>>  <<  Ndx  Usr  Pri  JfC  LJ  Phr  Dic  Rel  Voc  !:  wd  Help  Dictionary

 Taylor Coefficient u t.  0 0 0

 u t. y is the yth coefficient in the Taylor series approximation to the function u . The domain of the adverb t. is the same as the left domain of the derivative D. . See the case m t. . x u t.y is the product of (x^y) and u t. y .

For example:
```   f=: 1 2 1&p.
g=: 1 3 3 1&p.
x=: 10%~i=: i.8
]c=: (f*g) t. i
1 5 10 10 5 1 0 0

6.2 ":(c p. x),:(f*g) x
1.00  1.61  2.49  3.71  5.38  7.59 10.49 14.20
1.00  1.61  2.49  3.71  5.38  7.59 10.49 14.20

(c p. x)=(f*g) x
1 1 1 1 1 1 1 1

]d=: f@g t. i
4 12 21 22 15 6 1 0

(d p. x)=(f g x)
1 1 1 1 1 1 1 1

sin=: 1&o.
cos=: 2&o.
8.4":t=: (^ t. i),(sin t. i),:(cos t. i)
1.0000  1.0000  0.5000  0.1667  0.0417  0.0083  0.0014  0.0002
0.0000  1.0000  0.0000 _0.1667  0.0000  0.0083  0.0000 _0.0002
1.0000  0.0000 _0.5000  0.0000  0.0417  0.0000 _0.0014  0.0000

* t
1 1  1  1 1 1  1  1
0 1  0 _1 0 1  0 _1
1 0 _1  0 1 0 _1  0

((sin*sin)+(cos*cos)) t. i
1 0 0 0 _2.71051e_20 0 0 0

rf=: n%d
n=: 0 1&p.
d=: 1 _1 _1&p.
]fibonacci=: rf t. i. 20
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181

2 +/\ fibonacci
1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

(% -. - *:) t. i.20
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181
```

>>  <<  Ndx  Usr  Pri  JfC  LJ  Phr  Dic  Rel  Voc  !:  wd  Help  Dictionary