>>  <<  Ndx  Usr  Pri  JfC  LJ  Phr  Dic  Rel  Voc  !:  wd  Help  Dictionary

 Power u^:v  _ _ _

 The case of ^: with a verb right argument is defined in terms of the noun right argument case (u ^: n) as follows:                     x u ^: v y ↔ x u^:(x v y) y   u ^: v y ↔   u^:(  v y) y

For example:
```   x=: 1 3 3 1
y=: 0 1 2 3 4 5 6
x p. y
1 8 27 64 125 216 343

x p. ^: (]>3:)"1 0 y
0 1 2 3 125 216 343

a=: _3 _2 _1 0 1 2 3
%: a
0j1.73205 0j1.41421 0j1 0 1 1.41421 1.73205

* a
_1 _1 _1 0 1 1 1

%: ^: * " 0 a
9 4 1 0 1 1.41421 1.73205

*: a
9 4 1 0 1 4 9
```
The following monads are equivalent. (See the example of ^ T. _ in the definition of Taylor Approximation (T.) .)
```   g=: u ^: p ^: _
h=: 3 : 't=. y while. p t do. t=. u t end.'

u=: -&3
p=: 0&<
(g"0 ; h"0) i. 10
+-------------------------+-------------------------+
|0 _2 _1 0 _2 _1 0 _2 _1 0|0 _2 _1 0 _2 _1 0 _2 _1 0|
+-------------------------+-------------------------+
```

All partitions of an integer, based on an algorithm by R.E. Boss on 2005-07-05:

```partition=: [: final ] (,new)@]^:[ (<i.1 0)"_
final    =: 0 <@-."1~ >@{:
new      =: [: <@; (-i.)@# cat&.> ]
cat      =: [ ,. (>: {."1) # ]

partition 5
+-+---+---+-----+-----+-------+---------+
|5|4 1|3 2|3 1 1|2 2 1|2 1 1 1|1 1 1 1 1|
+-+---+---+-----+-----+-------+---------+
```

>>  <<  Ndx  Usr  Pri  JfC  LJ  Phr  Dic  Rel  Voc  !:  wd  Help  Dictionary