J Primer

Eric lverson

Copyright © 1991-2002 Jsoftware Inc. All Rights Reserved.
L ast updated: 2001-3-29
www.jsoftware.com

Table of Contents

Start here

Why J

Purpose of this book
Y our background
How to use this book
Environment

Get started
Experiment
Standard profile
Terminology
Alphabet

Word

Sentence

Verb

Noun

Number

Negative number
Primitive

Name

Comment

Error
Ambivaence
Dyad

Monad
Vocabulary
Checkpoint A
Numeric constant
String

Word formation

Space

Precedence

© O ~NO Ol WN -

=
o

=
N

e el
~N o 0w

N NDN PP PP
N P O © 0

N N NN
o 01 A W

N
~

N N
© 00

w W
— O

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Parentheses

Order of evaluation
Verb definition
Monad/dyad defined
Script file

Loca

Global

Debug global

When =.and =:are dlike
When they aren't
Locae

Zlocale

Script load
Checkpoint B

Debug - step through
Debug - an error
Comparative

Control structure
Checkpoint C
Adding lists

Jway of adding lists
A few more primitives
Plot

Plot locale

Print precision

| nexact numbers
Tolerance
Checkpoint D

Atom

61 List

62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

Rank

Empty Array
Single atom array
Verb arguments
Frame and cell
Item

k-cell

Verb rank

Agreement
Rank conjunction "

Result shape
Checkpoint E
Adverb

Insert adverb
Table adverb
Conjunction

Order of execution
Box - monad

Link - dyad ;

Open - monad >
From - dyad {
From - boxed indexes
Scattered indexing
Amend

Selecting without from
Cut;.

Each

Hook

Fork

Tacit definition
Explicit-to-tacit
Checkpoint F
Foreign !:

Files

100 Component files

101 GUI part 1
102 Dataprocessing

103 GUI part 2

104 Where next?

105 Online Documentation
106 JDictionary

107 JPhrases

108 end.

109 Index

Start Here

Jisagenera purpose, high-level programming language. If you are new to J and
want to be a J programmer, thisis a good place to start. Even if you have
considerable programming experience, there is much that isuniqueto J, and it is
worthwhileto at least skim this book before jumping into the deep end.

Why J

Jisavery rich language. Y ou could study and use it for years, and still consider
yourself abeginner. Thisisin sharp contrast to smpler languages like Basic or
Java, where months of concerted study and use would make you an expert. The
effort required to become an expert J programmer is closer to that required to
become an expert C++ programmer.

The good news is that the essence of Jis so simple and consistent, that you can
guickly learn enough to start solving real and interesting problems.

It iseasier to learn enough Basic or Javato solve trivial problems, but it is easier to
learn enough J to solve more interesting and challenging problems. And once you
have that level of skill under your belt, you are not at the end of the road, but can
continue to improve, making yourself a better and more formidable programmer.

Jis particularly strong in the mathematical, statistical, and logical analysis of
arrays of data. It is apowerful tool in building new and better solutions to old
problems and even better at finding solutions where the problem is not already well
understood.

Aswell as being ageneral purpose programming language, the J system also
provides:

an integrated devel opment environment

standard libraries, utilities, and packages

aform designer for your application forms (windows)

an event-driven graphical user interface to your application

severa methods of interfacing with other programming languages and
applications

rapid application prototyping and devel opment

royalty-free distribution of run-time versions of your application

If you are interested in programming solutions to challenging data processing
problems, then the time you invest in learning Jwill be well spent.

p3
Purpose of this book

The JDictionary isthe authoritative and definitive specification of the Jlanguage.
It can be used to learn J, but the fact that it covers all of the language concisely, yet
completely and rigorously, with more emphasis on the complex than the mundane,
does scare some of us away.

This online book provides a kinder, gentler start for beginners. This book takes you
along a path in easy steps to the point where you can write an application in J.
Along the way you will be introduced to all the key ideasin J by seeing them in
simplified and specific contexts. At the end, you will be able to write real programs
in J, and you will also be comfortable in using the J Dictionary as areference for
your work as a J programmer. The purpose of this online book isto get you up to
speed where you can use the J Dictionary in a manner that makes you wonder why
you ever bothered with this simple stuff.

Y ou should be able to work your way through this book fairly quickly, and at the
end you will be an entry-level J programmer. As such, you will have far more
programming power at your fingertips than even the most experienced Basic or
Java programmey.

Your background

This online book assumes that you are familiar with another programming
language such as Basic, Java, or C. However, thisis not a prerequisite, and you
shouldn't have particular problemsif Jisyour first computer language (in fact,
congratulationg).

It is also assumed that you are familiar with running Windows applications, in
particular MDI (multiple-document interface) applications such as Word and
Excel.

Most things can be done in J much asthey are done in other languages, and in
severa areas atopicisintroduced just asit would be introduced in other languages.
If you are familiar with other languages this makes it easier to follow how it works
in J. In some cases there is amuch better Jway to solve a problem, and that is also
covered.

p5
How to use this book

The online book is a series of small, bite-size sections that are intended to be read
in order from the start to the end. Sections typically depend on most or even all of
the previous sections having been read. Jumping around is pointless and likely
frustrating.

The book is self-contained and could be read without access to a system. In
particular, examples of interactions with the J system show both what you enter
and how the system responds. However, it is intended to be read with accessto a
system and with as much use of a system along with the book as possible. It is
strongly recommended that you eventually type in all the examples and play
around as much as you can with variations on them.

Sometimes a section uses terms and concepts that aren't defined until later. This
requires you to proceed with a soft understanding the first time through that
becomes more concrete on a second reading.

This book is probably best read by reading it three times:

Skim the whole book. Try some examples, but it is better to just plow on
and get the big picture.

The second time read it carefully and try all the examples.

The third time try your own examples to clarify your understanding and to
increase your comfort with the mechanics of actually using the system
(instead of just reading about it and following instructions).

p6
Environment

This online book assumes that you have installed and will be using J for Windows
(Win31, Win95, or NT) or Jfor Macintosh. Any edition at Release 4 or later is

appropriate.

There are minor differencesin Jfor Macintosh, but they should not be a problemin
using this book to learn J.

Jfor UNIX isnot as directly usable with this book. The Jlanguage is identical, so
the differences are all in areas such as how to edit text files. With areasonable
knowledge of UNIX and some extra effort this book can be used in learning Jon a
UNIX system. Some sections deal with facilities that are not part of Jfor UNIX
and you will just have to read those sections without being able to execute the
examples or experiment. In particular, Jfor UNIX does not have a plot facility or a
form designer.

p7
Get started

Double-click the Jicon to start J. Y our J session should look something like this:

J.d - 1z _ O] %]

File Edt Hun Toolz Studio ‘Window Help

P Liix =i E3
- A

For Help, press F1 ‘Ready | | \o0ao0t 0003

The window labeled 1.ijx is an execution window. Y ou type J sentences into the ijx
window and J executes them when you press enter and displays the result.

Type the following line into the ijx window and press Enter.
2 + 3

The sentence is executed and the result is displayed. Type the following line and
press Enter.

5 - 3

Y our session should look something like this:

J.J - 1ijx
File Edt Hun Toolz Studio ‘Window Help

P 1iix M=

2 4+ 3

For Help, press F1 FReady | | 00005 (0003 s

Lines that you enter are indented three spaces and the J answers start at the margin.

p8
Experiment

Y ou are encouraged to experiment. Try entering similar lines with different
numbers. It isclear that + is plus and - is minus. Enter lines that use * for times and
%for divide. From using % you will pretty quickly see that numbers such as2. 5
can be the result, and that they can also be used as arguments.

Until you have more experience, you might sometimes be surprised or even
disconcerted by what you observe. Take thingsin small steps. Try examples where
you are pretty sure you aready know the answer, and do the experiment to confirm
your understanding. If aresult puzzles you too much, don't spend timeonitin
these early stages.

3 -5
2

The _2, instead of - 2, might confuse you. Don't worry, it will be explained in a bit.

Most examplesin this book show what you should type, indented by three spaces,
and also show the result the system displays. This means that you can read the
book in a casual manner, without having to use the system to see results. However,
the only way you will really learn is by eventually trying the examples and
experimenting with your own. Examples are shown in afixed-pitch font much as
they would appear in the ijx window of your system. A larger font is used in some
examples to make it easier for you to read and type the example into the system.
This is done where you might mistype something because of being unfamiliar with
some of the words, or where atypo could have confusing results.

While experimenting, you frequently want to execute minor variations on
sentences you have aready tried. There are several shortcuts that make this easier.
In the ijx window you can move the cursor to any line in the window and press
Enter to recall that line as a new line at the bottom of the window ready for editing.
Y ou can recall previous input lines for editing by holding down Shift+Ctrl and
pressing the up arrow key until you see the line you want to work with.

The examples in most sections are self-contained, but alater part of a section might

depend on steps taken in an earlier part. A few sections depend on steps taken in
previous sections, but this should be fairly obvious.

p9
Standard profile

Some examples assume that your system runs the standard profilewhen it is
started. This configures your system and makes some standard utilities available.

Enter CR (capital letter C followed by capital letter R) into theijx window as a
guick check on whether the profile has been run.

CR

If the result isablank line, then profile has been run and you can skip the rest of
this section.

If instead you see:
CR

3val ue error

you will have to change your Jicon to run the standard profile

The standard profileisin file system\extras\config\profile.ijsin your J directory.
Y ou need to edit the Jicon properties to indicate that this file should be run when J
starts.

On the Macintosh you double-click the Jicon labeled profile.ijsto start Jwith the
standard profile.

p10
Terminology

All programming languages have things in common with the English language.
Where the analogy is close, Jtends to use English language terms in preference to
terms used in math and other programming languages.

Y ou could, as in other languages, say line of code, but in Jyou tend to say sentence
instead. Similarly you could refer to the + function, but you usually say verb.

Some English language terms used in J are: alphabet, word, sentence, verb, noun,
adverb, and conjunction.

There are several reasons for this approach. One problem it deals with isthe
plethora of related, but subtly different, uses of traditional termsin math and
numerous programming languages. For example: function, subfunction, operator,
program, routine, and subroutine are all used in slightly different waysin different
programming languages. Rather than inherit this confusion, J adopts its own terms,
and defines them precisely within its context.

Using English terms gives you a good idea of what the general meaning of the term
isin J. In addition, using natural language terms encourages and facilitates taking
the English statement of a problem and more directly writing the corresponding J
sentences.

The use of the Jterms is encouraged, but certainly isn't mandatory, and using the
term function instead of verb is quite OK.

pll

Alphabet

The Japhabet isthe ASCII alphabet and consists of:

26 lowercase letters (ato 2)

26 uppercase letters (A to 2)

23456789
>

> 4+ Il O

1
<
* %
$ -~ |
#
)

?

\
}
&

@ ~°

()

There are afew characters that sometimes cause confusion. The - (minus) character
isdifferent from the _ (underbar) character and there are three different quote
characters:

quote

" double-quote

\ back-quote

If you try an example and type " (a double-quote) instead of " (two quotes) you
will be disappointed that your result is not the same as in the book.

The. (period) isusually called dot.

pl12
Word

A word isagroup of characters from the alphabet that has a meaning.

2.5 +5
The sentence has three words: the number 2. 5, the +, and the number 5.

The rules for forming words from the characters in a sentence are ssmple, and for
now, common sense will suffice in recognizing the words in a sentence. There are
some complications that will be dealt with in later sections,

p13
Sentence
A sentence is agroup of words that form a complete instruction. Unlike English

sentences, J sentences do not end with a period or other punctuation mark. Instead
aJsentenceisusually acomplete line.

Verb

In the following sentence the character + is averb (aword that expresses an
action).

2 +5

pl4

Noun

In the following sentence the numbers 2 and 5 are both nouns.

2 +5

p15

p16
Number

Thefollowing are numbers. 0, 1, 2, 2.5, 12.75, 0.5, 7€6 .

Enter these, and other numbers, in ssimple sentences with theverbs+ - * and %

2 * 12.75
25.5

An important rule is that a number does not start with a dot.
0.5
0.5

0.5+ 3
3.5

.5
-+

Y
-+

.5+ 3
syntax error
. 5+3

Clearly . 5 isnot the same as 0. 5. Y ou don't need to know now what . 5 is, but it is
important to understand that a number does not start with a dot.

The _ (underbar) isinfinity and is a number.

pl/
Negative number

A negative number isindicated by a_ (underbar), not a- (minus).

L eaving out the blank between the - and the 9 does not change the meaning.

5-9
4

The - isawaysaverb. This simplifiesthe rules for evaluating sentences asthereis
no special casefor - when it is used immediately to the left of a number. But if - is
aways averb, then another character, the _ (underbar) is required to spell a
negative number.

The _isused in spelling numbers, along with the digits, dot, and the e for
exponential notation; it indicates a negative number.

Remember: _ in front of a number is part of the number and indicatesthat it is
negative, and - isawaysaverb and isnot part of a number.

The __ (two underbars) is negative infinity and is a number.

p18
Primitive
A primitiveisaword that is defined by the system. For example, + isaprimitive.
The meaning of a primitiveis fixed and cannot be changed.

A primitiveis spelled with a graphic character (such as +) or with agraphic
modified by an inflection (adot or colon), asin+. or +: .

A primitive is also spelled by one or more letters followed by a dot or colon. For
example, i . isaprimitivethat is called index or index of depending on how it is
used.

p19
Name

Whereas a primitive is aword defined by the system, aname is aword defined by
you. The primitive =. defines aname.

v =. 23

The sentence can beread asv is23. Theword =. iscalled copula (another good
English language term). The name v is defined as the number 23 and can be used
in other sentences.

5 +v
28
Unlike a primitive, a name can be redefined.

45
v

+ 1

\'
5
50

The system does not display the result of the sentence when it begins with a
copula. A sentence that contains only a name shows a display form of the
definition of the name.

abc =. 123
abc
123

Y ou can give anything a name. For example, you could give anameto the verb + .

plus =. +
23 plus 45
68

The preferred way toread abc =. def is: abc isdef orabc isdefined asdef.
However, borrowing from other computer languages, it is also common to say: abc

isassigned the value def or the valuedef isassigned to abc.

Comment

The primitive NB. starts acomment that runs to the end of the line.

2 + 23 NB. this is a cooment and is not executed
25

p20

p21

Error

An error in asentence is reported and the execution stops.

123 foo 234
| val ue error
| 123 foo 234

A vertica bar marks the error report. When appropriate, the sentence is displayed
with extra spaces marking where the error was detected.

p22
Ambivalence

Every verb has two definitions. a dyad used when it has both aleft and right
argument, and a monad used when it has only aright argument. The two
definitions are usually related, asin - with a dyad definition of minus and a monad
definition of negate.

The dyad is also referred to as the dyadic case of the verb and the monad is
referred to as the monadic case of the verb.

The term ambivalence is used in the chemical sense of both valences to indicate
that averb can react with both a single argument and with two arguments.

Remember: every verb has both a monad and dyad definition.

Dyad
The dyadic case of averb isused if the verb has both aleft and right argument.

The dyad %(divided by) is defined as the left argument divided by the right
argument.

5 %2
2.5

p23

p24

Monad

The monadic case of averb isused if the verb has only aright argument.
The monad %(reciprocal) is defined as 1 divided by the right argument.

% 2
0.5

The relationship between the monad %and dyad %where the monad is the dyad
with afixed left argument is quite common, and you will see thisin a number of
the other primitive verbs.

p25
Vocabulary

The JDictionary isthe Jreference book and is your ultimate, authoritative source
of information on J. The sooner you become familiar with using it the better, and a
good way to start is by looking up the primitives that have been introduced so far.

The back cover of the J Dictionary (or last page, depending on the edition) is called
the vocabulary. It isaconcise listing of al the primitives and gives a page
reference to the detailed definition. Learning how to use the vocabulary is your key
to learning how to read and write J.

If you don't have a printed copy of the J Dictionary, or if you prefer it, you can use
the online version instead. Press F1 to show the vocabulary and click a primitive to
jump to the entry. If you press F1 while holding down Ctrl you get context
sensitive help. If the caret isat a+, pressing Ctrl+F1 will jump to the + entry.

In the vocabulary take alook at the row for + , which is the fifth row. The first
entry in thisrow contains. + Conjugate o Plus. The word + is averb and its monad
is called conjugate, and its dyad is called plus. The dyad + is plus as defined in
arithmetic.

The monad + isinteresting. In math, the conjugate of a complex number isthe
number with the same real part and an imaginary part of opposite sign. On real
numbers the conjugate has no effect and the result is the argument, and on complex
numbers it changes the sign of the imaginary part. J supports complex numbers just
as directly asintegers or real numbers. A complex number isindicated by a |
separating the real and imaginary parts.

int =. 23
+ int
23

float =. 23.5
+ fl oat
23.5

imagine =. 2j3 NB. 2 real part, 3 imaginary part
+ i magi ne NB. change sign of imaginary part

2j 3

Many primitives support complex numbers and the J Dictionary must document
this, which meansthere is a bit of extracomplexity in some of the descriptions. If
you need complex numbersin your application thisisfantastic. But if you area
beginner and are not concerned with complex numbers, then you have to know
enough to be able to ignore these bits and not get distracted or confused.

The page number of the definition for + isin the rightmost column of the + row.
Turn to that page now.

The header line of the page gives the monad name Conjugate on the |eft side, and
the dyad name Plus on the right. The formal name of the primitive + is near the
center. Theo 0 0 totheright of the + will be explained | ater.

Below this header are two boxes (or columns, in the online documentation). The
left box has the monad definition and the right box has the dyad definition. The
page then continues with general discussion and examples.

The JDictionary is aconcise, rigorous, and complete reference suitable for the
most experienced users. This can make it difficult for beginners who don't know
what to expect. For example, in the general discussion and examplesfor + thereis
considerable discussion of complex humbers and not a single example of just
adding a couple of integers. Great for the experienced user who would be insulted
if told how to add integers, but a bit of areading challenge for the real beginner.

Y ou have to learn how to tune out, for now, the bits that are too advanced or are
not relevant to your current interest, and concentrate on the parts that are.

Go back to the vocabulary page and take alook at the +. entry (fifth row, second
entry) which contains: +. Real/Imaginary o GCD (Or). Thereisalot of
information here, and again much of it is not relevant at this early stage. Let's ook
at the definition. The page number in the hardcopy manual isfor thefirst entry in
the row and the other entries are on the following pages.

Glance at the left box for the monad definition and notice that it is for complex
numbers. Fileit for future reference, but give it a pass for now.

The dyad case in the header is described as: GCD (Or). This gives two informal
names, GCD and Or, and indicates it can be used in two different ways. The dyad

definition isin the right box. Note that GCD stands for greatest common divisor
(which should at least ring abell of math memories). Further on in the definition
you will find that if the arguments are boolean then the +. isthelogical or
function. The GCD is a useful extension of the domain of the or function to non-
boolean arguments. This extension of the domain of primitivesiscommon in J. For
now, it isinteresting to note that +. hasthislarger domain, but it is also easy to
limit it to boolean arguments.

O+ ONB. Oor O

0

0+ 1
1

1+ O
1

1+ 1
1

The vocabulary page entry for +: contains. Double o Not-Or. The definition page,
which follows the + and +. definition pages, gives quite ssmple definitions for both
the monad and dyad.

The monadic case is called double and does just what you'd expect.

+: 3

The dyadic caseisthe logical negation of the or of the arguments.

Again, for both +. and +: much of the general discussion and examples are
perhaps beyond your capabilities right now. But the key isto know how to
navigate and to get the information that is relevant.

After the row for ? there are additional rows for primitives that are spelled with
names that are inflected with adot or colon.

Checkpoint A

At this point you should understand:

« how to use the J Dictionary vocabulary
. terms such asword, sentence, noun, verb, ambivalence, dyad, monad

Check your understanding by doing the following exercises:

. look up the definition of themonads+: *: -: % intheJDictionary
. experiment with these new monads

P26

p27

Numeric constant

Y ou have seen the use of single numbers. It is also possible to have alist of
numbers.

num=. 5
nunms =. 23 0.5 12.5 7e6 _12 7

You'll do lots more with numeric lists, but for now we just want to establish that
there is such athing.

String

Characters bracketed by quotes create a string.

char =. 'Q
chars =. '"this is a list of characters

The quotes are not displayed when the string is displayed.
char

Q

chars
this is a list of characters

The quote starts and ends a string. A pair of quotes indicates that the quote
character itself isin the string.

