
J Primer

Eric Iverson

Copyright © 1991-2002 Jsoftware Inc. All Rights Reserved.
Last updated: 2001-3-29
www.jsoftware.com

.

Table of Contents
 1 Start here
 2 Why J
 3 Purpose of this book
 4 Your background
 5 How to use this book
 6 Environment
 7 Get started
 8 Experiment
 9 Standard profile
 10 Terminology
 11 Alphabet
 12 Word
 13 Sentence
 14 Verb
 15 Noun
 16 Number
 17 Negative number
 18 Primitive
 19 Name
 20 Comment
 21 Error
 22 Ambivalence
 23 Dyad
 24 Monad
 25 Vocabulary
 26 Checkpoint A
 27 Numeric constant
 28 String
 29 Word formation
 30 Space
 31 Precedence

 32 Parentheses
 33 Order of evaluation
 34 Verb definition
 35 Monad/dyad defined
 36 Script file
 37 Local
 38 Global
 39 Debug global
 40 When =.and =:are alike
 41 When they aren't
 42 Locale
 43 z locale
 44 Script load
 45 Checkpoint B
 46 Debug - step through
 47 Debug - an error
 48 Comparative
 49 Control structure
 50 Checkpoint C
 51 Adding lists
 52 J way of adding lists
 53 A few more primitives
 54 Plot
 55 Plot locale
 56 Print precision
 57 Inexact numbers
 58 Tolerance
 59 Checkpoint D
 60 Atom
 61 List
 62 Table
 63 Array
 64 Axis
 65 Shape

 66 Rank
 67 Empty Array
 68 Single atom array
 69 Verb arguments
 70 Frame and cell
 71 Item
 72 k-cell
 73 Verb rank
 74 Agreement
 75 Rank conjunction "
 76 Result shape
 77 Checkpoint E
 78 Adverb
 79 Insert adverb
 80 Table adverb
 81 Conjunction
 82 Order of execution
 83 Box - monad
 84 Link - dyad ;
 85 Open - monad >
 86 From - dyad {
 87 From - boxed indexes
 88 Scattered indexing
 89 Amend }
 90 Selecting without from
 91 Cut ;.
 92 Each
 93 Hook
 94 Fork
 95 Tacit definition
 96 Explicit-to-tacit
 97 Checkpoint F
 98 Foreign !:
 99 Files

100 Component files
101 GUI part 1
102 Data processing
103 GUI part 2
104 Where next?
105 Online Documentation
106 J Dictionary
107 J Phrases
108 end.
109 Index

p1

Start Here

J is a general purpose, high-level programming language. If you are new to J and
want to be a J programmer, this is a good place to start. Even if you have
considerable programming experience, there is much that is unique to J, and it is
worthwhile to at least skim this book before jumping into the deep end.

p2

Why J

J is a very rich language. You could study and use it for years, and still consider
yourself a beginner. This is in sharp contrast to simpler languages like Basic or
Java, where months of concerted study and use would make you an expert. The
effort required to become an expert J programmer is closer to that required to
become an expert C++ programmer.

The good news is that the essence of J is so simple and consistent, that you can
quickly learn enough to start solving real and interesting problems.

It is easier to learn enough Basic or Java to solve trivial problems, but it is easier to
learn enough J to solve more interesting and challenging problems. And once you
have that level of skill under your belt, you are not at the end of the road, but can
continue to improve, making yourself a better and more formidable programmer.

J is particularly strong in the mathematical, statistical, and logical analysis of
arrays of data. It is a powerful tool in building new and better solutions to old
problems and even better at finding solutions where the problem is not already well
understood.

As well as being a general purpose programming language, the J system also
provides:

●

an integrated development environment

●

standard libraries, utilities, and packages

●

a form designer for your application forms (windows)

●

an event-driven graphical user interface to your application

●

several methods of interfacing with other programming languages and
applications

●

rapid application prototyping and development

●

royalty-free distribution of run-time versions of your application

If you are interested in programming solutions to challenging data processing
problems, then the time you invest in learning J will be well spent.

p3

Purpose of this book

The J Dictionary is the authoritative and definitive specification of the J language.
It can be used to learn J, but the fact that it covers all of the language concisely, yet
completely and rigorously, with more emphasis on the complex than the mundane,
does scare some of us away.

This online book provides a kinder, gentler start for beginners. This book takes you
along a path in easy steps to the point where you can write an application in J.
Along the way you will be introduced to all the key ideas in J by seeing them in
simplified and specific contexts. At the end, you will be able to write real programs
in J, and you will also be comfortable in using the J Dictionary as a reference for
your work as a J programmer. The purpose of this online book is to get you up to
speed where you can use the J Dictionary in a manner that makes you wonder why
you ever bothered with this simple stuff.

You should be able to work your way through this book fairly quickly, and at the
end you will be an entry-level J programmer. As such, you will have far more
programming power at your fingertips than even the most experienced Basic or
Java programmer.

p4

Your background

This online book assumes that you are familiar with another programming
language such as Basic, Java, or C. However, this is not a prerequisite, and you
shouldn't have particular problems if J is your first computer language (in fact,
congratulations!).

It is also assumed that you are familiar with running Windows applications, in
particular MDI (multiple-document interface) applications such as Word and
Excel.

Most things can be done in J much as they are done in other languages, and in
several areas a topic is introduced just as it would be introduced in other languages.
If you are familiar with other languages this makes it easier to follow how it works
in J. In some cases there is a much better J way to solve a problem, and that is also
covered.

p5

How to use this book

The online book is a series of small, bite-size sections that are intended to be read
in order from the start to the end. Sections typically depend on most or even all of
the previous sections having been read. Jumping around is pointless and likely
frustrating.

The book is self-contained and could be read without access to a system. In
particular, examples of interactions with the J system show both what you enter
and how the system responds. However, it is intended to be read with access to a
system and with as much use of a system along with the book as possible. It is
strongly recommended that you eventually type in all the examples and play
around as much as you can with variations on them.

Sometimes a section uses terms and concepts that aren't defined until later. This
requires you to proceed with a soft understanding the first time through that
becomes more concrete on a second reading.

This book is probably best read by reading it three times:

●

Skim the whole book. Try some examples, but it is better to just plow on
and get the big picture.

●

The second time read it carefully and try all the examples.

●

The third time try your own examples to clarify your understanding and to
increase your comfort with the mechanics of actually using the system
(instead of just reading about it and following instructions).

p6

Environment

This online book assumes that you have installed and will be using J for Windows
(Win31, Win95, or NT) or J for Macintosh. Any edition at Release 4 or later is
appropriate.

There are minor differences in J for Macintosh, but they should not be a problem in
using this book to learn J.

J for UNIX is not as directly usable with this book. The J language is identical, so
the differences are all in areas such as how to edit text files. With a reasonable
knowledge of UNIX and some extra effort this book can be used in learning J on a
UNIX system. Some sections deal with facilities that are not part of J for UNIX
and you will just have to read those sections without being able to execute the
examples or experiment. In particular, J for UNIX does not have a plot facility or a
form designer.

p7

Get started

Double-click the J icon to start J. Your J session should look something like this:

The window labeled 1.ijx is an execution window. You type J sentences into the ijx
window and J executes them when you press enter and displays the result.

Type the following line into the ijx window and press Enter.

2 + 3

The sentence is executed and the result is displayed. Type the following line and
press Enter.

5 - 3

Your session should look something like this:

Lines that you enter are indented three spaces and the J answers start at the margin.

p8

Experiment

You are encouraged to experiment. Try entering similar lines with different
numbers. It is clear that + is plus and - is minus. Enter lines that use * for times and
% for divide. From using % you will pretty quickly see that numbers such as 2.5
can be the result, and that they can also be used as arguments.

Until you have more experience, you might sometimes be surprised or even
disconcerted by what you observe. Take things in small steps. Try examples where
you are pretty sure you already know the answer, and do the experiment to confirm
your understanding. If a result puzzles you too much, don't spend time on it in
these early stages.

 3 - 5
_2

The _2, instead of -2, might confuse you. Don't worry, it will be explained in a bit.

Most examples in this book show what you should type, indented by three spaces,
and also show the result the system displays. This means that you can read the
book in a casual manner, without having to use the system to see results. However,
the only way you will really learn is by eventually trying the examples and
experimenting with your own. Examples are shown in a fixed-pitch font much as
they would appear in the ijx window of your system. A larger font is used in some
examples to make it easier for you to read and type the example into the system.
This is done where you might mistype something because of being unfamiliar with
some of the words, or where a typo could have confusing results.

While experimenting, you frequently want to execute minor variations on
sentences you have already tried. There are several shortcuts that make this easier.
In the ijx window you can move the cursor to any line in the window and press
Enter to recall that line as a new line at the bottom of the window ready for editing.
You can recall previous input lines for editing by holding down Shift+Ctrl and
pressing the up arrow key until you see the line you want to work with.

The examples in most sections are self-contained, but a later part of a section might

depend on steps taken in an earlier part. A few sections depend on steps taken in
previous sections, but this should be fairly obvious.

p9

Standard profile

Some examples assume that your system runs the standard profile when it is
started. This configures your system and makes some standard utilities available.

Enter CR (capital letter C followed by capital letter R) into the ijx window as a
quick check on whether the profile has been run.

 CR

If the result is a blank line, then profile has been run and you can skip the rest of
this section.

If instead you see:

 CR
³value error

you will have to change your J icon to run the standard profile

.

The standard profile is in file system\extras\config\profile.ijs in your J directory.
You need to edit the J icon properties to indicate that this file should be run when J
starts.

On the Macintosh you double-click the J icon labeled profile.ijs to start J with the
standard profile.

p10

Terminology

All programming languages have things in common with the English language.
Where the analogy is close, J tends to use English language terms in preference to
terms used in math and other programming languages.

You could, as in other languages, say line of code, but in J you tend to say sentence
instead. Similarly you could refer to the + function, but you usually say verb.

Some English language terms used in J are: alphabet, word, sentence, verb, noun,
adverb, and conjunction.

There are several reasons for this approach. One problem it deals with is the
plethora of related, but subtly different, uses of traditional terms in math and
numerous programming languages. For example: function, subfunction, operator,
program, routine, and subroutine are all used in slightly different ways in different
programming languages. Rather than inherit this confusion, J adopts its own terms,
and defines them precisely within its context.

Using English terms gives you a good idea of what the general meaning of the term
is in J. In addition, using natural language terms encourages and facilitates taking
the English statement of a problem and more directly writing the corresponding J
sentences.

The use of the J terms is encouraged, but certainly isn't mandatory, and using the
term function instead of verb is quite OK.

p11

Alphabet

The J alphabet is the ASCII alphabet and consists of:

26 lowercase letters (a to z)

26 uppercase letters (A to Z)

0 1 2 3 4 5 6 7 8 9
= < > _
+ * - %
^ $ ~ |
. : , ;
! / \
[] { }
" ` @ & ?
()
'

There are a few characters that sometimes cause confusion. The - (minus) character
is different from the _ (underbar) character and there are three different quote
characters:

' quote

" double-quote

` back-quote

If you try an example and type " (a double-quote) instead of '' (two quotes) you
will be disappointed that your result is not the same as in the book.

The . (period) is usually called dot.

p12

Word

A word is a group of characters from the alphabet that has a meaning.

2.5 + 5

The sentence has three words: the number 2.5, the +, and the number 5.

The rules for forming words from the characters in a sentence are simple, and for
now, common sense will suffice in recognizing the words in a sentence. There are
some complications that will be dealt with in later sections.

p13

Sentence

A sentence is a group of words that form a complete instruction. Unlike English
sentences, J sentences do not end with a period or other punctuation mark. Instead
a J sentence is usually a complete line.

p14

Verb

In the following sentence the character + is a verb (a word that expresses an
action).

2 + 5

p15

Noun

In the following sentence the numbers 2 and 5 are both nouns.

2 + 5

p16

Number

The following are numbers: 0, 1, 2, 2.5, 12.75, 0.5, 7e6 .

Enter these, and other numbers, in simple sentences with the verbs + - * and %.

2 * 12.75
25.5

An important rule is that a number does not start with a dot.

0.5
0.5

 0.5 + 3
3.5

 .5
+---+
¦.¦5¦
+---+

 .5 + 3
¦syntax error
¦ .5+3

Clearly .5 is not the same as 0.5. You don't need to know now what .5 is, but it is
important to understand that a number does not start with a dot.

The _ (underbar) is infinity and is a number.

p17

Negative number

A negative number is indicated by a _ (underbar), not a - (minus).

5 + _3
2

 _7
_7

 _5e_3
_0.005

 5 - 9
_4

Leaving out the blank between the - and the 9 does not change the meaning.

5 -9
_4

The - is always a verb. This simplifies the rules for evaluating sentences as there is
no special case for - when it is used immediately to the left of a number. But if - is
always a verb, then another character, the _ (underbar) is required to spell a
negative number.

The _ is used in spelling numbers, along with the digits, dot, and the e for
exponential notation; it indicates a negative number.

Remember: _ in front of a number is part of the number and indicates that it is
negative, and - is always a verb and is not part of a number.

The __ (two underbars) is negative infinity and is a number.

p18

Primitive

A primitive is a word that is defined by the system. For example, + is a primitive.
The meaning of a primitive is fixed and cannot be changed.

A primitive is spelled with a graphic character (such as +) or with a graphic
modified by an inflection (a dot or colon), as in +. or +: .

A primitive is also spelled by one or more letters followed by a dot or colon. For
example, i. is a primitive that is called index or index of depending on how it is
used.

p19

Name

Whereas a primitive is a word defined by the system, a name is a word defined by
you. The primitive =. defines a name.

v =. 23

The sentence can be read as v is 23. The word =. is called copula (another good
English language term). The name v is defined as the number 23 and can be used
in other sentences.

 5 + v
28

Unlike a primitive, a name can be redefined.

 v =. 45
 5 + v
50

The system does not display the result of the sentence when it begins with a
copula. A sentence that contains only a name shows a display form of the
definition of the name.

 abc =. 123
 abc
123

You can give anything a name. For example, you could give a name to the verb + .

 plus =. +
 23 plus 45
68

The preferred way to read abc =. def is: abc is def or abc is defined as def.
However, borrowing from other computer languages, it is also common to say: abc

is assigned the value def or the value def is assigned to abc.

p20

Comment

The primitive NB. starts a comment that runs to the end of the line.

2 + 23 NB. this is a comment and is not executed
25

p21

Error

An error in a sentence is reported and the execution stops.

 123 foo 234
¦value error
¦ 123 foo 234

A vertical bar marks the error report. When appropriate, the sentence is displayed
with extra spaces marking where the error was detected.

p22

Ambivalence

Every verb has two definitions: a dyad used when it has both a left and right
argument, and a monad used when it has only a right argument. The two
definitions are usually related, as in - with a dyad definition of minus and a monad
definition of negate.

 5 - 3
2
 - 7
_7

The dyad is also referred to as the dyadic case of the verb and the monad is
referred to as the monadic case of the verb.

The term ambivalence is used in the chemical sense of both valences to indicate
that a verb can react with both a single argument and with two arguments.

Remember: every verb has both a monad and dyad definition.

p23

Dyad

The dyadic case of a verb is used if the verb has both a left and right argument.

The dyad % (divided by) is defined as the left argument divided by the right
argument.

 5 % 2
2.5

p24

Monad

The monadic case of a verb is used if the verb has only a right argument.

The monad % (reciprocal) is defined as 1 divided by the right argument.

 % 2
0.5

The relationship between the monad % and dyad % where the monad is the dyad
with a fixed left argument is quite common, and you will see this in a number of
the other primitive verbs.

p25

Vocabulary

The J Dictionary is the J reference book and is your ultimate, authoritative source
of information on J. The sooner you become familiar with using it the better, and a
good way to start is by looking up the primitives that have been introduced so far.

The back cover of the J Dictionary (or last page, depending on the edition) is called
the vocabulary. It is a concise listing of all the primitives and gives a page
reference to the detailed definition. Learning how to use the vocabulary is your key
to learning how to read and write J.

If you don't have a printed copy of the J Dictionary, or if you prefer it, you can use
the online version instead. Press F1 to show the vocabulary and click a primitive to
jump to the entry. If you press F1 while holding down Ctrl you get context
sensitive help. If the caret is at a +, pressing Ctrl+F1 will jump to the + entry.

In the vocabulary take a look at the row for + , which is the fifth row. The first
entry in this row contains: + Conjugate o Plus. The word + is a verb and its monad
is called conjugate, and its dyad is called plus. The dyad + is plus as defined in
arithmetic.

The monad + is interesting. In math, the conjugate of a complex number is the
number with the same real part and an imaginary part of opposite sign. On real
numbers the conjugate has no effect and the result is the argument, and on complex
numbers it changes the sign of the imaginary part. J supports complex numbers just
as directly as integers or real numbers. A complex number is indicated by a j
separating the real and imaginary parts.

 int =. 23
 + int
23

 float =. 23.5
 + float
23.5

 imagine =. 2j3 NB. 2 real part, 3 imaginary part
 + imagine NB. change sign of imaginary part

2j_3

Many primitives support complex numbers and the J Dictionary must document
this, which means there is a bit of extra complexity in some of the descriptions. If
you need complex numbers in your application this is fantastic. But if you are a
beginner and are not concerned with complex numbers, then you have to know
enough to be able to ignore these bits and not get distracted or confused.

The page number of the definition for + is in the rightmost column of the + row.
Turn to that page now.

The header line of the page gives the monad name Conjugate on the left side, and
the dyad name Plus on the right. The formal name of the primitive + is near the
center. The 0 0 0 to the right of the + will be explained later.

Below this header are two boxes (or columns, in the online documentation). The
left box has the monad definition and the right box has the dyad definition. The
page then continues with general discussion and examples.

The J Dictionary is a concise, rigorous, and complete reference suitable for the
most experienced users. This can make it difficult for beginners who don't know
what to expect. For example, in the general discussion and examples for + there is
considerable discussion of complex numbers and not a single example of just
adding a couple of integers. Great for the experienced user who would be insulted
if told how to add integers, but a bit of a reading challenge for the real beginner.
You have to learn how to tune out, for now, the bits that are too advanced or are
not relevant to your current interest, and concentrate on the parts that are.

Go back to the vocabulary page and take a look at the +. entry (fifth row, second
entry) which contains: +. Real/Imaginary o GCD (Or). There is a lot of
information here, and again much of it is not relevant at this early stage. Let's look
at the definition. The page number in the hardcopy manual is for the first entry in
the row and the other entries are on the following pages.

Glance at the left box for the monad definition and notice that it is for complex
numbers. File it for future reference, but give it a pass for now.

The dyad case in the header is described as: GCD (Or). This gives two informal
names, GCD and Or, and indicates it can be used in two different ways. The dyad

definition is in the right box. Note that GCD stands for greatest common divisor
(which should at least ring a bell of math memories). Further on in the definition
you will find that if the arguments are boolean then the +. is the logical or
function. The GCD is a useful extension of the domain of the or function to non-
boolean arguments. This extension of the domain of primitives is common in J. For
now, it is interesting to note that +. has this larger domain, but it is also easy to
limit it to boolean arguments.

 0 +. 0 NB. 0 or 0
0

 0 +. 1
1

 1 +. 0
1

 1 +. 1
1

The vocabulary page entry for +: contains: Double o Not-Or. The definition page,
which follows the + and +. definition pages, gives quite simple definitions for both
the monad and dyad.

The monadic case is called double and does just what you'd expect.

 +: 3
6

The dyadic case is the logical negation of the or of the arguments.

Again, for both +. and +: much of the general discussion and examples are
perhaps beyond your capabilities right now. But the key is to know how to
navigate and to get the information that is relevant.

After the row for ? there are additional rows for primitives that are spelled with
names that are inflected with a dot or colon.

p26

Checkpoint A

At this point you should understand:

● how to use the J Dictionary vocabulary
● terms such as word, sentence, noun, verb, ambivalence, dyad, monad

Check your understanding by doing the following exercises:

● look up the definition of the monads +: *: -: %: in the J Dictionary
● experiment with these new monads

p27

Numeric constant

You have seen the use of single numbers. It is also possible to have a list of
numbers.

 num =. 5
 nums =. 23 0.5 12.5 7e6 _12 7

You'll do lots more with numeric lists, but for now we just want to establish that
there is such a thing.

p28

String

Characters bracketed by quotes create a string.

 char =. 'Q'
 chars =. 'this is a list of characters'

The quotes are not displayed when the string is displayed.

 char
Q
 chars
this is a list of characters

The quote starts and ends a string. A pair of quotes indicates that the quote
character itself is in the string.

 'put 2 ''s to get 1 '' in the string'
put 2 's to get 1 ' in the string

An unmatched quote is an error.

 abc =. 'asdf
¦open quote
¦ abc =. 'asdf
¦ ^

A string can be empty.

 abc =. ''

A string is also referred to as a literal constant or as a character constant.

p29

Word formation

The monad ;: can be useful in figuring out what the words are in a sentence. The
word formation primitive takes a string as its right argument, splits it into words,
and returns a result with each word in a box. For now, don't worry about what the
boxes are, just note how visually helpful they are. You'll learn about boxes in later
sections.

