis an example. With

X 232%i. 12
y 2 $01

and adyad such as +, withranks (0 0), we are interested in the O-frame of x and
the O-frame of y.

X y 0 frame x 0O frame y X+y

0 1 01 232 2 0 1
2 3 2 3
4 5 4 5
6 7 7 8
8 9 9 10
10 11 11 12

We see that thetwo framesare2 and 2 3 2 and their difference g istherefore 3 2.

Herey hasthe shorter frame. Then each cell of y corresponds to, not just asingle
cell of x, but rather a3 2-shaped array of cells. Insuch acase, acell of y is
automatically replicated to form a3 2-shaped array of identical cells. In effect the
shorter frame is made up to length, so as to agree with the longer. Hereis an
example. Theexpression (3 2 & $) " 0 y means" a3 by 2 replication of each O-
cell of y".

X y yyy = (3 2&%)"0 y X + yyy X +y

0 1 01 00 0 1 0 1
2 3 00 2 3 2 3
4 5 00 4 5 4 5
6 7 11 7 8 7 8
8 9 11 9 10 9 10
10 11 11 11 12 11 12

What we have seen is the way in which alow-rank argument is automatically
replicated to agree with a high-rank argument, which is possible provided one
frameisaprefix of the other. Otherwise there will be alength error. The framesin
guestion are determined by the intrinsic dyadic ranks of the verb.

The general scheme for automatically replicating one argument is. for arguments x
andy, if uisadyad with ranks L and R, and the L-frame of x isf, g and the R-
frameof y isf (supposingy to have the shorter frame)

then (x u y) iscomputedas(x u (g& $)"R y)

7.4 Reassembly of Results

We now look briefly at how the results of the computations on the separate cells are
reassembled into the overall result. Suppose that the frame of application of averb
to itsargument(s) isf , say. Then we can visualise each individual result as being
stuffed into its place in the f -shaped framework of results. If each individual result-
cell has the same shape, s say, then the shape of the overall result will be (f, s).
However, it is not necessarily the case that all the individual results are the same
shape. For example, consider the following verb R, which takesa scalar y and
produces a rank-y result.

R=(3: '"(y. $y.) $y.") "0

R1 R 2

NN
NN

When Ris applied to an array, the overall result may be explained by envisaging
each separate result being stufffed into its appropriate box in an f -shaped array of
boxes. Then everything is unboxed all together. Note that it is the unboxing which
supplies padding and extra dimensions if necessary to bring all cells to the same
shape.

(R1); (R 2 >(R1 ; (R2 R1 2
FRRE 10 10
11]2 2| 00 00
| 12 2]
Hoto -+ 2 2 2

2 2 2 2

Consequently the shape of the overall result isgiven by (f, m) where misthe
shape of the largest of the individual results.

7.5 More on the Rank Conjunction

7.5.1 Relative Cell Rank

The rank conjunction will accept a negative number for arank. Thus the expression
(u " _1 y) meansthat uisto be applied to cells of rank 1 lessthan the rank of vy,
that is, to theitemsof y.

X $x <" 1x <" 20X
0 1 232 | 4ot | e +
2 3 |0 1] 6 7| |0 1|2 3|4 5 |
4 5 |2 3] 8 9| L R +
|4 510 11 |6 7|8 9|10 11|
6 7 ST + O SO T +
8 9
10 11

7.5.2 User-Defined Verbs

The rank conjunction has a special significance for user-defined verbs. The
significanceisthat it allows usto define averb considering only its "natural” rank:
we ignore the possibility that it may be applied to higher-rank arguments. In other
words, we can write a definition assuming the verb will be applied only to
arguments of the natural rank. Afterwards, we can then put the finishing touch to
our definition with the rank conjunction. Here are two examples.

The factoria of anumber n isthe product of the numbersfrom 1 to n. Hence
(disregarding for the moment Js built-in verb !) we could define factorial
straightforwardly as

f == * @ > @ i.

becausei. ngivesthenumberso 1 ... (n-1),and>: i. ngivesl 2 ... n.
We see:

f 2 f 3 f 4 f 5

2 6 24 120

Will f work as expected with a vector argument?
f 23
4 10 18

Evidently not. Thereasonisthat (f 2 3) beginsby computing (i. 2 3),and (i .
2 3) doesNOT mean (i. 2) followed by (i. 3).Theremedy isto specify that f
applies separately to each scalar (rank-0 cell) in its argument:

f = (*f @ (> @ i.)) "0

f 2345
2 6 24 120

For a second example of the significance of the rank-conjunction we look at

explicitly defined verbs. The point being made here s, to repeat, that it is useful to
be able to write a definition on the assumption that the argument is a certain rank
say, ascalar, and only later deal with extending to arguments of any rank.

Two features of explicitly defined verbs are relevant. First, for any explicit verb, its
intrinsic ranks are always assumed to be infinite. (Thisis because the J system does
not look at the definition until the verb is executed.) Second, since therank is
infinite, the whole argument of an explicit verb is always treated as a single cell (or
pair of cellsfor adyad) and there is no automatic extension to deal with multiple
cells.

For example, the absolute value of a number can be computed by the verb:
abs =2 3 : '"if. y. <0 do. - y. else. y. end.’

abs 3 abs 3

We see that abs, being explicitly defined, has infinite rank:
abs RANKS

Thismeansthat if abs isapplied to an array y, of any rank, it will be applied just
once, and we can see from the definition that the result will bey or -y. There are no
other possibilities. It isindeed the case that if y isavector then (y. < 0) yieldsa
vector result, but the expression (i f. y. < 0) makes ONE decision. (This
decision will in fact be based, not on the whole of y > 0 but only on its leading
item. See Ch X for more details). Hence if the argument contains both positives and

negatives, this decision must be wrong for some parts of the argument.
abs 3 3
3.3

Hence with abs defined as above, it isimportant to limit its application to scalars.

Thus a better definition for abs would be:
abs = (3 : '"if. y. <0 do. -y. else. y. end.")"0

abs 3 3
33

This brings us to the end of Chapter 7.

Copyright © Roger Stokes 2001. This material may be freely reproduced, provided that this copyright notice is aso
reproduced.

last updated 28 Jan 2002

Chapter 8: Composing Verbs

This chapter is concerned with operators which combine two verbs to produce new
composite verbs.

8.1 Composition of Monad and Monad

Recall the composition operator @ from Chapter 03 p3. Given verbs sumand
squar e we can define a composite verb, sum-of-the-squares.

sum = +/

square = *:

sunsq =: sum @ square sunsq 3 4
sum@ squar e 25

The general schemeisthat if f and g are monads then
(f @ 9) vy nmeans f (g vy)

Note in particular that f is applied to the wholeresult (g y) . Toillustrate, suppose
g applies separately to each row of atable, so we have:

g = sum" 1

f = <

y = 22%$1234 gy f gy (f @ 9) vy

37 +---+ +---+
| 3 7] | 3 7]
+---+ +---+

w
AN

We have just seen the most basic of kind of composition. Now we ook at some
variations.

8.2 Composition: Monad And Dyad

If f isamonad and g isadyad, then (f @ g) isadyadic verb such that
x (f @ 9)y nmeans f(xgy)

For example, the sum of the product of two vectorsx andy is called the "scalar
product”.
sp = +H @ *

x = 12 y =2 2 3 X *y +H (X *y) X Spy

The last example showed that, in the expression (x (f @ g) y) theverbf is
applied once to thewholeof (x g y)

8.3 Composition: Dyad And Monad

The conjunction & (ampersand colon, called "Appose") will compose dyad f and
monad g. The schemeis:

x (f & g) y means (g x) f (gy)

For example, we can test whether two lists are equal in length, with theverb (= &

eqlen =1 = & #
X y #X #y (#x) = (#y) X egleny
12 2 3 2 2 1 1

Heref isapplied oncetothewholeof (g x) and(g vy).

8.4 Ambivalent Compositions

To review, we have seen three different schemes for composition. These are:

(f @ 9) vy = f (gy)
x (f @ g) vy = f (xgy)
x (f & g) vy = (g x) f (gy)
Thereis afourth scheme,
(f & 9) vy = f (gy)

which is, evidently, the same as the first. This apparent duplication is useful for the
following reason. Suppose verb g is ambivalent, that is, has both a monadic and
dyadic case. It follows from the first two schemes that the composition (f @ g)
Isalso ambivalent. Smilarly, if verb f isambivalent, it follows from the third and
fourth schemesthat (f & g) isambivalent.

Toillustrate, let g be the ambivalent built-inverb (| .) with (| . y) beingthe
reverseof y andx |. y beingtherotation of y by x places.

y =1 'abcdef’ (<@ |.)y |1(<@|.) Yy

abcdef S - + foem e o +

For an example of ambivalent (f & g), letf bethe verb %- reciprocal or divide.

% *: 2 % & *: 2 (*: 3)%*: 2) 3 %& *: 2

0. 25 0. 25 2.25 2.25

8.5 More on Composition: Monad
Tracking Monad

The conjunction @is a variation of the @ conjunction. Here is an example to show

the difference between (f @ g) and (f @aq) .
y=22%$0123

y f g (f @ 9) vy (f @g9) vy
01 < sum'1l +---+ +- -+
23 | 1 5] | 1] 5]

+-- -+ +- +- +

We seethat with (f @ g) verbf isapplied once. However, with (f @) , for each
separate application of g thereis a corresponding application of f . We could say
that applications of f track the applications of g.

Suppose that the monadic rank of g isG. Then (f @g) means(f @ g) applied

separately to each G-cell, that is, (f @ 9)"G.
RANKS =: 1 : '"Xx. b. O

G=0{ gRANKS | (f @9) vy | (f @ 9)"Gy

and so the general schemeis:
(f @g9) vy means (f@ 9 "G vy

Thereis aso the & operator. For reasons of symmetry, as with the ambivalent
functions mentioned above, (f &) y meansthesameas(f @) v.

8.6 Composition: Monad Tracking Dyad

Next we look at the composition (f @ g) for adyadic g. Supposef and g are

defined by:
f = <
g=]." 01 NB dyadic

Herex g y means: rotate vectorsiny by corresponding scalarsin x. For example:

x=: 12 y=: 2 3 $ 'abcdef’ X gy
12 abc bca
def fde

Here now is an example to show the difference betweenf @ gandf @g

f (xgy) x(f @9y | x(f @g) vy

+---+ +---+ Foe o - - -+
| bca| | bca| | bca| f de|
| f de| | f de| oo --+
+---+ +---+

We seethat with (f @ g) verbf isapplied once. With (f @) , for each separate
application of g there is a corresponding application of f .

Suppose that the left and right ranks of dyad g areL and R. Then (f @ g) means
(f @ g) applied separately to each pair of an L-cell from x and corresponding R-
cel fromy. Thatis, (f @) means(f @ g)"GwhereG = L, R

G= 12{ gRANKS | x (f @g)" Gy x (f @g) vy

01 o -+ o -+
| bca| f de| | bca| f de|

The schemeis:
x (f@) vy = x (f@g) " Gy

8.7 Composition: Dyad Tracking Monad

here we look at the composition (f & g) for dyadicf.

Suppose g isthe "Square" function, and f isthe "comma' function which joinstwo
lists.
f

g

I
*

12 3 4 14 9 16

Here now is an example to show the difference between (f & g) and(f & g)

(g x) f(gy) x (f & g)y | x(f &9g) vy

14916 14916 1 9

Weseethatin (f & g) theverbf isapplied just once, to join the two lists of
squares. By contrast, in (f & g) each separate pair of squaresis combined with a
separate application of f

The schemeisthat
x (f &g) y nmeans (g x) (f " GG (gvy)

where Gisthe monadic rank of g. Here f is applied separately to each combination
of aG-cell from x and a corresponding G-cell fromy. To illustrate:

G= 0{ g RANKS | (g x)(f " (GG)(gy) x (f &9) vy

0 1 9 1 9
4 16 4 16
8.8 Summary
Hereisasummary of the 8 cases we have looked at so far.
@ (f @9y = f(gy)
@ x(f@gy = f(xgy)
& (f & gy = f (gvy)
& x (f & g)y = (g9x)f (g9y)

(f @g9) vy

@ (f @ g) " Gy
@ x (f @9) vy

&

&

x (f @ 9) " LRy

(f &g) vy
x (f &g) vy

(f @ g0 " Gy
(g x) (f " (GQ) (gV)

where Gisthe monadic rank of g and LRis the vector of left and right ranks of g.

8.9 Inverses

The"Square" verb, (*:), issaid to be the inverse of the "Square-root" verb (%) .
The reciprocal verb isits own inverse.

* 2 % 4 % 4 % 0. 25

4 2 0. 25 4

Many verbsin Jhave inverses. The adverb (#: _1) producesthe inverse verb of
itsargument verb. Let us call thisadverb I Nv. | Nv produces " Square-root” from
"Square”:

INV =~ 1 % 16 *1 INV 16

| NV can automatically find inverses, not only of built-in verbs, but of user-defined
verbs such as compositions. For example, the inverse of (1 + the square-root) of y
IS (the square of 1 minus)y.

foo =@ (1l&t) @ % foo 16 foo INV 5

(1&+) @ % 5 16

8.10 Composition: Verb Under Verb

We now look at composition with the conjunction & (ampersand dot, called
"Under"). Theideaisthat the composition "f Under g" means: apply g, then f,
then the inverse of g.

For an example, suppose first that f is the verb which rounds a number to the
nearest integer:

f = < @(0.5&+) | f 1.2 1.8

<. @(0.5) &) 12

A number can be rounded to the nearest 10, say, by dividing by 10, rounding to
nearest integer, then multiplying by 10 again.

Let g bedivision by 10, and then (g 1 Nv) will be the inverse, multiplication by
10.
g = %& 10

g 28 f g 28 (g INV) f g 28 f & g 28

2.8 3 30 30

The general scheme isthat
(f & g) y neans (g IN) f gy

Thisisthe end of Chapter 8.

Copyright © Roger Stokes 2000. This material may be freely reproduced, provided that this copyright notice and

provision is also reproduced.

last updated 10 March 00

Chapter 9: Trains of Verbs

In this chapter we continue the topic of trains of verbs begun in Chapter 3. Recall
that atrain is an isolated sequence of functions, written one after the other, such as

(+7* -).
Preparations

It will be convenient to have afew definitions ready to hand for the examplesto
come.

X = 1234 NB alist of nunmbers

sum = + / NB. verb: sumof a list

mn = <. [/ NB. verb: smallest itemof a |ist
max =: >. NB. verb: largest itemof a |list

0.1 Review: Monadic Hooks and Forks

Recall from Chapter 3 the monadic hook, with the scheme:
(f g0 y nmeans y f (gy)

Here is an example, as abrief reminder: awhole number is equal to itsfloor:

Recall aso the monadic fork, with the scheme:
(f g h) y neans (fy) g(hy)

For example: the mean of alist of numbersis the sum divided by the number-of-

items:;

mean =: sum % #
X sum X # X (sum x) % (# x) mean X
1234 10 4 2.5 2.5

Now we look at some further variations.

9.2 Dyadic Hooks

3 hours and 15 minutesis 3.25 hours. A verb hr, such that (3 hr 15) is3. 25, can
be written asahook. Wewant x hr ytobex + (y¥60) and so the hook is:

hr =1 + (%&60)

3 hr 15
3.25

The scheme for dyadic hook is:
x (f g) vy nmeans xf (gy)

with the diagram:

= T+ Cg w

T

CfF g

i

:
=t

9.3 Dyadic Forks

Suppose we say that the expression "10 plus or minus 2" isto meanthelist 12 8.
A verb to compute x plus-or-minusy can be written asthefork (+, -):

(10+2) , (10-2) | 10 (+,-) 2

12 8 12 8

The scheme for adyadic fork is:
x (f gh)y means (x T y) g(x hy)

Hereisadiagram for this scheme:

(ZHFyZ)gCi:hyZ)

Ct g h)

+
Iy |
Eal »

9.4 Review

There are four basic patterns of verb-trains. It may help to fix them in the memory
by recalling these four verbs:

nmean = sum % # NB. nmponadic fork
pl usm nus = +, - NB. dyadic fork
whol enumber = = <, NB. npnadi ¢ hook
hr = + (9%&60) NB. dyadi ¢ hook

9.5 Longer Trains

Now we begin to look at ways in which to broaden the class of functions which
can be defined astrains.

In general atrain of any length can be analysed into hooks and forks. For atrain of

4verbs,e f g h, theschemeisthat
ef gh nmeans e (f g h)

that is, a4-train (e f g h) isahook, wherethefirst verbise and the second is
thefork (f g h).For example, if y alist of numbers:

y = 2 34

thenthe"norm" of y is(y - mean y), wherenean isdefined above as (sum %

#) . We see that the following expressions for the norm of y are all equivalent:
y - nmeany

101
(- mean) vy NB. as a hook
101
(- (sum%#)) vy NB. by definition of nean
101

(- sum%#) y NB. as 4-train
101

A certain amount of artistic judgement is called for with long trains. This last
formulation asthe 4-train (- sum % #) does not bring out as clearly as it might
that the key ideais subtracting the mean. The formulation (- mean) isclearer.

For atranof 5verbsd e f g htheschemeis:
def gh means d e (f g h)

Thatis, a5-tran(d e f g h) isafork with first verb d, second verb e and third
verbthefork (f g h) For example, if we write acalendar date in the form day

month year:
date =: 28 2 1999

and define verbs to extract the day month and year separately:

Da =0 0 & {
M = 1 & {
Yr =@ 2 &{

the date can be presented in different ways by 5-trains:

(Da, M, Yr) date (M ; Da; Yr) date

28 2 1999 oo e e e m
| 2| 28] 1999|
S P

The general scheme for atrain of verbs(a b ¢ ...) dependsupon whether the

number of verbsis even or odd:
even: (abc ...) means hook (a (b c ...))

odd : (abc...) means fork (ab (c ...))

9.6 Identity Functions

Thereisaverb [(left bracket) which gives aresult identical to its argument.

[99 ["abc

99 abc

Thereisadyadic case, and also asimilar verb] . Altogether we have these schemes
[v neans y

X [y neans x

] vy neans y

X] y neans vy

[3 | 213 |13 2] 3

The expression (+ %]) isafork; for argumentsx andy it computes

(x+y) % (x] vy)

that is, (x+y) %y

2] 3 (2 +3) %(2] 3) 2 (+ %]) 3

3 1. 66667 1. 66667

Another use for the identity function [isto cause the result of an assignment to be
displayed. The expressionf oo =: 42 isan assignment while the expression [
foo =: 42 isnot: it merely contains an assignment.

foo =1 42 NB. nothing displayed

[foo =: 42
42

Y et another use for the[verbisto allow several assignments to be combined on
oneline.

a= 3[b= 4[c=25 a, b, c

3 345

Since[isaverb, its arguments must be nouns, (that is, not functions). Hence the
assignments combined with [must all evaluate to nouns.

9.6.1 Example: Hook as Abbreviation

Themonadic hook (g h) isan abbreviation for the monadic fork ([g h).To

demonstrate, suppose we have:

g
h

y

* .

3

Then each of the following expressionsis equivalent.

([gh)y NB. a fork
39

([y) g (hy) NB. by defn of fork
39

y g (hy) NB. by defn of |
39

(g h) vy NB. by defn of hook
39

9.6.2 Example: Left Hook

Recall that the monadic hook has the general scheme
(fag)y=yf(gy)

How can we write, as atrain, a function with the scheme
(?)y=((fy gy

There are two possibilities. Oneisthefork (f g 1):
f *:

g
(f g]) vy NB. a fork
9 3
(fy)ag(ly NB. by neani ng of fork
9 3
(fy) gy NB. by neani ng of]
9 3

For another possibility, recall the ~ adverb withitsscheme(x f~ y) = (y f x).

Our train can be written asthe hook (g~ f).

(g~ f) vy NB. a hook
9 3

y (g~) (f y) NB. by neaning of hook
9 3

(fy) gy NB. by neani ng of ~
9 3

9.6.3 Example: Dyad

Thereisasenseinwhich[and] can be regarded as standing for left and right

arguments.
f

g

&,
|g| &'

foo= (f @ [), (g @]) ‘a' foo 'Db

(fa@l) ., (g@]) f agb

9.7 The Capped Fork

The class of functions which can be written as unbroken trains can be widened
with the aid of the "Cap" verb [: (leftbracket colon)

The schemeis. for verbsf and g, thefork [: f g meansf @ g. For example, let

f= 'f &,
g='qg &,
y =y

then [: isillustrated by:

fogy | (f@ 9y | ([: fgy

f gy f gy f gy

Notice how the sequence of threeverbs ([: f g) lookslike afork, but with this
"capped fork" it isthe MONADIC case of the middle verb f which is applied.

The[: verbisvalid ONLY asthe left-hand verb of afork. It has no other purpose:
asaverb it has an empty domain, that is, it cannot be applied to any argument. Its
usefulness liesin building long trains. Suppose for example that:

h = "h'§&,

then the expression (f , [: g h) isab5-train which denotes a verb:
(f , [: ghy NB. a 5-train
fyghy

(f'y), (([: gh)y) NB by neaning of 5-train
fyghy

(fy), (g@ hy) NB. by neaning of [:

fyghy

(fy), (ghy) NB. by neaning of @
fyghy

“fy' , "ghy' NB. by neaning of f g h
fyghy

9.8 Constant Functions

Here we continue looking at ways of broadening the class of functions that we can
write astrains of verbs. Thereisabuilt-in verb 0: (zero colon) which delivers a
value of zero regardiess of its argument. There is a monadic and a dyadic case:

0: 99 0: 234 0: "hello 88 0: 99

Aswell as0: therearesimilar functions1: 2: 3: and soonupto9: and aso the
negative values. _9: to_1:

1. 2 3 4 3. "hello

0: issaid to be a constant function, because its result is constant. Constant
functions are useful because they can occur in trains at places where we want a
constant but must write a verb, (because trains of verbs, naturally, contain only
verbs).

For example, a verb to test whether its argument is negative (less than zero) can be
written as (< & 0) but alternatively it can be written as a hook:

negative =: < O:
x = 102 0: x X < (0: x) negative x
102 0 100 100

9.9 The "Constant” Conjunction

The constant functions _9: to 9: offer more choices for ways of defining trains.
Neverthless they are limited to single-digit scalar constants. We look now at at a
more general way of writing constant functions. Suppose that k is the constant in
guestion:

k =: "hello'

Anexplicit verb writtenas(3 : ' k') will give a constant result of k:

k (3:'k') 1 | (3: 'k)12

hell o hell o hel |l o

Sincek isexplicit, itsrank isinfinite: to apply it separately to scalars we need to
specify arank R of 0:

k R=0 ((3: '"k') "R 12
hell o 0 hell o
hell o

Theexpression((3 : 'k') " R) canbeabbreviatedas(k " R) withtheaid of
the Constant conjunction " (double quote)

k R ((3: 'k')y "R 12 "hello' " R1 2
hel |l o 0 hel |l o hell o
hel |l o hell o

Note that if k isanoun, then the verb (k" R) means: the constant value k produced
for each rank-R cell of the argument. By contrast, if v isaverb, then the verb
(v"R) means: the verb v applied to each rank-R cell of the argument.

The general scheme can be represented as:
k " R neans (3: 'k'") "R

Thisisthe end of Chapter 9.

Copyright © Roger Stokes 1999. This material may be freely reproduced, provided that this copyright notice and
provision is also reproduced.

last updated 10 September 1999

p10

Chapter 10: Conditional and
Other Forms

Tacit verbs were introduced in Chapter 03 p3. Continuing this theme, in Chapter
08 p8 we looked at the use of composition-operators and in Chapter 09 p9 at trains
of verbs.

The plan for this chapter isto look at further ways of defining verbs tacitly:

. Conditiona forms

. Recursive forms

. lterative forms

. Generating tacit definitions from explicit definitions

10.1 Conditional Forms

Think of a number (some positive whole number). If it is odd, multiply by 3 and
then add 1. Otherwise, halve the number you thought of. This procedure computes
from 1 the new number 4, and from 4 the new number 2.

To write afunction to compute a new number according to this procedure, we start
with three verbs, say hal ve to halve, nul t to multiply-and-add, and odd to test for
an odd number:

hal ve = -:
mult = 1: + (* 3:)
odd = 2 &|

hal ve 6 mult 6 odd 6

3 19 0

Now our procedure for a new number can be written as an explicit verb:
NEW=: 3 : 0

if. odd y. do. mult vy.

el se. hal ve .

end.

)

and equivalently as atacit verb:
new = (halve ~ nmult) @ odd

NEW 1 new 1

In the definition of new, the symbol * (backquote) is called the "Tie" conjunction.
It ties together hal ve and mul t to make alist of two verbs. (Such alistiscaled a
"gerund" and we look at more uses of gerundsin Chapter 14 pl14).

In evaluating new y the value of odd y isused to index thelist (hal ve' mul t) .
Then the selected verb isapplied toy. That is, hal ve y or mul t y iscomputed
accordingly asodd y isOor 1.

In this example, we have two cases to consider: the argument is odd or not. In

general, there may be several cases. The general schemeis, if uo, ul, ... un are

verbs, andt isaverb computing an integer intherange0 .. n, then the verb:
foo = u0 " ul " ... un @ t

can be modelled by the explicit verb:

FOO=: 3: 0
if. (t y.) =0 do. u0y
elseif. (t y.) =1 do. uly
elseif. (t y.) = n do. uny

That is, verbt teststhe argument y and then u0 or ul or ... isappliedtoy
according to whether (t y) isOor 1or head3 'Example with 3 Cases pp 0
Suppose that, each month, a bank pays or charges interest according to the
balances of customers accounts as follows. There are three cases:

. |If the balance is $100 or more, the bank pays interest of 0.5%
. |If the balance is negative, the bank charges interest at 2%.
. Otherwise the bank pays or charges nothing.

Three verbs, one for each of the three cases, could be:

pi = * & 1.005 NB. pay interest
ci =0 * &1.02 NB. charge interest
dn = * &1 NB. do not hing

pi 1000 | c¢i _100 | dn 50

1005 _102 50

Now we want a verb to compute, from a given balance, O or 1 or 2 asthe
appropriate index into alist of three verbs containing pi , ci and dn. A somewhat
heavy-handed but general method is to write verbs to recognise each of the three
cases, tried in order:

rpi = > & 100 NB. equal to or greater than 100
rci = <& O NB. otherwise, less than O
rdn = 1: NB. ot herw se

and combine them into a case-recognising verb as follows:
recognise = (i. &1) @ (rpi, rci, rdn)

recognise " 0 (1000 _100 50)
012

Now we can put everything together: the processing of a balance can be

represented by the verb PB say:
PB = pi ~ ci ~ dn @ recognise

PB 1000 PB _100 PB 50

1005 _102 50

The argument of PB is expected to fall under exactly one of the three possible
cases, in order to select exactly one verb (pi or ci or dn) to apply to the whole
argument.

Hence, if the argument is alist such that different items fall under different cases,
then the PB function must be applied separately to each item of its argument.

PB 99 100 (PB "0) 99 100

100. 98 102 99 100.5

10.2 Recursion

To compute the sum of alist of numbers, we have seen the verb +/ but let uslook
at another way of defining a summing verb.

The sum of an empty list of numbersis zero, and otherwise the sum isthe first item
plus the sum of the remaining items. If we define three verbs, to test for an empty
list, to take the first item and to take the remaining items:

enpty = # = O:
first =2 {.
rest = }.

then the two cases to consider are:

. anempty list, in which case we apply the 0: function to return zero
. anon-empty list, in which case we want the first plus the sum of the rest:

Sum =: (first + Sum @rest) = 0: @ enpty

Sum1l 1 2

Here we see that the verb "Sum" recurs in its own definition and so the definition is
said to be recursive.

