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Preface by Roger Hui 
 

In my youth, when I was just starting in APL, on receiving an issue of 
the APL Quote-Quad I would inevitably and eagerly first turn to 
Eugene McDonnell’s “Recreational APL” column. Through these 
columns I learned that it was possible for technical writing to be 
erudite, educational, and entertaining, and through them I learned a 
lot of APL. 

Thus it was with Eugene’s At Play with J articles in Vector. In topics 
ranging from primes to permutations to pyramids to π, with a cast of 
characters that included Apter, Black, and Crelle, Jacob and Josephus, 
Blanda and Montana and Taylor, and Scholes, the articles offered up 
the “smoother pebbles” and “prettier shells” found while playing on 
the seashore bordering the great ocean of knowledge. And we are all 
beneficiaries of this play. 

I am pleased that Vector is publishing the collection of At Play with J 
as a book. I look forward to being educated and entertained once 
more. 

Roger Hui 
January 2009, 
Vancouver, Canada. 





Introduction 
 

In 1993 Eugene McDonnell published an article in Vector, the journal 
of the British APL Association, disarmingly entitled At Play With J.* 
Little did anyone suspect that this was the beginning of a scintillating 
series which would continue until August, 2006, at which time Gene 
let it be known that he could no longer commit to writing any more 
contributions. 

Here are Gene’s forty-one fine articles reprinted in one volume. They 
form a series of straightforward but profound mathematical 
investigations which not only entertain but exercise the intellect. 

Do you need to know J to read this book?  

When buying any book on a serious topic, obviously you ought to be 
ready to open your mind to new ideas. This includes taking the 
trouble to grasp any special notation the author thinks fit to intro-
duce. From this point of view the answer is no—you don’t need any 
prior knowledge of J.  The author instructs you with sufficient examp-
les in all the notation he needs as he goes along, though it’s best to 
start with the first four chapters or so. 

Gene’s “special notation” is ultra-terse—with a superb computer-aid 
for playing with it: the J Interpreter. This comes with the J Introduction 
and Dictionary, to which frequent reference is made. You can down-
load both free of charge from http://www.jsoftware.com to run 
on a Macintosh™ or a Windows™ computer. 

With these two items you’ll have no trouble following Gene’s line of 
reasoning, to learn a host of amazing facts about number-crunching 
and puzzle-solving. And, as a bonus, maybe you’ll find you’ve armed 
yourself with a useful new tool of thought, even if you haven’t set out 
with the intention of “learning yet another programming language”. 

So… let’s play! 

                                                      
* Vector, 10, 2, (October 1993), 128-129.  ISSN 0955-1433. 
   Reprinted in this book as chapter entitled “MIMD Machines”. 





1 MIMD Machines 
First published in Vector, 10, 2, (October 1993), 128-129. 

 

I had a request recently from someone who wanted to apply a 
verb a different number of times to a list of arguments. What was 
wanted was a simpler way of writing: 

     (f a),(f f b),(f f f c) 

My initial response was to say that J did not as yet have a way of 
describing Multiple Instruction-Multiple Data machine architect-
ures (MIMD), although such a mechanism had been described [1]. 
I pointed out that a collapsing transpose could solve the problem, 
but my questioner would have none of that, as it implied a great 
deal of useless computation. There the matter rested for a while. 
After several months I had another request from the same person 
who wanted to know if I had made any progress on the problem. 
Actually, I hadn’t thought about it at all in the interim, but since 
my questioner seemed to be a determined type, I gave it a few 
minutes more thought, and found what I think is a neat use of one 
of J’s more interesting differences from APL, the way scan is 
defined: that is, the verb applied is monadic, not dyadic. 

For example, whereas in APL one writes +\1 2 3 to obtain the 
continued sum of the values in the argument, in J one would have 
to write +/\1 2 3 to obtain the same result. 

     +\1 2 3 
1 0 0 
1 2 0 
1 2 3 

Here the monadic verb conjugate, denoted by +, is being applied, 
first to 1, next to 1 2, and last to 1 2 3; since these are real 
numbers, their conjugates are the same as the arguments, and 
since J reshapes results so that they conform, and then appends 
them, we get the zero fills at the right of the top two rows. 
Compare this with 

     +/\1 2 3 
1 3 6 

which is the analog to APL’s +\1 2 3. 

Finally, here is the solution to the MIMD problem. 
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First I define three variables, a, b, and c: 
     'a b c'=.3 4 5 

Next, I define a verb f to be the natural logarithm ( .). 
     f=. . 

and apply it once, twice, and thrice, to a, b, and c, respectively: 
     f a 
1.09861 
     f f b 
0.326634 
     f f f c 
_0.742579 

This is the desired result, but done the hard way. Now for the 
easy way: 

Define a verb g which in which the verb f is applied (@) to the tail 
({:) of its argument a number of times ( :) equal to the length (#) 
of its argument: 

     g=.f@{: :# 

For example, g 3 1 4 1 5 9 applies f six times to 9: 
     f f f f f f 9 
0.854804j1.01575 
     g 3 1 4 1 5 9 
0.854804j1.01575 

Perhaps you already see how this will end. We apply the prefix 
scan (\) adverb to g, and apply this derived verb to a,b,c: 

     (g\)a,b,c  NB. apply g to successively longer 
prefixes 
1.09861 0.326634 _0.742579 
     NB. q.e.f. 

Showing once again that where there’s a will there’s a way. Note 
that because of the way prefix scan is defined, it is easy to 
visualize how, in a multiprocessor environment, the applications 
of g to all three arguments can be carried out simultaneously. 

Reference 
[1] Bernecky, R., Hui, R. K. W., Gerunds and Representations. APL 

Quote Quad 21, 4, Stanford, Calif., (1991-08), 39-45. 



2 Tacit Definition 
First published in Vector, 10, 3, (January 1994), 100-105. 

 

You may be among the readers of Vector whose stomachs start 
churning or whose eyes glaze over when they read the words 
“tacit definition” in articles about J. This column is meant for you. 
It is going to take the approach that you know how to write an 
APL function, and might not be averse to learning how to write a 
J function in a similar fashion.  

The example I shall use is fairly short – just ten lines – and may 
possibly even be of use to some of you. It was shown to me by 
Joey Tuttle many years ago. It’s called factors and it factors a 
positive integer n. The result of factors n is an ordered list of 
primes such that n is the product over the list, that is, 
n = */ factors n. It was able to find the factors of the 18-digit 
number (2 59)- 1 (576460752303423487), which are 179951 and 
3203431780337, in 3 minutes and 37.1 seconds on a Macintosh 
Quadra 700.  

Various methods of finding the prime factors of a number are 
given in Knuth, Seminumerical Algorithms, Section 4.5.4 “Factoring 
into primes”, pp. 338-360. The method used here is the simplest 
one, Algorithm A, which divides the number by increasingly 
larger primes until all factors have been found, but the method 
has been vectorized so that more than one factor may be found at 
once.  

The argument must be a positive integer not greater than max, 
where max is a number derived from the floating-point 
characteristics of your computer. This discussion assumes that 
your computer uses IEEE floating point arithmetic, which is the 
case for PCs, Macintoshes, and most Unix machines. On PCs and 
Unix machines the maximum is the 16-digit (2 53)-1 
(9007199254740991). For Macintoshes it is the 19-digit (2 63)-1 
(9223372036854775807), or 1024 times as large. These are the 
largest integers which can be represented to full accuracy on those 
machines without special programming. 
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First I’ll show the function definition, then give explanations of its 
lines, paying special attention to those things that differ from 
APL.  

Function Definition 
Let’s assume for the moment that you created the function text, 
called “text”, below. It could be in the form of a character matrix, 
a character string delimited by carriage returns, or a vector of 
boxed character vectors.  

0.    f =. i. 0  
1.    t =. 2 3 5 7 11 13 17 19 23 29 31 37  
2.    o =. +/\ 432 $ 4 2 4 2 4 6 2 6  
3. L) m =. (-. * t |!.0 y.) # t  
4.    f =. f , m  
5.    y. =. y. % */ m  
6.    $. =. > (* # m) { $. ; L  
7.    t =. o + {: t  
8.    $. =. > (y. >: *: {. t) { $. ; L  
9.    f =. /:  f , y. -. 1  

The line numbers are merely for reference. They are not part of 
the function.  

The first thing to notice is that there is no header line, so it would 
seem that we can’t tell whether there is an explicit result or not, 
nor what its name is if there is one, nor what the function name is, 
nor what its valence is, nor what the argument is named, nor 
which variables are local.  

Here is how each of these questions is resolved:  
Explicit result. Every J function has an explicit result, and it is the 
value of the last expression executed.  

Function name. In J a function is named the same way that a variable 
is named, by assignment, denoted by (=.). However, we can’t just 
write factors =. text because all that this would do would be to 
create another variable named “factors” with the same value as 
“text”. We have to use the “definition” operator, symbolized by the 
colon (:), whose result is a function, not a variable. Our function is 
monadic, so to give it a name we write factors =. text : '' 
and this creates the function named “factors”. 

Valence. For an ambivalent function, the monadic case is given by the 
left argument to (:), and the dyadic case is given by the right 
argument. If the function is monadic, as in our case, the right 
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argument is empty; if it is dyadic, the left argument is empty. There is 
no such thing as a niladic function in J. 

Argument name. By convention, the argument to a monadic function 
is (y.). In a dyadic function the left argument is named (x.) and the 
right argument is named (y.). 

Local variables. J makes a distinction between local assignment (=.) 
and global assignment (=:). This removes the need for a list of local 
names. The rule is that on the first assignment of a name using (=.) 
the name is made local.  

Here beginneth the detailed description of the function’s lines:  
Line 0 sets the initial factor list to empty. J’s iota is denoted by 
(i.). By the way, if the argument is 1, this will be the result as 
well, since 1 is not a prime and has no prime factors. However, it 
will still be true that n = */ factors n, since the product over an 
empty vector is 1.  

Line 1 creates as the initial list of trial divisors the first 12 primes. 
This enables the function to use just one iteration for all 
arguments less than 1370 (37 2 is 1369).  

Line 2 forms the list of offsets to be used in creating a new list of 
trial divisors, after there are no more values left in the current list 
that divide the current value of the number being factored. In J, 
the scan operator is defined differently from the APL scan 
operator. In APL the scan operator implies the reduction operator. 
In J the function argument to scan is monadic, not dyadic, so that 
one has to use “sum” (+/) not “add” (+) if we want the sum scan.  

There are 432 items in this vector: 54 repeats of the eight items 4 2 
4 2 4 6 2 6. The purpose of this vector is to remove multiples of 
2 3 5 from consideration as trial divisors, since these can’t be 
primes. For example, 

37 + +/\ 4 2 4 2 4 6 2 6 ...  
41 43 47 49 53 59 61 67 ...  

Some of the items in these new trial divisors will not be primes. In 
the list above 49 is composite. Eliminating multiples of 2 3 5 
reduces the number of trial divisors by over 73%.  
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Line 3 looks as if it begins with a label, but the label name is 
followed by a right parenthesis instead of a colon. This is because 
the colon is used for function definition, as described above, and 
so J uses the right parenthesis “)” to separate the label name from 
the instruction. A label in J is a vector. The value of label “L” is 3 
4 5 6 7 8 9; that is, it is a vector of instruction numbers, 
beginning with the number of the instruction in which it appears, 
and followed by each of the subsequent instruction numbers. 
We’ll see the use of this when we discuss instructions 6 and 8.  

This line begins the iteration, and forms the vector m of newly-
found factors of the argument. The factors are found by using the 
vector of trial divisors of the argument as the left argument to the 
residue function. However, the residue function in J is fuzzed, just 
as it is in some APLs, in order to permit proper-looking results 
when used with near-integers, and also to permit the use of 
decimal rational numbers as arguments to residue. We are dealing 
with exact integer arguments, so in order to extend the domain of 
the residue function we require that it not be fuzzed. To 
accomplish this in APL systems, the comparison tolerance system 
variable, ct, is set to 0. In J this is done by explicitly modifying 
the residue function with the “fit” or “customize” operator (!.) 
using 0 as right argument. Thus, instead of writing t | y. We 
write t | !. 0 y. and this allows us to work with a residue that 
has zero fuzz.  

Curiously, the Dictionary of J, which says that the “fit” operator 
“modifies certain verbs in ways prescribed in their definitions”, 
doesn’t describe this use of it with respect to residue. Tsk tsk. The 
advantage of having the modification of the verb occur in direct 
connection with its use is obvious: one doesn’t have to remember 
whether or not ct has been modified, nor run into the hazard of 
not restoring it when it should be. The use is direct and 
immediate, and applies only to the function in question. 
Furthermore, anyone reading the function knows immediately 
that it is unfuzzed.  

After finding the residues, their signum (*) is taken, yielding a 
vector of 0s and 1s, and these are negated (-.) complementing 
them to 1s and 0s. This boolean vector is used to select (#) the 
corresponding items from t, giving in m the new factors to be 
appended to the result. In APL there has always been a confusion 
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about slash: is it an operator or a function? If we write +/1 2 3 it 
acts like an operator, but when we write 1 0 1/1 2 3 it acts like 
a function. In J the “#” function is used for the functional case, as 
in 1 0 1#1 2 3.  

Line 4 appends the new factors to the result vector.  

Line 5 factors the argument, by dividing (%) it by the product (*/) 
of the new factors, thus diminishing it.  

Line 6 is a branch instruction. There is no branch arrow in J, 
however. What takes its place is a variable called “suite” and 
denoted by ($.). This variable determines the sequence in which 
instructions of a defined function are executed. At the beginning 
of execution of a defined function, suite is set to a vector of the 
instruction numbers in the defined function. In our factors 
program, which has ten instructions, it would have the initial 
value 0 1 2 3 4 5 6 7 8 9. At the beginning of execution of 
each instruction, the leading item of ($.) is removed. Thus, if a 
five instruction program were written in which each instruction 
displayed the current value of ($.), the initial value of ($.) would 
be 0 1 2 3 4, and the display of each instruction would be: 

Instruction 
     0      1 2 3 4  
     1      2 3 4  
     2      3 4  
     3      4  
     4      (empty) 

The expression at the end of line 6 ($. ; L) forms a two-item 
vector of boxes, using the link (;) function. The head of the vector 
is the boxed current value of suite, and its tail is the boxed vector 
L. Selection by index (x { y means select item x of y) is used to 
choose one of them, and the one chosen is opened (>). The signum 
(*) of the number of (#) factors in m is determined. This will be 0 if 
there are no new factors, and 1 otherwise. If there are no new 
factors, suite is reassigned to itself – effectively a fall-through. If 
there are new factors, L is assigned to suite, causing a branch to 
line L. Thus, if there were any factors in the current vector of trial 
divisors, we may not have finished with it, and return to L to try 
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again with it. If there were none, we are through with the current 
vector, and fall through to the next instruction.  

Line 7 forms a new vector of trial divisors, by adding the offset 
vector to the last ({:) item of the current vector.  

Line 8 is another branch instruction. This one causes control to be 
returned to instruction L if the reduced argument is greater than 
or equal to (>:) the square (*:) of the first item ({.) of the new 
vector of trial divisors, since in this case there may be more 
factors. If it is less, this means that there can’t be any new factors 
in the reduced argument, and thus it is either 1 or a prime.  

Line 9 removes 1 from the argument (the result of x -. y is x 
with items equal to y removed; 17 -. 1 is 17; 1 -. 1 is empty). 
This leaves it unaltered if it is a prime, or makes it empty 
otherwise. It then appends the argument to the list of factors 
(essentially doing nothing if it had been 1), sorts (/: ) the list into 
ascending order, and terminates. In J the semantics of dyadic 
upgrade and downgrade have been changed. They no longer have 
the significance of using the left argument as a collating sequence 
to produce a grade with reference to it. Instead, they are used to 
sort the left argument into an order specified by the right 
argument. The definition of dyadic upgrade (x /: y) is (/:y) { 
x; that is, the permutation that puts y in ascending order is used to 
permute the items of x.  

The most frequent use of these sort verbs is with the left and right 
arguments identical, in which case the result is the sorted 
argument, either ascending or descending. The reflexive operator 
( ) applies to a monadic verb to produce a dyadic verb with left 
argument the same as the right argument. For example, + 1.2 is 
2.4, and /:  2 7 1 8 2 8 is 1 2 2 7 8 8.  

