>>  <<  Usr  Pri  JfC  LJ  Phr  Dic  Rel  Voc  !:  Help  Dictionary

 Bond m&v  u&n  _ 0 _

 m&v y is defined as m v y ; that is, the left argument m is bonded with the dyad v to produce a monadic function. Similarly, u&n y is defined as y u n ; in other words, as the dyad u provided with the right argument n to produce a monadic function. x m&v y ↔ m&v^:x y x u&n y ↔ u&n^:x y

For example:
```   10&^. 2 3 10 100 200
0.30103 0.477121 1 2 2.30103

base10log=: 10&^.
base10log 2 3 10 100 200
0.30103 0.477121 1 2 2.30103

sine=: 1&o.
sine o. 0 0.25 0.5 1.5 2
0 0.707107 1 _1 0

^&3 (1 2 3 4 5)
1 8 27 64 125

^&2 3"0 (1 2 3 4 5)
1   1
4   8
9  27
16  64
25 125
```
Use of the bond conjunction is often called Currying in honor of Haskell Curry.

The phrase x f@[&0 y is equivalent to f^:x y , apply the monad f x times to y . For example:
```   fib=: (0 1,:1 1)&(+/ .*)@[&0 & 0 1
fib i.10
0  1
1  1
1  2
2  3
3  5
5  8
8 13
13 21
21 34
34 55

```

>>  <<  Usr  Pri  JfC  LJ  Phr  Dic  Rel  Voc  !:  Help  Dictionary