"put 2 ''stoget 1 ' in the string
put 2 's toget 1 ' in the string

An unmatched quote is an error.

abc =. 'asdf
open quot e

I
I
| abc =. 'asdf
: AN

A string can be empty.

abc =.

A string isalso referred to as aliteral constant or as a character constant.

p28

p29
Word formation

Themonad ; : can be useful in figuring out what the words are in a sentence. The
word formation primitive takes a string as its right argument, splitsit into words,
and returns a result with each word in a box. For now, don't worry about what the
boxes are, just note how visually helpful they are. Y ou'll learn about boxesin later
sections.

If you don't see the boxes when you try this on your system, then you are using a
font that does not have the line drawing characters. Use the Edit|Configure menu
command to select afont that does show the boxes. Alternatives are 1SIJ,
Terminal, MS LineDraw, Courier New, and Lucida Console. Some require OEM
and some Default to get the boxes. When you get one you like, be sure to check
Save Config so that it will be used the next time you start J.

 '2.5 + 3e4’
oo +
1 2. 5] +| 3e4,;
oo +
a=. 123
S +
laj=.112 3|
S +

"test + 123 NB. this is a comment'

T T +
(test]+ 123/ NB. this is a comment;
T T +
def =. '"'testing 1 2 3"
T +
ydef|=.]"testing 1 2 3"

Note that the following are all Jwords and each goesin its own box:

2.5
3e4
123
t est

NB. this is a coment
"testing 1 2 3

It might surprise you that constantssuchas1 2 3and'testing 1 2 3' areJ
words. Thisisan important point and understanding it is necessary in reading and
writing J sentences.

If you are ever puzzled by a J sentence (it could happen), one of the things you can
doisapply ;: toitto be sure you know the words. Y ou can then worry about the
meanings of those words.

Look up; : intheJDictionary. The informal namefor ; : isword formation. Turn
to the page for ; and turn pages until you come to the page that has; : inits
heading.

p30
Space

Spaces are not required to separate primitives from other words. On the other hand
extra spaces don't change the meaning.

2+3

Most examplesin this book have spaces around all primitives. This makes the
individual words stand out and allows you to concentrate on the meaning of the
words without the additional problem of first figuring out what the words are.

However, most J programmers, as they become more experienced, reach a point
where they can easily read the words in a sentence, and the extra spaces become a
nuisance and hindrance to understanding, rather than an aid. Y ou will notice that in
some of the later examples that some of these unnecessary spaces are left out.

There are some cases where a space is essential.

A space must separate names.

a=.3

pl us=. +

a plus a
6

apl usa
i val ue error

The. (dot) and: (colon), used as inflections, change the word immediately in
front of them into a new word. When used as a primitive or asthe start of a

primitive, they must have a space in front so that they are not treated as an
inflection.

o 'a . b'" NB. 3 words

o 'a .b'" NB. sane 3 words

A space must separatea. or: , that isnot being used as an inflection, from the
previous word.

Numbers, for example 1€7, can contain letters. There are in fact several letters that
can be used in spelling numbersin J. Letters that immediately follow a number are
treated as part of the spelling of the number.

plus =+
1plus 3
(i1l -formed nunber

1 plus 3
4

A space must separate a number from aletter that is not a part of the number.

p31
Precedence

Math traditionally gives multiplication precedence over addition. In math class (or
askill testing question from a cereal box contest), if you were asked what 2 + 3* 4
was, you would know the answer was 14.

Thisisnot too confusing if there are only afew functions and only afew levels of
precedence (division | multiplication | addition and subtraction). But it gets
awkward in languages such as C which have many functions and many levels of
precedence.

With the large number of verbsin Jit would have been difficult to define the
precedence, let alone trying to remember it when reading or writing. Moreover,
being able to name things means you would also have to figure out what to do with
the sentence:

2 plus 3 tinmes 4

In abreak with traditional math and in contrast to most other programming
languages, J has no verb precedence. It will take you alittle while to stop doing the
multiplication first, but the overall simplification is worthwhile.

Remember: there is no verb precedence.

p32
Parentheses

Math and most programming languages, including J, use parentheses to control the
evaluation of a sentence. If a sentenceis fully parenthesized then the order of
evaluation isidentical in most languages and is independent of verb precedence or
any other rules.

2 + (3 * 4)
14

(2 +3) * 4
20

10 - (4 - 3)
9

(10 - 4) - 3
3

Thereisn't any confusion about these answers.

Order of evaluation

What isthe answer if the parentheses are | eft out?

10 - 4 - 3

9

J evaluates the sentence as:
10 - (4 - 3)

9

Most other languages would evaluate it as:

(10 - 4) - 3
3

In the absence of explicit parentheses, Jimplicitly provides them from the right

p33

towards the left. Other languages provide them from the left towards the right. A

longer sentence will make this visualy clearer.

10 - 4 - 3 -1

10 - (4 - (3 - 1)) NB. Jright-to-left

((10 - 4) - 3) - 1 NB. others left-to-right

2

Now consider a sequence of monadic verbs.

- 4

Everyone knows how to parenthesize this, and every language doesit the same.

- (- (- 4)

The grouping is done right-to-left and in this case the other languages agree with J.
Jaways parenthesizes from right-to-left, whereas other languages have different
rulesfor different situations.

J has aright-to-left order of evaluation. Most other languages have a left-to-right
order of evaluation for dyads, right-to-left for monads; and thisis modified by the
relative precedence of the verbsinvolved.

With nouns and verbs the J evaluation rule from J Dictionary section E is:

Execution proceeds from right to left, except that when aright
parenthesis is encountered, the segment enclosed by it and its
matching left parenthesisis executed, and its result replaces the
entire segment and its enclosing parentheses.

There are thingsin J, other than nouns and verbs, that you have not yet met that
complicate this rule by adding afew more. It is these additional classes that largely
justify the J break with tradition and adoption of aright-to-left evaluation.

To further quote from the J Dictionary section E:

One important consequence of these rulesisthat in an
unparenthesized expression the right argument of any verb isthe
result of the entire phrase to itsright.

Thisis dueto the lack of verb precedence as well as right-to-left evaluation.

No verb precedence, right-to-left evaluation, and the rules for the other classes
make the overall evaluation rules simple, reduce the need for parentheses, and
make sentences easier for an experienced J user to read and write.

Read the following sentences, evaluate them in your head, and understand how the
no precedence and right-to-left rules explain the answer.

2* 4+5
18

2+4*5
22

8 %2 + 2

Remember: no verb precedence and right-to-left evaluation.

p34
Verb definition

The art of programming lies not so much in using the primitives, asin defining
your own verbs, tailored to your requirements. In defining your own verbs you are
extending the language to build an application that solves a particular set of
problems.

L et's assume that the problem is to convert temperatures between Fahrenheit and
centigrade. Y ou need to define averb that does that.

The following is adefinition of the verb centigrade that will convert its argument
from a Fahrenheit value to a centigrade value.

centigrade =. 3 : 0

tl1 = y. - 32
t2 = t1* 5
t3 = t2 %9

)

The font size in the above has been upped a bit to make it easier for you to type it
exactly into the ijx window. At this point you want to do something that works,
rather than deal with problems arising from typos, so transcribe it carefully.

In the ijx window enter thefirst line:
centigrade =. 3 : 0

Type it exactly as shown. There must be ablank betweenthe3and the: . The 3
indicates that you are defining a verb and the O indicates that the definitionisin the
subsequent input lines.

After you enter the above line the cursor is at the left margin and has not been
indented the three spaces as it normally is. This indicates that the system iswaiting
for you to enter the rest of the definition.

Typein the lines following the definition of centigrade as shown. They are at the
left margin, and so look like they might have been displayed by the system, but in

fact they are your entries of the lines required to define the verb.

Thefina linethat contains just the) ends this specia definition input mode. After
you enter thisfinal line, the system again indents the three spaces indicating that it
IS ready to execute a sentence.

If you entered the definition correctly, you should be able to experiment with your
new verb.

centigrade 32
0

centigrade _40
_40

centigrade 212
100

Let'slook at the definition to understand how it works. They. inthefirst sentence
of the definition you type is the name of the argument of the verb. When you
execute the verb with an argument the first line will subtract 32 from the argument
and definet 1. When thefirst lineis finished, execution proceeds to the next line,
which definest 2 astheresult of t 1 times 5. Execution proceeds to the next line
and definest 3 ast 2 divided by 9. There are no more lines, so the execution of
the verb isfinished. The result of the verb is the last result that was evaluated.

Weused 3 : 0 to define the verb. The phrase verb define is equivalent and some
find it easier to read. However, it hides information and we will usethe3 : 0
form.

centrigrade =. verb define

p35
Monad and dyad definition

Asdiscussed in the earlier section on ambivalence, al verbs had two definitions, a
monad and a dyad. Y ou have defined only a monad for centigrade. What about the
dyad?

23 centigrade 32
, domai n error
| 23 centigrade 32

Since you didn't provide a dyad definition, it is empty and thisis treated asif the
dyad had no arguments in its domain, and any arguments you give will cause a
domain error.

L et's examine some simple examples of defining dyadic, monadic, and both cases.

monadm nus =. 3 : 0
- y .
)

monadm nus 5
5

5 nmonadni nus 3
domai n error

|
I
| 5 nmonadm nus 3

The above defines the monad of the verb named monadminus. Applying it
monadically works and applying it dyadically fails.

In one-line definitions like this you can take a shortcut and make the definition on
asingle line and avoid entering the special input mode that needs to be ended with
the) . The following is an equivalent way of doing the above definition:

monadm nus =. 3 : '- y.'

The string contains the single line that makes up the definition. It is provided
directly asthe right argument of : instead of the O used earlier.

So far you have defined just the monadic case of averb. You can also define averb
with just a dyadic definition. Instead of 3 asthe left argument to: use a4 to define
the dyadic case.

dyadmnus =. 4 : 'x. - y.'
5 dyadm nus 3
2

dyadm nus 5
, domai n error
| dyadm nus 5

In the monad case they. nameisthe right argument and in the dyad case x. isthe
left argument and y. istheright.

What if you want to define both cases of averb?

mnus =. 3 : 0
- y .

The: by itself on aline separates the monad and dyad definitions.

3 mnus 5
2

5 mnus 3

m nus 5
5

p36
Script file

When you close Jyou lose the definitions of all the names. What you execute in the ijx
window affects the current session, but is not permanent. Thisis fine when experimenting,
but when you start defining things like your centigrade verb you want to record the
definition so that you can useit in another session.

Close J and restart it.
centi grade

l'val ue error

Y ou have a clean date. The definition of centigrade, and al the other names you defined, in
the previous session are | ost.

At least the primitives are still there!

2 +5

Asyou would expect, to maintain a permanent record of your definitions, you save them in
files. Files with J sentences and definitions are called script files and you can edit them just
as you would edit any other text file. Script files typically have a suffix of .ijs.

Remember: a script fileis a source file for definitions.

Although you can use any text editor to work with script files, the J system provides a
simple editor that is integrated in ways that make it convenient.

The File]New I JS menu command creates a new script file and awindow for editing it. Do
this now and you will see that your J session has both an ijx window and a new ijs window.
Use Window|Tile Across so that you can see them both side by side.

Theijswindow is an edit window on the file with the name in itstitlebar. Enter inanijs
window does not execute the line, it just moves to the start of anew line.

Type your centigrade definition into the ijs window.

centigrade =1 3 : 0
tl y. - 32
t2 tl * 5

t3 = t2 %9

Besuretouse=: instead of =. inthefirstline. The=: makesaglobal definition. If you use
=. itisalocal definition. Thisimportant difference is explained shortly.

Because thisis an ijs window the system has not provided athree space indent for the first
line.

So far you have just edited changes into the window. The file has not been changed and the
verbisstill not defined. Y ou have to run the script in order to execute the sentences.

With the ijs window active (titlebar highlighted), run it with Run|wWindow. Running the
window with Run|Window, saves changes that have been edited in the window to thefile,
and then executes each of the sentencesin thefile. Thisis similar to your typing the
contents of the fileinto the ijx window, except the sentences and results are not displayed.
The only display in theijx window is the sentence that causes the file sentences to be
executed. This sentence will be something like: | oad' c:\j3\tenp\1.ijs'

If an error isreported (output in the ijx window with avertical bar on the left) then you
have atypo in your script. Correct the text in the ijs window and run it again.

The sentences in the script file have been executed and centigrade is now defined. In the ijx
window try using centigrade.

centigrade 32
0

Y our screen should look something like:

Jod -1 =] B3

File Edit HBun Tools Studio wWindow Help

W 3.iis !EII
centi grﬂade 3 I ﬂaad C:hJ401Ntemph g, 1]5 I

t1 = " 3
R SR
£3 =. t2 % O
]

£l 42X Iﬂ

For Help, press F1 \Ready | | 00000 |0O002

Thefile created with File]New 1JSisin the TEMP directory and has a temporary format
name (a number with an ijs suffix). If you close Jnow, it will ask if you want to delete that
temporary file. If you replied no, you could restart and open that temporary file and runiit to
define centigrade. However, it would be better to resave it now with a more appropriate
name in the USER directory. Use File|Save As..., change to the USER directory, and set the
file name as cf.ijs. Thefile namein theijs window titlebar will change to the new name.

Close the cf.ijs window and erase your centigrade definition. Y ou erase the definition of a
name by using the utility verb erase with an argument that is the string of the name you
want to erase. The result of 1 indicates the erase was successful.

erase 'centigrade

[EEN

centigrade 212
I val ue error
! centigrade 212

Use File|]Open to open the cf.ijs window and use Run|Window to run the script to define
centigrade.

centigrade 212
100

Let's add adefinition for fahrenheit to the cf.ijs window. Type in the following after your

centigrade definition. Again, besureto use=: .

fahrenheit = 3 : 0

tl1 = y. *9
t2 =. t1 %5
t3 = t2 + 32

)

Use Run|Window to run the sentences in the cf.ijs script. Because these are the first
changes to a permanent (non-temporary) file you are prompted to see if you want to save
the changes to file. Reply yes, and then test your new verb.

fahrenheit O
32

fahrenheit 451
843. 8

Close J and restart it.

centigrade
lval ue error

f ahrenhei t
lval ue error

Y ou can run the sentences in the cf.ijs file without opening the file for editing. Use
Run|File and select your cf.ijsfile. A line similar to load'c:\j3\user\cf.ijs appearsin theijx
window to run the sentences in thefile.

centigrade 32
0

fahrenheit 100
212

Theline that starts with load that appearsin the ijx window isin fact the sentence that
causes the sentences in the file to be executed. The menu command is just a short cut way
of executing this sentence. The string is the full path name to the file to run. Y ou can
shorten this full path name to arelative path name when you type it manually.

To check this, close J, restart it, and verify that centigrade is undefined. In the ijx window
execute the following sentence.

| oad' user\cf.ijs'

Now check that your verbs are defined.
Use File|Open to open your cf.ijsfile for editing.

What if thereisan error in the script? Let's add an intentional error to the script to see what
happens. Add thelinef oo 123 at the end of the script and run the script again.

load' c:\j3\user\cf.ijs'
l'val ue error
| foo 123
I
I

An error is reported and the execution of the sentences in the script stops. The number at
the end of the error report is the line number in the script that had the error. The statusbar
shows the line number in the script and you can use this to find the error in the script.

Remove the error from the script and run it again.

p37
Local

The verb centigrade usesnamest 1,t 2, and t 3 initsdefinition, but if you refer to
them outside the verb they are not defined.

centigrade 32

0
tl
| val ue error
tl1 = 123
tl
123
centigrade 212
100
tl
123

Theuseof t 1 inside the definition of centigrade has not conflicted with your use
of t 1 outside the definition. The verb centigrade does not defineat 1 outside of
itself, asindicated by the value error, and setting a value into its t1 does not change
thevalue of t 1 outside the definition.

Thet 1 usedinside centigradeisaloca name. A local name exists only inside the
verb. Thet 1 used outside centigrade is a global name. A name defined in the
execution of averb with the copula=. isalocal name.

p38
Global

A name defined outside the execution of averb isaglobal name.

In the previous section, thet 1 defined in the ijx window is aglobal namethat is
completely different fromthet 1 defined inside the verb centigrade.

Let's try some experiments. Create a temporary script file with File]New 1JS and
typeinto it the definition:

fooa =2 3: 0 NB. =: is inportant
zzz +y.

)

Run the script with Run|Window. In the ijx window:

fooa 5
val ue error

I
|
| zzz+y.

Let'sdefinethe global zzz to see what happens. Defining it outside a verb means
itisaglobal. Intheijx window:

zzz =. 23 NB. define global zzz
fooa 5
28

The verb fooa usesthe global zzz. So, a verb can use globals.

Edit the script to add foob and then run the script.

foob =: 3 : 0
zzz =. 7
zzz + y.

)

In the ijx window:

f oob 3
10

277
23

The verb foob usesitslocal zzz and ignoresthe global. So, averb can uselocals
and ignore globals of the same name.

Inside averb the copula=. definesalocal name. Once anameis defined asalocal,
references to that name are to the local name.

What if you wanted to define a global name? The global copula=: (= with acolon
inflection) defines a global name. Edit the script to add fooc and then run the
script.

fooc =: 3 : 0
gw y.
| z y.

)

In the ijx window:

fooc 3
gw
3

| z
i val ue error

gw =. 24
fooc 5

gw
5

Defining gw with =: defines the global name.

In general, it isgood practice to only define localsin averb and to not define

globals. Thisis an important part of what is sometimes called afunctional style of
programming. Verbs that define globals are said to have side effects and are more
likely to cause bugs and make it harder to read the application to understand what

Is happening.

It is possible to define a verb that uses both the global and local definitions of a
name. With few exceptionsthisis VERY bad practice.

p39
Debug global

Sometimes when trying to debug or better understand a verb it is useful to seethe
values of itslocal names or other intermediate results. A quick way of doing thisis
to add aline to the verb definition that does a global definition.

Open the cf.ijsfile and add a line to centigrade to define global gt 1 ast 1.

centigrade =1 3 : 0 NB. =:
tl = y. - 32

gtl1 = t1 NB. tenp line for debugging info
t2 =. t1 * 5
t3 = t2 %9

)

Run the script and in the ijx window:

centigrade 124
51. 1111

tl
i val ue error

gt 1
92

After centigrade finished execution you can't see what value thelocal t 1 had, but
you can see a copy of thevalueingt 1.

Remove the line from the script and run the script to redefine centigrade without
the debug line.

p40
When =. and =: are the same

Y ou have seen how =. and =: are different when used in averb definition.

When you execute sentences in the ijx window you are not executing them inside a
verb sothe=. and =: have the same effect. In the ijx window:

a =. 123
a

123
a =. 234
a

234

In theijx window the=. and =: copulas are the same and it doesn't matter which
you use to define a name as they both define the global name. The=. iseasier to
type and tends to be the one that is used. In a strict sense it would be better to
explicitly use =: when defining a global name.

p4l
When they aren't

You have seen that =. and =: intheijx window are the same. And you have seen
that inside a verb they are different. It isimportant to realize thereisalso a
differencein scripts.

When you run a script, the load sentence is executed in the ijx window and the
verb load executes the sentences in the script. So, the sentencesin the script are
executed in the load verb. This means that names defined with =. are defined as
locals of the verb load. If you want to define a global in the script you must use =:
. Thisiswhy the lines which define global s such as centigrade and fahrenheit in
your script cf.ijsmust use=: . If youused =. , they would be local to load and
would disappear as soon as load finished execution.

Always think about whether a definition is global or local and use=: and =.
accordingly.

p42
Locale

First of al, note that locale is a very different word from local, even though thereis
only one less letter in the latter.

A localeisaset of global names. There can be severa locales, so there can be
severa setsof globals.

A globa namein alocaleis distinguished from the same name in other locales by
gualifying the name with the addition of the locale name bracketed by _ (underbar)
characters. A name qualified by alocaleis aways a global name.

abc_def = 2

The above sentence can be read as global abc inlocale def is2.

abc_base =: 4

The above sentence can be read as global abc inlocale baseis 4.