In such arecursive definition, the name which recurs can be written as $: (dollar

colon), meaning "this function". This enables us to write arecursive function as an

expression, without assigning a name. Here is the "Sum™ function as an expression:
((first + $ @rest) ~ 0: @ enpty) 1 2 3

6

10.2.1 Ackermann's Function

Ackermann's function is celebrated for being extremely recursive. Textbooks show

it in aform something like this explicit definition of a dyad:
Ack =: 4 : 0

if. X. =0 do. y. +1
el seif. y. =0 do. (x. - 1) Ack 1
el seif. 1 do (x. - 1) Ack (x. Ack y. -1)
end.
)
2 Ack 3
9

A tacit version is due to Roger Hui (Vector, Vol 9 No 2, Oct 1992, page 142):
ack =0 ¢cl1 " cl1 c2 c3 @ (# @, &"))

cl = >@ NB. 1 + vy
c2 =@ <@ ack 1: NB. (x-1) ack 1
c3 = <@ ack [ack <@ NB. (x -1) ack x ack y -1

2 ack 3

Notice that in the line defining c2 the function isreferred to as ack, not as $: ,
because here $: would mean c2.

Hereisyet another version. The tacit version can be made to look alittle more
conventional by first defining x andy astheverbs|[and] . Also, we test for only

onecaseonaline.
X [

y = 1]

ACK =: Al ~ (y + 1:) @ (x =0:)
Al = A2 ° ((x - 1:) ACK 1:) @ (y = 0:)
A2 = (x - 1:) ACK (x ACKy - 1:)

2 ACK 3

10.3 lteration

10.3.1 The Power Conjunction

Think of anumber, double it, double that result, double again. The result of three
doublingsis eight times the original number. The built-in verb +: is"double", and
the verb "three doublings' can be written using the "Power" conjunction (*:) as +:
N3

+ + +0 1 (+: ~ 3) 1

The general schemeisthat for averb f and an integer n
(f~ny nmans f f f ... f f f f vy

Noticethatf ~: 0 yisjusty andthenf ~: 1 yisf y.Forexample,recal the
new verb "halve or multiply-by-3-and-add-1 if odd".

(new ": 0) 6 (new ": 1) 6 new 6

With the Power conjunction we can generate a series by applying new 0 times,
once, twice and so on, starting with 6 for example

(new”: 0123456) 6
6 3105 16 8 4

10.3.2 Iterating Until No Change

Theexpressionf ~: _ wherethe Power conjunction is given aright argument of
infinity (), isaverb wheref isapplied until aresult is reached which isthe same
as the previous result. The schemeis:
frro_y means
r such that r
and r

ffy

I
—h —h
- =h

Here is an example. Suppose function P is defined as:
P=3:"'28 *vy. *(1-y.)'

Then if we repeatedly apply the function to an argument in the neighbourhood of
0. 5, after 20 or so iterations the result will settle on avaue of about 0. 643

(P~ 0123 1920) 0.5
0.5 0.7 0.588 0.6783 0.6439 0.642 0.6429

and thisvalue, r say, iscalled afixed point of P becauser = P r

r = (P7 _) 0.5 Pr

0.6429 0.6429

10.3.3 Iterating While

The right argument of the "Power" conjunction can be a verb which computes the
number of iterations to be performed. The schemeiis:
(f "2 9) y means f " (gy)y

If g y computeso or 1, thenf will be applied 0 times or 1 time: For example, here
isaverb which halves an even number and |eaves an odd number alone:

hal ve =:

even = 0: =2 &|
foo =: halve ”: even (foo " 0) 12 3 4
hal ve”: even 1132

Now consider the function
w = (halve *: even) ": _

Thismeans "halveif even, and keep doing this so long as the result keeps
changing".

w (3 * 16)
3

The schemeisthat afunction written (f ~: g ~: _) canbemodelled by an
explicit definition:

nmodel =: 3 : O
while. (g vy.)

do. y. = f y.
end.
y.
)

f =: hal ve

g = even

(f ~» gn:) 3* 16 nodel 3*16

10.3.4 Iterating A Dyadic Verb

Adding 3, twice, to 0 gives6
((3&+) "~ 2) 0
6

This expression can be abbreviated as:
3(+7: 2)0
6

The given left argument (3) isfixed at the outset, so the iterated verb is the monad
3&+. The genera schemeis:
x (u ™ w) y nmeans ((x&u) "*: w) vy

wherewis anoun or verb.

10.4 Generating Tacit Verbs from
Explicit

Suppose that e is averb, defined explicitly as follows:
e = 3: "(+ vy.) %#y.'

The right argument of the colon conjunction we can call the "body". Then atacit
verb, t say, equivaent to e, can be produced by writing 13 : instead of 3 : with

the same body.
t = 13 : '"(+/ vy.) %# y.'

e t el 23 t 123

3: '"(+ y.) #y."’ + % # 2 2

Here now is an example of an explicit dyad.
ed == 4 : 'y. %x.'

The equivalent tacit dyad can be generated by writing 13 : rather than 4 : with

the same body.
td =2 13 : 'y. %x.'

ed td 2 ed 6 2 td 6

4 : 'y, %Xx.'] %] 3 3

We can conclude that if wewrite 13 : body, and body containsy. (but not x.)
then the result is atacit verb of which the monadic caseisequivalentto3 : body.

On the other hand, if body contains both x. andy. then the result isatacit verb of
which the dyadic caseisequivalentto 4 : body.

For the purpose of generating tacit functions, the body is restricted to being a
single string or one line.

Recall that with3 : body, the body is not evaluated when the definition is
entered. However, with 13 : body, then in effect the body is evaluated. For
example:

k =1 99 p =1 3: 'y.+k' g =: 13 : 'y.+k' p 6 g 6

99 3 'y 4k] + 99" 105 | 105

We see that p isdefined in terms of k while g isnot. While p and q are at present
equivalent, any subsequent change in the value of k will render them no longer
equivalent.

0 6 105

A name with no assigned value is assumed to denote a verb. In the following
example, note that f isunassigned, Cisa predefined conjunctionand g isa

predefined verb.
C= @
g = %
foo = 13 : '"(f Cf vy.) , gy.' f o= *: foo 4

f@f , [g] * - 256 2

Thisisthe end of Chapter 10

Copyright © Roger Stokes 2002. This material may be freely reproduced, provided that this copyright noticeis also
reproduced.

last updated 7 Aug 2002

pll

Chapter 11: Tacit Verbs
Concluded

In this chapter we consider some general points in writing expressions for tacit
verbs.

Hereis an example of atacit verb. It multipliesits argument by 3:

v = * & 3 v 4

*&3 12

Recall from Chapter 03 p3 that the bonding operator & produces a monad from a
dyad by fixing one of the arguments of the dyad. The schemeisthat if Nisanoun

and v adyadic verb, then:
(N&V) vy means N
(V&N vy nmeans y

vy
V N

We take the bonding operator & as an example of atypical operator, where
arguments may be nouns or verbs. In general, N can be an expression denoting an
noun, and Vv an expression denoting a verb. We look now at how these expressions
get evaluated. The general rules are set out formally in Chapt er 31 p26 but here
we take an informal first look at afew of the main points.

11.1 If In Doubt, Parenthesize

Here is another tacit verb. Its general form is V&N. It multipliesits argument by 5%,
that is, by 1. 25

scale =1 * & (5 % 4) scale 8

*&1. 25 10

Arethe parentheses around 5 % 4 necessary here? If we omit them, we see:
SCALE = * &5 %4
SCALE

1.25

so they evidently make a difference. SCALE is a number, not a verb. The result of
1. 25 isproduced by applying the verb * &5 to the argument % 4 (the reciprocal of
4)

% 4 (* &5) (%4) | * &5 %4

0. 25 1.25 1.25

We have a genera rule: informally we can say that conjunctions get applied before
adjacent verbs. Thusinthe expression* & 5 % 4 thefirst step isto apply the &
operator to itsarguments* and 5.

Why isthe right argument of & just 5 and not 5%t ? Because of another general rule:
the right argument of a conjunction is as short as possible. We say that a
conjunction has a "short right scope”. (By contrast, we say that averb hasa"long
right scope” to express what we earlier called the "rightmost first" rule for verbs.

What about the left argument of an operator? An adverb or conjunction is said to
have "long left scope”, that is, as much as possible. For example, hereisaverb z
which adds 3 to the square of its argument. 3 plusthe square of 2 is7.

zZ = 3&+ @ *: z 2

3&+@ *: 7

We see that the left argument of @ isthe whole of 3&+.

If we arein doubt in any particular case we can always make our intention clear.
We can write parentheses around a part of an expression, that is, around a function -
verb or operator - together with its intended argument(s). For example, verb z can
be written with parentheses as:

z = (3&+) @ *: z 2

3&+@ *: 7

Sometimes parentheses are necessary and sometimes not, but, let me emphasize, if
in doubt, parenthesize.

11.2 Names of Nouns Are Evaluated

In an expression of the general form N&V or V&N, the the names of any nouns
occurring in N are evaluated right away. Here is an example of afunction f to
multiply by five-fourths. The numerical valueis given asa% wherea and b are
nouns.

a= 5 b = 4 f == * & (a %b) f 8

5 4 *&1. 25 10

We see that function f contains the computed number 1. 25 so that a% has been
evaluated.

11.3 Names of Verb Are Not Evaluated

In N&V the verb-expression Vv is not necessarily fully evaluated. If expressionVvis
the name of averb, then the name is enough:

w = * g= w&(a%b) g 8

* W&1. 25 10

11.4 Unknowns are Verbs

When anew name is encountered, it is assumed to be a yet-to-be-defined verb if it
possibly can be.

h = ytbd & (a%) ytbd = * h 8

yt bd&1. 25 * 10

Any sequence of hitherto-unknown names is assumed to be atrain of verbs:
Ral ph Wal do Enerson
Ral ph Wal do Ener son

Consequently, averb can be defined in "top-down" fashion, that is, with detail
presented later. For example, here is a Celsius-to-Fahrenheit converter presented

top-down.
ctof =: shift @scale
shift = + & 32
scale = * & (9 %5)
ct of ctof 0 100

shift @cal e 32 212

We can seerthat ct of isdefined solely in terms of (the names) scal e and shi ft.

Hence if we now changescal e or shi ft we will effectively change the definition

of ct of .
ctof 100
212
scale =1 * & 2
ctof 100
232
scale = * & (9 %5)
ctof 100
212

The possibility of changing the definition of afunction ssmply by changing one of
its subordinate functions, may or may not be regarded as desirable. It is useful, in
so far as we can correct a definition just by changing asmall part. However, it may
be a source of error: we may introduce a new verb scal e say forgetting that scal e
is already defined as subordinate in ct of .

There are ways to protect ct of against accidental redefinition of its subordinate
functions. Firstly, we can put awrapper of explicit definition around it, making
scal e and shi ft local, thus:

CTOF =: 3 0
shift =. + & 32
scale =. * & (9 %5)
shift @scale vy.

)
CTOF 100
212

A second method isto, so to speak, "freezing” or "fixing" the definition of ct of ,
with the "Fix" adverb f . (letter-f dot). Observe the difference between the values of
theverbsct of and (ctof f.)

ct of ctof f.

shift @cal e +&32@@ * &1. 80000000000000004)

We see that adverb f . applied to atacit verb replaces names by definitions, giving

an equivalent verb defined only in terms of built-in functions. Here is yet another
definition of ct of .

scale = * & (9 %5)

shift == + & 32

ctof =: (shift @scale) f.

ct of ctof 0 100

+&32@ * &1. 80000000000000004) 32 212

After this definition, the namesscal e and shi ft are still defined, but are no longer
important in the definition of ct of .

11.5 Parametric Functions

The following example shows the consequences of nouns being evaluated and
verbs not in an expression for atacit verb.

A curve may be specified by an equation such as, for example:
y = lanbda * x * (1 - X)

This equation describes afamily of similar parabolic curves, and different members
of the family are picked out by choosing different values for the number | anbda.

A function to correspond to this equation might be written explicitly as verb P:
P=3: '"lanbda * y. * (1-y.)'

Herel anbda isnot an argument to function P, but a variable, a number, which
makes a difference to the result. We say that | anbda is a parameter, or that function
P is parametric.

x=:0.6 | anbda=: 3.0 P x | anbda=: 3.5 P x

0.6 3 0.72 3.5 0. 84

Now, can we write atacit version of P taking | anbda as a parameter?

| anbda iscurrently 3. 5. If we now generate atacit form of P
tP = 13 : 'lanbda * y. * (1-y.)
tP

3.5"_ *] * 1. -]

then we see that | anbda istreated as a constant, not a parameter. Thisis not what
we want. We try again, this time ensuring that lambdais not specified beforehand,
by erasing it:

erase <'lanbda’ 1 tp =2 13 : 'lanbda * y. * (1l-y.)' tp [:
lanbda [: *] * 1: -]

Now we seethat t P isatrain of verbs, where | anbda (being unknown) is assumed
to be averb. This assumption conflicts with the intended meaning of | anbda asa
number. Hence with | anbda as a number, we get an error:

| anbda=: 3.5 tP x

3.5 error

Whether or not | anbda is specified in advance, it appears that afully tacit exact
eguivalent to P is not possible. However we can come close.

One possibility isto compromise on "fully tacit". Heret P isatrain of verbs, where
thefirst is explicitly-defined to deliver the value of | anbda regardless of its
argument.

tP= (3: 'lanbda’) *] * (1: - 1) | tP x

3: '"lanbda' *] * 1. -] 0. 84

Another possibility isto compromise on "exact equivalent”. Here we take
parameter | anbda to be, not a number, but a constant function (see Chapter 09

p9)which delivers a number.

For example, avalue for the parameter could be written as
| anbda =: 3.5 " 0

and t P could be defined as:

tP = lanbda *] * (1. -]) tP x

lanbda *] * 1. -] 0. 84

Now we can vary the parameter without redefining the function:

| anbda =: 3.75 " O tP x

3.75"0 0.9

Thisisthe end of Chapter 11

Copyright © Roger Stokes 2002. This material may be freely reproduced, provided that this copyright noticeis also
reproduced.

last updated 7 Aug 2002

pl12

Chapter 12: Explicit Verbs

This chapter continues from Chapter 04 p4 the theme of the explicit definition of
verbs.

12.1 The Colon Conjunction

Recall from Chapter 04 p4 the example of an explicit monad: the Fahrenheit-to-

Celsius converter:
ftoc =2 3 : 0
z = y. - 32
zZ*5 %9
)

The general scheme for an explicitly-defined function is to provide two arguments

for the colon-conjunction, in the form
type : body

The type is a number: type-3 functions are monadic verbs or ambivalent verbs,
while type-4 functions are strictly dyadic verbs (that is, with no monadic case). The
complete set of typesisasfollows:

0 noun

explicit adverb

explicit conjunction

explicit verb (monad or ambivalent)

MW N

explicit verb (dyad)
13 |generated tacit verb

Rather than numbers, some people may prefer to use conventional pre-assigned
names. The pre-assigned names and corresponding values are:

noun adverb conj unction verb nonad dyad

and additionally:

def defi ne

T
+— +

Thustheft oc example could be also written as:
ftoc =: verb define
y. - 32

Z =. V.
zZ*5 %9
)

In this chapter, we will be concerned only with types 3 and 4. For details of types 1
and 2 see Chapter 13 p13 and for type 13 see Chapter 10 p10.

12.1.1 Body Styles

The body of an explicit definition consists of one or more lines of text. There are
several waysto provide the body. The example above, f t oc, shows what is often
most convenient: lines introduced by aright argument of zero for the colon
operator. A variation is where the body has only one line. Here the body is written
asastring:

ftoc2 =2 3 : "(y. - 32) * 5 %9

Another variation allows a multi-line function to be written compactly by
embedding line-feeds. LF is predefined to be the line-feed character. Notice that the

whole body must be parenthesized.
ftoc3 = 3 : ('z =1vy. - 32", LF, 'z * 5 %9")

ftoc3
S S U —— +
[3|:]1z =1 y. - 32|
| | |z* 5 %9 |
S S U —— +

Another variation uses aboxed list of lines (again with the body parenthesized):

ftocd =1 3 : ('z=.y. - 32" ; 'z*5%9)
ftoc4

S S U —— +

[3|:]1z = y. - 32|

| 1 1]z *5 %9 |

S S U —— +

A character array is also possible. Notice that these are not variations of syntax, but
rather alternative expressions for constructing a data-structure acceptable as the
right-argument of the colon operator.

An ambivalent function is presented by separating the monadic case from the
dyadic with aline consisting of a solo colon. For example:

log =0 3: 0
Ny NB. nonad
X. ™. y. NB. dyad
)
| og | og 2.7182818 10 | og 100
I + 1 2
| 3] : |~ . NB. nonad|

|1 |
| x. ~. y. NB. dyad |

12.2 Assignments

In this section we consider assignments, which are of significance in defining
explicit functions.

12.2.1 Local and Global Variables

Consider the example
foo = 3: 0

Y.

Y.

~rroOr

Here, the assignment of the form
L =. expression

causes the value of expr essi on to be assigned to alocal variable named L. Saying
that L islocal meansthat L exists only while the function f oo is executing, and
furthermore this L is distinct from any other variable named L. By contrast, the
assignment of the form

G =: expression

causes the value of expr essi on to be assigned to a global variable named G.
Saying that Gis global means that the unique variable G exists independently, in its
own right.

To illustrate, we define two GLOBAL variables called L and G, then executef oo to
show that the L mentioned in f oo is not the same as global L, whilethe G

mentioned in foo is the same as global G:
L ‘old L'
G ‘old G

ot o e + new old L new
3]:	L = .	
	1G= y.	
		L
g +

12.2.2 Local Functions

A local variable may be anoun, as we have seen, or it may be alocally defined

function. A local function may betacit or explicit, asin the following example
foo =2 3: 0

Squar e *

Cube .3y, oy oyt

Square y. + Cube vy.

)

foo 2
100

However, what we can't have isalocal function defined by an inner script. Recall
that a script isterminated by a solo right parenthesis, so we cannot have one script
inside another. Instead, we could use an alternative form for the body of an inner
function, such asscal e in the following example:

FTCC =0 3 : O
linel = 'k = 5%9
l'ine2 = 'k *y.'

scale =. 3 : (linel ; line2)
scale y. - 32

)

FTOC 212
100

Onefinal point on the topic of inner functions. A local variable is either strictly

local or strictly global. Consider the following:
K= "hello"'

zip= 3:0

K =. '"goodbye '
zap =. 3 : 'K, y.'
zap y.
)
zip ' George'

hel | o George

We see that thereisaglobal K and alocal K. The inner function zap uses the global
K because the K which islocal to zi p isnot local to zap.

12.2.3 Multiple and Indirect Assignments

J provides a convenient means of unpacking alist by assigning different names to
different items.

‘day nmo yr' = 16 10 95 day no yr

16 10 95 16 10 95

Instead of a simple name to the left of the assignment, we have a string with names
separated by spaces.

A variation uses a boxed set of names:

(‘day';'mo';"'yr') = 17 11 96 day no yr

17 11 96 17 11 96

The parentheses around the left hand of the assignment force evaluation as a set of

names, to give what is called "indirect assignment”. To illustrate:
N = '"DAY' ;' MJ;'YR

(N = 18 12 97 | DAY | MO | YR

18 12 97 18 12 97

As aconvenience, amultiple assignment will automatically remove one layer of
boxing from the right-hand side:

(N = 19;'Jan'; 98 DAY MO YR

P S 19 Jan 98
| 19] Jan| 98|
e S

12.2.4 Unpacking the Arguments

Every Jfunction takes exactly one or exactly two arguments - not zero and not
more than two. This may appear to be alimitation but in fact isnot. A collection of
values can be packaged up into alist, or boxed list, to form in effect multiple
arguments to the J function. However, the Jfunction must unpack the values again.
A convenient way to do thisiswith the multiple assignment. For example, the
familiar formulato find the roots of aquadratic (a*x~2) +(b*x) +c, giventhe
vector of coefficientsa, b, ¢ might be:

rq =2 3: 0
‘abc = vy.
((-b) (+,-) % (b~2)-4*a*c) % (2*a)
)

rqll1 6 rql; 1,; 6

12.3 Flow of Control

In an explicit definition, the sequence of execution of the linesis often the first

line, then the second, and so on through to the last. The result of the whole function
is the result computed by the last line to be executed. This sequence may be varied
by the presence of CONTROL WORDS, such asif. orwhile. .

12.3.1 if.

Here is an example of afunction in which a choice is made about which linesto
execute. The function classifies the temperature of porridge.
CfP =2 3: 0
if. y. > 80
do. "too hot'
el se. 'K
end.

)

CTP 70
X

This example shows the pattern:
if. T do. Bl else. B2 end.

meaning: if the expression T evaluates to "true", then execute the expression B1,
and otherwise execute the expression B2.

More generally, T, B1 and B2 may be what are called BLOCKS. A block isa
sequence of zero, one, or more expressions, the sequence being surrounded by
control words. Thusin the example above, the block (y. > 80) isdelimited by the
control wordsi f. and do. . Here is another example, to form the sum of alist,
where the T-block and the B2-block each consist of a sequence.

sum =: 3 :
if. | ength

| ength

#y.
0

nno

do. 0

else. first = {. vy.
rest = }. vy.
first + sumrest
end.
)
suml 2 3
6

Here we see that the value of the T-block (true or false) isthe value of the last
expression in the sequence, (1 engt h = 0)

The expressions in ablock may themselves be (inner) blocks, as shown by another

function to classify the temperature of porridge:
ClaTePo =1 3 : O

if. y. >80 do. "too hot'

el se.
if. y. <60 do. 'too cold
el se. "just right’
end.

end.

)

Cl aTePo 70
just right

This example also shows that control-words serve to terminate J expressions just as
end-of -line terminates J expressions. Hence control-words allow some freedom in
laying out a definition for the most pleasing appearance.

A neater variation of the last exampleis:
CLATEPO =: 3 : 0

if. y. > 80 do. 'too hot'
elseif. y. < 60 do. 'too cold
elseif. 1 do. 'just right’
end.
)

CLATEPO 70

just right

The second schemefori f. is;
if. T1 do. Bl
elseif. T2 do. B2

elseif. Tn do. Bn
end.

Notice that according to this scheme, if al of thetests T1 ... Tn fail, then none of
the blocks B1 .. Bn will be executed. Consequently we may wish to make Tn a
catch-all test, with the constant value 1, asin the example of CLATEPO above.

12.3.2 while. and whilst.

In the general pattern
while. T do. B end.

the block B is executed repeatedly so long as block T evaluatesto true. Hereis an

example, aversion of the factorial function:
fact =2 3 : 0

r =. 1

while. vy. > 1

do. ro=.r*y.
y. = vy. -1

end.

r

)

fact 5
120

Thevariationwhi | st. T do. B end. means
B
while. T do. B end.

that is, block B is executed once, and then repeatedly so long as block T istrue.

12.3.3 for

The pattern
for _a. A do. B. end.
means:. for each item a in array A, execute block B. Here a may be any name; the

variable a takes on the value of each item of A in turn. For example, to sum alist:
Sum=: 3 : 0

r =.0
for term y. do. r = r+termend.
r
)
Sum1l 2 3
6

In addition to the variable a for the value of an item, the variable a_i ndex is
available to give the index of the item. For example, this function numbers the
items:

f3=3:0
r=.02%0
for item y. do. r = r , (item.index; iten) end.
r

)

f3 "ab';'cdef';'gh'

+-+--- -+
|O]ab |
+-+--- -+
| 1| cdef |
+-+--- -+
|2 gh |
+-+--- -+

Ancther variationisthe patternfor. A do. B end. whichissimilar except that
the variablesa and a_i ndex are not available.

12.3.4 try.

Here we look at away of handling errors. The scheme is that:
try. Bl catch. B2 end.

means: execute block B1. If for any reason B1 fails, then B1 is abandoned and B2
executed instead. If B1 succeeds, then B2 is not executed. The following exampleis
afunction which tests that the argument supplied is valid.

foo =2 3: 0
try. *: y. catch. '"argunent nust be nuneric' end.

)

foo 2 foo 'hello

4 argunment must be nuneric

12.3.5 goto and label

Given any name, such as qwer t y, then two control-words may be constructed:
| abel _gwerty. and goto_qwerty. . (Noticethat both end with adot).

The meaning of | abel _gwerty. isthat it provides aname for ablock which
begins at the point where | abel _gwerty. occurs. Thisblock ends at the end of the
whole explicit definition. The purpose of naming ablock in thisway is that

got o_gwerty. meansthat the named block isto be executed next. Hereisan

example: yet another factorial function.
facto = 3 : 0

r =1

| abel _agai n.
if. y. <2 do. goto_done. end.
ro=.r *y.
y. =y - 1
got o_agai n.

| abel _done.

r

)

facto 5
120

12.3.6 break, continue and return

to be supplied

Thisisthe end of Chapter 12.

Copyright © Roger Stokes 2002. This material may be freely reproduced, provided that this copyright noticeis also
reproduced.

last updated 16 Aug 2002

pl3

Chapter 13: Explicit Operators

This chapter covers explicit definition of operators, that is, adverbs and

conjunctions defined with the colon conjunction. The schemeis:
1 : body is an adverb
2 . body IS a conjunction

where body isone or more lines of text. The possibilities for the result produced by
an operator are: atacit verb, an explicit verb, a noun or another operator. We will
look at each case in turn.

13.1 Operators Generating Tacit Verbs

Recall from Chapter 07 p7 the built-in rank conjunction " . For any verb u, the
expression u" 0 is averb which applies u to the O-cells (scalars) of its argument.

Now suppose we aim to define an adverb A, to generate a verb according to the

scheme: for any verb u
uA s to be u" o0

Adverb Ais defined explicitly like this:

A= 1:"'u. " 0 f == < A f 12

Inthedefinition(A =: 1 : 'u. " 0') theleft argument of the colonis1,
meaning "adverb”.

Theright argument isthe string' u. " 0' . Thisstring has the form of atacit verb,
where u. standsfor whatever verb will be supplied as argument to the adverb A.

Adverbs are so called because, in English grammar, adverbs modify verbs. In J by
contrast, adverbs and conjunctions in general can take nouns or verbs as
arguments. In the following example, adverb wis to generate a verb according to

the scheme: for integer u
uw is to be <" u

that is, u whoxes the rank-u cells of the argument. The definition of wis shown by:

W= 1:"'<" u.' oW z =: '"abc' 0 Wz 1 Wz
1: '<" u' <"0 abc -+t t---F
| al b| c| | abc]
o -+ 4o+

For another example of an adverb, recall the dyad # wherex # y selectsitems
fromy according to the bitstring x.

y= 1023 | 1011#y

1023 123

To select items greater than 0, we can apply the test-verb (>&0)

y >&0 vy (>&0 vy) # vy

1023 1011 123

A tacit verb to select items greater than 0 can be written asafork f :

f = >&0 #] fy

>80 #] 123

Thisfork can be generalised into an adverb, B say, to generate averb to select
items according to whatever verb is supplied in place of the test >&0.
B=1: "u #1]

If we supply >&1 as atest-verb:

g=(>&1) B |y gy

>&1 #] 1023 |23

We see that the body of B isthe fork to be generated, with u. standing for the
argument-verb to be supplied.