 ;: '2 + 3'
+-----+
¦2¦+¦3¦
+-----+

If you don't see the boxes when you try this on your system, then you are using a
font that does not have the line drawing characters. Use the Edit|Configure menu
command to select a font that does show the boxes. Alternatives are ISIJ,
Terminal, MS LineDraw, Courier New, and Lucida Console. Some require OEM
and some Default to get the boxes. When you get one you like, be sure to check
Save Config so that it will be used the next time you start J.

 ;: '2.5 + 3e4'
+---------+
¦2.5¦+¦3e4¦
+---------+

 ;: 'a =. 1 2 3'
+----------+
¦a¦=.¦1 2 3¦
+----------+

 ;: 'test + 123 NB. this is a comment'
+--------------------------------+
¦test¦+¦123¦NB. this is a comment¦
+--------------------------------+

 ;: 'def =. ''testing 1 2 3'''
+----------------------+
¦def¦=.¦'testing 1 2 3'¦
+----------------------+

Note that the following are all J words and each goes in its own box:

2.5
3e4
=.
1 2 3
test
NB. this is a comment
'testing 1 2 3'

It might surprise you that constants such as 1 2 3 and 'testing 1 2 3' are J
words. This is an important point and understanding it is necessary in reading and
writing J sentences.

If you are ever puzzled by a J sentence (it could happen), one of the things you can
do is apply ;: to it to be sure you know the words. You can then worry about the
meanings of those words.

Look up ;: in the J Dictionary. The informal name for ;: is word formation. Turn
to the page for ; and turn pages until you come to the page that has ;: in its
heading.

p30

Space

Spaces are not required to separate primitives from other words. On the other hand
extra spaces don't change the meaning.

 2+3
5

 2 + 3
5

 2 + 3
5

Most examples in this book have spaces around all primitives. This makes the
individual words stand out and allows you to concentrate on the meaning of the
words without the additional problem of first figuring out what the words are.

However, most J programmers, as they become more experienced, reach a point
where they can easily read the words in a sentence, and the extra spaces become a
nuisance and hindrance to understanding, rather than an aid. You will notice that in
some of the later examples that some of these unnecessary spaces are left out.

There are some cases where a space is essential.

A space must separate names.

 a=.3
 plus=.+
 a plus a
6

 aplusa
¦value error

The . (dot) and : (colon), used as inflections, change the word immediately in
front of them into a new word. When used as a primitive or as the start of a

primitive, they must have a space in front so that they are not treated as an
inflection.

 ;: 'a . b' NB. 3 words
+-----+
¦a¦.¦b¦
+-----+

 ;: 'a .b' NB. same 3 words
+-----+
¦a¦.¦b¦
+-----+

 ;: 'a. b' NB. 2 words
+----+
¦a.¦b¦
+----+

A space must separate a . or : , that is not being used as an inflection, from the
previous word.

Numbers, for example 1e7, can contain letters. There are in fact several letters that
can be used in spelling numbers in J. Letters that immediately follow a number are
treated as part of the spelling of the number.

 plus =. +
 1plus 3
¦ill-formed number

 1 plus 3
4

A space must separate a number from a letter that is not a part of the number.

p31

Precedence

Math traditionally gives multiplication precedence over addition. In math class (or
a skill testing question from a cereal box contest), if you were asked what 2 + 3 * 4
was, you would know the answer was 14.

This is not too confusing if there are only a few functions and only a few levels of
precedence (division | multiplication | addition and subtraction). But it gets
awkward in languages such as C which have many functions and many levels of
precedence.

With the large number of verbs in J it would have been difficult to define the
precedence, let alone trying to remember it when reading or writing. Moreover,
being able to name things means you would also have to figure out what to do with
the sentence:

2 plus 3 times 4

In a break with traditional math and in contrast to most other programming
languages, J has no verb precedence. It will take you a little while to stop doing the
multiplication first, but the overall simplification is worthwhile.

Remember: there is no verb precedence.

p32

Parentheses

Math and most programming languages, including J, use parentheses to control the
evaluation of a sentence. If a sentence is fully parenthesized then the order of
evaluation is identical in most languages and is independent of verb precedence or
any other rules.

 2 + (3 * 4)
14
 (2 + 3) * 4
20

 10 - (4 - 3)
9

 (10 - 4) - 3
3

There isn't any confusion about these answers.

p33

Order of evaluation

What is the answer if the parentheses are left out?

 10 - 4 - 3
9

J evaluates the sentence as:

 10 - (4 - 3)
9

Most other languages would evaluate it as:

 (10 - 4) - 3
3

In the absence of explicit parentheses, J implicitly provides them from the right
towards the left. Other languages provide them from the left towards the right. A
longer sentence will make this visually clearer.

 10 - 4 - 3 - 1
8

 10 - (4 - (3 - 1)) NB. J right-to-left
8

 ((10 - 4) - 3) - 1 NB. others left-to-right
2

Now consider a sequence of monadic verbs.

 - - - 4

_4

Everyone knows how to parenthesize this, and every language does it the same.

 - (- (- 4))
_4

The grouping is done right-to-left and in this case the other languages agree with J.
J always parenthesizes from right-to-left, whereas other languages have different
rules for different situations.

J has a right-to-left order of evaluation. Most other languages have a left-to-right
order of evaluation for dyads, right-to-left for monads; and this is modified by the
relative precedence of the verbs involved.

With nouns and verbs the J evaluation rule from J Dictionary section E is:

Execution proceeds from right to left, except that when a right
parenthesis is encountered, the segment enclosed by it and its
matching left parenthesis is executed, and its result replaces the
entire segment and its enclosing parentheses.

There are things in J, other than nouns and verbs, that you have not yet met that
complicate this rule by adding a few more. It is these additional classes that largely
justify the J break with tradition and adoption of a right-to-left evaluation.

To further quote from the J Dictionary section E:

One important consequence of these rules is that in an
unparenthesized expression the right argument of any verb is the
result of the entire phrase to its right.

This is due to the lack of verb precedence as well as right-to-left evaluation.

No verb precedence, right-to-left evaluation, and the rules for the other classes
make the overall evaluation rules simple, reduce the need for parentheses, and
make sentences easier for an experienced J user to read and write.

Read the following sentences, evaluate them in your head, and understand how the
no precedence and right-to-left rules explain the answer.

 2 * 4 + 5
18

 2 + 4 * 5
22

 2 - 4 - 5
3

 8 % 2 + 2
2

Remember: no verb precedence and right-to-left evaluation.

p34

Verb definition

The art of programming lies not so much in using the primitives, as in defining
your own verbs, tailored to your requirements. In defining your own verbs you are
extending the language to build an application that solves a particular set of
problems.

Let's assume that the problem is to convert temperatures between Fahrenheit and
centigrade. You need to define a verb that does that.

The following is a definition of the verb centigrade that will convert its argument
from a Fahrenheit value to a centigrade value.

 centigrade =. 3 : 0
t1 =. y. - 32
t2 =. t1 * 5
t3 =. t2 % 9
)

The font size in the above has been upped a bit to make it easier for you to type it
exactly into the ijx window. At this point you want to do something that works,
rather than deal with problems arising from typos, so transcribe it carefully.

In the ijx window enter the first line:

centigrade =. 3 : 0

Type it exactly as shown. There must be a blank between the 3 and the : . The 3
indicates that you are defining a verb and the 0 indicates that the definition is in the
subsequent input lines.

After you enter the above line the cursor is at the left margin and has not been
indented the three spaces as it normally is. This indicates that the system is waiting
for you to enter the rest of the definition.

Type in the lines following the definition of centigrade as shown. They are at the
left margin, and so look like they might have been displayed by the system, but in

fact they are your entries of the lines required to define the verb.

The final line that contains just the) ends this special definition input mode. After
you enter this final line, the system again indents the three spaces indicating that it
is ready to execute a sentence.

If you entered the definition correctly, you should be able to experiment with your
new verb.

 centigrade 32
0

 centigrade _40
_40

 centigrade 212
100

Let's look at the definition to understand how it works. The y. in the first sentence
of the definition you type is the name of the argument of the verb. When you
execute the verb with an argument the first line will subtract 32 from the argument
and define t1. When the first line is finished, execution proceeds to the next line,
which defines t2 as the result of t1 times 5. Execution proceeds to the next line
and defines t3 as t2 divided by 9. There are no more lines, so the execution of
the verb is finished. The result of the verb is the last result that was evaluated.

We used 3 : 0 to define the verb. The phrase verb define is equivalent and some
find it easier to read. However, it hides information and we will use the 3 : 0
form.

 centrigrade =. verb define
. . .
)

p35

Monad and dyad definition

As discussed in the earlier section on ambivalence, all verbs had two definitions, a
monad and a dyad. You have defined only a monad for centigrade. What about the
dyad?

 23 centigrade 32
¦domain error
¦ 23 centigrade 32

Since you didn't provide a dyad definition, it is empty and this is treated as if the
dyad had no arguments in its domain, and any arguments you give will cause a
domain error.

Let's examine some simple examples of defining dyadic, monadic, and both cases.

 monadminus =. 3 : 0
- y.
)

 monadminus 5
_5

 5 monadminus 3
¦domain error
¦ 5 monadminus 3

The above defines the monad of the verb named monadminus. Applying it
monadically works and applying it dyadically fails.

In one-line definitions like this you can take a shortcut and make the definition on
a single line and avoid entering the special input mode that needs to be ended with
the). The following is an equivalent way of doing the above definition:

monadminus =. 3 : '- y.'

The string contains the single line that makes up the definition. It is provided
directly as the right argument of : instead of the 0 used earlier.

So far you have defined just the monadic case of a verb. You can also define a verb
with just a dyadic definition. Instead of 3 as the left argument to : use a 4 to define
the dyadic case.

 dyadminus =. 4 : 'x. - y.'
 5 dyadminus 3
2

 dyadminus 5
¦domain error
¦ dyadminus 5

In the monad case the y. name is the right argument and in the dyad case x. is the
left argument and y. is the right.

What if you want to define both cases of a verb?

 minus =. 3 : 0
- y.
:
x. - y.
)

The : by itself on a line separates the monad and dyad definitions.

 3 minus 5
_2

 5 minus 3
2

 minus 5
_5

p36

Script file

When you close J you lose the definitions of all the names. What you execute in the ijx
window affects the current session, but is not permanent. This is fine when experimenting,
but when you start defining things like your centigrade verb you want to record the
definition so that you can use it in another session.

Close J and restart it.

 centigrade
¦value error

You have a clean slate. The definition of centigrade, and all the other names you defined, in
the previous session are lost.

At least the primitives are still there!

 2 + 5
7

As you would expect, to maintain a permanent record of your definitions, you save them in
files. Files with J sentences and definitions are called script files and you can edit them just
as you would edit any other text file. Script files typically have a suffix of .ijs.

Remember: a script file is a source file for definitions.

Although you can use any text editor to work with script files, the J system provides a
simple editor that is integrated in ways that make it convenient.

The File|New IJS menu command creates a new script file and a window for editing it. Do
this now and you will see that your J session has both an ijx window and a new ijs window.
Use Window|Tile Across so that you can see them both side by side.

The ijs window is an edit window on the file with the name in its titlebar. Enter in an ijs
window does not execute the line, it just moves to the start of a new line.

Type your centigrade definition into the ijs window.

centigrade =: 3 : 0
t1 =. y. - 32
t2 =. t1 * 5

t3 =. t2 % 9
)

Be sure to use =: instead of =. in the first line. The =: makes a global definition. If you use
=. it is a local definition. This important difference is explained shortly.

Because this is an ijs window the system has not provided a three space indent for the first
line.

So far you have just edited changes into the window. The file has not been changed and the
verb is still not defined. You have to run the script in order to execute the sentences.

With the ijs window active (titlebar highlighted), run it with Run|Window. Running the
window with Run|Window, saves changes that have been edited in the window to the file,
and then executes each of the sentences in the file. This is similar to your typing the
contents of the file into the ijx window, except the sentences and results are not displayed.
The only display in the ijx window is the sentence that causes the file sentences to be
executed. This sentence will be something like: load'c:\j3\temp\1.ijs'

If an error is reported (output in the ijx window with a vertical bar on the left) then you
have a typo in your script. Correct the text in the ijs window and run it again.

The sentences in the script file have been executed and centigrade is now defined. In the ijx
window try using centigrade.

 centigrade 32
0

Your screen should look something like:

The file created with File|New IJS is in the TEMP directory and has a temporary format
name (a number with an ijs suffix). If you close J now, it will ask if you want to delete that
temporary file. If you replied no, you could restart and open that temporary file and run it to
define centigrade. However, it would be better to resave it now with a more appropriate
name in the USER directory. Use File|Save As..., change to the USER directory, and set the
file name as cf.ijs. The file name in the ijs window titlebar will change to the new name.

Close the cf.ijs window and erase your centigrade definition. You erase the definition of a
name by using the utility verb erase with an argument that is the string of the name you
want to erase. The result of 1 indicates the erase was successful.

 erase 'centigrade'
1

 centigrade 212
¦value error
¦ centigrade 212

Use File|Open to open the cf.ijs window and use Run|Window to run the script to define
centigrade.

 centigrade 212
100

Let's add a definition for fahrenheit to the cf.ijs window. Type in the following after your

centigrade definition. Again, be sure to use =: .

fahrenheit =: 3 : 0
t1 =. y. * 9
t2 =. t1 % 5
t3 =. t2 + 32
)

Use Run|Window to run the sentences in the cf.ijs script. Because these are the first
changes to a permanent (non-temporary) file you are prompted to see if you want to save
the changes to file. Reply yes, and then test your new verb.

 fahrenheit 0
32

 fahrenheit 451
843.8

Close J and restart it.

 centigrade
¦value error
 fahrenheit
¦value error

You can run the sentences in the cf.ijs file without opening the file for editing. Use
Run|File and select your cf.ijs file. A line similar to load'c:\j3\user\cf.ijs' appears in the ijx
window to run the sentences in the file.

 centigrade 32
0

 fahrenheit 100
212

The line that starts with load that appears in the ijx window is in fact the sentence that
causes the sentences in the file to be executed. The menu command is just a short cut way
of executing this sentence. The string is the full path name to the file to run. You can
shorten this full path name to a relative path name when you type it manually.

To check this, close J, restart it, and verify that centigrade is undefined. In the ijx window
execute the following sentence.

 load'user\cf.ijs'

Now check that your verbs are defined.

Use File|Open to open your cf.ijs file for editing.

What if there is an error in the script? Let's add an intentional error to the script to see what
happens. Add the line foo 123 at the end of the script and run the script again.

 load'c:\j3\user\cf.ijs'
¦value error
¦ foo 123
¦[-13]

An error is reported and the execution of the sentences in the script stops. The number at
the end of the error report is the line number in the script that had the error. The statusbar
shows the line number in the script and you can use this to find the error in the script.

Remove the error from the script and run it again.

p37

Local

The verb centigrade uses names t1, t2, and t3 in its definition, but if you refer to
them outside the verb they are not defined.

 centigrade 32
0

 t1
¦value error

 t1 =. 123
 t1
123

 centigrade 212
100

 t1
123

The use of t1 inside the definition of centigrade has not conflicted with your use
of t1 outside the definition. The verb centigrade does not define a t1 outside of
itself, as indicated by the value error, and setting a value into its t1 does not change
the value of t1 outside the definition.

The t1 used inside centigrade is a local name. A local name exists only inside the
verb. The t1 used outside centigrade is a global name. A name defined in the
execution of a verb with the copula =. is a local name.

p38

Global

A name defined outside the execution of a verb is a global name.

In the previous section, the t1 defined in the ijx window is a global name that is
completely different from the t1 defined inside the verb centigrade.

Let's try some experiments. Create a temporary script file with File|New IJS and
type into it the definition:

fooa =: 3 : 0 NB. =: is important
zzz + y.
)

Run the script with Run|Window. In the ijx window:

 fooa 5
¦value error
¦ zzz+y.

Let's define the global zzz to see what happens. Defining it outside a verb means
it is a global. In the ijx window:

 zzz =. 23 NB. define global zzz
 fooa 5
28

The verb fooa uses the global zzz. So, a verb can use globals.

Edit the script to add foob and then run the script.

foob =: 3 : 0
zzz =. 7
zzz + y.
)

In the ijx window:

 foob 3
10

 zzz
23

The verb foob uses its local zzz and ignores the global. So, a verb can use locals
and ignore globals of the same name.

Inside a verb the copula =. defines a local name. Once a name is defined as a local,
references to that name are to the local name.

What if you wanted to define a global name? The global copula =: (= with a colon
inflection) defines a global name. Edit the script to add fooc and then run the
script.

fooc =: 3 : 0
gw =: y.
lz =. y.
)

In the ijx window:

 fooc 3
3

 gw
3

 lz
¦value error

 gw =. 24
 fooc 5
5

 gw
5

Defining gw with =: defines the global name.

In general, it is good practice to only define locals in a verb and to not define
globals. This is an important part of what is sometimes called a functional style of
programming. Verbs that define globals are said to have side effects and are more
likely to cause bugs and make it harder to read the application to understand what
is happening.

It is possible to define a verb that uses both the global and local definitions of a
name. With few exceptions this is VERY bad practice.

p39

Debug global

Sometimes when trying to debug or better understand a verb it is useful to see the
values of its local names or other intermediate results. A quick way of doing this is
to add a line to the verb definition that does a global definition.

Open the cf.ijs file and add a line to centigrade to define global gt1 as t1.

centigrade =: 3 : 0 NB. =:
t1 =. y. - 32
gt1 =: t1 NB. temp line for debugging info
t2 =. t1 * 5
t3 =. t2 % 9
)

Run the script and in the ijx window:

 centigrade 124
51.1111

 t1
¦value error

 gt1
92

After centigrade finished execution you can't see what value the local t1 had, but
you can see a copy of the value in gt1.

Remove the line from the script and run the script to redefine centigrade without
the debug line.

p40

When =. and =: are the same

You have seen how =. and =: are different when used in a verb definition.

When you execute sentences in the ijx window you are not executing them inside a
verb so the =. and =: have the same effect. In the ijx window:

 a =. 123
 a
123

 a =: 234
 a
234

In the ijx window the =. and =: copulas are the same and it doesn't matter which
you use to define a name as they both define the global name. The =. is easier to
type and tends to be the one that is used. In a strict sense it would be better to
explicitly use =: when defining a global name.

p41

When they aren't

You have seen that =. and =: in the ijx window are the same. And you have seen
that inside a verb they are different. It is important to realize there is also a
difference in scripts.

When you run a script, the load sentence is executed in the ijx window and the
verb load executes the sentences in the script. So, the sentences in the script are
executed in the load verb. This means that names defined with =. are defined as
locals of the verb load. If you want to define a global in the script you must use =:
. This is why the lines which define globals such as centigrade and fahrenheit in
your script cf.ijs must use =: . If you used =. , they would be local to load and
would disappear as soon as load finished execution.

Always think about whether a definition is global or local and use =: and =.
accordingly.

p42

Locale

First of all, note that locale is a very different word from local, even though there is
only one less letter in the latter.

A locale is a set of global names. There can be several locales, so there can be
several sets of globals.

A global name in a locale is distinguished from the same name in other locales by
qualifying the name with the addition of the locale name bracketed by _ (underbar)
characters. A name qualified by a locale is always a global name.

 abc_def_ =: 2

The above sentence can be read as global abc in locale def is 2.

 abc_base_ =: 4

The above sentence can be read as global abc in locale base is 4.

If the locale name is elided, it is assumed to be base.

 abc__ NB. the same as abc_base_
4

If a global name is not qualified with a locale name, then it is in the current locale.
The base locale is the current locale unless it has been explicitly changed by
executing a verb in a different locale. The following defines abc in the base
locale:

 abc =. 6
 abc_base_
6
 abc
6

Since the base locale is the current locale, the names abc and abc_base_ are the
same.

The name abc_def_ is clearly different from abc, but so far there is no way of
telling that anything special is going on. In what sense are abc and foo in the
same (base) locale? And abc and abc_def_ in different locales?

One way of distinguishing is to use the names utility verb that lists global names.

 a =. 23
 b =. 24
 a_q_ =. 25
 w_q_ =. 26

 names 0 NB. 0 lists nouns
a abc b

Your names result may be different, but it will include all global nouns you have
defined in the base locale. You should see the a and b that you defined above and
note that you do not see the w that was defined in locale q.

To see the names defined in locale q you can do the following:

 names_q_ 0 NB. names in locale q
a w

Nouns a and w are defined in the q locale.

Locales partition global names into different sets, and utilities, such as names, can
work with globals in a particular locale.

The real power of locales comes into play with verbs defined in a locale. When a
verb executes in a locale it executes with that locale, not the base locale, as the
current locale.

Let's define a simple verb in the q locale to see how this works.

 f_q_ =. 3 : 'a =: y.'

This verb defines global a with its right argument. There can be many different
locales, each with their own global a. But when f_q_ executes, it executes in the q
locale and the q locale is the current local, and global names it uses are from the q
locale. Try the following experiments:

 a =. 23 NB. define a in the base locale
 a_q_ =. 24 NB. define a in locale q
 f_q_ 100 NB. execute f in locale q
100
 a
23
 a_q_
100

Executing f_q_ 100 defined global a_q_ as 100. It did not affect the global a in
the base locale.