Below are some examples of the use of the factors function with 
some ten-digit numbers to give you some idea of how it behaves. 
Notice that the time to factor a number is longest when the 
argument is a prime, and fairly long also when there are two 
factors roughly equal to the square root of the argument. The 
comment symbol in J is (NB.).  
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time =. 6!:2 NB. yields seconds to execute its 
string argument 
fmt=.":!.20 NB. formats (":) numbers to 20 places 
(!.20) 
 
time 'k=.factors 6307059899' 
1.11667 
fmt k 
7 19 47421503 
 
time 'k=.factors 6307059901' 
0.85 
fmt k 
379 16641319 
 
time 'k=.factors 6307059903' 
0.983333 
fmt k 
3 127 3461 4783 
 
time 'k=.factors 6307059907' 
0.65 
fmt k 
1201 5251507 
 
time 'k=.factors 6307059909' 
3.51667 
fmt k 
3 24749 84947 
 
time 'k=.factors 6307059911' 
10.0167 
fmt k 
6307059911 

 





3 The 10,000,000,000th Prime Number 
First published in Vector, 10, 4, (April 1994), 110-113. 

 

What is the 10,000,000,000th prime number? This column tells a 
story, and it has a moral. It does not concern itself directly with J, 
the ostensible reason for these columns, but it can be justified 
because one of the direct antecedents of J is the language A, 
developed by Arthur Whitney while he worked at the investment 
banking firm of Morgan Stanley. 

It was one page of C code for an A-like interpreter, written one 
afternoon by Whitney at Ken Iverson’s Kiln Farm in Ontario, that 
gave Roger Hui the direction he needed to start work on what 
was to become J. Roger exhibits this code in Appendix A of “An 
Implementation of J”, published by Iverson Software Inc. Whitney 
no longer works at Morgan Stanley: he has set out as a freelance 
and is developing a language called K, which has some affinity 
with A and J. Hui now works at Morgan Stanley, and it is his 
adventure hunting down a large prime that the story is about, and 
Hui used A as the weapon with which he targeted the large 
prime.  

The story begins when Hui’s boss at Morgan Stanley challenged 
him by saying, “You think you’re smart, but you don’t even know 
what the 10-to-the-10-th prime is.” Hui’s immediate response was, 
“Do you start counting from 0 or 1?” The boss was so taken aback 
that for a minute or so he didn’t understand Roger’s question.  

The boss’s challenge seems to have been meant as an example of a 
theoretically attainable but practically impossible computational 
task. This article tells how Roger went about achieving the 
impossible. I look on it as a triumph of the client-server 
technology. This column is not so much an article about 
programming as it is about computer logistics. The programming 
aspects, while important, are secondary to the story of how Roger 
went about organizing the solution.  

The germ of Hui’s solution was to envision a Boolean vector p of 
length k such that the ith element of p is 1 if i is prime, and 0 
otherwise. Just sum-scan this very long vector and look for the 
index of 1e10 in it. How long should such a vector be? The Prime 
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Number Theorem says that the number of primes less than k is 
roughly k%(log k). Solving for k in the equation 1e10=k%(log 
k) gives a value for k about 2.63e11. Roger, out of prudence, 
used the value 2.7e11. A vector of 2.7e11 elements is 
unrealizable in the present state of computer memories, especially 
since A doesn’t have a Boolean type: Boolean vectors require the 
same space as integer vectors. A vector of 4*2.7e11, or 1e12 
bytes long is simply not on the cards. Even a Boolean vector 
taking just 1 bit per element would have to be more than 3e10 
bytes long, so it was clear that the problem had to be partitioned.  

Hui’s central program computes the primes between m and n, 
using the sieve method, eliminating multiples of 2, 3, 5, 7, 11, 13, 
17, etc. This can be done independently in parallel on many small 
intervals that make up the larger interval of interest, and, if 
portioned out to computers that can communicate with a common 
central file, will permit the problem to be solved in a shorter time 
than if only one computer were to tackle it.  

The method of partitioning was suggested by the presence of 
more than 150 workstations on the floor in Hui’s part of Morgan 
Stanley. They are all interconnected Unix machines, and any 
machine can be used from any other machine. With relatively 
small effort a multi-processor solution could be set up, using these 
machines in parallel. The machines are not heavily used at 
weekends, and it was on a weekend that the experiment took 
place. 

The strategy was to let the machines tackle the problem a billion 
integers at a time. Hui’s colleague at Morgan Stanley, Seth 
Breitbart, suggested creating 271 files, named 0, 1, 2, ..., 270, each 
denoting the named interval of 1e9 consecutive numbers, and 
each one empty. 

What a machine would do once it was set going was to look at the 
list of files, pick one at random (named m), erase it, work on the 
interval (1e9*m)+i.1e9, a million numbers at a time, and after 
finishing, write a file containing a record giving the number of 
primes in each of the million-number intervals within that 1e9 
(there are a thousand of them). After finishing, it repeats that 
process, stopping only when the list of files/intervals is empty. 
The machines were set up to process a million numbers at a time 
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since the smallest machine available had enough memory to 
handle that many numbers at once. Roger notes that there’s no 
great harm if two machines accidentally happen to pick the same 
file/interval. In the flexible Unix universe additional machines 
could be brought on stream at any time.  

If one is a Unix system superuser it is possible to take all sorts of 
liberties with these machines, like finding the ids of all other 
machines, but Hui prefers (wisely, I think) not to be tainted by 
such capabilities, so to get the machines’ names he went about the 
floor reading the names of the machines from strips of paper 
affixed to each one, then sat down at his machine and made 
inquiries about the state of each machine on his list.  

If it was idle, he set it going on the problem. As he was doing this, 
there was a nice dilemma to resolve. Should his time be spent 
improving the algorithm before launching more machines, or 
should he spend time looking for additional machines? He 
favoured the latter approach for the novelty of it, and ended up 
using about 15 IBM RS/6000s and 60 Sun Sparc 2s and Sparc 10s.  

After 20 hours, he had 271 files, each with 1,000 records. From 
these he made a 271,000-element vector of the number of primes 
in the intervals 1e6*i.271000. By sum-scanning this he knew the 
interval containing the 10 10th prime. His function psieve 
returns a Boolean list selecting the primes between m and n. 
Applying this to the magic interval gets the actual 10 10th prime.  

Some details about his program psieve:  
If a number q is not divisible by any number less than or equal to 
sqrt(q), then q is prime. Therefore, to test a number less than 2.7e11 
for primality one need only use trial divisors less than sqrt(2.7e11) or 
roughly 6e5. 

In practice, Hui precomputed a list of all the 78,498 primes less than 
1e6 recursively, bootstrapping up from 2 3 5 7. (This only takes a few 
seconds.) 

It was then a routine matter to determine for any number less than 
1e12 whether or not it was prime: just see whether its residues with 
respect to each of the primes less than a million was nonzero; if so, it 
was a prime.  
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For the curious, here is a condensed list of the first 10,000,000,002 
primes, with their 0-origin ordinal numbers.  

     0                2 
     1                3 
     2                5 
     3                7 
     4               11  
 
...  
 
1e10-1  252,097,800,623  
  1e10  252,097,800,629 
1e10+1  252,097,800,637  

After doing this, Hui found that there is a table in William Judson 
LeVeque’s “Fundamentals of Number Theory”, section 1.1, giving 
the number of primes less than 10 3+i.8. Hui’s table agrees with 
LeVeque’s for 10 3+i.7. For 10 10, however, LeVeque says 
455,052,512 and Hui says 455,052,511. It turns out that LeVeque is 
wrong, Hui having checked his results with some help from Lee 
Dickey at Waterloo University. Dickey tells Hui that his 
colleagues speculate that LeVeque may have gotten his numbers 
from lists that D.N. Lehmer compiled, which included 1 as a 
prime, and LeVeque may have slipped in not subtracting 1 from 
that particular count. (1 isn’t a prime since it doesn’t satisfy the 
definition of a prime: a positive integer n with exactly two distinct 
factors, 1 and n.)  

Now for the moral of the story: Hui tells me he has also since found 
some work that would have made it much easier to discover the 
nth prime, for any n. E.D.F. Meissel, a German astronomer, found 
in the 1870s a method for computing individual values of pi(x), 
the counting function for the number of primes <:x. His method 
was based on recurrences for partial sieving functions, and he 
used it to compute pi(1e9), where pi is a function that computes 
the number of primes less than or equal to its argument.  

D.H. Lehmer simplified and extended Meissel’s method. Recently, 
further refinements of the Meissel-Lehmer method which 
incorporate some new sieving techniques have been reported by 
Lagaria et al [1]. In this article the authors give an asymptotic 
running time analysis of the resulting algorithm, showing that for 
every e>0 it computes pi(x) using at most O(x (2%3)+e) 
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arithmetic operations and using at most O(x (1%3)+e) storage 
locations on a computer using words of length 1+<.2 .x bits. 

The algorithm can be further speeded up using parallel 
processors. They show that there is an algorithm which, when 
given M parallel processors, computes pi(x) in time at most 
O((%M)*x (2%3)+e) using at most O(x (1%3)+e) storage 
locations on each parallel processor, provided M <: x %3. A 
variant of the algorithm was implemented and used to compute 
pi(4e16).  

They report that pi(4e16) took them 1730 minutes on an IBM 
3081K; pi(2e12) took 3 minutes; pi(3e12) took 4 minutes. Had he 
known about this method, Hui could have used a binary search 
technique to find the 1e10th prime, using an O(2 log n) technique, 
after narrowing the interval to be searched in by a reasonably 
generous use of the Prime Number Theorem. The value Hui 
computed was pi(2.52e11) and it took him 20 hours on 60-70 
workstations. 

Brains win again over brawn: a well-designed, mathematically 
knowledgeable algorithm beats brute force! 

Reference 
[1] Lagaria, Miller, Odlyzko, Computing pi(x): Meissel-Lehmer 

Method. Mathematics of Computation 44, 170, (1985-04), 537-560. 





4 Control Structures 
First published in Vector, 11, 1, (July 1994), 136-138. 

 

There have been many proposals for control structures in APL 
systems before, and there are now current several APL systems 
which have them. This article will describe the control structures 
which are made available in the new release of J (version 8). 

The material is largely drawn from the latest edition of the 
J Introduction and Dictionary, available from Iverson Software Inc, 
33 Major Street, Toronto, Ontario, Canada M5S 2K9. The 
documentation which I have seen was in a preliminary form at 
the time of writing, so be sure to get a copy of the official 
document if you would like to use these new facilities. 

This article assumes that you, like me, are not overly familiar with 
the general notion of control structures. If in fact you are a long-
time user of Fortran or Algol or C, please forgive these callow 
comments. 

The control words introduced are: 
break. 
catch. 
continue. 
do. 
else. 
elseif. 
end. 
goto_<name>. 
if. 
label_<name>. 
return. 
try. 
while. 
whilst. 

The four control words if., try., while., and whilst. mark the 
beginnings of control structures that are each terminated by a 
matching end. control word. 

The control words while. and whilst. differ in that the test 
block in a whilst. statement is skipped the first time (the “st” in 
whilst. can be thought of as meaning “skip test”) whereas in a 
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while. statement it is always executed. As a consequence, the 
execution block in a whilst. statement is always executed at least 
once, but in a while. statement, it may execute zero times. 

The words do. and else. and elseif. occur within control 
structures, separating them into blocks. The control word forms 
goto_. and label_. represent an infinite family of possible 
control words, for each of which is a different text. For example, 
one may write: 

goto_ahead. 
...(statements) 
label_ahead. 

or: 
label_back. 
...(statements) 
goto_back. 

A block consists of zero or more control words and sentences that 
are grouped together by control words occurring within a control 
structure. The role of blocks is summarized as follows: 

if. T do. B end. 
if. T do. B else. B1 end. 
if. T do. B elseif. T1 do. B1 ... elseif. Tn do. 
Bn end. 
try. B catch. B1. end. 
while. T do. B end. 
whilst. T do. B end. 

Words with B or T denote blocks. If the first (or only) atom of the 
result of the last sentence executed in a T block is zero, the B block 
following is not executed, otherwise it is executed. 

In a series of elseif. Ti do. Bi, if the Ti are not exhaustive, it 
is good practice to put a final elseif. 1 do. Bz, where Bz is a 
block covering the default procedure when all else has failed, so 
that Bz is executed when no other test has succeeded. 

Perhaps an example will make some of these details more 
concrete. The program p23 represents a crude but effective 
process for determining x as the two-thirds power of y. for y. 
any positive cube. 

The statement numbers are not part of the program. They are 
shown only for reference purposes. 



Control Structures 
 

 

27 

 

   p23=.3 : 0 
1  v=.0 
2  w=.1 
3  while. y. :z=.v*x=.v*v do. 
4    if. z>y. do. v=.v-w=.-:w 
5           else. v=.v+w=.+:w 
6    end. 
7  end. 
8  x 
   ) 

 

Statements 1 and 2 give initial values to the local variables v and w. 
Statements 3 through 7, inclusive, are a while. statement. Statements 4 
through 6 inclusive are an if. statement. The T block in the while. 
statement compares the argument (y.) for inequality with z, which is 
the cube of v. If they are unequal, the result of the T block will be 1 
(nonzero) and the if. statement will be executed. The T block in the 
if. statement determines whether z is greater than y., and if it is the 
block following do. will be executed. Otherwise, the block following 
else. will be executed. The block following do. halves w and 
subtracts this from v; the block following else. doubles w and adds 
this to v. Continuing this process will eventually create a z which is 
equal to y., making the result of the test zero, and when this occurs 
the if. statement will no longer be executed. Line 8 will then be 
executed, giving as the program’s result the value of x, since the 
result of a program is the result of the last sentence executed that was 
not in a T block. 

The purpose of the try. and catch. blocks is to permit recovery 
from a failure in execution. In a statement such as try. B catch. 
B1 end. if block B executes successfully, then B1 is not executed. 
If the execution of block B fails, then block B1 is executed. 

The behaviour of the remaining control words can be summarized 
as follows: 

break. Go to the end of a while. or whilst. 
control block 
continue. Go the top of a while. or whilst. 
control block 
goto_<name>. Go to the statement beginning with 
label_<name>. 
label_<name>. Target of goto_<name>. 
return. Exit the program 
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I must add a warning: I have not yet had access to the latest 
released J system, so that the information above is based on a 
reading of a preliminary version of the latest J Introduction and 
Dictionary and not on an actual machine execution. I have, 
however, submitted the program to two people who had access to 
the latest J system, and am told that it executed properly. 
 



5 Jacobi’s Method 
First published in Vector, 11, 3, (January 1995), 111-118. 

Parallel Jacobi 
Warning: this column contains material which may either put you 
to sleep or turn you against applied mathematics altogether. To 
take some of the sting away I have added a problem which may 
give you some pleasure in trying to solve. If you completely 
distrust your ability to read descriptions of programs, no matter 
how well-written, I advise you to go at once to the section headed 
“Problem” and avoid the preliminary exposition, or the material 
following, valuable as it is. 

Background 
Recently I had need of a program to perform eigenanalyses of 
square symmetric matrices, and went to Vector 9, 3, January 1993, 
which had Donald McIntyre’s article “Jacobi’s Method for 
Eigenvalues: an Illustration of J”. I refer you to that article for 
McIntyre’s lucid explanation of what the method is. In the course 
of transcribing his 11-line Jacobi program, along with its sixteen 
subprograms and its seven utility verbs, I thought I saw the 
possibility of speeding it up significantly by taking advantage of 
some of the parallelism inherent in the problem. I have 
communicated with McIntyre concerning this, and he tells me 
that he has used this method for many years, beginning with a 
Fortran program which he obtained from someone many years 
ago, transcribing it into APL and recently, as his article shows, 
into J.  

If you look at his program, you will see that at the heart of it are 
the lines 

   r=. ((cos,-sin),sin,cos) (ia R)} I 
   Q=. q ip |:r [ R=. r ip R ip |:r 

The first line amends an identity matrix conforming to the 
argument matrix by replacing two of its diagonal elements and 
the two corresponding off-diagonal elements with a 2-by-2 
rotation matrix. The elements amended are chosen by finding the 
off-diagonal element of maximum magnitude, say at row-column 
indices p,q, and inserting the 2-by-2 matrix items at locations 



At Play With J 
 

30 

(p,p), (p,q), (q,p) and (q,q). This amended identity matrix r is then 
used with two matrix products involving R, the original 
argument, and Q, originally an identity matrix. Those involving R 
have the effect of zeroing out elements (p,q) and (q,p) of R, while 
leaving the eigenvalues of R unaltered. When this operation has 
been performed a sufficient number of times, one finds that all of 
the off-diagonal elements are essentially zero, and that the 
diagonal elements are the eigenvalues of the argument matrix . 
Those involving Q produce the eigenvectors of the argument 
matrix. 