Conjunctions, taking two arguments, aredefined with (2 : '..."). Theleft
argument isu. and therightisv.

For example, consider a conjunction THEN, to apply one verb and then apply

another to the result, that is, acomposition. The scheme we want is:
u THEN v isto bev @ u

and the definition of THENis;

THEN =: 2 : 'v. @ u.' h =2 *: THEN < h123

2. 'v. @ u.' <@*: oo +

For another example, consider counting (with #) those items of alist which are
greater than 0. A verb to do this might be:

foo = # @ (>&0 #]) y foo y

#@ (>80 # 1) 1023 |3

We can generalize f oo to apply agiven verb u to items selected by another given
verb v. We define a conjunction C with the scheme
NB. uCuv is to be u@ (v #1)

and the definition of Cis straightforwardly:

C=2:"'u @ (v. #1])' f == # C (>&0) y fy

2 'u. @ (v. #1) 4@ (>80 # 1) 1023 |3

13.1.1 Multiline Bodies

The right argument of colon we may call the body of the definition of our operator.
In the examples so far, the body was a string, a schematic tacit verb, for example
'v .@ u.' .Thisistheverbto be delivered by our operator. More generally, the
body can be severa lines. Theideaisthat, when the operator is applied to its
argument, the whole body is executed. That is, each lineis evauated in turn and
the result delivered is the value of the last line evaluated. This is exactly analogous
to explicit verbs, except that here the result is avalue of type "function” rather than
of type "array".

Here is an example of a multi-line body, the previous example done in two steps.

To apply u to items selected by v, a scheme for conjunction D could be written:
uDv istobe (u@ select) where select is v #]

and D defined by

D= 2:0
select = v. #]
u. @ select

)

Again counting items greater than O, we have

f = # D (>&0) y fy

#@ sel ect 1023 3

Thefirst line of D computes an inner function sel ect from the right argument. The
second line composes sel ect with the left argument, and thisis the result-verb
delivered by D.

Now this definition has an undesirable feature: we see that sel ect isdefined asa
global (with =:). It would be better if sel ect werelocal.

However, we can see, by looking at the value of the verb f above, that sel ect
must be available when we apply f . If sel ect islocal to D, it will not be available
when needed.

We can in effect make sel ect local by using the "Fix" adverb (f.) (letter-f dot.)
The effect of applying "Fix" to averb isto produce an equivalent verb in which
names are replaced by by their corresponding definitions. That is, "Fix" resolves a
tacit verb into its primitives. For example:

Here is how we use Fix to enable sel ect to belocal. In the example below, notice
that we Fix the result-expression on the last line:

E= 2:0
select = v. #]
(u. @ select) f.

)

Now averb to count greater-than-0 items can be written:

g = # E (>&0) y gy

#Q@ (>&0 #]) 1023 3

We see that g, unlikef , has no local names.

13.2 Explicit Operators Generating
Explicit Verbs

13.2.1 Adverb Generating Monad

Consider the following explicit monadic verb, e. It selectsitems greater than O, by
applying the test-verb >&0.

e = 3: '"(>&0vy.) #y.' y ey

3: (>80 y.) #y.' 1023 |123

We can generalise e to form an adverb, F say, which selects items according to a

supplied test-verb. The scheme we want is: for any verb u:
uF isto be 3: '"(uy). #y.'

Adverb F is defined by:
F = 1: "(u vy.) #y.'

Now theverb >&1 F will select items greater than 1.

y >&1 F vy

1023 2 3

In the body of F the variable u. standsfor averb to be supplied as argument to
adverb F. If thisargument issay >&1, theny. standsfor an argument to the
generated explicitverb3 : ' (>&1 y.) # vy.'.

That is, our method of defining the generated verb isto write out the body of an
explicit definition, with u. at places where a supplied verb isto be substituted.

13.2.2 Conjunction Generating Monad

A conjunction takes two arguments, called u. andv. . Hereis an example of a
conjunction to generate an explicit monad.

As before, we specify the generated verb, by writing out the body of an explicit
verb. Herey. standsfor the argument of the generated verb and u. andv. stand
for argument-verbs to be supplied to the conjunction. In this example the body is
multi-line. As before, u. will be applied to items selected by v.

G = 2:0
selected =. (v. y.) #y.
u. selected

)

Now averb to count greater-than-zero items can be writtenas# G (>&0) :

y # G (>&0) vy

1023 3

13.2.3 Generating a Dyad

For the next example, let us define a conjunction generating an explicit dyad.

Suppose we want a conjunction H such that, schematically,
uHyv is to be 4 : "(ux.) +(vy.)

Now it isafact that al the generated verbs are defined intermsof 3 : ,not4 : .
We can write adyad with 3 : by beginning a multi-line body with the solo colon
which separates the monadic case from the dyadic.

Thus, schematically, we have to say, for verbsu and v:
uHyv is to be 3:0

gu X.) + (vy.)

The explicit definition of Hfollows straightforwardly:
H=2:0

gu. X.) + (v. y.)

We see:

(*: 2) + (% 16) | 2 (*: H%) 16

13.2.4 Review

So far, we have seen that for operatorsintroduced with1 : or 2 :, therearetwo
kinds of definition.

. Thefirst kind generates atacit function. The body of the operator is
executed (that, is evaluated) to compute the value of the result-function.
Notice that the argument-variables occurring in the body areu. or v.

. The second kind generates an explicit function. The body of the operator IS the
body of the generated function, after substitution of arguments. Notice that the
argument-variables occurring in the body areu. orv. orx. ory. . TheJsystem
recognises which kind is intended by determining which of the argument-variables
u. v. X. y. occurinthethe body.

If we have ONLY u. orv. or both, then the generated function is tacit.

If we have BOTH (u. orv.) AND (x. ory.) then the generated functionis
explicit.

On this bas's, the cases we have considered are:
1:'.. u .. tacit-generating adverb

2:'..u. V. .."tacit-generating conjunction
1:'..u.y..."explicit-monad-generating adverb
1:'..u. x.y..."explicit-dyad-generating adverb
2:'..u.v.y. .. explicit-monad-generating conjunction

2:'..u.v.x.y. .. explicit-dyad-generating conjunction
13.2.5 Alternative Names for Argument-Variables

The arguments to operators may be nouns or verbs. Thereisaway of constraining
arguments to be nouns only, that is, to cause verbs to be signalled as errors. To

impose the constraint, we write the argument-variablesasm and n. rather than as
u. andv. . For example, without the constraint we could write:

P=1:"4+&uU.’ * P 7 P

1: '+ &u’ +&* +&7

With the constraint we write:

1: "+ &m' error +&7

We said above that with ONLY u. orv. or both occurring as argument variables,
we get atacit verb generated. For the sake of completeness, we should add m and
n. tothislist.

Furthermore, if the only argument variablesarex. ory. or both, we get atacit
verb, not an explicit verb. That is, inthe absenceof u. orv. orm orn. thenx.
andy. areequivaenttou. andv. .

13.2.6 Executing the Body (Or Not)

To demonstrate when the body gets executed (or evaluated), we can use a utility

verb which displays its argument on-screen:
display =0 (1!: 2) &2

Now insert di spl ay ' hel | o' into atacit-generating operator:

R=2:0
di splay 'hello
select = v. #]

(u. @ select) f.
)

When Ris applied to its argument, the body is demonstrably executed:
f = # R (>&0)
hel | o

f 10203

By contrast, if we do the same with an explicit-generating operator:
S=2:0

di splay 'hello

selected =. (v. y.) #y.

u. selected

)

we see that the body of Sis NOT executed when the operator is applied to its
argument, but it IS executed when the generated verb g is applied.
g = # S (>&0)
gl10203
hel | o
3

13.3 Operators Generating Nouns

Operators can generate nouns as well as verbs. Here is an example.

A fixed point of afunctionf isavaluep suchthat (f p) = p.If wetakef to be
f == 3:'"28*y. * (1-y.)'

then we seethat 0. 642857 isafixed-point of f
f 0.642857
0. 642857

Not every function has afixed point, but if there is one we may be able to find it by

repeatedly applying the function (with~:) to asuitable starting value. A crude
fixed-point-finder can be written as an adverb FPF which takes the given function

as argument, with 0. 5 for a starting value.

FPF = 1 : "(u. ~: _) 0.5 p = f FPF fp

1: "(u. ~ _) 0.5 0. 642857 0. 642857

13.4 Operators Generating Operators

Here is an example of an adverb generating an adverb.

First note that (as covered in Chapter 15 p15) if we supply one argument to a
conjunction we get an adverb. The expression (@ *:) isan adverb which means
"composed with square”. To illustrate:

CS = @ *: - CS - CS 23 - * 23

@*: - @*: 4 9 4 9

Now back to the main example of this section. We aim to define an explicit adverb,
K say, which generates an adverb according to the scheme: for averb u
u K is to be @ u

Adverb K can be defined as below. We see that adverb K delivers as a result adverb

K= 1:"@ u.' L= * K - L - L 23

Thisisthe end of Chapter 13.

Copyright © Roger Stokes 2002. This material may be freely reproduced, provided that this copyright noticeis also
reproduced.

last updated 17 Aug 2002

pl4

Chapter 14: Gerunds

What isagerund, and what isit good for? Briefly, a gerund represents a list of
verbs. It isuseful, in the main, for supplying alist of verbs as a single argument to
an operator.

The plan for this chapter is:

. tointroduce gerunds
. tolook at some built-in operators which can take gerunds as arguments
. tolook at user-defined operators taking gerund arguments

14.1 Making Gerunds: The Tie
Conjunction

Recall from Chapter 10 p10 how we defined a verb with several cases. Hereisa

small example as areminder. To find the absolute value of a number x we compute
(+x), or (-x) if the number is negative, thus:

abs =2 + - @ (< &0 abs 3

+ - @ (<&0) 3

The expression (+* -) lookslikealist of verbs. Here the two verbs + and - aretied
together with the "Tie" conjunction (*, backquote, different from*) to produce a

gerund.
L

+-+- +
|+ -]
+-+- +

We seethat thegerund (+ ° -) isalist of two boxes, each of which contains a
representation of averb. A gerund isanoun - alist of boxes. Here is another
gerund which represents three verbs:

G= + - " abs
G

R S

| +| - | abs]|

ot - -+

Inside each box there is a data structure which represents, or encodes, averb. Here
we will not be concerned with the details of this representation, which will be
covered in Chapter 27.

14.2 Recovering the Verbs from a
Gerund

The verbs packed into a gerund can be unpacked again with the built-in adverb

"Evoke Gerund" which is denoted by the expression (*: 6) . Let uscall thisEv.
EV= ":6

Adverb EV applied to agerund yields atrain of al the verbsin the gerund. In the
next example, the result f oo isa 3-train, that isafork.

f = '"f' &,

g= "9 &,

T

, g foo = HEV foo 'o

f, g f ogo

+— +
1 — 1
+— +
+— +
1 ‘Q 1
+— +

Individual verbs can be unpacked by indexing the boxed list Hand then applying
EV.

++ | g go

Shorter trains can be unpacked from a gerund, again by indexing.

H 12{H | tr= (L2{H EV tr'a
+- +- -+ +- +- + , 0 aga

[£1. 19l |19

+- - -+ +- -+

Now we come to the uses of gerunds.

14.3 Gerunds As Arguments to Built-In
Operators

A magjor useis of gerundsisthat they can be supplied to operators as asingle
argument containing multiple verbs. We look first at further built-in operators
taking gerund arguments, and then at examples of home-made operators.

14.3.1 Gerund as Argument to APPEND Adverb

Thereisabuilt-in adverb called "APPEND", denoted by the expression (": 0). It

applies alist of verbsto asingle argument to give alist of results. For example:
APPEND =: “: 0

sum = +/
count =: #
nmean =: sum % count

Gl count = sum nean

Gl foo =: GlL APPEND foo 1 2 3

+----- o - -+ count " sum nean : 0 362
| count | sum nean|
S Foe e - -+

The adverb is called APPEND because the results of the individual verbsin the
gerund are appended, that isformed into alist. The general schemeisthat for verbs
u, v, w, ... then

(uUv'w...) APPEND Yy nmeans (uy), (vy, (wy)

Here is another example, showing that a gerund can be, not just a one-dimensional
list, but an array of verbs. Thelist of verbs G1 formed by "Tie" can be reshaped
into an array, atable say, and the shape of the result is the same.

@ =1 22%0a & APPEND 4 5

+em--- +em--- + 2
| count | sum | 4.5
+em--- +em--- +
| mean | count |
+em--- +em--- +

14.3.2 Gerund as Argument to Agenda Conjunction

Recall the abs verb defined above. Here is areminder:

abs =1 + - @ (< & 0) abs 6 abs _6

+ - @ (<&0) 6 6

Here, the "Agenda’ conjunction (@) takesaverb ontheright. Asavariation,

(@) can aso take anoun on the right. The noun consists of alist of numbers,
which are indices selecting verbs from the gerund. The selected verbs form atrain.
This scheme gives us an abbreviation for the unpacking by indexing we saw above.

The schemeis, for agerund Gand alist of indices|
GCG@ | means (r { 9 EV

For example:
G= +-"% | tr == G@ 02 |tr4 | (02{ 0O EV4

+ % 4.25 4.25

Next, we look at how to build trains with more structure. Consider the train T:

T= *(-1) [T3 | T4

* (- 1) 6 12

which computes (T x) = x * (x -1) . The parentheses mean that T is a hook
where the second item is also a hook. Trains structured with parenthesesin this
way can be built with Agenda, by indexing items from a gerund, using boxed

indicesto in dicate the parenthesi sation.
foo = (* " - 1.) @ (0; 12

T f oo foo 3

* (- 1) * (- 1) 6

14.3.3 Gerund as Argument to Insert

We have previously encountered the insert adverb applied to asingle verb: the verb
Isinserted between successive items of alist. More generally, wheninsert is
applied to agerund it inserts successive verbs from the gerund between successive
itemsf romthelist. That is, if Gisthegerund (f g h*...) andand X isthelist
(x0, x1, x2, x3, ...) then

G X nmeans x0 f x1 g x2 h x3 ...

ger =2 + % | ger / 1 2 3 1+2 %3

- +-+ 1. 66667 1. 66667
| +] A

+-+- +

If the gerund istoo short, it isre-used cyclically to make up the needed number of
verbs. This means that a one-verb gerund, when inserted, behaves the same as a
single inserted verb.

14.3.4 Gerund as argument to POWER conjunction

Recall from Chapter 10 that the POWER conjunction (»:) cantake, asright a
rgument, a number which specifies the number of iterations of the verb given as

left argument. As abrief reminder, 3 doublingsof 1is8:
double =: +:
(double ~: 3) 1

8

Asavariation, the number of iterations can be computed by a verb right-argu

ment. The schemeis, for verbsu and v:
(u”™: v)y nmeans u”n (vy)y

For example:
decr = <

double ”~: (decr 3) 3 (doubl e ~: decr) 3

12 12

More generally, the right argument can be given as a gerund, and the verbsin it do
some computations at the outset of the iteration process. The schemeis:
u”™ (vl " v2) y nmeans u”: (vliy) (v2y)

Toillustrate, we define a verb to compute a Fibonacci sequence. Hereeacht ermiis
the sum of the preceding two terms. The verb will take an argument to specify t he
number of terms, so for examplewewant FIB 6togive0 1 1 2 3 5

The verb to beiterated, u say, generates the next sequence from the previo us
sequence by appending the sum of the last two. If we define:

u =: , sunlast2
sumast2 =: + @]l ast?2
| ast 2 = 2 &{.

then the iteration scheme beginning with the sequence 0 1 is shown by

uo1 uuolil uuu?o1l

011 0112 01123

Now we define the two verbs of the gerund. We see that to produce a sequence
with n termsthe verb u must be applied (n- 2) times, so the verb vi1, which com

putes the number of iterations from the argument y is:
vl = -&2

The verb v2, which computes the starting value from the argument y, we wa nt to

be the constant function which computes0 1 whatever the value of y.
v2 =2 3: '01

Now we can put everything together:

FIB = u”: (vl v2) FIB 6

ur: (vl v2) 011235

This example showed a monadic verb (u) with the two verbsin the gerund (v 1
and v2) performing some computations at the outset of the iteration. What about
dyad ic verbs?

Firstly, recall that with an iterated dyadic verb the left argument is bound at the

outset to give amonad which iswhat is actualy iterated, so that the schemeis:
X u”™ k vy means (x&u) " ky

Rather than constant k, we can perform pre-computations with three verbs U v and

wpresented as a gerund. The schemeis:
xu”™ (UVW vy

nmeans

(((x Uy)&u) " (x Vy)) (x Wy)

Example to be supplied

The scheme above can also be written equivalently as afork:
u”r (UVW nmeans U(u": V) W

For example:
U [

2:

]

Vv
W

p= +" (UVW 3 p4 qg= U((+" V) W 3qgi4

A (U VW 10 U+rV W 10

14.3.5 Gerund as Argument to Amend

Recall the "Amend" adverb from Chapter 06 p6 . The expression (new i ndex }

ol d) produces an amended version of ol d, having newasitemsat i ndex. For
example:

o0 1} 'baron
bor on

More generally, the "Amend" adverb can take an argument which is a gerund of

three verbs, say U V' W The schemeis:
x (UVW } y nmeans (x Uy) (x Vy) } (x Wy)

That is, the new items, the index(es) and the "old" array are al to be computed
fromthegivenx andy.

Here is an example (adapted from the Dictionary). Let us define averb, R say, to
amend a matrix by multiplying itsi 'th row by a constant k. The left argument of R
isto bethelisti k and the right argument isto be the original matrix. Ris defined

asthe "Amend" adverb applied to a gerund of 3 verbs.
i {. @ NB. i = first of x
k {: @ NB. k = last of x
r i {] NB. i'th row

R

(k=) ~ i " 1)}

For example:
M= 32%$2345617
z =: 1 10 NB. row 1 tines 10
z M zi M z k M zr M z RM
1 10 2 3 1 10 4 5 2 3
45 40 50
6 7 6 7

14.4 Gerunds as Arguments to User-
Defined Operators

Previous sections showed supplying gerunds to the built-in operators (adverbs or
conjunctions). Now we look at defining our own operators taking gerunds as
arguments. We begin with explicit operators and then go on to tacit operators.

The main consideration with an explicit operator is how to recover individual verbs

from the gerund argument. We saw several possibilities above. Hereisasimple

one.Letg Untie i givethei 'thverbingerundg. Weindex g to get thei 'th

representation, and then apply adverb EV to turn the representation into a verb:
Untie = 2 : "(y. { x.) EV

plus =. (* - +) Untie 2 2 plus 3

Now for the operator. Let us define an adverb A, say, to produce afork-lik e verb,
sothatx (u'v'w A) yistomean(u x) v (wy).
A= 1:0
Xx. Untie O
Xx. Untie 1
X. Untie 2
@[) v (w@])) f.

s <c

S nono

(

N A~

To illustrate A, hereisaverb to join thefirst item of x tothelast o f y. Thefirst and
last items are yielded by the built-in verbs { . (left-brace dot, called "Head") and {:
(left-brace colon, called "Tail").

g= { ., { zip = gA "abc' zip 'xyz'

{.@ ., {:@ | az

+— +
[e W |
1 - 1
+— +
1 - 1
+— +
[e W |
1 - 1
+— +

14.4.1 The Abelson and Sussman Accumulator

Here is another example of a user-defined explicit operator with agerund
argument. Abelson and Sussman, (reference ...), describe how avariety of
computations al conform to the following general plan, called the "accumulator":

Items from the argument (alist) are selected with a "filtering” function. For each
selected item, avalue is computed from it with a"mapping" function. The results
of the separate mappings are combined into the overall result with a"combining”
function. This plan can readily be implemented in J as an adverb, ACC say, as
follows.

ACC = 1: 0
‘commp fil' = <"0 x.
((comEV/) @ (mp EV) @ (#~ fil EV)) f.
)

ACC takes as argument a gerund of three verbs, in order, the combiner, the map and

the filter. For an example, we compute the sum of the squares of the odd numbers

inagiven list. Here the filter, to test for an odd number, is(2&])
(+° *: " (2&)) ACC1 2 3 4
10

Thefirst line of ACC splits up the gerund argument into three 1-item gerunds, com
map and fi | . The boxing (<" 0) is needed because the multiple assignment
automatically strips off one layer of boxing. In the second line, EV is applied to
each 1-item gerund to yield its verb.

Thisisthe end of chapter 14.

Copyright © Roger Stokes 2002. This material may be freely reproduced, provided that this copyright noticeis also
reproduced.

last updated 17 Au 2002

p15

Chapter 15: Tacit Operators

15.1 Introduction

J provides a number of built-in operators - adverbs and conjunctions. In previous
chapters we looked at defining our own operators explicitly. In this chapter we
look at defining adverbs tacitly.

15.2 Adverbs from Conjunctions

Recall from Chapter 07 p7 the Rank conjunction, (") . For example, theverb (< "

0) appliesBox (<) to each rank-0 (scalar) item of the argument.
<" 0 'abc

A conjunction takes two arguments. If we supply only one, the result is an adverb.
For example, an adverb to apply a given verb to each scalar can be written as ("
0)

each =: " 0 < each z = < each 'abc'
0 <"0 +-4+-+-+

| al b| c|

+-4+-+-+

The scheme s, that for a conjunction C and anoun N, the expression (C N) denotes

an adverb such that:
X (CN nmans x CN

The argument to be supplied to the conjunction can be anoun or averb, and on the

left or on the right. Altogether there are four similar schemes:
x (CN neans x CN
x (CV) nmeans x CV

NC nmeans N C x

V C neans V Cx

The sequencesCN Cv NC and CV are called "bidents'. They are aform of bonding
(or currying) whereby we take a two-argument function and fix the value of one of
its arguments to get a one-argument function. However, there is adifference
between bonding adyadic verb (asin+ & 2 for example) and bonding a
conjunction. With the conjunction, there is no need for a bonding operator such as
& Wejust write (" 0) with no intervening operator. The reason isthat in the case
of + & 2, omitting the & would give + 2 which means: apply the monadic case of
+t0 2, giving 2. However, conjunctions don't have monadic cases, so the bident ("
0) isrecognised as a bonding.

Recall the "Under" conjunction & from Chapter 08 p8 whereby f & g isaverb

which applies g to itsargument, then f then the inverse of g. If wetakef and g to
be:
f

g

&,
>

then we seethat f is applied inside each box:

z (f & Qg) z
+- +- +-+ S R
| a] b] c| | falfb|fc|
+- +- +-+ S R

Now, using the form Cv, we can define an adverb EACH to mean "inside each box":

EACH =1 & > f EACH z f EACH z

& > f& > +- +- +- + g -+
| a| b c| | falfb|fc|
+- +- +- + do et m et

15.3 Compositions of Adverbs

If A and B are adverbs, then the bident (A B) denotes an adverb which applies A

and then B. The schemeis:
x (A B) means (x A) B

15.3.1 Example: Cumulative Sums and Products

Thereisabuilt-in adverb\ (backslash). Inthe expressionf \ y theverbf is
applied to successively longer leading segments of y. For example:
<\ "abc’
+- - - - - -+
| a| ab| abc|
+- - - - - -+

The expression +/ \ y produces cumulative sumsof y:
+ \ 123
136

An adverb to produce cumulative sums, products, and so on can be written as a

bident of two adverbs:
cum=: [/ \ NB. adverb adverb

z = 234 + cum z * cum z

234 259 2 6 24

15.3.2 Generating Trains

Now we look at defining adverbs to generate trains of verbs, that is, hooks or forks.

First recall from Chapter 14 p14 the Tie conjunction (*), which makes gerunds,
and the Evoke Gerund adverb (" : 6) which makes trains from gerunds.

Now suppose that A and B are the adverbs:
A= * NB. verb conjunction
B 6 NB. conjunction noun

Then the compound adverb
H= AB

Isahook-maker. Thus<: Hgeneratesthe hook * <: , that is"x times x-1"

<: A <: AB h =2 < H h 5
+-+- -+ * o< * o< 20
| > <]
+- +- -+

15.3.3 Rewriting

It is possible to rewrite the definition of averb to an equivalent form, by
rearranging its terms. Suppose we start with a definition of the factorial function f .
Factorial 5is120.

f=(*($% @ <)) L @ (=0)

f 5
120

Theideanow isto rewritef totheform$: adver b, by asequence of steps. Each
step introduces a new adverb. The first new adverb is A1, which has the form conj

ver b.

Al = (= 0:)
g = (* ($ @ <)) 1: Al
g5

120

Adverb A2 hastheformconj verb

A2 = ° 1:

h = (* ($ @ <)) A2 AL
h 5

120

Adverb A3 hastheform adv adv
A3 = (* ") (: 6)
i = ($: @ <) A3 A2 Al
i 5

120

Adverb A4 hastheformconj verb
M= @ <
j = $ A A3 A2 Al
i 5

120

Combining Al to A4:
A= A A3 A2 AL

k = & A
k 5
120
Expanding A:
m= % (@ <) (*) (: 6)
m 5

120

%

1:) (@

(=0:))

We seethat mand f are the same verb:

(* $:@<) 1:@(= 0:) (* $:@<) 1:@(= 0:)

Thisisthe end of Chapter 15.

Copyright © Roger Stokes 2002. This material may be freely reproduced, provided that this copyright noticeis also
reproduced.

last updated 11 Aug 2002

pl16

Chapter 16: Rearrangements

This chapter covers rearranging the items of arrays. permuting, sorting, transposing,
reversing, rotating and shifting.

16.1 Permutations

A permutation of a vector is another vector which has all the items of the first but
not necessarily in the same order. For example, z is a permutation of y where:

y =: 'abcde’ z = 42310{y

abcde ecdba

Theindex vector 4 2 3 1 0isitself apermutation of theindiceso 1 2 3 4, that
Is,i. 5, and henceissaid to be a permutation vector of order 5.

Notice the effect of this permutation: the first and last items are interchanged and
the middle three rotate position amongst themselves. Hence this permutation can be
described as a combination of cycling two items and cycling three items. After 6 (=

2 * 3) applications of this permutation we return to the original vector.
p="4231028&{

y Py PPy PPPPPPY

abcde ecdba adbce abcde

The permutation4 2 3 1 0 can berepresented as acycle of 2 and acycle of 3.