If the locale nameiselided, it is assumed to be base.

abc NB. the sanme as abc_base

If aglobal nameis not qualified with alocale name, then it isin the current locale.
The base locale is the current locale unless it has been explicitly changed by
executing averb in adifferent locale. The following defines abc in the base
locale:

abc =. 6

abc_base
6

abc

6

Since the base locae is the current locale, the namesabc and abc_base_ arethe
same.

The nameabc_def _ isclearly different from abc, but so far there is no way of
telling that anything special is going on. In what sense areabc and f oo inthe
same (base) locale? And abc and abc_def _ in different locales?

One way of distinguishing is to use the names utility verb that lists global names.

a =. 23
b = 24
aqg = 25
wq_ = 26

nanes 0 NB. 0 |lists nouns
a abc b

Y our names result may be different, but it will include al global nouns you have
defined in the base locale. Y ou should see the a and b that you defined above and
note that you do not see the w that was defined in locale g.

To see the names defined in locale g you can do the following:

nanmes_g_ O NB. nanmes in locale q
a w

Nouns a and w are defined in the q locale.

L ocales partition global names into different sets, and utilities, such as names, can
work with globalsin a particular locale.

The real power of locales comesinto play with verbs defined in alocale. When a
verb executesin alocale it executes with that locale, not the base locale, as the
current locae.

Let's define asimple verb in the q locale to see how this works.

This verb defines global awith its right argument. There can be many different
locales, each with their own global a. But when f _q_ executes, it executesin theq
locale and the q locale is the current local, and global names it uses are from the g
locale. Try the following experiments:

a =. 23 NB. define a in the base |ocale
a_g_ =. 24 NB. define a in locale q
f_gq_ 100 NB. execute f in locale g

100
a

23

a_q_
100

Executingf _q_ 100 defined global a_q_ as 100. It did not affect the global a in
the base locale.

If averb explicitly references anamein alocale then that is the global that is
affected. For example, define verb g_q_ that defines ain the base locale. Y ou will
see that the a in the base locale is defined and the a in the q locale is not changed:

g q = 3: '"abase = y.'" NB. explicit |locale nane
g_q_ 200
200

200

L ocales partition global names into separate sets. In particular, related nouns and
verbs, say in aset of utilities, can be defined in their own locale. Their names don't
conflict with names in the base or other locales. When you look at your application
you can look at just the related globals that are in a particular locale. When averb
runsin alocaleit uses globals from that same locale.

The names verb with an argument of 0 lists nouns, with 3 it lists verbs, and with 6

it lists locale names.

names_q_ O
a w

names_g_ 3 NB. verbs
fg

names 6 NB. | ocal e nanes
base | q z

Thelist of locale namesisinteresting. base and g you know about, but what about
j andz ?

The globalsinthej and z locales are defined when J starts up and runs the
profile.ijs script. The j locale contains things which are useful in building an
application and is discussed in the J Online Documentation.

The z localeisvery interesting indeed.

p43
z locale

The z localeisthe parent locale of all other locales.

If anameisnot found in the current locale, and there is a definition for it in the z
locale, then that definition isused asif it were in the current locale.

The z localeisfor common utilities that you want to be available everywhere.
From the z locale, they are available for execution in any locale asif they werein
that locale, yet thereis only a single copy, and the namesin the z locale don't
clutter up the names in the other locales.

The profile.ijsthat runs when you start J defines many standard utilitiesin the z
locale. Y ou have used both the erase and the names verbs which are defined in the
z locale. You can tell this by the following:

nanes 3 NB. verbs in the base | ocal e

The above does not list names as a name, yet you are able to executeit. Thisis
because when it is not found in the base locale, its definition from the z localeis
used asif it werein fact defined in the base locale.

names_z_ 3 NB. verbs in z locale

The result istoo long to list here. The verb names has a dyadic definition that takes
aleft argument which indicates the first letter of names to return.

‘n' names_z_ 3
nanmecl ass naneli st nanes nc n

names isdefined inthez locale and that is the definition that is executed.

Script load

In addition to the utilities |oaded with the standard profile, there are several
additional scripts of standard utilities provided with the system. These standard
utilities are documented in the J Online Documentation available from the J help
menu. You could run these scripts directly, but you would need to remember the
path to the script, aswell as which locale to run them in. The standard profile
provides utilities to make this easier for you. The scripts verb lists scripts that can
be loaded with the load verb.

scripts '’
parts pl ot profile scripts stdlib strings
trig validate winlib W nut i

The scripts verb with an argument of * v lists the scripts with their full path and
locale.

scripts 'v'

conpare c:\j3\main\conpare.ijs z
convert c:\j3\main\convert.ijs z

The convert script contains several conversion utilities.

| oad 'convert'
toupper 'testing 1 2 3
TESTING 1 2 3

tolower 'Sir Richard'
sir richard

p45
Checkpoint B

At this point you should understand:

. atext filethat isasource of sentencesiscalled ascript file
. ascript file defines global names

. how to create a new temporary script file

. how to save atemporary script file as a permanent file
. how to run a script file to execute its sentences

. how to defineaverb inascript file

« how to define the monadic and dyadic cases of averb
. thedifference between =. and =:

. the difference between local and global

. that alocaleisaset of global names

. that there can be more than one locale

. that the base locale is the one you normally work with

Check your understanding by doing the following exercises:

. Create anew temporary script file

. inthe script define square as a monad that uses *: to square its argument
. Ssavethe script in the user directory with the name square.ijs

. run the script and test the verb square

. close], restart, use Run|File to run user\square.ijs and test it

p46
Debug - stepping through a verb

Debug requires a prokey, and will fail with domain error if aprokey is not set. For
more information, see products. If you have not purchased a prokey you won't be
able to use debug on your system. Y ou will probably still find it interesting to read
these debug sections.

In an earlier section you added a debugging line to a verb definition that allowed
you to see the results of intermediate steps when the verb was run. Sometimes you
need more powerful tools than that.

Usel oad to load the debug utilities.

| oad ' debug’

Open your script file cf.ijsand runit.

Let's execute cent i gr ade, but with a stop on each line so that you can take alook
at exactly what is going on.

dbss 'centigrade *:*'

Thedbss (Set Stop) argument requests a stop before executing all, indicated by
: linesincenti gr ade.

dbr 1

dbr with an argument of 1 requests that the system suspend execution when an
error or stop occurs. When averb is suspended it is halted in mid execution. Y ou
can examine definitions, change definitions, and you can resume execution of the
suspended verb.

centigrade 212

| stop
| tl=.y.-32
1 centigrade[0]

The error report (bars at the left margin) indicates execution stopped on line O of
centi grade and shows the sentence from that line.

The execution of cent i gr ade issuspended and the indent of six spaces, rather
than three, indicates the suspension. The variabley. isthe argument.

Y.
212

The stop occurs before the lineis executed, sot 1 has not been defined and if you
try to look at it you will get avalue error.

Usedbr un to continue execution. It will run the current line, and because stops
are set on al linesit will then stop on the next line.

dbrun "'
| stop
! t2=.t1*5
| centigrade[1]

tl
180

t1*5
900

cent i grade isnow stopped on line 1, and as you can see, you are able to check
the value of local t1 that was defined in line 0. Step through the next lines and
examine locals.

dbrun "'
| stop
| t3=.129%9
| centigrade[2]

t2

900

t 299
100

dbrun '’
100

You are no longer suspended incent i gr ade and you are back to the normal
indent of three spaces.

Turn off the request for debug suspensions and reset to have no stops.

dbr O
dbss '

p47
Debug - an error

Let's introduce an error into your cent i gr ade verb to see how that looks and how
you would find and fix it.

Open your cf.ijs script and edit the first line to have an error by adding quotes
around the expression to the right of the copula.

t1 = 'y. - 32

Instead of t 1 being defined astheresultof y. - 32 , it will be defined asthe
string

1 y, _ 32!

Run the script to make the new definition. Turn off debug suspension and request
no stops and then run your buggy cent i gr ade. Be sure to |oad the debug utilities
if they are not already |oaded.

dbr O NB. disabl e suspension
dbss "'
centigrade 212

, domai n error

: t2=.t1 *5

Y ou are executing with suspension disabled (dbr 0) so execution did not suspend
in centigrade and you have the normal 3 space indent.

If you look at thelinein error it is clear that the 5 isavalid argument to times, so
there must be something wrong with t 1. But you don't know thevalueof t 1. You
could stare at the source for the error, but, in a complex situation, it might be
guicker to use debug.

Enable suspension and rerun.

dbr 1 NB. enabl e suspension
centigrade 212

i domai n error

! t2=.t1 *5

i centigrade[1]

Thereis a6 space indent indicating suspension, and because cent i gr ade IS
suspended you can look at the value of t1.

tl
y. - 32

From the display of tlitisclear that it isastring, not the number from the desired
calculation. Y ou can now look at the sourceto see wheret 1 was defined and see
that the quotes should not be there.

Edit the source to fix the definition by removing the quotes and run the script to
redefinecent i gr ade.

Y ou want to run line 0 again to properly definet 1. Y ou can do this by using
dbnxt to continue execution at line 0.

dbj np 0
100

Since no stops are set and there are no other errors, line 0 of cent i gr ade is
executed, which sets a proper valueinto local t 1 and execution continues until
finished.

p48
Comparative

The dyad = hasaresult of 1 if itsleft and right argument are equal, and aresult of O
if they are different.

23 = 34
0

23 = 23
1

a= "'d

a="'536
0

7 +a="¢
7

7 +a="'d
8

Some programming languages treat the results of comparative primitives such as =
as True and False values that are not numbers. In Jthe results of comparatives are
just numbers.

There are severa other comparative verbs. less-than <, less-or-equal <: , larger-
than > , and larger-or-equal >: . These comparative primitives are sometimes
called relationals.

7 <8
1

7 <7
0

7 < 7

p49
Control structure

In centigrade the sentences in the definition are just executed sequentially, one
after the other. To conditionally control which sentences are executed you use
control structures.

Control structures are built with control words and sentences. The following isan
example of acontrol structure:

if. x. ="'¢

do. centigrade vy.
el se. fahrenheit vy.
end.

The i f. control word starts the control structure and the end. control word endsiit.
Theresult of thex. = 'c¢' sentenceisthetest result and it determines which of
the other sentences in the control structure are executed. If the test result is 1, then
the sentence after the do. control word is executed. If the test result is any other
value then the sentence after the el se. control word is executed. In English: if the
left argument equals the letter ¢, then execute cent i gr ade, otherwise execute

f ahrenhei t.

Use this capability to add anew verb to your cf.ijs script that will convert a number
from Fahrenheit to centigrade or from centigrade to Fahrenheit depending on the
value of the left argument. Open your cf.ijs script and add the following definition
at the end.

NB. convert f toc if x. is 'c', otherwwse c to f
convert =: dyad : O

if. x. ='¢'

do. centigrade vy.

el se. fahrenheit vy.

end.

)

This defines the dyadic case of the verb. The dyad has a left argument with the

name x. and aright argument with the namey. . Theverb convert takesaleft
argument of ' ¢' to convert a Fahrenheit value to centigrade. Any left argument
other than' ¢' will convert a centigrade value to Fahrenheit.

Note that you use your verbsf ahr enheit andcenti grade just asyou would use
primitive verbs.

Run the script and test convert.

"¢' convert 212
100

"f' convert 100
212

Normally a sentenceisalinein ascript. However, with control words separating a
line into several sentencesit is possible to have more than one sentence on aline.

Thefollowing lineis equivaent to the multiple lines used earlier.

if. x. ='c'" do. centigrade y. else. fahrenheit y. end.

Control structures are only allowed in definitions and you cannot type one directly
into the ijx window for execution.

There are nine control structure patterns:

if. T do. B end.

if. T do. B else. Bl end.

if. T do. Belseif. Tl do. Bl elseif. T2 do. B2 end.
try. B catch. Bl end.

while. T do. B end.

whilst. T do. B end.

for. T do. B end.

for _i. T do. B end.

select. T

case. TO do. BO
case. T1 do. Bl
fcase. T2 do. B2
case. T3 do. B3
end.

A control structure startswithif. ,try. ,while. ,whilst ,for. ,for_i. ,or
sel ect. and endswith amatching end. .

Words beginning with T or B denote a block of O or more sentences and can
contain nested control structures.

The result of the last sentencein aT block determines which block is executed
next and whether execution in the control structure is finished.

Oftenthe T block is a single sentence that makes a simple test like the one in the
example.

Thet ry. control structure is an interesting one. It executes the B block of
sentences, and if there are no errorsit skips to the end of the structure. However, if
thereis an error, then the B1 block is executed.

Thewhi | e. control structure executesthe T block and if its result isnot O then it
executes the B block and continues this until the T block has a0 result. If the T
block is 0 thefirst time, then the B block is not executed.

Thewhi | st. control structure isthe same as while. except that the T block is
skipped the first time. This means that the B block is always executed at |east once.

See the J Dictionary for more information on control structures.

p50
Checkpoint C

At this point you should understand:

. that load' debug' loads debug utilities

. the general idea of verb debugging

« how control words create control structures by grouping sentences into
blocks

. what the T block test result is

. how the test result determines which B block to execute

. how thetest result determines when control structure execution is finished

Check your understanding by doing the following exercises:

. debug step through your convert verb

. Create atemporary script file and define averb called conv that issimilar
toconvert, butinsistsona’ f' argument to do the conversion to
Fahrenheit and gives a string result indicating there was an error if the left
argument isneither * ¢' nor ' f' . Hint: use the control structure sketched

out here:
if. x. ='c¢c" do. ...

elseif. x. ='f" do. ...

elseif. 1 do. "left arg not c or f'
end.

or try asel ect . structure.

. Create atemporary script file and define a dyad called plus that adds its | eft
argument to itsright. But, if thereisan error, it should give a string result.
Hints: usedyad : 0; 4 plus 9 shouldreturn13; 'a' plus 9 should
return your error string (perhaps, ' t here was an error');useatry.
control structure to catch the error and give the string result.

p51
Basic way of adding lists

Y ou can have lists of numbers.

12 24 47
12 34 45

a
b

If you wanted to add two lists of numbers in alanguage like Basic you would have
to get each number in turn from each list, add them together, and then stick this
new result at the end of the result list.

To add two lists of numbers together in this way you need afew new primitives.
Y ou need away to get one number from alist. The verb { (from) can do this.

O0{ 79 2 4 NB. index 0 val ue

7

1 {7924 NB index 1
9

2 { 79 2 4 NB. index 2
2

3{ 792 4 NB. index 3
4

Y ou need to be able to append a new result value to the result list. Theverb, can
do this.

792, 4 NB. append 4 to the I|ist
7924

7924, 7 NB. append 7 to the list
79247

79 2 4
a, 23

a
a

792 4 23

Y ou need to know how many numbers there are in the list so that you will know
when you are done. The monad # (tally) tells us how many numbers are in the list.

#7924

#7 9247

Y ou also need away to create an empty result to which you will add each new
result. An empty string will do this.

ro= "' NB. an enpty string

With these new verbs, combined with what you already know, you can write a
Basic or Java style program that adds two lists.

Create atemporary script file and add the addlists definition.

addlists = dyad : O
ro ="'

count =. # X.

i = 0

while. i < count do.
left = i { x.

right = i { vy.

sum =. left + right
r=. r , sum

=0 +1

end.

r
)

Thelocal i isthe index to select numbers from each list. It starts with O to select the
first number from the left and right arguments. At the end of thewhi | e. control

structure thei isincremented by 1 so that the next time the block is executed it will
select the next number. Thewhi | e. structureteststo seeif i isless than the count
of the argument. The control structure isfinished wheni is equal to the count of
numbers to be added together. Thel eft andri ght locals are defined as the next
pair of numbers. They are added together and are appended to the end of the result
r. Thefinal linein the definition isr and that isthe result.

Run the script and test your definition of addlists.

2 3 4 addlists 4 5 6
6 8 10

If you made atypo in the definition you will get an error or awrong answer. In that
case, you should check carefully that you have typed the definition in correctly.

Certain errors (such as omitting the line that incremented the value of i) giveyou a
whi | e. that runs forever, and the statusbar indicates running and you won't get any
result displayed. Thisis becausethe whi | e. never ends and the program keeps
adding the first element of the left and right arguments and never stepsto the next
element. If you arein aloop like this, press Ctrl+Break to interrupt the execution.

In fact, it isworthwhile seeing how thislooks. Edit the addl! i st s definition so
that i is not incremented. The easiest way to do thisisto add NB. in front of thei
=. i + 1 sentence. Run the script and test the verb. Y ou should see that the
statusbar indicates running and that there is no result. Press Ctrl+Break to stop the
execution.

For such a ssimple thing, this definition seems overly verbose in taking e even lines.
The definition can be compacted a bit by combining sentences. In the temporary
script file create a second version of the definition.

adda =: dyad : O
ro= "'

count =. # X.

i = 0

while. i < count do.
r=r, (i {x)+0{y)
= i +1

end.
r

Run the script and test this new version.

2 34 adda 4 5 6
6 8 10

Thisis essentially how programmers in most languages add two lists of numbers.
The program could be further streamlined, but it would still have to be a control
structure that dealt with each number, one at atime. Most languages only know
how to add a single number to a single number, and to add lists of numbers, you
need to write a control structure that loops and explicitly adds each element of the
list in turn.

p52
J way of adding lists

Jknows how to do things to single numbers, but it also knows how to do things
with lists.

Since Jknows how to add lists, you can write athird, simpler version of the
definition.

addb = 4 : '"x. + y.'

Add this definition to your temporary script file, run the script, and test it.

2 34 addb 4 5 6
6 8 10

At this point you probably realize that addb isso sSimple as to be unnecessary.

234+456
6 8 10

In Jyou can just add the lists of numbers because the + verb knows all about lists
of numbers.

Y ears of research and thought have gone into how J verbs work with lists. For
example, if you wanted to add 1 to each number in alist.

1 adda 2 3 4

The Basic style adda verb gives an answer, but it is the wrong answer. What
happens isthat thewhi | e. usesthe count of the left argument (whichis1) to
determine how many elements to generate in the result, and so calculates only the
first result number.

2 3 4 adda 1
i ndex error

i r=.r,(i{x.)+(i {y.)

This gives an error because the whi | e. uses acount of 3 (the count of numbersin
the left argument) but the right argument doesn't have that many so you get an
error,

But the J + handles both these cases the way you would like, and would expect!

1 +2 34
345

234+1
345

Thank goodnessthe addl i sts and adda verbsarein atemporary file and are
easy to get rid of, because clearly you don't need them in J. Close and delete that
temporary script now.

The simple concept of working with lists, instead of just single things, extends
throughout J.

246* 789
14 32 54

2* 234
4 6 8

234* 2
4 6 8

567 %2
2.5 3 3.5

234-3
101

It works for the comparatives as well.

234=7238

010

2<012345
000111

"t' = "testing
1001000

If thisworks for primitives, what about verbs such ascent i gr ade?

Run your cf.ijs script to define your verbs and see what happens.

centigrade _40 32 212
_40 0 100

Y ou can apply your cent i gr ade verbto alist of numbersand get alist of results.
Thisaso work for f ahr enhei t .

fahrenheit _40 0 100
_40 32 212

What about your dyad convert?

‘c' convert _40 32 212
_40 0 100

"f' convert _40 0 32 100 212
_40 32 89.6 212 413.6

The extension of verbs to work consistently on listsis very powerful and
significantly distinguishes Jfrom most other languages. It isimportant that you
assimilate thisinto the way you think about solving problems.

p53
A few more primitives

Themonadi . (integers) result isthelist of integersfrom O up toitsright
argument.

012345

Thedyad $ is called shape.

5%$7 NB. alist of 5 7's
77 7T 77

8 $23 NB. alist of 8 23's
23 23 23 23 23 23 23 23

The monad ? (roll) generates arandom number in the range O up to 1 less than the
argument. The answers vary depending on how the dierolls.

? 10

? 10
0

? 10 10 10 10 NB. 4 nunbers in range 0 to 9
3046

? 5% 100 NB. 5 nunbers in range 0 to 99
58 93 84 52 9

?i. 5
, domai n error
| ?i.5

The? i. 5 falsbecausethe? on 0 fails because there are no integers in the range
0to _1 and so thereis no answer for the argument of O. If you add 1 to the result of
i . wewill get an answer.

?21+i. 20
0101033224730131516 6 3 19

Thedyad ~ (power) result isthe left argument multiplied by itself the number of
times given by the right argument.