The valuable book Matrix Computations by Golub and Van Loan 
describes this method (section 8.5), but because the search for 
(p,q) is O(n2), goes on to suggest that it might be more efficient to 
select p and q in a more rigid way. For the case of a 4-by-4 
argument, they suggest that p and q be selected in the following 
order: 

   p   q 
   0   1 
   0   2 
   0   3 
   1   2 
   1   3 
   2   3 

and go back to the beginning, repeating until a sufficiently good 
solution appears. Golub and Van Loan go on to point out that the 
rows of the (p,q) table can be arranged in a disjoint, or non-
conflicting fashion: 

     a           b           c 
   0   1       0   2       0   3 
   2   3       1   3       1   2 

and that, in a parallel machine, separate processors can be 
assigned to perform the individual matrix product operations. For 
example, in the 4-by-4 case, two processors are needed, so that in 
step A one processor could do the (0,1) case and the other 
processor could do the (2,3) case; in step B one processor could do 
the (0,2) case and the other processor could do the (1,3) case; and 
similarly for step C. They point out that this method works only 
for even-order matrices, but that the odd case can be handled by 
bordering the argument matrix on the right and at the bottom 
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with zeros, and then dropping these excess columns at the end. 
Thus the rotation matrices needed would look like this: 
        step A         |       step B      |       step C 
     c01  s01   0    0 | c02   0   s02   0 | c03   0    0   s03 
    -s01  c01   0    0 |  0    0    0    0 |  0    0    0    0 
proc1 0    0    0    0 |-s02   0   c02   0 |  0    0    0    0 
      0    0    0    0 |  0    0    0    0 |-s03   0    0   c03 
      0    0    0    0 |  0    0    0    0 |  0    0    0    0 
      0    0    0    0 |  0   c13   0   s13|  0   c12  s12   0 
proc2 0    0   c23  s23|  0    0    0    0 |  0  -s12  c12   0 
      0    0  -s23  c23|  0  -s13   0   c13|  0    0    0    0 

My contribution enters here. I realized that one doesn’t need a 
parallel machine to obtain the benefits of this parallel Jacobi 
method. One can combine the rotation matrices, since they are 
disjunct, as follows: 
      step A       |      step B       |       step C 
 c01  s01   0    0 | c02   0   s02   0 | c03   0    0   s03 
-s01  c01   0    0 |  0   c13   0   s13|  0   c12  s12   0 
  0    0   c23  s23|-s02   0   c02   0 |  0  -s12  c12   0 
  0    0  -s23  c23|  0  -s13   0   c13|-s03   0    0   c03 

This technique reduces the number of matrix products required 
for a matrix of size n by a factor of n%2. Thus the larger the matrix, 
the greater the savings. A 10-by-10 problem can be reduced by a 
factor of 5; a 100-by-100 problem by a factor of 50, and so forth.  

The Problem 
Now we come to the playful part. As you can see, the row-column 
pairs to be included at each step must somehow be derived. In the 
case of a 4-by-4 matrix, we see that step A uses the pairs (0 1) and 
(2 3); step B uses (0 2) and (1 3); and step C uses (0 3) and (1 2). 
The problem is to determine a permutation z that produces the 
desired result. For example, for n=4 any of the following 
permutations will do: 

  0 2 3 1 
  0 3 1 2 
  1 2 0 3 
  1 3 2 0 
  2 0 1 3 
  2 1 3 0 
  3 0 2 1 
  3 1 0 2 
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If we set z=.0 3 1 2, we can experiment as follows: 
  ]a=.(z&{) :(i. <:#z) i. #z NB. all of the 
possible permutations 
 0 1 2 3 
 0 3 1 2 
 0 2 3 1 
 
  ]b=.((2!#z),2)$,a NB. exhibit all the pairs of 
items 
 0 1 
 2 3 
 0 3 
 1 2 
 0 2 
 3 1 
 
   ]c=.(>/"1)b  NB. mask shows where lead item is 
greater than trail 
 0 0 0 0 0 1 
 
   ]d=.c |."_1 b NB. pairs with leading smaller 
item 
 0 1 
 2 3 
 0 3 
 1 2 
 0 2 
 1 3 
 
   ]e=./: d NB. pairs in ascending order 
 0 1 
 0 2 
 0 3 
 1 2 
 1 3 
 2 3 
 

 

Problem 1: Define a verb which takes as argument a positive 
even integer n and yields a permutation which, repeatedly 
applied to a conforming identity permutation, produces, in 
successive pairs of items, all possible choices of 2 items from n, 
with no duplications.  
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Problem 2: How many of the !n permutations of even order n 
are solutions to problem 1?*  

Principal verbs 
The verbs described below were written for J8. If you are using an 
earlier version of J you may wish to get your system upgraded. 
Here are the verbs making up my solution to the parallel Jacobi 
problem. The two verbs CEA and CEAI produce identical results, 
but CEA is written using the rhetorical control structures which 
have been added to J recently (see my last article) and CEAI uses 
the algebraic control structures which have been in J from the 
beginning.  

Each main verb CEA and CEAI (Complete EigenAnalysis) takes as 
argument a square symmetric matrix A and returns two 
conforming matrices, the first with the eigenvalues along the 
diagonal, and zeros elsewhere, and the second whose columns are 
the eigenvectors for the corresponding eigenvalues. They each test 
the parity of the number of rows of A. If this is even they laminate 
to A a conforming identity matrix, using the utility verb IM, and 
then apply the subverb PJ to this initial argument. If it is odd, the 
action is to border A on the right and the bottom with a column 
and row of zeros, using the utility verb bz, and then to apply CEA 
(or CEAI) to this, and at the end removing the bottom row and 
rightmost column of each matrix of the result with the utility verb 
ub.  

CEA =. 3 : 'if. (2|#y.) do. ub"2 CEA bz y. else. PJ y.,:IM y. end.' 
CEAI=.(PJ@(,:IM))`(ub"2@(CEAI@bz))@.(2:|#) 

The subverb PJ (parallel Jacobi) takes as argument an array of two 
square matrices. It prepares four global variables for use by hsjr: a 
quantity eps as the product of a globally defined tolerance tol 
and the Frobenius norm of the first matrix, yielded by the utility 
verb NF; a quantity s, the number of rows in the first square 
matrix; a list k, the integers from 0 to s-1; and a list p, a 
permutation which will be used to alter the arrangement of the 
atoms of k, using the utility verb mxp. It then employs the verb 
                                                      
* Here the author originally invited the reader to send him solutions by 
email. This is no longer appropriate. (Ed.) 
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hsjr (half of s Jacobi rotations) to the limit. At the limit, it yields 
the desired complete eigenanalysis of the original argument. 

PJ=. 3 : 0 
 eps=:tol*NF {. y.   
 s=:# {. y.   
 k =: i. s 
 p=:mxp s 
 hsjr :_ y.   
 ) 

The subverb hsjr (half of s Jacobi rotations) takes as argument an 
array of two square matrices. It begins by making a rotation 
matrix rm, using the verb RM. This rotation matrix is used with the 
first matrix of the argument to develop PJ0, the next stage of the 
eigenvalue matrix, one which has a smaller off-diagonal norm 
than the previous one, and setting to zero any of its elements 
which are less than or equal to the quantity eps, using the utility 
verb clean. Next, it uses the same rotation matrix rm with the last 
matrix of the argument, to develop PJ1, the next stage in the 
eigenvector matrix. The two matrices are laminated to give the 
result array. 

hsjr=.3 : 0 
 rm=.(k=:p{k) RM {.y.   
 PJ0=.((|:rm)+/ .*({.y.)+/ .*rm) clean eps 
 PJ1=.({:y.)+/ .*rm 
 PJ0,:PJ1 
 ) 

The subverb RM (rotation matrix) builds a parallel Jacobi rotation 
matrix.  

It takes as left argument a particular permutation of the integers 
from 0 through sP1. It fashions this into a two-column table t, 
then reverses those rows of t in which the first atom is greater 
than the second atom. An array cs of 2-by-2 cosine-sine matrices, 
one for each row of t, is formed, using the verb csm. These will be 
used to amend a matrix of zeros in locations specified by a 
conforming array of 2-by-2 boxes ix, whose atoms are each a 2-
atom list derived from the corresponding row of t, formed using 
the utility verb CP (Cartesian product).  

For example, if a row of t is 2 3, the 2-by-2 boxes corresponding 
to it will be: 
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    +---+---+ 
    |2 2|2 3| 
    +---+---+ 
    |3 2|3 3| 
    +---+---+ 

Finally, a matrix of zeros is formed, conforming to the right 
argument y., and the positions in this corresponding to positions 
given by the matrices of ix will be amended with the 
corresponding matrices of cs, yielding the desired parallel Jacobi 
rotation matrix.  

   RM=.3 : 0 
 : 
 t=.((-:s),2)$x.   
 t=.(>/"1 t)|."0 1 t 
 cs=.y. csm"2 1 t 
 ix=.CP t 
 cs ix}0:"0 y.   
 ) 

The subverb csm (cosine-sine matrix) takes as left argument a 
square matrix and as right argument a 2-element list of indices for 
that matrix, the first element giving a row number and the second 
element giving a column number, with the row number less than 
the column number. If the entry in the matrix at that row-column 
position is zero, the result will be a 2-by-2 identity matrix. If it is 
nonzero the result will be a 2-by-2 Jacobi rotation matrix, using 
the verb makecs.  

csm=.makecs`(=@(i.@2:))@.(0:=<@]{[) 

The subverb makecs (make cosine-sine table) takes as left 
argument a square matrix and as right argument a 2-element list 
of indices for that matrix, the first element giving a row number 
and the second element giving a column number, with the row 
number less than the column number. It yields a 2-by-2 Jacobi 
rotation matrix.  

makecs=. 3 : 0 
 : 
 tau=.(((<2#}. y.){x.)-(<2#{. y.){x.)%+:(<y.){x.  
 t=.(*tau)%(|tau)+4 o. tau 
 c=.%4 o. t 
 s=.t*c 
 (c,s),:(-s),c 
 ) 
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The subverb mxp (make index permutation) takes a positive even 
integer as argument and yields a list which is a permutation of the 
integers from 0 through one less than the argument. The 
permutation is such that when applied repeatedly to a conforming 
list, none of the successive pairs in the lists are equal.  

mxp=.[: C. 0: ; <: , (,  >:@|.)@>:@+:@i.@<:v 

Utility verbs 
The utility verb CP takes a list as argument and returns the 
Cartesian product of the items of the list.  

CP=.    {@;"1  

The utility verb IM takes as argument a matrix and yields an 
identity matrix having the same number of rows.  

IM=.    [: = [: i. # 

The utility verb NF takes a matrix argument and yields its 
Frobenius norm as result. 

NF=.    [: %: [: +/ [: , *: 

The utility verb clean takes a numeric array as left argument and a 
positive atom as right argument. It yields a conforming array as 
result, wherein each element of the left argument with magnitude 
less than the right argument is replaced by zero.  

clean=. [ * ] < [: | [ 

The utility verb bz takes a matrix argument and yields a similar 
matrix bordered on the right and below by a new column and row 
of zeros.  

bz=.    >:@$ {. ] 

The utility verb ub takes a matrix argument and yields a similar 
matrix with the rightmost column and bottom row removed.  

ub=.    _1 _1&}.  
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Test Information 
Alter the following value as desired to control accuracy and 
speed: 
 

tol=.1e_6 NB. value should be in the range 1e_2 to 
1e_17 
 
 NB. Test matrices 
 
   ]A=.1 1 1 1,1 2 3 4,1 3 6 10,:1 4 10 20 
 1 1  1  1 
 1 2  3  4 
 1 3  6 10 
 1 4 10 20 
 
   ]m=.1.5 _1 _0.5,_1 2 _1,:_0.5 _1 1.5 
   1.5 _1 _0.5 
   _1  2   _1 
 _0.5 _1  1.5 
 
   ]r=.1 1 0.5,1 1 0.25,:0.5 0.25 2 
   1    1  0.5 
   1    1 0.25 
 0.5 0.25    2 
 
NB. test results, using tol as specified above 
(executed on a Macintosh) 
 
   CEA A 
  0.453835         0         0         0 
         0  0.038016         0         0 
         0         0   2.20345         0 
         0         0         0   26.3047 
  0.787275 _0.308686  0.530366 0.0601868 
 _0.163234  0.723091  0.640331  0.201173 
 _0.532107  _0.59455  0.391833  0.458082 
  0.265358  0.168411 _0.393897  0.863752 
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   CEA m 
           2         0       0 
           0         3       0 
           0         0       0 
    0.707107 _0.408248 0.57735 
 _9.8829e_10  0.816497 0.57735 
   _0.707107 _0.408248 0.57735 
    CEA r 
 _0.0166473         0        0 
          0   
1.48012        0 
          0         0  2.53653 
   0.721208   0.44428 0.531483 
  _0.686348   0.56211 0.461473 
  _0.093729 _0.697601 0.710329 



6 Cribbage 15s 
First published in Vector, 11, 4, (April 1995), 135-138. 

 

Sir John Suckling (1609-1642) lived to just the age of 33, as you can 
see. He is supposed to have taken poison to avoid a life of penury, 
during the Civil War, in which he was a cavalier, not a round-
head. He was also a poet with an entrancing lyrical gift. He wrote: 

Her lips were red, and one was thin  
Compared to what was next her chin  
(Some bee had stung it newly); 

More to the point, John Aubrey, in his Brief Lives, tells us that 
Suckling also invented the game of cribbage, developing it from 
an earlier game, called noddy. I know nothing of noddy, but I was 
taught cribbage while I was in the army (1944-6) by a fellow 
soldier named Goman, who came from Duluth, Minnesota 
(named for a French explorer named Du Luth). According to 
Goman, Duluth was the cribbage capital of the world. The reason 
for this was that Duluth is at the very western end of the 
westernmost of the Great Lakes, Lake Superior, and in the winter, 
when lake traffic has stopped, there is nothing for people to do 
but go to their neighbourhood pub and play cribbage while 
drinking beer. They also had the world’s championship cribbage 
match, to which all of the best cribbage players in the world came. 
Most of them didn’t have to come far, since many were from 
Duluth. This may have changed over the last 50 years.  

Just recently, when our nightly double solitaire game palled, my 
wife and I decided to play cribbage instead. I got out the cribbage 
board I had made, close to fifty years ago, and, with the aid of 
some wooden matches to use as pegs, we began to play. My wife 
hadn’t played the game as much as I had, and it was clear that she 
was missing some opportunities to score because she didn’t see 
some of the card combinations that added to 15. Such scores are a 
key part of the game.  

To help her out, I decided to tabulate all the combinations of cards 
of length two through five that added to 15. This was easy enough 
for length two and three, but it became a little tedious and 
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uncertain for greater lengths. I decided to take a few minutes 
longer and get it right by doing it with J.  

Because I had been spending most of my time recently on studies 
involving Jane Austen, I hadn’t been doing much programming, 
and I was a bit rusty. My first attempt used a technique which 
generated all of the representations of 2, 3, 4, and 5-digit decimal 
numbers, removed those which had more than four of any digit, 
sorted the rows that were left (so that 4 1 became 1 4, for 
example), removed duplicates, and removed rows that didn’t add 
to 15. This strategy foundered because I ran out of space.  

I took a few more minutes to think of a more space-efficient 
strategy, and decided to use a program called part that had been 
communicated to me several years ago by Roger Hui, which 
allowed one to generate all the length k partitions of a positive 
integer n. For example, 

   2 part 7       
 1 6 
 2 5 
 3 4 
   3 part 6       
 1 1 4 
 1 2 3 
 2 2 2 

Having this made it almost too easy.  
First I had to generate the partitions of 15 having length 2, 3, 4, and 5. 

Next, since in cribbage the card values are from 1 (for ace) to 10 (for 
10, jack, queen, or king), I had to remove rows having elements 
greater than 10.  

Next, for the 5-partitions, I had to remove the last row, since this 
would consist of five threes (how did I know this?), and thus not be 
valid (there are only four threes in a deck of cards).  

Last, I wanted to box the results so they could be joined together.  

To get rid of rows containing values beyond 10 I wrote: 
  i=.*./"1@(10&>:) # ]  

This takes as argument a table of numbers and produces a 
Boolean list by taking the and (*.) over (/) the rows ("1) of the 
conforming table having a 1 for values for which 10 (10:) was 
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greater than or equal (>:), and using this to copy (#) only those 
rows from the argument (]).  

To get rid of the last row if the rows had length 5, I wrote: 
m=.}: : (5: = #@{.) 

This curtails (}:) the table if ( :) 5 (5:) is equal to (=) the length 
(#) of its first ({.) row.  