The verb to compute this cyclic representation ismonadic C. .
C 42310

oo - +-- -+
|3 1 2|4 0]
R oo+

Thus we have two representations of a permutation: (4 2 3 1 0) iscaled adirect
representationand (3 1 2 ; 4 0) iscaledacyclic representation. Monadic C.
can accept either form and will produce the other form:

C 42310 C 312; 40

P R 42310
|31 2|4 0
Fom e +---+

The dyadic verb C. can accept either form asits left argument, and permutes its
right argument.

y 42310C vy |(312; 40 C vy

abcde ecdba ecdba

16.1.1 Abbreviated Permutations

Dyadic C. can accept aleft argument which is an abbreviation for a (direct)
permutation vector. The effect isto move specified itemsto the tail, one at atime,
in the order given.

y 2 C vy 23C vy

abcde abdec abecd

With the abbreviated form, successive items are taken from the original vector:
notice how the following two examples give different results.

y 23C vy 3C (2C vy

abcde abecd abdce

If the left argument is boxed, then each box in turnis applied as acycle:

y (<8312 C vy (312; 40 C vy

abcde acdbe ecdba

If a is an abbreviated permutation vector (of order n) then the full-length equivalent
of aisgivenby (a U n) whereuisthe utility function:
U= 4:0
z = y. | X
§(i. y.) -. 2), z

For example, suppose the abbreviated permutation a is(1 3) then we see:

y a= 13 acC vy f = a U (#y) f C vy

abcde 13 acebd 02413 acebd

16.1.2 Inverse Permutation

If f isafull-length permutation vector, then the inverse permutation is given by
(/: f).(Wewill look at theverb/: inthe next section.)

y f z = f C vy /. f (/: f) C z

abcde 02413 acebd 03142 abcde

16.1.3 Atomic Representations of Permutations.

If y isavector of length n, then there are altogether ! n different permutations of y.
A table of all permutations of order n can be generated by the expression (t ap n)
where tap isautility verb defined by:
tap = i. @! A i.
tap 3

2

NNRFR P OO
P ONONDNLEPEF
OPFr ONPF

It can be seen that these permutations are in awell-defined order, and so any
permutation of order n can be identified smply by itsindex inthetable (tap n).
Thisindex is called the atomic representation of the permutation. The monadic verb
A. computes the atomic representation. For example, given an order-3 permutation,
eg.2 1 0,thenA 2 1 0yieldstheindex inthetable(tap 3).

A 210 | 5¢{ tap 3

5 210

Noticethat A. givesitsresult as an extended integer (5x) rather than smply 5.
(Extended integers will be covered in Chapter 19 p19.) The reason isthat since the
table(tap n) isof length! n, that is, potentialy very long, indexesinto it may
need to be very long numbers.

The dyadic verb A. applies an atomic representation of a permutation.

210{ 'PR | 5A 'PR

Hereis an example of the use of A. . The process of running through all the
permutations of something (say to search for anagrams of aword) might take avery
long time. Hence it might be desirable to run through them say 100 at atime.

Hereisaverb which finds alimited number of permutations. The argument is a

boxed list: avector to be permuted, followed by a starting permutation-number

(that is, atomic index) followed by a count of the permutionsto be found.
LPerms =0 3 : O

‘arg start count' =. vy.

(start +i. count) AL " 0 1 arg

)

LPerns 'abcde'; 0; 4 LPerns 'abcde'; 4; 4

abcde abecd
abced abedc
abdce achde
abdec acbed

16.2 Sorting

Thereisabuilt-in monad, / : (slash colon, called "Grade Up"). For alist L, the
expression (/: L) givesaset of indicesinto L, and these indices are a permutation-

vector.
L = 'barn' /1 L

barn 1032

These indices select the items of L in ascending order. That is, the expression ((/ :

L) { L) yieldstheitemsof L in order.

L /. L (/: L) { L

barn 1032 abnr

For sorting into descending order, the monad \ : (backslash colon, called "Grade
Down") can be used.

L (\: L) {L

barn r nba

Since L isacharacter list, itsitems are sorted into alphabetical order. Numeric lists
or boxed lists are sorted appropriately.

N= 3145 | (/: N {N

3145 1345

B =: 'pooh';'bah';10;5 (/: B { B
i S 3 B
| pooh| bah| 10| 5] | 5] 10| bah| pooh
T S SR S —_—

Now consider sorting the rows of atable. Hereis an example of atable with 3 rows:

T= (. ;. 2 0:0
"WA'" ;' Mbzart'; 1756
'JS ;'Bach' ; 1685
" CPE' ;' Bach' o 1714

)

Suppose we aim to sort the rows of the table into order of date-of-birth shownin
column 2 (the third column). We say that column 2 contains the keys on which the
table isto be sorted.

We extract the keys with the verb 2&{ " 1, generate the permutation vector with / :
applied to the keys, and then permute the table.

T keys =1 2&{"1 T (/: keys) { T

SRR +----+ e L SRR +----+
| WA | Mbzart| 1756] | 1756| 1685| 1714 | JS | Bach | 1685
S +---- 4+ e EE S +----+
| JS | Bach | 1685] | CPE| Bach | 1714
Heembammnn +----+ R T +----+
| CPE| Bach | 1714 | WA | Mbzart| 1756
T R +----+ IR +----+

Thedyadic caseof / : allowsthe expression (/: keys { T) to beabbreviated as

(T /: keys).

(/: keys) { T T /: keys

R +----+ R +--- -+
| JS | Bach | 1685| | JS | Bach | 1685|
R +--- -+ I +----+
| CPE| Bach | 1714 | CPE| Bach | 1714|
ometmmmaa +--- -+ I e +----+
| WA | Mozart | 1756 | WA | Mozart]| 1756|
S S S R +----+

Suppose now we need to sort on two columns, say by last name, and then by
initials. The keys are column 1 then column O.

keys =: 1 0 &{ "

17T T /: keys

S +---+ S +----+
| Mozart| WA | | CPE| Bach | 1714
S +---+ A +--- -+
| Bach | JS | | JS | Bach | 1685|
S +-- -+ . F-- - -+
| Bach | CPE| | WA | Mozart| 1756|
S ey +-- -+ S P +----+

These examples show that the keys can be atable, and the/: verbyieldsthe
permutation-vector which puts the rows of the table into order. In such acase, the
first column of the table is the most significant, then the second column, and so on.

16.2.1 Predefined Collating Sequences

Characters are sorted into "alphabetical order”, numbersinto "numerical order" and
boxes into a well-defined order. The order for sorting all possible keys of agiven
typeis called a collating sequence (for keys of that type). We have three predefined
collating sequences. The collating sequence for charactersisthe ASCII character
set. The built-in Jnoun a. givesthe value of all 256 characters in "aphabetical"

order. Note that upper-case | etters come before lower-case letters.
65 66 67 97 98 99 { a.
ABCabc

With numerical arguments, complex numbers are ordered by the real part then the
Imaginary part.

n=: 01 12j1121j1 n/:n

01 12j11j21j1 101111221

With boxed arrays, the ordering is by the contents of each box. The precedenceis
firstly by type, with numerical arrays preceding empty arrays preceding character
arrays preceding boxed arrays.

k=: (< "abc') ; 'pgr’ 3 k /: k

+omn-- +o - - -+ oot oot - oo +
| +---+| par| 4] | 3] | 3] 4] | par | +--- 4]
| labc]| | || | | | Il [labc|]
| +---+ [|] | I N
+--m - - +- - - - ++- + T s T e +

Within arrays of the same type, low-rank precedes high-rank.

m: 24 ; 3; (118%$1)

m/: m

T
|2 4] 3| 1]
i

N S S S
| 3| 2 4] 1]
- - -+

Within arrays of the same type and rank, precedence depends on shape and content.
If the two arrays are the same, then the earlier takes precedence (that is, their

original order is not disturbed).

a=23%$12345¢6

b= 32%$125634

c= 13%$123

d= 13%$113
w=:a;b;c:;d w/: w
Fomm - - oo - + e o - e - - e +
|12 3|1 2/12 311 3 [1 1 3|12 3|1 2|1 2 3
|4 5 6|5 6] | | | |4 5 6|5 6] |

| | |3 4 I

16.2.2 User-Defined Collating Sequences

The keys are computed from the data. By choosing how to compute the keys, we
can choose a collating sequence.

For example, suppose alist of numbersisto be sorted into ascending order of
absolute value. A suitable key-computing function would then be the "Magnitude"
function, | .

x=: 21 3 keys = | X x /. keys

21 3 213 12 3

16.3 Transpositions

The monadic verb | : will transpose a matrix, that is, interchange the first and
second axes.

M= 2 3 $ 'abcdef' |: M

abc ad

def be
cf

More generdly, | : will reverse the order of the axes of an-dimensional array.

N=222$%$ 'abcdefgh [: N
ab ae
cd cg
ef bf
gh dh

Dyadic transpose will permute the axes according to the (full or abbreviated)
permutation-vector given as left argument. For a 3-dimensional array, all possible

permutations are given by (tap 3)
"ABCDEF = tap 3

N Al: N B|: N Cl|: N F|l: N

ab ab ac ab ae
cd cd bd ef cg
ef ef eg cd bf
gh gh fh gh dh

A boxed abbreviated argument can be given. Two or more boxed axis-numbers are
run together to form a single axis. With two dimensions, thisis equivalent to taking
the diagonal.

K= 1. 33 (<01 |: K
012 048

345

6 7 8

16.4 Reversing, Rotating and Shifting

16.4.1 Reversing

Monadic | . will reverse the order of the items of its argument.

y [. vy M |. M

abcde

edcbha

abc
def

def
abc

Notice that "reversing the items" means reversing along the first axis. Reversal
along other axes can be achieved with the rank conjunction (") .

N |. N | 1N |. " 2 N
ab ef ba cd
cd gh dc ab
ef ab fe gh
gh cd hg ef

16.4.2 Rotating

Dyadic | . rotatestheitems of y by an amount given by the argument x. A positive

value for x rotates to the | eft.

11].y

abcde

bcdea

Successive numbersin x rotate y along successive axes.

M 12]|. M N 12]|. N
abc fde ab ef
def cab cd gh

ef ab

gh cd

16.4.3 Shifting

The items which would be brought around by cyclic rotation can instead be

replaced with afill-item. A shifting verbiswritten(|. !'. f) wheref isthefill-
item.
ash = |. . NB. al phabetic shift
nsh = |. 1.0 NB. nuneric shift
y 2 ash y z =2 234 1 nsh z
abcde **abc 234 023

Thisisthe end of Chapter 16

Copyright © Roger Stokes 1999. This material may be freely reproduced, provided that this copyright notice and
provision is also reproduced.

last updated 10 September 1999

pl7

Chapter 17: Patterns of
Application

In this chapter we look at applying afunction to an array in various patterns made
up of selected elements of the array.

17.1 Scanning

17.1.1 Prefix Scanning

Inthe expression (f \ y) theresultisproduced by applying verb f to
successively longer leading sections (" prefixes”) of y. Choosing f as the box verb
(<) gives easily visible results.

y =: 'abcde' <\vy

abcde S
| a| ab] abc| abcd| abcde|
i I e e

Cumulative sums of a numeric vector can be produced:
+ \ 0123
0136

Various effects can be produced by scanning bit-vectors. The following example

shows "cumulative OR", which turns on all bits after the first 1-bit.
+/\ 01010
01111

17.1.2 Infix Scanning

Intheexpression (x f \ y) theverbf isapplied to successive sections
("infixes") of y, each of length x.

z =149 16 2 <\ z

149 16 bbbt
|1 4|4 9|9 16|
T RS

If x is negative, then the sections are non-overlapping, in which case the last
section may not be full-length. For example:

|1 4 9] 16|
Fome - +- -+

We can compute the differences between succesive items, by choosing 2 for the
section-length, and applying to each section a verb "second-minus-first”, that is,
({: - {.)

f= {:-{ f 14

diff = 2 & (f\)

. Z , . diff z , . diff diff z

PO AR
g w
NN

17.1.3 Suffix Scanning

Intheexpression (f \. y) theresultis produced by applying f to successively
shorter trailing sections ("suffixes') of y .

y <\. vy
abcde L B S
| abcde| bcde| cde| de| e
L S
17.1.4 Outfix

Intheexpression (x f \. y) theverbf isapplied to the whole of y with
successive sections removed, each removed section being of length x. If x is
negative, then the removed sections are non-overlapping, in which case the last
removed section may not be full-length.

y 2 <\. vy 2 <\. vy

abcde e T g .
| cde| ade| abe]| abc]| | cde| abe| abcd]|
I S e

17.2 Cutting

The conjunction ; . (semicolon dot) iscalled "Cut". If u isaverb and n asmall
integer, then (u ;. n) isaverb which appliesu in various patterns as specified by
n. Thepossiblevaluesfornare_ 3 2 1 0 1 2 3. Wewill look some but not all

of these cases.

17.2.1 Reversing

Inthe expression (u ;. 0 y),theverbuisappliedtoy reversed along all axes. In
the following example, we choose u to be the identity-verb ([).

M=: 3 3 $ 'abcdefghi' [;. 0O M
abc I hg
def fed
ghi cbha

17.2.2 Blocking

Given an array, we can pick out a smaller subarray inside it, and apply averb to
just the subarray.

The subarray is specified by atwo-row table. In the first row isthe index of the cell
which will become the first of the subarray. In the second row is the shape of the
subarray.

For example, to specify a subarray starting at row 1 column 1 of the original array,

and of shape2 2, wewrite:
spec =: 11 ,: 22

Then we can apply, say, the identity-verb ([) to the specified subarray as follows:

M spec spec [;. O M
abc 11 ef
2 2 hi

def
ghi

The general schemeisthat for averb u, the expression (x u ;. 0 y) appliesverb
u to asubarray of y as specified by x.

In the specifier x, a negative value in the shape (the second row) will cause

reversal of the elements of Malong the corresponding axis. For example:
spec =: 11 ,: 22

M spec spec [;. O M

abc 11 hi
def 22 ef
ghi

17.2.3 Fretting

Suppose that we are interested in dividing aline of text into separate words. Here

isan example of aline of text:
y =: '"what can be said'

For the moment, suppose we regard aword as being terminated by a space. (There
are other possibilities, which we will come to.) Immediately we see that iny above,
thelast word ' sai d' isnot followed by a space, so thefirst thing to doisto add a

space at the end:
y =y, "
Now if u isaverb, andy ends with a space, the expression(u ;. _2 y) will

apply verb u separately to each space-terminated word iny. For example we can
identify the wordsiny by applying <, the box function:

y <;. _2Yy

what can be said R R S R
| what | can| be| sai d|
T g

We can count the lettersin each word by applying the # verb:

y #,. 2y

what can be said 4 324

The meaning of _2 for theright argument of ; . isthat the words are to be
terminated by occurrences of the last character iny (the space), and furthermore
that the words do not include the spaces.

More generally, we say that alist may be divided into "intervals' marked by the
occurrence of "frets'. Theright argument (n) of ;. specifies how we choose to
define intervals and frets as follows. There are four cases.

n=1: Each interval beginswith afret. Thefirst item of y istaken to be afret, as
are any other items of y equal to the first. Intervalsinclude frets.

n=_1:Asfor(n = 1) except that intervals exclude frets.

n=2: Eachinterva endswith afret. Thelast item of y istaken to be afret, asare
any other items of y equal to the last. Intervalsinclude frets.

n=_2:Asfor(n = 2), except that intervals exclude frets.

For example, the four cases are shown by:
z =: 'abdacd'

abdacd t-m - - - -+ +- - - -+ t-m - - - -+ +- - - -+
| abd| acd| | bd| cd| | abd| acd| | ab] ac|
+o- - - - -+ +- - - -+ +o- - - - -+ +- - - -+

For another example, hereis away of entering tables of numbers. We enter atable
row by row following0o : 0

T= 0:0
1 2 3
4 5 6
19 20 21

T isacharacter-string with 3 embedded line-feed characters, one at the end of each
line:

$T | +/ T=LF

30 3

Theideanow isto cut T into lines. Each line is a character-string representing a J
expression (for example the characters' 1 2 3'). Such character-strings can be
evaluated by applying theverb " . (double-quote dot, "Do" or "Execute"). The
result is, for each line, alist of 3 numbers.

TABLE =: (". ;. _2) T | $ TABLE
1 2 3 33
4 5 6
19 20 21
Theverb (". ;. _2) wasintroduced asthe utility-function Ar r ayMaker in

Chapter 2.

17.2.4 Punctuation

For processing text it would be useful to regard words as terminated by spaces or
by various punctuation-marks. Suppose we choose our frets as any of four
characters:

frets = ' ?21.'

Given some text we can compute a bit-vector which is true at the location of afret:

t =0 'How are you? v =1 e frets

How are you? 000100010001

Here we make use of the built-inverbe. ("Member"). The expressionx e. y
evaluatesto trueif x isamember of thelisty.

Now the bitvector v can be used to specify the frets:

How are you? 000100010001 S R T
| How ar e| youl|
R

For another example, consider cutting a numeric vector into intervals such that
each isin ascending sequence, that is, an item less than the previous must start a

new interval. Suppose our datais:
data =1 3141509

Then abitvector can be computed by scanning infixes of length 2, applying >/ to

each pair of items. Where we get 1, the second item of the pair is the beginning of

anew interval. We make sure thefirst item of all is 1.
bv = 1, 2 > \ data

dat a data ,: bv bv < ;. 1 data
3141509 3141509 R S +
110100 |3]1 41 5 9|

S A S +

17.2.5 Word Formation

Thereisabuilt-in function ; : (semicolon colon, called "Word Formation™). It
analyses a string as a J expression, according to the rules of the Jlanguage, to yield
aboxed list of strings, the separate constituents of the J expression.

For example:
y = 'z = (p+tq) - 1 "
z = (ptq) - 1 S T T S S S
|zl =1 (Ipl+lal)]-11]
e kR

17.2.6 Lines in Files

L et us begin by creating afile, to serve in the examples which follow. (See Chapter
26 p25 for details of file-handling functions).

text =2 0: O
VWhat can be said
at all

can be said
clearly.

)

text (1!: 2) < 'c:\foo.txt'

Now, if we are interested in cutting afile of text into lines, we can read the file into
astring-variable and cut the string. On the assumption that each line ends with a
line-terminating character, then the last character in the file will be our fret. Hereis

an example.
string = (1!': 1) <'c:\foo.txt'" NB. read the file

lines =0 (< ;. _2) string NB. cut into |lines
i nes

Fom e oo oo H--m - - - Fom e e e S +

| What can be said|at all|can be said|clearly.|

Fom e oo oo H--m - - - Fom e e e S +

There are two things to be aware of when cutting files of text into lines,

Firstly, in some systemslinesin afile are terminated by a single line-feed character
(LF). In other systems each line may be terminated by the pair of characters
carriage-return (CR) followed by line-feed (LF).

Jfollows the convention of the single LF regardless of the system on which Jis
running. However, we should be prepared for CR characters to be present. To get
rid of CR charactersfrom st ri ng, we can reduce it with the bitvector (stri ng
not equal CR), wherenot equal isthe built-in verb ~: , thus:

string =1 (string ~: CR) # string

Secondly, depending on how the file of text was produced, we may not be able to
guarantee that itslast line is actually terminated. Thus we should be prepared to
supply the fret character (LF) ourselvesif necessary, by appending LF to the string.

A small function to tidy up astring, by supplying afret and removing CR
characters, can be written as:

tidy == 3: 0
y. = vy. , (LF~ {: vy.) # LF NB. supply LF

(y. -1 CR #y. NB. renpove CR

)

(< ;. _2) tidy string
R S IR e S T +
| What can be said|at all|can be said|clearly.|
R S IR e S T +
17.2.7 Tiling

Intheexpression (x u ;. 3 y) theverbu isapplied separately to each of a
collection of subarrays extracted fromy. These subarrays may be called tiles. The
size and arrangement of the tiles are defined by the value of x. Here is an example.
Supposethaty is

y =2 4 4 $ 'abcdefghijkl mop’

and our tiles are to be of shape 2 2, each offset by 2 along each axisfrom its
neighbour. That is, the offsetisto be2 2. We specify thetiling with atable: the
first row isthe offset, the second the shape

spec =: >2 2 ; 2 2 NB. offset, shape

and so we see

y spec spec < ;. 3y
abcd 2 2 +o- -+
ef gh 2 2 | ab| cd]|
ij Kl | ef | ghl|
nmop R
||kl
| m| op|
+- - +- -+

The specified tiling may leave incomplete pieces ("shards') at the edges. Shards

can be included or excluded by giving aright argument to "Cut" of 3 or _3 .
sp = >33; 33

y sp sp<;. 3y sp<,;. 3y
abcd 33 +---+-+ oo+
ef gh 33 | abc| d] | abc]|
Ikl | ef g| h| | ef g|
nmop ikl |ijK|
+-- oo+ +-- -+
| mo| p|
+-- oo+

Thisisthe end of Chapter 17.

Copyright © Roger Stokes 1999. This material may be freely reproduced, provided that this copyright notice and
provision is aso reproduced.

last updated 16 Mar 00

pl18

Chapter 18: Sets, Classes and
Relations

In this chapter we look at more of the built-in functions of J. The connecting theme
Is, somewhat loosely, working with set, classes and relations.

Suppose that, for some list, for the purpose a hand, the order of theitemsis
irrelevant and the presence of duplicate itemsisirrelevant. Then we can regard the
list as (representing) afinite set. In the abstract, theset 3 1 2 1 isconsidered to be
thesamesetas1 2 3. Theword "class' we will usein the sense in which, for
example, each integer in alist belongs either to the odd class or to the even class.

By "relation” is meant atable of two or more columns, expressing arelationship
between a value in one column and the corresponding value in another. A relation
with two columns, for example, is a set of pairs.

18.1 Sets

18.1.1 Membership

Thereisabuilt-in verb e. (lowercase e dot, called "Member"). The expresssion x
e. y testswhether x matches any item of y, that is, whether x is a member of the
listy. For example:

y=: 'abcde' ‘a' e,y 'wW ey "ef' e. vy

abcde 1 0 10

Evidently the order of itemsiny isirrelevant and so is the presence of duplicatesin
Y.

z=: 'edcbad' 'a' e. z 'wW o e. z 'ef' e. z

edcbad 1 0 10

We can test whether atable contains a particular row:

t =2 4 2 $ 'abcdef' ‘cd' e. t

ab 1
cd
ef
ab

18.1.2 Less

Thereisabuilt-inverb - . (minusdot, called "Less"). The expressionx -. vy
produces alist of the items of x except those which are membersof y.

X =: 'consonant' y = 'aeiou X -.y

consonant aei ou cnsnnt

Evidently the order of itemsiny isirrelevant and so is the presence of duplicatesin
y.

18.1.3 Nub

Thereisabuilt-in verb ~. (tilde dot, called "Nub"). The expression ~. y produces
alist of theitems of y without duplicates.

nub = ~. y = 'hook' nub y

~. hook hok

We can apply nub to the rows of atable:

t nub t
ab ab
cd cd

ef ef

ab

18.1.4 Nub Sieve

Theverb "nub sieve" (~:) gives aboolean vector which istrue only at the nub.

y b = ~ vy b #vy nub vy

hook 1101 hok hok

18.1.5 Functions for Sets

The customary functions on sets, such as set-union, set-intersection or set-equality,
are easily defined using the built-in functions available. For example two sets are
equal if all members of one are members of the other, and vice versa.

seteq =1 *./ @ (e. , e.~)

123 seteq3121 12 3 seteq 1 2

18.2 The Table Adverb

Recall that the adverb / generates averb; for example +/ isaverb which sums
lists. More precisely, it isthe monadic case of +/ which sumslists. The dyadic case
of +/ generates atable:

x = 012 y == 3456 Z = X 4y

012 3456 3456
4567
5678

The general schemeisthat if we have
z = xfly

then z isatable such that the value at row i columnj isgiven by applying f
dyadically to the pair of argumentsi {x andj {y. That is, z contains all possible
pairings of an item of x with an item of y. Here is another example:

x =: 'abc’ y = 'face' x =y

abc face

oNeoNe
(ool
OO
oNeoNe

The result shows, in thefirst row, thevalueof ' a* = ' face', in the second row
thevalueof ' b' =" face' and soon.

18.3 Classes

18.3.1 Self-Classify

Consider the problem of finding the counts of letters occurring in a string (the
frequency-distribution of |etters). Here is one approach.

We form atable testing each letter for equality with the nub.

y =: 'hook’ nub y (nub y) =y

hook hok 1000
0110
0001

The expression ((nub y) =/ y) canbeabbreviated as (= y) . The monadic case
of the built-in verb = is called " Self-classify").

y nub vy (nub y) =/vy =y

hook hok 1000 1000
0110 0110
0001 0001

If we sum each row of = y we obtain the counts, in the order of the lettersin the
nub.

y =y "1 o=y

hook 1 121

ol —Ne
oOr o
— OO

The counts can be paired with the letters of the nub:

y nub vy (nub y) ;" 0 (+ " 1 =y)

hook hok

18.3.2 Classification Schemes

Gardeners classify soil-types as acid, neutral or alkaline, depending on the pH
value. Suppose that a pH lessthan 6 is classed as acid, 6 to 7 is neutral, and more
than 7 as akaline. Here now isaverb to classify a pH value, returning A for acid, N

for neutral and L for alkaline (or limy).
classify == ({ & "ANL') @ ((> & 6) + (> & 7))

classify 6 classify 4.8 5.1 6 7 7.1 8

N AANNLL

Thecl assi fy function we can regard as defining a classification scheme. The
letters ANL, which are in effect names of classes, are called the keys of the scheme.

18.3.3 The Key Adverb

Given some data (alist, say), we can classify each item to produce a list of
corresponding keys.

data =: 756 4 8 k =: classify data

75648 NANAL

We can select and group together all the datain, say, class A (all the data with key
A):

dat a Kk k = "A (k ="A) # data

75648 NANAL 01010 54

Now suppose we wish to count the items in each class. That is, we aim to apply the
monadic verb # separately to each group of items al of the same key. To do this
we can use the built-in adverb /. (slash dot, called "Key").

dat a k =: classify data k # /. data

75648 NANAL 221

For another example, instead of counting the members we could exhibit the
members, by applying the box verb <.

dat a k =0 classify data k < /. data

75648 | NANAL HR R
|7 6|5 4|8
e

The verb we apply can discover for itself the class of each separate argument, by
classifying the first member: Here the verb u produces a boxed list: the key and
count:

u= (classify @ {.) ; #

dat a k =: classify data k u/. data

75648 NANAL

The general scheme for the "Key" adverb isasfollows. In the expressonx u /.
y, wetakey to bealist, and x isalist of keys of corresponding items of y
according to some classification scheme, and u is the verb to be applied separately
to each class. The schemeis:

X ul/l. vy means (=x) (u@#%) vy

To illustrate:
y 45678

X classify vy
u <

y X = X (=x) (u©@#) vy XxXul/l.y
4567 AANNL | 1100 S S
8 0 | 4 5|6 7|8 | 4 5|6 7|8
0011 S T
0
00O00O
1

We see that each row of =x selectsitemsfromy, and u isapplied to this selection.

18.3.4 Letter-Counts Revisited

Recall the example of finding the counts of lettersin a string.

y =: 'LETTUCE =y (nub y) ; " 0+ "1 (=1Y)
LETTUCE 1000000 +- +- +
0100001 | L| 1]
0011000 +- +-+
0000100 | E| 2]
0000010 +- +-+
| T| 2]
+- -+
| U 1]
+- -+
| C 1]
+- -+

Here isavariation. We note that we have in effect a classification scheme where
we have as many different classes as different letters: each letter is (the key of) its
own class. Thus we can write an expression of theformy u /. .

The applied verb u will see, each time, alist of letters, all the same. It counts them,
with #, and takes the first, with { . , to be alabel for the class.

u= {.; #
y =Yy yul.y
LETTUCE 1000000 +- +- +
0100001 | L] 1]
0011000 +- +- +
0000100 | E| 2]
0000010 +- +- +
| TI 2|
+- +- +
| Ul 1]
+- +- +
| C 1]
+- +- +

18.4 Relations

Suppose there are a number of publications, such as:

. "Pigs' by Smith, on the subject of pigs
. "Pets' by Brown, on cats and dogs
. "Dogs' by Smith and James, on dogs

and we aim to catalog such publications. A suitable data structure for such a
catalog might be a table relating authors to titles and another table relating titles to
subjects. For example:

author | title
Smith | "Pigs’
Brown | "Pets’ title | subject
Smith | "Dogs"
James | "Dogs"
"Pigs’ pigs
"Pets’ dogs
"Pets’ cats

"Dogs’ dogs

Such tables we may call "relations’. The order of the rowsis not significant.
Here,for the sake of ssimplicity, we will stick to relations with two columns.