If a verb explicitly references a name in a locale then that is the global that is
affected. For example, define verb g_q_ that defines a in the base locale. You will
see that the a in the base locale is defined and the a in the q locale is not changed:

 g_q_ =. 3 : 'a_base_ =: y.' NB. explicit locale name
 g_q_ 200
200
 a
200
 a__
200
 a_q_
100

Locales partition global names into separate sets. In particular, related nouns and
verbs, say in a set of utilities, can be defined in their own locale. Their names don't
conflict with names in the base or other locales. When you look at your application
you can look at just the related globals that are in a particular locale. When a verb
runs in a locale it uses globals from that same locale.

The names verb with an argument of 0 lists nouns, with 3 it lists verbs, and with 6

it lists locale names.

 names_q_ 0
a w

 names_q_ 3 NB. verbs
f g

 names 6 NB. locale names
base j q z

The list of locale names is interesting. base and q you know about, but what about
j and z ?

The globals in the j and z locales are defined when J starts up and runs the
profile.ijs script. The j locale contains things which are useful in building an
application and is discussed in the J Online Documentation.

The z locale is very interesting indeed.

p43

z locale

The z locale is the parent locale of all other locales.

If a name is not found in the current locale, and there is a definition for it in the z
locale, then that definition is used as if it were in the current locale.

The z locale is for common utilities that you want to be available everywhere.
From the z locale, they are available for execution in any locale as if they were in
that locale, yet there is only a single copy, and the names in the z locale don't
clutter up the names in the other locales.

The profile.ijs that runs when you start J defines many standard utilities in the z
locale. You have used both the erase and the names verbs which are defined in the
z locale. You can tell this by the following:

 names 3 NB. verbs in the base locale
...

The above does not list names as a name, yet you are able to execute it. This is
because when it is not found in the base locale, its definition from the z locale is
used as if it were in fact defined in the base locale.

 names_z_ 3 NB. verbs in z locale
...

The result is too long to list here. The verb names has a dyadic definition that takes
a left argument which indicates the first letter of names to return.

 'n' names_z_ 3
nameclass namelist names nc nl

names is defined in the z locale and that is the definition that is executed.

p44

Script load

In addition to the utilities loaded with the standard profile, there are several
additional scripts of standard utilities provided with the system. These standard
utilities are documented in the J Online Documentation available from the J help
menu. You could run these scripts directly, but you would need to remember the
path to the script, as well as which locale to run them in. The standard profile
provides utilities to make this easier for you. The scripts verb lists scripts that can
be loaded with the load verb.

 scripts ''
. . .
parts plot profile scripts stdlib strings
trig validate winlib winutil
. . .

The scripts verb with an argument of 'v' lists the scripts with their full path and
locale.

 scripts 'v'
. . .
compare c:\j3\main\compare.ijs z
convert c:\j3\main\convert.ijs z
. .

The convert script contains several conversion utilities.

 load 'convert'
 toupper 'testing 1 2 3'
TESTING 1 2 3

 tolower 'Sir Richard'
sir richard

p45

Checkpoint B

At this point you should understand:

● a text file that is a source of sentences is called a script file
● a script file defines global names
● how to create a new temporary script file
● how to save a temporary script file as a permanent file
● how to run a script file to execute its sentences
● how to define a verb in a script file
● how to define the monadic and dyadic cases of a verb
● the difference between =. and =:
● the difference between local and global
● that a locale is a set of global names
● that there can be more than one locale
● that the base locale is the one you normally work with

Check your understanding by doing the following exercises:

● create a new temporary script file
● in the script define square as a monad that uses *: to square its argument
● save the script in the user directory with the name square.ijs
● run the script and test the verb square
● close J, restart, use Run|File to run user\square.ijs and test it

p46

Debug - stepping through a verb

Debug requires a prokey, and will fail with domain error if a prokey is not set. For
more information, see products. If you have not purchased a prokey you won't be
able to use debug on your system. You will probably still find it interesting to read
these debug sections.

In an earlier section you added a debugging line to a verb definition that allowed
you to see the results of intermediate steps when the verb was run. Sometimes you
need more powerful tools than that.

Use load to load the debug utilities.

 load 'debug'

Open your script file cf.ijs and run it.

Let's execute centigrade, but with a stop on each line so that you can take a look
at exactly what is going on.

 dbss 'centigrade *:*'

The dbss (Set Stop) argument requests a stop before executing all, indicated by
:, lines in centigrade.

 dbr 1

dbr with an argument of 1 requests that the system suspend execution when an
error or stop occurs. When a verb is suspended it is halted in mid execution. You
can examine definitions, change definitions, and you can resume execution of the
suspended verb.

 centigrade 212

¦stop
¦ t1=.y.-32
¦centigrade[0]

The error report (bars at the left margin) indicates execution stopped on line 0 of
centigrade and shows the sentence from that line.

The execution of centigrade is suspended and the indent of six spaces, rather
than three, indicates the suspension. The variable y. is the argument.

 y.
212

The stop occurs before the line is executed, so t1 has not been defined and if you
try to look at it you will get a value error.

Use dbrun to continue execution. It will run the current line, and because stops
are set on all lines it will then stop on the next line.

 dbrun ''
¦stop
¦ t2=.t1*5
¦centigrade[1]

 t1
180

 t1*5
900

centigrade is now stopped on line 1, and as you can see, you are able to check
the value of local t1 that was defined in line 0. Step through the next lines and
examine locals.

 dbrun ''
¦stop
¦ t3=.t2%9
¦centigrade[2]

 t2

900

 t2%9
100

 dbrun ''
100

You are no longer suspended in centigrade and you are back to the normal
indent of three spaces.

Turn off the request for debug suspensions and reset to have no stops.

 dbr 0
 dbss ''

p47

Debug - an error

Let's introduce an error into your centigrade verb to see how that looks and how
you would find and fix it.

Open your cf.ijs script and edit the first line to have an error by adding quotes
around the expression to the right of the copula.

t1 =. 'y. - 32'

Instead of t1 being defined as the result of y. - 32 , it will be defined as the
string

'y. - 32' .

Run the script to make the new definition. Turn off debug suspension and request
no stops and then run your buggy centigrade. Be sure to load the debug utilities
if they are not already loaded.

 dbr 0 NB. disable suspension
 dbss ''
 centigrade 212
¦domain error
¦ t2=.t1 *5

You are executing with suspension disabled (dbr 0) so execution did not suspend
in centigrade and you have the normal 3 space indent.

If you look at the line in error it is clear that the 5 is a valid argument to times, so
there must be something wrong with t1. But you don't know the value of t1. You
could stare at the source for the error, but, in a complex situation, it might be
quicker to use debug.

Enable suspension and rerun.

 dbr 1 NB. enable suspension
 centigrade 212
¦domain error
¦ t2=.t1 *5
¦centigrade[1]

There is a 6 space indent indicating suspension, and because centigrade is
suspended you can look at the value of t1.

 t1
y. - 32

From the display of t1 it is clear that it is a string, not the number from the desired
calculation. You can now look at the source to see where t1 was defined and see
that the quotes should not be there.

Edit the source to fix the definition by removing the quotes and run the script to
redefine centigrade.

You want to run line 0 again to properly define t1. You can do this by using
dbnxt to continue execution at line 0.

 dbjmp 0
100

Since no stops are set and there are no other errors, line 0 of centigrade is
executed, which sets a proper value into local t1 and execution continues until
finished.

p48

Comparative

The dyad = has a result of 1 if its left and right argument are equal, and a result of 0
if they are different.

 23 = 34
0

 23 = 23
1

 a =. 'd'
 a = 'c'
0

 7 + a = 'c'
7

 7 + a = 'd'
8

Some programming languages treat the results of comparative primitives such as =
as True and False values that are not numbers. In J the results of comparatives are
just numbers.

There are several other comparative verbs: less-than < , less-or-equal <: , larger-
than > , and larger-or-equal >: . These comparative primitives are sometimes
called relationals.

 7 < 8
1

 7 < 7
0

 7 <: 7
1

p49

Control structure

In centigrade the sentences in the definition are just executed sequentially, one
after the other. To conditionally control which sentences are executed you use
control structures.

Control structures are built with control words and sentences. The following is an
example of a control structure:

if. x. = 'c'
do. centigrade y.
else. fahrenheit y.
end.

The if. control word starts the control structure and the end. control word ends it.
The result of the x. = 'c' sentence is the test result and it determines which of
the other sentences in the control structure are executed. If the test result is 1, then
the sentence after the do. control word is executed. If the test result is any other
value then the sentence after the else. control word is executed. In English: if the
left argument equals the letter c, then execute centigrade, otherwise execute
fahrenheit.

Use this capability to add a new verb to your cf.ijs script that will convert a number
from Fahrenheit to centigrade or from centigrade to Fahrenheit depending on the
value of the left argument. Open your cf.ijs script and add the following definition
at the end.

NB. convert f to c if x. is 'c', otherwise c to f
convert =: dyad : 0
if. x. = 'c'
do. centigrade y.
else. fahrenheit y.
end.
)

This defines the dyadic case of the verb. The dyad has a left argument with the

name x. and a right argument with the name y. . The verb convert takes a left
argument of 'c' to convert a Fahrenheit value to centigrade. Any left argument
other than 'c' will convert a centigrade value to Fahrenheit.

Note that you use your verbs fahrenheit and centigrade just as you would use
primitive verbs.

Run the script and test convert.

 'c' convert 212
100

 'f' convert 100
212

Normally a sentence is a line in a script. However, with control words separating a
line into several sentences it is possible to have more than one sentence on a line.

The following line is equivalent to the multiple lines used earlier.

if. x. = 'c' do. centigrade y. else. fahrenheit y. end.

Control structures are only allowed in definitions and you cannot type one directly
into the ijx window for execution.

There are nine control structure patterns:

if. T do. B end.

if. T do. B else. B1 end.

if. T do. B elseif. T1 do. B1 elseif. T2 do. B2 end.

try. B catch. B1 end.

while. T do. B end.

whilst. T do. B end.

for. T do. B end.

for_i. T do. B end.

select. T
case. T0 do. B0
case. T1 do. B1
fcase.T2 do. B2
case. T3 do. B3
end.

A control structure starts with if. , try. , while. , whilst , for. , for_i. , or
select. and ends with a matching end. .

Words beginning with T or B denote a block of 0 or more sentences and can
contain nested control structures.

The result of the last sentence in a T block determines which block is executed
next and whether execution in the control structure is finished.

Often the T block is a single sentence that makes a simple test like the one in the
example.

The try. control structure is an interesting one. It executes the B block of
sentences, and if there are no errors it skips to the end of the structure. However, if
there is an error, then the B1 block is executed.

The while. control structure executes the T block and if its result is not 0 then it
executes the B block and continues this until the T block has a 0 result. If the T
block is 0 the first time, then the B block is not executed.

The whilst. control structure is the same as while. except that the T block is
skipped the first time. This means that the B block is always executed at least once.

See the J Dictionary for more information on control structures.

p50

Checkpoint C

At this point you should understand:

● that load 'debug' loads debug utilities
● the general idea of verb debugging
● how control words create control structures by grouping sentences into

blocks
● what the T block test result is
● how the test result determines which B block to execute
● how the test result determines when control structure execution is finished

Check your understanding by doing the following exercises:

● debug step through your convert verb
● create a temporary script file and define a verb called conv that is similar

to convert, but insists on a 'f' argument to do the conversion to
Fahrenheit and gives a string result indicating there was an error if the left
argument is neither 'c' nor 'f'. Hint: use the control structure sketched
out here:
if. x. = 'c' do. ...
 elseif. x. = 'f' do. ...
 elseif. 1 do. 'left arg not c or f'
end.

or try a select.structure.

● create a temporary script file and define a dyad called plus that adds its left
argument to its right. But, if there is an error, it should give a string result.
Hints: use dyad : 0; 4 plus 9 should return 13; 'a' plus 9 should
return your error string (perhaps, 'there was an error'); use a try.
control structure to catch the error and give the string result.

p51

Basic way of adding lists

You can have lists of numbers.

 a =. 12 24 47
 b =. 12 34 45

If you wanted to add two lists of numbers in a language like Basic you would have
to get each number in turn from each list, add them together, and then stick this
new result at the end of the result list.

To add two lists of numbers together in this way you need a few new primitives.
You need a way to get one number from a list. The verb { (from) can do this.

 0 { 7 9 2 4 NB. index 0 value
7

 1 { 7 9 2 4 NB. index 1
9

 2 { 7 9 2 4 NB. index 2
2

 3 { 7 9 2 4 NB. index 3
4

You need to be able to append a new result value to the result list. The verb , can
do this.

 7 9 2 , 4 NB. append 4 to the list
7 9 2 4

 7 9 2 4 , 7 NB. append 7 to the list
7 9 2 4 7

 a =. 7 9 2 4
 a =. a , 23

 a
7 9 2 4 23

You need to know how many numbers there are in the list so that you will know
when you are done. The monad # (tally) tells us how many numbers are in the list.

 # 7 9 2 4
4
 # 7 9 2 4 7
5

You also need a way to create an empty result to which you will add each new
result. An empty string will do this.

 r =. '' NB. an empty string

With these new verbs, combined with what you already know, you can write a
Basic or Java style program that adds two lists.

Create a temporary script file and add the addlists definition.

addlists =: dyad : 0
r =. ''
count =. # x.
i =. 0
while. i < count do.
left =. i { x.
right =. i { y.
sum =. left + right
r =. r , sum
i =. i + 1
end.
r
)

The local i is the index to select numbers from each list. It starts with 0 to select the
first number from the left and right arguments. At the end of the while. control

structure the i is incremented by 1 so that the next time the block is executed it will
select the next number. The while. structure tests to see if i is less than the count
of the argument. The control structure is finished when i is equal to the count of
numbers to be added together. The left and right locals are defined as the next
pair of numbers. They are added together and are appended to the end of the result
r. The final line in the definition is r and that is the result.

Run the script and test your definition of addlists.

 2 3 4 addlists 4 5 6
6 8 10

If you made a typo in the definition you will get an error or a wrong answer. In that
case, you should check carefully that you have typed the definition in correctly.

Certain errors (such as omitting the line that incremented the value of i) give you a
while. that runs forever, and the statusbar indicates running and you won't get any
result displayed. This is because the while. never ends and the program keeps
adding the first element of the left and right arguments and never steps to the next
element. If you are in a loop like this, press Ctrl+Break to interrupt the execution.

In fact, it is worthwhile seeing how this looks. Edit the addlists definition so
that i is not incremented. The easiest way to do this is to add NB. in front of the i
=. i + 1 sentence. Run the script and test the verb. You should see that the
statusbar indicates running and that there is no result. Press Ctrl+Break to stop the
execution.

For such a simple thing, this definition seems overly verbose in taking eleven lines.
The definition can be compacted a bit by combining sentences. In the temporary
script file create a second version of the definition.

adda =: dyad : 0
r =. ''
count =. # x.
i =. 0
while. i < count do.
r =. r , (i { x.) + (i { y.)
i =. i + 1
end.
r

)

Run the script and test this new version.

 2 3 4 adda 4 5 6
6 8 10

This is essentially how programmers in most languages add two lists of numbers.
The program could be further streamlined, but it would still have to be a control
structure that dealt with each number, one at a time. Most languages only know
how to add a single number to a single number, and to add lists of numbers, you
need to write a control structure that loops and explicitly adds each element of the
list in turn.

p52

J way of adding lists

J knows how to do things to single numbers, but it also knows how to do things
with lists.

Since J knows how to add lists, you can write a third, simpler version of the
definition.

addb =: 4 : 'x. + y.'

Add this definition to your temporary script file, run the script, and test it.

 2 3 4 addb 4 5 6
6 8 10

At this point you probably realize that addb is so simple as to be unnecessary.

 2 3 4 + 4 5 6
6 8 10

In J you can just add the lists of numbers because the + verb knows all about lists
of numbers.

Years of research and thought have gone into how J verbs work with lists. For
example, if you wanted to add 1 to each number in a list.

 1 adda 2 3 4
3

The Basic style adda verb gives an answer, but it is the wrong answer. What
happens is that the while. uses the count of the left argument (which is 1) to
determine how many elements to generate in the result, and so calculates only the
first result number.

 2 3 4 adda 1
¦index error
¦ r=.r,(i{x.)+(i {y.)

This gives an error because the while. uses a count of 3 (the count of numbers in
the left argument) but the right argument doesn't have that many so you get an
error.

But the J + handles both these cases the way you would like, and would expect!

 1 + 2 3 4
3 4 5

 2 3 4 + 1
3 4 5

Thank goodness the addlists and adda verbs are in a temporary file and are
easy to get rid of, because clearly you don't need them in J. Close and delete that
temporary script now.

The simple concept of working with lists, instead of just single things, extends
throughout J.

 2 4 6 * 7 8 9
14 32 54

 2 * 2 3 4
4 6 8

 2 3 4 * 2
4 6 8

 5 6 7 % 2
2.5 3 3.5

 2 3 4 - 3
_1 0 1

It works for the comparatives as well.

 2 3 4 = 7 3 8

0 1 0

 2 < 0 1 2 3 4 5
0 0 0 1 1 1

 't' = 'testing'
1 0 0 1 0 0 0

If this works for primitives, what about verbs such as centigrade?

Run your cf.ijs script to define your verbs and see what happens.

 centigrade _40 32 212
_40 0 100

You can apply your centigrade verb to a list of numbers and get a list of results.
This also work for fahrenheit.

 fahrenheit _40 0 100
_40 32 212

What about your dyad convert?

 'c' convert _40 32 212
_40 0 100

 'f' convert _40 0 32 100 212
_40 32 89.6 212 413.6

The extension of verbs to work consistently on lists is very powerful and
significantly distinguishes J from most other languages. It is important that you
assimilate this into the way you think about solving problems.

p53

A few more primitives

The monad i. (integers) result is the list of integers from 0 up to its right
argument.

 i. 2
0 1

 i. 4
0 1 2 3

 i. 6
0 1 2 3 4 5

The dyad $ is called shape.

 5 $ 7 NB. a list of 5 7's
7 7 7 7 7
 8 $ 23 NB. a list of 8 23's
23 23 23 23 23 23 23 23

The monad ? (roll) generates a random number in the range 0 up to 1 less than the
argument. The answers vary depending on how the die rolls.

 ? 10
6

 ? 10
0
 ? 10 10 10 10 NB. 4 numbers in range 0 to 9
3 0 4 6

 ? 5 $ 100 NB. 5 numbers in range 0 to 99
58 93 84 52 9

 ? i. 5
¦domain error
¦ ?i.5

The ? i. 5 fails because the ? on 0 fails because there are no integers in the range
0 to _1 and so there is no answer for the argument of 0. If you add 1 to the result of
i. we will get an answer.

 ? 1 + i. 20
0 1 0 1 0 3 3 2 2 4 7 3 0 13 1 5 16 6 3 19

The dyad ^ (power) result is the left argument multiplied by itself the number of
times given by the right argument.

 3 ^ 2 NB. 3 * 3
9

 2 ^ 3 NB. 2 * 2 * 2
8

 2 ^ 4 NB. 2 * 2 * 2 * 2
16

 2 2 2 2 2 2 ^ 0 1 2 3 4 5
1 2 4 8 16 32

 2 ^ 0 1 2 3 4 5
1 2 4 8 16 32

 2 ^ i. 6
1 2 4 8 16 32

The dyad o. (circle) is the letter o inflected with a dot, and it provides the circular
(trigonometric) functions. In particular, the o. verb with a left argument of 1 gives
the sine of the right argument.

 1 o. i.7
0 0.841471 0.909297 0.14112 _0.756802 _0.958924 _0.279415

It is hard to tell whether this makes sense or not and it would be better to see this
data with a plot.

p54

Plot

To use the plot facility you need to load it.

 load 'plot'

Try a simple plot.

 plot 5 10 23 45 8

The plot is in a separate window that stays on top of your session. Close the plot window to get rid
of it.

Now that you can plot data, let's take a look at some of the data you were generating in the
previous section.

 plot 2 ^ i. 5
 plot ? 5 $ 100

 plot ? 50 $ 100
 plot ? 100 $ 100
 plot ? 1 + i. 50
 plot ? 1 + i. 100

A left argument customizes the plot.

 'TITLE myplot;TYPE bar' plot i.5

Or try the sine values you calculated earlier.

 plot 1 o. i. 16

There is a family of utilities defined in script trig.ijs you could make use of here. Use load to load
that script.

 load 'trig'
 plot sin i. 16

To produce a finer plot you need to provide more results over a similar range.

 plot sin 0.2 * i.60
 plot cos 0.2 * i.60

p55

Plot locale

Plot also illustrates a common technique in the use of locales. Close J and restart it
to get a clean slate. The names in the base locale is empty and there are just the
two standard locales that are populated by the profile.ijs script.

 names 3 NB. verbs

 names 6 NB. locales
base j jcfg z

The load verb (defined in the z locale) loads the plot.ijs script into the plot locale.

 load 'plot'
 plot ? 5 $ 100
 names 3

 names 6
base j jcfg jplot z
 plot
+----------+
¦plot_plot_¦
+----------+

The verb plot is not defined in the base locale, but is defined in the z locale.
When it is executed in the base locale the definition from the z locale is executed
as if it were in the base locale. Entering the name plot displays its definition. The
interesting thing about the definition of plot is that it executes the plot verb in
the plot locale. So the plot in the z locale is a cover that works in all locales
and has the result of executing plot in the plot locale.