372 NB 3* 3

9

2™~ 3 NB 2*2* 2
8

2"M4NB 2* 2% 2% 2
16

2222227012345
1248 16 32

27012345
1248 16 32

2"Mi. 6
1248 16 32

Thedyad o. (circle) isthe letter o inflected with adot, and it provides the circular
(trigonometric) functions. In particular, the o. verb with aleft argument of 1 gives
the sine of the right argument.

10 i.7
0 0.841471 0.909297 0.14112 0.756802 _0.958924 0.279415

It is hard to tell whether this makes sense or not and it would be better to see this
datawith aplot.

p54
Plot

To use the plot facility you need to load it.

| oad 'plot’

Try asimple plot.

plot 5 10 23 45 8

J. Plot M=l E3

45 ¢

40

35

30

25

20

13

10

The plot isin a separate window that stays on top of your session. Close the plot window to get rid
of it.

Now that you can plot data, let's take alook at some of the data you were generating in the
previous section.

plot 2 ~i. 5
plot 2 5% 100

plot ? 50 $ 100

plot ? 100 $ 100
plot 2 1 +i. 50
plot 2 1 +i. 100

A left argument customizes the plot.

"TITLE mypl ot; TYPE bar' plot i.5

Or try the sine values you calculated earlier.

plot 1 0. i. 16

Thereisafamily of utilities defined in script trig.ijs you could make use of here. Use load to load
that script.

load '"trig
plot sini. 16

To produce afiner plot you need to provide more results over asimilar range.

i.60
i.60

plot sin 0.2
pl ot cos 0.2

*
*

p55
Plot locale

Plot also illustrates a common technique in the use of locales. Close J and restart it
to get aclean date. The nanes inthe base locale is empty and there are just the
two standard locales that are populated by the profile.ijs script.

nanes 3 NB. verbs

nanes 6 NB. | ocal es
base |j jcfg z

The load verb (defined in the z locale) loads the plot.ijs script into the pl ot locale.

| oad 'plot’
plot 2 5% 100
nanmes 3
nanes 6
base | jcfg jplot z
pl ot
Foemmee - +
i plot_plot_;
Foemmee - +

Theverb pl ot isnot defined in the base locale, but is defined in the z locale.
When it is executed in the base locale the definition from the z locale is executed
asif it werein the base locale. Entering the name pl ot displaysits definition. The
interesting thing about the definition of pl ot isthat it executesthe pl ot verbin
thepl ot locale. Sothepl ot inthez localeisacover that worksin all locales
and has the result of executing pl ot inthepl ot locale.

Thistechnique of loading afacility like the plot package into its own locale, and
then defining cover verbsin the z locale so that plain name references invoke the
desired verb in the facility locale is common. The definitionsin the plot locale can
be viewed as the private implementation of the facility and the names that are
exposed by being defined in the z locale are the public or published interface.

p56
Print precision

Print precision is the number of digits shown when a number is displayed.

1 %3
0. 333333

10 % 3
3. 33333

100 % 3
33. 3333

Using lists and some of the new primitives you can now see this more concisely:

(10 ~ i. 6) %3
0.333333 3.33333 33.3333 333.333 3333.33 33333.3

Y ou can guess that the default print precision is 6 because in each case 6 digits are
shown.

le5 + 10 % 3
a+ 0.1

a
b
a
100003

b
100003

With only 6 digits shown, a and b 100k the same even though they aren't. Ina
situation like this you need to see more digits. The print precision can be changed
by use of the following verb.

pps =. 9!':11 NB. print precision set

Don't worry about the curious appearance of thisverb, just useit.

pps 9

a
100003. 333

b
100003. 433

With print precision of 9 there is enough detail to see what is going on.

pps 6

%3 9 13
0. 333333 0.111111 0.0769231

pps 12

%3 9 13
0. 333333333333 0.111111111111 0. 0769230769231

The default print precision of 6 is adequate for most situations because you don't
usually have to see al those extra digits of detail. However, it isimportant to know
that they really are there, and that the display has been abbreviated as a matter of
convenience.

p57
Inexact numbers

The way numbers are stored in a computer limits the maximum number of digitsin
the number. This maximum depends on the hardware, but typically apps
argument of 20 guaranteesthat al the digits available for avalue will be

displayed.

pps 6

%3
0. 333333
pps 12

%3
0. 333333333333
pps 20

3
0. 33333333333333331

At 20 digits of precision theresult of 98 displays al the detail it has on the number
in17 digits. The result of 98 is not the exact mathematical result, but is the closest
number to that exact result that can be stored in the computer. This difference
between what you would expect from exact math and the limitations on how
numbers are stored in computers can be confusing.

3* %3

The result of 98 is not the exact value, but it is so close that when multiplied by 3 it
gives the exact expected value of 1.

3* 10 * %3
10

Multiplying the inexact result of %8 by 10 magnifiesthe error, but it is still close

enough to the exact value that when multiplied by 3 it gives the exact expected
value of 10.

3 * 100 * %3
99. 999999999999986

However, multiplying 98 by 100 magnifies the error enough so that when
multiplied by 3 you do not get the exact expected answer of 100, but instead get a
number that isvery closeto 100.

Using lists you can combine the above examples.

3 * 110 100 * %3
1 10 99. 999999999999986

The fact the 98 isn't stored exactly in the computer may not surprise you too much
if you realize that an exact representation in decimal digits would take an infinite
numbers of 3's.

Thereis an additional source of confusion due to the fact that computers store
numbersinternally in abinary format where each digitisa 0 or 1, rather than the
decimal format you are familiar with where the digitsrange in valuefrom 0to 9. A
consequence of thisisthat even very ssmple decimal numbers, exactly expressed
with afew digits, when converted to the computer's binary format, are stored as an
inexact value.

pps 20

0.50.25 0.1
0.5 0.25 0.10000000000000001

Theo0. 5 and 0. 25 are stored exactly, but the 0. 1 is stored inexactly, and when
displayed with maximum precision shows as 0. 10000000000000001 .

These are facts of life with the way computers store floating point numbers and
apply to al computer languages, not just J. Usually you can ignore these details,
but they can sometimes cause problems or confusion if you don't have an idea
about what is going on.

p58
Tolerance

This section is a bit advanced and understanding it is not critical. If it makes sense,
great. If not, don't worry about it, and just move on to the next section.

For some kinds of work with floating point numbers, this section isimportant,
along with a more detailed understanding of how numbers are stored and
manipulated by the hardware. For most work, however, this section can be ignored.

Let's consider the calculation at the end of the last section in more detail .

pps 20

a= 3* 100 * %3
a
99. 999999999999986

a = 100

By exact math you would expect a to be 100. But because the computer can't
exactly represent the value %3, you get avalue for athat isvery close to 100, but
not exactly, as you can see by its detailed display with a print precision of 20.
However, note that ais considered to be equal to 100, even though you can see that
it is not exactly equal. Thisis because the comparison is tolerant. That is, numbers
do not have to be exactly identical to be considered equal.

Let's experiment to get an idea for how tolerant the comparison is by gradually
taking the value further away from 100. The input line recall shortcut with
Shift+Ctrl+up arrow is very useful for playing with things like this.

100 = 100

100 = 99. 999999999999986

100 = 99. 99999999999998

100 = 99. 9999999999999
1

100 = 99. 999999999999
1

100 = 99. 99999999999
0

In the last example you crossed the line and the value is far enough away from 100
that it is no longer considered to be equal. Let's ook at another example.

a =. 23
b= a- le 12
c =. a- le_ 11
a

23
b

22.999999999999002

C
22.999999999989999

The values of a and b are close enough to be considered equal. The values of a and
¢ are not close enough to be considered equal. Close enough refersto the
difference between the two numbers.

a-»mn
9.9831254374294076e_13

a- C
1. 000088900582341e_11

In both cases the difference is small, but b is closer than c to a. Reading the J
Dictionary definition for = you will see that the dividing line between close enough
and not close enough is determined by the result of multiplying the larger of the
numbers times the default tolerance value of 2~_44. That is, close enough is
relative to the size of the numbers.

tolerance =. a * 2 N _44
t ol erance

1.3073986337985843e_12

Check both differences against this tolerance:
(a- b, c) < tolerance

10

The difference between a and b isless or equal to the tolerance, whereas the
difference between a and ¢ is not.

p59
Checkpoint D

At this point you should understand:

. primitiveswork with lists

. your own verbs work with lists

. how to use severa new verbs

. how to use the plot facility

. comparatives such as = that give numeric 0 and 1 results

Check your understanding by doing the following exercises:

. look up the J Dictionary definitions of the integers, shape, roll, power, and
circle verbs; in most cases only a part of their capabilities have been
introduced, so you will have to read the definitions carefully to be ableto
ignore the parts not yet relevant, and to pick out the parts that are

. experiment with the new primitives

Atom

A noun that isasingle entity is an atom.

23
1 a.I
b = 23
a :. 1 qI

An atom has 0 dimensions.

p60

p61
List

A nounthat isalist of atomsisalist.

23 24 25

"this is a string'
b= 714 21

a =. 'another string

A list has one dimension. The length of the dimension is the count of atomsin the
dimension.

p62
Table

A tableisatwo dimensional array of atoms. Tables cannot be written directly asa
constant as can an atom or alist, but instead must be created with a primitive. The
dyad $ (shape) can create tables. The left argument indicates the count of itemsin

each dimension and the right argument provides items to populate the table.

23 %7 NB az2by 3table of 7's

777
777
23%$789 10 11 12
7 8 9
10 11 12
2 3 %7 8 NB. cycle through atons to get enough
787
8 7 8
3 4 $ 'abcdef ghij kl mopqgrstuv’
abcd
ef gh
ijKl

The monad $ (shape of) gives the shape of its argument. The shapeisthe list of the
count of atomsin each dimension of the argument.

23%7

ST

a
$
2 3

Themonadi . (integers), introduced earlier for creating alist of integers, can be
used to create tables of integers.

i.5 NB. list of 5 integers
012314

i. 23 NB. 2 by 3 table of integers

N D
— <
o m

p63
Array

Atoms, lists, and tables are all arrays. All nounsin Jare arrays. Atoms have 0
dimensions, lists have 1 dimension, and tables have 2 dimensions. This extendsto
higher dimension arrays.

The primitive $, discussed earlier with lists and tables also works with higher

dimension arrays.
3 4 i. 24
0
4
8

[Co I &2 BNl \N]
R ~NW®

2
6
10 1

12 13 14 15
16 17 18 19
20 21 22 23

The aboveisa3-dimensional array. The blank line indicates the break between the
1st dimension and the 2nd and 3rd.

2 34 $ 'abcdef'

o

b
$
234

Themonadi . asoworkswith higher dimension arrays.

3 4

0 A~ O
O Ul -
OO NN

3
7
10 11

12 13 14 15
16 17 18 19
20 21 22 23

The Jterms atom, list, and table are analogous to the math terms of scalar, vector,
and matrix.

AXIS

The term axisis used in slight preference to the term dimension. Atoms have O
axes, lists have 1 axis, and tables have 2 axes.

p64

p65

Shape

The shape of anounisthelist of the count of atoms in each of its axes. The monad
$ gives the shape of a noun.

4 2 3 % 'abcdef’

ST

a
$
4 2 3
$ 4 NB. atomhas 0 axes and its shape is enpty

$i. 5

p66

Rank

The rank of anoun isthe count of its axes. An atom hasrank 0, alist rank 1, a
table rank 2, and an array with 5 axes hasrank 5. The rank of an array isvery
important and determines in a significant way how verbs act upon it.

The shape of an array isalist with as many numbers as the array has axes. This
means that the count of the shape of an array is the rank of the array.

$ 4 NB. atom has rank 0O
$ 456 NB. list has rank 1

#$ 23 %'a NB. table has rank 2

p67
Empty Array

An array isempty if it contains no atoms. An empty array hasaO in its shape.

a= 09%$0NB enpty list

$a
0
$''" NB. enpty list
0
b= 203%"'a NB enpty rank 3 array
$b
203

Empty arrays have no atoms to display and their display can be confusing if you
don't know what to expect. An empty list displays asablank line. A table with O
rows displays as O lines; atable with 3 rows, but O columns, displays as 3 blank
lines.

2$5
55
1$5

0 $5NB. enpty list displays as blank |ine

22%$5

12$%$5

02 %5 NB 0 row displays O lines
2 0%5NB 2row displays 2 lines

The display of lists and tables with 1 row can look the same, and you have to ook

at their shape to distinguish them.

a= 28%5
b=12%5
a

55

b NB. b displays the sane as a
55

$ a
2

$ b NB. but b has a different shape
12

p68
Single atom array

An array with asingle atom isreferred to as a singleton. All singletons with the
same atom display the same way. However, the fact that they have different ranks
affects how verbs act on them. This can be a pitfall for beginners. It isimportant to
remember that if it displays like an atom, but does not behave like one, then check
its rank.

atom=. 5

list == 1 $5

at om
5

list NB. list |ooks |like atom
5

atom + 23 23 23
28 28 28

list + 23 23 23 NB. but does not behave |ike atom
1 length error
: list +23 23 23

$ atom NB. rank of atomis O
0

$ list NB. rank of list is 1

p69
Verb arguments

Much of the power of Jliesin the ability of averb to treat its arguments as a series
of parts. The verb appliesitself to each of the parts, creating a series of partial
results, and then assembles the partial resultsinto the final result. Exactly how this
works and what you can do with it is described in the next several sections.

Let'slook at afew examplesto get an idea of where you are heading.
m= 1i. 2 2
m
01
23
Y ou can add arrays together that have the same rank and shape.
m+ 22 $ 10 11 12 13

10 12
14 16

Y ou can add a single number to an array.

10 + m
10 11
12 13

What if you wanted to add one number to the first row and a different number to
the second row?

10 20 + m
10 11
22 23

But what if you wanted to add those numbers to the columns instead? Y ou have to
indicate that you want to add to the columns not the rows.

10 20 +"1 m
10 21
12 23

p70
Frame and cell

So far nouns have been considered in their entirety. However, it is useful to think
of an array as consisting of cells, parts of the array (subarrays) that when placed in
aframe, make up the entire array.

=. 23%i. 6

The array a can be thought of as having 6 cells, where each cell was an atom. The
frame would be the shape 2 3 that structures the 6 individual cellsinto the array a.
Visually:

cells are atoms

O cell O
1 cell 1
5 cell 5

frameisshape 2 3 that structures the cell atoms into the array

The array a can aso be thought of as having 2 cells, where each cell wasalist. The
frame would be the shape 2 that structures the cellsinto the array a. Visually:

cellsarelists

frameis shape 2 that structures the cell listsinto the array

Finally, the array a can be thought of as having 1 cell, where the cell was atable.
The frame would be the shape empty that structures the cellsinto the array a.
Visually:

cellsaretables

frame is shape empty that structures the cell table into the array

A table with shape 2 3 can be thought of as:

a2 3 frame of celsthat are atoms

a2 frame of cellsthat arelists of shape 3

an empty frame of acell that isatable of shape2 3

Similarly, an array with shape 4 3 2 can be thought of as:

a4 3 2 frame of cellsthat are atoms

a4 3 frame of cellsthat are lists of shape 2

a4 frame of cellsthat are tables of shape 3 2

an empty frame of acell that isarank 3 array of shape4 3 2

The frameis aprefix of the shape of the array. It can be the entire shape (a prefix
of al), in which case the cells are atoms. It can be empty (a prefix of none) in
which case thereisasingle cell which isthe array. Or anything in between.

The cell shape isthe array shape with the frame prefix removed. The length of the
cell shapeisthe cell rank.

The cells of an array are the subarrays that, when assembled into the corresponding
frame, create the entire array.

p/l
Item

Arrays are frequently treated as having aframe of length 1. With this frame, the
array has cells of rank 1 less than the rank of the array. These cells are the items of
the array.

Theitems of alist are the atomsin thelist. The items of atable are the rowsin the
table. The items of arank 3 array are the tablesin the array. An array isthelist of
itsitems.

An atom has one item, itsalf.

The # (tally) of anoun isthe number of itemsin the noun.

23

#1$5

#1.2 3

p72
k-cell

A cdll of rank k isalso called arank-k cell or k-cell. A O-cell isan atom, al-cell is
alist, a2-cell isatable, and so on. If the rank of the cells of anoun is given, then
the frame is whatever isleft over of the shape of the noun.

Negative numbers are also used, asin _2-cell and _1-cell; the frames of such cells
have length indicated by the magnitude of the numbers. Y ou have seen _1-cells
before: they are items.

abc =. 43 2%$i. 24

The noun abc can be thought of as:

a4 3 2 frameof 0-cdls

a4 3 frameof 1-cells

a4 frame of 2-cells

an empty frame of a 3-cell

A more general way of phrasing thisis:

arank 3 frame of O-cells

arank 2 frame of 1-cells

arank 1 frame of 2-cells

arank O frame of 3-cells

p73
Verb rank

A verb has arank that determines how it appliesto its arguments. A monad of rank
k applies to the k-cells of its argument. A dyad of left rank ki and right rank kr
appliesto the kl-cells of its left argument and the kr-cells of its right argument.
Verb rank is a powerful tool that controls the way averb appliesto arrays.

The ranks of a primitive verb are given in the J Dictionary definition. For example,
look up the definition of + . The rank information follows the word in the header.
For + thisis0 0 0. The monad rank is0 which indicates the monad + appliesto
the atoms. The dyad ranks are O for the left argument (indicating it applies to the
atoms, or O-cells), and O for the right argument (again indicating it appliesto the
atoms in the right argument).

Let's see how this works when adding two tables.

i. 23
6 + a

a+b
6 8 10
12 14 16

The dyad + has left rank 0. This means it appliesto the atoms of its left argument.
Similarly the right rank is 0 and it applies to the atoms of its right argument. The
verb takes an atom from its left argument, an atom from its right argument, and
adds them together to create a partial result. It does thisfor each atom from the left
and right argument and creates an appropriate number of partial results, which are
then assembled into the result frame to create the final result.

In the example above the verb + has aleft rank of 0. This means the left argument
iIstreated asa2 3 frame of atoms. Similarly, aright rank of O means that the right
argument istreated asa2 3 frame of atoms.

The frame of the result is determined by the frames of the arguments, and so its
frameisaso 2 3 and each cell isthe result of adding an atom from the left
argument with an atom from the right argument.

p/4
Agreement

For adyad the left rank of the verb and the rank of the left argument determine the
frame of the left argument. Similarly the right rank of the verb and the rank of the
right argument determine the frame of the right argument. If the left and right
frames are the same, then there are the same number of cells in each argument, and
it issimply amatter of taking each cell in turn from the left and right arguments,
applying the verb, and putting the result into the frame of the resuilt.

RO T
+ 0o
o)

10 11

Visually you can see how each atom from the left is used with the corresponding
atom from the right.

+ gi ves 7 8 9

012 777
345 777

Y ou have aso seen that the following works.

a+ 7
7 8 9
10 11 12

Visually you can see how each atom from the left is used with the corresponding
atom from the right.

+ 7 ... gi ves 7 8 9

012
345 Ca 10 11 12

The. .. indicatesthat the cell is repeated to provide the required arguments. The
... totheright and below the 7 indicatesit isrepeated in 2 axes.

But what about the following?

a+ 34
345
7 89

Again you can see how the cells of the right argument repeat to provide the
required verb arguments.

0 + 3 ... gi ves
3 4 ...

~N W
o
© o1

12
4 5

But there must be some agreement between the cells in the arguments.

a+345
il ength error
| a +3 45

Visually what is happening:

012 + 3 ... gi ves 345
345 4 . .. 789
5 error - ran out of lefts

The above cases are simple enough, but consider the following with arank 3 noun.

i. 234

R O, TUT

15 16 17 18
20 21 22 23
25 26 27 28

Thisis more complicated to visualize.