Now we choose a representation for our relations. For afirst approach, we choose
tables of boxed strings. The authors-titlesrelation is:

] AT = (". ;. 2) 0: 0
"Smth' ; 'Pigs'
"Brown' ; 'Pets'
"Smth' ; 'Dogs'
‘James’ ; ' Dogs'
)
+----- +----+
| Sm t h| Pi gs|
+----- +----+
| Brown| Pet s
+----- +----+
| Sm t h| Dogs|
+----- +----+
| James| Dogs|
+----- +----+

and thetitles-subjectsrelation is:

] TS = (". ;. _2) 0: 0
"Pigs' ; 'pigs'
'Pets' ; 'cats'
"Pets' ; 'dogs'
' Dogs' ; 'dogs'
)

o
| Pi gs| pi gs|
o
| Pet s| cat s|
o
| Pet s| dogs|
o
| Dogs| dogs|
o

18.4.1 Join of Relations

From the authors-titles relation AT and the titles-subjects relation TS we can
compute an authors-subjects relation showing which author has written atitle on
which subject. We say that AT and TS are to be joined with respect to titles, and we

would expect the join to look like this:
+----- +----+
| Sm t h| pi gs|
+----- +----+

| Br own| cat s|
+----- +----+
| Br own| dogs|
+----- +----+
| Sm t h| dogs|
+----- +----+
| James| dogs|
+----- +----+

The plan for this section isto ook at afunction for computing joins, then at an
improved version, and then at the advantage of representing relations as tables of
symbols rather than boxed strings. Finally we ook at some performance
comparisons.

A method is as follows. We consider all possible pairs consisting of arow x from

table AT and arow y from table TS. Each pair x, y is of the form:
author; title; title; subject

If title matchesttitle, that is, item 1 matches item 2, then we extract author and
subject, that is, items 0 and 3. Verbs for testing and extracting from x, y pairs can
be written as:

test = 1& = 2&]
extr = 0 3 &{

and these verbs can be plugged into a suitable conjunction to do the pairing. In
writing this conjunction, we aim to avoid requiring the whole set of possible pairs
to be present at the same time, since this set may be large. We also aim to avoid

any duplicatesin the result. Here is afirst attempt.
PAIR=2: 0

z=. 008$%$"
for_x. x. do.

for_y. vy. do.
if. u x,y do. z = z, v.
end.

end.

~. Z

Thejoin verb can now be written as:

join = test PAIR extr
and we see:

AT TS

S +----+ R
| Sm t h| Pi gs| | Pi gs| pi gs]|
S +----+ R
| Br own| Pet s| | Pet s| cat s|
S +----+ R
| Sm t h| Dogs| | Pet s| dogs|
S +----+ R
| James| Dogs| | Dogs| dogs|
S +----+ R

X,y end.

AT join TS

Thej oi n verb as defined above is low, because thet est and ext r verbs are
appliedto asinglex, y pair at atime - they are scalar computations. Performance
will be better if we can give these verbs as much data as possible to work on at one
time. (Thisisauniversal rulein J). Vector or array arguments are better. Hereisa
revised vector-oriented version of PAI Rand j oi n, which still avoids building the

entire set of pairs.
VPAIR =1 2 : 0

z=. 00%"

for_x. x. do.

end.

vjoin =:

v. (#"1 u.)

test VPAIR extr

giving the same result as before:

AT join TS AT vjoin TS
S +----+ S +----+
| Sm t h| pi gs| | Sm t h| pi gs|
S +----+ S +----+
| Brown| cat s| | Br own| cat s|
S +----+ S +----+
| Br own| dogs| | Br own| dogs|
S +----+ S +----+
| Sm t h| dogs| | Sm t h| dogs|
S +----+ S +----+
| James| dogs| | James| dogs|
S +----+ S +----+

Representing relations as tables of boxed strings, as above, is less than efficient.
For arepeated value, the entire string is repeated. Values are compared by
comparing entire strings.

Now we look at another possibility. Rather than boxed strings, arelation can be
represented by atable of symbols.

18.4.2 What are Symbols?

Symbols are for efficient computation with string data. Symbols are a distinct data-
type, in the same way that characters, boxes and numbers are distinct data-types. A
symbol isascalar which identifies, or refersto, a string.

A symbol can be created by applying the built-in verb s: (lowercase s colon) to a

boxed string.
a =: s: < hello

Now the variable a has avalue of type symbol. We inspect this value in the usual
way':

a
“hello

and see that the value is displayed as the original string preceded by aleft-quote.
Even though a looks like a string when displayed, it isascaar.

a $ a # $ a

“hello 0

The original string is stored in a data-structure, maintained automatically by the J
system, called the symbol-table. Strings are not duplicated within the symbol-table.
Hence if another symbol b is created from the same string as a, then b isequal to a.

a b == s: < hello' b =a

“hello “hello 1

Notice that the comparison is ssimple scalar equality, with no need to compare the
origina strings.

Our relations above can be converted to arrays of symbols, and joined as before.

SAT =: s: AT sTS = s: TS SAT vjoin sTS

"Smith
“Pets
" Dogs
" Dogs

* Br own
"Smith
“Janes

Pi gs

“Pigs
" Pets
" Pets
* Dogs

pigs
“cats
“dogs

dogs

"Smith ¢

* Br own
* Br own

"Smith °

“Janes

“cats
“dogs

“dogs

pi gs

dogs

Symbols are lexicographically ordered to reflect the ordering of the original
strings. Hence tables of symbols can be sorted:

SAT

"Smith -

" Brown
"Smith
T Janmes

/:

Pi gs
"Pets
" Dogs
" Dogs

" Brown
" Janes
"Smth
"Smth

~ SAT

"Pets
" Dogs
" Dogs
Pi gs

18.4.3 Measurements Compared

Hereisautility verb giving time in seconds to evaluate an expression, averaged
over say 4 executions.
(8j5 &":) @ (4 & (6!:2))

time

The examples of relations above are too small for meaningful performance
measurements, so we make larger relations by replicating each say 100 times.

AT
TS
SAT
sTS

100 $ AT
100 $ TS

100 $ SAT
100 $ sTS

There are 4 cases to compare:

tl
t2
t3
t4d

time ' AT
time ' sSAT

time 'AT vjoin

join
join

TS
sTS
TS

time 'sSAT vjoin sTS

NB.
NB.
NB.
NB.

scal ar
scal ar
vect or
vect or

met hod,
met hod,
met hod,
met hod,

boxed strings
synbol s
boxed strings
synbol s

33%" '; 'strings'; 'synbols';'scalar';t1l;t2; 'vector';t3;t4

| scal ar| 10. 76841| 0. 49555|

| vector| 0.17658| 0.02611]

The built-in verb 7! : 5 gives the size of itsargument in bytes. A table of symbolsis
initself smaller than the corresponding array of boxed strings.

71:5 < sat' 7':5 < at'

1024 13824

However, we must also take into account the size of the underlying "symbol table",
which may be considerable. For more details, see the Dictionary.

Thisisthe end of Chapter 18

Copyright © Roger Stokes 2002. This material may be freely reproduced, provided that this copyright noticeis also
reproduced.

last updated 04 July 02

p19

Chapter 19: Numbers

The topics covered in this chapter are:

. Thedifferent kinds of numbers availablein J

. Special numbers (infinities and indeterminates)
. Notations for writing numbers

« How numbers are displayed

19.1 Six Different Kinds of Numbers

J supports computation with numbers of these kinds:

. booleans (or truth-values)

. integers

. real (or floating-point) numbers

. complex numbers

. extended integers (that is, arbitrarily large integers exactly represented)
. rationals (that is, pairs of extended integers)

Each kind of number has its own internal representation in memory. For example,
an array containing only the truth-values 0 and 1 is stored in a compact interna
form, called "boolean", rather than in the floating-point form. Similarly an array
containing only (relatively small) whole numbersis stored in a compact form
called "integer".

The choice of appropriate representation is managed entirely automatically by the J
system, and is not normally something the programmer must be aware of.
However, there is a means of testing the representation of anumber. Hereisa

utility function for the purpose.
types =: '"bool';"int';"'float'; ' conplex';"ext int';'rational’

type = > @ ({ &types) @ (1 4 8 16 64 128 &i.) @ (3 !:

0)

type 0=0 type 37 type 2.5 type 12345678901

bool i nt fl oat fl oat

19.1.1 Booleans

There are built-in functions for logical computation with boolean values. Giving

conventional names to these functions:
and Do,
or
not
not and
not or

+.

* -

+:

we can show their truth-tables:
P 41%$0011
q 41%$0101

p q p and q p or q not p p notand q

= OO
R OPEFr O
O OO
R R RO
OO R BF
ORrR R R

Further logical functions can be defined in the usual way. For example, logical
implication, with the scheme
pinplies ¢ means not (p and not Q)

is defined by not composed with the hook and not
imp = not @ (and not)

p q pinp q

PRk OO
P ORO
P OR R

We regard the booleans as numbers because they can be interpreted as having
arithmetic values. To illustrate, implication has the same truth-table as |ess-than-or-

equal:

pinpq p<q

P OR R
P OR R

For another example of booleans as numbers, the sum of the positive numbersin a
list is shown by:

z = 3 14 b= z>0 b * z + b * z

3_14 101 304 7

19.1.2 Integers

On a 32-bit machine integers range between 2147483648 and 2147483647.

The result of arithmetic with integersis converted to floating-point if larger than
the maximum integer.

maxi nt =: 2147483647 type maxint z = l+maxint type z

2147483647 i nt 2.14748e9 f1 oat

19.1.3 Floating-Point Numbers

A floating-point number is a number represented in the computer in such away
that: (1) there may be aafractiona part as well as awhole-number part. (2) afixed
amount of computer storage is occupied by the number, whatever the value of the
number. and therefore (3) the precision with which the number is represented is
limited to at most about 17 significant decimal digits (on a PC).

Examples of floating-point numbersare0. 25 2.5 12345678901

We will use the term "real" more or less interchangeably with "floating-point".

19.1.4 Scientific Notation

What is sometimes called "scientific notation” is a convenient way of writing very
large or very small numbers. For example, 1500000 may be written as 1. 5e6,
meaning 1.5 * 1076. The genera schemeisthat a number written in the form
XeY, whereY is a (positive or negative) integer means (X * 107Y).

3e2 1. 5e6 1.5e_4

300 1500000 0. 00015

Note that in 3e2 the letter e is not any kind of function; it is part of the notation for
writing numbers, just as a decimal point is part of the notation.

We say that the string of characters 3 followed by e followed by 2 isanumeral
which denotes the number 300. The string of characters 3 followed by 0 followed
by 0 is another numeral denoting the same number. Different forms of numerals
provide convenient ways to express different numbers. A number expressed by a
numeral is also called a"constant" (as opposed to avariable.)

We will come back to the topic of numerals. now we return to the topic of different
kinds of numbers.

19.1.5 Comparison of Floating-Point Numbers

Two numbers are regarded as equal if their differenceisrelatively small. For
example, we see that a and b have a non-zero difference, but even so the
expressiona = b produces "true".

a =2 1.001 b = a- 2" 45 a-»>b a=>b

1. 001 1. 001 2.84217e_14 1

If we say that the "relative difference” of two numbersis the magnitude of the
difference divided by the magnitude of the larger,
RD = (| @ -) (| @ >.)

then for a=b to be true, the relative difference (a RD b) must not exceed a small
value called the "comparison tolerance" which is by default 2~ _44

a RD b 27 44 a=hb

2.83933e_14 5.68434e_14 1

Thus to compare two numbers we need to compare relative difference with
tolerance. The latter comparison isitself strict, that is, does not involve any
tolerance.

Zero is not tolerantly equal to any non-zero number, no matter how small, because
the relative difference must be 1, and thus greater than tolerance.

tiny = l1le 300 tiny =0 tiny RDO

le_300 0 1

However, 1+t i ny istolerantly equal to 1.

tiny tiny =0 1 =tiny +1

1e 300 | 0 1

The value of the comparison tolerance currently in effect is given by the built-in
verb 9! : 18 applied to anull argument. It is currently 2~ _44.

91:18 "' 2" _44

5.68434e_14 5.68434e_14

Applying the built-in verb 9! : 19 to an argument y sets the tolerancetoy
subsequently. The following example shows that when the toleranceis 2~ _44, then
a = b but when the toleranceis set to zero it isno longer the casethat a = b.

(9!:19) 2n_44 a=m>b (91:19) O a==>b

The tolerance queried by 9! : 18 and set by 9! : 19 isaglobal parameter,
influencing the outcome of computations with =. A verb to apply a specified

tolerancet , regardless of the global parameter, can be writtenas= !. t. For

example, strict (zero-tolerance) equality can be defined by:
streq = =1. O

Resetting the global tolerance to the default value, we see:

(9':19) 2~ 44 a-»>b a=> a streq b

2.84217e 14 | 1 0

Comparlson with = istolerant, and so are comparisonswith<, <:, >, >, ~
and - : . For example, the difference a- b is positive but too small to make it true
that a>b

2.84217e_14 0

Permissible tolerances range between 0 and 2~ _35. That is, an attempt to set the
tolerance larger than 2~ _35 isan error:

(91:19) 27 35 | (9!:19) 2~ 34

error

The effect of disallowing large tolerancesis that no two different integers compare
equal when converted to floating-point.

19.1.6 Complex Numbers

The square root of -1 isthe imaginary number conventionally called "i"

complex number which is conventionally written as, for example, 3+i4isinJ
written as 3 4.

In Jan imaginary number is always regarded as a complex number with real part
zero. Thus"i", the square root of -1, can be written 0j 1.

i = 9% 1 |i *i | 0j1*0j1

A complex number can be built from two separate real numbers by arithmetic in
the ordinary way, or more conveniently with the built-in functionj . (lowercase|
dot, called "Complex").

3+0/1*4 | 3j. 4

3] 4 3j 4

A complex number such as 3j 4 isasingle number, ascalar. To extract itsreal part
and imaginary part separately we can use the built-in verb +. (plus dot, called
"Real/Imaginary"). To extract separately the magnitude and angle (in radians) we
can usethe built-in verb . (asterisk dot, called "Length/Angle").

+. 34 | *. 3j4

3 4 5 0.927295

Given amagnitude and angle, we can build a complex number by taking sine and
cosine, or more conveniently with the built-in functionr. (lowercaser dot, called

"Polar").
sin = 1 & o.
cos = 2 & o.
mag =: 5
ang =: 0.92729522 NB. radians

mag * (cos ang) + 0j1 * sin ang mag r. ang

3] 4 3j 4

A complex constant with magnitude X and angle (in radians) Y can be written in the
form Xar Y, meaning X r. Y. Similarly, if the angleis given in degrees, we can
write XadY.

S5ar 0. 9272952 5ad53. 1301

3j 4 3j 4

19.1.7 Extended Integers

A floating-point number, having a limited storage space in the computer's memory,
can represent an integer exactly only up to about 17 digits. For exact computations
with longer numbers, "extended integers' are available. An "extended integer” isa
number which exactly represents an integer no matter how many digits are needed.
An extended integer is written with the digits followed with the letter 'x'. Compare
the following:

a = *: 10000000001 b =1 *: 10000000001x

1le20 100000000020000000001

Here a is an approximation while b is an exact result.

type a type b

fl oat ext int

We can see that adding 1 to a makes no difference, while adding 1 to b does make
adifference:

(a+1) -a | (b+1) -b

19.1.8 Rational Numbers

A "rational number" is a single number which represents exactly the ratio of two
integers, for example, two-thirdsisthe ratio of 2 to 3. Two-thirds can be written as
arational number with the notation 2r 3.

The point of rationalsisthat they are are exact representations using extended
integers. Arithmetic with rationals gives exact results.

2r3 + 1r7 2r3 * 4r7 2r3 %5r7

17r 21 8r21 14r 15

Rationals can be constructed by dividing extended integers. Compare the
following:

2 %3 2xX % 3X

0. 666667 2r3

A rational can be constructed from a given floating-point number with the verb x:

x: 0.3 Xx: 1 %3

3r10 1r 3

A rational number can be converted to a floating-point approximation with the
inverse ofx: ,thatis, verbx: »~: 1

float =2 x: ~: 1 float 2r3

e - - - -+ 0. 666667
| x|~ 1
N R S

Given arational number, its numerator and denominator can be recovered with the
verb2 & x:,which givesalist of length 2.

nd =: 2 & X: nd 2r3

+o - - -+ 2 3
| 2] & x: |
+o - - -+

19.1.9 Type Conversion

We have numbers of six different types. boolean, integer, extended integer,
rational, floating-point and complex.

Arithmetic can be done with a mixture of types. For example an integer plus an
extended gives an extended, and arational times afloat gives afloat.

1 + 10M19x 1r3 * 0.75

10000000000000000001 0. 25

The general scheme isthat the six types form a progression: from boolean to
integer to extended to rational to floating-point to complex. We say that boolean is
the ssimplest or "lowest" type and complex as the most general or "highest” type

Where we have two numbers of different types, the one of lower typeis converted
to match the type of the higher. and the result is of the "higher".

type 1r3 type 193 z = 1r3, 193 type z

rational fl oat 0. 333333 0.333333 fl oat

19.2 Special Numbers

19.2.1 "Infinity"

A floating-point number can (on a PC) be no larger than about 1308, because of
the way it is stored in the computer's memory. Any arithmetic which attempts to
produce a larger result will in fact produce a special number called "infinity" and
written _ (underscore). For example:

1e308 * 0 1 2 1e400 1 %0

0 1e308 _

Thereisalso "negative infinity" written as__ (underscore underscore). Infinity isa
floating-point number:

type _
fl oat

19.2.2 Indeterminate Numbers

Infinity is equal to infinity. However, infinity minus infinity is not zero but rather a
special number called "indeterminate”, written as_. (underscore dot)

Indeterminate is equal to indeterminate. However indeterminate minus
indeterminate is not zero but indeterminate.

Computations with indeterminate may produce surprising results. Thus
indeterminate is not to be regarded as extending the meaning of "number”
according to some extended axiomatization of arithmetic. Rather, the view is
recommended that the only purpose of indeterminate is as a signal of numerical
error when it occursin the result of a computation.

Infinity isequal to itself and nothing else, and the same is true of indeterminate.
Thuswe have areliable (that is, determinate) test for occurrences.

19.3 Notations for Numerals

We have seen above numerals formed with the letterse, r andj , for example: 1e3,

2r 3, and 3j 4. Here we look at more letters for forming numerals.

A numeral written with letter p, of the form XpY meansX * pi ~ Y wherepi is
the familiar value 3.14159265....

pi = 1pl twopi =: 2pl 2p_1

3. 14159 6. 28319 0. 63662

Similarly, anumeral written with letter x, of theform Xxxy meansX * e ~ Y
where e isthe familiar value 2.718281828....

e = 1x1 2x_1 2 *e M 1

2.71828 0. 735759 0. 735759

These p and x forms of numeral provide a convenient way of writing constants
accurately without writing out many digits.

Finally, we can write numerals with a base other than 10. For example the binary
or base-2 number with binary digits 101 has the value 5 and can be written as
2b101.

2b101
5

The general scheme isthat NoDDD. DDD is a numeral in number-base N with digits
DDD. DDD . With bases larger than 10, we will need digits larger than 9, so we take
letter ' a' asadigit withvalue 10, ' b' withvalue 11, and soonupto' z' with
value 35.

For example, letter ' f' hasdigit-value 15, so in hexadecimal (base 16) the
numeral written 16bf f hasthe value 255. The number-base Nis given in decimal.

16bff | (16 * 15) + 15

255 255

One more example. 10b0. 9 is evidently a base-10 number meaning "nine-tenths"

and so, in base 20, 20b0. f means "fifteen twentieths"
10b0. 9 20bh0. f
0.9 0.75

19.3.1 Combining the Notations

The notation-letterse, r,j ar ad p x and b may be used in combination. For
example we can write 1r 2p1 to mean "pi over two". Here are some further
examples of possible combinations.

A numeral in the form Xr Y denotes the number X%r. A numeral in the form XeYr z
denotes the number (XeY) % Z because e is considered beforer .

1.2e2 | (1.2e2) %4 | 1.2e2r4

120 30 30

A numeral inthe form Xj Y denotes the complex number (X j. Y) (thatis, (X +
(% _1) * Y).A numerd intheform XrYj Z denotesthe number (XrY) j. Z
becauser isconsidered before |

3r4 (3r4) j. 5 3r4j5

3r4a | 0.75)5 0.75j 5

A numeral in the form XpY denotes the number X* pi ~Y. A numeral in the form
Xj YpZ denotes (Xj Y) *pi ~Z becausej isconsidered before p.

3j 4p5 (3j4) * pi M5

918. 059) 1224. 08 918. 059j 1224. 08

A numeral in the form XbY denotes the number Y- i n- base- X. A numera in the
form XpYbZz denotes the number z- i n- base- (XpY) because p is considered before
b.

(3*pi)+5 | 1plb35

14. 4248 14. 4248

19.4 How Numbers are Displayed

A number is displayed by Jwith, by default, up to 6 or 7 significant digits. This
means that, commonly, small integers are shown exactly, while large numbers, or
numbers with many significant digits, are shown approximately.

10 ~ 3 2.7182818285 2.718281828 * 10 ™ 7

1000 2.71828 2.71828e7

The number of significant digits used for display is determined by a global variable
called the "print-precision”. If we define the two functions:

ppqg 91!: 10 NB. print-precision query

pps 91!: 11 NB. print-precision set

then the expression ppg ' ' givesthe value of print-precision currently in effect,
while pps n will set the print-precision to n.

ppq ' e =: 2.718281828 pps 8 e

6 2.71828 2.7182818

19.4.1 The "Format" Verb

Thereisabuilt-in verb " : (doublequote colon, called "Format™). Monadic Format
converts a number into a string representing the number with the print-precision
currently in effect. In the following example, note that a is a scalar, while the
formatted representation of a isalist of characters.

a=1%3 " a $ ": a

0. 33333333 0. 33333333 10

The argument can be alist of numbers and the result is a single string.

b= 1%34 "I b $b $": b

0. 33333333 0. 25 0. 33333333 0. 25 2 15

Dyadic Format allows more control over the representation. The left argument is
complex: avalue of say, 8j 4 will format the numbersin awidth of 8 characters
and with 4 decimal places.

c = %1 +i. 22 w= 8j4": c $w
1 0.5 1. 0000 0.5000 2 16
0. 33333333 0. 25 0. 3333 0. 2500

If the width is specified as zero (asin say 0j 3) then sufficient width is allowed. If

the number of decimal placesis negative (asin 10j _3) then numbers are shownin
"scientific notation”

C 0j3 ": ¢ 10f 3 ": ¢
1 0.5 1. 000 0.500 1.000e0 5.000e_1
0. 33333333 0. 25 0. 333 0. 250 3.333e_1 2.500e_1

This brings usto the end of Chapter 19.

Copyright © Roger Stokes 2002. This material may be freely reproduced, provided that this copyright noticeis also
reproduced.

last updated 15 Mar 2002

p20

Chapter 20: Scalar Numerical
Functions

In this chapter we look at built-in scalar functions for computing numbers from
numbers. This chapter is a straight catalog of functions, with links to the sections
asfollows:

Ceiling Conjugate cos cosl cosh coshl

Decrement divide Double Exponential Factorial Floor
GCD Halve Increment LCM Logarithm Log, Natural
Magnitude Minus multiply Negate OutOf PiTimes

Plus power Pythagorean Reciprocal Residue Root
Signum sin sin'1 sinh sinh-1 Square

SquareRoot tan tan'! tanh tanh-1

20.1 Numbers from Numbers

20.1.1 Plus and Conjugate
Dyadic + is arithmetic addition.
2 +2 | 34+5/4 | 2r3+ 1r6

4 8j 8 5r6

Monadic + is "Conjugate”. For areal number y, the conjugate isy. For a complex
number xj y (thatis,x + 0jy), theconjugateisx - 0jy.

+ 2 + 3] 4

2 3j 4

20.1.2 Minus and Negate
Dyadic - isarithmetic subtraction.
2 -2 | 3-0j4 | 2r3 - 1r6

0 3j 4 1r2

Monadic - is"Negate".

-2 | - 3j4

2 3j 4

20.1.3 Increment and Decrement

Monadic >: iscalled "Increment”. It adds 1 to its argument.

> 2 > 2.5 > 2r3 > 2] 3

3 3.5 5r3 3] 3

Monadic <: iscalled "Decrement”. It subtracts 1 from its argument.

< 3 < 2.5 < 2r3 <: 2j3

2 1.5 1r3 1j 3

20.1.4 Times and Signum
Dyadic * is multiplication.
2 * 3 | 31 * 22

6 4j 8

Monadic * iscalled "Signum". For areal number y, thevalueof (* y) is_10ro0
or 1 asy isnegative, zero or positive.

More generally, y may bereal or complex, and the signum isequivalenttoy % |
y. Hence the signum of a complex number has magnitude 1 and the same angle as
the argument.

y = 3j4 |y y %l y *y | *y

3j 4 5 0.6j0.8 | 0.6j0.8 | 1

20.1.5 Division and Reciprocal

Dyadic %is division.

2 %3

314 %2j1

12x

% 5X

0. 666667

2j 1

12r5

1 % 0is"infinity" buto % 0is0

1 %0

0

% 0

Monadic %is the "reciprocal™ function.

% 2

% 0j 1

0.5

0j 1

20.1.6 Double and Halve

Monadic +: isthe "double" verb.

+: 2.5 +: 3j4 +: 3X
5 6j 8 6
Monadic - : isthe"halve" verb:
-1 6 - 6.5 - 3j4 -1 3X
3 3.25 1.5j 2 3r2

20.1.7 Floor and Ceiling

Monadic <. (left-angle-bracket dot) is called "Floor". For real y thefloor of y isy
rounded downwards to an integer, that is, the largest integer not exceeding y.

For complex y, the floor lies within a unit circle center y, that is, the magnitude of
(y - <. y)islessthan1i.

y = 3.4j3.4 z

1
N
<
<
1
N

y-2

3.4j3.4 3j 3 0.4j0.4 | 0.565685

This condition (magnitude less than 1) means that the floor of say 3. 8j 3. 8 isnot
3j 3 but 4j 3 because 3j 3 does not satisfy the condition.

y = 3.8/3.8 Z | v - 33

I
N
<
<
1
N

3.8 3.8 4j 3 0. 824621 1.13137

Monadic >. iscalled "Ceiling". For real y the ceiling of y isy rounded upwards to
an integer, that is, the smallest integer greater than or equal to y. For example:

Ceiling applies to complex y

> 3.4j3.4 | > 3.83.8

3j 4 4j 4

20.1.8 Power and Exponentiation
Dyadic ~ isthe "power" verb: (x*y) isx raised-to-the-power y
10~ 2 | 10~ 2 | 100 » 1%

100 0.01 10

Monadic ~ is exponentiation (or antilogarithm): ~y means (e”y) wheree isEuler's
constant, 2. 71828. . .

Al A 0j1

2.71828 0. 540302j 0. 841471

Euler's equation, supposedly engraved on histombstoneis: e Pi +1 =0
(~ 0j1pl) + 1
0

20.1.9 Square

Monadic *: is"Square".

*. 4 ¥ 2j1

16 3j 4

20.1.10 Square Root

Monadic % is"Square Root".