This technique of loading a facility like the plot package into its own locale, and
then defining cover verbs in the z locale so that plain name references invoke the
desired verb in the facility locale is common. The definitions in the plot locale can
be viewed as the private implementation of the facility and the names that are
exposed by being defined in the z locale are the public or published interface.

p56

Print precision

Print precision is the number of digits shown when a number is displayed.

 1 % 3
0.333333

 10 % 3
3.33333
 100 % 3
33.3333

Using lists and some of the new primitives you can now see this more concisely:

 (10 ^ i. 6) % 3
0.333333 3.33333 33.3333 333.333 3333.33 33333.3

You can guess that the default print precision is 6 because in each case 6 digits are
shown.

 a =. 1e5 + 10 % 3
 b =. a + 0.1
 a
100003

 b
100003

 a = b
0

With only 6 digits shown, a and b look the same even though they aren't. In a
situation like this you need to see more digits. The print precision can be changed
by use of the following verb.

 pps =. 9!:11 NB. print precision set

Don't worry about the curious appearance of this verb, just use it.

 pps 9

 a
100003.333

 b
100003.433

With print precision of 9 there is enough detail to see what is going on.

 pps 6

 %3 9 13
0.333333 0.111111 0.0769231

 pps 12

 %3 9 13
0.333333333333 0.111111111111 0.0769230769231

The default print precision of 6 is adequate for most situations because you don't
usually have to see all those extra digits of detail. However, it is important to know
that they really are there, and that the display has been abbreviated as a matter of
convenience.

p57

Inexact numbers

The way numbers are stored in a computer limits the maximum number of digits in
the number. This maximum depends on the hardware, but typically a pps
argument of 20 guarantees that all the digits available for a value will be
displayed.

 pps 6

 %3
0.333333
 pps 12

 %3
0.333333333333
 pps 20

 %3
0.33333333333333331

At 20 digits of precision the result of %3 displays all the detail it has on the number
in 17 digits. The result of %3 is not the exact mathematical result, but is the closest
number to that exact result that can be stored in the computer. This difference
between what you would expect from exact math and the limitations on how
numbers are stored in computers can be confusing.

 3 * % 3
1

The result of %3 is not the exact value, but it is so close that when multiplied by 3 it
gives the exact expected value of 1.

 3 * 10 * % 3
10

Multiplying the inexact result of %3 by 10 magnifies the error, but it is still close

enough to the exact value that when multiplied by 3 it gives the exact expected
value of 10.

 3 * 100 * % 3
99.999999999999986

However, multiplying %3 by 100 magnifies the error enough so that when
multiplied by 3 you do not get the exact expected answer of 100, but instead get a
number that is very close to 100.

Using lists you can combine the above examples.

 3 * 1 10 100 * % 3
1 10 99.999999999999986

The fact the %3 isn't stored exactly in the computer may not surprise you too much
if you realize that an exact representation in decimal digits would take an infinite
numbers of 3's.

There is an additional source of confusion due to the fact that computers store
numbers internally in a binary format where each digit is a 0 or 1, rather than the
decimal format you are familiar with where the digits range in value from 0 to 9. A
consequence of this is that even very simple decimal numbers, exactly expressed
with a few digits, when converted to the computer's binary format, are stored as an
inexact value.

 pps 20

 0.5 0.25 0.1
0.5 0.25 0.10000000000000001

The 0.5 and 0.25 are stored exactly, but the 0.1 is stored inexactly, and when
displayed with maximum precision shows as 0.10000000000000001 .

These are facts of life with the way computers store floating point numbers and
apply to all computer languages, not just J. Usually you can ignore these details,
but they can sometimes cause problems or confusion if you don't have an idea
about what is going on.

p58

Tolerance

This section is a bit advanced and understanding it is not critical. If it makes sense,
great. If not, don't worry about it, and just move on to the next section.

For some kinds of work with floating point numbers, this section is important,
along with a more detailed understanding of how numbers are stored and
manipulated by the hardware. For most work, however, this section can be ignored.

Let's consider the calculation at the end of the last section in more detail.

 pps 20

 a =. 3 * 100 * % 3
 a
99.999999999999986

 a = 100
1

By exact math you would expect a to be 100. But because the computer can't
exactly represent the value %3, you get a value for a that is very close to 100, but
not exactly, as you can see by its detailed display with a print precision of 20.
However, note that a is considered to be equal to 100, even though you can see that
it is not exactly equal. This is because the comparison is tolerant. That is, numbers
do not have to be exactly identical to be considered equal.

Let's experiment to get an idea for how tolerant the comparison is by gradually
taking the value further away from 100. The input line recall shortcut with
Shift+Ctrl+up arrow is very useful for playing with things like this.

 100 = 100
1

 100 = 99.999999999999986
1

 100 = 99.99999999999998

1

 100 = 99.9999999999999
1

 100 = 99.999999999999
1

 100 = 99.99999999999
0

In the last example you crossed the line and the value is far enough away from 100
that it is no longer considered to be equal. Let's look at another example.

 a =. 23
 b =. a - 1e_12
 c =. a - 1e_11
 a
23

 b
22.999999999999002

 c
22.999999999989999

 a = b
1

 a = c
0

The values of a and b are close enough to be considered equal. The values of a and
c are not close enough to be considered equal. Close enough refers to the
difference between the two numbers.

 a - b
9.9831254374294076e_13

 a - c
1.000088900582341e_11

In both cases the difference is small, but b is closer than c to a. Reading the J
Dictionary definition for = you will see that the dividing line between close enough
and not close enough is determined by the result of multiplying the larger of the
numbers times the default tolerance value of 2^_44. That is, close enough is
relative to the size of the numbers.

 tolerance =. a * 2 ^ _44
 tolerance
1.3073986337985843e_12

Check both differences against this tolerance:

 (a - b , c) <: tolerance
1 0

The difference between a and b is less or equal to the tolerance, whereas the
difference between a and c is not.

p59

Checkpoint D

At this point you should understand:

● primitives work with lists
● your own verbs work with lists
● how to use several new verbs
● how to use the plot facility
● comparatives such as = that give numeric 0 and 1 results

Check your understanding by doing the following exercises:

● look up the J Dictionary definitions of the integers, shape, roll, power, and
circle verbs; in most cases only a part of their capabilities have been
introduced, so you will have to read the definitions carefully to be able to
ignore the parts not yet relevant, and to pick out the parts that are

● experiment with the new primitives

p60

Atom

A noun that is a single entity is an atom.

 23
 'a'
 b =. 23
 a =. 'q'

An atom has 0 dimensions.

p61

List

A noun that is a list of atoms is a list.

 23 24 25
 'this is a string'
 b =. 7 14 21
 a =. 'another string'

A list has one dimension. The length of the dimension is the count of atoms in the
dimension.

p62

Table

A table is a two dimensional array of atoms. Tables cannot be written directly as a
constant as can an atom or a list, but instead must be created with a primitive. The
dyad $ (shape) can create tables. The left argument indicates the count of items in
each dimension and the right argument provides items to populate the table.

 2 3 $ 7 NB. a 2 by 3 table of 7's
7 7 7
7 7 7

 2 3 $ 7 8 9 10 11 12
7 8 9
10 11 12

 2 3 $ 7 8 NB. cycle through atoms to get enough
7 8 7
8 7 8

 3 4 $ 'abcdefghijklmnopqrstuv'
abcd
efgh
ijkl

The monad $ (shape of) gives the shape of its argument. The shape is the list of the
count of atoms in each dimension of the argument.

 a =. 2 3 $ 7
 $ a
2 3

The monad i. (integers), introduced earlier for creating a list of integers, can be
used to create tables of integers.

 i.5 NB. list of 5 integers
0 1 2 3 4

 i. 2 3 NB. 2 by 3 table of integers

0 1 2
3 4 5

p63

Array

Atoms, lists, and tables are all arrays. All nouns in J are arrays. Atoms have 0
dimensions, lists have 1 dimension, and tables have 2 dimensions. This extends to
higher dimension arrays.

The primitive $, discussed earlier with lists and tables also works with higher
dimension arrays.

 2 3 4 $ i. 24
0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15
16 17 18 19
20 21 22 23

The above is a 3-dimensional array. The blank line indicates the break between the
1st dimension and the 2nd and 3rd.

 b =. 2 3 4 $ 'abcdef'
 $ b
2 3 4

The monad i. also works with higher dimension arrays.

 i. 2 3 4
0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15
16 17 18 19
20 21 22 23

The J terms atom, list, and table are analogous to the math terms of scalar, vector,
and matrix.

p64

Axis

The term axis is used in slight preference to the term dimension. Atoms have 0
axes, lists have 1 axis, and tables have 2 axes.

p65

Shape

The shape of a noun is the list of the count of atoms in each of its axes. The monad
$ gives the shape of a noun.

 a =. 4 2 3 $ 'abcdef'
 $ a
4 2 3

 $ 4 NB. atom has 0 axes and its shape is empty

 $ i. 5
5

p66

Rank

The rank of a noun is the count of its axes. An atom has rank 0, a list rank 1, a
table rank 2, and an array with 5 axes has rank 5. The rank of an array is very
important and determines in a significant way how verbs act upon it.

The shape of an array is a list with as many numbers as the array has axes. This
means that the count of the shape of an array is the rank of the array.

 # $ 4 NB. atom has rank 0
0
 # $ 4 5 6 NB. list has rank 1
1
 # $ 2 3 $ 'a' NB. table has rank 2
2

p67

Empty Array

An array is empty if it contains no atoms. An empty array has a 0 in its shape.

 a =. 0 $ 0 NB. empty list
 $a
0

 $ '' NB. empty list
0

 b =. 2 0 3 $ 'a' NB. empty rank 3 array
 $b
2 0 3

Empty arrays have no atoms to display and their display can be confusing if you
don't know what to expect. An empty list displays as a blank line. A table with 0
rows displays as 0 lines; a table with 3 rows, but 0 columns, displays as 3 blank
lines.

 2 $ 5
5 5

 1 $ 5
5

 0 $ 5 NB. empty list displays as blank line

 2 2 $ 5
5 5
5 5

 1 2 $ 5
5 5

 0 2 $ 5 NB. 0 rows displays 0 lines
 2 0 $ 5 NB. 2 rows displays 2 lines

The display of lists and tables with 1 row can look the same, and you have to look

at their shape to distinguish them.

 a =. 2 $ 5
 b =. 1 2 $ 5
 a
5 5
 b NB. b displays the same as a
5 5
 $ a
2
 $ b NB. but b has a different shape
1 2

p68

Single atom array

An array with a single atom is referred to as a singleton. All singletons with the
same atom display the same way. However, the fact that they have different ranks
affects how verbs act on them. This can be a pitfall for beginners. It is important to
remember that if it displays like an atom, but does not behave like one, then check
its rank.

 atom =. 5
 list =. 1 $ 5
 atom
5

 list NB. list looks like atom
5

 atom + 23 23 23
28 28 28

 list + 23 23 23 NB. but does not behave like atom
¦length error
¦ list +23 23 23
 # $ atom NB. rank of atom is 0
0

 # $ list NB. rank of list is 1
1

p69

Verb arguments

Much of the power of J lies in the ability of a verb to treat its arguments as a series
of parts. The verb applies itself to each of the parts, creating a series of partial
results, and then assembles the partial results into the final result. Exactly how this
works and what you can do with it is described in the next several sections.

Let's look at a few examples to get an idea of where you are heading.

 m =. i. 2 2
 m
0 1
2 3

You can add arrays together that have the same rank and shape.

 m + 2 2 $ 10 11 12 13
10 12
14 16

You can add a single number to an array.

 10 + m
10 11
12 13

What if you wanted to add one number to the first row and a different number to
the second row?

 10 20 + m
10 11
22 23

But what if you wanted to add those numbers to the columns instead? You have to
indicate that you want to add to the columns not the rows.

 10 20 +"1 m
10 21
12 23

p70

Frame and cell

So far nouns have been considered in their entirety. However, it is useful to think
of an array as consisting of cells, parts of the array (subarrays) that when placed in
a frame, make up the entire array.

 a =. 2 3 $ i. 6
 a
0 1 2
3 4 5

The array a can be thought of as having 6 cells, where each cell was an atom. The
frame would be the shape 2 3 that structures the 6 individual cells into the array a.
Visually:

cells are atoms

0 cell 0
1 cell 1
...
5 cell 5

frame is shape 2 3 that structures the cell atoms into the array

The array a can also be thought of as having 2 cells, where each cell was a list. The
frame would be the shape 2 that structures the cells into the array a. Visually:

cells are lists

0 1 2 cell 0
3 4 5 cell 1

frame is shape 2 that structures the cell lists into the array

Finally, the array a can be thought of as having 1 cell, where the cell was a table.
The frame would be the shape empty that structures the cells into the array a.
Visually:

cells are tables

0 1 2 cell 0
2 3 4

frame is shape empty that structures the cell table into the array

A table with shape 2 3 can be thought of as:

●

a 2 3 frame of cells that are atoms

●

a 2 frame of cells that are lists of shape 3

●

an empty frame of a cell that is a table of shape 2 3

Similarly, an array with shape 4 3 2 can be thought of as:

●

a 4 3 2 frame of cells that are atoms

●

a 4 3 frame of cells that are lists of shape 2

●

a 4 frame of cells that are tables of shape 3 2

●

an empty frame of a cell that is a rank 3 array of shape 4 3 2

The frame is a prefix of the shape of the array. It can be the entire shape (a prefix
of all), in which case the cells are atoms. It can be empty (a prefix of none) in
which case there is a single cell which is the array. Or anything in between.

The cell shape is the array shape with the frame prefix removed. The length of the
cell shape is the cell rank.

The cells of an array are the subarrays that, when assembled into the corresponding
frame, create the entire array.

p71

Item

Arrays are frequently treated as having a frame of length 1. With this frame, the
array has cells of rank 1 less than the rank of the array. These cells are the items of
the array.

The items of a list are the atoms in the list. The items of a table are the rows in the
table. The items of a rank 3 array are the tables in the array. An array is the list of
its items.

An atom has one item, itself.

The # (tally) of a noun is the number of items in the noun.

 # 23
1

 # 1 $ 5
1

 # i. 5
5

 # i.2 3
2

p72

k-cell

A cell of rank k is also called a rank-k cell or k-cell. A 0-cell is an atom, a 1-cell is
a list, a 2-cell is a table, and so on. If the rank of the cells of a noun is given, then
the frame is whatever is left over of the shape of the noun.

Negative numbers are also used, as in _2-cell and _1-cell; the frames of such cells
have length indicated by the magnitude of the numbers. You have seen _1-cells
before: they are items.

 abc =. 4 3 2 $ i. 24

The noun abc can be thought of as:

●

a 4 3 2 frame of 0-cells

●

a 4 3 frame of 1-cells

●

a 4 frame of 2-cells

●

an empty frame of a 3-cell

A more general way of phrasing this is:

●

a rank 3 frame of 0-cells

●

a rank 2 frame of 1-cells

●

a rank 1 frame of 2-cells

●

a rank 0 frame of 3-cells

p73

Verb rank

A verb has a rank that determines how it applies to its arguments. A monad of rank
k applies to the k-cells of its argument. A dyad of left rank kl and right rank kr
applies to the kl-cells of its left argument and the kr-cells of its right argument.
Verb rank is a powerful tool that controls the way a verb applies to arrays.

The ranks of a primitive verb are given in the J Dictionary definition. For example,
look up the definition of + . The rank information follows the word in the header.
For + this is 0 0 0. The monad rank is 0 which indicates the monad + applies to
the atoms. The dyad ranks are 0 for the left argument (indicating it applies to the
atoms, or 0-cells), and 0 for the right argument (again indicating it applies to the
atoms in the right argument).

Let's see how this works when adding two tables.

 a =. i. 2 3
 b =. 6 + a
 a
0 1 2
3 4 5

 b
6 7 8
9 10 11

 a + b
6 8 10
12 14 16

The dyad + has left rank 0. This means it applies to the atoms of its left argument.
Similarly the right rank is 0 and it applies to the atoms of its right argument. The
verb takes an atom from its left argument, an atom from its right argument, and
adds them together to create a partial result. It does this for each atom from the left
and right argument and creates an appropriate number of partial results, which are
then assembled into the result frame to create the final result.

In the example above the verb + has a left rank of 0. This means the left argument
is treated as a 2 3 frame of atoms. Similarly, a right rank of 0 means that the right
argument is treated as a 2 3 frame of atoms.

The frame of the result is determined by the frames of the arguments, and so its
frame is also 2 3 and each cell is the result of adding an atom from the left
argument with an atom from the right argument.

p74

Agreement

For a dyad the left rank of the verb and the rank of the left argument determine the
frame of the left argument. Similarly the right rank of the verb and the rank of the
right argument determine the frame of the right argument. If the left and right
frames are the same, then there are the same number of cells in each argument, and
it is simply a matter of taking each cell in turn from the left and right arguments,
applying the verb, and putting the result into the frame of the result.

 a =. i. 2 3
 b =. 2 3 $ 7
 a + b
7 8 9
10 11 12

Visually you can see how each atom from the left is used with the corresponding
atom from the right.

0 1 2 + 7 7 7 gives 7 8 9
3 4 5 7 7 7 10 11 12

You have also seen that the following works.

 a + 7
7 8 9
10 11 12

Visually you can see how each atom from the left is used with the corresponding
atom from the right.

0 1 2 + 7 ... gives 7 8 9
3 4 5 ... 10 11 12

The ... indicates that the cell is repeated to provide the required arguments. The
... to the right and below the 7 indicates it is repeated in 2 axes.

But what about the following?

 a + 3 4
3 4 5
7 8 9

Again you can see how the cells of the right argument repeat to provide the
required verb arguments.

0 1 2 + 3 ... gives 3 4 5
3 4 5 4 ... 7 8 9

But there must be some agreement between the cells in the arguments.

 a + 3 4 5
¦length error
¦ a +3 4 5

Visually what is happening:

0 1 2 + 3 ... gives 3 4 5
3 4 5 4 ... 7 8 9
 5 ... error - ran out of lefts

The above cases are simple enough, but consider the following with a rank 3 noun.

 b =. i. 2 3 4
 b + a
0 1 2 3
5 6 7 8
10 11 12 13

15 16 17 18
20 21 22 23
25 26 27 28

This is more complicated to visualize.

0 1 2 3 + 0 ... gives 0 1 2 3
4 5 6 7 1 ... 5 6 7 8
8 9 10 11 2 ... 10 11 12 13

12 13 14 15 3 ... 15 16 17 18
16 17 18 19 4 ... 20 21 22 23
20 21 22 23 5 ... 25 26 27 28

Similarly:

 b + 2 3
2 3 4 5
6 7 8 9
10 11 12 13

15 16 17 18
19 20 21 22
23 24 25 26

Visually:

0 1 2 3 + 2 ... gives 2 3 4 5
4 5 6 7 ... 6 7 8 9
8 9 10 11 10 11 12 13

12 13 14 15 3 ... 15 16 17 18
16 17 18 19 ... 19 20 21 22
20 21 22 23 23 24 25 26

The agreement rule is quite simple. If the left and right frames are the same then

there is no problem. Otherwise, one frame must be a prefix of the other, and its
cells are repeated into its trailing axes to provide the required arguments.

p75

Rank conjunction "

The primitive " (double-quote, not two quotes) is the rank conjunction.
Conjunctions haven't been introduced yet and there is more detail in a later section.
For now, just think of a conjunction as similar to a dyad verb in that it takes a left
and right argument and has a result. The particular use of " of interest here is when
the left argument is a verb and the right argument is a noun. Yes, conjunctions can
take verb arguments, as well as noun, whereas a verb can take only noun
arguments.

In the section on names there was an example where you directly defined a name
as a verb.

 plus =. +

This style of definition is more direct than the type you used to define
centigrade. It is called tacit definition and is dealt with in more detail in a later
section. The name plus is defined as the primitive + and thus has the same rank as
+ of 0 0 0 .

The rank conjunction produces a new verb from its left argument with the rank
information from its right argument.

 plus000 =. + " 0 0 0

The right argument for " is the rank information for the primitive + that is given in
the J Dictionary (look up + in the vocabulary, turn to the definition page, and note
the rank information in the heading). The first 0 is the rank of the monad argument.
The second and third 0's are respectively the rank of the dyad left and right
arguments.

Since plus000 is + with same ranks as the primitive + it should behave just as
does + or plus . You can verify this with a few experiments borrowed from the
previous section on agreement.

 a =. i. 2 3
 a plus000 a
0 2 4
6 8 10

 a plus000 1 2 3
¦length error
¦ a plus000 1 2 3

The length error occurs because the arguments do not agree as per the previous
section. The left frame is 2 3 and the right frame 3, and 3 is not a prefix of 2 3;
there are extra cells from the left argument without corresponding cells from the
right argument.