Boxing is primitive, so the entire result could then be obtained by 
writing:  

    ]p=.2 3 4 5 <@m@i@part"(0) 15  
 
+----+------+--------+----------+ 
|5 10|1 4 10|1 1 3 10|1 1 1 2 10| 
|6  9|1 5  9|1 1 4  9|1 1 1 3  9| 
|7  8|1 6  8|1 1 5  8|1 1 1 4  8| 
|    |1 7  7|1 1 6  7|1 1 1 5  7| 
|    |2 3 10|1 2 2 10|1 1 1 6  6| 
|    |2 4  9|1 2 3  9|1 1 2 2  9| 
|    |2 5  8|1 2 4  8|1 1 2 3  8| 
|    |2 6  7|1 2 5  7|1 1 2 4  7| 
|    |3 3  9|1 2 6  6|1 1 2 5  6| 
|    |3 4  8|1 3 3  8|1 1 3 3  7| 
|    |3 5  7|1 3 4  7|1 1 3 4  6| 
|    |3 6  6|1 3 5  6|1 1 3 5  5| 
|    |4 4  7|1 4 4  6|1 1 4 4  5| 
|    |4 5  6|1 4 5  5|1 2 2 2  8| 
|    |5 5  5|2 2 2  9|1 2 2 3  7| 
|    |      |2 2 3  8|1 2 2 4  6| 
|    |      |2 2 4  7|1 2 2 5  5| 
|    |      |2 2 5  6|1 2 3 3  6| 
|    |      |2 3 3  7|1 2 3 4  5| 
|    |      |2 3 4  6|1 2 4 4  4| 
|    |      |2 3 5  5|1 3 3 3  5| 
|    |      |2 4 4  5|1 3 3 4  4| 
|    |      |3 3 3  6|2 2 2 2  7| 
|    |      |3 3 4  5|2 2 2 3  6| 
|    |      |3 4 4  4|2 2 2 4  5| 
|    |      |        |2 2 3 3  5| 
|    |      |        |2 2 3 4  4| 
|    |      |        |2 3 3 3  4| 
+----+------+--------+----------+ 
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To make this a bit more useful, I copied it to my text editor 
(MacWrite Pro) and changed 10 to T and 1 to A, adjusted widths a 
bit, and added a few header and footer lines, giving: 

Ways of counting fifteen  
with 2 3 4 5 cards in cribbage  
 

+----+------+--------+----------+ 
|5  T|A 4  T|A A 3  T|A A A 2  T| 
|6  9|A 5  9|A A 4  9|A A A 3  9| 
|7  8|A 6  8|A A 5  8|A A A 4  8| 
|    |A 7  7|A A 6  7|A A A 5  7| 
|    |2 3  T|A 2 2  T|A A A 6  6| 
|    |2 4  9|A 2 3  9|A A 2 2  9| 
|    |2 5  8|A 2 4  8|A A 2 3  8| 
|    |2 6  7|A 2 5  7|A A 2 4  7| 
|    |3 3  9|A 2 6  6|A A 2 5  6| 
|    |3 4  8|A 3 3  8|A A 3 3  7| 
|    |3 5  7|A 3 4  7|A A 3 4  6| 
|    |3 6  6|A 3 5  6|A A 3 5  5| 
|    |4 4  7|A 4 4  6|A A 4 4  5| 
|    |4 5  6|A 4 5  5|A 2 2 2  8| 
|    |5 5  5|2 2 2  9|A 2 2 3  7| 
|    |      |2 2 3  8|A 2 2 4  6| 
|    |      |2 2 4  7|A 2 2 5  5| 
|    |      |2 2 5  6|A 2 3 3  6| 
|    |      |2 3 3  7|A 2 3 4  5| 
|    |      |2 3 4  6|A 2 4 4  4| 
|    |      |2 3 5  5|A 3 3 3  5| 
|    |      |2 4 4  5|A 3 3 4  4| 
|    |      |3 3 3  6|2 2 2 2  7| 
|    |      |3 3 4  5|2 2 2 3  6| 
|    |      |3 4 4  4|2 2 2 4  5| 
|    |      |        |2 2 3 3  5| 
|    |      |        |2 2 3 4  4| 
|    |      |        |2 3 3 3  4| 
+----+------+--------+----------+ 
 
  T = 10, J, Q, or K 
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The key to this is Roger Hui’s partition function, part:  
    part  =. basis`recur@.test  
      basis =. (0&<@] , [) $ (1&=@[ 1&>.@* ])  
      recur =. (mask form ])@(part&<:)  
        mask  =. start <:/ {."1 <. -.@(-/)@(_2&{.)"1  
          start =. +/@{. >:@i.@<.@%&>: {:@$  
        form  =. pfx@[ decr@,. ind@[ { ]  
          pfx   =. +/"1 # >:@i.@#  
          decr  =. (>:@(-/)@(_1 0&{) _1} ])"1  
          ind   =. , # */@$ $ i.@{:@$  
      test  =. 1&<@[ *. < 

All in all, I spent a happy half-hour at play with J, and my wife 
now beats me pretty regularly at cribbage. 





7 Representing a Permutation 
First published in Vector, 12, 1, (July 1995), 125-128. 

 

This column explores some ways of changing among different 
ways of representing a permutation. 

Representations of a permutation: 
     standard    reduced   atomic 
     0  1  2     0  0  0     0 
     0  2  1     0  1  0     1 
     1  0  2     1  0  0     2 
     1  2  0     1  1  0     3 
     2  0  1     2  0  0     4 
     2  1  0     2  1  0     5 

The tables above give three different forms of length-3 
permutations. It is useful to be able to go between the standard 
and the atomic forms, and this conversion is facilitated by the 
reduced form. We develop the following verbs: 

ra     reduced from atomic 
ar     atomic from reduced 
sr     standard from reduced 
rs     reduced from standard. 

With these we can convert from each of the forms to any other. A 
factorial digits number base is used to convert between the atomic 
and reduced forms. The verb fdb gives the factorial digits base for 
permutations of the order of its argument. 

     fdb=. >:@i.- 

For example, 
     fdb 3 
3 2 1 

With this base we can convert an atomic to a reduced form and 
vice-versa: 

   (fdb 3)#: 4 
2 0 0 
   (fdb 3)#. 2 0 0 
4 
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So the two verbs ra and ar are easily defined: 
   ra=. ([: fdb [) #: ] 
   ar=. ([: fdb #) #. ] 

For example: 
   3 ra 4 
2 0 0 
   ar 2 0 0 
4 

To convert from a reduced to a standard form is somewhat more 
difficult. The trick is to begin at the right and add 1 to each atom 
which is equal to or greater than the atom at the left. This ensures 
that all atoms are kept distinct, and that at each step we have a 
permutation. For example, suppose we take the length 9 reduced 
form of the atomic form 288918: 

   ]r=. (fdb 9) #: 288918 
7 1 2 1 3 1 0 0 0 

and then work from the right to develop the standard form: 
                 0 
               0 1 
             0 1 2 
           1 0 2 3 
         3 1 0 2 4 
       1 4 2 0 3 5 
     2 1 5 3 0 4 6 
   1 3 2 6 4 0 5 7 
 7 1 3 2 6 4 0 5 8 

and the last result is the desired standard form. We can 
encapsulate this in a verb as follows: 

   g=. [ , ] + ] >: [ 
   7 g 1 g 2 g 1 g 3 g 1 g 0 g 0 g 0 
7 1 3 2 6 4 0 5 8 

This suggests that we define a verb 
   f=. g/ 

and use it on r directly: 
   f r 
7 1 3 2 6 4 0 5 8 

But we can do better than this, employing the identity, for integer 
k and permutation p, 

   k , p + p >: k  <->  /: /: k , p 
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and arrive finally at the desired verb: 
   sr=. /:@/:@,/ 
   ]s=. sr r 
7 1 3 2 6 4 0 5 8 

The last verb we need, to translate from standard to reduced form, 
is arrived at by noting that, if r is the reduced form of a atandard 
form s, then i{r is obtained from i{s by taking a count of how 
many atoms to the right of i{s are less than i{s. For example: 

   7 1 3 2 6 4 0 5 8 
  7 > x x x x x x x x = 7 
    1 >         x     = 1 
      3 > x     x     = 2 
        2 >     x     = 1 
          6 > x x x   = 3 
            4 > x     = 1 
              0 >     = 0 
                5 >   = 0 
                  8 > = 0 

This sounds like a scan, but it isn’t exactly. J provides the \ adverb 
to fulfil the function of APL’s scan adverb, but calls this prefix, to 
emphasize that the derived verb is applied to longer and longer 
prefixes. It calls the \. adverb suffix to emphasize that the derived 
verb is applied to shorter and shorter suffixes. Thus the rs verb 
we need can be defined as: 

   rs=. ([: +/ }. < {.)\.   
   rs s 
7 1 2 1 3 1 0 0 0 

With these four verbs, ar, ra, rs, sr, it is possible to obtain any of 
the three forms from any other. We don’t need a verb to go 
directly from standard to atomic or vice-versa. However, J 
provides this as a primitive verb, denoted by A. and called 
‘Atomic Index’ for its monad and ‘Atomic Permute’ for its dyad. 
For example, 

   A. s 
288918 
   288918 A. i. 9 
7 1 3 2 6 4 0 5 8 
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So with A. a primitive, the four verbs we laboured over above are 
more interesting for pedagogical than for practical reasons. 
Atomic permute doesn’t care what its right argument is; it will 
permute any object of sufficient length: 

   288918 A. 'netrilacy' 
certainly 

A useful verb to generate a table of all permutations of a given 
length is easy to write: 

   apn=. i.@! A. i.   
   apn 3 
0 1 2 
0 2 1 
1 0 2 
1 2 0 
2 0 1 
2 1 0 

You would need a computer with a rather large amount of main 
store to generate apn 12 —about 46e9 bytes (8 bytes per element, 
12 elements per row, 479,001,600 rows). Of course, the computer 
would also have to be able to address that large a store, too. 
Judging from the current state of affairs, it may well be almost the 
year 2000 before we routinely have these capabilities on our 
desktops. 



8 The Bauer-Mengelberg Problem 
First published in Vector, 12, 2, (October 1995), 115-122. 

 

This paper discusses a combinatorial problem arising in the field 
of music, and shows the importance of the A. primitive discussed 
in my last column. 

The problem was told to me many years ago by Ken Iverson, who 
had heard it from Adin Falkoff, who in turn had heard it from 
Stephen Bauer-Mengelberg, a conductor / programmer who was 
a colleague of Ken and Adin’s at IBM’s Systems Research Institute 
at UN Plaza in New York City in the early 1960s. [Picturesque but 
irrelevant detail: Adin tells of asking Bauer Mengelberg how one 
of the pieces he conducted at a concert the night before had gone. 
The answer was “The first movement went only so-so, but with 
the second movement I floated off the podium.”] 

The problem deals with the twelve-tone music associated with the 
composer Arnold Schoenberg. I am not a musician, so I shall only 
briefly describe it musically, and then convert it into a problem in 
combinatorial mathematics. 

The problem is to describe all the ways in which the twelve 
semitones of the octave can be written so that each is used exactly 
once, and so that each interval possible within the octave occurs 
exactly once. The Penguin book A Dictionary of Music, by Robert 
Illing (1950) gives an example of such a piece in figure (f) on page 
297.  

 

The notes begin with A natural, and then alternately rise and fall, 
in the sequence B flat, G sharp, B natural, G natural, C natural, F 
sharp, C sharp, F natural, D natural, E natural, and D sharp. I find 
it convenient to number these notes according to their signed 
distances from A natural, which I number as 0. The twelve notes 
are then seen as 

   0 1 _1 2 _2 3 _3 4 _4 5 _5 6 
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And it simplifies things if we take these mod 12, giving 
   0 1 11 2 10 3 9 4 8 5 7 6        [A] 

I have found it helpful visually to write these numbers as the 
hours on a clock face (using 0 in place of 12), and to connect the 
hours by lines in the order given, that is, draw a line connecting 0 
to 1, 1 to 11, 11 to 2, and so on, ending with a line drawn from 7 
to 6.  

 

This clock figure makes more apparent various symmetries that 
reduce the number of permutations that need to be considered. 

If we take the first difference of [A], we get the following: 
   1 10 _9 8 _7 6 _5 4 _3 2 _1 

and if we take this mod 12, we get 
   1 10 3 8 5 6 7 4 9 2 11        [B] 

and it is easy to see that the list [A] is a 0-origin permutation 
having a first difference, mod 12 [B] which is a 1-origin 
permutation. Thus we have transformed the musical problem, 
having to do with twelve-tone rows, into the combinatorial 
problem of determining all the permutations of i. 12 having a 
first difference which is a permutation of >: i. 11. That is, we 
want to know how many such permutations there are, and what 
they are. To make it easier to discuss “a permutation having a first 
difference mod permutation length also a permutation”. I’ll call 
such an object a ‘dil’ (from Distinct Interval List). 

There are 479,001,600 permutations of i.12, so it is a large 
problem to sift through these permutations looking for dils. For 
example, to load the table of all permutations of order 12 would 
take 4*12*!12, or 22,992,076,800 bytes. I believe that this would 
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be impossible to load in real memory on the largest contemporary 
machine. This paper explores ways to cut it down to a more 
manageable size. 

I heard the problem in the early 1960s when Iverson notation was 
available only on the printed page, and worked at it by hand for 
several months without making much progress. Recently I 
decided to tackle it once more, beginning by studying the 
permutations of smaller order. I found that dils occur only among 
even length permutations. The order two permutations are easy: 
both are dils: 0 1 and 1 0, having an interval of 1. These can be 
done mentally, but it quickly becomes necessary to develop 
programming tools to aid in the exploration: 

   pt=.i.@! A. i.    NB. permutation table 
   mfd=.# | }. - }:  NB. modular first difference 
   mn=. -: .        NB. distinct items? 
   dil=.mn@mfd"1     NB. a dil? 
   dils=. dil # ]    NB. all dils 
   pt 3 
 0 1 2 
 0 2 1 
 1 0 2 
 1 2 0 
 2 0 1 
 2 1 0 
   mfd 0 1 5 2 4 3 
 1 4 3 2 5 
   mn mfd 0 1 5 2 4 3 
 1 
   dil 0 1 5 2 4 3 
 1 

Studying the dils of order 4 give us some insight into the problem: 
   dils pt 4    NB. dils of length 4 
 0 1 3 2 
 0 3 1 2 
 1 0 2 3 
 1 2 0 3 
 2 1 3 0 
 2 3 1 0 
 3 0 2 1 
 3 2 0 1 
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Some symmetries are present that will let us cut the problem 
down in size. Only permutations beginning with 0 need be 
considered, since the others can be obtained by clock face 
rotations: 

   ro=. #@] | +  NB. rotate y by x 
   1 ro 0 1 3 2 
 1 2 0 3 
   2 ro 0 1 3 2 
 2 3 1 0 

and similarly for the others. I call the dils beginning with zeros 
‘basic dils’, since all the others can be obtained from them by 
rotation, or, in musical terms, by transposing. By looking for dils 
only among permutations beginning with 0, our order !12 prob-
lem has been reduced reduced to an order !11 problem, or 
39,916,800. Here are the basic dils of orders 4, 6, and 8: 

   a4=.dils(i.!3)A. i.4 
   a6=.dils(i.!5)A. i.6 
   a8=.dils(i.!7)A. i.8 
   a4            a6                a8 
 0 1 3 2       0 1 5 2 4 3       0 1 3 6 2 7 5 4 
 0 3 1 2       0 2 1 4 5 3       0 1 6 5 3 7 2 4 
               0 4 5 2 1 3       0 1 7 2 6 3 5 4 
               0 5 1 4 2 3       0 1 7 3 6 5 2 4 
                                 0 2 1 5 3 6 7 4 
                                 0 2 3 6 5 1 7 4 
                                 0 2 5 1 7 6 3 4 
                                 0 2 7 6 1 5 3 4 
                                 0 3 1 2 6 5 7 4 
                                 0 3 2 7 1 5 6 4 
                                 0 3 5 1 2 7 6 4 
                                 0 3 5 6 2 1 7 4 
                                 0 5 3 2 6 7 1 4 
                                 0 5 3 7 6 1 2 4 
                                 0 5 6 1 7 3 2 4 
                                 0 5 7 6 2 3 1 4 
                                 0 6 1 2 7 3 5 4 
                                 0 6 3 7 1 2 5 4 
                                 0 6 5 2 3 7 1 4 
                                 0 6 7 3 5 2 1 4 
                                 0 7 1 5 2 3 6 4 
                                 0 7 1 6 2 5 3 4 
                                 0 7 2 3 5 1 6 4 
                                 0 7 5 2 6 1 3 4 
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Further efficiencies are possible. Notice that all of these dils not 
only begin with the constant 0, but end with a constant that is half 
of the order: 2, 3, and 4 for orders 4, 6, and 8, respectively. This 
means that in searching for dils we only have to look at those 
permutations beginning with 0 and ending with a constant, with 
some permutation between them.  