% 9 | % 3j4 | 2j1* 21

3 2j 1 3j 4

20.1.11 Root

If x isintegral, thenx % vy isthe"x'throot" of y:

3% 8 | 3% 8

More generaly, (x % vy) isanabbreviationfor (y ~ % x)

x =2 3 3.1 X % 8 8 N %X

3 3.1 2 1.95578 2 1.95578

20.1.12 Logarithm and Natural Logarithm

Dyadic ~. isthe base-x logarithm function, that is, (x ~. y) isthelogarithm of y
to basex :

10 ~. 1000 2" 8

Monadic ~. isthe "natural logarithm" function.

2.71828 1

20.1.13 Factorial and OutOf

The factoria function is monadic! .

I 012 34 I Bx 6X 7X 8X

1126 24 120 720 5040 40320

The number of combinations of x objects selected out of y objectsis given by the
expressionx ! vy

20.1.14 Magnitude and Residue

Monadic| iscaled "Magnitude". For areal number y the magnitude of y isthe
absolute value:

2 ‘

More generally, y may berea or complex, and the magnitude is equivalent to (%
y * +vy).

y = 3j4 |y * +y % y * +y |y

3j 4 25 5 5

The dyadic verb | iscalled "residue”. the remainder wheny isdivided by x is
givenby (x | y).

10| 12 | 3] 2 1012345 |1.5] 3.7

2 12012012 0.7

If x | yiszero,thenxisadivisor of y:

4] 12 | 12 %4

The residue function applies to complex numbers:

a = 1j2 b=: 2j3 al b a| (a*b) (b-1j1) %a

1j 2 2j 3 1j 1 0 1

20.1.15 GCD and LCM

The greatest common divisor (GCD) of x andy isgivenby (x +. y).Readsand

rationals in the domain of +. .

6 +. 15 | 6 +. 15 | 2.5 +. 3.5 | 6r7 +. 15r7

3 3 0.5 3r7
Complex numbers are also in the domain of +. .

a=: 1j2 | b=:2j3 | ¢=:3j5 | (a*b) + (b*c)

1j 2 2] 3 3] 5 2] 3

If x andy are complex, thenx +. y may differ fromy +. x.

1 +.

0j 1

0j1 +.

1

0j 1

We can see that the same result is produced by Euclid's algorithm for (x GCD vy),
which is: if y=0 then x, otherwise (x| y) GCD x. Hereisaverb E, to model the

algorithm.

E = (I E[) [@ (]=0:)

6 E15 | 1+ 0j1 | 1EO01 |0j1+ 1 | 0j1E1
3 1 1 0j 1 0j 1

The Least Common Multiple of x andy isgivenby (x *. y).

(2 * 3) *. (3 *5) | 2¢3*5

30 30

20.2 Circle Functions

20.2.1 Pi Times

Thereisabuilt-in verb o. (lower-case o dot). Monadic o. iscalled "Pi Times'; it
multiplies its argument by 3.14159...

o. 1 0. 2 0. 1r6

3. 14159 6. 28319 0. 523599

20.2.2 Trigonometric and Other Functions

If y isan anglein radians, then the sine of y isgiven by the expression1 o. .
The sine of (pi over 6) is0.5

y =2 0. 1r6 1o vy

0. 523599 0.5

The general schemefor dyadico. isthat (k o. y) means: apply toy afunction
selected by k. Giving conventional names to the available functions, we have:

sin = 1 &o0. NB. sine
cos =: 2 & 0. NB. cosine
tan = 3 & 0. NB tangent

si nh
cosh
t anh

asin
acos
at an

asin
acos
at an

h
h
h

0. 523599

N o
Ro Ro R Ro Qo o
o o

(o
Ro Ro Ro
o

°

o

°

siny

0.5

NB.
NB.
NB.

NB.
NB.
NB.

NB.
NB.
NB.

asin siny

0. 523599

hyper bol i ¢ sine
hyper bol i ¢ cosi ne
hyper bol i ¢ tangent

nverse
nverse
nverse

nverse
nverse
nverse

si ne
CcOSi ne
t angent

hyper bol i ¢ sine
hyper bol i ¢ cosi ne
hyper bol i ¢ tangent

20.2.3 Pythagorean Functions

There are also the "pythagorean™functions:
0.

o~ PMO
ocooo

0.6

0.

6

<K KKK

nmeans
nmeans
nmeans
nmeans
nmeans -

0o vy

0.8

%
%
% -
%
% -

%

0.8

yn2
yn2
yn2
yn2
yn2

+ o+ + +

1 - yh2

Thisisthe end of chapter 20

Copyright © Roger Stokes 2002. This material may be freely reproduced, provided that this copyright noticeis also
reproduced.

last updated 16 Mar 2002

p21

Chapter 21: Factors and
Polynomials

In this chapter we look at the built-in functions p: , g: and p.

21.1 Primes and Factors

The built-in function monadic q: computes the prime factors of a given number.

g: 6 q: 8 gq: 17 * 31 g: 1 + 2730

2 3 222 17 31 5 5 13 41 61 1321

The number 0 isnot in the domain of g: The number 1 isinthe domain of q: , but
is regarded as having no factors, that is, itslist of factorsis empty.

error 0

For large numbers, the value can be given as an extended integer to avoid adomain
error,

q:. 1 + 2731 q:. 1 + 2731x

error 3 715827883

A prime number is the one and only member of itslist of factors. Hence atest for
primality can readily be written as the hook: member-of-its-factors

pr =. e. Q: pr 8 pr 17 pr 1

Any positive integer can be written as the product of powers of successive primes.

Some of the powerswill be zero. For example we have:
9 = (270) * (3%2) * (5~0) * (7°0)
1

Thelist of powers, here0 2 0 0 ... canbegenerated with dyadic q: . The left
argument x specifies how many powers we choose to generate.

4 q: 9 3 g 9 29 9 19 9 6 g 9

0200 020 0 2 0 020000

Giving aleft argument of "infinity" (_) means that the number of powers
generated isjust enough, in which case the last will be non-zero.

g 9 _q. 17 * 31

02 00000010001

Thereis abuilt-in function, monadic p: (lowercase p colon) which generates prime
numbers. For example (p: 17) isthe 18th prime.

p: 0123456 p: 17

2357 11 13 17 61

On my computer the largest prime which can be so generated is between p: 2726
andp: 2727.

p: 2726 p: 2727 p: 2"27x

1339484207 error error

21.2 Polynomials

21.2.1 Coefficients

If x isavariable, then an expression in conventional notation such as
a+bx+cx2+dx3+ ..

Issaid to be apolynomial in x. If we write Cfor thelist of coefficientsa, b, c, d
. and assign avalue to x, then the polynomial expression can be writteninJin
thefoom+/ C* x ~i. # C

C= 101 X=:2

101 2

C #C i . #C X xNi oL #HC Cx™i . #C +/ CxMi.# C
101 3 012 2 124 104 3

The dyadic verb p. allowsusto abbreviate this expressionto C p. x,

+/ CxNi# C Cp. x

The scheme isthat, for alist of coefficients C:
Cp. x means + C* x™Mi. #C

A polynomial function is conveniently written in the form C&p.

p=-_1012&p. p 012

10 1&p. 103

Thisform has a number of advantages. compact to write, efficient to evaluate and
(aswe will see) easy to differentiate.

21.2.2 Roots

Given alist of coefficients C, we can compute the roots of the polynomial function
C&p. by applying monadic p. to C.

C p = C&np. Z = p. C

2101 1 0 1&p. e
|1]1 _1f
o oo+

We see that the result z is a boxed structure, of theform M R, that is, multiplier m
followed by list-of-roots R. We expect to see that p applied to each root in R gives
zero.

'MR = Z | R p R

+-4--- -4 1 1 00
|11 _1f
AR N

The significance of the multiplier Mis asfollows. If wewriter, s, t... forthelist
of rootsR,
'r s' = R

then Mis such that the polynomial C p. x can be written equivaently as
M* (x-r)*(x-s)
3

or more compactly as
M* */x-R
3

We saw that monadic p. , given coefficients C computes multiplier-and-roots M R.
Furthermore, given M R then monadic p. computes coefficients C

C MR = p. C p. MR
101 +-4----+ 101
1111 _1f
-4 -+

21.2.3 Dyadic p. Revisited

We saw above that the left argument of p. can be alist of coefficents, with the
scheme

Cp. x is + C* x ~i. #c

The left argument of p. can also be of theformmnul tiplier;list-of-roots.In
this way we can generate a polynomial function with specified roots. Suppose the
rootsaretobe2 3

p = (1, 2 3) &p. p 2 3

(1;2 3)&p. 00

The schemeis that
(MR p. x means M* */ x - R

When M Risp. Cthenweexpect (MR p. x tobethesameasC p. x

C MrR=: p.C MR p. X Cp. x
2101 +-4---- 4 3 3
|11 _1f
+-4--- -4

21.2.4 Multinomials

Where there are many zero coefficientsin a polynomial, it may be more
convenient to write functionsin the "multinomial” form, that is, omitting terms
with zero coefficents and instead specifying alist of coefficient-exponent pairs.
Hereis an example. With the polynomial _1 0 1 & p. , the nonzero coefficents
arethefirst and third, _1 1, and the corresponding exponentsare0 2. Weform
the pairsthus:

coeffs == 11 exps=: 0 2 pairs =: coeffs ,. exps

11 0 2 10

12

Now the pairs can be supplied as boxed left argument to p. We expect the results
to be the same as for the original polynomial.

X pairs (< pairs) p. x 1 01p. X

With the multinomial form, exponents are not limited to non-negative integers. For
example, with exponents and coefficients given by:

E=0.5_123
C= 111

then the multinomia form of the functionis:
f == (<C.E &p.

and for comparison, an equivalent function:
g=:3:"'4/ C*y. "E

2 | 0.0337641j 3.49362 | _0.0337641j 3. 49362

Thisisthe end of Chapter 21.

Copyright © Roger Stokes 2001. This material may be freely reproduced, provided that this copyright notice,
including this provision, is a so reproduced.

last updated 09 Jan 2001

p22

Chapter 22: Vectors and
Matrices

In this chapter we look at built-in functions which support computation with
vectors and matrices.

22.1 The Dot Product Conjunction

Recall the composition of verbs, from Chapter 08 p8. A sum-of-products verb can
be composed from sumand pr oduct with the @ conjunction.

P=234 Q=102 |P*Q |+ P*Q P(+ @ *) Q

2 34 102 208 10 10

Thereisaconjunction. (dot, called "Dot Product"). It can be used instead of @ to
compute the sum-of-products of two lists.

P Q P(+ @ *) Q | P(+ . *) Q

2 34 102 10 10

Evidently, the. conjunction isaform of composition, avariation of @ or @ We
will see below that it is more convenient for working with vectors and matrices.

22.2 Scalar Product of Vectors

Recall that Pisalist of 3 numbers. If we interpret these numbers as coordinates of
apoint in 3-dimensional space, then P can be regarded as defining a vector, aline-

segment with length and direction, from the originat 0 0 0 to the point P. We can
refer to the vector P.

With P and Qinterpreted as vectors, then the expressionP (+/ . *) Qgiveswhat
is called the "scalar product” of P and Q. Other names for the same thing are "dot
product”, or "inner product", or "matrix product”, depending on context. In this
chapter let us stick to the neutral term "dot product”, for which we define a
function dot :

dot =1 +/ . * P Q P dot Q

+* 234 102 10

A textbook definition of scalar product of vectors P and Q may appear in the form:
(magnitude P) * (magnitude Q * (cos al pha)

where the magnitude (or length) of avector isthe square root of sum of squares of
components, and al pha is the smallest non-negative angle between P and Q. To
show the equivalence of thisform with P dot Q we can define utility-verbs ma for
magnitude-of-a-vector and ca for cos-of-angle-between-vectors.

ma % @ (+ @ *:)

ca 4 @ '"(-/ *: b,(m x.-y.), ¢) % (2*(b=.m x.)*(c=. m

y-))'

We expect the magnitude of vector 3 4 to be 5, and expect the angle between P
and itself to be zero, and thus cosineto be 1.

m 3 4 PcaP

then we see that the dot verb is equivalent to the textbook form above

P Q P dot Q (m P)*(ma Q*(P ca Q

234 102 10 10

22.3 Matrix Product

The verb we called dot is"matrix product” for vectors and matrices.

M= 34 ,: 23 V= 35 V dot M M dot V M dot M

34 35 19 27 29 21 17 24

2 3 12 17
Tocomputez =: A dot Bthelast dimension of A must equal the first dimension
of B.

A= 25%1

B=54%2

$ A $ B Z =: A dot B $ 7

25 54 10 10 10 10 2 4
10 10 10 10

The example shows that the last-and-first dimensions disappear from the result. If
these two dimensions are not equal then an error is signalled.

$ B $ A B dot A

514 25 error

22.4 Generalisations

22.4.1 Various Verbs

The"Dot Product" conjunction forms the dot-product verb with (+/ . *) . Other
verbs can be formed on the pattern (u. v) .

For example, consider arelationship between people: personi isachild of person
], represented by a square boolean matrix true at row i column j. Using verbs +.
(logical-or) and *. (logical-and). We can compute a grandchild relationship with
theverb (+./7 . *.).

g = +. [/ . *

Taking the "child" relationship to be the matrix C:
C=44%$0000100010000100

Then the grandchild relationship is, so to speak, the child relationship squared.

C G= CgC
0000 | 0000
1000 |0000O
1000 |0000O
0100 | 1000

We can see from C that person 3 isachild of person 1, and person 1 isachild of
person 0. Hence, as we see in G person 3 is agrandchild of person O.

22.4.2 Symbolic Arithmetic

As arguments to the "Dot Product” conjunction we could supply verbsto perform
symbolic arithmetic. Thus we might symbolically add the strings' a* and' b' to
get thestring ' a+b' . Hereisasmall collection of utility functions to do some
limited symbolic arithmetic on strings.

pa = (&) @ (,&)")
cp = pa @ (+./ @ ('+-* &e.))
synbol =1 (1 : (":";'< (cp >x.), u., (cp>y.)"))(" 00
splus =: '+ synbol
smnus = '-' synbol
sprod =: '*' synbol
a=<a b= <b c= <c
a b C a splus b a sprod b splus ¢
+- + +- + +- + +---+ S RS +
| al | b] | cl | a+b] | a* (b+c) |
+- + +- + +- + +---+ S RS +

Asavariant of the symbolic product, we could elide the multiplication symbol to
give an effect more like conventional notation:
sprodc =: '' synbol

a sprod b a sprodc b

+-- -+ +- -+
| a* b| | ab|

+-- -+ +- -+

Now for thedot verb, whichwerecall is(+/ . *),asymbolicversionis:

sdot =: splus / . sprodc
To illustrate:

S= 32%<"0 "'abcdef'

T=238%<"0"pgrstu

S T S sdot T

+- +- + +- +- -+ +--- - - +--- - - +--- - - +
| a| bl | plalr] | aptbs| aq+bt | ar +bu

+- +- + +- +- -+ +--- - - +--- - - +--- - - +
| c| d| | s|t| ul | cp+ds| cq+dt | cr +du

+- +- + +- +- -+ +--- - - +--- - - +--- - - +
| e| | | ep+f s| eq+ft| er +f u|
+- +- + +--mm - +--mm - +--mm - +

22.4.3 Matrix Product in More than 2 Dimensions

An examplein 3 dimensions will be sufficiently general. Symbolically:

A=123% <"0 "abcdef’
B=1322% <"0"'mopgrstuvwx'
A B Z =: A sdot B $A $B $Z
+-+-+-+ +- +- + S S 1 2 32 1 2
| al b| c| | m n| | am+(bg+cu) | an+(br +cv) | 3 2 2 2
+- +- +- + +- +- + S NS Fomm e - -
| d| e| f] | of pl | ao+(bs+cw) | ap+(bt +cx) |
+-+-+-+ +- +- + S L

+- +- + S L

| q| r| | dmt(eq+fu) | dn+(er+fv)|

+- +- + S L

| s|t]| | do+(es+fw) | dp+(et +f x) |

+- +- + S L

+- +- +

| uf v|

+- +- +

| W x|

+- +- +

The last dimension of A must equal the first dimension of B. The shape of the result
Z isthe leading dimensions of A followed by the trailing dimensions of B. The last-
and-first dimension of A and B have disappeared, because each dimensionless
scalar in z combines a"row" of Awith a"column" of B. We seein the result z that
each row of A is combined separately with the whole of B.

22.4.4 Dot Compared With @:

Recall from Chapter 07 p7 that adyadic verb v has aleft and right rank. Here are

some utility functionsto extract the ranks from a given verb.
RANKS 1: 'x. b. 0O
LRANK 1: "1 { (x. RANKS)' NB. left rank only

* RANKS * LRANK

00O 0

The general scheme defining dyadic verbs of the form (u. v) is:
u. v means u @ (v " (1+L,)) where L = (v LRANK)

or equivalently,
u. v means (u @ v) " (1+L,)

and hence
+ . * means (+/ @ *)" 1

and so we see the difference between . and @ . For simple vector arguments they
are the same, in which case the dimensions of the arguments must be the same, but
thisis not the condition we require for matrix multiplication in general, where (in
the example above) each row of A is combined with the whole of B.

22.5 Determinant

Themonadicverb (- / . *) computes the determinant of a matrix.
det =2 - [. *

M det M | (3*3)-(2*4)
34 1 1
2 3
Symbolically:
sdet =: smnus / . sprodc
S sdet S
+- +- + o m e e e e e e e e e e oo +
| a| bl | (a(d-f))-((c(b-f))-(e(b-d)))]
+- +- + o m e e e e e e e e e e oo +
| | dl
+- +-+
| el fl
+- +-+

22.5.1 Singular Matrices

A matrix issaid to be singular if the rows (or columns) are not linearly
independent, that is, if one row (or column) can be obtained from another by
multiplying by a constant. A singular matrix has a zero determinant. In the
following example A is a (symbolic) singular matrix, with mthe constant multiplier.

A= 22%'a;'b;'m;" nbd sdet A

-4 -+ N T — +
la | b | | amb- mab]|
-4 -+ N T — +
| ma| nb|
-4 -+

We see that the resulting term (anb- mab) must be zero for all a, b and m

22.6 Matrix Divide

22.6.1 Simultaneous Equations

The built-in verb % (percent dot) is called "Matrix Divide". It can be used to find
solutions to systems of simultaneous linear equations. For example, consider the
equations written conventionally as:

3x + 4y = 11

2x + 3y = 8

Rewriting as a matrix equation, we have, informally,
Mdot U=R

where Mis the matrix of coefficients U isthe vector of unknowns x, y and Risthe
vector of right-hand-side values:

M= 34 ,: 23 R = 11 8

11 8

N W
w b~

The vector of unknowns U (that is, x, y) can be found by dividing R by matrix m

M R U= R% M M dot U

11 8 12 11 8

N W
w b~

We seethat M dot UequalsR, that is, U solves the equations.

22.6.2 Complex, Rational and Vector Variables

The equations to be solved may be in complex variables. For example:
M R = 15j22 11j16 | U= R% M | Mdot U

3 4 | 15j22 11j16 1j 2 3j 4 15j 22 11 16
2 3

or inrationals. In this case both Mand R must be rationals to give arational result.

M=: 2 2 $ 3x 4x 2x 3x
R =: 15r22 11r 16
M R U= R% M M dot U

3 4 15r22 11r 16 _31r44 123r176 15r22 11r 16
2 3

In the previous examples the unknowns in U were scalars. Now suppose the
unknowns are vectors and our equations for solving are:

3x + 4y 15 22

2x + 3y 11 16

SO we write;
M=: 22%$3423
R=: 22%$ 15 22 11 16

M R U= R% M M dot U
3 4 15 22 12 15 22
2 3 11 16 3 4 11 16

The unknowns x and y arethe rows of U, that is, vectors.

22.6.3 Curve Fitting

Suppose we aim to plot the best straight line fitting a set of data points. If the data
pointsare x, y pairs given as:

X o 1 2

y 3.14.97

weam to find a and b for the equation:
y = a + bx

The 3 data points give us 3 equations in the 2 unknowns a and b. Conventionally:

1. a + 0. b = 3.1
1. a + 1. Db = 4.9
1. a + 2. Db = 7

so we take the matrix of coefficients Mto be
M= 32$101112

and dividey by matrix Mto get the vector of unknowns y, (that is, a, b)

M y U=y % M | Mdot U

3.14.97 3.05 1.95 3.05 5 6.95

Here we have more equations than unknowns, (more rows than columnsin M and
so the solutions U are the best fit to all the equations together. We see that M dot U
Is close to, but not exactly equal to, y.

"Best fit" means that the sum of the squares of the errorsis minimized, where the
errorsaregivenbyy - M dot U. If the sum of squaresis minimized, then we
expect that by perturbing U dightly, the sum of squaresisincreased.

+/ , *: (y - Mdot U +/ , *: y - Mdot U+ 0.01

0. 015 0. 0164

The method extends straightforwardly to fitting a polynomial to a set of data
points. Suppose we aim to fit
y = a + bx + cx?

to the data points:
x =0 1 2 3
y = 1 6 17 34.1

The four equations to be solved are:
1.a + bxg + cxg2 = yj

1 a+ bxy +cx2 =y,
l.a + bxy + cxp2 =y,
l.a + bX3 + CX32 = VY3

and so the columns of matrix Mare1, x, x”2,conveniently givenbyx ~/ 0 1
2

= X y U=y % M M dot U

A0 12

100 16 17 34.1 1.005 1.955 1.005 5.985
111 3. 025 17. 015 34.095
124

139

There may be more equations than unknowns, as this example shows, but
evidentlty there cannot be fewer. That is, inR % Mmatrix Mmust have no more
columns than rows.

22.6.4 Dividing by Higher-Rank Arrays

Hereisan exampleof U =1 R % M inwhich the divisor Mis of rank 3.

M= 322%$342303123123
R =: 21 42
M R U= R% M M dot U Mdot"2 1 U
3 4 21 42 _105 84 error 21 42
2 3 28 7 21 42
3 12 21 42
03
12
31
2 3

Because the dyadic rank of % is_ 2,
% b. 0
2 _ 2

in this example the whole of R is combined separately with each of the 3 matrices
inM That is, we have 3 separate sets of equations, each with the same right-hand-
side R Thus we have 3 separate solutions (the rows of U).

The condition R=M dot U evidently does not hold (because the last dimension of M
Isnot equal to thefirst of U), but it does hold separately for each matrix in Mwith
corresponding row of u.

22.7 Identity Matrix

A (non-singular) square matrix Mmdivided by itself yields an "identity matrix", |
say, suchthat (M dot 1) = M
M= 33$347004603

M Il == M% M M dot |
347 100 347
004 010 004
6 03 001 6 03

22.8 Matrix Inverse

The monadic verb % computes the inverse of amatrix That is, % Misequivalent
tol % Mfor asuitableidentity matrix |1 :

M I = I % M % M

34 |10 0 _0.125 0 _0.125
7 0 0. 166667 0. 166667

00 |01 0.25 _0.34375 0.25 _0.34375
4 0 0.125 0.125

60 |00 0 0

3 1 0.25 0 0.25 0

For avector Vv, the inverse Whas the reciprocal magnitude and the same direction.
Thus the product of the magnitudesis 1 and the cosine of the angle between is 1.

Vv W= % V (m V) * (mfa W V ca W

35 0. 0882353 0. 147059 1 1

Thisisthe end of Chapter 22.

Copyright © Roger Stokes 2002. This material may be freely reproduced, provided that this copyright noticeis also
reproduced.

|ast updated 17 Aug 2002

p23

Chapter 24: Names and Locales

In this chapter we look at locales. The interest of localesistwofold: as away of
organizing large programs, and (as we will come to in the next chapter) as the basis
of object-oriented programming in J.

24.1 Background

It is generally agreed that alarge program is best developed in severa parts which
are, as much as possible, independent of each other. For example, an independent

part of alarger program might be a collection of statistical functions, with its own
script-file.

For the things defined in an independent script, we expect to choose names for
those things more or less freely, without regard for what names may be defined in
other scripts. Clearly there may be a problem in combining independent scripts:
what if the same name accidentally receives different definitions in different
scripts? The Jfacility of the "locale" gives away to deal with this problem.

24.2 What are Locales?

After entering an assignment of the form (nanme =: sonet hi ng) we say we have
adefinition of nane. Every definition is stored in some region of the memory of
the J system called a"locale". Roughly speaking, locales are to definitions as
directories are to files. The important features of locales are:

. There can be several different locales existing at the same time.

. Eachlocae stores a collection of definitions.

. The same name can occur at the same time in different locales with
different definitions.

Hence a name of the form "name N as defined in locale L" is uniquely defined,

without conflict. Such aname can bewrittenasN_L_ (N underbar L underbar) and
iscalled a"locative name”. Finally

. Atany onetime, only onelocaleis current. The current locale is the one
whose definitions are available for immediate use.

Hence a plain name N commonly means "N as defined in the current locale".

Locales are neither nouns, verbs, adverbs nor conjunctions: that is, locales are not
values which can be assigned to variables or be passed as arguments to functions.
They do have names, but whenever we need to refer to alocale by name we do so
either with specia syntactic forms, (locative names such asN_L_) or by quoting
the name to form a string.

24.3 Example

Suppose we are interested in the correlation between the price of whisky and the
general level of employee salaries. Suppose also that we have available two scripts,
of independent origin, one with economic data and the other with statistical

functions. These script-files might have been created like this:
(0O: 0 (1!: 2) <'c:\econonmc.ijs'

y =: 1932 1934 1957 1969 1972 NB. years
s =: 1000 1000 3000 9000 11000 NB. sal aries
p = 1.59 1.68 2.00 4.50 5.59 NB. prices
)

(0: 0 (1!: 2) <'c:\statfns.ijs'
m= +/ %# NB. Mean
n=--m NB. Norm
V=m@ * @
n NB. Variance
s = % @ Vv NB. Standard Devi ati on
cC = m@ (*&n) NB. Covari ance
r- = c¢c %(*&s) NB. Correlation Coefficient
)

We aim to load these two scripts, and then hope to compute the coefficient of
correlation between prices p and salaries s asthe value of the expression(p r s).

Unfortunately we can see that the name s means different things in the different

scripts. If we were to load both scripts into the same locale, one definition of s
would overwrite the other. The remedy is to load the two scripts into different
locales.

Thereisaways alocale named base, and by default thisis usually current. We
load econoni c. i j s into the current locale (base) with the built-inverb (0 ! :
0).

(0 ': 0) <'c:\economc.ijs'

Next weload st at f ns. i j s into another locale which we choose to call, say,
st at . To do this with the minimum of new apparatus we can use the built-in verb
(18 ': 4).

(18 ': 4) < 'stat'

(0!': 0) < 'C\statfns.ijs'

(18 ': 4) < 'base'

Thefirst line creates the st at locale and makes it current. The second line loads
statfns.ijs intothe now-current localest at . The third line makes the base
locale current again, to restore the status quo.

At this point our data variables s and p are available because they arein base
which is current. The correlation-coefficient function r is not yet available,
becauseitisin st at whichisnot current.

The next step isto define the correlation-coefficient function to be r -as-defined-in-

locale- st at , using the locative form of namer _st at _
corr =: r_stat__

corr isavailable because it has just been defined in base (because base is
current). Everything we need is now available. We can compute the correlation
between salaries and prices.

s corr p | pcorr s p corr p

0. 993816 0. 993816 1

24.3.1 Review

What we have seen is the use of locative names to resolve name-conflicts between
independent scripts. What it took was arelatively small amount of ad-hoc further
definition.