However, it seems reasonable to want to add the list 1 2 3 to each list in the left
argument. You know what you want it to do. Visually:

0 1 2 + 1 2 3 gives 1 3 5
3 4 5 ... 4 6 8

You want a variation of + that adds lists from its left argument to lists from its
right. You can do that by changing the arguments to the " conjunction to indicate
that the dyad left and right ranks are lists.

 plus011 =. + " 0 1 1
 a plus011 1 2 3
1 3 5
4 6 8

 1 2 3 plus011 a
1 3 5
4 6 8

In practice you wouldn't bother to give a name to such a specific application of +
and you would instead use the expression directly.

 1 2 3 +" 0 1 1 a
1 3 5

4 6 8

Since + is applied dyadically and both ranks are 1, you can use the shorter form of
+"1 which uses 1 for the rank of all arguments.

 1 2 3 +"1 a
1 3 5
4 6 8

In this case, the left frame is empty with a cell shape of 3 and the right frame is 2
with a cell shape of 3. Empty is a prefix of 2, and so the frames agree.

There is one thing you have to be aware of.

 a +"1 1 2 3
¦length error
¦ a +"1 1 2 3

The problem is that J doesn't know that you want the first 1 to be the argument to "
and the second 1 to be part of the constant 1 2 3. What happens is that the
constant 1 1 2 3 is used as the right argument of " and since " is defined to allow
only arguments of 1 2 or 3 numbers, there is a length error. You need to let J know
that the 1 belongs to the " and that the 1 2 3 is a constant.

 a (+"1) 1 2 3
1 3 5
4 6 8

 a +"1 (1 2 3)
1 3 5
4 6 8

p76

Result shape

In the previous sections the question of the shape of the result was glossed over.
For a monad the frame of the result is the same as the frame of the argument. For a
dyad the frame of the result is the frame of the longer of the frames of the
arguments (or either frame if they are the same).

With a verb like + that has an atom result for each atom argument this is
straightforward. Things get more interesting with verbs that have more
complicated behavior.

Consider the verb $. Look it up in the J Dictionary and you'll see it has rank of _
1 _ . The _ indicates an infinite (unbounded) rank and means that the verb applies
to the entire argument. The monad has unbounded rank and so applies to the entire
right argument. If you think about the monad $ with a result that is the shape of its
entire right argument this makes sense. The dyad left rank is 1 and this means that
it applies to lists from the left argument. The dyad right rank is unbounded and so
applies to the entire right argument.

 2 4 $ i.3
0 1 2 0
1 2 0 1

 2 4 $"1 0 i.3
0 0 0 0
0 0 0 0

1 1 1 1
1 1 1 1

2 2 2 2
2 2 2 2

The first example is what you have seen before, but what is going on in the
second? The $"1 0 means that $ will get cell arguments as a list (1-cells) on the
left and as an atom (0-cell) on the right. The left frame is empty (nothing is left of
the shape of the left argument after a 1-cell is taken) and the right frame is 3 (there
are 3 0-cells in the right argument). So the result frame is 3.

2 4 $ 0 gives 0 0 0 0 left 1-cell $ right 0-cell
 0 0 0 0

... $ 1 gives 1 1 1 1 repeat 1-cell $ next 0-cell
 1 1 1 1

... $ 2 gives 2 2 2 2 repeat 1-cell $ next 0-cell
 2 2 2 2

The frame of the result is 3 and the things in that frame are 2 by 4 tables, so the
shape of the final result is 3 2 4.

 $ 2 4 $"1 0 i.3
3 2 4

Rank (noun rank, verb rank, frames, cells, and the rank conjunction) applies to all
verbs and greatly increases the ways in which you can use any verb.

p77

Checkpoint E

At this point you should understand:

● the terms atom, list, table, array, axis, rank, shape, item, frame, and cell
● noun rank
● verb rank
● " (rank conjunction)
● agreement
● how rank determines which cell arguments a verb applies to
● how the result is built up of the partial results

Check your understanding by doing the following exercises:

● experiment with the primitives you know and use " to apply them to cells
and see how the partial results build up the final result

● don't limit your experiments to verbs like +, but also try verbs such as $
(shape) and , (append)

p78

Adverb

An adverb is similar to a verb, but differs in the following:

●

an adverb has only a left argument (a verb is ambivalent, and has either a
right argument or both a left and a right argument)

●

an adverb can apply to nouns or verbs (a verb applies only to nouns)

●

an adverb typically has a verb as its result (a verb always has a noun result)

The verb result of an adverb is referred to as a derived verb.

The primitive / is an adverb. Its result is a new verb. If the monadic case of the
derived verb is used, then the / is referred to as insert. If the dyadic case of the
derived verb is used, then the / is referred to as table.

p79

Insert adverb

A / is referred to as insert if it is applied to a verb and the derived verb is then used
monadically. The derived verb applies itself monadically by inserting the original
verb between the items of the argument.

 sumover =. +/

The adverb / takes the verb argument on its left, which is +, and creates a new verb
named sumover.

 sumover 7 5 10
22

The items of the argument 7 5 10 are the three atoms 7, 5, and 10 and the
definition of sumover is that it inserts its original verb between the items of the
argument.

 7 + 5 + 10
22

 sumover i. 8
28

What if you do this to a table?

 a =. i. 2 3

 a
0 1 2
3 4 5

 sumover a
3 5 7

Interesting, but let's take a closer look. The items of a are the two lists 0 1 2 and 3

4 5. The verb sumover is defined to put the + (the original argument of /)
between the items of its argument.

 0 1 2 + 3 4 5
3 5 7

What if there were more rows?

 a=. i. 3 4
 a
0 1 2 3
4 5 6 7
8 9 10 11

 sumover a
12 15 18 21

The items of a are the three lists and with the + inserted between them you have:

 0 1 2 3 + 4 5 6 7 + 8 9 10 11
12 15 18 21

The verb sumover applied to a table gives the sum over the columns. What if you
wanted the sum over the rows?

 sumover"1 a
6 22 38

The above is worth thinking about. First give your new verb a name to make it
easier to talk about.

 sumrows =. sumover"1
 sumrows a
6 22 38

Look up / in the J Dictionary and note that the rank information is _ _ _ . The
rank information for an adverb gives the rank of the derived verb. So, sumover has
monadic rank _ (unbounded). The verb sumover applies to its entire argument and
so inserts its original verb of + between the items of the argument.

The verb sumrows has monadic rank 1 and applies to the 1-cells of its argument. It
is applied to each of the 1-cells of the argument, giving a partial result, and these
partial results are then assembled into the result frame. Instead of the entire
argument being fed to the verb sumrows, 1-cells are fed in, so sumrows inserts +
between the items of the 1-cells. The 1-cells of the table argument are the rows of
the table, so the + is inserted between the items of the rows. Visually:

sumrows 0 1 2 3 (first 1-cell) gives 6
sumrows 4 5 6 7 (next 1-cell) gives 22
sumrows 8 9 10 11 (next 1-cell) gives 38

The partial results of 6, 22, and 38 are then assembled into the list result.

What about a rank 3 argument?

 a =. i. 2 3 4
 a
0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15
16 17 18 19
20 21 22 23

 sumover a
12 14 16 18
20 22 24 26
28 30 32 34

The items are the two tables and putting the + between them gives the result.
Because this is the sum over the items, and in this case is the sum over the tables of
a rank 3 array, it can be described as the sum over the planes of the array.

The name sumover was used because it made it clearer in the beginning what was
being done. In practice it is probably better to just use the primitives directly.

 a =. i. 2 3 4
 +/ a NB. sum over planes
12 14 16 18
20 22 24 26
28 30 32 34

 +/"2 a NB. sum over tables
12 15 18 21
48 51 54 57

 +/"1 a NB. sum over rows
6 22 38
54 70 86

p80

Table adverb

The dyad v/ computes a table for the verb v (a function table).

 a =. i. 5
 a +/ a NB. addition table
0 1 2 3 4
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
 a */ a NB. times table
0 0 0 0 0
0 1 2 3 4
0 2 4 6 8
0 3 6 9 12
0 4 8 12 16

 0 1 +/ 0 1 NB. + table on booleans
0 1
1 2
 0 1 +./ 0 1 NB. or
0 1
1 1
 0 1 +:/ 0 1 NB. not-or
1 0
0 0
 0 1 */ 0 1 NB. times
0 0
0 1
 0 1 *./ 0 1 NB. and
0 0
0 1

 0 1 *:/ 0 1 NB. not-and
1 1
1 0

The derived verb v/ has a left rank that is the left rank of v and a right rank of _ ;
it applies v between each cell of the left argument and the entire right argument.

 additiontable =. +/

The verb additiontable is defined as the result of the / adverb applied to + as an
argument. The definition is the same as the definition for sumover that you used in
the previous section. The name additiontable makes sense when the dyad is used,
and sumover makes sense when the monad is used. Nothing prevents using either
name in a misleading way.

 a additiontable a
0 1 2 3 4
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8

The left rank of + is 0, so the rank of the derived verb is 0 and its cell arguments
are atoms. The right rank of the derived verb is _ and its cell arguments are the
entire right argument. Visually the above works as follows:

0 (first atom from left) + entire right gives 0 1 2 3 4
1 (next atom from left) + entire right gives 1 2 3 4 5
2 (next atom from left) + entire right gives 2 3 4 5 6
3 (next atom from left) + entire right gives 3 4 5 6 7
4 (next atom from left) + entire right gives 4 5 6 7 9

The following is an interesting use of table together with the plotting from an
earlier section. The plot facility plots each row in a table argument as a separate
series of data.

 load 'plot'
 plot 1 2 o. / 0.2 * i.60

 'surface'
plot 1 2 o. / 0.2 * i.60

The 1 from the left argument used as the left argument of o. gives sine values in
the first row. The 2 from the left argument for o. gives cosine values in the second
row.

In the examples above the left rank of the original verb is always 0 and so the cells
of the left argument of the derived verb are simply the atoms of the left argument.

Let's look at an example where the left rank of the original verb is not 0.

 f =. ,"1

The verb f is append with a left and right rank of 1.

 p=. 2 2 $'abcd'
 p
ab
cd

 q=.3 3$'ABCD'
 q
ABC
DAB
CDA

 p f/ q
abABC
abDAB
abCDA

cdABC
cdDAB
cdCDA

Visually:

ab (1st list from left) , entire right gives abABC
 abDAB
 abCDA

cd (next list) , entire right gives cdABC
 cdDAB
 cdCDA

p81

Conjunction

A conjunction is similar to an adverb, except that it takes both a left and right
argument. The rank conjunction was introduced informally in an earlier section. In
addition, the : used to define verbs such as centigrade can now be recognized as a
conjunction. In defining centigrade, the : takes a left argument of 3 and a right
argument of 0. So far it could be a verb, but the fact that its result is a verb proves
it is a conjunction.

The verb result of a conjunction is referred to as a derived verb.

p82

Order of execution - adverbs & conjunctions

Adverbs and conjunctions have higher precedence than verbs. This means that an
adverb or conjunction is executed before a verb. Furthermore, the left argument of
an adverb or conjunction is the entire verb phrase that precedes it. The exact rules
for parsing and execution are given in section E of the J Dictionary.

For practical purposes, the following examples illustrate the rules.

 a =. i.2 3
 +/"1 - a
_3 _12

Like all J sentences, the above sentence executes from right-to-left. Before the +
can be parsed as being a dyad or a monad, the higher precedence " conjunction
executes. The " conjunction takes the 1 as its right argument and the entire verb
phrase to its left as its left argument. The verb phrase to the left is the adverb /
which takes the + as its left argument. The following uses parentheses to make
clear the order of execution that follows from the rules.

 ((+/)"1) (- a)

As mentioned earlier, simple examples with constants may require that you
separate the constant that is the conjunction argument from the constant that is the
argument of the derived verb.

 a (+"1) 1 2 3
 a +"1 (1 2 3)
 a +"1 [1 2 3

The last one uses the monad [(same) that is defined to just return its argument.
This is a bit shorter and avoids the use of parentheses.

p83

Box - monad <

So far you have dealt with atoms that are either numeric or character. The monad <
(box) introduces a new type of atom called boxed. The monad < applies to any
noun and returns an atom that is a box which contains the argument.

An array is either a numeric array that contains numbers, or a literal array that
contains characters, or a boxed array that contains boxes. Arrays of numbers and
characters are referred to as open to distinguish them from boxed arrays.

 b =. < 2 3 4
 $b NB. an atom has empty shape

A boxed array is displayed in a box.

 b
+-----+
¦2 3 4¦
+-----+

 c =. < 4 7 9
 d =. b , c NB. append
 d
+-----------+
¦2 3 4¦4 7 9¦
+-----------+

 $d NB. list with shape 2
2

 (< 2 3 4) , < 4 7 9
+-----------+
¦2 3 4¦4 7 9¦
+-----------+

Arrays of different types (numeric, character, and boxed) cannot be appended to
one another.

 'a' , 3
¦domain error
¦ 'a' ,3

 3 , < 2 3 4
¦domain error
¦ 3 ,<2 3 4

Boxed arrays are of the same type and can be appended no matter what they
contain.

 (< 'abc') , < 4 5 6
+---------+
¦abc¦4 5 6¦
+---------+

 (< 2 3 $ 'abcdef') , (< i. 3 4) , < 23
+----------------+
¦abc¦0 1 2 3¦23¦
¦def¦4 5 6 7¦ ¦
¦ ¦8 9 10 11¦ ¦
+----------------+

p84

Link - dyad ;

The dyad ; (link) makes it easy to create a list of boxed nouns.

 2 3 4 ; 4 7 9
+-----------+
¦2 3 4¦4 7 9¦
+-----------+

 'abc' ; 5 7 9
+---------+
¦abc¦5 7 9¦
+---------+

 (2 3 $ 'abcdef') ; (i. 3 4) ; 23
+----------------+
¦abc¦0 1 2 3¦23¦
¦def¦4 5 6 7¦ ¦
¦ ¦8 9 10 11¦ ¦
+----------------+

Look link up in the J Dictionary. Note that its dyad rank is _ _ so it applies to its
entire left and entire right argument. It always boxes its left argument, and its right
argument is boxed only if not already boxed. Boxing its right argument only if not
already boxed makes the following work:

 'abc' ; 'defg' ; 'hijkl'
+--------------+
¦abc¦defg¦hijkl¦
+--------------+

This is evaluated from right-to-left as:

 'abc' ; ('defg' ; 'hijkl')

So the right argument to the leftmost link is already boxed, and will not be boxed
again. Boxed again? What would that look like?

 'abc' ; < 'defg' ; 'hijkl'
+----------------+
¦abc¦+----------+¦
¦ ¦¦defg¦hijkl¦¦
¦ ¦+----------+¦
+----------------+

Boxes can be nested!

p85

Open - monad >

The monad > (open) is the inverse of box. That is, it takes the contents out of a
box. Applied to a noun that is already open it has no effect.

 > 23 5 7
23 5 7

 a =. i.5
 a
0 1 2 3 4

 < a
+---------+
¦0 1 2 3 4¦
+---------+

 > < a
0 1 2 3 4

Look > up in the J Dictionary. The monad > has a rank of 0 so it applies to each
atom in its argument. Each atom is opened, creating a partial result, that is then
assembled with all the other partial results into the final result.

 a =. 1 2 3 ; 5 6 7
 a
+-----------+
¦1 2 3¦5 6 7¦
+-----------+

 > a
1 2 3
5 6 7

The assembly of the partial results is straightforward if they all have the same rank
and shape. But with open the partial results could have very different ranks and
shapes.

 a =. 1 ; 2 3 ; 4 5 6
 a
+-----------+
¦1¦2 3¦4 5 6¦
+-----------+

 > a
1 0 0
2 3 0
4 5 6

Each atom is opened and the partial results are extended to fit into the result frame.

> 1 gives 1 (atom)
> 2 3 gives 2 3 (list)
> 4 5 6 gives 4 5 6 (list)

The result frame has to have partial results that all have the same rank and shape.
To do this, each partial result is extended to have the same rank as the rank of the
highest rank result and a shape that is the maximum along any axis of all the partial
results.

In the example above, the atom 1 is extended to a list and is padded with 0's to
have a shape of 3. The list 2 3 is padded with a 0 to have a shape of 3. The 4 5 6
list is already OK. And the final result has a frame of 3 where each result cell is a
list of 3 atoms.

What if the boxes contain characters?

 > 'abc' ; 'defg' ; 'hijkl'
abc
defg
hijkl

The result is a 3 by 5 table. The character partial results are extended in a similar
manner, but blanks are used as fill, rather than 0. You cannot open a boxed list that

contains both character and numeric data.

 > 1 2 3 ; 'asdf'
¦domain error
¦ >1 2 3;'asdf'

There is no way to put the numeric and character partial results together in the
frame so there is a domain error.

p86

From - dyad { (selecting items)

The dyad { (from) is used to select items from an array. This is sometimes called
indexing an array.

 a =. 5 7 9 4 8
 3 { a NB. select item at index 3
4

 0 { a NB. indexes start at 0
5

 2 4 { a NB. select 2 items
9 8

 2 0 4 { a NB. select 3 items
9 5 8

From selects items from its argument, and therefore selects rows from tables.

 m =. i. 3 4
 m
0 1 2 3
4 5 6 7
8 9 10 11

 0 { m
0 1 2 3

 2 1 { m
8 9 10 11
4 5 6 7

From selects tables from rank 3 arrays.

 1 { i. 2 3 4
12 13 14 15
16 17 18 19
20 21 22 23

p87

From (boxed indexes)

If the left argument of { is boxed, then it is opened and each of its items gives the
indexes along successive axes of the right argument. This can be used to select any
subarray from an array.

 m =. i. 3 4
 m
0 1 2 3
4 5 6 7
8 9 10 11

 (< 1 2) { m
6

The opened left argument is the list 1 2. The first item is 1, and it is used as the
index of the 1st axis; the second item is 2, and it is used as the index of the 2nd
axis. The 1 selects the list 4 5 6 7 and the 2 selects 6 from that list.

If there are fewer items in the list than there are axes, then all of the trailing axes
are selected.

 (<1) { m 4 5 6 7

This is more interesting with a higher rank array.

 d =. i.2 3 4
 d
0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15
16 17 18 19
20 21 22 23

 (<1 2 3) { d nb. plane 1, row 2, column 3 23 (<1 2) { d nb.
plane 1, row 2, all columns 20 21 22 23

So far the items in the list of indexes for each axis has been an atom and selects
only one index. What if you want more than one index?

If an item in the list of indexes is boxed, then it is a list of indexes for that axis.

Suppose you want to select from m the table of atoms that are in rows 0 2, and
columns 0 2 3. That is, the table:

 col-0 col-2 col-3
row-0 0 2 3
row-2 8 10 11

The indexes for the axes are the list:

 0 2 ; 0 2 3
+---------+
¦0 2¦0 2 3¦
+---------+

That list of indexes needs to be boxed so that each item will be treated as indexes
into the successive axes. The 0 2 selects rows (1st axis) and the 0 2 3 selects
columns (2nd axis).

 < 0 2 ; 0 2 3
+-----------+
¦+---------+¦
¦¦0 2¦0 2 3¦¦
¦+---------+¦
+-----------+

 (< 0 2 ; 0 2 3) { m
0 2 3
8 10 11

 (< 0 1 ; 0 2 ; 2 3) { d
2 3
10 11

14 15
22 23

Again, if there are fewer items than axes, then all of the trailing axes are selected.

 (< 0 1 ; 0 2) { d
0 1 2 3
8 9 10 11

12 13 14 15
20 21 22 23

Frequently the desired subarray includes all of an axis that is not a trailing axis.
This could be done by giving all indexes for that axis.

 (< 0 1 2 ; 2 3) { m
2 3
6 7
10 11

This may be inconvenient in a real application where it would necessary to
calculate the indexes. For this reason, a boxed empty list, <'', indicates that all
indexes in the axis are selected.

 < (<'') ; 2 3 +--------+ ¦+------+¦ ¦¦++¦2 3¦¦ ¦¦¦¦¦ ¦¦ ¦¦++¦
¦¦ ¦+------+¦ +--------+

The above, used as the left argument will select all indexes along the first axis
because the first item is a boxed empty list, and indexes 2 and 3 along the 2nd axis.

 (< (<'');2 3) { m 2 3 6 7 10 11

The boxed empty list is so useful that the primitive a: is defined as <'' . So, the
above can be simplified.

 (< a: ; 2 3) { m
2 3
6 7
10 11

The above can be even more easily expressed with the rank conjunction.

 2 3 {"1 m
2 3
6 7
10 11

p88

From (scattered indexing)

If the left argument is a singleton, it is opened and its items are indexes along
successive axes.

 (<0 2 ; 2 3) { m 2 3 10 11

What if the left argument wasn't a singleton?

 (0 2 ; 2 3) { m
2 11

What is going on here? Nothing special, as this is just your old friend rank. The
dyad { has a left rank of 0 and a right rank of _ . This means that the left argument
is taken as 0-cells and the right argument is taken in its entirety. Visually:

(<0 2) (first left cell) { m gives 2 (<2 3) (next left cell) { m
gives 11

The result is assembled from the 2 and 11 partial results.

This is called scattered indexing.