O 1 2 3 + 0o ... gi ves O 1 2 3
4 5 6 7 1 : 5 6 7 8
8 910 11 2 10 11 12 13
12 13 14 15 3. 15 16 17 18
16 17 18 19 4 . 20 21 22 23
20 21 22 23 5. 25 26 27 28
Similarly:

b+23
2 3 4 5
6 7 8 9
10 11 12 13
15 16 17 18
19 20 21 22
23 24 25 26
Visualy:
O 1 2 3 + 2 ... gives 2 3 4 5
4 5 6 7 6 7 8 9
8 910 11 10 11 12 13
12 13 14 15 3 ... 15 16 17 18
16 17 18 19 . 19 20 21 22
20 21 22 23 23 24 25 26

The agreement rule is quite ssimple. If the left and right frames are the same then

there is no problem. Otherwise, one frame must be a prefix of the other, and its
cells are repeated into its trailing axes to provide the required arguments.

p75
Rank conjunction "

The primitive" (double-quote, not two quotes) is the rank conjunction.
Conjunctions haven't been introduced yet and there is more detail in alater section.
For now, just think of a conjunction as similar to adyad verb in that it takes a left
and right argument and has aresult. The particular use of " of interest here is when
the left argument is a verb and the right argument is a noun. Y es, conjunctions can
take verb arguments, as well as noun, whereas a verb can take only noun
arguments.

In the section on names there was an example where you directly defined a name
asaverb.

plus =+

This style of definition is more direct than the type you used to define

centi grade. It iscalled tacit definition and is dealt with in more detail in alater
section. The name plusis defined as the primitive + and thus has the same rank as
+0f0 0 0.

The rank conjunction produces a new verb from its left argument with the rank
information from its right argument.

plus000 =. +" 00O

The right argument for " isthe rank information for the primitive + that isgivenin
the J Dictionary (look up + in the vocabulary, turn to the definition page, and note
the rank information in the heading). Thefirst O isthe rank of the monad argument.
The second and third O's are respectively the rank of the dyad left and right
arguments.

Since pl us000 is+ with same ranks as the primitive + it should behave just as
does + or pl us . You can verify thiswith afew experiments borrowed from the
previous section on agreement.

a plus000 1 2 3
| ength error
a plus000 1 2 3

The length error occurs because the arguments do not agree as per the previous
section. Theleft frameis2 3 and theright frame 3, and 3 isnot aprefix of 2 3;
there are extra cells from the left argument without corresponding cells from the
right argument.

However, it seems reasonable to want to add thelist 1 2 3 to each list in the |eft
argument. Y ou know what you want it to do. Visualy:

012 + 123 gi ves 135
345 4 6 8

Y ou want avariation of + that adds lists from its left argument to lists from its
right. Y ou can do that by changing the arguments to the" conjunction to indicate
that the dyad left and right ranks are lists.

plus011 =. + " 011

a plusO11 1 2 3
135
4 6 8
1 2 3 plus011 a
135
4 6 8

In practice you wouldn't bother to give a name to such a specific application of +
and you would instead use the expression directly.

123+ 011a
135

4 6 8

Since + is applied dyadically and both ranks are 1, you can use the shorter form of
+" 1 which uses 1 for the rank of all arguments.

123 +"1a
135
4 6 8

In this case, the left frame is empty with a cell shape of 3 and theright frameis2
with acell shape of 3. Empty isaprefix of 2, and so the frames agree.

There is one thing you have to be aware of.

a+'"1123
| ength error
a +"1 123

The problem is that J doesn't know that you want the first 1 to be the argument to "
and the second 1 to be part of the constant 1 2 3. What happensis that the
constant 1 1 2 3isused astheright argument of " and since" is defined to allow
only arguments of 1 2 or 3 numbers, thereis alength error. Y ou need to let J know
that the 1 belongsto the" and that the1 2 3 isaconstant.

a(+'1) 123

o W
oo O

1
4

a+'1 (12 3)
3
6

F QYN
0 o

p76
Result shape

In the previous sections the question of the shape of the result was glossed over.
For amonad the frame of the result is the same as the frame of the argument. For a
dyad the frame of the result is the frame of the longer of the frames of the
arguments (or either frame if they are the same).

With averb like + that has an atom result for each atom argument thisis
straightforward. Things get more interesting with verbs that have more
complicated behavior.

Consider theverb $. Look it up in the J Dictionary and you'll seeit hasrank of _
1 _ . The_ indicates an infinite (unbounded) rank and means that the verb applies
to the entire argument. The monad has unbounded rank and so applies to the entire
right argument. If you think about the monad $ with aresult that is the shape of its
entire right argument this makes sense. The dyad left rank is 1 and this means that
it appliesto lists from the left argument. The dyad right rank is unbounded and so
applies to the entire right argument.

24%$i.3
0120
1201

24%$'10i.3

(oNe
o
o

00O

1111
1111

N
N
N

2
2222

Thefirst example is what you have seen before, but what is going on in the
second? The $" 1 0 meansthat $ will get cell arguments asalist (1-cells) on the
left and as an atom (O-cell) on the right. The left frame is empty (nothing is left of
the shape of the left argument after a 1-cell istaken) and the right frameis 3 (there
are 3 O-cellsin the right argument). So the result frameis 3.

24%$0 gives 0000 left 1-cell $ right 0-cell
00O0O

$1 gi ves 1111 repeat 1-cell $ next O-cell
1111

$ 2 gi ves 2222 repeat 1-cell $ next O-cell
22272

The frame of the result is 3 and the thingsin that frame are 2 by 4 tables, so the
shape of thefinal resultis3 2 4.

$248%$'10i.3
324

Rank (noun rank, verb rank, frames, cells, and the rank conjunction) appliesto all
verbs and greatly increases the ways in which you can use any verb.

p/7
Checkpoint E

At this point you should understand:

. thetermsatom, list, table, array, axis, rank, shape, item, frame, and cell
. houn rank

. verbrank

. " (rank conjunction)

. agreement

« how rank determines which cell arguments a verb appliesto

. how theresult isbuilt up of the partial results

Check your understanding by doing the following exercises:

. experiment with the primitives you know and use " to apply them to cells
and see how the partial results build up the final result
. don't limit your experimentsto verbslike +, but also try verbs such as $

(shape) and, (append)

p78
Adverb

An adverb issimilar to averb, but differsin the following:

an adverb has only aleft argument (averb is ambivalent, and has either a
right argument or both aleft and aright argument)

an adverb can apply to nouns or verbs (a verb applies only to nouns)

an adverb typically has averb asits result (averb always has a noun result)

The verb result of an adverb isreferred to as aderived verb.

The primitive/ isan adverb. Itsresult isanew verb. If the monadic case of the
derived verb isused, then the/ isreferred to asinsert. If the dyadic case of the
derived verb is used, then the/ isreferred to as table.

p79
Insert adverb

A/ isreferredtoasinsertif it isapplied to averb and the derived verb is then used
monadically. The derived verb appliesitself monadically by inserting the original
verb between the items of the argument.

sunover =. +/

The adverb / takesthe verb argument on itsleft, which is +, and creates a new verb
named sunover .

sunover 7 5 10
22

Theitemsof theargument 7 5 10 arethethreeatoms 7, 5, and 10 and the
definition of sunover isthat it insertsits original verb between the items of the
argument.

7 +5 + 10
22

sunover i. 8
28

What if you do thisto atable?

a= 1i. 2 3
a
012
345
sunover a
357

Interesting, but let's take a closer look. Theitems of aarethetwo listso 1 2 and 3

4 5. Theverb sunover isdefined to put the + (the original argument of /)
between the items of its argument.

012 +345
357

What if there were more rows?

a=. i. 34
a

® A O
© U
o oN
IS

10 1

sunover a
12 15 18 21

The items of a are the three lists and with the + inserted between them you have:

0123+4567+ 891011
12 15 18 21

Theverb sunover applied to atable gives the sum over the columns. What if you
wanted the sum over the rows?

sunover"1l a
6 22 38

The above is worth thinking about. First give your new verb a name to make it
easier to talk about.

sunrows =. sunover"1l
sunr ows a
6 22 38

Look up/ inthe JDictionary and note that the rank informationis _ _ _ . The
rank information for an adverb gives the rank of the derived verb. So, sumover has
monadic rank _ (unbounded). The verb sumover appliesto its entire argument and
so insertsits original verb of + between the items of the argument.

The verb sunt ows has monadic rank 1 and appliesto the 1-cells of its argument. It
is applied to each of the 1-cells of the argument, giving a partial result, and these
partial results are then assembled into the result frame. Instead of the entire
argument being fed to the verb sunr ows, 1-cells are fed in, so sumrowsinserts +
between the items of the 1-cells. The 1-cells of the table argument are the rows of
the table, so the + isinserted between the items of the rows. Visually:

sSunT ows 012 3 (first 1-cell) gives 6
sunT ows 456 7 (next 1-cell) gives 22
sSunT ows 8 9 10 11 (next 1-cell) gives 38

The partial results of 6, 22, and 38 are then assembled into the list result.

What about arank 3 argument?

ok~ O

12 13 14 15
16 17 18 19
20 21 22 23

sunover a
12 14 16 18
20 22 24 26
28 30 32 34

The items are the two tables and putting the + between them gives the result.
Because thisis the sum over the items, and in this case is the sum over the tables of
arank 3 array, it can be described as the sum over the planes of the array.

The name sumover was used because it made it clearer in the beginning what was
being done. In practiceit is probably better to just use the primitives directly.

a= 1i. 234

+/ a NB. sum over pl anes
12 14 16 18
20 22 24 26
28 30 32 34

+/"2 a NB. sum over tables
12 15 18 21
48 51 54 57

+/"1 a NB. sum over rows
6 22 38
54 70 86

p80
Table adverb

Thedyad v/ computes atable for the verb v (afunction table).

NB. addition table

A WNEFLO
gaa b wWNBEF

NB. times table

OO OOOo
A WNEFLO

1+ 01 NB. + table on bool eans

1 +/ 01 NB or

o
PP ONPEFO

=

01 +/ 01 NB. not-or

O
o o

01* 01NB tines

o o
= O

O01*./ 01 NB and

o o
= O

01 *:/ 01 NB. not-and

e

1
0

The derived verb v/ has aleft rank that isthe left rank of v and aright rank of _ ;
it appliesv between each cell of the left argument and the entire right argument.

additiontable =. +/

The verb additiontable is defined as the result of the/ adverb applied to + asan
argument. The definition is the same as the definition for sumover that you used in
the previous section. The name additiontable makes sense when the dyad is used,
and sumover makes sense when the monad is used. Nothing prevents using either
name in amisleading way.

a additiontable a

i
4
5
6
7
8

The left rank of + is0, so the rank of the derived verb is 0 and its cell arguments
are atoms. Theright rank of the derived verb is _ and its cell arguments are the
entire right argument. Visually the above works as follows:

O (first atomfromleft) + entire right gives 01234
1 (next atomfromleft) + entire right gives 12345
2 (next atomfromleft) + entire right gives 23456
3 (next atomfromleft) + entire right gives 34567
4 (next atomfromleft) + entire right gives 45679

Thefollowing is an interesting use of table together with the plotting from an
earlier section. The plot facility plots each row in atable argument as a separate
series of data.

| oad ' plot’
plot 1 2 0. / 0.2 * i.60

J. Plot =] E3

Tir 1 T = B

L5

"surface'

plot 1 2 0. / 0.2 * i.60

J/|Plot _ O] x|

The 1 from the left argument used as the left argument of o. givessinevaluesin

the first row. The 2 from the left argument for o. gives cosine values in the second
row.

In the exampl es above the left rank of the original verb is always 0 and so the cells
of the left argument of the derived verb are simply the atoms of the left argument.

Let'slook at an example where the left rank of the original verb is not O.

Theverbf isappend with aleft and right rank of 1.

p=. 2 2 $' abcd
p

ab

cd

g=. 3 3%$' ABCD
q

ABC

DAB

CDA

p fl q
abABC
abDAB
abCDA

cdABC
cdDAB
cdCDA

Visually:

ab (1st list fromleft) , entire right gi ves abABC
abDAB
abCDA

cd (next list) , entire right gi ves cdABC
cdDAB
cdCDA

p8l
Conjunction

A conjunction is similar to an adverb, except that it takes both a left and right
argument. The rank conjunction was introduced informally in an earlier section. In
addition, the : used to define verbs such as centigrade can now be recognized as a
conjunction. In defining centigrade, the : takes aleft argument of 3 and aright
argument of 0. So far it could be a verb, but the fact that its result isaverb proves
it isaconjunction.

The verb result of aconjunction isreferred to as a derived verb.

p82
Order of execution - adverbs & conjunctions

Adverbs and conjunctions have higher precedence than verbs. This means that an

adverb or conjunction is executed before a verb. Furthermore, the left argument of
an adverb or conjunction is the entire verb phrase that precedes it. The exact rules
for parsing and execution are given in section E of the J Dictionary.

For practical purposes, the following examplesillustrate the rules.

a= 1i.2 3
+"1 - a
3 12

Like al J sentences, the above sentence executes from right-to-left. Before the +
can be parsed as being a dyad or amonad, the higher precedence” conjunction
executes. The" conjunction takes the 1 asits right argument and the entire verb
phrase to its left asitsleft argument. The verb phrase to the left isthe adverb /
which takes the + asits left argument. The following uses parentheses to make
clear the order of execution that follows from the rules.

((+)"1) (- &)

As mentioned earlier, simple examples with constants may require that you
separate the constant that is the conjunction argument from the constant that is the
argument of the derived verb.

The last one usesthe monad [(same) that is defined to just return its argument.
Thisisabit shorter and avoids the use of parentheses.

p83
Box - monad <

So far you have dealt with atoms that are either numeric or character. The monad <
(box) introduces a new type of atom called boxed. The monad < appliesto any
noun and returns an atom that is a box which contains the argument.

An array is either anumeric array that contains numbers, or aliteral array that
contains characters, or aboxed array that contains boxes. Arrays of numbers and
characters are referred to as open to distinguish them from boxed arrays.

b= <234
$b NB. an atom has enpty shape

A boxed array is displayed in abox.

b
+----- +
12 3 4
+----- +
c = <4729
d == b, c NB. append
d
Fom e e e +
12 3 4,47 9]
Fom e e e +

$d NB. list with shape 2

2
(<234 , <4709

Fomm e +

12 3 44 7 9!

Fomm e +

Arrays of different types (numeric, character, and boxed) cannot be appended to
one another.

‘a' , 3
 domai n error

| ‘a' , 3
3, <2314

| domai n error

| 3 , <2 3 4

Boxed arrays are of the same type and can be appended no matter what they
contain.

(<23 3% '"abcdef') , (<i. 34) , <23

e e a oo o +
1abc;0 1 2 3)23;
ldef{45 6 7, |
| 18 9 10 11}

p84
Link - dyad ;

Thedyad; (link) makesit easy to create alist of boxed nouns.

(2 3% "abcdef') ; (i. 3 4) ; 23

labc!0 1 2 3!23!
'def!'4 5 6 7! !
! 189 10 11!

Look link up in the J Dictionary. Note that itsdyad rank is_ _ so it appliesto its
entire left and entire right argument. It always boxes its left argument, and its right
argument is boxed only if not already boxed. Boxing its right argument only if not
aready boxed makes the following work:

"“abc' ; 'defg' ; "hijkl'’
Fom e e oo o +
i abc| def g} hi j kl |
Fom e e oo o +

Thisis evaluated from right-to-left as:

"abc' ; ('defg’ ; '"hijkl")

So the right argument to the leftmost link is already boxed, and will not be boxed
again. Boxed again? What would that look like?

"abc' ; < 'defg' ; 'hijkl'’
e +
jabey +---------- +
o defgphijklyy
e +
e +

Boxes can be nested!

p85
Open - monad >

The monad > (open) isthe inverse of box. That is, it takes the contents out of a
box. Applied to announ that is already open it has no effect.

> 23 57
23 5 7

a=. 1.5
a
01234

Look > up inthe JDictionary. The monad > hasarank of 0 so it appliesto each
atom in its argument. Each atom is opened, creating a partial result, that is then
assembled with al the other partial resultsinto the final result.

a=123; 5617
a

o e oo - +

112 3,56 7

o e oo - +
> a

123

567

The assembly of the partial resultsis straightforward if they al have the same rank
and shape. But with open the partial results could have very different ranks and
shapes.

a= 1; 23,; 456
a

Fom e oo - - +

1112 314 5 6

Fom e oo - - +
> a

100

230

456

Each atom is opened and the partial results are extended to fit into the result frame.

gives 1 (atom
gives 2 3 (list)

> 1
> 2
> 4 6 gives 4 56 (list)

3
5

The result frame has to have partial results that al have the same rank and shape.
To do this, each partial result is extended to have the same rank as the rank of the
highest rank result and a shape that is the maximum along any axis of all the partia
results.

In the example above, the atom 1 is extended to alist and is padded with 0'sto
have ashapeof 3. Thelist 2 3 ispadded withao to haveashapeof 3. The4 5 6
list isaready OK. And the final result has aframe of 3 where each result cell isa
list of 3 atoms.

What if the boxes contain characters?

> "abc' ; 'defg' ; "hijkl’
abc
defg
hi j ki

Theresultisa 3 by 5 table. The character partial results are extended in asimilar
manner, but blanks are used as fill, rather than 0. Y ou cannot open a boxed list that

contains both character and numeric data.

>12 3 ; 'asdf'
i domai n error
| >1 2 3;'asdf’

Thereisno way to put the numeric and character partial results together in the
frame so thereisadomain error.

p86
From - dyad { (selecting items)

Thedyad { (from) isused to select items from an array. Thisis sometimes called
indexing an array.

57 948
a NB. select itemat index 3

i ||

a

3

0{ a NB. indexes start at O
5

2 4 { a NB. select 2 itens
9 8

204 { a NB. select 3 itens
958

From selects items from its argument, and therefore selects rows from tables.

= 1. 34

ok~ O
© o1 -

0
a1
(o))
\l

From selects tables from rank 3 arrays.

1{i. 234
12 13 14 15
16 17 18 19
20 21 22 23

p87
From (boxed indexes)

If the left argument of { isboxed, then it is opened and each of itsitems givesthe
indexes along successive axes of the right argument. This can be used to select any
subarray from an array.

m= 1i. 34
m

01 2 3

45 6 7

8 9 10 11
(<12 {m

6

The opened left argument isthelist 1 2. Thefirstitemis1, and it isused asthe
index of the 1st axis; the second itemis 2, and it is used as the index of the 2nd
axis. The1 selectsthelist4 5 6 7 and the 2 selects 6 from that list.

If there are fewer itemsin the list than there are axes, then all of the trailing axes
are selected.

(<1) { m4567

Thisis more interesting with ahigher rank array.

= 1.2 34

c h~O

12 13 14 15
16 17 18 19
20 21 22 23

(<12 3) { dnb. plane 1, row 2, colum 3 23 (<1 2) { d nb.
plane 1, row 2, all colums 20 21 22 23

So far the items in the list of indexes for each axis has been an atom and selects
only one index. What if you want more than one index?

If anitem inthelist of indexesisboxed, thenitisalist of indexes for that axis.

Suppose you want to select from mthe table of atomsthat areinrowso 2, and
columnso 2 3. That is, the table:

col-0 col-2 <col-3
row 0 0 2 3
row 2 8 10 11

The indexes for the axes are the list:

That list of indexes needs to be boxed so that each item will be treated as indexes
into the successive axes. The0 2 selectsrows (1st axis) andthe0 2 3 selects
columns (2nd axis).

14 15
22 23

Again, if there are fewer items than axes, then all of the trailing axes are selected.
(<01; 02 {d
1 2 3

9 10 11

12 13 14 15
20 21 22 23

Frequently the desired subarray includes all of an axisthat isnot atrailing axis.
This could be done by giving all indexes for that axis.

(<012; 23 {m
2 3
6 7
10 11

This may be inconvenient in areal application where it would necessary to
calculate the indexes. For this reason, a boxed empty list, <", indicates that all
indexes in the axis are selected.

N
)
N
N
N
w

+
]

]

]

]

]

]

:
+
+
]

]

]

]

:
+
+
+
N

L

+

-t

The above, used as the left argument will select all indexes along the first axis
because the first item is a boxed empty list, and indexes 2 and 3 along the 2nd axis.

(<(<');23) {m236710 11

The boxed empty list is so useful that the primitive a: is defined as <" . So, the
above can be simplified.

(<a ; 23) { m
2 3
6 7
10 11

The above can be even more easily expressed with the rank conjunction.

23{"1m
2 3
6 7

10 11

p88
From (scattered indexing)

If the left argument isasingleton, it is opened and its items are indexes along
successive axes.

(<02: 23 {m2310 11

What if the left argument wasn't a singleton?