The desired inner permutation is given by: 
   si=. i. -. 0: , -:    
NB. integers thro n-1, less 0 and -:n 
   si 2 
   si 4 
 1 3 
   si 6 
 1 2 4 5 
   si 8 
 1 2 3 5 6 7 
   si 10 
 1 2 3 4 6 7 8 9 
   si 12 
 1 2 3 4 5 7 8 9 10 11 

By having to consider only inner permutations of order n-2, we 
have now reduced our problem to one of order !10, or 3,628,800. 
Furthermore, looking carefully again at the tables a4, a6, and a8 
above, we see that only the first half of the basic dils need to be 
tested, since the rest can be found by clock face reflections in the 
y-axis. That is, any one of the rows in the lower half of any of 
these tables is obtainable from one of the rows in the upper half. 
The verb ry reflects a dil about the y-axis: 

   ry=. # | # - ] 
   ry 0 1 3 2 
 0 3 1 2 

This means that to find the dils of order 12, we have to test only  
-:!10, or 1,814,400 permutations. This is a reduction from !12 by 
a factor of 264. 

Since we can always retrieve a dil if we know its atomic number 
and its length, we don’t need to exhibit the complete row. It 
suffices to obtain only its atomic number. For example, the dils of 
order 4 can be obtained using only 8 integers, rather than the 32 
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required by the display of the four atoms of each permutation 
form of the dil.  

We can define a verb dan to give us the dils in atomic number 
form: 

   dan=. (dil # A.)   NB. dil atomic number 
   dan pt 4           NB. atomic numbers of dils 
of order 4 
 1 4 6 8 15 17 19 22 

There are two additional clock face reflective symmetries in these 
dils. In addition to the y-axis symmetry mentioned above, there 
are reflections possible in the x-axis, and in both the x and y axes. 
For example, the dil: 

   r=. 0 1 3 2 7 10 8 4 11 5 9 6 

can be reflected in the x-axis by: 
   rx=. [: |. # | -:@# - ] 
   rx r 
 0 9 1 7 2 10 8 11 4 3 5 6 

and in the x-y axes by: 
   rxy=.[: |. # | -:@# + ] 
   rxy r 
 0 3 11 5 10 2 4 1 8 9 7 6 

I haven’t found a way to use these further symmetries to reduce 
the work necessary to solve the dil problem. The program I use to 
find the primitive dils of order n is: 

   pdon=. 3 : 0 
 NB. argument is 4-item list, e.g. pdon 12 5040 0 1814400 
  'nibm'=.y. 
 NB. n is length of permutation 
 NB. i is size of batch (depends on memory size and n) 
 NB. b is base index (usually 0 initially) 
 NB. m is maximum item number (usually -:!n-2) 
 NB. z is result, list of indices of primitive dils of order n 
  z=.'' 
  s=.si n            NB. for example, si 8 is 1 2 3 5 6 7 
  h=.-:n             NB. for n=8, h is 4 
  while. b<m do. 
    t=.0,.((b+i.i)A. s),.h  NB. provide another batch 
    z=.z,dan t       NB. append primitive dil atomic #s to z 
    b=.b+x           NB. step base by batch size 
  end. 
 z 
 ) 

The line assigning t shows the utility of being able to specify the 
right argument to the A. primitive. On my computer, it took about 
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10 minutes to compute the dils of order 10. I don’t know how long 
it took to do those of order 12. I started it going just before I went 
to bed, and it was ready in the morning.  

For the record, the number of dils of orders 2 through 12 are: 
   order   primitive dils  basic dils    all dils 
     2          1               1            2 
     4          1               2            8 
     6          2               4           24 
     8         12              24          192 
    10        144             288         2880 
    12       1928            3856        46272 

 

Here are a few nicely symmetrical dils of order 12: 
   pty12s=.646517 3154657 4275293 5762095 7289175 
9306655 
   pty12s=. pty12s, 11633649 12187013 13754599 
14826363 16823821 
 
   pty12s A. i.12 
 0 1  3 10  2  5 11 8  4  9  7 6 
 0 1 10  8  3 11  5 9  2  4  7 6 
 0 2  3 10  1  5 11 7  4  9  8 6 
 0 2  7 10 11  3  9 5  4  1  8 6 
 0 3  1  2 10  5 11 4  8  7  9 6 
 0 3  7  8 10  5 11 4  2  1  9 6 
 0 4  3  1  8  5 11 2  7  9 10 6 
 0 4  5  8  3  1  7 9  2 11 10 6 
 0 4  9 11  2  1  7 8  5  3 10 6 
 0 5  1 10  8  9  3 2  4  7 11 6 
 0 5  8  4  3  1  7 9 10  2 11 6 

 

If you’re a musician you might try playing these. They also make 
interesting clock face patterns. If you have a current version of J 
on your computer you can see them drawn using the graphics 
facilities available. The functions sogwin and sline are available 
if you have profile.js in the command line as advised in installing 
the system. Additional information about using the J graphics 
facilities are described in the book Fractals Visualization and J by 
Clifford Reiter, available from Iverson Software, Inc. 



At Play With J 
 

56 

Here is the beginning of a sample session of visualizing dils on a 
clock face to help you get started: 

   ]r12=: 12 %: _1      NB. 12th root of negative 1. 
 0.965926j0.258819 
   all=. r12 2*i.12     NB. first 12 powers of this root 
   ]coords=. +.all      NB. real & imaginary parts 
            1           0 
     0.866025         0.5 
          0.5    0.866025 
 6.12574e_17           1 
         _0.5    0.866025 
    _0.866025         0.5 
           _1 1.22515e_16 
   _0.866025        _0.5 
         _0.5   _0.866025 
 _1.83772e_16          _1 
          0.5   _0.866025 
     0.866025        _0.5 
 
   scaled=. 500*1+coords    NB. scale to screen 
coordinates 
    1000     500 
 933.013     750 
     750 933.013 
     500    1000 
    250 933.013 
 66.9873     750 
       0     500 
 66.9873     250 
     250 66.9873 
     500       0 
     750 66.9873 
 933.013     250 

With these defined you can create a graphics window with: 
   sogwin 'scaled' 
   0 sline scaled 

And display the lines for a given permutation on the clock face 
with: 

   perm=. 12 | 3+ry 0 1 11 2 10 3 9 4 8 5 7 6 
   p=. perm{scaled 
   0 sline p 
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The definitions of some of the graphics verbs needed are given 
below: 

   sogwin =. 3 : 0 
 3 3 500 500 sogwin y.  : 
 x=.<.x.%2.5 
 z=.'pc ',y.,';xywh ',(": x),';cc g isigraph;pas 
',":2{.x 
 wd z,';pcenter;pscale;pcloseok;pshow sw_showna;' 
 ) 
  
   sline =. 3 : 0"1 2 
0 0 0 sline y. 
 : 
 wd 'grgb ',(":x.),'; gpen 1 ps_solid;' 
 wd 'gmove ',(":{.y.),';' 
 wd z=:,'gline ',"1 (":}.y.),"1 ';' 
 wd 'gshow;' 
 ) 
 
   spoly =. 3 : 0"1 2 
 wd 'gpolygon ',(,' ',.":y.),';gshow;' 
 : 
 sfill x. 
 spoly y. 
 )  

 





9 Heron’s Rule and Integer-Area Triangles 
First published in Vector, 12, 3, (January 1996), 133-142. 

Preliminaries 
This note makes use of several less-well-known parts of J: the fix (f.) 
and Taylor series coefficient (t.) adverbs and the polynomial 
rootfinder verb (p.). 

 To make the following accessible to all readers, the following verbs 
are defined: 

C =. @  NB. compose       f C g x <-> f g x  
D =. %  NB. divide        18 D 3  <-> 6  
H =. -: NB. halve         H 12    <-> 6  
I =. ]  NB. identity      I 6     <-> 6  
P =. */ NB. product       P 1 2 3 <-> 6  
R =. %: NB. square root   R 36    <-> 6  
S =. +/ NB. sum           S 1 2 3 <-> 6  
Z =. 0: NB. zero          Z 1 2 3 <-> 0 

The following convention applies to verbs f, g, and h: 
   (f g h) y <-> (f y) g (h y) NB. (%: , *:) 16 <-> 4 256 

 

Heron’s Rule 
Heron’s rule for the area A of a triangle with sides a, b, and c is 
usually written in two steps. First the semi-perimeter s is computed: 

  s =. (a + b + c) D 2 

For example: 
   (13 + 14 + 15) D 2  
         42       D 2  
21 

And then the following expression for the area is computed: 
   A =. R (s * (s - a) * (s - b) * (s - c)) 

Continuing the example: 
   R (21 * (21 - 13) * (21 - 14) * (21 - 15))  
   R (21 *     8     *     7     *     6    )  
   R 7056  
84 
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Heron’s is a scalar-oriented formula, with the lengths of the three 
sides and the semi-perimeter playing separate roles in the 
formulation. We make a first approach to an array formulation by 
considering the triangle to be defined by a 3-item list of side lengths. 
We then determine the semi-perimeter by a verb SP: 

   SP =. H C S 

The next step is to replace the three explicit subtractions by 
appending a zero to the list and subtracting the resulting four values 
from the semi-perimeter, then taking the product over this result, and 
finally the square root of the product. 

   Heron =. R C (P C (SP - (Z , I))) 

This is a slightly more efficient form than APL expression 318 in the 
FinnAPL Idiom Library. 

   Heron 13 14 15   
84 

Fixing the definition of Heron, and giving this fixed version the name 
Hrn, by using the fix adverb (f.) yields a form in which the names of 
defined items are replaced by their values. Doing this insures that 
changes in the items defined do not alter the definition of the item in 
which they are used. As a side effect, a fixed verb is generally faster 
than an unfixed equivalent. 

   Hrn =. Heron f. 
   Hrn 
%:@(*/@(-:@(+/) - 0: , ])) 
   Hrn 13 14 15 
84 

 

Integer Heron 
In preparing examples for Heron’s formula, I thought it would make 
the examples clearer if I could find triangles having integer sides that 
also had integer areas. I explored consecutive triplets of integers 
among the first 200 sets of triplets.  

The first step was to build the table of triplets (the table has 200 rows): 
   T =. 3 ]\ i. 202 
   $ T 
200 3 
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Its first and last four rows are: 
   4 _4 {."0 _ T 
  0   1   2 
  1   2   3 
  2   3   4 
  3   4   5 
196 197 198 
197 198 199 
198 199 200 
199 200 201 

Applying Hrn to the rows of this table gives a list of areas. 
   Areas =. Hrn"1 T 

We determine which of the areas are integral (those equal to their 
own floor): 

   Mask =. (= <.) Areas 

And use the mask so found to give us the winning rows of T: 
   Winners =. Mask # T  
   Winners  
  1   2   3  
  3   4   5  
 13  14  15  
 51  52  53  
193 194 195 

The areas corresponding to these are: 
   Hrn"1 Winners  
0 6 84 1170 16296 

The triangle 1 2 3 is degenerate (ugh!). 

 

A Recursive Formula 
I looked at Winners for some clue as to how the series could be 
prolonged, but without success. Then I thought of N. J. A. Sloane’s 
book A Handbook of Integer Sequences. I looked in it for the series 1 3 13 
51 193 without avail. Then, knowing that each series in the book 
began with 1, which was sometimes prefixed to a series which began 
naturally with some other integer, I looked for 1 2 4 14 52 194 and 1 3 
5 15 53 195, but again to no avail. Finally, I divided the even column 2 
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4 14 52 194 by 2, looked for 1 2 7 26 97, and this time struck pay dirt. It 
was Sloane’s sequence 700. 

Sloane’s entry for series 700 not only gave a number of additional 
values but, more importantly, it gave a doubly recursive formula for 
finding the values, in common mathematical notation: 

 A(n) = 4A(n - 1) - A(n - 2) 

So now I was able to extend the series as far as I wanted. I wrote a J 
version of A: 

 A=. ((4:*A@<:)-(A@<:@<:))`>:@.(<&2) 

which, as you can see, is doubly recursive in A. It tests whether the 
argument is less than 2 (<&2), giving one plus the argument (>:) as 
result in these cases, and otherwise yields the difference between A of 
n-1 (<:) and A of n-2 (<:<:). 

I calculated additional results of A, for arguments 6 through 14, 
derived triplets from the results, and applied Hrn to the triplets, and 
in each case found an integer area. But was I satisfied? No. 

 

Generating Functions 
O them doddhunters and allanights, aabs and baas for agnomes, yees 
and zees for incognits, bate him up jerrybly!  James Joyce, Finnegans 
Wake, p. 283. 

The reason the story carries on is that I was unhappy with the long 
execution times required by the deeply rooted calling trees of the 
double recursion. I had to terminate the execution of A 30 after five 
hours with no result. My mind turned to the subject of generating 
functions, something I had often heard about and often, with little or 
no success, had tried to master. I was stimulated to do this because of 
three books. These were K. E. Iverson’s new book Concrete Math 
Companion; the Ronald Graham, Donald E. Knuth, and Oren 
Patashnik book Concrete Mathematics, which I shall refer to as GKP; 
and most of all, the H. S. Hall and S. R. Knight book Higher Algebra, 
first edition 1887, and usually referred to as Hall & Knight, worthy 
successor to Todhunter’s Algebra for Schools and Colleges.  

Both of these books are celebrated by James Joyce in the mathematics 
chapter of his Finnegans Wake. Iverson’s new book and GKP focus 
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sharply on generating functions. From GKP I learned a four-step 
process that promised to allow me to have my will with arbitrary 
generating functions. I plodded through their examples, and tried to 
duplicate their results on my problem. No luck. I turned to Iverson’s 
book, and found out one important thing that GKP had neglected to 
tell me, that is, that the key to generating functions was the ability to 
generate the coefficients of Taylor series, something that J is well 
suited for, since it contains a primitive (t.) to do just that. However, 
that is about all I was able to learn there. Lastly, I got out my rusty 
red copy of Hall & Knight, and it came through. The examples they 
gave were of the same kind as mine, that is, they dealt primarily with 
doubly recursive functions, where the nth term is some linear 
combination of the two preceding terms. Their explanations were 
carefully laid out in great detail. 

Here is how they go about it. 

Given a sequence with a sufficient number of terms, it is possible to 
describe how to extend the sequence arbitrarily. The first thing to do 
is to get rid of the notion that we are dealing with a mere list of 
numbers. Instead we think of the list as being the coefficients in a 
polynomial with a never-ending set of terms, that is, an infinite series. 
Thus the list: 

  1 2 7 26 97 ... 

in fact defines the first several coefficients of the infinite series: 
   (1*y 0) + (2*y 1) + (7*y 2) + (26*y 3) + (97*y 4) +  ... 

This is where Hall and Knight lost me. They say, from out of the blue, 
that each term after the second is equal to the sum of the two preced-
ing terms multiplied respectively by the constants _1 and 4. Thus: 

  7 = (_1*1) + (4*2) 

or 
  7 = _1 4 +/ . * 1 2 

This implies that if we take any three consecutive terms r, s, t, they are 
related by: 

   t = (_1 * r) + (4 * s) 

which can be rewritten as: 
   0 = (1 * r) + (_4 * s) + (1 * t) 
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In this equation the coefficients 
   1 _4 1 

of r, s, and t form the scale of relation of the infinite series. They are 
the coefficients of a quadratic polynomial written in ascending order: 

   (1*y 0) + (_4*y 1) + (1*y 2) 

Now this is all stated baldly in Hall & Knight, and I was thoroughly 
lost. How does one find the scale of relation, and what was the point 
of it? Luckily, the authors soon give the game away, noting that if a 
sufficient number of the terms of a series be given, the scale of 
relation may be found, and proceed to show how to do just that.  