 (0 0 ; 1 1 ; 2 2) { m NB. scatter index a diagonal
0 5 10

p89

Amend } (modify selected)

Amend is an adverb whose result is a dyad that is used to modify an array. The left
argument of amend is usually a noun. Let's look at an example:

 change_index_two =. 2}

The verb change_index_two is used dyadically. Its right argument is the original
data and the left argument is a new value for index position 2.

 15 change_index_two 5 6 7 8
5 6 15 8

 30 change_index_two 23 18 17
23 18 30

 'b' change_index_two 'cat'
cab

 15 (2}) 5 6 7 8
5 6 15 8

 30 (2}) 23 18 17
23 18 30

 'b' 2} 'cat'
cab

This extends in ways that you might expect.

 23 (1 4}) 7 7 7 7 7
7 23 7 7 23

 23 24 (1 4}) 7 7 7 7 7
7 23 7 7 24

 'bet' 2 5 8} 'cattumbiz'
cabtuebit

In general an amend x s} y is defined as:

The result is formed by replacing by x those parts of y that are
selected by s. The s argument to } is treated the same way as the left
argument of the verb { .

Amend allows us to give selected parts of an array new values. The amend
argument gives the indexing information about what data to modify. This selects
the same elements to be modified as it would if used as the left argument to the
dyad verb { .

If you understand from, then amend is quite simple.

 m =. i. 3 4
 1 { m
4 5 6 7

 23 23 23 23 (1}) m
0 1 2 3
23 23 23 23
8 9 10 11

 23 (1}) m
0 1 2 3
23 23 23 23
8 9 10 11

You can first use the selection information to see what data is to be modified.

 1 2 { m
4 5 6 7
8 9 10 11

The selected data is a subarray of shape 2 4 . So you need a subarray of shape 2 4
to replace the selected data.

 (2 4 $ 23 23 23 23 24 24 24 24) (1 2}) m
0 1 2 3
23 23 23 23
24 24 24 24

Suppose you want to modify the subarray that is selected as rows 1 and 2, and
columns 0 and 3 with the value 12.

 12 ((<1 2;0 3)}) m 0 1 2 3 12 5 6 12 12 9 10 12

Modify that subarray by replacing it with the array in the left argument.

 (2 2 $ 23 24 25 26) ((<1 2;0 3)}) m 0 1 2 3 23 5 6 24 25 9 10
26

p90

Selecting without from

Some situations where you could use { (from) are so common that they have their
own primitives. These primitives are not dealt with in any detail here, and are
mentioned so that you are aware of them and can look up their definitions and
make use of them in your own work. They are shown here by example.

The monad {. (head) takes the first item of its argument and is similar to { with a
left argument of 0.

 {. 5 6 7
5

 {. i. 3 4
0 1 2 3

The monad {: (tail) takes the last item of its argument and is similar to { with a
left of _1 (oh yes, forgot to mention earlier that negative indexes simply index
from the end of the axis).

 {: 5 6 7
7

 {: i. 3 4
8 9 10 11

The monad }. (behead) drops the first item of its argument.

 }. 5 6 7
6 7

 }. i. 3 4
4 5 6 7
8 9 10 11

The monad }: (curtail) drops the last item of its argument.

 }: 5 6 7

5 6

 }: i. 3 4
0 1 2 3
4 5 6 7

The dyad {. (take) takes the indexes from axes as indicated by the left argument.

 3 {. i. 8
0 1 2

 2 3 {. i. 3 4
0 1 2
4 5 6

 2 {. i. 3 4
0 1 2 3
4 5 6 7

The dyad }. (drop) drops the indexes from axes as indicated by the left argument.

 1 }. 2 3 4
3 4

 1 2 }. i. 3 4
6 7
10 11

An interesting way to think of {. {: }. and }: is that they are indexing corners
of the array.

One capability that the dyad {. has that is not so directly related to from is it can
create an array that is larger than the selected corner. It does this by filling in with
0, ' ', or a: as appropriate.

 5 {. 5 6 7
5 6 7 0 0

 4 5 {. i. 2 3

0 1 2 0 0
3 4 5 0 0
0 0 0 0 0
0 0 0 0 0

5 {. 'abc'
abc

 <"0 [5 {. 'abc' NB. make sure they are there
+---------+
¦a¦b¦c¦ ¦ ¦
+---------+

 7 {. (<"0) 5 {. 'abc' NB. fill with a:
+-----------+
¦a¦b¦c¦ ¦ ¦¦¦
+-----------+

The dyad # (copy) is also fairly directly related to from. Its left argument is a list of
how many times to repeat the corresponding item from the right argument.

 3 2 1 2 3 # 'abcde'
aaabbcddeee

The above is equivalent to the following:

 0 0 0 1 1 2 3 3 4 4 4 { 'abcde'
aaabbcddeee

p91

Cut ;.

The cut conjunction applies a verb to partitions of its argument. In discussing cut
we will use the expression f =: u ;. n to give names to the various elements.
The left argument of cut is the verb u that will be applied to partitions of the right
argument of the derived verb f . The right argument of cut is the noun n that
indicates the kind of partitions.

Let's consider cases where n is 1, _1, 2, or _2 and where the derived verb is used
monadically.

If n is 2 or _2, the items of the right argument are partitioned into arguments that
end with the last item in the argument. The item that is used to mark the partitions
is called the fret. A negative n indicates that the fret is not included in the partition.
Each partition is passed to the verb u and the partial results are assembled into the
final result.

 cut2 =. < ;. 2

The definition of cut2 could be read as: box cut last.

 cut2 'how now brown cow '
+---------------------+
¦how ¦now ¦brown ¦cow ¦
+---------------------+

In this example the items of the right argument are characters. The fret is the last
character, which is a blank. The fret is used to break the entire argument into a
series of arguments to which the verb < is applied. Visually:

< 'how ' (first partition) gives first partial result
< 'now ' (next partition) gives next partial result
< 'brown '
< 'cow '

The partial results are assembled into the final result.

 <;._2 'how now brown cow '
+-----------------+
¦how¦now¦brown¦cow¦
+-----------------+

The cut2 boxed results include the fret and the <;._2 boxed results do not
include the fret.

The following applies to the same partitions of the right argument, but applies the
dyad # (tally) instead. This gives us the count of each partition.

 #;._2 'how now brown cow '
3 3 5 3

This applies in the same way to numeric data. In the following _1 is the fret.

 a =. 2 3 4 _1 5 3 2 _1 23 45 65 132 _1
 <;._2 a
+------------------------+
¦2 3 4¦5 3 2¦23 45 65 132¦
+------------------------+

 #;._2 a
3 3 4

 +/;._2 a
9 10 265

A 1 or _1 uses the first item as the fret. If positive, the fret is included in the result,
if negative it is not included.

 <;._1 'madam i''m adam'
+-------------+
¦ada¦ i'¦ ada¦¦
+-------------+

Sometimes the partition information is separate from the data. Instead of frets in

the data, the partition information can be provided in a left argument to the derived
verb. The partition information is boolean data where a 1 indicates the start (with 1
or _1) or end (with 2 or _2) of the partitions.

 1 0 0 0 1 0 0 <;.1 'abcdefg'
+--------+
¦abcd¦efg¦
+--------+

 d =. 'the test is the thing'
 'the' E. d
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

 ('the' E. d) <;.1 d
+----------------------+
¦the test is ¦the thing¦
+----------------------+

The example above uses a new primitive E. that you can look up in the J
Dictionary if you want additional information at this time. However, without
worrying about the details you should get the idea of what is happening.

Chopping up character lists into boxes is so useful that there is a standard utility
called cutopen that handles many of the common cases. For example:

 cutopen 'testing testing 1 2 3'
+---------------------+
¦testing¦testing¦1¦2¦3¦
+---------------------+

p92

Each

Frequently with boxed data it is useful to be able to do something to the contents of
each of the boxes. This is so useful that the standard profile defines an adverb
called each that does exactly this. The definition of each involves a little more than
you have covered so far, but don't worry about the details, just use it.

The adverb each takes a verb as its left argument. The derived verb is applied to
the contents of the boxes of its arguments.

 a =. 10 12 13 ; 2 3 ; 4 5 6 8 3
 a
+----------------------+
¦10 12 13¦2 3¦4 5 6 8 3¦
+----------------------+

 +/ each a NB. sum over each
+-------+
¦35¦5¦26¦
+-------+

 */ each a NB. times over each
+-----------+
¦1560¦6¦2880¦
+-----------+

 |. each a NB. reverse each
+----------------------+
¦13 12 10¦3 2¦3 8 6 5 4¦
+----------------------+

 >./ each a NB. max over each
+------+
¦13¦3¦8¦
+------+

The previous examples all used the derived verb monadically. The following use
the derived verb dyadically.

 23 , each a NB. append each
+-------------------------------+
¦23 10 12 13¦23 2 3¦23 4 5 6 8 3¦
+-------------------------------+

 5 < each a
+-------------------+
¦1 1 1¦0 0¦0 0 1 1 0¦
+-------------------+

 1 |. each a
+----------------------+
¦12 13 10¦3 2¦5 6 8 3 4¦
+----------------------+

Did you catch the new verb |. (reverse or rotate) that slipped in above? Did you
look it up in the J Dictionary?

p93

Hook

A train is a sequence of two or three words in a row that is given a special
meaning. A train of two verbs is a hook and is evaluated as follows:

 (f g) y evaluates as y f g y
x (f g) y evaluates as x f g y

Suppose you wanted to scale a list of numbers such that the result was each
number divided by the maximum number in the list. The maximum over a list is
given by the verb derived by applying the adverb / to the verb >. .

 a =. 3 5 8 2 7
 maxover =. >./
 maxover a
8

To divide an argument by the maximum over the argument you can use:

 a % maxover a
0.375 0.625 1 0.25 0.875

The above can be written as a hook.

 (% maxover) a
0.375 0.625 1 0.25 0.875

You can now define scale as a hook with % >./ .

 scale =. % >./
 scale a
0.375 0.625 1 0.25 0.875

p94

Fork

A train of three verbs is a fork and is evaluated as follows:

 (f g h) y evaluates as (f y) g (h y)
x (f g h) y evaluates as (x f y) g (x h y)

A simple example of a fork is the sequence of three verbs +/ % # . The / adverb
takes its left argument + and returns a verb, so there is a sequence of three verbs.
Let's examine the use of this fork monadically.

 (f g h) y evaluates as (f y) g (h y)
 (+/ % #) y evaluates as (+/ y) % (# y)

This can be read as: sum over the argument divided by the count of the argument.
This is the definition of the mean or average.

 (+/ % #) 5 9 12
8.66667

 (+/ % #) i.9
4

You can now define mean as a fork with +/ % # .

 mean =. +/ % #
 mean i.9
4

p95

Tacit definition

The centigrade verb was defined explicitly with the : conjunction. The term
explicit indicates that the arguments to the verb in the definition are referred to
explicitly by their names of x. and y. .

In a tacit definition the arguments are not named and do not appear explicitly in the
definition. The arguments are referred to implicitly by the syntactic requirements
of the definition. You have already used several tacit definitions.

 plus =. +
 sumover =. +/
 maxover =. >./
 scale =. % >./
 mean =. +/ % #

The above are all tacit definitions. They do not use : and do not refer to arguments
by name. In some cases the tacit form of definition is much simpler and more
obvious than the equivalent explicit definition. In more complicated situations, it
may take a bit of experience before you are comfortable with a tacit definition.
This is partly because you probably have experience with explicit forms of
definitions and very little with tacit definitions. In addition, tacit definitions tend to
be more concise and mathematical expressions of a definition, and it may be
necessary to go through the more detailed steps of creating an explicit definition
before the equivalent tacit definition becomes clear.

Let's revisit fahrenheit to see how it could be defined tacitly. Open the cf.ijs script
and look at the fahrenheit definition.

fahrenheit =: 3 : 0
t1 =. y. * 9
t2 =. t1 % 5
t3 =. t2 + 32
)

You can start by cleaning up the explicit definition. Now that you are more
comfortable with J you can combine these calculations into a single line.

fa =: 3 : '(y. * 9 % 5) + 32'

The parentheses are required because the calculation inside them must be done
before the 32 is added.

Let's shuffle the definition a bit to make the steps in building a tacit definition a bit
clearer.

fb =: 3 : '32 + ((9%5) * y.)'

The above could be read as: add 32 to nine-fifths times the argument.

So, you need an add32 verb and a ninefifthstimes verb. You can use the bond
conjunction & to build these verbs tacitly. The bond conjunction with a constant
left argument returns a derived monad that is the verb in its right argument with the
constant left argument.

 add32 =: 32 & +

This defines add32 as a monad that adds 32 to its argument.

 add32 12
44

 ninefifthstimes =: (9%5) & *

This gives a monad which multiplies its argument by 9%5.

 ninefifthstimes 20
36

Combining these you have:

 add32 ninefifthstimes 100
212

The atop conjunction @ combines two verbs into a derived verb that applies the
right verb to its argument and then applies the left verb to that result.

(u @ v) y evaluates as u v y

Use the atop conjunction to combine your two verbs to create the final definition.

 fc =: add32 @ ninefifthstimes

 fc 100
212

 fc _40
_40

 fc 0
32

Display the verb fc and note that its definition is dependent on the other two
definitions.

 fc
+-----------------------+
¦add32¦@¦ninefifthstimes¦
+-----------------------+

Sometimes after you have built up a tacit definition from smaller building blocks
you realize you really don't want all those smaller definitions hanging around. The
f. adverb takes a tacit definition and replaces names with their definitions.

 fz =. fc f.

The adverb f. , like all adverbs, takes its argument on its left.

Look at fz to see the final definition.

 fz
+--------------------+
¦+------+¦@¦+-------+¦
¦¦32¦&¦+¦¦ ¦¦1.8¦&¦*¦¦
¦+------+¦ ¦+-------+¦
+--------------------+

The system can display tacit definitions in several different forms. These options
can be selected from the View menu. With box display you get the preceding
display. The Box Display can be very useful in understanding tacit definitions.
However, for now use the View menu to select Linear Display so that you will see
the following:

 fz
32&+@(1.8&*)

In comparing something as simple as a verb defined as +, the tacit definition is
much simpler than the equivalent explicit definition. In the fahrenheit example it
could be argued that the explicit definition was simpler, especially if you used the
1.8 directly instead of the 9%5 as does the tacit definition.

fx =: 3 : '32+1.8*y.'
vs.
fz =: 32&+@(1.8&*)

The real strength in tacit programming comes in more complicated transformations
of the arguments, particularly when the arguments must be referenced several
times. The following illustrates another use of tacit definition.

 xmean =: 3 : '(+/y.) % #y.'

This is the mean that you ran across in the Fork p94 section.

 mean =: +/ % #

The tacit definition just uses the fork directly.

The fork could also have been used in the explicit definition, but would have
required parentheses around the fork.

 xmean =: 3 : '(+/ % #)y.'

One advantage of tacit definitions is that they are more easily manipulated in
formal ways than are explicit definitions. For example, J can automatically derive
the inverse of many tacit definitions. Let's try this with the fz tacit definition. The
inverse of the Fahrenheit conversion is the centigrade conversion. The standard
profile defines an adverb inverse.

 fz =: 32&+@(1.8&*)
 cz =: fz inverse
 fz 100
212

 cz 212
100

 fz 0
32

 cz 32
0

Tacit programming is very powerful, but there is no need to leap into it. It is
important to know what it is and to start using it in simple cases as this is the best
way to become more familiar with it.

p96

Explicit-to-tacit translator

There is a primitive which automatically converts one-line explicit definitions to an
equivalent tacit definition. You can learn a lot about tacit programming by writing
one line explicit definitions, converting them to tacit form, and studying the
resulting tacit definition.

Let's do this with an explicit fahrenheit definition. A left argument of 3 to : creates
an explicit definition. A left argument of 13 to : creates a tacit definition.

 fx =: 3 : '32 + y. * 9 % 5' NB. 3 explicit
 ft =: 13 : '32 + y. * 9 % 5' NB. 13 tacit

Use the View menu to select Linear Display.

 ft
32"_ +] * 1.8"_

At first glance this is confusing as it introduces several new things at once. The
first thing to do is to look at the boxed display.

Use the View menu to select the Box Display.

 ft
+--------------------------+
¦+------+¦+¦+-------------+¦
¦¦32¦"¦_¦¦ ¦¦]¦*¦+-------+¦¦
¦+------+¦ ¦¦ ¦ ¦¦1.8¦"¦_¦¦¦
¦ ¦ ¦¦ ¦ ¦+-------+¦¦
¦ ¦ ¦+-------------+¦
+--------------------------+

At the top level of boxing there are 3 boxes. This is a train with three elements and
is in fact a fork. You can take this thing apart by giving names to the parts and

looking at them separately.

The first element of the fork is the phrase 32"_ . Give this a name and experiment
with it a bit as a monadic verb.

 left =: 32"_
 left 123
32

 left i.5
32

Whatever you give left as an argument, it just returns 32. You've seen the "
conjunction before, but not with a constant left argument. Let's look this up in the J
Dictionary. When you turn to the definition for rank you will notice that there are
three pages of definitions, each with its own header. The three headings are:

Rank m " n
Rank u " n
Assign rank m " v u " v mv lv rv

The different definitions are for the rank conjunction used with different types of
arguments. In the headings m and n indicate noun arguments and u and v indicate
verb arguments. Your earlier use of " involved a verb left argument and a noun
right argument and is covered by the second definition. Both 32 and _ (infinity)
are nouns so it is the first definition that is relevant.

Reading the definition for m " n makes it clear that the observations are correct.
With a right rank of _ , the derived verb applies to its entire right argument, and no
matter what it is, it returns the left argument, which is 32.

Let's look at the right element of the fork.

 right =:] * 1.8"_
 right 23
41.4

 right 10
18

Let's not worry about the details of the definition, but again, by observation, what
the verb right does is to multiply its argument by 1.8 (which is 9%5).

The final definition is a fork.

 ff =: left + right
 ff 100
212

 ff 0
32

The result of the fork, ff , does work. Let's look in more detail at the definition of
the fork.

left + right evaluates as (left y) + (right y)
 32 + (1.8 * y)

Which is the Fahrenheit conversion!

Compare your custom built tacit definition with the automatically translated one
and note how different they are.

32&+@(1.8&*)
vs
32"_ +] * 1.8"_

Tacit programming is very rich and varied and is tightly tied to adverbs and
conjunctions such as bond, atop, and rank, and to trains such as hook and fork.

p97

Checkpoint F

At this point you should understand:

● the terms adverb and conjunction
● how to evaluate sentences with adverbs and conjunctions
● how to select subarrays from arrays
● how to modify subarrays in arrays
● boxed data
● hooks and forks
● tacit definition

Check your understanding by doing the following exercises:

● experiment with dyads { {. }. (negative numbers in the left arguments)
● look up a. in the J Dictionary and use it as the right argument in

experiments with the dyads { {. }.
● experiment with the adverbs and conjunctions introduced so far
● experiment with the hook = <. , determine what it does and why it does it

(hint: give it a name and apply it to 2 4 5.2 7 6.5)
● do the same with the hook = +

p98

Foreign !:

All J interfaces with the environment are provided by the conjunction!: (foreign).
In most cases the foreign result is a verb that provides a specific service. The left
argument of foreign selects a general family of services and the right argument
selects a specific service from that family. The families of services selected by the
left argument are:

0 Scripts

1 Files

2 Host Commands

3 Storage Types

4 Name Classes and Lists

5 Representations

6 Time

7 Space

9 Global Parameters

11 Windows

13 Debug

15 Dynamic Link Library

18 Locales

128 Numerical Functions

The foreign conjunction is documented in the J Dictionary and in the J Online
Documentation.

You have run across a few specific uses of the foreign conjunction in earlier
sections.

The derived verb 9!:11 was used in the Print precision section. The 9 selects the
Global Parameters family and the 11 gives a derived verb that sets the print
precision.

The load verb uses 0!:0 to load scripts. The left argument selects the scripts
family. Look up the definition. The 0 right argument is treated as three decimal
digits 000 and therefore executes sentences from a file, stops on an error, and is
silent (does not display sentences or results).

p99

Files

Many applications require reading and writing files. Like all J interfaces with the
environment, files are accessed with the foreign conjunction. The 1 family of
foreigns work with files. First define a few verbs for convenience.

 readfile =: 1!:1
 writefile =: 1!:2

Let's create a file with some data in it. You'll be using the filename several times,
so give it a name. The file foreigns require that the file name be a boxed string.

 fn =. < 'user\test.txt'
 'testing 1 2 3' writefile fn

Use whatever file editor you like to take a look at the file test.txt that was created in
the J user directory. You could also open it as a script file in J by using the
File|Open command (you will have to change the "List files of type" combobox to
list all files in order to see your test.txt file).

You can read the data from this file.

 data =. readfile fn
 data
testing 1 2 3

You can rewrite the file and read the new data.

 'new stuff for the file' writefile fn
 readfile fn
new stuff for the file

Use an editor to change and resave the test.txt file and read it again to see that you
get the new data. Again, you could do this by opening the file as a script file in J,
editing it, and closing it and saving the changes.