(02; 23 {m
2 11

What is going on here? Nothing special, asthisisjust your old friend rank. The
dyad { hasaleft rank of 0 and aright rank of _ . This means that the left argument
istaken as 0-cells and the right argument istaken in its entirety. Visually:

(<0 2) (first left cell) { mgives 2 (<2 3) (next left cell) { m
gi ves 11

Theresult isassembled fromthe2 and 11 partia results.

Thisis called scattered indexing.

(0O0; 11; 22 {m NB. scatter index a diagona
05 10

p89
Amend } (modify selected)

Amend is an adverb whose result is adyad that is used to modify an array. The left
argument of amend is usually anoun. Let'slook at an example:

change_index_tw =. 2}

Theverb change_i ndex_t wo isused dyadically. Its right argument is the original
data and the left argument is a new value for index position 2.

15 change_index_two 5 6 7 8
56 15 8

30 change_index_two 23 18 17
23 18 30

"b'" change_i ndex_two 'cat’
cab

15 (2}) 56 7 8

56 15 8

30 (2}) 23 18 17
23 18 30

b 2} 'cat’
cab

This extends in ways that you might expect.

23 (14) 77777
72377 23

2324 (14}) 77777
72377 24

"bet' 2 5 8} 'cattunbiz’
cabt uebi t

In general anamend x s} y isdefined as:

Theresult isformed by replacing by x those parts of y that are
selected by s. Thes argument to } istreated the same way as the left
argument of theverb { .

Amend allows us to give selected parts of an array new values. The amend
argument gives the indexing information about what datato modify. This selects
the same elements to be modified asit would if used as the left argument to the
dyad verb { .
If you understand from, then amend is quite simple.
m i. 34
1 m

1l

4567

23 23 23 23 (1}) m
0 1 2 3
23 23 23 23
8 910 11

23 (1}) m
0 1 2 3
23 23 23 23
8 9 10 11

Y ou can first use the selection information to see what data is to be modified.

The selected datais a subarray of shape2 4 . So you need a subarray of shape2 4
to replace the selected data.

(2 4 $ 23 232323242424 24) (12}) m
0 1 2 3

23 23 23 23
24 24 24 24

Suppose you want to modify the subarray that is selected asrows 1 and 2, and
columns 0 and 3 with thevalue 12.

12 ((<1 2;03)}) m0 1231256 12 12 9 10 12

Modify that subarray by replacing it with the array in the left argument.

(2 2$ 2324 2526) ((<12;03)}) mO1232356 24259 10
26

p90
Selecting without from

Some situations where you could use{ (from) are so common that they have their
own primitives. These primitives are not dealt with in any detail here, and are
mentioned so that you are aware of them and can look up their definitions and
make use of them in your own work. They are shown here by example.

Themonad {. (head) takesthefirst item of itsargument and issimilar to { witha
left argument of 0.

{. 567
5

{.i. 34
0123

Themonad { : (tail) takesthe last item of its argument and issimilar to { witha
left of _1 (oh yes, forgot to mention earlier that negative indexes simply index
from the end of the axis).

{: 567
7

{: 1. 34
8 9 10 11

Themonad}. (behead) dropsthe first item of its argument.

Themonad }: (curtail) drops the last item of its argument.

}: 567

3 4

~ O
gl
DN

Thedyad {. (take) takesthe indexesfrom axes asindicated by the left argument.

3{. 1. 8
012

23{.1i. 34
012

456

2{. 1. 34
0123
4567

Thedyad}. (drop) dropsthe indexes from axes asindicated by the left argument.

1}. 234
3 4

12} i. 34
6 7
10 11

Aninteresting way tothink of {. {: }. and}: isthat they are indexing corners
of the array.

One capability that the dyad {. hasthat is not so directly related to from isit can
create an array that is larger than the selected corner. It does this by filling in with
0,'", or a as appropriate.

5{. 567
56700

45{. i. 23

01200
34500
0O00O0O0O
0O00OO0O0O
5 {. "abc
abc

<"O[5{. "abc' NB. nmake sure they are there

7 {. (<"0) 5{. "abc’ NB. fill with a:

The dyad # (copy) isalso fairly directly related to from. Itsleft argument isalist of
how many times to repeat the corresponding item from the right argument.

3212 3 # '"abcde
aaabbcddeee

The aboveis equivalent to the following:

0001123344 4{ '"abcde
aaabbcddeee

p9l
Cut ;.

The cut conjunction applies a verb to partitions of its argument. In discussing cut
wewill usetheexpressionf =: u ;. n togivenamesto the various elements.
The left argument of cut isthe verb u that will be applied to partitions of the right
argument of the derived verb f . The right argument of cut isthe noun n that
indicates the kind of partitions.

Let'sconsider caseswheren is1, 1,2, or _2 and where the derived verb is used
monadically.

If nis2 or _2, theitems of the right argument are partitioned into arguments that
end with the last item in the argument. The item that is used to mark the partitions
is called the fret. A negative n indicates that the fret is not included in the partition.
Each partition is passed to the verb u and the partial results are assembled into the
final result.

cut2 = <. 2

The definition of cut 2 could be read as: box cut last.

cut2 ' how now brown cow '

In this example the items of the right argument are characters. The fret is the last
character, which isablank. The fret is used to break the entire argument into a
series of arguments to which the verb < isapplied. Visualy:

< 'how' (first partition) gives first partial result
<'now' (next partition) gives next partial result
< 'brown '

< 'cow'

The partial results are assembled into the final result.

<;._2 "how now brown cow '

o e oo +
i how now! br own;} cow}
o e oo +

Thecut 2 boxed resultsinclude the fret and the <; . 2 boxed results do not
include the fret.

The following applies to the same partitions of the right argument, but applies the
dyad # (tally) instead. This gives us the count of each partition.

#,. 2 'how now brown cow '
3353

This appliesin the same way to numeric data. In the following _1 isthe fret.

+---n- e +
12 3 4,5 3 2,23 45 65 132,
e +
#,. 2 a
334
+/;. 2 a
9 10 265

A 1 or _1 usesthefirst item asthe fret. If positive, the fret isincluded in the result,
if negativeit is not included.

<;. 1 "madami'' m adan

Sometimes the partition information is separate from the data. Instead of fretsin

the data, the partition information can be provided in aleft argument to the derived
verb. The partition information is boolean data where a 1 indicates the start (with 1
or 1) or end (with 2 or _2) of the partitions.

1000100 K<;.1"abcdefg

d = 'the test is the thing
‘the' E. d
1000000000001 00O0O00OO0O0O

The example above uses anew primitive E. that you can look up in the J
Dictionary if you want additional information at this time. However, without
worrying about the details you should get the idea of what is happening.

Chopping up character listsinto boxesis so useful that there is a standard utility
called cutopen that handles many of the common cases. For example;

cutopen 'testing testing 1 2 3

p92
Each

Frequently with boxed dataiit is useful to be able to do something to the contents of
each of the boxes. Thisis so useful that the standard profile defines an adverb
called each that does exactly this. The definition of each involves alittle more than
you have covered so far, but don't worry about the details, just useit.

The adverb each takes a verb as its left argument. The derived verb is applied to
the contents of the boxes of its arguments.

=. 1012 13 ; 23 ; 456 8 3

+/ each a NB. sum over each

*/ each a NB. tines over each

| . each a NB. reverse each

The previous examples all used the derived verb monadically. The following use
the derived verb dyadically.

23 , each a NB. append each

e e e e e +

11 11,00/00110

e e e e e +
1|. each a

o e e e e e oo o +

112 13 10;3 25 6 8 3 4]

o e e e e e oo o +

Did you catch the new verb | . (reverse or rotate) that slipped in above? Did you
look it up in the J Dictionary?

p93
Hook

A train is a sequence of two or three wordsin arow that is given a special
meaning. A train of two verbsis ahook and is evaluated as follows:

(f g) y evaluates as y f
x f

gy
x (f g) y evaluates as gy

Suppose you wanted to scale a list of numbers such that the result was each
number divided by the maximum number in the list. The maximum over alistis
given by the verb derived by applying the adverb / to theverb>. .

a= 358217

maxover =. >./
maxover a

To divide an argument by the maximum over the argument you can use:
a % nmaxover a

0.375 0.625 1 0.25 0.875

The above can be written as a hook.
(% maxover) a

0.375 0.625 1 0.25 0.875

Y ou can now define scale as a hook with % >. / .
scale =. % >./

scale a
0.375 0.625 1 0.25 0.875

p94

Fork

A train of three verbsis afork and is evaluated as follows:

(f g h) y evaluates as (f y) g (hvy)
X (f g h) y evaluates as (x f y) g (x hy)

A simple example of afork isthe sequence of threeverbs+/ % # . The/ adverb
takesitsleft argument + and returns a verb, so there is a sequence of three verbs.
Let's examine the use of thisfork monadically.

(f g h) y evaluates as (f y) g (hy)
(+/ %#) y evaluates as (+/ y) % (# vy)

This can be read as. sum over the argument divided by the count of the argument.
Thisisthe definition of the mean or average.

(+/ %#) 5 9 12
8. 66667

(+ %#) i.9
4
Y ou can now define mean asafork with+/ % # .

mean =. +/ %#
mean i.9

p95
Tacit definition

The centigrade verb was defined explicitly with the: conjunction. The term
explicit indicates that the arguments to the verb in the definition are referred to
explicitly by their namesof x. and vy. .

In atacit definition the arguments are not named and do not appear explicitly in the
definition. The arguments are referred to implicitly by the syntactic requirements
of the definition. Y ou have already used several tacit definitions.

plus =+
sunover =. +/
maxover =. >./
scale =. % >./
mean =. + %#

The above are all tacit definitions. They do not use: and do not refer to arguments
by name. In some cases the tacit form of definition is much simpler and more
obvious than the equivalent explicit definition. In more complicated situations, it
may take a bit of experience before you are comfortable with atacit definition.
Thisis partly because you probably have experience with explicit forms of
definitions and very little with tacit definitions. In addition, tacit definitions tend to
be more concise and mathematical expressions of a definition, and it may be
necessary to go through the more detailed steps of creating an explicit definition
before the equivalent tacit definition becomes clear.

Let'srevisit fahrenheit to see how it could be defined tacitly. Open the cf.ijs script
and look at the fahrenheit definition.

fahrenheit =2 3 : O

tl = y. *9
t2 = t1 %5
t3 = t2 + 32

)

Y ou can start by cleaning up the explicit definition. Now that you are more
comfortable with J you can combine these calculations into asingle line.

fa= 3: "(y. *9 %5) + 32

The parentheses are required because the calculation inside them must be done
before the 32 is added.

L et's shuffle the definition a bit to make the steps in building a tacit definition a bit
Clearer.

fb = 3: '32 + ((9%) * y.)'

The above could be read as: add 32 to nine-fifths times the argument.

So, you need an add32 verb and ani nefi fthstinmes verb. You can use the bond
conjunction & to build these verbs tacitly. The bond conjunction with a constant
left argument returns a derived monad that isthe verb in its right argument with the
constant left argument.

add32 =: 32 & +

This definesadd32 asamonad that adds 32 to its argument.

add32 12
44

ninefifthstinmes =1 (9%) & *

This gives amonad which multiplies its argument by 99%.

ni nefifthstinmes 20
36

Combining these you have:

add32 ninefifthstines 100
212

The atop conjunction @combines two verbs into a derived verb that applies the
right verb to its argument and then applies the left verb to that result.

(u @v) y evaluates as u v y

Use the atop conjunction to combine your two verbs to create the final definition.

fc = add32 @ninefifthstimes

fc 100
212

fc 40
_40

fc O
32

Display the verb f ¢ and note that its definition is dependent on the other two
definitions.

Sometimes after you have built up atacit definition from smaller building blocks
you realize you really don't want all those smaller definitions hanging around. The
f . adverb takes atacit definition and replaces names with their definitions.

fz =. fc f.

Theadverbf. , like all adverbs, takes its argument on its | eft.

Look at f z to seethe final definition.

The system can display tacit definitions in several different forms. These options
can be selected from the View menu. With box display you get the preceding
display. The Box Display can be very useful in understanding tacit definitions.
However, for now use the View menu to select Linear Display so that you will see
the following:

fz
32&+@ 1. 8&*)

In comparing something as simple as averb defined as +, the tacit definition is
much simpler than the equivalent explicit definition. In the fahrenheit example it
could be argued that the explicit definition was simpler, especialy if you used the
1. 8 directly instead of the 99% as does the tacit definition.

fx =2 3 : '32+1.8*y."'

VS.
fz =1 32&+@1. 8&*)

The redl strength in tacit programming comes in more complicated transformations
of the arguments, particularly when the arguments must be referenced several
times. The following illustrates another use of tacit definition.

xmean =: 3 : '(+Hy.) %#Hy.'

Thisisthe mean that you ran across in the Fork p94 section.

mean = +/ %#

Thetacit definition just uses the fork directly.

Thefork could also have been used in the explicit definition, but would have
required parentheses around the fork.

xmean =: 3 : '(+ %#)y.'

One advantage of tacit definitionsisthat they are more easily manipulated in
formal ways than are explicit definitions. For example, J can automatically derive
the inverse of many tacit definitions. Let'stry this with the fz tacit definition. The
inverse of the Fahrenheit conversion is the centigrade conversion. The standard
profile defines an adverb inverse.

fz

cz

fz 100
212

32&+@ 1. 8&*)
fz inverse

cz 212
100

fz O
32

cz 32

Tacit programming is very powerful, but thereisno need to leap into it. It is
important to know what it isand to start using it in ssimple cases as thisis the best
way to become more familiar with it.

p96
Explicit-to-tacit translator

Thereis a primitive which automatically converts one-line explicit definitionsto an
equivalent tacit definition. Y ou can learn alot about tacit programming by writing
one line explicit definitions, converting them to tacit form, and studying the
resulting tacit definition.

Let's do thiswith an explicit fahrenheit definition. A left argument of 3 to: creates
an explicit definition. A left argument of 13 to: creates atacit definition.

f x
ft

3: '"32 +y. *9 %5 NB. 3 explicit
13 : '"32 +y. * 9 %5 NB. 13 tacit

Use the View menu to select Linear Display.

ft
32" _ +] * 1.8"

At first glance thisis confusing as it introduces several new things at once. The
first thing to do isto look at the boxed display.

Use the View menu to select the Box Display.

At the top level of boxing there are 3 boxes. Thisisatrain with three elements and
isin fact afork. You can take this thing apart by giving names to the parts and

looking at them separately.

Thefirst element of the fork isthe phrase 32" _ . Give this a name and experiment
with it abit as a monadic verb.

left =2 32" _
left 123

32
left i.5

32

Whatever you give left as an argument, it just returns 32. Y ou've seen the”
conjunction before, but not with a constant left argument. Let's look thisup in the J
Dictionary. When you turn to the definition for rank you will notice that there are
three pages of definitions, each with its own header. The three headings are:

Rank m" n
Rank u " n
Assign rank m" v u " v.nv lv rv

The different definitions are for the rank conjunction used with different types of
arguments. In the headings mand n indicate noun arguments and u and v indicate
verb arguments. Your earlier use of " involved averb left argument and a noun
right argument and is covered by the second definition. Both 32 and _ (infinity)
are nouns so it isthe first definition that is relevant.

Reading the definition for m " n makesit clear that the observations are correct.
With aright rank of _, the derived verb appliesto its entire right argument, and no
matter what it is, it returns the left argument, which is 32.

Let'slook at the right element of the fork.

right =2] * 1.8"
right 23
41. 4

right 10
18

Let's not worry about the details of the definition, but again, by observation, what
the verb right doesisto multiply its argument by 1. 8 (which is 99%).

The final definition isafork.
ff = left + right

ff 100
212

ff O
32

Theresult of thefork, f f , doeswork. Let'slook in more detail at the definition of
the fork.

left + right evaluates as (left y) + (right y)
32 + (1.8 * vy)

Which is the Fahrenheit conversion!

Compare your custom built tacit definition with the automatically translated one
and note how different they are.

328+@ 1. 8&*)
VS
32"+] * 1.8"_

Tacit programming is very rich and varied and istightly tied to adverbs and
conjunctions such as bond, atop, and rank, and to trains such as hook and fork.

p97
Checkpoint F

At this point you should understand:

. theterms adverb and conjunction

. how to evaluate sentences with adverbs and conjunctions
. how to select subarrays from arrays

. how to modify subarraysin arrays

. boxed data

« hooks and forks

. tacit definition

Check your understanding by doing the following exercises:

. experiment withdyads{ {. }. (negative numbersin the left arguments)

. look up a inthe JDictionary and use it asthe right argument in
experimentswiththedyads{ {. }.

. experiment with the adverbs and conjunctions introduced so far

. experiment with the hook = <. , determine what it does and why it does it
(hint: giveitanameand apply itto 2 4 5.2 7 6.5)

. do the same with the hook = +

p98
Foreign !:

All Jinterfaces with the environment are provided by the conjunction! : (foreign).
In most cases the foreign result is a verb that provides a specific service. The left
argument of foreign selects a general family of services and the right argument
selects a specific service from that family. The families of services selected by the
left argument are:

0 Scripts

1 Files

2 Host Commands

3 Storage Types

4 Name Classes and Lists
5 Representations

6 Time

9 Global Parameters

11 Windows

13 Debug

15 Dynamic Link Library
18 Locales

128 Numerical Functions

The foreign conjunction is documented in the J Dictionary and in the J Online
Documentation.

Y ou have run across a few specific uses of the foreign conjunction in earlier
sections.

The derived verb 9! : 11 was used in the Print precision section. The 9 selectsthe
Global Parameters family and the 11 gives aderived verb that sets the print
precision.

Theload verb uses 0! : 0 to load scripts. The left argument selects the scripts
family. Look up the definition. The 0 right argument is treated as three decimal
digits 000 and therefore executes sentences from afile, stops on an error, and is
silent (does not display sentences or results).

p99
Files

Many applications require reading and writing files. Like al Jinterfaces with the
environment, files are accessed with the foreign conjunction. The 1 family of
foreigns work with files. First define afew verbs for convenience.

readfile =: 11:1
witefile = 1!:2

Let's create afile with some datain it. You'll be using the filename several times,
so giveit aname. Thefile foreigns require that the file name be a boxed string.

fn = < 'user\test.txt'
"testing 1 2 3" witefile fn

Use whatever file editor you like to take alook at the file test.txt that was created in
the Juser directory. You could also open it asa script filein Jby using the
FilelOpen command (you will have to change the "List files of type" combobox to
list all filesin order to see your test.txt file).

Y ou can read the data from thisfile.

data =. readfile fn
dat a
testing 1 2 3

Y ou can rewrite the file and read the new data.

"new stuff for the file' witefile fn
readfile fn
new stuff for the file

Use an editor to change and resave the test.txt file and read it again to see that you
get the new data. Again, you could do this by opening the file as a script filein J,
editing it, and closing it and saving the changes.

L et's assume you had a numeric table that you wanted to write out as text file.

nuntab =. i. 4 5
nuntab witefile fn

I domai n error

| dat a witefile fn

If you try to write nunt ab out you get adomain error becausewritefil e
requires astring asits left argument. So, you need to convert the numeric table to a
string. Thefirst step isto convert the numeric data to character data. The primitive
": (format) doesthis.

cdata =. ": nuntab
cdat a

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

$cdat a
4 14

The display of cdat a looks like the numeric data, but its shape of 4 14 makesit
clear that it is a character table. However, you still can't write this out to file
because afile must be alist, not atable.

Themonad, (ravel) putsall the atoms of an array into alist.

crdata =. , cdata
$ crdata
56

crdata witefile fn
readfile fn
0O 1 2 3 45 6 7 8 910 11 12 13 1415 16 17 18 19

The data has been written to the file. However, reading the data from the file shows
there are still some problems. The fact that there were four rows of numbers has
been lost and some of the numbers from the end of arow (such as 9) run right into

the first number of the next row. Important information has been lost. The character
list should indicate that it has four lines of data.

Linesin atext file are separated by two special characters called CR (carriage
return) and LF (line feed). These characters are defined by the standard profile. The
list of these two characters used to separate linesis called CRLF. On the
Macintosh, a CR aloneis used to separate lines, and if you are working on aMac
you will have to take this into account. UNIX systems use just the LF character to
separate lines.