Suppose the first four terms of the series are, in order, a, b, c, and d. 
Assume then that the general term is arrived at by multiplying the 
two preceding terms by p and q, and adding. We are able to write the 
following pair of equations: 

   c = (p*a) + (q*b)  
   d = (p*b) + (q*c) 

and then it is a simple matter to solve this linear system for p and q by 
writing  

   'pq'=. (c,d) %. (a,b),:(b,c) 

For example, if a, b, c, and d are 1  2  7  26 we write 
   ]'pq'=. 7 26 %. 1 2,:2 7  
_1 4 

and we can form the scale of relation by appending a 1 to the negative 
of these: 

   ]s=. 1 ,  - 7 26 %. 1 2 ,: 2 7  
1 _4 1 

A pretty way to write this in J is to form a table t as follows: 
   t =. 2 ]\ y =. 1 2 7 26  
   t  
1  2  
2  7  
7 26 

and then we can write 
   ({: %. }:)t  
_1 4 
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So that we can form the scale of relation using the function scr: 
   scr=. 1: ,  [: - [: ({: %. }:) 2: ]\ ] 

And use it to get our scale of relation: 
   scr y  
1 _4 1 

What can we do with a scale of relation? Suppose we take the vector 
product of the scale of relation and any three successive terms of the 
infinite series, say 7 26 97 

   a=. 1 _4 1 * 7 26 97  
   a  
7 _104 97  
   +/ a  
0 

This sum will always be zero as a consequence of the way the infinite 
series and the scale of relation are interrelated. Consequently, if we 
do the polynomial multiplication of the scale of relation with the 
infinite series beginning with 1 2 7 26, we find that all the terms 
after the first two are zero: 

     1     2    7   26   97  362 ...  
     1    _4    1  
    ____________________________ ...  
     1     2    7   26   97  362 ...  
          _4   _8  _28 _104 _388 ...  
                1    2    7   26 ...  
    ____________________________  
     1    _2    0    0    0    0 ... 

Since all the terms of this product after the first two are zero, and 
since we can ignore trailing zeros in a list of polynomial coefficients, 
we find that the infinite product of the scale of relation and the 
infinite series reduces to the linear polynomial: 

   (1 * y  0) + (_2 * y  1) 

In practice it is difficult to represent or work with infinite series, so 
we enable the process by using only the first two terms of the series. 
We can then do the polynomial multiplication of these two terms 
with the scale of relation, and take only the first two terms of the 
resulting product. Ordinary polynomial multiplication is given by: 

   pm =. +//. @ (*/) 



At Play With J 
 

66 

and our special infinite series multiplication by this scale of relation 
polynomial is given by: 

   spm =. 2: {. pm  
   1 _4 1 spm 1 2 7 26  
1 _2 

The next thought to convey to you is the most important one in the 
whole paper, so PAY ATTENTION! 

Let me write the situation schematically: 

 Infinite series Scale of Relation
Scale of Relation

Infinite series×
↔  

That is, if I multiply and divide the infinite series by the scale of 
relation, I end up with the infinite series. But I know the numerator is 
simply a linear polynomial. So I can substitute the linear polynomial 
for the numerator and write: 

 Linear 
Infinite series

Polynomial
Scale of Relation

↔  

 This suggests that an infinite series of the kind we are describing can 
be represented as a rational polynomial whose numerator is the linear 
polynomial found as the product of the infinite series with its scale of 
relation, and its denominator is the scale of relation, and that this 
rational polynomial is fully equivalent to the infinite series. By this 
chicanery I have managed to encapsulate the whole infinite series in a 
rational polynomial. In J we represent a polynomial by a list of 
coefficients c bonded to the polynomial primitive p., that is, 

   c & p. 

is a polynomial with coefficients c. 

We can thus represent an infinite series by the rational polynomial 
function gf, using its product with the scale of relation as the 
numerator, and the scale of relation as the denominator. 

  gf =. 1 _2&p. % 1 _4 1&p. 

There isn’t much we can do directly with gf, since the only 
meaningful arguments for it are those which make the infinite series 
converge, so we are restricted, if that is what we want to do, to 
arguments less than one in magnitude. But that isn’t what we want to 
do. We are only interested in the coefficients of the terms in the series, 
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and J provides us with the tool needed to find these, and that is the 
Taylor coefficient adverb (t.). Thus if we apply t. to gf, and apply 
this derived function to any non-negative integer argument, the result 
will be the corresponding coefficient: 

   gf t. i. 12  
1 2 7 26 97 362 1351 5042 18817 70226 262087 978122 

Compared to the doubly recursive verb A, the time required by gf t. 
is significantly less and its advantage in speed increases rapidly with 
the size of the argument. 

I estimate A 30 would have taken 15 hours to complete on my 
computer, versus the 1.2 seconds taken by gf t. 30.  

Partial Fractions 
Hall & Knight discuss the relevance of partial fractions in handling 
recurrences, and work through some examples. This leads to the 
ability to derive an even simpler expression for the general term of 
the series.  The method works as follows: separate the generating 
function into a sum of partial fractions with constant numerators and 
linear denominators. That is, find constants a, b, A, and B such that: 

 gf A
ax

B
bx

↔
−

+
−1 1

 (1) 

The constants a and b are the roots of the scale of relation quadratic 
polynomial. These can be obtained using the polynomial rootfinder 
primitive, which is the monad of the verb p., by 

   ]'ab' =. , > }. p. 1 _4 1  
3.73205 0.267949 

You might recognize these roots as 
   2 + %: 3 and 2 - %: 3 

In (1) the denominators can be removed by multiplying each term by 
the scale of relation, giving: 

   1 _2&p. <-> (A * (1 , -b)&p.) + (B * (1 , -
a)&p.) 

This linear system can be solved for A and B by writing 
   ]'AB'=.1 _2 %. 1 1 ,:  -(b,a)  
0.5 0.5 
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and now we can write a function gt:  
   gt=. (A"_ * a"_ ]) + (B"_ * b"_ ])  
   gt i. 10  
1 2 7 26 97 362 1351 5042 18817 70226 

The function gt is 5 times faster than gf t. 

But wait! Since B and b are each less than one, the right hand 
expression is always less than one and isn’t really needed—we can 
replace it by a ceiling (>.). And since A is 0.5, we can replace it by 
halving (-:) giving us an even simpler expression:  

   gtt =. >. @ -: @ (a & )  
   gtt i.10  
1 2 7 26 97 362 1351 5042 18817 70226 

The function gtt is twice as fast as gt. 



10 Year’s Digits for 1996 
First published in Vector, 12, 4, (April 1996), 123-126. 

 

This problem is a variation of an old one that originated as a Fortran 
puzzle in the MIT alumni magazine, adapted for use with J. Here it is: 

Create a character table T, having 101 rows, each row representing a J 
expression, according to the following rules: 

(a) The result of executing row i must be the atom i, and 

(b) The characters ‘1’, ‘9’, ‘9’, and ‘6’ must appear in that order in 
each row, and no other digits may be present. (In the Fortran 
puzzle, the digits could appear in any order.) 

Expressed in J,  
(a) each row r =. i { T must satisfy the requirement that i -: 

". r for i an item of i.101 (and thus an atom), and  

(b) '1996' -: r -. a. -. '0123456789' 

There are two additional requirements, suggested by Roger Hui: 
(c) Character constants are not permitted. If they were then all 

solutions would need no more than two tokens. For example 7 
could be represented by #'1 9 9 6'. 

(d) J allows ‘b’ form constants, in which a decimal integer base 
appears to the left of ‘b’ and the digits to the right of ‘b’ may 
include not only the digits 0 through 9 but also the letters 
a through z, representing digits 10 through 35.  
For example, the octal representation of 63 is 8b77 and the 
hexadecimal representation of 255 is 16bff and the decimal 
number 100 can be written as 1buzz. The ‘b’ form of constants is 
allowed, but the digits a through z are excluded, as well as 0 2 3 4 
5 7 8. If a through z were not excluded almost all solutions would 
be one token long. 

Here are some examples of invalid rows. The reason each example is 
unacceptable is given directly after it. 

   19+6+9  The digits are not in the prescribed order. 

   1+96+1  The digits are not 1996.  

   3*19[96  It contains a '3'.  

   1{.99 6  It yields a list result, not an atom. 
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   #'   1996'  It uses a character constant. 

   1bzp996  It uses the digits z and p. 

As a valid example, row 19 might be 
   +/1 9 9[6 

and this satisfies the test 19 -: ". '+/1 9 9[6'. 

The objective of the problem is to use the minimum number of tokens 
in each row, as measured by the J ‘Word Formation’ primitive (;:). 
The foregoing list for row 19 has 5 tokens, and it is thus superior to: 

   1+9+9[6 

which uses 7 tokens, but it is inferior to 
   19<.96 

which uses only 3 tokens. 

Entries will be judged in the following way: if L is the list of the 
number of tokens in each row of a given entry, and M is the list of the 
minimum number of tokens in all entries submitted, then the entry 
which minimizes +/L-M is the winning entry. 

To ease your minds, I should say that yes, a complete set of solutions 
is always possible, and this has been demonstrated mathematically by 
Donald Knuth and Roger Hui, among others. Since *1996 is 1 then 
.*1996 is a solution for 0; and since .o.1 is between 1 and 2, then 

applying floor or ceiling gives solutions for 1 and 2. Using more 
instances of o. provides solutions for larger numbers, ad infinitum. 
Clearly, this shows that a solution is always feasible. Most derived 
using this method are not, however, very short. Coming up with a 
short solution for each integer is your problem. 

To help you get started, let me suggest that you use a strategy like 
that employed by Roger Hui. He used a J session in the following 
way to develop his table: 

He worked with two windows present on his screen: an executable 
window, and a script window called 1996.js which contained one 
solution per line. 

Initially, each row is set with the row number, a comma, some spaces, 
and a 0. For example, row 25 would look like this: 
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25,    0 

You can write potential solutions in the script window, and have 
them executed in the execution window to see if they are correct: 

25,    1+9+9+6 

Roger provided himself with a suite of utility functions: 
  mat=:   (5&}.);._2 @(1!:1) @((<'1996.js')"_) 
  len=:   /: @(({.,#)/. )@:(#@;:) 
  check=: *./@(0&= +. (=i.@#))@:". 
  pfx =: [: ": #@;: ,. i.@# 
  tab =: [: \:  pfx ,. ] 

mat reads the script file and constructs a matrix from it. As it stands, it 
is suitable for use with IBM-compatible PCs. To change it for use on 
Unix or Macintosh systems, you should replace the text ‘(5&}.@}:)’ 
with ‘5&}.’. 

check checks that each row is either zero (unsolved) or has the correct 
number. len makes a two-column table with the first column giving a 
length and the second column giving the number of solutions with 
that length (unsolved numbers have a length of 0). tab makes a table 
of the solutions sorted in decreasing length, and thus is handy for 
attacking the really bad solutions. 

I wrote the following, to check that only the digits ‘1996’ appear, in 
that order, in the solution: 

d1996=.*./@([:('1996'"_ -: ] -. a."_ -. 
'0123456789'"_)"1 ]) 

To see what these utilities can do for you, after you’ve created your 
1996.js file and filled in a few entries, experiment with expressions 
like: 

   $mat 0 
   check mat 0 
   len mat 0          
   +/*/"1 len mat 0  NB. total number of tokens 
   tab mat 0 

And after you’ve filled in all the entries, 
   d1996 mat 0 

This problem should help familiarize you with some lesser-known 
parts of J, like b-form constants, the new p: and q: primitives, and 
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the monadic, or base-2 form of the base primitive (#.). For example, 
the following five-token expression: 

   #.p:q:|_19b96 
91 

creates the number _19b96, which has the decimal value _165 (in 
base _19 the values 9 and 6 evaluate to _171 and 6, with sum _165); 
takes the magnitude of this number, yielding 165; finds its prime 
factorization with q:, yielding 3 5 11; uses p: to find the third, fifth 
and eleventh primes in the 0-origin series 2 3 5 7 11 13 17 ... , 
yielding 7 13 37; and applies the primitive #. to evaluate this list in 
base-2, yielding 91 (+/4 2 1*7 13 37). Another five-token 
expression for the same value is: 

   >:1#.q:996 
91 

There is a solution to 91 which is shorter than this, by the way.*  
 

                                                      
* The solution is left to the reader. (In his original paper, Eugene invited 
readers to send solutions to him, but this is no longer appropriate (Ed).) 

 



11 Riding a Unicycle 
First published in Vector, 13, 1, (July 1996), 154-158. 

 

This article deals with two topics dealing with permutations 
having a single cycle, which can be called unicycles. The first 
arises from a recent Internet inquiry, and the second resuscitates 
an obscure mathematician from two centuries ago to give him 
credit for having invented list processing. 

We might ask how many unicycles there are for permutations of a 
given length. This number can be found by the use of Stirling 
numbers of the first kind, which came about precisely from a need 
to count the number of ways to arrange n objects into k cycles. In 
their APL95 paper, Representations of Recursion, Roger Hui and 
Ken Iverson give an efficient way to generate the table of values 
for these Stirling numbers for cycles: 

   S1v=. 1:`([S1r $:@<:) @. * " 0 
    
   S1r=. (0:,]) + <:@[ * ],0: 
 
   S1v 4 
0 6 11 6 1 
 
   S1v i.10 
 
 1     0      0      0     0     0    0   0  0 0 
 0     1      0      0     0     0    0   0  0 0 
 0     1      1      0     0     0    0   0  0 0 
 0     2      3      1     0     0    0   0  0 0 
 0     6     11      6     1     0    0   0  0 0 
 0    24     50     35    10     1    0   0  0 0 
 0   120    274    225    85    15    1   0  0 0 
 0   720   1764   1624   735   175   21   1  0 0 
 0  5040  13068  13132  6769  1960  322  28  1 0 
 0 40320 109584 118124 67284 22449 4536 546 36 1  

As you can see, the number of ways that n objects can be arranged 
in a unicycle is !n-1. 

I. The Bernecky Problem 
Bob Bernecky, of Snake Island Research, in Toronto, sent a 
message on the Internet recently asking for help in deriving from 
the sequence of link fields in a linked list of records the permutat-
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ion which would put the records into order. That is, suppose the 
records looked like this: 

  No.  Name Link 
   0    Bee    6 
   1    Zee    0 
   2    Que    8 
   3    Gee    5 
   4    Pea    2      (A) 
   5    Jay    9 
   6    Dee    3 
   7    Vee    1 
   8    Tea    7 
   9    Key    4  

The first record in the list is assumed to be in the leading position, 
but the locations of the other records is arbitrary. The ‘Link’ field 
in (A) gives the number of the successor record, and is 0 if it is the 
last record. In (A), the record following the first is number 6, and 
this is followed by number 3, which is followed by number 5, and 
so forth. It should be evident that the list of links is a permutation 
in (non-standard) cycles form, in other words, a unicycle. 

What was desired was to have the records arranged as follows: 
  No.  Name Link 
   0    Bee    6 
   6    Dee    3 
   3    Gee    5 
   5    Jay    9 
   9    Key    4      (B) 
   4    Pea    2 
   2    Que    8 
   8    Tea    7 
   7    Vee    1 
   1    Zee    0 

The desired permutation is given by the ‘No.’ field in display (B), 
that is, 0 6 3 5 9 4 2 8 7 1. My usual way of exploring such prob-
lems is to head in the general direction where I imagine a solution 
may be found, with no maps or guides or bearers, and just beat 
my way unaided through the jungle with a machete. To my 
satisfaction I found that I could obtain the solution by applying 
raze (;) to the cycles-direct (C.) of the link list, and rotating this  
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result so that it begins with 0: 
   y=.6 0 8 5 2 9 3 1 7 4 
   (i.&0 |. ]) ; C. y  
0 6 3 5 9 4 2 8 7 1 

This is somewhat mysterious to me, since C. applied to an open 
list is supposed to convert from the direct form of a permutation 
to the cycles form, and here it looks as if the reverse is happening. 
(See the J Introduction and Dictionary for a description of the cycles 
and direct forms of a permutation.)  Roger Hui provided me with 
the following explanation: 

rot=: i.&0 |. ] 
 
g0 =: 3 : '{&y. :(i.#y.) 0' 
f0 =: g0 { ] 
 
fs =: {."1 @ ({/\) @ (i.@# , <:@# # ,:) 
g1 =: rot@fs 
f1 =: g1 { ] 
 
g2 =: rot@;@C. 
f2 =: g2 { ] 

The g’s (and therefore the f’s) are equivalent on the vector x: 
  x=: 6 0 8 5 2 9 3 1 7 4 
  (g0 -: g1) x 
1 
  (g0 -: g2) x 
1 

But they are not equivalent on arbitrary x: 
   g0 12?.12 
0 10 3 4 6 1 2 5 7 9 8 0 
   g1 12?.12 
0 10 3 4 6 1 2 5 7 9 8 0 
   g2 12?.12 
0 11 10 3 4 6 1 2 5 7 9 8 

In fact, the functions are equivalent exactly on those arguments 
that are a single cycle (1: = #@C.), and the explanation you seek 
lies in why g2=:rot@;@C. “works” on a single cycle. 
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The so-called “link list” representation of x: 
  0 1 2 3 4 5 6 7 8 9 
x 6 0 8 5 2 9 3 1 7 4 

specifies that 0 goes to 6, 6 to 3, 3 to 5, 5 to 9, etc., and that is what 
C. does in obtaining the cycle representation from the direct 
representation. If there is more than one cycle (if there is stuff left 
over from this process), C. then does it again on the remaining 
elements to get the next cycle. 