In this tiny example the conflict was easily identified and could be easily fixed by
editing one of the scripts. However, the point is that we aim to avoid tampering
with independent scripts to get them to work together.

24.4 The Current Locale

Several locales may coexist, but at any onetime only oneis current. Thereisa

built-in verb (18 !: 5) which tells us the name of the current locale.

(18 !': 5 "' NB. show nane of current |ocale
+----+

| base|
+----+

The significance of the current localeisthat it isin the current locale that ssimple

names are evaluated:
S
1000 1000 3000 9000 11000

Notice that we get the value of s as defined in script econoni c. i j s which we
loaded into base, and not thevalue of s inst at f ns. i j s which was loaded into
localest at .

It isthe current locale in which new definitions are stored. To see what names are
defined in the current locale we can use the built-inverb (4 ': 1) withan

argumentof 0 1 2 3.
(4': 1) 0123 NB showall names in current |ocale
o

| corr|p|s|yl
T

foo = +/

(4'!':1) 0123
e R
| corr|foo|p|s]|y|
e R

Aswe saw above, we can change the current locale with the built-in verb (18 ! :

4) . We can makethe st at locale current with:
(18 ': 4) < 'stat'

and now we can see what names are defined in this locale with;
(41: 1) 0123
+o - - - - -

| clmnfrfs|v]

I M SR

and return to base again
(18 ': 4) < 'base'

24.5 The z Locale Is Special

The locale named z is special in the following sense. When aname is eval uated,
and a definition for that name is not present in the current locale, then the z locale
Is automatically searched for that name. Here is an example. We put into localez a
definition of avariable g, say.

(18 !': 4) < 'z

q = 99

(18 ': 4) < 'base'

Now we see that q is not present in the current locale (base) but nevertheless we
can evaluate the ssmple name q to get its value as defined in locale z.
(41:1) 0123
R T ik o
| corr|foo|p|s|yl|
R T ik o

99

Since we can find in z things which are not in base, locale z is the natural home
for functions of general utility. On starting a J session, locale z is automatically
populated with a collection of useful predefined "library” functions.

The names of these functionsin the z locale are all available for immediate use,
and yet the names, of which there are more than 100, do not clutter the base
locale.

We saw above the use of built-inverbssuchas(18 !': 4) and(4 !': 1).
However the library verbs of locale z are often more convenient. Hereis a small
selection:

conane "' show name of current locale

conl O show names of all locales

nanes '’ show all namesin current locale

nl "' show all namesin current locale (as a boxed list)
cocurrent 'foo locale f oo becomes current

clear 'foo remove all defnsfrom localef oo

coerase 'A';'B;'C eraselocalesABand C

We have seen that when aname is not found in the current locale, the search
proceeds automatically to the z locale. In other words, thereiswhat iscalled a
"path" from every locale to the z locale. We will come back to the subject of paths
below.

24.6 Locative Names and the Evaluation
of Expressions

24.6.1 Assignments

An assignment of theformn_L_ =: sonet hi ng assigns the value of sonet hi ng
tothenamen inlocaleL. LocaeL iscreated if it does not already exist. For
example:

nL =7

createsthenamen inlocale L with value 7. At this point it will be helpful to
introduce a utility-function to view all the definitionsin alocale. We put thisvi ew

function into localez :
VIEWZ 3:'(>,. ("' = ""&)@(5!':5"0) nl
vView z_ 3: '"VIEW o """ [lo = < y.'

If we make afew more definitions:
k L =0
nM = 2

we can survey what we haveinlocalesL and m

view 'L view ' M

o

>
1

N

\'

Returning now to the theme of assignments, the schemeis: if the current localeis
L,then(foo_M_ =: somethi ng) means.

1. evaluate sonet hi ng inlocaleL to get valueV say.

2. cocurrent 'M
3. foo = V
4. cocurrent 'L

For example:
cocurrent 'L’

view 'L’ view ' M k M = n-1 view ' M
k =2 0 n =2 6 k =: 6
n = 7 n = 2

24.6.2 Evaluating Names

Now we look at |ocative names occurring in expressions. The scheme (call this
scheme 2) is: if the current localeisL then (n_M) means

1. cocurrent 'M
2. evauate the namen to get avalue v

3. cocurrent 'L’
4. v

For example:
cocurrent 'L’

view 'L view ' M n M

24.6.3 Applying Verbs

Consider the expression (f _M_ n) . Thismeans. function f (asdefined in locale M
applied to an argument n (as defined in the current locale) In this case, the

application of f to n takes placein locale M Here is an example:
uM = 3: 'y.+k'

cocurrent 'L’

view 'L’ view ' M uM n
k =2 0 k =2 6 13
n =7 n =2

u=3: "y.+k'

We see that the argument n comes from the current locale L, but the constant k
comes from the locale (M) from which we took verb u. The scheme (call it scheme
3) is: if the current localeisL , then (f _M_ somet hi ng) means:

evaluate sonet hi ng inL to get avalue Vv say

cocurrent 'M

in locale M evaluate the expressionf V to get avalue R say
cocurrent 'L’

R

agrwWNE

Here is another example. The verb g istaken from the samelocalein which f is
found:

g L = +&1
g M = +&2
f M =g

cocurrent 'L’

view ' L' view ' M f M k

+&1

7_
JEa
o

24.6.4 Applying Adverbs

To begin, note that when an adverb is applied, names of verbs do not get evaluated.

=
1
+
N
1

Do ADV =1 @ z w ADV

+ * @z w@ z

The result is an expression for averb in terms of w, the argument, and z which
occurrsin the definition of ADvV

Here now is an example of an adverb referred to by alocative name. We enter
definitionsin fresh locales P and Q.

ubP = *&
v P = *&3
uQ = *&7
v_Q = *&5
AQ = @ v

make P the current locale, and apply adverb A Q to argument u to get verb D:
cocurrent 'P

view ' P view 'Q D= uAQ D1

u =: *& A= @V u@ v 6
v = *&3 u =: *&7
v = *&5

Evidently the result 6 is obtained by taking u and v from the current locale which is
P.

The schemeisthat if the current localeis P, and A is an adverb, the expression u
A _Q_ means.

1. evaluateu inlocale P to get avalue U say. (and if u isthe name of averb,
then the result Uisjust u.)

2. cocurrent Q

3. evaluate U Ainlocale Q Theresult isaverb, D say, defined in terms of
named verbs (u and v in this example.)

4. cocurrent P

5 D

We can demonstrate that the evaluation of u A_Q_takes placein locale Qby
forcing all named verbs to be evaluated. We apply the "fix" adverb to disclose the
definitions of the named verbs.

BQ = (@ v) f.

view ' P view ' Q D= uBQ D1
D= u@yv A= @V *&7T@ (*&5) 35
u = *& B= (@v) f.
v = *&3 u =: *&7

v = *&5

Evidently the argument u and the auxiliary verb v are both taken from locale Q.

24.7 Paths

Recall that the z locale contains useful “library” functions, and that we said thereis
apath from any localeto z.

We can inspect the path from alocale with the library verb copat h; we expect the

path from locale base to bejust z.
copat h ' base' NB. show path

A path is represented as a (list of) boxed string(s). We can build our own structure
of search-paths between locales. We will give base apath to st at and thento z,
using dyadic copat h.

("stat';"'z') copath 'base'

and check the result is as expected:
copat h ' base'

+- - - -+

| stat| z|

+- - - -+

With this path in place, we can, while base is current, find namesin base, st at

and z.
cocurrent 'base'

S NB. in base
1000 1000 3000 9000 11000

r NB. in stat
R +
0 +- +- +- +|

I

I

c
| *1 & s||
+- - +- +

+- +
| cl
||
||
S +

q NB. in z
99

Suppose we set up a path from L to M Notice that we want every path to terminate
at locale z, (otherwise we may lose access to the useful stuff in z) so we make the
path go from L to Mto z.

("M;"z") copath 'L’

If we access a name along a path, there is no change of current locale. Compare the

effects of referring to verb u viaalocative name and searching for u along a path.
cocurrent 'L’

view 'L’ view ' M uM O uo
ADV =. @z f = g 6 0
g = +&1 g = +&2

Kk = 0 k =2 6

n = 7 n = 2

w =+ u=3: "y.+k'

z = *

We see that in evaluating (u_M_ 0) thereisachange of locale to M so that the
variable k is picked up with itsvaluein Mof 6. In evaluating (u 0), whereu is
found along the path, the variable k is picked up from the current locale, with its
valueinL of 0.

When aname isfound along a path, it is as though the definition were temporarily
copied into the current locale. Here is another example.

view 'L’ view ' M f M O f 0

ADV =: @z f =9 2 1
g = +& g = +&2

Kk = 0 k = 6

n = 7 n = 2

w =+ u=3: "y.+k'

z = *

24.8 Combining Locatives and Paths

We sometimes want to populate alocale with definitions from a script-file. We
saw above one way to do this: in three steps:

(1) usecocurrent (or 18!: 4)tomove to the specified locale.
(2) execute the script-filewith 0! : 0
(3) usecocurrent (or 18! : 4) to return to the original locale.

A neater way is asfollows. We first define:
POP_z = 01!1: 0

and then to populate locale Qsay, from fileecononi c. i j s, we can write:
POP_ Q < 'c:\economc.ijs'

which works like this:

=

The POP verb isdefined in locale z.

2. Encountering POP_Q_ < ... the system makes |locale Qtemporarily
current, creating Qif it does not already exist.

3. The system looks for adefinition of POP. It does not find it in Q, because
POP is of course defined in localez.

4. The system then looks aong the path from Qto z and finds POP. Note that
the current locale is still (temporarily) Q.

5. The POP verb is applied to its argument, in temporarily-current locale Q.

6. The current locale is automatically restored to whatever it was beforehand.

Back to base. (If we are nipping about between locales it is advisable to keep track

of wherewe are.)
cocurrent <' base'

24.9 Indirect Locatives

A variable can hold the name of alocale as a boxed string. For example, given that

Misalocae,
loc = <'M

Then alocative name such ask_M_ can be written equivaently intheformk__| oc
(u underscore underscore |oc)

k M
6

k 1oc

The point of thisindirect formisthat it makes it convenient to supply locale-names
as arguments to functions.
NAMES =: 3 : O
| ocname =. <.
names__| ochane "'

)

NAMES ' L'
ADV ¢ k n w z

Thisisthe end of Chapter 24

Copyright © Roger Stokes 2002. This material may be freely reproduced, provided that this copyright noticeis also
reproduced.

last updated 15 Mar 2002

p24

Chapter 25: Object-Oriented
Programming

25.1 Background and Terminology

In this chapter "OOP" will stand for "object-oriented programming". Here isthe
barest thumbnail sketch of OOP.

On occasion, a program needs to build, maintain and use a collection of related
data, where it is natural to consider the collection to be, in some sense, awhole.
For example, a"stack" is a sequence of data items, such that the most-recently
added item isthe first to be removed. If we intend to make much use of stacks,
then it might be a worthwhile investment to write some functions dedicated to
building and using stacks.

The combination of some data and some dedicated functionsis called an object.
Every object belongs to some specific class of similar objects. We will say that a
stack is an object of the St ack class.

The dedicated functions for objects of agiven class are called the "methods’ of the
class. For example, for objects of the St ack class we will need a method for
adding anew item, and a method for retrieving the last-added item.

An object needs one or more variables to represent its data. Such variables are
called fields. Thus for a stack we may chooseto have asinglefield, alist of items.

In summary, OOP consists of identifying a useful class of objects, and then
defining the class by defining methods and fields, and then using the methods. By
organizing a program into the definitions of different classes, OOP can be viewed
as away of managing complexity. The simple examples which follow are meant to
Illustrate the machinery of the OOP approach, but not to provide much by way of
motivation for OOP.

We will be using a number of library functions. A brief summary of them is given
at the end of this chapter.

25.2 Defining a Class

25.2.1 Introducing the Class

For asimple example, we look at defining a class of Stack objects. A new classis

introduced with the library function cocl ass.

cocl ass ' St ack'
+----- +- +

| St ack] z|
+----- +- +

cocl ass isused for its effect, not its result. The effect of cocl ass isto establish
and make current anew locale called St ack. To verify this, we can inspect the

name of the current locale:
conane ''

25.2.2 Defining the Methods

A new object comesinto being in two steps. The first step useslibrary verb conew
to create a rudimentary object, devoid of fields, a mere placeholder. The second
step gives a new object its structure and initial content by creating and assigning
valuesto the field-variables.

We will deal with the first step below. The second step we look at now. It isdone
by a method conventionally called cr eat e (meaning "create fields', not "create
object"). Thisisthefirst of the methods we must define.

For example, we decide that a St ack object isto have asinglefield calledi t ens,
initially an empty list.
create =2 3 : 'itens = 0 $ O

The connection between this method and the St ack classisthat cr eat e has just
been defined in the current locale, which is St ack.

Thiscr eat e method isaverb. In this example, it ignores its argument, and its
result is of no interest: it is executed purely for its effect. Its effect will be that the
(implicitly specified) object will be set up to have asinglefield called i t ens asan
empty list.

Our second method is for pushing a new value on to the front of thei tens ina
stack.
push =: 3 : "# itens = (<y.) , itens

The push method isaverb. Itsargument y. isthe new value to be pushed. We
made a design-decision herethat y. isto be boxed and then pushed. Theresult is
of no interest, but there must be some result, so we choseto return (# it ems)
rather than justi t ens.

Next, methods for, respectively, returning and removing the "top" (most-recently
added) item on the stack.

top 3: '>{. itens'

pop 3: '"# itens = }. itens'

Finally, a method to "destroy" a St ack object, that is, eliminate it when we are

finished with it. For this purpose there is alibrary function codest r oy.
destroy =: codestroy

This completes the definition of the St ack class. Since we are still within the
scope of thecocl ass ' St ack' statement above, the current localeis St ack. To
use this class definition we return to our regular working environment, the base
locale.

cocurrent 'base’

25.3 Making New Objects

Now we are in aposition to create and use St ack objects. A new St ack is created
in two steps. Thefirst step usesthelibrary verb conew.

S =: conew ' St ack'

The result of conewwhich we assigned to S is not the newly-created object itself.
Rather, the value of S isin effect a unique reference-number which identifies the
newly-created St ack object. For brevity we will say "Stack S" to mean the object
referred to by S.

Stack S now exists but its state is so far undefined. Therefore the second step in
making the object isto use the cr eat e method to change the state of S to be an

empty stack. Sincecr eat e ignores its argument, we supply an argument of 0
create__ S O

Now we can push values onto the stack S and retrieve them in last-in-first-out
order. In the following, the expression (push__S ' hel | o' means: the method

push with argument ' hel | o' applied to object S.
push__S "hell o

1
push__S 'how are you?'
2
push__S ' goodbye’
3
pop_ SO
2
top_S O

how are you?

25.3.1 Dyadic Conew

The two steps involved in creating a new object, conewfollowed by cr eat e, can

be collapsed into one using dyadic conew. The scheme is that:
C =: conew 'd ass'
create_ C arg

can be abbreviated as:
C =: arg conew ' ass'

That is, any left argument of conewis passed to cr eat e, which is automatically
invoked. In thissimple St ack class, cr eat e ignores its argument, but even so one

step is neater than two. For example:
T = 0 conew ' Stack’
push_ T 77

1
push__T 88

2
top__TO

88

25.4 Classes and Objects are Locales

Recall from Chapter 24 p23 that the expression conl 0 produces alist of existing

locales.

conl O
R
| St ack| base|j | z|
R

We see that St ack isamongst thislist, and so a class-definition isalocale. The
methods of the St ack class are defined in the locale named St ack. We can view

this locale (using the vi ew utility function from the previous chapter.)
vi ew ' St ack’

COCLASSPATH =: ' Stack';'z'

create = 3: 'items = 0 $ 0O

destroy =: codestroy

pop = 3: '# itenms = }. itens’

push = 3: "#items = (<y.) , itens'
top = 3: '>{. itens

25.4.1 What objects?

Thelibrary verb cost at e produces a report showing what objects exist, and their

classes. Currently we have variables S and T each referring to a St ack object.

costate '
b Fommmm - +
| refs|id|creator|path |
b Fommmm - +
|S |0 | base | Stack z|
b Fommmm - +
| T | 1 | base | Stack z|
b Fommmm - +

Now look at the value of S. Thisvalue is aboxed character string consisting of
numeric digits:

This string is the name of alocale (a hame consisting only of numeric digits) and
thislocale contains the fields of object S. Thus objects are locales. We can view
them:

S vi ew >S vi ew >T

<' base'

+-+ COCREATOR =: <' base' COCREATOR
= 88; 77

| Of itens : <;._1 "|how are itens
+- + you?| hel | o'

The numeric names of object |ocales are shown in the cost at e report above under
the headingi d.

Let uslook at the cost at e report again.

costate '
b Fommmm - +
| refs|id|creator|path |
b Fommmm - +
|S |0 | base | Stack z|
b Fommmm - +

| T | 1 | base | Stack z|

What makes S a St ack object isthat there is a path from the S locale to the St ack
locale. We can inspect this path (also shown in the cost at e report):

copath S costate '

S +- + g S S +

| St ack]| z| | refs|id|creator]|path |

S +- + g S S +
|S |0 | base | Stack z|
g S S +
| T | 1 | base | Stack z|
g S S +

Recall from Chapter 24 p23 that, sinceS = <' 0' then the expression push__S 99
means:

1. changethe current localeto' 0' . Now thefields of object S, (that is, the the
i tens variable of locale' 0') are available.

. apply the push verb to argument 99. Sincepush isnotinlocale' 0',asearchis
made along the path from locale' 0' which takes usto locale St ack whence push
isretrieved before it is applied.

. Restore the current locale to the status quo.

25.5 Inheritance

Here we look at how a new class can build on an existing class. The main ideais
that, given some class, we can develop a new class as a specialized version of the
old class.

For example, suppose thereisaclass caled Col | ect i on where the objects are

collections of values. We could define a new class where, say, the objects are
collections without duplicates, and this class could be called Set . Then a Set
object isa specia kind of aCol | ecti on object.

In such a case we say that the Set classisachild of the parent class Col | ecti on.
The child will inherit the methods of the parent, perhaps modifying some and
perhaps adding new methods, to realize the special properties of child objects.

For a simple example we begin with a parent-class called Col | ecti on,
cocl ass 'Col |l ection’

Fomm oo oo +- +
| Col | ecti on| z|
Fomm oo oo +- +
create = 3 : 'itens = 0 $ O
add = 3: "#items = (<y.) , itens'
remove = 3 : '"#itenms = itens -. <y.'
inspect =2 3 : 'itens'
destroy =: codestroy

Herethei nspect method yields aboxed list of all the members of the collection.

A quick demonstration:
cocurrent 'base'

Cl = 0 conew 'Collection'
add__C1 'foo'
1
add__Cl1 37
2
renmove__ Cl 'f oo
1
inspect Cl1 O
+- -+
| 37]
+- -+

Now we define the Set class, specifying that Set isto be achild of Col | ecti on

with the library verb coext end.
cocl ass ' Set'

+---+- 4+

| Set| z|

e -+
coextend 'Col |l ecti on'
e +- +

| Set| Col | ecti on| z|
R LT +-+

To express the property that a Set has no duplicates, we need to modify only the

add method. Here is something that will work:
add =: 3 : "#itens = ~ (<y.) , itens

All the other methods needed for Set are already available, inherited from the
parent class Col | ect i on. We have finished the definition of Set and are ready to

useit.
cocurrent 'base'

sl =0 0 conew 'Set' NB. nake new Set object.
add_ s1 'a'
1
add__s1 'Db’
2
add_ s1 'a'
2
renove__sl 'pb'
1
inspect__s1 0 NB. shoul d have just one 'a
+-+
| al
+-+

25.5.1 A Matter of Principle

Recall the definition of the add method of class Set .

add_Set _
oo o m e e e e e e aoaooo- +

[3|:|# items =2 ~. (<y.) , itens|
oo o m e e e e e e aoaooo- +

It has an objectionable feature: in writing it we used our knowledge of the internals
of aCol | ecti on object, namely that thereisafield calledi t enms which is aboxed
list.

Now the methods of Col | ect i on are supposed to be adequate for al handling of
Col | ect i on objects. As amatter of principle, if we stick to the methods and avoid
rummaging around in the internals, we hope to shield ourselves, to some degree,
from possible future changes to the internals of Col | ect i on. Such changes might
be, for example, for improved performance.

Let'stry redefining add again, thistime sticking to the methods of the parent as
much as possible. We use our knowledge that the parent i nspect method yields a
boxed list of the membership. If the argument y. isnot among the membership,
then we add it with the parent add method.

add_Set = 3: 0
if. (<vy.) e. inspect O
do. O
el se. add _Collection_ f. vy. NB. see bel ow !
end.

)

Not so nice, but that's the price we pay for having principles. Trying it out on the
set si:
inspect__s1 0

+- +
| al
+- +

add__s1 ‘a
0

add__s1 v
2

inspect __s1 0
+- +- +
| z| al
+- +- +

25.6 Using Inherited Methods

Let us review the definition of the add method of class Set .

add_Set _
T +
[3]:]if. (<vy.) e. inspect O |
| | |do. O I
| | |else. add Collection_ f. . NB. see bel ow !|
| | |end. I
T +

There are some questions to be answered.

25.6.1 First Question

How are methods inherited? In other words, why isthei nspect method of the
parent Col | ect i on class available as a Set method? In short, the method is found
along the path, that is,

. aSet object suchass1 isalocae. It contains the field-variable(s) of the
object.

. when amethod of aclassis executed, the current locale is (temporarily) the
locale of an object of that class. This follows from the way we invoke the
method, with an expression of the form net hod__obj ect ar gunent .

. the path from an object-locale goes to the class |ocal e and thence to any
parent locale(s). Hence the method is found along the path.

. We seethat aSet object such ass1 hasapath to Set and thento Col | ecti on.
copath > sl
R +- +

| Set | Col | ecti on| z|
R +- +

25.6.2 Second Question

In the definition of add_Set _

add_Set _
. +

[3]:]1f. (<y.) e. inspect O

|do. O

| el se. add_Col l ection_ f. .

NB. see below !|

|
|
| | |end.
R T L L L L L L . +

Given that the parent method i nspect isreferred to assimply i nspect , why isthe
parent method add referred to asadd_Col | ect i on_7? Because we are defining a
method to be called add and inside it areference to add would be a fatal

circularity.

25.6.3 Third Question

why isthe parent add method specified asadd_Col | ection_ f. ?

Because add_Col | ect i on_ isalocative name, and evaluating expressions with
locative names will involve a change of locale. Recall from Chapter 24 p23 that
add_Col | ecti on_ 0 would be evaluated in locale Col | ect i on, which would be
incorrect: we need to be in the object locale when applying the method.

Sincef . isbuilt-in, by the time we have finished evaluating (add_Col | ecti on_
f.) we areback in the right locale with afully-evaluated value for the function
which we can apply without change of locale.

Would not some other adverb, say the identity- adverb] : do instead of f. ? No,
because] : doesnot evaluate its argument - itsresult is still alocative.

add_Col I ection_ f. add_Col l ection_]:

S +
|3|:|# itens =@ (<vy.) , itens|
S + RS +

25.7 Library Verbs

Hereisabrief summary of selected library verbs.

cocl ass ' foo' introduce new classf oo
coextend 'foo' | thisclasstobeachildof f oo
conew ' f 00' introduce a new object of classf oo
conl O list locale names

conl 1 list ids of object locales
costate '’ list objects and classesS
names foo_ '’ list the methods of classf oo
copath <' foo' show path of classf oo
codestroy "' method to destroy this object
copathnl x__ o show field-namesin object o
coname "' show name of current locale

This brings usto the end of Chapter 25

Copyright © Roger Stokes 2002. This material may be freely reproduced, provided that this copyright noticeis also
reproduced.

last updated 15 Mar 2002

P25

Chapter 26: Script Files

A file containing text in the form of lines of Jis called a script-file, or just a script.
By convention a script has a filename terminating with . i j s . The process of
executing the lines of Jin ascript-fileis called "loading” a script.

We write our own scripts for our particular programming projects. In addition, the J
system comes supplied with alibrary of predefined scripts of general utility.

We look first at built-in functions for loading scripts, and then at afew utilities.

26.1 Creating Scripts

Hereis an example of atiny script. It is supposed to show a number of definitions
and then a computation. The lines of Jlook like this:

plus = +
k = 2 plus 3
k plus 1

Scripts are usually created using a text editor, but here it is convenient to use Jto
create small examples of scripts as we need them. We can create this script with a
filename of say exanpl e. i j s using the built-inverb 1! : 2, like this:

(0 : 0 (1!':2) < 'c:\exanple.ijs'

plus =1 +
k = 2 plus 3
k plus 1

)

26.2 Loading Scripts

Thereisabuilt-in verb 0! : 1 to load a script. The argument isthe file-name asa
boxed string.
0!:1 < 'c:\exanple.ijs'

pl us

2 plus 3
k plus 1

We see on the screen atranscript, or execution log, showing the lines of the script
as they were executed, together with the result-values of any computations. The
definitions of pl us and k are now available:

pl us k

Now we look at some variations on this basic theme.

26.3 With or Without a Transcript

To suppress the transcript we can load with 0! : 0
0':0 < c:\exanple.ijs'

We see nothing on the screen. The value computed in the script for k plus 1is
discarded. Aswell as0! : 0 and 0! : 1 there are more variations of 0! : n - see the
Dictionary.

26.4 Local Assignments in Scripts

Hereis an example of a script.

(0: 0) (1':2) <'c:\exa.ijs
= 1+1

00 =: + & W

=

Nt =y

Suppose that variable w has the sole purpose of helping to define verb f oo and
otherwise wis of no interest. It would be better to make walocal variable.

w can, in effect, be made local to the execution of the script on two conditions. The
first isthat we assign to wwith =. in the same way that we assign to local variables
in explicit functions. Our revised script becomes:

(0: 0) (1':2) <'c:\exb.ijs'
1+ 1
+ & W

f oo

)

The second condition is that we load the script inside an explicit function, so there
Is something for wto be local to. (Outside any explicit definition that is, "at the top
level", =. isthesameas=:)

All that is needed is the merest wrapper of explicit definition around 0! : 0 or 0! : 1.

A suitable "localizing loader" verb might be:
LL = 3 : '0l:0 vy.'

If we now load this script
LL < 'c:\exb.ijs'

and then look at the results:

f oo w

+&2 error

we see that f oo is as expected, but thereis no value for w. Therefore wwaslocal to
the execution of the script, or strictly speaking, local to the execution of LL.

26.5 Local Verbs in Scripts

In the previous example, the local variable wwas a noun. With alocal verb, thereis

aproblem. Here is an example of a script which triesto use alocal verb (sum) to
assist the definition of aglobal verb (nean).
(0: 0) (1':2) <'c:\exc.ijs'
sum +/
mean =: sum % #

)

LL < 'c:\exc.ijs'

We see that this will not work, because mean needs sumand sum being local, isno

longer available.
nean
sum % #

The remedy isto "fix" the definition of nean, with the adverb f. (aswedidin
Chapter 12 p12). Our revised script becomes
(0 : 0 (1!:2) < 'c:\exd.ijs'
sum =. +/
mean = (sum % #) f.

)

Now nmean isindependent of sum
LL < 'c:\exd.ijs'
nean

+ % #

26.6 Loading Into Locales

We looked at locales in Chapter 24 p23. When we load a script with 0! : 0 or LL the
locale that becomes populated with definitions from the script is the current locale.