"abc' , CRLF , 'defghi
abc
def ghi

To each item (list) in cdata you want to append the list CRLF. Y ou need do this
with arank 1 version of append.

ddata =. cdata ,"1 CRLF
ddat a
0O 1 2 3 4

5 6 7 8 9
10 11 12 13 14

15 16 17 18 19

The blank lines in the display occur because the CRLF characters cause anew line,
but the end of the row of atable also causes anew line. However, when you ravel
thisto create alist, the system won't have any rows to worry about and the display
will again look OK.

| data =. , ddata
| dat a

0O 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Now you have a string with compl ete information about the original data that you

can writeto thefile.

| data witefile fn

Open thefilein an editor, or as ascript file, to see that the datais there.

What if you had this file and wanted to get the numbersin it into Jfor processing?
Y ou need to reverse the previous process.

readfile fn

rdata

rdat a
0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19

$rdat a
64

Getting the raw character datain is easy. But notice from the shape that it isalist of
character data.

Y ou know that each line of data ends with CRLF. The fact that thisistwo
characters, instead of 1 isanuisance, so the first thing to do isto get rid of the CR
characters and to leave just the LF asthe delimiter. The following expression uses -
. (look it up in the J Dictionary) to remove the CR characters from the data.
Character datawith just CR, just LF, or with CRLF separating lines displays the

15 16 17 18 19

Y ou can use the cutopen verb to partition the data.

bdata =. cutopen dlf

Each box contains the character data for the corresponding line. Y ou need a
primitive that converts strings to numbers. Thedyad ". can be used to convert
characters to numbers.

o". '527
527

a= 0".'52T7
3 +a

8 5 10

The left argument of " . isthe value used if a conversion of a number fails.
0O". '57.523.b 8

57.508

Use the each adverb to convert each of the boxes to numbers.

ndata =. 0 ". each bdata

ndat a
o +
'!0 1234567 8910 11 12 13 14! 15 16 17 18 19|
o e m e ama +

The display of bdat a and ndat a look the same, but the bdat a boxes contain
characters and the ndat a boxes contain numbers. Open the ndat a boxes to get the
numeric table result.

=. > ndata

=)
PoRrQOQ
P~
= 00w
= O b~

15 16 17 18 19

Y ou can wrap this all together by creating a new script file, entering the following
definitions, and saving it with a permanent name.

itetable =: dyad : O
"X
d ,"1 CRLF

d
y.

=
o -

wr
d
d
d
d :
)
readtable =0 3 : O
11:1 vy.

d -. CR

cut open d

0". each d
> d

~ 0 0000
LI e | |

Run the script file and test your definitions.

(i. 37) witetable fn
1 + readtable fn

1 2 3 4 5 6 7

8 910 11 12 13 14

15 16 17 18 19 20 21

Asyou gain more experience with Jyou will start combining sentences together. A
more experienced J programmer would probably write the above definitions as
follows:

witetable = 4 : "(,(": x.),"1 CRLF) 1!:2 y.'
readtable =: 3 : '>0 ". each cutopen (1':1 vy.)-.CR

The script files.ijs provide many useful utilities for working with files. Look them
up in the J Online Documentation.

|l oad 'files'
(": 1. 39 fwites '"newtest.txt’
84

0 ". freadr 'newtest.txt'
0O 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26

p100
Component files

A component file (jfile) can be thought of as a boxed list stored in afile. Anitem
of the boxed list on fileisreferred to as a component. The script jfiles.ijs provides
the utilities for working with jfiles.

load "jfiles'

f =. 'user\data.f’
jcreate f

"first conmponent' jappend f

(1.5+i.2 3) jappend f

('asdf';23) jappend f
23

(<'mum ;"' dad') jappend f 4
Thej si ze result givesfile information, including the indexes of the first and last
items,

jsize f
0 5 1408 0

1
|
11 muni dad; |
1
|

‘new jreplace f;3

3

jread f;i.5
o m o eaeao +
(first conponent} 1.5 2.5 3.5] asdf | neW +------- +|
| 14.5 5.5 6.5 | | 1 mun dad; |
| | e +
o m o eaeao +

Jfiles are documented in the J Online Documentation.

pl101
Graphical user interface

These days almost no programming task is complete until it is packaged in a graphical
user interface (GUI).

Let'sadd aGUI to your cent i grade andfahrenheit verbs.

There are many steps in building aform and an application. The exact steps you should
follow are contained in the series of indented, bulleted items. General discussion and
background information is provided in text between these bulleted items.

Run your cf.ijs script and make sure that centigrade and fahrenheit work.

Thefirst step in creating a GUI isto create aform definition. A form definition is stored
inascript file just as are al your other definitions.

Create anew script file, save it as a permanent file in the user directory, and start the form
editor. The form editor is covered in more detail in the J Online Documentation available
on the help menu and you should refer to that if you have problems with the following
steps, or want more information at this time.

create anew script file with File]New 1JS

saveit in the user directory as cfgui.ijs with File|Save As...

start the form editor with Edit|Form Edit

Y ou should now have the Form Edit dialog box on the screen.

Form E dit <]

Form [d: In::fgui ak.

Cancel

Form Type: |Daseformjs

typecfgui for your form name
select the empty form item in the listbox

press OK to close the dialog

Y ou should now have two new windows on the screen, one in the upper left corner and
one in the center of the screen that look something like:

B Lol

+ Design - cfgui_js |

File window Help

e, . [Irde | Eerter] Space | Mime
IT Run Heds Size || Touch | Blus
J5

The small form in the corner isthe new form you are editing. The Design dialog allows
you to customize the form and isin the middle of the screen. The script file cfgui.ijs has

had text added to it that defines the form.

Create a static control in your form with the text centigrade. A static control is used to
label other controls.

press the New... button in the Design dialog

in the New Control dialog select static from the listbox

typecenti grade into the caption edit box

press OK

New controls are created in the upper left corner of the form. Y ou can drag a control with
the mouse. To drag a control, point at it with the mouse, hold down the left mouse button
and moveit.

drag the centigrade label down and to the right a bit

Create an edit control with anid of ci d for the centigrade value. The id is very important
asit isused as the name of the noun used for the control as well as being used in
commands to indicate which control they affect.

press the New... button

select aclass of edit
typeinci d asthe control id
press OK

drag theci d edit control to the right of the label control

Create a static control with the text Fahrenheit and an edit control with anid of fi d.

repeat steps similar to the above to create a Fahrenheit static label and an fid edit
control

Experiment a bit with moving the controls around. Grab edges or cornersto resize them.
If you make a mistake you can select a control with the mouse and press the Delete key to
deleteit and then recreateit.

Y our form should now look something like the following:

.J. cfgui - cfgui.js _ [O) x|

Centigrade cid edit

:FaP.'nrer.'uheit . fi.j.e.ji.t

The form design isfinished. Let's exit the form editor and try running the form.

press OK in the Design dialog

The form definition is now in the cfgui.ijs script. Let's take alook at what the form editor
put into the script. The numbers giving screen coordinate will be different, but your script
should look something like:

NB. base form

CFAQUI=: 0: O

pc cfqui;

xywh 12 18 40 10;cc ccstatic static;cn "centigrade:";
xywh 56 16 40 14;cc cid edit ws_border es_autohscroll;
xywh 12 40 40 10;cc ccstatic static;cn "Fahrenheit:";
xywh 56 36 40 14;cc fid edit ws_border es_autohscroll;
pas 6 6;pcenter;

rem form end;

)

cfgui _run=: 3 : 0

wd CFGU
NB. initialize form here
wd ' pshow; '

)

cfgui _close=: 3 : 0
wd' pcl ose’
)

All interactions with forms are done with thewd (Window Driver) verb. The wd
argument is always a string that starts with a command. A string can contain multiple
commands separated by semicolons.

The noun CFGUI is defined by the conjunction : inamanner similar to how verbs are
defined. The left argument of 0 creates anoun. It is defined as the lines of characters up
to the line which contains only the) . It contains the commands that will create the form.
Don't worry about the details now, but most of it should make some sense. Commands

are followed by parameters and multiple commands on aline are separated by ; . The pc
command is a parent create (aform isreferred to as a parent). The next line has an xywh
command that sets arectangular area on the form and is followed by acc command
(create child) that creates one of the controls you put on the form.

After the definition of CFGUI you will see that the editor has created a verb called

cf gui _run. Thisverb ignoresits argument. It executesthewd verb with CFGUI asan
argument. This creates the form, but doesn't show it. Thefinal wd with the argument

' pshow; * will show the parent (form).

At this point the cfgui.ijs script has not been run so the definitions are just text in the
script file and have not been defined. After you run the script you are ready to run your
application.

run the cfgui.ijs script with Run|Window

intheijx window: cfgui _run 0

When you execute cf gui _run 0 you should see your form in the middle of the screen.
Typing into the controls and pressing Enter has no effect because you have no code
connected to the events yet.

Y ou can close the form manually by executing thewd command reset that closes all
forms.

in theijx window: wd 'reset'

When you type avalue in the centigrade edit control and press Enter you cause an event.
An event isidentified by the form and the control in which it occurs and the type of the
event. An Enter in an edit control is a button event (pressing enter in an edit field is

analogous to pressing a button control). So, the event of interest hereisfor form cf gui ,
control ci d, and is a button event.

When an event occurs, averb called the event handler is executed. The name of the verb
that is executed is determined by the event. The name of an event handler is made up of
three parts: f or mi d_control i d_event . SO, the event handler of interest has the name
cfgui _cid_button.

The event handler cf gui _ci d_but t on should convert the value from theci d edit
control to Fahrenheit and then display that result inthefi d edit control.

The form editor can automatically create a skeleton of this event handler for you. In the
form editor, hold down the Ctrl key and click a control, and you will be switched to
editing in the script at the definition of the verb that handles the event for that control.

Y ou closed the form editor, so the first thing isto restart the form editor. Select the
cfgui.ijs script and start the form editor with Edit|Form Edit.

select cfgui.ijs (titlebar highlighted)

start form editor with Edit|Form Edit

Y our form should again appear open for editing in the corner of your screen.

hold down the Ctrl key and click the cid control

Y ou should be positioned at the skeleton definition of cf gui _ci d_button inthe
cfgui.ijs script. You need to define that verb. When the event handler is executed the
nounci d will automatically have the value of the contents of the edit field. It will be a
string and you need to convert that to a number with the" . primitive.

The next thing isto convert that centigrade value to Fahrenheit.

t =. fahrenheit t

Thenount isthe number you want to display inthefi d edit control. The number must
be converted to a string before it can be shown in an edit field. Use": (format) for this.

t = "t

Finaly, write the text string tothefi d edit field.

wd 'set fid "' , t

Thewd argument has acommand of set , theid of the control to set, andt containsthe
datato set. The* indicates all the following data is the text to set in the control.

Add these sentences to the definition in the cfgui.ijs script.

cfgui _cid button=: 3 : 0
0O". cid
f

ahrenheit t

nnne

t

t

t ot
wd "set fid *', t
)

Be careful to type this correctly into your script.

Y ou return to the form editor by holding down the Ctrl key and clicking the script
window.

add the sentences to the definition of c¢f gui _ci d_but t on

hold the Ctrl key and click the script to return to the form editor

press OK in the Design dialog

At this point the cfgui.ijs script has not been run so the changes are just text in the script
file.

run the script with Run|Window

in theijx window run the application: cf gui _run 0

Y ou should see your form in the middle of the screen. Type a number into the centigrade
field and press Enter. The Fahrenheit value should display initsfield.

If you type into the Fahrenheit field and press Enter nothing happens. Thisis because you
have not provided a handler for that event. If an event handler verb is not defined, the
event isignored. Let's define the event handler for Enter in the Fahrenheit field now. Start
the form editor and hold down the Ctrl key and click the fid control to get to the
definition of the verb for that event. The definition for cf gui _fi d_but t on issimilar to
that of cf gui _ci d_butt on.

cfgui _fid_button=: 3 : O
= 0". fid
=. centigrade t

select cfgui.ijs (titlebar highlighted)

start the form editor with Edit|Form Edit

hold down the Ctrl key and click the fid control

add thecf gui _fi d_but t on definition to the script

hold the Ctrl key and click the script to return to the form editor

press OK in the Design dialog

run the script with Run|Window

intheijx window: cfgui _run 0

Now when you type avaue in the Fahrenheit field and press Enter it will be converted
and display in the centigrade field.

Finally, add a close button so that the form will be able to close itself. The event handler
will be asfollows:

cfgui _close button=: 3 : 0

wd ' pcl ose'
)

The wd command pclose (parent close) closes the form.

intheijx window: wd ' reset’

start the form editor with Edit|Form Edit

press the New... button

select a class of button

type close as the control id

type Close in the caption field

press OK

drag the Close button to the right side of the form

hold down the Ctrl key and click the Close button

add thewd ' pcl ose' sentence to the definition

hold the Ctrl key and click the script to return to the form editor

press OK in the Design dialog

run the script with Run|Window

in theijx window: cfgui_run O

When you tire of doing conversions you can press the Close button to close your form.

Congratulations! you have written a GUI application in J. It is simple and has rough
edges, but you are over the high hurdles.

p102
Data processing

Applicationstypically have a GUI part and a data processing (DP) part. The DP
part is the actual calculations and data manipulation. A good application
implementation will be modular and thisimplies a clear distinction between the
GUI and the DP parts.

In this section you will develop the DP part of asimple application. In the next
section you will develop the GUI part.

The DP part of the application is specified as follows:

Theinput isthe name of atext file. The output is a string that
displays as atable that contains:. the file name, a count of lines, a
count of characters, and arow for each distinct character in thefile
and a count of how many timesit appearsin the file. The rows of
distinct characters should be sorted by their counts.

You'll be working with files, so load the file utilities.

load 'fil es'

Create asimpletext file to use astest data.

fn = ‘'user\text.txt'
data =. 'abc' , LF, "bc' , LF, 'b" , LF
data fwite fn
9
fread fn
abc

bc

Y ou need to define averb report that takes a filename as an argument and returns
the specified result. You'll build pieces of the definition in the ijx window and then
put them all together into the definition in a script.

Theinput isafilename and in the report verb it will have the namey. , so start by
working withy. intheijx window.

y. =. 'user\text.txt’
Read thefile.
d =. fready.

The report will have two columns. The first column will be the labels 'File:',
'Lines, 'Chars:', and each distinct character in the file. The second column will be
the value for that row. Since the data is a mixture of text and numbers it makes
sense to build the result as boxed data.

Create a noun with the fixed |abels.

=. '"File:' ; '"Lines:' ; 'Chars:'

Thedyad, . (stitch) can connect these two listsinto atable.

r=r,. y.; (+# LF=d ; #d
r

Fom e e e oo +

I File: }user\text.txt)

+--- o - - Fom e e e |

i Lines: |3 |

+--- o - - Fom e e e |

i Chars: |9 |

Fom e e e oo +

The next thing isto add the rows with the characters and their frequency counts.
The letter isthe label and the count isthe value, so it just adds more itemstor .

L et's postpone that part of the problem, and work instead on converting the boxed
table to the string result required by the spec. Use a comment to mark the bit we
are skipping over for now.

NB. need to add frequency rows to r here

The numbers in the second column need to be converted to characters. The easiest
way to do thisisto convert the contents of each box to characters. The characters
are already characters and are not affected, but any numbers will be converted.

r =. ":eachr

r
e +
{File: juser\text.txt)
+--- - - S |
| Lines: |3 |
+--- - - S |
i Chars: |9 |
e +

The display of r with all characters looks the same, but each box now contains
characters.

The next step is interesting and the details are left for you to puzzle out. It adds a
TAB after each label and an LF after each value. In the final result the TAB
separates the label from its value, and the LF causes a new line for the next label.
The boxed display showsthe TAB and LF as blanks, but they really arein there.

r =. r ,each"1 1 TAB;LF
r

o e e e e oo +

1File juser\text.txt |

Hom e - S |

i Lines: ;3 |

Hom e - S |

i Chars: |9 |

o e e e e oo +

The monad ; (raze) opens all the boxes and assembles a string result.

g

File: user\text.txt
Li nes: 3

Chars: 9

Y ou are ready to define your verb report. Create anew script and saveit as
user\textdp.ijs. Putting together the ijx experiments, add the following definition
for report to the script.

report =: 3 : 0
d =. fready.
r =. "File:" ; "Lines:" ; 'Chars:'
r=-r,.v. ; (+ LF=4d) ; #d

B. need to add frequency rows to r here
r ":each r
r r ,each"1 1 TAB; LF

=0

)

Run the script and test report.

report fn

File: user\text.txt
Li nes: 3
Chars: 9

Now calculate the frequency rows. You need averb f req that returns atable of
boxes where the first column is the distinct characters and the second column is the
count of timesthey arein thefile. Theargument to f r eq isthefile dataand inside
freq itwill havethenamey. , so let'sstart withy. defined asthefile data.

y. = fread fn

The data can include TAB, CR, and LF characters and they should be removed.
Thedyad - . (less) can remove these unwanted characters.

d = vy. -. TAB, CR LF
d
abcbchb

The utility nubcount , defined by script misc.ijs, returns atable of boxes with a
first column containing the distinct itemsin its argument and the second column
containing the counts.

|l oad ' m sc'
nc =. nubcount d
nc

+--- 4+

pay 1

+-+-

1 by 3]

+-+-

1 C1 2

+--- 4+

To sort the items by the counts you need to get the countsinto alist.

> 1 {"1 nc

132

Thedyad\ : (sort down) sorts the items of its left argument based its right
argument.

nc\: >1{"1 nc
+---+

b} 3

freq = 3: 0

d = vy. -. TAB,CR LF
nc =. nubcount d
nc\: >1{"1 nc

)

Run the script and test f r eq.

freq fread fn
+---+
| b} 3|
+-+-
1 Ci 2
+-+-
a1
+---+

You cannow usefreq inyourreport verb. Modify theNB. comment linein
report to be:

r = r, freqd

Run the script and test report.

report fn
File: user\text.txt
Li nes: 3
Chars: 9
b 3
c 2
al

Try it on other text files.

Y ou have finished the data processing part.

p103
GUI

The GUI part of the application is specified as follows:

The form should have a File button, a Close button, and a multiline edit control.
The File button allows the user to select atext file. The report on the selected text
fileisdisplayed in the multiline edit control.

Y ou need to design the form and define the event handlers.

The GUI definitions will be in adifferent script from the DP definitions to keep
clear the distinction between the two parts. Create a new script file and saveit as
user\textgui.ijs. Start the form editor and design the form. The File button should
haveanidof fil e andthe Close button should have anid of cl ose. The large
edit control isamultiline edit control that has a class of edi t m in the New Control
dialog. The multiline edit control should have anid of edi t m (the default is

ccedi t m, SO you must specify edi t m). The form should look like the following:

.J. filerep - filerep.js =] B3
Fie | Cose |
editrn editm

Y ou need to add event handlers for the Close and File buttons. The code for the
event handlersisin the following listing. Thislisting should be similar to your
final textgui.ijs script.

FI LEREP=: noun defi ne

pc filerep;

xywh 9 7 34 14;cc file button;cn "File";

xywh 47 7 34 14;cc close button;cn "C ose";

xywh 9 27 119 134;cc editmeditmws_border es_autovscroll;
pas 6 6;pcenter;

remformend;

)

filerep_run=: 3 : O

wd Fl LEREP
NB. initialize form here
wd ' pshow; '

)

filerep_close button=: 3 : O
wd' pcl ose'
)

filerep_file_ button=: 3 : O

p =. oot "Text(*Ltxt)]| *.txt" ofn_fil enustexist’
fn = wd 'nbopen' , p

if. 0 ~ #fn do.

wd 'set editm*' |, report fn end.

)

The only part that is new isthe use of the wd command nbopen. This command
brings up the common file open dialog box that allows the user to select afile.
Local p contains the parameters for the mbopen command. These parameters are
critical and must be defined properly. If you want to know more about the mbopen
parameters, you can check in the J Online Documentation.

The result of the nbopen command is the file name selected by the user. If the user
pressed cancel in the open dialog the result will be an empty string and thereis
nothing to do. If f n isnot empty then you executer eport f n to generate the
report and set it into the edi t m control.

The* inthelinewd 'set editm*' , report fn end. indicatesthat the rest
of the string, which istheresult of report fn, isthe datato set into the edi t m
multiline edit control.

Run the textdp.ijs and textgui.ijs scripts and then start the application.

filerep_run O

Press the File button and select your user\text.txt file and press OK. Try other text
files.