Since the argument is a single cycle, the raze of what results 
simply removes the boxing, and the rotation converts from the J 
convention of starting a cycle by its maximal element to the 
alternative convention of starting a cycle from 0. 

II. Crelle’s Device 
Histories of computing generally date the beginning of list-
processing techniques to 1963 or so, with some possible 
smatterings of these techniques dating back to the days of Von 
Neumann, circa 1947. Imagine my surprise, then, to find that the 
date is off by over a hundred years. 

The German engineer and mathematician August Leopold Crelle 
lived from 1780 to 1855. He made many minor contributions to 
mathematics, but is generally much better known as the founder 
and editor of the mathematical periodical Crelle’s Journal. His 
foreshadowing of list processing is described in L. E. Dickson’s 
monumental History of the Theory of Numbers (Vol. I, chap. VII, 
p. 185). First some discussion of primitive roots is necessary. 

If we consider the powers of the positive numbers less than a 
given prime p, mod p, we note that some of these powers contain 
distinct elements, while others have repetitions. For example, 
when p=7 we get: 

   f=.] | [: /  i.&.<:  
   f 7 
1 1 1 1 1 1 
2 4 1 2 4 1 
3 2 6 4 5 1   (C) 
4 2 1 4 2 1 
5 4 6 2 3 1 
6 1 6 1 6 1 
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and we see that the numbers 1 2 4 6 give rise to rows with 
repetitions, but rows 3 and 5 contain distinct elements. This 
property of 3 and 5 is what characterizes them as primitive roots 
of 7. Dickson wrote (in 1918): 

A. L. Crelle[’s] ... device for finding the residues modulo p of the 
powers of a will be clear from the example p = 7, a = 3. Write under 
the natural numbers <7 the residues of the successive multiples of 3 
formed by successive additions of 3; we get 

1 2 3 4 5 6 
3 6 2 5 1 4 

Then the residues 3, 2, 6, of 3, 32, 33,... modulo 7 are found as follows: 
after 3 comes the number 2 below 3 in the table; after 2 comes the 
number 6 below 2 in the table; etc. 

In other words, Crelle’s device uses a linked list to convert from a 
list of multiples to a list of powers, mod some prime p. From the 
list 

3 6 2 5 1 4 

he produces 
3 2 6 4 5 1 

and this corresponds to the row beginning with 3 of table (C). 

Crelle’s list is clearly a single cycle, and thus a unicycle. His 
device works for each primitive root of a given prime. It is a way 
for converting from addition to multiplication, and is thus 
analogous to logarithms. 

All hail Crelle, father of list processing! 





12 Volutes 
First published in Vector, 13, 2, (October 1996), 144-153. 

 

This article describes an amazing algorithm that I learned from Joey 
Tuttle. It produces an integer volute. I call it amazing on good 
evidence, because I was amazed when he first showed it to me. I had 
written a function to produce such volutes many years ago [1], and 
thought I had done a fairly efficient job, but Tuttle’s analysis was far 
superior. 

An integer volute can be drawn in a variety of ways. All of the cases 
we’ll consider place the integers in the cells of a rectangular, and 
usually square, table. Two kinds of volutes can be drawn in this 
manner: an involute and an evolute. In an involute the smallest 
integer appears in a corner of the table, and the integers increase as 
they get closer to the centre. In an evolute the largest number appears 
in a corner of the table, and the integers decrease as they get closer to 
the centre of the table. 

    0  1  2  3 4     24 23 22 21 20 
   15 16 17 18 5      9  8  7  6 19 
   14 23 24 19 6     10  1  0  5 18 
   13 22 21 20 7     11  2  3  4 17 
   12 11 10  9 8     12 13 14 15 16 
      involute          evolute 

In the involute above the numbers increase in a clockwise rotation. 
They could just as easily have increased in a counter-clockwise 
rotation. The number 0 appears in the top left corner of the table, but 
it could just as well have appeared in any of the other three corners. 
There are then eight possible ways of drawing the involute: with 0 
appearing in any of four corners, and the numbers increasing in a 
clockwise or counter-clockwise rotation. Similar remarks apply to the 
evolute, mutatis mutandis. Furthermore, either form can be derived 
from the other by applying the verb 24&- to it. The least number is 0 
in these volutes. A volute having 1 as the least number can be 
obtained from one of these by adding 1 to it. 

Our verbs will take as argument the length of the side of the square 
table. For example, if e is our evolute verb, 

   e 3 
8 7 6 
1 0 5 
2 3 4 
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I’ll give six solutions to the problem, each one increasing in speed. 
The best is a variation of the marvellous technique shown me by 
Tuttle. 

In the book Concrete Mathematics by Graham, Knuth, and Patashnik, 
Exercise 3.40 takes a scalar approach to the problem of constructing 
an evolute. 

It assumes an x,y coordinate system, with 0 at coordinates (0,0). It 
gives two ways of arriving at a solution, problems a and b. Both 
solutions produce a bottom right clockwise volute. 

In problem a, it squares (*:) its argument, then produces the list of 
that many consecutive integers, beginning with 0. It finds the x and y 
coordinates of each number (GKPax,.GKPay), upgrades the resulting 
two-column table (/:), then reshapes ($) this upgrade list into a 
square (, ) table. For example, for a square of side 3, problem a takes 
n=.i.*:3 and yields x and y, upgrades this, and reshapes the 
upgrade: 

   ]n=.i.*:3 
0 1 2 3 4 5 6 7 8 
   ]xy=.(GKPax,.GKPay) n 
 0  0 
 0  1 
_1  1 
_1  0 
_1 _1 
 0 _1 
 1 _1 
 1  0 
 1  1 
   ]w=./:xy 
4 3 2 5 0 1 6 7 8 
   (, 3)$w 
4 3 2 
5 0 1 
6 7 8 

In problem a the placement of each integer requires the evaluation of 
two functions, GKPax to give the x-coordinate, and GKPay to give the 
y-coordinate. A function evGKPa to give a square evolute of a given 
order is: 

   GKPae  =. 0:=2&|     NB. GKPae y=1 if y is even 
   GKPao  =. 1:=2&|     NB. GKPao y=1 if y is odd 
   GKPaq  =. <.@+:@%:   NB. floor double sqrt 
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   GKPam  =. <.@%:      NB. m is floor sqrt 
   GKPal  =. >.@-:@GKPam     NB. ceiling half m  
   GKPar  =. _1: GKPam       NB. parity (1 or _1) 
   GKPat  =. (*>:)@GKPam     NB. m*(1+m)  
   GKPax  =. GKPar*((]-GKPat)*GKPae@GKPaq)+GKPal 
   GKPay  =. GKPar*((]-GKPat)*GKPao@GKPaq)-GKPal 
   evGKPa =. ,  $ /:@(GKPax ,. GKPay)@i.@*: 

In problem b the table of x-y indices is used to produce the integers, 
one at a time. 

   GKPb0   =. +:@(>./"1)@| 
   GKPb1   =. >@,@{@(; )@(>.@-:@- + i.) 
   GKPb2   =. _1:  </"1 
   GKPb3   =. *:@[ + GKPb2@] * [ + +/"1@] 
   GKPb4   =. (GKPb0 GKPb3 ])@GKPb1 
   evGKPb  =. , $GKPb4 

GKPb1 produces the 2-column table of x, y coordinates. GKPb0 gives a 
list of the doubles (+:) of the maximum over (>./) the rows ("1) of 
the magnitudes (|) of the items in the table. GKPb2 produces a list 
where the items are _1 where in the corresponding row x is less than 
y, and 1 otherwise. GKPb3 squares its left argument, and adds this to 
the product of the _1 1 list with the sum of the left argument and the 
sum of the rows of the right argument. GKPb4 supplies the 
appropriate left and right arguments to GKPb3. The verb evGKPb 
reshapes this list, giving the same result as evGKPa. 

For example: 
   ]xy=.GKPb1 3 
_1 _1 
_1  0 
_1  1 
 0 _1 
 0  0 
 0  1 
 1 _1 
 1  0 
 1  1 
   ]ns=.(GKPb0 GKPb3 ]) xy 
4 3 2 5 0 1 6 7 8 
   (, 3) $ ns 
4 3 2 
5 0 1 
6 7 8 
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In Vector 11 4, Keith Smillie [2] gives a suite of functions to produce 
a square evolute. (I’ve replaced his ‘rows’ function by #, made it 0-
origin, and abbreviated his names QtrTurn and Wind and Spiral). It 
produces its result by successive windings of new layers onto the 
beginning empty table. 

The function Wd is, you will note, recursive: 
   QT=. [ ,"2 |.@|:@] 
   Wd=. [`(((#@[{.]) QT [) Wd #@[}.])@.(0:<#@]) 
   Sp=. (i. @ ((-/ @ ]) , 0:)) W i.@(*/)@] 
   evKS=. (i.@(0:,0:)) Wd i.@*:@] 

Smillie’s volute is top right clockwise and has the advantage of not 
being limited to square results. You can find the details of the 
algorithm in his Vector article. 

In my 1977 article I give a function like Smillie’s in achieving its result 
by winding, but iterative ( :) rather than recursive. The function 
evEEM0 below reverses and transposes (|:@|.) its argument (thus 
giving it a clockwise quarter turn), then appends as a new bottom 
row a vector of integers (i.) as long as the number of rows in the 
argument (#), with its first item the number of items in the argument 
(*/@$). This is initiated with an empty table (i.0 0), and is repeated 
double (+:) the argument times. It is bottom right counter-clockwise. 

   evEEM0=.|:@|. , */@$ + i.@# 
   evEEM1=.[:i.0 0"_[] NB. constant empty table 
   evEEM=.evEEM0 :(+:`evEEM1) 

I sent an early draft of this paper to Roger Hui for comments, and he 
replied: 

Motivated by your comment on +/\ :_1, I arrived at the following 
solution after studying the results of  

        f=: +/\ :_1@evJKT 

It is more direct but less concise than your solution; it takes less space, 
and is faster for n greater than about 200. 

Here is the kind of thing Roger saw: 
   f 5 
 24  23  22  21 20 
_15 _15 _15 _15 _1 
  1  _7  _7  _1 _1 
  1   1   3  _1 _1 
  1  11  11  11 _1
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   f 7 
 48  47  46  45  44  43 42 
_23 _23 _23 _23 _23 _23 _1 
  1 _15 _15 _15 _15  _1 _1 
  1   1  _7  _7  _1  _1 _1 
  1   1   1   3  _1  _1 _1 
  1   1  11  11  11  _1 _1 
  1  19  19  19  19  19 _1 
   f 9 
 80  79  78  77  76  75  74  73 72 
_31 _31 _31 _31 _31 _31 _31 _31 _1 
  1 _23 _23 _23 _23 _23 _23  _1 _1 
  1   1 _15 _15 _15 _15  _1  _1 _1 
  1   1   1  _7  _7  _1  _1  _1 _1 
  1   1   1   1   3  _1  _1  _1 _1 
  1   1   1  11  11  11  _1  _1 _1 
  1   1  19  19  19  19  19  _1 _1 
  1  27  27  27  27  27  27  27 _1 

And here is his version: 
   even  =: 0: = 2&| 
   odd   =: 1: = 2&| 
   line0 =: *:@(-even) - odd + i. 
   c3    =: 1: ,. ] ,. _1: 
   top   =: odd}."1((|.,.+:,.|.)  
                 #"1 c3@( 1&+)@(_8&*))@>:@i.@-:@(-  >:@even) 
   bot   =: -@even }."1 ((|.,.<:@+:,.|.)  
                 #"1 c3@(_5&+)@(8&*))@>:@i.@-:@(-odd) 
 
   evHUI=: [: +/\ line0 , top , bot 
   evHUIf=: evHUI f. 

Hui’s volute is top left counter-clockwise. If you look at the timings in 
the table below you will see that by size 89 Hui’s version is as fast as 
Tuttle’s (the unrounded ratio of Hui’s to Tuttle’s for case 89 was 
1.4:1). 

Now we come to Joey Tuttle’s masterpiece. I asked him recently how 
he had arrived at it, but he no longer remembered. He had only a dim 
recollection that it arose in connection with one of Martin Gardner’s 
Scientific American columns. I conjecture that it may have been Gard-
ner’s column on Stanislas Ulam’s spiral of primes (see Smillie’s Vector 
article). So I don’t know how it came to Joey, but I do know that until 
I went at the problem backwards from the conclusion, I had no idea 
how the function worked, so that’s how I’ll describe it to you.  
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I should say that Joey’s function produced an involute, that is, he 
gave the result: 

 0  1  2  3 4 
15 16 17 18 5 
14 23 24 19 6 
13 22 21 20 7 
12 11 10  9 8 

Now, we could get the result we desire by subtracting this from 24, 
but that would spoil my fun, so bear with me. 

Let’s begin with an evolute, and see if we can trace it back (we’re 
reverse engineering) so that we can produce the function ourselves. 
In the course of doing this, we’ll find it convenient to use J’s ability to 
provide inverses for many primitive and derived verbs, using the 
power conjunction to the minus-1 power ( :_1): 

   evJKT 5 
24 23 22 21 20 
 9  8  7  6 19 
10  1  0  5 18 
11  2  3  4 17 
12 13 14 15 16 

It seems to me that Joey must have had a series of insights. I assume 
that his first insight was to ravel this: 

   ]q=.,evJKT 5 
24 23 22 21 20 9 8 7 6 19 10 1 0 5 18 11 2 3 4 17 
12 13 14 15 16 

I think he then had the tremendous insight that this list came about as 
the result of an upgrade. We’ll get p, the permutation inverse to q, 
easily: 

   ]p=./: :_1 q 
12 11 16 17 18 13 8 7 6 5 10 15 20 21 22 23 24 19 
14 9 4 3 2 1 0 

(Since upgrade is self inverse, we could have got p from q even more 
easily by writing p=./:q – but we’re not assuming that all readers 
will know this fact about upgrade.) 

Now the final stupendous insight was to assume that p was produced 
by a sum scan of some list d, that is  

   p=. +/\ d 
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We can determine what the d was that gave us p by applying the 
inverse of sum scan: 

   ]d=.+/\ :_1 p 
12 _1 5 1 1 _5 _5 _1 _1 _1 5 5 5 1 1 1 1 _5 _5 _5 
_5 _1 _1 _1 _1 

This is beginning to look promising. At this point we can write the 
overall function evJKT: 

   evJKT =. ,  $ /: @ (+/\) @ evJKT2 

This sumscans (+/\) the result of evJKT2, upgrades (/:) it, and 
reshapes ($) the upgrade into a square (, ) table. 

All this is great art – the rest is carpentry. Forget the leading 12 for the 
moment. If we do, we see that the other items all have the magnitude 
1 or 5, and alternate in sign: first _1 and 5, then 1 and _5, and so on 
in alternation. There are nine groups of _1 5 1 _5, used cyclically. 
We note also that the groups increase in count: one each of _1 and 5, 
two each of 1 _5, three each of _1 and 5, then four each of 1 _5, 
and lastly an anomalous four of _1. We can generate the list of one 
each of the nine values easily: 

   evJKT1=.<:@+: $ _1: , ] , 1: , - 

The phrase _1: , ] , 1: , - when applied to its argument gives 
us the right argument to the reshape verb: 

   (_1: , ] , 1: , -) 5 
_1 5 1 _5 

and the phrase <:@+: gives us the left argument: 
   (<:@+:) 5 
9 

so that the whole phrase gives us the list of values to be replicated:  
   (<:@+: $ _1: , ] , 1: , -) 5 
_1 5 1 _5 _1 5 1 _5 _1 

Now we need to specify how many times each of these is to be 
replicated: 

   evJKT0=.}:@(2: # >:@i.) 

This verb begins by giving us a list of integers: 
   i. 5 
0 1 2 3 4 
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adds one to this: 
   >:i.5 
1 2 3 4 5 

gives us two of each: 
   2 # 1 2 3 4 5 
1 1 2 2 3 3 4 4 5 5 

and curtails (}:) this list: 
   }: 2 # 1 2 3 4 5 
1 1 2 2 3 3 4 4 5 

The last item should be a 4, not a 5, but as you shall see, we’ll find it 
useful to produce an extra item. 