By default, the current locale isbase. In general, we may wish to load a script into
aspecified locale, say locale f oo. Evidently we can do this by switching to locale

f oo loading and switching back to the base locale.
18!:4 'foo'

0l:0 < c:\exanple.ijs'
18!:4 ' base

A neater way is as follows. We define aloading verb, LLL say, which isjust like LL

above but thistimeweinstall it inlocalez.
LLL z = 3 : '"0l:0 vy."'

Now we can load a script into a specified locale, f oo say, with:
LLL foo_ <'c:\exanple.ijs'

26.7 Library Scripts

The J system comes supplied with a useful library of script files containing
predefined utility functions. Library script files are organized in a set of directories.
The topmost of these library directoriesisidentified by the expression (1!:42 ')

which yields a pathname as a string:
1!:42 "
c:\j\

Within this topmost library directory, atypical library script-file might be, for
example, syst eml mai n\ dat es. i j s. Thiscontains functions for handling calendar
dates, and can of course loaded with 0! : 0 (although we will see below thereisa

better way.)
0':0 < (1':42 "'"), "systemnmain\dates.ijs'

We can inspect one of the utility functions just |oaded:
weekday
7: | 3: + todayno

26.8 The Profile

A J session begins with the automatic behind-the-scenes loading of a script file
called the "profile". The contents of the profile can be whatever we choose -
whatever function definitions or other things we find convenient to have on hand as
our regular setup at the beginning of a session. Commonly a profile itself loads a
further selection of library scripts and our own scripts.

The profile to be used is specified in the operating-system command-line initiating
the J session. If no profileis specified in the command-line, then a standard system-
supplied profileis used. In this case a session begins with the automatic execution

of:
0:0 < (11:42 ""),"system extras\config\profile.ijs'

Loading this standard profile will load afurther standard selection of library scripts,
to give aset of commonly useful predefined verbs. The user can customize the
standard profile to load further scripts.

26.8.1 load and loadd

Among these useful predefined verbsis| oad. Itseffect isthesameaso! : 0, that is,

to load a script without displaying atranscript.
|l oad 'c:\exanple.ijs'

Notice that the argument filename above can be a plain string, not boxed. A
companion verb is| oadd, which, like 0! : 1 loads a script displaying a transcript.

| oad and | oadd have several advantages over 0! : 0 and 0! : 1. Thefirst advantage
of | oad isthat for alibrary script the full pathname is not needed: a simple nameis

enough. Instead of
load (1!':42 ''), 'systemnmain\dates.ijs'

it isenough to say
| oad ' dat es’

To achieve this effect, | oad and | oadd use a predefined catalog of all the library
scripts, set up in the course of executing the standard profile. The catalog is anoun -
a boxed table - named PUBLI C j _ . There are many scripts; the first 7 are shown

by:
7 {. PUBLICj_

[R o +- +
| colib |c:\j\systemmain\colib.ijs | z|
S I . +- +
| col orl6 |c:\j\system packages\col or\colorl6.ijs |z|
S O U U S +- +
| col ortabl c:\j\system packages\col or\colortab.ijs]|z|
Fomm e o - - o e e e e e e e e e e e e e e m - +- +
| conpare | c:\j\system mai n\conpare.ijs | z|
[RS o +- +
| convert |c:\j\system nmain\convert.ijs | z|
oo m oo - o +- +
| dat es | c:\j\system mai n\dates.ijs | z|
L T +- +
| dd |c:\j\systemmain\dd.ijs | z|
Fome oo Fom o m e e e e +- +

Each row has a simple name, the associated full path-name for the script, and
finally alocale, usually z or j , into which the script will be loaded. PUBLI C j _is
itself set up from afilesyst em extras\ config\scripts.ijs. Thisfilecanbe
edited by the user. Thus the second advantage of | oad isthat a script can be
automatically steered into an appropriate locale on loading.

The third advantage of | oad isthis. Suppose one script depends on (definitionsin)
asecond script. If thefirst includesalinesuch asl oad ' second' then the second
is automatically loaded when the first is loaded.

If we load the first script again (say, after correcting an error) then the second will
be loaded again. This may be unnecessary or undesirable. To avoid repeated
loading of the second script we canr equi r e it rather than | oad it, that isload it
only if not already |oaded.

Here is a demonstration. Suppose we have these two lines for the first script:
(0: 0) (1':2) <'c:\first.ijs'

require 'c:\second.ijs'
a= a+1

Herethe variable a isacounter: every timefirst.ij s isloaded, a will be

incremented. Similarly for a second script:
(0 : 0 (1!:2) < 'c:\second.ijs'
b = b+ 1

We set the counters a and b to zero, load the first script and inspect the counters:

(a = 0,(b = 0) load "c:\first.ijs' a, b

00 11

Evidently each script has executed once. If we now load the first again, we see that
it has executed again, but the second has not:

load "c:\first.ijs' a, b

The effect is achieved by automatically tracking what has been loaded with | oad or
| oadd inatable called LOADED j .

LOADED j
Fom e e e e e e e e e o +- +
| c:\' book\t ool s\menonic.ijs| |
o m e e e e e e e e aaa o +- +
|[c:\j\systemmain\files.ijs|z|
o e e e e e e oo +- +
| c:\exanple.ijs | |
T +- +

|[c:\first.ijs

The fourth advantage of | oad isthat it respects local assignments (because at the
heart of | oad iS0!: 0).

The fifth advantage of | oad isthat an optional left argument can specify alocale
into which to load the script. For example:
"nylocale' load 'c:\exanple.ijs'

pl us_nyl ocal e_

26.8.2 More on Load Status

We saw above that the J system maintains a record of which scripts have been
loaded with the | oad verb. There is another separate system which keeps track of
ALL scripts loaded, whether with | oad or with 0! : 0. The built-inverb4 1: 3
with anull argument gives areport as a boxed list of filenames.

,. 4130
T T +
| c:\ book\tool s\ pr1406.ijs |
oo e e e +
[c:\Vj\system extras\util\boot.ij |
o +
[c:\j\systemmain\stdlib.ijs |
U +
[c:\j\systemmain\winlib.ijs |
Fom e e e e e e e e e e e e e mea e a +
[c:\j\systemmain\colib.ijs |
U U O U +
[c:\Vj\systemimain\loadlib.ijs |
oo e e e +
[c:\Vj\systeminain\jadelib.ijs |
U +
[c:\j\system extras\config\scripts.ijs|
o m e e e e e e e e e e e e e e e am +

[c:\Vj\systemextras\util\configur.ijs |

oo e oo +
[c:\Vj\system extras\config\config.ijs |
o mm e e e e e e e e e e e e e e m +
| c:\ book\tool s\ pr2406.ijs |
o m e e e e e e e e e e e e e e e am +
| c:\ book\tool s\menonic.ijs |
T T +
[c:\j\systemmain\files.ijs |
oo e e +
| c:\ book\work\ current.ij |
o +
| c:\exanple.ijs |
U +
|c:\exb.ijs |
Fom e e e e e e e e e e e e e mea e a +
|c:\exc.ijs |
U U O U +
|c:\exd.ijs |
oo e e e +
[c:\Vj\systemnmain\dates.ijs |
U +
[c:\first.ij |
o m e e e e e e e e e e e e e mam +
| c:\second.ijs |
TS +

We see some scripts loaded by the standard profile, and others particular to this
session. Recall that we defined pl us inthe script exanpl e. i j s which we loaded
above. The built-in verb 4! : 4 keeps track of which name was loaded from which
script. The argument isaname (pl us for example) and the result is an index into
the list of scripts generated by 4! : 3. We seethat pl us wasindeed defined by
loading the script exanpl e.ij s

i = 41:4 < '"plus’ i { 4!:3 "

15 U +

26.8.3 Summary

The recommendation is:

. Usethe standard profile, or the standard profile with additional customizing.
This ensures that a session begins having loaded the standard library scripts.
. Usel oad, | oadd or r equi r e for loading scripts.

Thisisthe end of Chapter 26.

Copyright © Roger Stokes 2002. This material may be freely reproduced, provided that this copyright noticeis also
reproduced.

last updated 15 Mar 2002

p26

Chapter 31: Evaluating
Expressions

31.1 Introduction

In this chapter we look at the process of evaluating a J expression. Evaluating a
complete expression proceeds by a sequence of basic steps, such as obtaining the
value assigned to a name, or applying afunction to its argument(s). For example,

given
x = 3

then the expression
4+5% X

19

Is (in outline) evaluated by the steps:

1. obtain the value assigned to x giving 3
2. compute5 * 3 giving 15
3. compute4 + 15 giving 19

The sequence in which the steps take place is governed by the grammatical (or
"parsing”) rules of the Jlanguage. The parsing rules have various consequences, or
effects, which can be stated informally, for example:

. verbs have long right scope (thisisthe "rightmost-first" rule we saw above)
. Vverbs have short left scope

. adverbs and conjunctions get applied before verbs

. adverbs and conjunctions have long left scope and short right scope

.« hames denoting nouns are evaluated as soon as encountered

. hames denoting functions are not evaluated until the function is applied

. nhames with no assigned values are assumed to denote verbs

. long trains of verbs are resolved into trains of length 2 or 3

and we will look at how the parsing rules give rise to these effects. To illustrate the
process, we can use a function which models, or simulates, the evaluation process
step by step, showing it at work in slow motion.

This function, an adverb called EvMis based on the description of the parsing
algorithm given in the J Dictionary, section IIE. It is defined in a downloadable J
script.

31.2 First Example

Evaluation of an expression such as 2+3 can be modelled by offering the argument
' 2+3' (astring, notice) to the modelling adverb EvM

2+3 '2+3'" EVM

Weseethat ' 2+3' EvVMcomputes the same value as 2+3, but EvMal so produces a
trace, or history, of the evaluation process. The history of 2+3 looks like this:

show "'
gueue stack rule
0 § 2+ 3
1 § 2 + 3
2 § 2 + | 3
3 8§ 2| + 3
4 8§ 2| +| 3 dyad

We see successive stages of the process. Each stage is defined by the values of two
variables. Firstly thereisa"queue”, initially containing the expression being
evaluated, divided into words and preceded by a symbol to mark the beginning.
Secondly, thereisa"stack", initially empty. Stage O shows queue and stack at the
outset.

At each stage the stack isinspected to see if anything can be done, that is, whether
the first few words in the stack form a pattern to which arule applies. Thereare 9
of these rules, and each oneistried in turn. If no rule applies, then aword is
transferred from the tail of the queue to the head of the stack, and we go to the next
stage and try again. This process takes us from stage O to stage 4.

At stage 4, we find that aruleis applicable. Thisruleisidentified asdyad in the
rightmost column. Informally, the dyad ruleis:

if the first four items in the stack are something, noun, verb, noun, then apply verb
to noun and noun to get new-noun, and replace the first four items in the stack by
two, namely original-something followed by new-noun.

Stage 5 shows the results of applying the "dyad” rule recognized at in stage 4. The
rules are tried again, with no result, and there are no more words in the queue, so
we have finished. The final result is the second item of the stack.

The history is represented by 3 global variables, Gh Sh and Rh. The history can be
displayed directly in the execution window by entering the expression

@, . Sh, . Rh.

h,. Sh,. Rn
T S el i S
| mar k| 2| +| 3] 1] I
T S el i S
|mark[2]+ |3 | | | | I
T S el i S
|mark[2] | |+ [3] | | I
T S el i S
|markl | | |2 [+3] | I
T S el i S
I | | | |mark|2|+|3|dyad|

e e s o S N
| | | [mark| 5] | |
I T TR R
However, a more readable display is produced by the show function which
computes, from ¢h sh and Rh, afragment of HTML. ThisHTML is not for

viewing in the execution window but rather for pasting into aweb page such asthis
one. Corresponding to Gh Sh and Rh as above we would see:

show "'
gqueue stack rule

0 8§ 2 +3
1 8§ 2 + 3
2 § 2 + 3
3 § 2 +| 3
4 §| 2| +| 3 dyad
5 8§ 5

31.3 Parsing Rules

In this section an example is shown of each of the 9 parsing rules. Each rule looks
for a pattern of items at the front of the stack, such as something verb noun verb.
Each item of the stack is classified as one of the following: verb, noun, adjective,
conjunction, name, left-parenthesis, right-parenthesis, assignment-symbol (=. or
=:) or beginning-mark.

To aid in a compact statement of the rules, larger classes of items can be formed.
For example, an itemisclassified asan "EDGE" if it is a beginning-mark, an
assignment-symbol or a left-parenthesis.

The rules are always tried in the same order, the order in which they are presented

below, beginning with the 'monad rule’ and ending with the 'parenthesisrule'.

31.3.1 Monad Rule

If thefirst 3 items of the stack are an "EDGE" followed by averb followed by a
noun, then the verb is applied (monadically) to the noun to give aresult-value
symbolized by z say, and the value z replaces the verb and noun in the stack. The

scheme for transforming the items of the stack is:
nmonad rul e: EDGE VERB NOUN etc => EDGE Z etc

where Z isthe result computed by applying VERB to NOUN. For example:

*1 4 x4 EW

16 16
show "'
gqueue stack rule

0 § *: 4
1 § * 4
2 8§ * 4
3 8 *: 4 monad
4 8 16

31.3.2 Second Monad Rule

Aniteminthe stack isclassified as"EAVN" if it isan EDGE or an adverb or verb

or noun. The schemeis:
nonad2 rul e: EAVN VERB1 VERB2 NOUN etc => EAVN VERB1 Z etc

where z is VERB2 monadically applied to NOUN. For example:

- x4 - Y 4 EW
_16 _16
show "'
queue stack rule
0 8§ - *: 4
1 § - *: 4
2 8 - *: 4
3 8§ - * 4
4 8 - *: 4 nonad2
5 8 - 16 nonad
6 § _16

31.3.3 Dyad Rule

The schemeis
dyad rule: EAVN NOUN1 VERB NOUN2 etc => EAVN Z etc

where Z is VERB applied dyadically to NOUNL and NOUN2. For example,

3 * 4 '3 * 4 EVM

12 12
show "'
gqueue stack rule

0 § 3* 4
1 § 3 * 4
2 § 3 * | 4
3 § 3| 4
4 § 3 | *| 4 dyad
5 § | 12

31.3.4 Adverb Rule

Anitemwhichisaverb or anounisclassified asa"VN" The schemeis:
adverb rule: EAVN VN ADVERB etc => EAVN Z etc

where Z is the result of applying ADVERB to VN. For example:

+/ 123 | '+ /123 EW

show "'

[gqueue [] stack [] rule
F— §+/123_ []

T— § + / [] 123 []

?— 8 + [] / 123 []

?— § [] + / 123 []

7— [] 8 + / 123— adv
?— [] 8 +/ 123 [] nonad
6 s 6 [

31.3.5 Conjunction Rule

The schemeis:
conjunction EAVN VN1 CONJ VN1 etc => EAVN Z etc

where z isthe result of applying conjunction CONJ to arguments VN1 and VN2. For
example:

1 &+ 2 "1 &+ 2" EW

show "'

gueue stack rule

:; 8§ 1 &+ 2

Tf"_' 8§ 1 & + [] 2 []
?_§1& —+ 2 []

3| |51 BRI [|

:f__ 8§ [] 1| & + | 2 []

:;-__ [] § 1 &| +| 2 [] conj
:;-__ [] § | 1l&+ | 2 [] nonad
7 [R [|

31.3.6 Trident Rule

The schemeis:
trident rule: EAVN VERB1 VERB2 VERB3 etc => EAVN Z etc

where Z isasingle verb defined as the fork (VERB1 VERB2 VERB3) . For example:
f= 4+
g=: %
h=: #

(f ghy 12 | '(f gh 12 EW

1.5 1.5

show "'

gueue stack rule
8§ (f
0 gh)1
2
8 (f 1
Yofen 2
8§ (f
2 g h) 12
3 8 (f h)
g
4 § (f g h
5 8§ (f g
6 § (f trident
7 8 (f gh par en
8 § oo
g h
9 § f gh nonad
10 § 1.5

31.3.7 Bident Rule

The schemeis:

and there are altogether these 6 cases for the bident rule:

bi dent rul e:

EDGE CAVN1 CAVN2 etc => EDGE Z etc

CAVN1 CAVN2 Z

verb verb verb (a hook)

adverb adverb adverb

conjunction | verb adverb

conjunction | noun adverb

noun conjunction | adverb

verb conjunction | adverb

Thefirst case (the hook) is described in Chapter 03 p3 and the remaining casesin
the schemes for bidents in Chapter 15 p15.

In the following example the expression (1 &) isabident of the form noun
conjunction. Thereforeit is an adverb.

+ (18 2 | '+ (1& 2 EW

3 3
show "'
gqueue stack rule
0 —§+(1&)2— []
1 —§+(1&) —2 []
2 —§+(1& —) 2 []
3 B § + (1 [] &) 2 []

a | |5+ 1 e [y [2] |

5 B § + [] (1 &) 2 [] bi dent
6 B § + [] (1&) 2 [] par en
7 B 8 + [] 1& | 2 []

8 B § [] + 1& 2 []

9 B [] 8 + 1& | 2 [] adv
10 B [] 8 1&+ | 2 [] nonad
11| s |3 []

31.3.8 Assignment Rule

We write NN to denote a noun or aname. and Asgn for the assignment symbol =:

or =. . The schemeis:
assign rule: NN Asgn CAVN etc => Z etc

where z is the value of CAVN.

1+ x =6 'l + x =2 6" EW

[ame [sk e

Tf' 8 X = 6

Zf__ § X [- 6 []

7;-__ § [] X = 6 [] assign
4| | s BIE [
BRE R [
6| | s (1 [+ s [
_;___ [] 8 1 + | 6 [] dyad
8| s |7 [

31.3.9 Parenthesis Rule

The schemeis:
paren rul e:

(CAUN) etc => Z etc

where Z isthe value of CAVN. For example:

(1+2)*3

(1+2)* 3

EVM

show "'

’7 queue

rule

(_
0 (_ §(1+2)*3 (_

1—§(1+2)* |3 []
2—§(1+2) R []
3—§(1+2 —) | 3 []
4—§(1+ |2)y | | 3 []
5—§(1 N) | * | 3 []
6—§(1]] 2) | * | 3 []
7—§ —(1+ 21) * 3— dyad
8—§ _(31) | * | 3 [] par en
9—§ —3 * 1 3 []
10— —§ 3| *| 3 [] dyad
11| s o9 [|

31.3.10 Examples of Transfer

The following example shows that when aname is transferred from queue to stack,
if the name denotes a value which is a noun, then the value, not the name, moves to
the queue.

a =6 (a=:7) , a

6 7 6

show "'

B gueue [] stack [| rule
o | [s(a=7),al [|
1 [sca= 7) |6 [|
> | | s(a= 7) e [|
3 | | s(a= 7 Y 6 [|
4 | | s(a-= BEED 6 [|
5 | | s(a (=17 [) 6| |
6—§(—a = 7)) : 6— assign
7 | | s¢ EEEE 6 [|
8—§ —(7) , 6 [paren
9—§ —7 6 [
10| s |7 .| 6 [] dyad
11| s |76 [|

By contrast, if the name isthat of averb, then the nameis transferred into the stack
without evaluating it. Hence a subsequent assignment changes the verb applied.

+ 4 4
f = + "((f =2 -),f) 4 EW
+ 4 4
show "'
[] gqueue [] stack [] rule
_f§__((- =
o1 h
4
s | []
1 f = - 4
) .)
8 ((
2 f = -) 4
), f
s | []
3 fo= - f) 4
)
8 ((
4 fo= - f) | 4
)
5 f§::(f) fl)| 4

6 f§:((-) L f) | 4
7 f§ (A =) |, fF)| 4
8 B 8§ (([] f = - 1) fl)| 4 [] assi gn
o | Iscc |-) il] s []
10 B § ([] () , fl)| 4 [] par en
11| § ([: fl)| 4 []
12 B § [] (, fl)| 4 [] trident
13 § (f_ ’) | 4 par en
14 § ¢ 4
15 8 f' ’ 4 monad
= = - =
16 § 2
31.3.11 Review of Parsing Rules
rule stack before stack after :/Zhere z
[[Verb
monad EDGE Verb Noun |etc EDGE Z etc | |applied
to Noun
[[Verb2
monad2 | |[EAVN |Verbl |[Veb2 |Noun EAVN Verbl Z applied
to Noun

dyad

EAVN

Nounl

Verb

Noun?2

EAVN

etc

Verb
applied
to
Nounl
and
Noun2

adverb

EAVN

VN

Adv

etc

EAVN

etc

Adv

applied
toVN

conj

EAVN

VN1

Conj

VN2

EAVN

etc

Conj
applied
to VN1
and VN2

trident

EAVN

Verbl

Verb2

Verb3

EAVN

etc

fork
(Verbl
Verb2
Verb3)

bident

EDGE

CAVN1

CAVN2

etc

EDGE

etc

bident
(CAVN1
CAVN2)

assign

NN

Asgn

CAVN

etc

etc

etc

CAVN

paren

CAVN

etc

etc

etc

CAVN

31.4 Effects of Parsing Rules

Now we look at some of the effects, of the parsing rules. In what follows, notice

how the parsing rulesin effect give rise to implicit parentheses.

31.4.1 Dyad Has Long Right Scope

Consider the expression 4+3- 2, which means 4+(3- 2) .

4 +3-2 | 4+ (3-2) | '4+3-2' EW

5 5 5
show "'
[gueue [] stack B rule
F— §4+3- 2 [] B
T— 8§84+ 3 [] 2 B
?— 8§84+ 3 [] 2 B
?— 8§ 4 + [] 3 2 B
7— 8§ 4 [] + | 3 2 B dyad
BREY A B
?— 8§ [] 4 +| 1 B
7— [] 8§ 4| +| 1 B dyad
8| s B

Here we have an example of ageneral rule: adyadic verb takes asitsright
argument as much as possible, so in this example + is applied to 3- 2, not just 3.

Further, adyadic verb takes as |l eft argument as little as possible. In this example
the left argument of - isjust 3, not 4+3. Hence adyadic verb is said to have a"long
right scope" and a "short left scope”.

31.4.2 Operators Before Verbs

Adverbs and conjunctions get applied first, and then the resulting verbs:

* &1 %2 | *&(1%2) | (*&l) %2

0.5 *&(0. 5) 0.5

' & 1 %2' EWM

0.5

show "'
[gqueue [] stack [| rule
?;__ §* &1 %2 [] [
j;_— §* &1 % [] 2 [
;;__ §* &1 [] % 2 []
?;__ § * & [] 1| % 2 []
?f__ § * [] & | 1 % 2 [
E;__ 8§ B & 1 % 2 [
?— [§ | * & 1| %| 2 [] conj
7— [] 8§ *&1 | % 2 [| nonad2
?— [] 8§ *& | 0.5 [| nmonad
9 s o5 [|

31.4.3 Operators Have Long Left Scope

An adverb or a conjunction takes as its left argument as much as possible. In the
following, look at the structure of the resulting verbs: evidently the/ adverb and
the @conjunction take everything to their left:

f @g/ | f &g @h | 'f&g@' EWM

(fa)/ (f&g) @ (f&g) @

show "'

[gueue [] stack [] rule
ol | sfagan| []
1] lsteag@ | | n []
2 | sfeag | @ h []
3 [st e (g @ h []
7_ 8§ f [] &| g @| h [|
?_ 8 —f & gl @ h [|
?_ [] g f & g @ h— conj
7_ [] 8§ | fé&g @ h [] conj
8| | s| (e @ [|

Thus operators are said to have a"long left scope”. In the example of f &g@ we see
that the right argument of & isjust g, not g@ . Thus conjunctions have "short right
scope'.

31.4.4 Train on the Left

The long left scope of an adverb does not extend through atrain: parentheses may

be needed to get the desired effect. Supposef g hisintended asatrain, then
compare the following:

f ghi (f gh)/

fg(h) | (f gh/

'f gh/ ' EW

f g h/
show "'
[gueue [] stack [| rule
F— §f gh/ [] [
T— §f gh [] / [
?— 8§ f g [] h |/ []
?— 8§ f [] gl h / [adv
7— § f [] g h/ [
?— 8§ [] fl g h/ [
?— [] g f g h/ [trident
7— [] §| f g (hl) [

Similarly for a conjunction (with aright argument)

f gh @+ 'f gh @+ EVM

fg(h@) | f g (h@)

show "'
[gueue [] stack [| rule
7;__ §f gh @+ [| B
if__ §f gh @ | [|
7;__ §f gh [] @ + [|
??__ §f g [] h| @ + [|
?f__ 8§ f [] g| h @ + [] conj
BREX g he [|
6| | 3 | g he [|
_;___ [] g | f g h@ [trident
8| 5|t g (he [|

However, for a conjunction with no right argument, the left scope does extend
through atrain:

fgh@ |'fgh@ EW

(fgh@ | (f gh®@

show '

gueue stack rule

:; §f gh@

j;"_' §f gh [] @ []

2 [stg | |[hl e []

7;"_' § f [] gl h @ []

4 | s [+ [g h e |

?— [] 8| f g h @— trident
7;-__ [] §| f gh @ [| bi dent
7 s (tgne [

By contrast, inthe case of of f @ g /, notice how the "conj"” rule is applied before
there is a chance to apply the "adverb" rule"

f @g / 'f @g/ ' EWM

(f@)/ (f@)/

show "'

gqueue stack rule

§f @g/

=] o]

§f @g /

?— 8§ f @ [] g / []
?— 8§ f [] @| g / []
7— 8 [] fl @ g/ []
E;__ [] § | f @ g |/ [] conj
;;__ [] 8§ f@ / [] adv
-;___ [] 8§ | (f@)/ []

31.4.5 Presumption of Verb

A name with no value assigned is presumed to be averb. For example, in the
following the three names make afork:

Mapl e Leaf Rag "Mapl e Leaf Rag" EVM

Mapl e Leaf Rag Mapl e Leaf Rag

show "'

gueue stack rule

z:__ § Mapl e [] B
Leaf Rag

[§ Mapl e [] B

1 Leaf Rag

2 8§ Mapl e Leaf Rag

3 8§ Mapl e | Leaf Rag

’7’7 ’(8 Mapl e Leaf Rag ’7 trident
Mapl e Leaf

Thisisthe end of Chapter 31

Copyright © Roger Stokes 2002. This material may be freely reproduced, provided that this
copyright notice is also reproduced.

last updated 4 Aug 2002

	Local Disk
	Learning J
	contents
	Ch 1: Basics
	Ch 2: Lists and Tables
	Ch 3: Defining Functions
	Ch 4: Scripts and Explicit Functions
	Ch 5: Building Arrays
	Ch 6: Indexing
	Ch 7: Ranks
	Ch 8: Composing Verbs
	Ch 9: Trains of Verbs
	Ch 10: Conditional and Other Forms
	Ch 11: Tacit Verbs Concluded
	Ch 12: Explicit Verbs
	Ch 13: Explicit Operators
	Ch 14: Gerunds
	Ch 15: Tacit Operators
	Ch 16: Rearrangements
	Ch 17: Patterns of Application
	Ch 18: Sets, Classes and Relations
	Ch 19: Numbers
	Ch 20: Scalar Numerical Functions
	Ch 21: Factors and Polynomials
	Ch 22: Vectors and Matrices
	Ch 24: Names and Locales
	Ch 25: OOP
	Ch 26: Script Files
	Ch 31: Evaluating Expressions