Let's assume you had a numeric table that you wanted to write out as text file.

 numtab =. i. 4 5
 numtab writefile fn
¦domain error
¦ data writefile fn

If you try to write numtab out you get a domain error because writefile
requires a string as its left argument. So, you need to convert the numeric table to a
string. The first step is to convert the numeric data to character data. The primitive
": (format) does this.

 cdata =. ": numtab
 cdata
0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19

 $cdata
4 14

The display of cdata looks like the numeric data, but its shape of 4 14 makes it
clear that it is a character table. However, you still can't write this out to file
because a file must be a list, not a table.

The monad , (ravel) puts all the atoms of an array into a list.

 crdata =. , cdata
 $ crdata
56

 crdata writefile fn
 readfile fn
0 1 2 3 4 5 6 7 8 910 11 12 13 1415 16 17 18 19

The data has been written to the file. However, reading the data from the file shows
there are still some problems. The fact that there were four rows of numbers has
been lost and some of the numbers from the end of a row (such as 9) run right into

the first number of the next row. Important information has been lost. The character
list should indicate that it has four lines of data.

Lines in a text file are separated by two special characters called CR (carriage
return) and LF (line feed). These characters are defined by the standard profile. The
list of these two characters used to separate lines is called CRLF. On the
Macintosh, a CR alone is used to separate lines, and if you are working on a Mac
you will have to take this into account. UNIX systems use just the LF character to
separate lines.

 'abc' , CRLF , 'defghi'
abc
defghi

To each item (list) in cdata you want to append the list CRLF. You need do this
with a rank 1 version of append.

 ddata =. cdata ,"1 CRLF
 ddata
0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

The blank lines in the display occur because the CRLF characters cause a new line,
but the end of the row of a table also causes a new line. However, when you ravel
this to create a list, the system won't have any rows to worry about and the display
will again look OK.

 ldata =. , ddata
 ldata
0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19

Now you have a string with complete information about the original data that you

can write to the file.

 ldata writefile fn

Open the file in an editor, or as a script file, to see that the data is there.

What if you had this file and wanted to get the numbers in it into J for processing?
You need to reverse the previous process.

 rdata =. readfile fn
 rdata
0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19

 $rdata
64

Getting the raw character data in is easy. But notice from the shape that it is a list of
character data.

You know that each line of data ends with CRLF. The fact that this is two
characters, instead of 1 is a nuisance, so the first thing to do is to get rid of the CR
characters and to leave just the LF as the delimiter. The following expression uses -
. (look it up in the J Dictionary) to remove the CR characters from the data.
Character data with just CR, just LF, or with CRLF separating lines displays the
same.

 dlf =. rdata -. CR
 dlf
0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19

You can use the cutopen verb to partition the data.

 bdata =. cutopen dlf

 bdata
+---+
¦0 1 2 3 4¦5 6 7 8 9¦10 11 12 13 14¦15 16 17 18 19¦
+---+

Each box contains the character data for the corresponding line. You need a
primitive that converts strings to numbers. The dyad ". can be used to convert
characters to numbers.

 0 ". '5 2 7'
5 2 7

 a =. 0 ". '5 2 7'
 3 + a
8 5 10

The left argument of ". is the value used if a conversion of a number fails.

 0 ". '5 7.5 23.b 8'
5 7.5 0 8

Use the each adverb to convert each of the boxes to numbers.

 ndata =. 0 ". each bdata
 ndata
+---+
¦0 1 2 3 4¦5 6 7 8 9¦10 11 12 13 14¦15 16 17 18 19¦
+---+

The display of bdata and ndata look the same, but the bdata boxes contain
characters and the ndata boxes contain numbers. Open the ndata boxes to get the
numeric table result.

 d =. > ndata
 d
0 1 2 3 4
5 6 7 8 9
10 11 12 13 14

15 16 17 18 19

You can wrap this all together by creating a new script file, entering the following
definitions, and saving it with a permanent name.

writetable =: dyad : 0
d =. ": x.
d =. d ,"1 CRLF
d =. , d
d 1!:2 y.
)

readtable =: 3 : 0
d =. 1!:1 y.
d =. d -. CR
d =. cutopen d
d =. 0 ". each d
d =. > d
)

Run the script file and test your definitions.

 (i. 3 7) writetable fn
 1 + readtable fn
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21

As you gain more experience with J you will start combining sentences together. A
more experienced J programmer would probably write the above definitions as
follows:

writetable =: 4 : '(,(": x.),"1 CRLF) 1!:2 y.'
readtable =: 3 : '>0 ". each cutopen (1!:1 y.)-.CR'

The script files.ijs provide many useful utilities for working with files. Look them
up in the J Online Documentation.

 load 'files'
 (": i. 3 9) fwrites 'newtest.txt'
84

 0 ". freadr 'newtest.txt'
0 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26

p100

Component files

A component file (jfile) can be thought of as a boxed list stored in a file. An item
of the boxed list on file is referred to as a component. The script jfiles.ijs provides
the utilities for working with jfiles.

 load 'jfiles'
 f =. 'user\data.jf'
 jcreate f
1

 'first component' jappend f
0

 (1.5+i.2 3) jappend f
1

 ('asdf';23) jappend f
2 3

 (<'mum';'dad') jappend f 4

The jsize result gives file information, including the indexes of the first and last
items.

 jsize f
0 5 1408 0

 jread f;0
+---------------+
¦first component¦
+---------------+

 jread f;1
+-----------+
¦1.5 2.5 3.5¦
¦4.5 5.5 6.5¦
+-----------+

 jread f;2
+----+

¦asdf¦
+----+

 jread f;3
+--+
¦23¦
+--+

 jread f;4
+---------+
¦+-------+¦
¦¦mum¦dad¦¦
¦+-------+¦
+---------+

 'new' jreplace f;3
3

 jread f;i.5
+--+
¦first component¦1.5 2.5 3.5¦asdf¦new¦+-------+¦
¦ ¦4.5 5.5 6.5¦ ¦ ¦¦mum¦dad¦¦
¦ ¦ ¦ ¦ ¦+-------+¦
+--+

Jfiles are documented in the J Online Documentation.

p101

Graphical user interface

These days almost no programming task is complete until it is packaged in a graphical
user interface (GUI).

Let's add a GUI to your centigrade and fahrenheit verbs.

There are many steps in building a form and an application. The exact steps you should
follow are contained in the series of indented, bulleted items. General discussion and
background information is provided in text between these bulleted items.

Run your cf.ijs script and make sure that centigrade and fahrenheit work.

The first step in creating a GUI is to create a form definition. A form definition is stored
in a script file just as are all your other definitions.

Create a new script file, save it as a permanent file in the user directory, and start the form
editor. The form editor is covered in more detail in the J Online Documentation available
on the help menu and you should refer to that if you have problems with the following
steps, or want more information at this time.

●

create a new script file with File|New IJS

●

save it in the user directory as cfgui.ijs with File|Save As...

●

start the form editor with Edit|Form Edit

You should now have the Form Edit dialog box on the screen.

●

type cfgui for your form name

●

select the empty form item in the listbox

●

press OK to close the dialog

You should now have two new windows on the screen, one in the upper left corner and
one in the center of the screen that look something like:

The small form in the corner is the new form you are editing. The Design dialog allows
you to customize the form and is in the middle of the screen. The script file cfgui.ijs has

had text added to it that defines the form.

Create a static control in your form with the text centigrade. A static control is used to
label other controls.

●

press the New... button in the Design dialog

●

in the New Control dialog select static from the listbox

●

type centigrade into the caption edit box

●

press OK

New controls are created in the upper left corner of the form. You can drag a control with
the mouse. To drag a control, point at it with the mouse, hold down the left mouse button
and move it.

●

drag the centigrade label down and to the right a bit

Create an edit control with an id of cid for the centigrade value. The id is very important
as it is used as the name of the noun used for the control as well as being used in
commands to indicate which control they affect.

●

press the New... button

●

select a class of edit

●

type in cid as the control id

●

press OK

●

drag the cid edit control to the right of the label control

Create a static control with the text Fahrenheit and an edit control with an id of fid.

●

repeat steps similar to the above to create a Fahrenheit static label and an fid edit
control

Experiment a bit with moving the controls around. Grab edges or corners to resize them.
If you make a mistake you can select a control with the mouse and press the Delete key to
delete it and then recreate it.

Your form should now look something like the following:

The form design is finished. Let's exit the form editor and try running the form.

●

press OK in the Design dialog

The form definition is now in the cfgui.ijs script. Let's take a look at what the form editor
put into the script. The numbers giving screen coordinate will be different, but your script
should look something like:

NB. base form

CFGUI=: 0 : 0
pc cfgui;
xywh 12 18 40 10;cc ccstatic static;cn "centigrade:";
xywh 56 16 40 14;cc cid edit ws_border es_autohscroll;
xywh 12 40 40 10;cc ccstatic static;cn "Fahrenheit:";
xywh 56 36 40 14;cc fid edit ws_border es_autohscroll;
pas 6 6;pcenter;
rem form end;
)

cfgui_run=: 3 : 0
wd CFGUI
NB. initialize form here
wd 'pshow;'
)

cfgui_close=: 3 : 0
wd'pclose'
)

All interactions with forms are done with the wd (Window Driver) verb. The wd
argument is always a string that starts with a command. A string can contain multiple
commands separated by semicolons.

The noun CFGUI is defined by the conjunction : in a manner similar to how verbs are
defined. The left argument of 0 creates a noun. It is defined as the lines of characters up
to the line which contains only the). It contains the commands that will create the form.
Don't worry about the details now, but most of it should make some sense. Commands

are followed by parameters and multiple commands on a line are separated by ;. The pc
command is a parent create (a form is referred to as a parent). The next line has an xywh
command that sets a rectangular area on the form and is followed by a cc command
(create child) that creates one of the controls you put on the form.

After the definition of CFGUI you will see that the editor has created a verb called
cfgui_run. This verb ignores its argument. It executes the wd verb with CFGUI as an
argument. This creates the form, but doesn't show it. The final wd with the argument
'pshow;' will show the parent (form).

At this point the cfgui.ijs script has not been run so the definitions are just text in the
script file and have not been defined. After you run the script you are ready to run your
application.

●

run the cfgui.ijs script with Run|Window

●

in the ijx window: cfgui_run 0

When you execute cfgui_run 0 you should see your form in the middle of the screen.
Typing into the controls and pressing Enter has no effect because you have no code
connected to the events yet.

You can close the form manually by executing the wd command reset that closes all
forms.

●

in the ijx window: wd 'reset'

When you type a value in the centigrade edit control and press Enter you cause an event.
An event is identified by the form and the control in which it occurs and the type of the
event. An Enter in an edit control is a button event (pressing enter in an edit field is

analogous to pressing a button control). So, the event of interest here is for form cfgui,
control cid, and is a button event.

When an event occurs, a verb called the event handler is executed. The name of the verb
that is executed is determined by the event. The name of an event handler is made up of
three parts: formid_controlid_event. So, the event handler of interest has the name
cfgui_cid_button.

The event handler cfgui_cid_button should convert the value from the cid edit
control to Fahrenheit and then display that result in the fid edit control.

The form editor can automatically create a skeleton of this event handler for you. In the
form editor, hold down the Ctrl key and click a control, and you will be switched to
editing in the script at the definition of the verb that handles the event for that control.

You closed the form editor, so the first thing is to restart the form editor. Select the
cfgui.ijs script and start the form editor with Edit|Form Edit.

●

select cfgui.ijs (titlebar highlighted)

●

start form editor with Edit|Form Edit

Your form should again appear open for editing in the corner of your screen.

●

hold down the Ctrl key and click the cid control

You should be positioned at the skeleton definition of cfgui_cid_button in the
cfgui.ijs script. You need to define that verb. When the event handler is executed the
noun cid will automatically have the value of the contents of the edit field. It will be a
string and you need to convert that to a number with the ". primitive.

t =. 0 ". cid

The next thing is to convert that centigrade value to Fahrenheit.

t =. fahrenheit t

The noun t is the number you want to display in the fid edit control. The number must
be converted to a string before it can be shown in an edit field. Use ": (format) for this.

t =. ": t

Finally, write the text string to the fid edit field.

wd 'set fid ' , t

The wd argument has a command of set, the id of the control to set, and t contains the
data to set. The * indicates all the following data is the text to set in the control.

Add these sentences to the definition in the cfgui.ijs script.

cfgui_cid_button=: 3 : 0
t =. 0 ". cid
t =. fahrenheit t
t =. ": t
wd 'set fid *', t
)

Be careful to type this correctly into your script.

You return to the form editor by holding down the Ctrl key and clicking the script
window.

●

add the sentences to the definition of cfgui_cid_button

●

hold the Ctrl key and click the script to return to the form editor

●

press OK in the Design dialog

At this point the cfgui.ijs script has not been run so the changes are just text in the script
file.

●

run the script with Run|Window

●

in the ijx window run the application: cfgui_run 0

You should see your form in the middle of the screen. Type a number into the centigrade
field and press Enter. The Fahrenheit value should display in its field.

If you type into the Fahrenheit field and press Enter nothing happens. This is because you
have not provided a handler for that event. If an event handler verb is not defined, the
event is ignored. Let's define the event handler for Enter in the Fahrenheit field now. Start
the form editor and hold down the Ctrl key and click the fid control to get to the
definition of the verb for that event. The definition for cfgui_fid_button is similar to
that of cfgui_cid_button.

cfgui_fid_button=: 3 : 0
t =. 0 ". fid
t =. centigrade t
wd'set fid *', ": t
)

●

select cfgui.ijs (titlebar highlighted)

●

start the form editor with Edit|Form Edit

●

hold down the Ctrl key and click the fid control

●

add the cfgui_fid_button definition to the script

●

hold the Ctrl key and click the script to return to the form editor

●

press OK in the Design dialog

●

run the script with Run|Window

●

in the ijx window: cfgui_run 0

Now when you type a value in the Fahrenheit field and press Enter it will be converted
and display in the centigrade field.

Finally, add a close button so that the form will be able to close itself. The event handler
will be as follows:

cfgui_close_button=: 3 : 0
wd 'pclose'
)

The wd command pclose (parent close) closes the form.

●

in the ijx window: wd 'reset'

●

start the form editor with Edit|Form Edit

●

press the New... button

●

select a class of button

●

type close as the control id

●

type Close in the caption field

●

press OK

●

drag the Close button to the right side of the form

●

hold down the Ctrl key and click the Close button

●

add the wd 'pclose' sentence to the definition

●

hold the Ctrl key and click the script to return to the form editor

●

press OK in the Design dialog

●

run the script with Run|Window

●

in the ijx window: cfgui_run 0

When you tire of doing conversions you can press the Close button to close your form.

Congratulations! you have written a GUI application in J. It is simple and has rough
edges, but you are over the high hurdles.

p102

Data processing

Applications typically have a GUI part and a data processing (DP) part. The DP
part is the actual calculations and data manipulation. A good application
implementation will be modular and this implies a clear distinction between the
GUI and the DP parts.

In this section you will develop the DP part of a simple application. In the next
section you will develop the GUI part.

The DP part of the application is specified as follows:

The input is the name of a text file. The output is a string that
displays as a table that contains: the file name, a count of lines, a
count of characters, and a row for each distinct character in the file
and a count of how many times it appears in the file. The rows of
distinct characters should be sorted by their counts.

You'll be working with files, so load the file utilities.

 load 'files'

Create a simple text file to use as test data.

 fn =. 'user\text.txt'
 data =. 'abc' , LF, 'bc' , LF, 'b' , LF
 data fwrite fn
9
 fread fn
abc
bc

b

You need to define a verb report that takes a filename as an argument and returns
the specified result. You'll build pieces of the definition in the ijx window and then
put them all together into the definition in a script.

The input is a filename and in the report verb it will have the name y. , so start by
working with y. in the ijx window.

 y. =. 'user\text.txt'

Read the file.

 d =. fread y.

The report will have two columns. The first column will be the labels 'File:',
'Lines:', 'Chars:', and each distinct character in the file. The second column will be
the value for that row. Since the data is a mixture of text and numbers it makes
sense to build the result as boxed data.

Create a noun with the fixed labels.

 r =. 'File:' ; 'Lines:' ; 'Chars:'
 r
+-------------------+
¦File:¦Lines:¦Chars:¦
+-------------------+

The values for those labels are calculated as follows:

 y. ; (+/ LF = d) ; #d
+-----------------+
¦user\text.txt¦3¦9¦
+-----------------+

The dyad ,. (stitch) can connect these two lists into a table.

 r =. r ,. y. ; (+/ LF = d) ; #d
 r
+--------------------+
¦File: ¦user\text.txt¦
+------+-------------¦
¦Lines:¦3 ¦
+------+-------------¦
¦Chars:¦9 ¦
+--------------------+

The next thing is to add the rows with the characters and their frequency counts.
The letter is the label and the count is the value, so it just adds more items to r.
Let's postpone that part of the problem, and work instead on converting the boxed
table to the string result required by the spec. Use a comment to mark the bit we
are skipping over for now.

 NB. need to add frequency rows to r here

The numbers in the second column need to be converted to characters. The easiest
way to do this is to convert the contents of each box to characters. The characters
are already characters and are not affected, but any numbers will be converted.

 r =. ":each r
 r
+--------------------+
¦File: ¦user\text.txt¦
+------+-------------¦
¦Lines:¦3 ¦
+------+-------------¦
¦Chars:¦9 ¦
+--------------------+

The display of r with all characters looks the same, but each box now contains
characters.

The next step is interesting and the details are left for you to puzzle out. It adds a
TAB after each label and an LF after each value. In the final result the TAB
separates the label from its value, and the LF causes a new line for the next label.
The boxed display shows the TAB and LF as blanks, but they really are in there.

 r =. r ,each"1 1 TAB;LF
 r
+----------------------+
¦File: ¦user\text.txt ¦
+-------+--------------¦
¦Lines: ¦3 ¦
+-------+--------------¦
¦Chars: ¦9 ¦
+----------------------+

The monad ; (raze) opens all the boxes and assembles a string result.

 ; r
File: user\text.txt
Lines: 3
Chars: 9

You are ready to define your verb report. Create a new script and save it as
user\textdp.ijs. Putting together the ijx experiments, add the following definition
for report to the script.

report =: 3 : 0
d =. fread y.
r =. 'File:' ; 'Lines:' ; 'Chars:'
r =. r ,. y. ; (+/ LF = d) ; #d
NB. need to add frequency rows to r here
r =. ":each r
r =. r ,each"1 1 TAB;LF
; r
)

Run the script and test report.

 report fn

File: user\text.txt
Lines: 3
Chars: 9

Now calculate the frequency rows. You need a verb freq that returns a table of
boxes where the first column is the distinct characters and the second column is the
count of times they are in the file. The argument to freq is the file data and inside
freq it will have the name y. , so let's start with y. defined as the file data.

 y. =. fread fn

The data can include TAB, CR, and LF characters and they should be removed.
The dyad -. (less) can remove these unwanted characters.

 d =. y. -. TAB,CR,LF
 d
abcbcb

The utility nubcount, defined by script misc.ijs, returns a table of boxes with a
first column containing the distinct items in its argument and the second column
containing the counts.

 load 'misc'
 nc =. nubcount d
 nc
+---+
¦a¦1¦
+-+-¦
¦b¦3¦
+-+-¦
¦c¦2¦
+---+

To sort the items by the counts you need to get the counts into a list.

 > 1 {"1 nc

1 3 2

The dyad \: (sort down) sorts the items of its left argument based its right
argument.

 nc \: > 1 {"1 nc
+---+
¦b¦3¦
+-+-¦
¦c¦2¦
+-+-¦
¦a¦1¦
+---+

Put this all together and add the following definition to your script.

freq =: 3 : 0
d =. y. -. TAB,CR,LF
nc =. nubcount d
nc \: > 1 {"1 nc
)

Run the script and test freq.

 freq fread fn
+---+
¦b¦3¦
+-+-¦
¦c¦2¦
+-+-¦
¦a¦1¦
+---+

You can now use freq in your report verb. Modify the NB. comment line in
report to be:

r =. r , freq d

Run the script and test report.

 report fn
File: user\text.txt
Lines: 3
Chars: 9
b 3
c 2
a 1

Try it on other text files.

You have finished the data processing part.

p103

GUI

The GUI part of the application is specified as follows:

The form should have a File button, a Close button, and a multiline edit control.
The File button allows the user to select a text file. The report on the selected text
file is displayed in the multiline edit control.

You need to design the form and define the event handlers.

The GUI definitions will be in a different script from the DP definitions to keep
clear the distinction between the two parts. Create a new script file and save it as
user\textgui.ijs. Start the form editor and design the form. The File button should
have an id of file and the Close button should have an id of close. The large
edit control is a multiline edit control that has a class of editm in the New Control
dialog. The multiline edit control should have an id of editm (the default is
cceditm , so you must specify editm). The form should look like the following:

You need to add event handlers for the Close and File buttons. The code for the
event handlers is in the following listing. This listing should be similar to your
final textgui.ijs script.