The application uses definitions from four scripts: textdp.ijs, textgui.ijs, files.ijs,
and misc.ijs. It makes sense to create a single script that will load all the scripts and
then run the application.

Create anew script file, save it as user\textapp.ijs, and add the following lines.

NB. this application reports file character frequencies
| oad 'files'

| oad ''m sc’

0!:0 < "user\textdp.ijs'

0!:0 < "user\textgui.ijs'

filerep_run O

Save the script. Close Jand restart it to get a clean slate. Run the application by
using Run|File to run the script user\textapp.ijs.

pl104
Where to go from here

If thisisyour first skim reading, or your second more detailed reading, or if you
feel you haven't quite mastered all the material, then thisis the point to go back to
the beginning and have another go in more detail, and perhaps use a bit more
elbow grease and get those hands working on the keyboard.

If you have mastered this material, then it istime to move on. Y ou can start
digging in on your own, but a bit more time with the other manualsis probably
worthwhile.

. JOnline Documenatation p105
. JDictionary p106
. JPhrases p107

p105
J Online Documenatation

Take the time to familiarize yourself with the documentation available from the J
help menu. It is worthwhile to quickly browse through al the material so you'll
know where to ook when something comes up.

Thereisinformation on how to use the standard libraries and packages that are
provided with the system. If you prefer reinventing the wheel, then ignore it, but if
you want a head start, take alook.

Thereismaterial on GUI programming and the window driver. If you are content
with theijx and ijs windows and are your own end user, then ignore it. If you want
to build more complete applications and possibly provide them for other end users,
then you need to spend time learning this stuff.

p106
J Dictionary

By now you should be familiar with the vocabulary and definition part of the J
Dictionary.

This primer has introduced most of the J Dictionary concepts, athough in a
simpler way that is restricted to specific situations. As mentioned before, the J
Dictionary is areference book and its descriptions are both as concise as possible,
and at the same time as compl ete as possible, with more emphasis on complex and
tricky situations for experts, than on the mundane ones for beginners.

It would be worthwhile to read the sections that preceed the individual definitions.
Much of it will make sense, and some of it will either answer questions that had
arisen in your mind, or just as likely raise interesting new questions. Based on the
experience of seasoned J programmers, you'll find yourself reading and rereading
this material, and on every reading you'll learn something new.

Y ou are a'so now more than ready to attack the Introduction. Y ou should definitely
work your way through the first 20 lessons. It shouldn't be too tough and you'll
learn alot.

Especially if you work through the exercises!

The remaining lessons are more difficult and will take more effort to master.

Working your way through the Sample Topicsis one of the best ways to meet
some of the primitivesin action. Y ou'll be continuously challenged and constantly
referring to the definitions and experimenting with the system to try to understand
what is going on. In the end you'll be a much better J programmer, to say nothing
of learning afair bit of math and computer science!

p107

J Phrases

The earlier you take alook at the J Phrases book and find that it starts to make
sense, the better. There are few better waysto learn alanguage than by reading
material written by experts, and that is exactly what this book is. Think of it asa
collection of the greatest J short stories; you'll delight and marvel as you read
through it, but it can also be a practical addition to your kit of software tools. If you
run across a particular requirement in one of your applications for atight little
kernel of math, statistics, or data manipulation, chances are good that you can refer
to the J Phrases and find what you want, or at least a starting point.

p108

end.

Finally, the end of the structured learning! Welcome to the ranks of J

programmers. Y ou are now free to put this stuff to use in your own way. Good
luck and enjoy.

Index

A

a
a
abbreviated
absence
agree(s)
agreement(s)
alphabet
ambivalence

ambivalent
amend(s)
areas
arithmetic
ascii
atom(s)

atop

p109

Space p30 - Frame and cell p70 - Checkpoint F p97
From - boxed indexes p87 - Selecting without from p90

Print precision p56
Order of evaluation p33
Order of evaluation p33 - Rank conjunction " p75

Agreement p74 - Rank conjunction " p75 - Checkpoint E p77
Terminology p10 - Alphabet p11 - Word p12

Ambivalence p22 - Checkpoint A p26 - Monad/dyad defined
P35

Adverb p78

Amend } p89

Y our background p4 - Environment p6

Vocabulary p25

Alphabet p11

Atom p60 - List p61 - Table p62 - Array p63 - Axis p64 - Shape
p65 - Rank p66 - Empty Array p67 - Single atom array p68 -
Frame and cell p70 - Item p71 - k-cell p72 - Verb rank p73 -
Agreement p74 - Result shape p76 - Checkpoint E p77 - Insert
adverb p79 - Table adverb p80 - Box - monad < p83 - Open -
monad > p85 - From - boxed indexes p87 - Files p99

Tacit definition p95 - Explicit-to-tacit p96

axe(s)

B

binary
bits
boolean(s)
box

boxed

boxes

break(s)

caret

AXis p64 - Shape p65 - Rank p66 - Agreement p74 - From -
boxed indexes p87 - Scattered indexing p88 - Selecting without
from p90

|nexact numbers p57

Vocabulary p25

Vocabulary p25 - Table adverb p80 - Cut ;. p91

Vocabulary p25 - Word formation p29 - Precedence p31 - Box -

monad < p83 - Open - monad > p85 - Cut ;. p91 - Tacit
definition p95 - Explicit-to-tacit p96 - Files p99 - GUI part 1
pl01 - Data processing p102 - GUI part 2 p103

Box - monad < p83 - Link - dyad : p84 - Open - monad > p85 -
From - boxed indexes p87 - Cut ;. p91 - Each p92 - Explicit-to-
tacit p96 - Checkpoint F p97 - Files p99 - Component files p100
- Data processing p102

Vocabulary p25 - Word formation p29 - Box - monad < p83 -
Link - dyad : p84 - Open - monad > p85 - Cut ;. p91 - Each p92 -
Explicit-to-tacit p96 - Files p99 - Data processing p102
Precedence p31 - Order of evaluation p33 - Adding lists p51 -
Array p63 - Cut ;. p91

Y our background p4
Vocabulary p25

centigrade

circle

circular
comparative(s)
comparing
component(s)
config
conjugate(s)
conjunction(s)

constants
control(s)

D

dbr
deal(s)
debug

debugging

Verb definition p34 - Monad/dyad defined p35 - Script file p36 -
Local p37 - Global p38 - Debug global p39 - When they aren't
p4l - Debug - step through p46 - Debug - an error p47 - Control
structure p49 - Jway of adding lists p52 - Rank conjunction "
p75 - Conjunction p81 - Tacit definition p95 - GUI part 1 p101

A few more primitives p53 - Checkpoint D p59

A few more primitives p53

Comparative p48 - Jway of adding lists p52 - Checkpoint D p59
Tacit definition p95

Component files p100

Standard profile p9 - Word formation p29
Vocabulary p25

Terminology p10 - Rank conjunction " p75 - Result shape p76 -
Checkpoint E p77 - Conjunction p81 - Order of execution p82 -
From - boxed indexes p87 - Cut ;. p91 - Tacit definition p95 -
Explicit-to-tacit p96 - Checkpoint F p97 - Foreign !: p98 - Files
p99 - GUI part 1 p101

Word formation p29 - Order of execution p82

Parentheses p32 - Control structure p49 - Checkpoint C p50 -
Adding lists p51 - Verb rank p73 - GUI part 1 p101 - GUI part 2

p103

Debug - step through p46 - Debug - an error p47

Environment p6 - Terminology p10 - Verb definition p34
Debug global p39 - Debug - step through p46 - Debug - an error
p47 - Checkpoint C p50 - Foreign !': p98

Debug global p39 - Debug - step through p46 - Checkpoint C
P50

derive(s) Tacit definition p95

derived Adverb p78 - Insert adverb p79 - Table adverb p80 -
Conjunction p81 - Order of execution p82 - Cut :. p91 - Each
p92 - Hook p93 - Tacit definition p95 - Explicit-to-tacit p96 -
Foreign !: p98

diagonal (s) Scattered indexing p88

dimension(s) Atom p60 - List p61 - Table p62 - Array p63 - Axis p64
dimensional Table p62 - Array p63

distribution(s) Why Jp2

divide(s) Experiment p8 - Hook p93

divided Dyad p23 - Monad p24 - Verb definition p34 - Hook p93 - Fork
p94

dividing Tolerance p58

division(s) Precedence p31

divisor(s) Vocabulary p25

documenatation Where next? p104 - Online Documentation p105

document(s) Y our background p4 - Vocabulary p25

documentation Vocabulary p25 - Locale p42 - Script load p44 - Foreign !': p98 -
Files p99 - Component files p100 - GUI part 1 p101 - GUI part 2

p103 - Online Documentation p105
documented Script load p44 - Foreign !': p98 - Component files p100

dot(s) Alphabet p11 - Number p16 - Negative number p17 - Primitive
p18 - Vocabulary p25 - Space p30 - A few more primitives p53

drop(s) Selecting without from p90

dyad(s)

dyadic

dyadically

E

E.

editm
enclosed
enclosing
equals
evaluate(s)

evaluated
evaluating
evaluation

Ambivalence p22 - Dyad p23 - Monad p24 - Vocabulary p25 -
Checkpoint A p26 - Order of evaluation p33 - Monad/dyad
defined p35 - Comparative p48 - Control structure p49 -
Checkpoint C p50 - Adding lists p51 - Jway of adding lists p52
- A few more primitives p53 - Table p62 - Verb rank p73 -
Agreement p74 - Rank conjunction " p75 - Result shape p76 -
Table adverb p80 - Order of execution p82 - Link - dyad ; p84 -
From - dyad { p86 - Scattered indexing p88 - Amend } p89 -
Selecting without from p90 - Cut ;. p91 - Checkpoint F p97 -
Files p99 - Data processing p102

Ambivalence p22 - Dyad p23 - Vocabulary p25 - Monad/dyad

defined p35 - z locale p43 - Checkpoint B p45 - Control
structure p49 - Adverb p78

Monad/dyad defined p35 - Rank conjunction " p75 - Amend }
p89 - Each p92

Cut ;. p91
GUI part 2 p103

Order of evaluation p33

Order of evaluation p33

Control structure p49

Order of evaluation p33 - Hook p93 - Fork p94 - Tacit definition

p95 - Explicit-to-tacit p96 - Checkpoint F p97
Verb definition p34 - Link - dyad : p84 - Hook p93 - Fork p94
Negative number p17

Parentheses p32 - Order of evaluation p33

executes

executing

exponential(s)

F

f.
float(s)
fork(s)

functional(s)

G

gcd

H

handler(s)
head(s)

Get started p7 - Script file p36 - When they aren't p41 - Locale

p4?2 - Control structure p49 - Plot locale p55 - Order of
execution p82 - Foreign !: p98 - GUI part 1 p101

Script file p36 - When =.and =:are alike p40 - Locale p42 -
Debug - step through p46 - Debuq - an error p47 - Plot locale
p55 - GUI part 1 p101

Negative number p17

Tacit definition p95

Vocabulary p25

Fork p94 - Tacit definition p95 - Explicit-to-tacit p96 -
Checkpoint F p97

Global p38

Vocabulary p25

GUI part 1 p101 - GUI part 2 p103
Order of evaluation p33 - Selecting without from p90 - Online

Documentation p105

icon(s)
imaginary
incremented
indexes

indexing

inexact
inexactly
infinity
inflected
inflection(s)
integrated
invoke(s)

Primitive p18 - Control structure p49 - A few more primitives
p53 - Plot p54 - Print precision p56 - Table p62 - Array p63 -
Shape p65 - Verb arguments p69 - Frame and cell p70 - Item
p/71 - k-cell p72 - Verb rank p73 - Agreement p74 - Rank
conjunction " p75 - Result shape p76 - Insert adverb p79 - Table
adverb p80 - Order of execution p82 - Box - monad < p83 - Link

- dyad ;: p84 - Open - monad > p85 - From - dyad { p86 - From -
boxed indexes p87 - Amend } p89 - Selecting without from p90
- Fork p94 - Explicit-to-tacit p96 - Files p99 - Component files
p100

Get started p7 - Standard profile p9

Vocabulary p25

Adding lists p51

From - dyad { p86 - From - boxed indexes p87 - Scattered
indexing p88 - Selecting without from p90 - Component files
p100

From - dyad { p86 - Scattered indexing p88 - Amend } p89 -
Salecting without from p90

| nexact numbers p57

| nexact numbers p57

Number p16 - Negative number p17 - Explicit-to-tacit p96

Vocabulary p25 - A few more primitives p53
Primitive p18 - Space p30 - Global p38

Why Jp2 - Script file p36

Plot locale p55

java

jsoftware

languages

letter(s)

library
limit(s)
locale(s)

locals

lowercase

M

macintosh
magnitude(s)

Why J p2 - Purpose of this book p3 - Y our background p4 -
Adding lists p51

Where next? p104

Why Jp2 - Your background p4 - Terminology p10 - Name p19
- Precedence p31 - Parentheses p32 - Order of evaluation p33 -
Comparative p48 - Adding lists p51 - Jway of adding lists p52 -
| nexact numbers p57

Standard profile p9 - Alphabet p11 - Primitive p18 - Space p30 -
Locale p42 - zlocale p43 - Control structure p49 - A few more
primitives p53 - Data processing p102

Foreign !: p98

Vocabulary p25 - Inexact numbers p57 - Checkpoint E p77

Localep4?2 - zlocale p43 - Script load p44 - Checkpoint B p45 -
Plot locale p55 - Foreign !: p98

Global p38 - When they aren't p41 - Debug - step through p46 -
Adding lists p51

Alphabet p11

Environment p6 - Standard profile p9 - Files p99
k-cell p72

math

mathematical
matrix
modul ar
monadically

monads
multiplied
multiplies
multiply
multiplying

NB.

negate(s)
negation
nested

nubcount

Terminology pl10 - Vocabulary p25 - Precedence p31 -
Parentheses p32 - Inexact numbers p57 - Tolerance p58 - Array
p63 - JDictionary p106 - J Phrases p107

Why J p2 - Inexact numbers p57 - Tacit definition p95
Array p63
Data processing p102

Monad/dyad defined p35 - Insert adverb p79 - Cut ;. p91 - Each
p92 - Fork p94

Checkpoint A p26 - Order of evaluation p33

A few more primitives p53 - Inexact numbers p57
Tacit definition p95

Explicit-to-tacit p96

|nexact numbers p57 - Tolerance p58

Comment p20 - Vocabulary p25 - Word formation p29 - Space
p30 - Order of evaluation p33 - Global p38 - Debug global p39 -
Localep4?2 - zlocde p43 - Debug - an error p47 - Control
structure p49 - Adding lists p51 - A few more primitives p53 -
Plot locale p55 - Print precision p56 - Table p62 - Shape p65 -
Rank p66 - Empty Array p67 - Single atom array p68 - [nsert
adverb p79 - Table adverb p80 - Box - monad < p83 - From -
dyad { p86 - From - boxed indexes p87 - Scattered indexing p88
- Selecting without from p90 - Each p92 - Explicit-to-tacit p96 -
GUI part 1 p101 - Data processing p102 - GUI part 2 p103

Ambivaence p22

Vocabulary p25

Control structure p49 - Link - dyad ; p84
Data processing p102

numerical

O

0.
operator(s)

P

parentheses

parenthesis
parenthesi ze(s)
parenthesi zed
parsed

parsing
partition(s)
partitioned
plots

plotting
power(s)

precedence(s)

Foreign!: p98

A few more primitives p53 - Plot p54 - Table adverb p80
Terminology pl10

Parentheses p32 - Order of evaluation p33 - Order of execution

p82 - Tacit definition p95
Order of evaluation p33
Order of evaluation p33
Parentheses p32

Order of execution p82

Order of execution p82

Locale p42 - Cut ;. p91 - Files p99
Cut ;. p91

Table adverb p80

Table adverb p80

Purpose of this book p3 - Locale p42 - A few more primitives
p53 - Checkpoint D p59 - Verb arguments p69

Precedence p31 - Parentheses p32 - Order of evaluation p33 -
Order of execution p82

primitive(s)

random
rank(s)

ravel(s)

raze
reciprocal(s)
relational (s)

Primitive p18 - Name p19 - Comment p20 - Monad p24 -
Vocabulary p25 - Word formation p29 - Space p30 - Verb
definition p34 - Script file p36 - Comparative p48 - Control
structure p49 - Adding lists p51 - Jway of adding listsp52 - A
few more primitives p53 - Print precision p56 - Checkpoint D
p59 - Table p62 - Array p63 - Verb rank p73 - Rank conjunction

" p75 - Checkpoint E p77 - Adverb p78 - Insert adverb p79 -
From - boxed indexes p87 - Selecting without from p90 - Cut ;.
p91 - Explicit-to-tacit p96 - Filesp99 - GUI part 1 p101 - J
Dictionary p106

A few more primitives p53

Rank p66 - Empty Array p67 - Single atom array p68 - Verb
arguments p69 - Frame and cell p70 - Item p71 - k-cell p72 -
Verb rank p73 - Agreement p74 - Rank conjunction " p75 -
Result shape p76 - Checkpoint E p77 - Insert adverb p79 - Table

adverb p80 - Conjunction p81 - Link - dyad : p84 - Open -
monad > p85 - From - dyad { p86 - From - boxed indexes p87 -
Scattered indexing p88 - Explicit-to-tacit p96 - Files p99 - end.
p108

Files p99

Data processing p102

Monad p24
Comparative p48

script(s)

self
semicolon(s)
shapes
singleton(s)
sorted

sorts

square(s)

T

t.
tacit

tacitly

tally
technique(s)
terminology
tolerant
tolower
toupper
train(s)

Script file p36 - Global p38 - Debug global p39 - When they
aren't p41 - Locale p42 - Script load p44 - Checkpoint B p45 -
Debug - step through p46 - Debug - an error p47 - Control
structure p49 - Checkpoint C p50 - Adding lists p51 - Jway of
adding lists p52 - Plot p54 - Plot locale p55 - Tacit definition
p95 - Foreign !: p98 - Files p99 - Component files p100 - GUI
part 1 p101 - Data processing p102 - GUI part 2 p103

How to use this book p5 - Experiment p8
GUI part 1 p101
Open - monad > p85

Single atom array p68 - Scattered indexing p88

Data processing p102

Data processing p102
Checkpoint B p45

Print precision p56

Rank conjunction " p75 - Tacit definition p95 - Explicit-to-tacit

p96 - Checkpoint F p97

Tacit definition p95

Adding lists p51 - Item p71 - Cut ;. p91
Plot locale p55

Terminology pl10

Tolerance p58

Script load p44

Script load p44

Hook p93 - Fork p94 - Explicit-to-tacit p96

transformation(s) Tacit definition p95

trandlated
trand ator
trigonometric

U

uppercase

V

valence(s)
verb(s)

whilst

Explicit-to-tacit p96
Explicit-to-tacit p96
A few more primitives p53

Alphabet p11

Ambivaence p22

Terminology p10 - Verb p14 - Number p16 - Negative number
pl7 - Name p19 - Ambivaence p22 - Dyad p23 - Monad p24 -
Vocabulary p25 - Checkpoint A p26 - Precedence p31 -
Parentheses p32 - Order of evaluation p33 - Verb definition p34
- Monad/dyad defined p35 - Script file p36 - Local p37 - Global
p38 - Debug global p39 - When =.and =:are dlike p40 - When
they aren't p41 - Locale p42 - z locale p43 - Script |load p44 -
Checkpoint B p45 - Debug - step through p46 - Debug - an error

p47 - Comparative p48 - Control structure p49 - Checkpoint C
p50 - Adding lists p51 - Jway of adding lists p52 - A few more
primitives p53 - Plot locale p55 - Print precision p56 -
Checkpoint D p59 - Rank p66 - Single atom array p68 - Verb
arguments p69 (only first 40 listed)

Control structure p49

year(s)

Monad/dyad defined p35 - Control structure p49 - Checkpoint C

p50 - Adding lists p51 - Jway of adding lists p52 - Tacit
definition p95 - Files p99

Verb definition p34 - Monad/dyad defined p35 - Script file p36 -
Global p38 - Debug global p39 - Locale p42 - Debug - step
through p46 - Debug - an error p47 - Control structure p49 -
Adding lists p51 - Jway of adding lists p52 - Tacit definition
p95 - Explicit-to-tacit p96 - Files p99 - Data processing p102

Why Jp2 - Iway of adding lists p52