FILEREP=: noun define
pc filerep;
xywh 9 7 34 14;cc file button;cn "File";
xywh 47 7 34 14;cc close button;cn "Close";
xywh 9 27 119 134;cc editm editm ws_border es_autovscroll;
pas 6 6;pcenter;
rem form end;
)

filerep_run=: 3 : 0
wd FILEREP
NB. initialize form here
wd 'pshow;'
)

filerep_close_button=: 3 : 0
wd'pclose'
)

filerep_file_button=: 3 : 0
p =. '"" "" "" "Text(*.txt)|*.txt" ofn_filemustexist'
fn =. wd 'mbopen ' , p
if. 0 ~: #fn do.
wd 'set editm *' , report fn end.
)

The only part that is new is the use of the wd command mbopen. This command
brings up the common file open dialog box that allows the user to select a file.
Local p contains the parameters for the mbopen command. These parameters are
critical and must be defined properly. If you want to know more about the mbopen
parameters, you can check in the J Online Documentation.

The result of the mbopen command is the file name selected by the user. If the user
pressed cancel in the open dialog the result will be an empty string and there is
nothing to do. If fn is not empty then you execute report fn to generate the
report and set it into the editm control.

The * in the line wd 'set editm *' , report fn end. indicates that the rest
of the string, which is the result of report fn, is the data to set into the editm
multiline edit control.

Run the textdp.ijs and textgui.ijs scripts and then start the application.

 filerep_run 0

Press the File button and select your user\text.txt file and press OK. Try other text
files.

The application uses definitions from four scripts: textdp.ijs, textgui.ijs, files.ijs,
and misc.ijs. It makes sense to create a single script that will load all the scripts and
then run the application.

Create a new script file, save it as user\textapp.ijs, and add the following lines.

NB. this application reports file character frequencies
load 'files'
load 'misc'
0!:0 < 'user\textdp.ijs'
0!:0 < 'user\textgui.ijs'
filerep_run 0

Save the script. Close J and restart it to get a clean slate. Run the application by
using Run|File to run the script user\textapp.ijs.

p104

Where to go from here

If this is your first skim reading, or your second more detailed reading, or if you
feel you haven't quite mastered all the material, then this is the point to go back to
the beginning and have another go in more detail, and perhaps use a bit more
elbow grease and get those hands working on the keyboard.

If you have mastered this material, then it is time to move on. You can start
digging in on your own, but a bit more time with the other manuals is probably
worthwhile.

● J Online Documenatation p105
● J Dictionary p106
● J Phrases p107

p105

J Online Documenatation

Take the time to familiarize yourself with the documentation available from the J
help menu. It is worthwhile to quickly browse through all the material so you'll
know where to look when something comes up.

There is information on how to use the standard libraries and packages that are
provided with the system. If you prefer reinventing the wheel, then ignore it, but if
you want a head start, take a look.

There is material on GUI programming and the window driver. If you are content
with the ijx and ijs windows and are your own end user, then ignore it. If you want
to build more complete applications and possibly provide them for other end users,
then you need to spend time learning this stuff.

p106

J Dictionary

By now you should be familiar with the vocabulary and definition part of the J
Dictionary.

This primer has introduced most of the J Dictionary concepts, although in a
simpler way that is restricted to specific situations. As mentioned before, the J
Dictionary is a reference book and its descriptions are both as concise as possible,
and at the same time as complete as possible, with more emphasis on complex and
tricky situations for experts, than on the mundane ones for beginners.

It would be worthwhile to read the sections that preceed the individual definitions.
Much of it will make sense, and some of it will either answer questions that had
arisen in your mind, or just as likely raise interesting new questions. Based on the
experience of seasoned J programmers, you'll find yourself reading and rereading
this material, and on every reading you'll learn something new.

You are also now more than ready to attack the Introduction. You should definitely
work your way through the first 20 lessons. It shouldn't be too tough and you'll
learn a lot.

Especially if you work through the exercises!

The remaining lessons are more difficult and will take more effort to master.

Working your way through the Sample Topics is one of the best ways to meet
some of the primitives in action. You'll be continuously challenged and constantly
referring to the definitions and experimenting with the system to try to understand
what is going on. In the end you'll be a much better J programmer, to say nothing
of learning a fair bit of math and computer science!

p107

J Phrases

The earlier you take a look at the J Phrases book and find that it starts to make
sense, the better. There are few better ways to learn a language than by reading
material written by experts, and that is exactly what this book is. Think of it as a
collection of the greatest J short stories; you'll delight and marvel as you read
through it, but it can also be a practical addition to your kit of software tools. If you
run across a particular requirement in one of your applications for a tight little
kernel of math, statistics, or data manipulation, chances are good that you can refer
to the J Phrases and find what you want, or at least a starting point.

p108

end.

Finally, the end of the structured learning! Welcome to the ranks of J
programmers. You are now free to put this stuff to use in your own way. Good
luck and enjoy.

p109

Index

A

a. Space p30 · Frame and cell p70 · Checkpoint F p97

a: From - boxed indexes p87 · Selecting without from p90

abbreviated Print precision p56

absence Order of evaluation p33

agree(s) Order of evaluation p33 · Rank conjunction " p75

agreement(s) Agreement p74 · Rank conjunction " p75 · Checkpoint E p77

alphabet Terminology p10 · Alphabet p11 · Word p12

ambivalence Ambivalence p22 · Checkpoint A p26 · Monad/dyad defined
p35

ambivalent Adverb p78

amend(s) Amend } p89

areas Your background p4 · Environment p6

arithmetic Vocabulary p25

ascii Alphabet p11

atom(s) Atom p60 · List p61 · Table p62 · Array p63 · Axis p64 · Shape
p65 · Rank p66 · Empty Array p67 · Single atom array p68 ·
Frame and cell p70 · Item p71 · k-cell p72 · Verb rank p73 ·
Agreement p74 · Result shape p76 · Checkpoint E p77 · Insert
adverb p79 · Table adverb p80 · Box - monad < p83 · Open -
monad > p85 · From - boxed indexes p87 · Files p99

atop Tacit definition p95 · Explicit-to-tacit p96

axe(s) Axis p64 · Shape p65 · Rank p66 · Agreement p74 · From -
boxed indexes p87 · Scattered indexing p88 · Selecting without
from p90

B

binary Inexact numbers p57

bits Vocabulary p25

boolean(s) Vocabulary p25 · Table adverb p80 · Cut ;. p91

box Vocabulary p25 · Word formation p29 · Precedence p31 · Box -
monad < p83 · Open - monad > p85 · Cut ;. p91 · Tacit
definition p95 · Explicit-to-tacit p96 · Files p99 · GUI part 1
p101 · Data processing p102 · GUI part 2 p103

boxed Box - monad < p83 · Link - dyad ; p84 · Open - monad > p85 ·
From - boxed indexes p87 · Cut ;. p91 · Each p92 · Explicit-to-
tacit p96 · Checkpoint F p97 · Files p99 · Component files p100
· Data processing p102

boxes Vocabulary p25 · Word formation p29 · Box - monad < p83 ·
Link - dyad ; p84 · Open - monad > p85 · Cut ;. p91 · Each p92 ·
Explicit-to-tacit p96 · Files p99 · Data processing p102

break(s) Precedence p31 · Order of evaluation p33 · Adding lists p51 ·
Array p63 · Cut ;. p91

C

C. Your background p4

caret Vocabulary p25

centigrade Verb definition p34 · Monad/dyad defined p35 · Script file p36 ·
Local p37 · Global p38 · Debug global p39 · When they aren't
p41 · Debug - step through p46 · Debug - an error p47 · Control
structure p49 · J way of adding lists p52 · Rank conjunction "
p75 · Conjunction p81 · Tacit definition p95 · GUI part 1 p101

circle A few more primitives p53 · Checkpoint D p59

circular A few more primitives p53

comparative(s) Comparative p48 · J way of adding lists p52 · Checkpoint D p59

comparing Tacit definition p95

component(s) Component files p100

config Standard profile p9 · Word formation p29

conjugate(s) Vocabulary p25

conjunction(s) Terminology p10 · Rank conjunction " p75 · Result shape p76 ·
Checkpoint E p77 · Conjunction p81 · Order of execution p82 ·
From - boxed indexes p87 · Cut ;. p91 · Tacit definition p95 ·
Explicit-to-tacit p96 · Checkpoint F p97 · Foreign !: p98 · Files
p99 · GUI part 1 p101

constants Word formation p29 · Order of execution p82

control(s) Parentheses p32 · Control structure p49 · Checkpoint C p50 ·
Adding lists p51 · Verb rank p73 · GUI part 1 p101 · GUI part 2
p103

D

dbr Debug - step through p46 · Debug - an error p47

deal(s) Environment p6 · Terminology p10 · Verb definition p34

debug Debug global p39 · Debug - step through p46 · Debug - an error
p47 · Checkpoint C p50 · Foreign !: p98

debugging Debug global p39 · Debug - step through p46 · Checkpoint C
p50

derive(s) Tacit definition p95

derived Adverb p78 · Insert adverb p79 · Table adverb p80 ·
Conjunction p81 · Order of execution p82 · Cut ;. p91 · Each
p92 · Hook p93 · Tacit definition p95 · Explicit-to-tacit p96 ·
Foreign !: p98

diagonal(s) Scattered indexing p88

dimension(s) Atom p60 · List p61 · Table p62 · Array p63 · Axis p64

dimensional Table p62 · Array p63

distribution(s) Why J p2

divide(s) Experiment p8 · Hook p93

divided Dyad p23 · Monad p24 · Verb definition p34 · Hook p93 · Fork
p94

dividing Tolerance p58

division(s) Precedence p31

divisor(s) Vocabulary p25

documenatation Where next? p104 · Online Documentation p105

document(s) Your background p4 · Vocabulary p25

documentation Vocabulary p25 · Locale p42 · Script load p44 · Foreign !: p98 ·
Files p99 · Component files p100 · GUI part 1 p101 · GUI part 2
p103 · Online Documentation p105

documented Script load p44 · Foreign !: p98 · Component files p100

dot(s) Alphabet p11 · Number p16 · Negative number p17 · Primitive
p18 · Vocabulary p25 · Space p30 · A few more primitives p53

drop(s) Selecting without from p90

dyad(s) Ambivalence p22 · Dyad p23 · Monad p24 · Vocabulary p25 ·
Checkpoint A p26 · Order of evaluation p33 · Monad/dyad
defined p35 · Comparative p48 · Control structure p49 ·
Checkpoint C p50 · Adding lists p51 · J way of adding lists p52
· A few more primitives p53 · Table p62 · Verb rank p73 ·
Agreement p74 · Rank conjunction " p75 · Result shape p76 ·
Table adverb p80 · Order of execution p82 · Link - dyad ; p84 ·
From - dyad { p86 · Scattered indexing p88 · Amend } p89 ·
Selecting without from p90 · Cut ;. p91 · Checkpoint F p97 ·
Files p99 · Data processing p102

dyadic Ambivalence p22 · Dyad p23 · Vocabulary p25 · Monad/dyad
defined p35 · z locale p43 · Checkpoint B p45 · Control
structure p49 · Adverb p78

dyadically Monad/dyad defined p35 · Rank conjunction " p75 · Amend }
p89 · Each p92

E

E. Cut ;. p91

editm GUI part 2 p103

enclosed Order of evaluation p33

enclosing Order of evaluation p33

equals Control structure p49

evaluate(s) Order of evaluation p33 · Hook p93 · Fork p94 · Tacit definition
p95 · Explicit-to-tacit p96 · Checkpoint F p97

evaluated Verb definition p34 · Link - dyad ; p84 · Hook p93 · Fork p94

evaluating Negative number p17

evaluation Parentheses p32 · Order of evaluation p33

executes Get started p7 · Script file p36 · When they aren't p41 · Locale
p42 · Control structure p49 · Plot locale p55 · Order of
execution p82 · Foreign !: p98 · GUI part 1 p101

executing Script file p36 · When =.and =:are alike p40 · Locale p42 ·
Debug - step through p46 · Debug - an error p47 · Plot locale
p55 · GUI part 1 p101

exponential(s) Negative number p17

F

f. Tacit definition p95

float(s) Vocabulary p25

fork(s) Fork p94 · Tacit definition p95 · Explicit-to-tacit p96 ·
Checkpoint F p97

functional(s) Global p38

G

gcd Vocabulary p25

H

handler(s) GUI part 1 p101 · GUI part 2 p103

head(s) Order of evaluation p33 · Selecting without from p90 · Online
Documentation p105

I

i. Primitive p18 · Control structure p49 · A few more primitives
p53 · Plot p54 · Print precision p56 · Table p62 · Array p63 ·
Shape p65 · Verb arguments p69 · Frame and cell p70 · Item
p71 · k-cell p72 · Verb rank p73 · Agreement p74 · Rank
conjunction " p75 · Result shape p76 · Insert adverb p79 · Table
adverb p80 · Order of execution p82 · Box - monad < p83 · Link
- dyad ; p84 · Open - monad > p85 · From - dyad { p86 · From -
boxed indexes p87 · Amend } p89 · Selecting without from p90
· Fork p94 · Explicit-to-tacit p96 · Files p99 · Component files
p100

icon(s) Get started p7 · Standard profile p9

imaginary Vocabulary p25

incremented Adding lists p51

indexes From - dyad { p86 · From - boxed indexes p87 · Scattered
indexing p88 · Selecting without from p90 · Component files
p100

indexing From - dyad { p86 · Scattered indexing p88 · Amend } p89 ·
Selecting without from p90

inexact Inexact numbers p57

inexactly Inexact numbers p57

infinity Number p16 · Negative number p17 · Explicit-to-tacit p96

inflected Vocabulary p25 · A few more primitives p53

inflection(s) Primitive p18 · Space p30 · Global p38

integrated Why J p2 · Script file p36

invoke(s) Plot locale p55

J

java Why J p2 · Purpose of this book p3 · Your background p4 ·
Adding lists p51

jsoftware Where next? p104

L

languages Why J p2 · Your background p4 · Terminology p10 · Name p19
· Precedence p31 · Parentheses p32 · Order of evaluation p33 ·
Comparative p48 · Adding lists p51 · J way of adding lists p52 ·
Inexact numbers p57

letter(s) Standard profile p9 · Alphabet p11 · Primitive p18 · Space p30 ·
Locale p42 · z locale p43 · Control structure p49 · A few more
primitives p53 · Data processing p102

library Foreign !: p98

limit(s) Vocabulary p25 · Inexact numbers p57 · Checkpoint E p77

locale(s) Locale p42 · z locale p43 · Script load p44 · Checkpoint B p45 ·
Plot locale p55 · Foreign !: p98

locals Global p38 · When they aren't p41 · Debug - step through p46 ·
Adding lists p51

lowercase Alphabet p11

M

macintosh Environment p6 · Standard profile p9 · Files p99

magnitude(s) k-cell p72

math Terminology p10 · Vocabulary p25 · Precedence p31 ·
Parentheses p32 · Inexact numbers p57 · Tolerance p58 · Array
p63 · J Dictionary p106 · J Phrases p107

mathematical Why J p2 · Inexact numbers p57 · Tacit definition p95

matrix Array p63

modular Data processing p102

monadically Monad/dyad defined p35 · Insert adverb p79 · Cut ;. p91 · Each
p92 · Fork p94

monads Checkpoint A p26 · Order of evaluation p33

multiplied A few more primitives p53 · Inexact numbers p57

multiplies Tacit definition p95

multiply Explicit-to-tacit p96

multiplying Inexact numbers p57 · Tolerance p58

N

NB. Comment p20 · Vocabulary p25 · Word formation p29 · Space
p30 · Order of evaluation p33 · Global p38 · Debug global p39 ·
Locale p42 · z locale p43 · Debug - an error p47 · Control
structure p49 · Adding lists p51 · A few more primitives p53 ·
Plot locale p55 · Print precision p56 · Table p62 · Shape p65 ·
Rank p66 · Empty Array p67 · Single atom array p68 · Insert
adverb p79 · Table adverb p80 · Box - monad < p83 · From -
dyad { p86 · From - boxed indexes p87 · Scattered indexing p88
· Selecting without from p90 · Each p92 · Explicit-to-tacit p96 ·
GUI part 1 p101 · Data processing p102 · GUI part 2 p103

negate(s) Ambivalence p22

negation Vocabulary p25

nested Control structure p49 · Link - dyad ; p84

nubcount Data processing p102

numerical Foreign !: p98

O

o. A few more primitives p53 · Plot p54 · Table adverb p80

operator(s) Terminology p10

P

parentheses Parentheses p32 · Order of evaluation p33 · Order of execution
p82 · Tacit definition p95

parenthesis Order of evaluation p33

parenthesize(s) Order of evaluation p33

parenthesized Parentheses p32

parsed Order of execution p82

parsing Order of execution p82

partition(s) Locale p42 · Cut ;. p91 · Files p99

partitioned Cut ;. p91

plots Table adverb p80

plotting Table adverb p80

power(s) Purpose of this book p3 · Locale p42 · A few more primitives
p53 · Checkpoint D p59 · Verb arguments p69

precedence(s) Precedence p31 · Parentheses p32 · Order of evaluation p33 ·
Order of execution p82

primitive(s) Primitive p18 · Name p19 · Comment p20 · Monad p24 ·
Vocabulary p25 · Word formation p29 · Space p30 · Verb
definition p34 · Script file p36 · Comparative p48 · Control
structure p49 · Adding lists p51 · J way of adding lists p52 · A
few more primitives p53 · Print precision p56 · Checkpoint D
p59 · Table p62 · Array p63 · Verb rank p73 · Rank conjunction
" p75 · Checkpoint E p77 · Adverb p78 · Insert adverb p79 ·
From - boxed indexes p87 · Selecting without from p90 · Cut ;.
p91 · Explicit-to-tacit p96 · Files p99 · GUI part 1 p101 · J
Dictionary p106

R

random A few more primitives p53

rank(s) Rank p66 · Empty Array p67 · Single atom array p68 · Verb
arguments p69 · Frame and cell p70 · Item p71 · k-cell p72 ·
Verb rank p73 · Agreement p74 · Rank conjunction " p75 ·
Result shape p76 · Checkpoint E p77 · Insert adverb p79 · Table
adverb p80 · Conjunction p81 · Link - dyad ; p84 · Open -
monad > p85 · From - dyad { p86 · From - boxed indexes p87 ·
Scattered indexing p88 · Explicit-to-tacit p96 · Files p99 · end.
p108

ravel(s) Files p99

raze Data processing p102

reciprocal(s) Monad p24

relational(s) Comparative p48

S

script(s) Script file p36 · Global p38 · Debug global p39 · When they
aren't p41 · Locale p42 · Script load p44 · Checkpoint B p45 ·
Debug - step through p46 · Debug - an error p47 · Control
structure p49 · Checkpoint C p50 · Adding lists p51 · J way of
adding lists p52 · Plot p54 · Plot locale p55 · Tacit definition
p95 · Foreign !: p98 · Files p99 · Component files p100 · GUI
part 1 p101 · Data processing p102 · GUI part 2 p103

self How to use this book p5 · Experiment p8

semicolon(s) GUI part 1 p101

shapes Open - monad > p85

singleton(s) Single atom array p68 · Scattered indexing p88

sorted Data processing p102

sorts Data processing p102

square(s) Checkpoint B p45

T

t. Print precision p56

tacit Rank conjunction " p75 · Tacit definition p95 · Explicit-to-tacit
p96 · Checkpoint F p97

tacitly Tacit definition p95

tally Adding lists p51 · Item p71 · Cut ;. p91

technique(s) Plot locale p55

terminology Terminology p10

tolerant Tolerance p58

tolower Script load p44

toupper Script load p44

train(s) Hook p93 · Fork p94 · Explicit-to-tacit p96

transformation(s) Tacit definition p95

translated Explicit-to-tacit p96

translator Explicit-to-tacit p96

trigonometric A few more primitives p53

U

uppercase Alphabet p11

V

valence(s) Ambivalence p22

verb(s) Terminology p10 · Verb p14 · Number p16 · Negative number
p17 · Name p19 · Ambivalence p22 · Dyad p23 · Monad p24 ·
Vocabulary p25 · Checkpoint A p26 · Precedence p31 ·
Parentheses p32 · Order of evaluation p33 · Verb definition p34
· Monad/dyad defined p35 · Script file p36 · Local p37 · Global
p38 · Debug global p39 · When =.and =:are alike p40 · When
they aren't p41 · Locale p42 · z locale p43 · Script load p44 ·
Checkpoint B p45 · Debug - step through p46 · Debug - an error
p47 · Comparative p48 · Control structure p49 · Checkpoint C
p50 · Adding lists p51 · J way of adding lists p52 · A few more
primitives p53 · Plot locale p55 · Print precision p56 ·
Checkpoint D p59 · Rank p66 · Single atom array p68 · Verb
arguments p69 (only first 40 listed)

W

whilst Control structure p49

X

x. Monad/dyad defined p35 · Control structure p49 · Checkpoint C
p50 · Adding lists p51 · J way of adding lists p52 · Tacit
definition p95 · Files p99

Y

y. Verb definition p34 · Monad/dyad defined p35 · Script file p36 ·
Global p38 · Debug global p39 · Locale p42 · Debug - step
through p46 · Debug - an error p47 · Control structure p49 ·
Adding lists p51 · J way of adding lists p52 · Tacit definition
p95 · Explicit-to-tacit p96 · Files p99 · Data processing p102

year(s) Why J p2 · J way of adding lists p52