The verb evJKT0 encapsulates the whole: 
   evJKT0 5 
1 1 2 2 3 3 4 4 5 

Now we can write evJKT2: 
   evJKT2=._1&|.@(evJKT0 # evJKT1) 

The expression in parenthesis does the main job: 
   (evJKT0 # evJKT1) 5 
_1 5 1 1 _5 _5 _1 _1 _1 5 5 5 1 1 1 1 _5 _5 _5 _5 
_1 _1 _1 _1 _1 

There is an extra _1 at the end, but the next expression rotates this list 
one to the right, moving the extra _1 to the beginning of the list: 

   _1&|. (evJKT0 # evJKT1) 5 
_1 _1 5 1 1 _5 _5 _1 _1 _1 5 5 5 1 1 1 1 _5 _5 _5 
_5 _1 _1 _1 _1 

Why is the last _1 rotated to become the leading item? A little thought 
will convince you that the value of the first item doesn’t have to be 
12; in fact its value is irrelevant – it could be any number at all! It 
serves only to act as a base for the ensuing sumscan, which, in turn, 
serves as the argument to upgrade. The upgrade will give the same 
result no matter what the value of the first item is; only the relative 
values of the items are important. And, since we are going to discard 
the last item of the list and then prefix the list with an arbitrary value, 
it suffices to combine these operations by performing the _1 (right) 
rotate of the list. 
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The verb evJKT provides the finishing touches to the result of evJKT2: 
   evJKT=. (,  $ /: @ (+/\) @ evJKT2) 

It uses evJKT2 to produce the list which it then sumscans: 
   +/\ evJKT2 5 
_1 _2 3 4 5 0 _5 _6 _7 _8 _3 2 7 8 9 10 11 6 1 _4 
_9 _10 _11 _12 _13 

Notice that the items of this list are distinct and include all 25 integers 
from _13 through 11. 

The upgrade of this list is obtained: 
   (/:@(+/\)@evJKT2) 5 
24 23 22 21 20 9 8 7 6 19 10 1 0 5 18 11 2 3 4 17 
12 13 14 15 16 

and, at last, this list is reshaped ($) into the desired square integer 
evolute: 

   (,  $ /: @ (+/\) @ evJKT2) 5 
24 23 22 21 20 
 9  8  7  6 19 
10  1  0  5 18 
11  2  3  4 17 
12 13 14 15 16 
 
   evJKT 5 
24 23 22 21 20 
 9  8  7  6 19 
10  1  0  5 18 
11  2  3  4 17 
12 13 14 15 16 

The relative timings of the GKPa, GKPb, KS, EEM, HUI, and JKT 
verbs are of interest. The column headings give the size of table 
generated and the row stubs indicate the verb used. The timings are 
relative to those of JKT set to 1.  

 verb\size  5   8  13   21   34   55   89 
      
 GKPa      12  23  85  110  200  224  244 
 GKPb       5  10  37   47   83   94  106 
 KS         6   8  20   23   33  167    _ 
 EEM        2   4  10    9   12   13   16 
 HUI        3   3   5    3    3    2    1 
 JKT        1   1   1    1    1    1    1 
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The infinite (_) entry for row KS in the column headed 89 indicates 
that there wasn't enough memory to complete execution. This was 
probably due to the many levels of recursion required. 

The timings show the superiority of array strategies (KS, EEM, HUI, 
and JKT) over scalar strategies (GKPa and GKPb), and the superiority of 
iteration (EEM) over recursion (KS) and the superiority of a strategy 
minimizing data movement (HUI and JKT) over strategies involving a 
great deal of data movement (KS and EEM). 

I haven’t discussed how the Tuttle algorithm can be modified to yield 
the other volute types. If you look back at the verb evJKT1, you’ll see 
that the expression to the right of the reshape sign ($) is  

   _1: , ] , 1: , -   

so that, given the argument 5, it yields 
   _1 5 1 _5 

The key is that this consists of _1 5 followed by its negative, 1 _5. A 
little experimentation will convince you that the eight possible 
changes of sign and order of the list _1 5 will give you all eight types 
of evolute: 

 

    1  5    top right clockwise 
    1 _5    bottom right counter-clockwise 
   _1  5    top left counter-clockwise 
   _1 _5    bottom left clockwise 
    5  1    bottom left counter-clockwise 
    5 _1    bottom right clockwise 
   _5  1  top left clockwise 
   _5 _1 top right counter-clockwise 

 

So that to obtain a top left clockwise volute, one would use: 
   _5 1 5 _1 

instead of _1 5 1 _5. 
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A verb to yield involutes is somewhat simpler than the verb yielding 
evolutes. The greater simplicity arises because no attention has to be 
paid to the first and last items: as they are generated so they are 
usable:  
   ivJKT0 5                  NB. just the reverse of evJKT0 5 
5 4 4 3 3 2 2 1 1 
   ivJKT1 5                  NB. essentially unchanged  
1 5 _1 _5 1 5 _1 _5 1 
   ivJKT2 5                  NB. different 
1 1 1 1 1 5 5 5 5 _1 _1 _1 _1 _5 _5 _5 1 1 1 5 5 _1 _1 _5 1 
   +/\ivJKT2 5               NB. same sumscan 
1 2 3 4 5 10 15 20 25 24 23 22 21 16 11 6 7 8 9 14 19 18 17 12 13 
   /:+/\ivJKT2 5             NB. same upgrade 
0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 
   5 5$/:+/\ivJKT2 5         NB. same reshape 
 0  1  2  3 4 
15 16 17 18 5 
14 23 24 19 6 
13 22 21 20 7 
12 11 10  9 8 
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13 Extended Integers 
First published in Vector, 13, 3, (January 1997), 127-135. 

Extended Integers 
J has recently had added to it a new class of number, called 
extended integer. An extended integer can be produced by 
applying the extend verb x: to an ordinary integer. An extended 
integer is displayed as an ordinary integer terminated with an x, 
like this: 

   x: 1234 
1234x 

An extended integer may also be written directly by putting an x 
at the end of an ordinary integer: 

   1234x 
1234x 

If one or more of the integers in a list is extended, they are all 
extended: 

   1 2x 3 
1x 2x 3x 

Various primitives produce extended integer results if the 
argument is extended. For example, very large exact factorials are 
possible: 

   ! 30x 
265252859812191058636308480000000x 
   */ x: >: i. 30 
265252859812191058636308480000000x 

Some verbs f signal domain errors on some extended arguments 
because the result is not integral; however, <.@f and >.@f will 
work on extended arguments. I think you’ll get the idea from a 
few examples: 

   1234 % 5x 
|domain error 
|   1234    %5x 
   1234 <.@% 5x 
246x 
   1234 % 2x 
617x 
   1234 <.@% 2x 
617x
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   ] r =. <.@%: 2*10 38x 
14142135623730950488x 
   *: r + ,. _1 0 1 
199999999999999999971238085416445537169x 
199999999999999999999522356663907438144x 
200000000000000000027806627911369339121x 

What if you want to turn an extended integer into an ordinary 
integer? Those of you conversant with J will guess that the way to 
do this is to apply the inverse of x:, like this: 

   x: :_1 [ 1234x 
1234 

The Application 
I was excited when I heard about extended integers, because I had 
an immediate use for them. Jeffrey Shallit gave a paper at APL83 
[3] in which he discussed the problem of determining how many 
times the random number generator had been used, given a value 
of the random link. In order to give an APL solution he had to 
include in the paper a portion of an extended arithmetic package. 
This was because the numbers needed to solve the problem were 
very large integers. Stating the problem as simply as possible, 
given the equation: 

   y = M|g x      NB. (A) 

the problem is to find x, where y, M, and g are known. This is the 
basis of the random number generator we shall be discussing. The 
value g is also known as the generator, and this can lead to 
confusion when we talk about the generator of the generator. I 
offer my apology in advance. The problem is sometimes known as 
the logarithm problem, since (forgetting the M-residue for a 
moment), if we have: 

   y = g  x 

and know y and g, we can find x by taking the base-g logarithm 
of y: 

   x = g . y 

In solving (A) for the particular problem of APL\360 and its 
descendants (including J), x can be as large as 2,147,483,646. For 
this value of x, g x has over 9,000,000,000 decimal digits, and 
would take several hundred large volumes to print out. There are 
tactics one can employ to cut the size of the problem down, but 
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extended-precision arithmetic will still be required. In J’s 
implementation, the phrase M&|@  is recognized and can be 
computed efficiently both in time and space. 

The technique discussed by Shallit to solve the problem is due to 
Pohlig and Hellman [2]. You’ll have to look up the references if 
you are interested in the mathematical background, since I shall 
focus on the problem’s algorithmic aspects. 

The Gory Details 
Several global constants are needed. The modulus used in random 
number generators of the APL\360 kind must be a prime. The 
largest prime that can be stored as a 4-byte integer is in fact also 
the largest integer that can be stored, that is, one less than 2 31. 
This prime was discovered by Euler and for over a hundred years 
was the largest prime known. It is the Mersenne prime M31, too, 
for those of you interested in the Euclidian perfect numbers. 

   M =. x: <: 2 31 

It is convenient to have the value of the integer one less than M 
handy: 

   L =. <: M 

For the random number generator to have maximum period, the 
generator g must be a primitive root of the modulus. A primitive 
root of a prime has the property that its powers, mod the prime, 
are distinct. For example, the prime 7 has 3 and 5 as primitive 
roots, because their powers, mod 7, are distinct: 

   7|3 5 />:i.6 
3 2 6 4 5 1 
5 4 6 2 3 1 

but the other positive integers less than 7 have repeated elements: 
   7|1 2 4 6 />:i.6 
1 1 1 1 1 1 
2 4 1 2 4 1 
4 2 1 4 2 1 
6 1 6 1 6 1 

Dr. Bryant Tuckerman, of the IBM Watson Research Laboratory in 
Yorktown Heights, New York, gave the APL\360 implementors 
the primitive root 7 5, or 16807. A decade or so later people 
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began exploring random number generators extensively, and 
were surprised to find that there was no better generator than this 
for the modulus M: 

   g =. x: 7 5 

A prime-power factor is an integer all of whose factors are the 
same. For example, 32, 9, 125, 49, and 11 are all prime-power 
factors. The prime-power factors of L play a key role in the 
algorithm. The primitive q: in J yields the prime factors of a 
number, but these may be repeated. For example, q: 12 is 2 2 3. 
The algorithm requires that repeated primes be replaced by their 
product. The verb h, to be defined later, factors numbers and 
replaces repeated items by their product: 

   f =. h L NB. f is 2 9 7 11 31 151 331 

Certain powers of the generator g are needed. Those needed are 
the quotients of dividing L by f, and multiplying this quotient by 
the integers less than the items of f. For example, for the factor 7 
we get:  

   ,.B =. (L%7)*i.7 
         0x 
 306783378x 
 613566756x 
 920350134x 
1227133512x 
1533916890x 
1840700268x 

and similarly for the other factors. 

The verb p, to be defined later, raises the generator g to to any 
integer power, mod M. We use it to raise the generator to the 
powers B: 

   ,.C =. p (L%7) * i.7 
         1x 
1600955193x 
 894255406x 
1205362885x 
1752599774x 
1537170743x 
1599590586x 

Such a list is made for each prime-power factor. These are boxed 
and joined together, forming q, a list of lists, containing 542 num-
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bers altogether (+/2 9 7 11 31 151 331), and too large to 
display here. 

   q =. <@p@j"0 f 

You should be warned that the formation of q takes a minute or so 
to execute, depending on the speed of your computer. I find it 
convenient to comment out this line in the script, and insert the 
value of q directly. 

We need the quotient of L with its factors as a separate global 
noun: 

   ,. e =. L % f 
1073741823x 
 238609294x 
 306783378x 
 195225786x 
  69273666x 
  14221746x 
   6487866x 

Those are all of the global nouns. Now we have to deploy a 
number of utility verbs. The verb w: 

   w =. .  #/. 

raises each item of its argument’s nub to its tally: 
   w 2 2 2 3 3 5 7 
8 9 5 7 

The verb h: 
   h =.w @ q: 

factors its argument and produces the prime power factors from 
it: 

   h L 
2 9 7 11 31 151 331 

The verb s: 
   s =. M&|@  

raises its left argument x to the power of its right argument, 
mod M: 

   3 s 2 
9x 
   16807 s 2000 
75099568x 
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The verb p: 
   p =. g&s 

raises g to the power of its argument: 
   p 2000 
75099568x 

The verb j: 
   j =. L&% * i. 

divides its argument into L, and multiplies this quotient by the 
non-negative integers less than it. 

   ,. j 7 
         0x 
 306783378x 
 613566756x 
 920350134x 
1227133512x 
1533916890x 
1840700268x 

The Main Problem  
With all this behind us, we’re ready to discuss the main problem. 
Suppose we find that the value of y, the random link, is 
1209311799: 

   y =. 1209311799 

We define a verb t: 
   t =. f"_ ,. q"_ i.&> ] s e"_ 

The phrase  
   ] s e"_ 

can be replaced by  
   ,.D =. y s e  NB. let this be (D) 
2147483646x 
 473297587x 
1537170743x 
 353622995x 
      4096x 
 709324280x 
 667991092x 

The heart of the matter is that each distinct value that y may take 
yields a different list D. We look for the index of each item of D in 
q, finding: 
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   ] E=. q i.&> D 
1 1 5 4 23 142 268 

These values are the residues we seek. We form a table F by 
stitching f and E: 

   ] F =. f ., E 
  2   1 
  9   1 
  7   5 
 11   4 
 31  23 
151 142 
331 268 

and this is also the result of applying verb t to y: 
   t y 
  2   1 
  9   1 
  7   5 
 11   4 
 31  23 
151 142 
331 268 

If you refer to Hui’s article, you’ll see that F is similar to the table 
shown on page 64, beneath the expression c mr q. That is, F is a 
table of moduli and residues. For example, the items in list D corr-
espond to the factors in f. In particular, the value 1537170743x 
corresponds to the factor 7. We gave all the possible values that 
may be taken on in this position in list C back a bit. In C we find 
that the value 1537170743x is in position 5, and so in F we find 
the value 5 next to the 7 in the first column. It is a remarkable fact 
that the expression y s e produces values which must occur also 
in the corresponding item of q, and that its index in the list in q is 
the residue we want for the next step.  The verb r: 

   r =. {: @ (cr1/ @ t) 

inserts Hui’s verb cr1 between each of the items of its argument, 
and yields a two-item list, with the first item necessarily equal to 
L, and the second item the power of g yielding y, mod M. 

   x:z =. cr1/F 
2147483646x 1234567x 
   L 
2147483646x 
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We take the tail of z as our desired x: 
   ] x =. {: z 
1234567x 

We can verify that x is indeed the desired value by applying p to 
it: 

   p x 
1209311799x 
   y 
1209311799x 

Are we happy? We shouldn’t be yet, because this wasn’t precisely 
the problem we wanted to solve, which was, how many times had 
the random number generator been used to arrive at the given 
random link. This part is easy, because we know that the initial 
value of the random link is 16807, which corresponds to exponent 
1. All we have to do to get the value we want is to decrease x by 1. 
This gives us at last the verb ner: 

   ner =. <:@r  NB. number of executions of roll 
 
   x:ner y 
1234566x 
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Appendix 
 

NB. Script for finding x in y=m|g x, knowing  
NB. y, M, and g, particularized for use in  
NB. analyzing the behavior of the linear  
NB. congruential random number generator found 
NB. in APL\360 and its descendants. 
NB. GLOBAL NOUNS 
   M =. x: <: 2 31 
   L =. <: M 
   g =. x: 7 5 
   f =. h L NB. f is 2 9 7 11 31 151 331 
   q =. <@p@j"0 f NB. comment this line out 
  NB. replace line above by value of q directly 
   e =. L % f 
NB. UTILITY VERBS 
   w =. .  #/. 
   h =.w@q: 
   s=. M&|@  
   p =. g&s 
   j =. L&% * i. 
NB. HUI's CHINESE REMAINDER VERBS FROM  
NB. VECTOR 12 2, P 66 
NB. INCLUDING GCD AS A LINEAR COMBINATION 
NB. Chinese Remainder 
   ab    =. |.@(gcd/ * [ % +./)@(,&{.) 
   cr1   =. [: |/\ *.&{. , ,&{: +/ .* ab 
   chkc  =. [: assert ,&{: -: ,&{. | {:@cr1 
   cr    =. cr1 [ chkc 
NB. GCD as a Linear Combination 
   g0    =. , ,. =@i.@2: 
   it    =. {: ,: {. - {: * <.@%&{./ 
   gcd   =. (}.@{.)@(it :(*@{.@{:) :_)@g0 
   assert=. 13!:8@(12"_) :-. 
NB. MAIN VERBS 
   t =. f"_ ,. q"_ i.&> ] s e"_ 
   r =. {: @ (cr1/ @ t) 
   ner =. <:@r  NB. number of executions of roll. 

 





14 Stumping the Rocket Scientist 
First published in Vector, 13, 4, (April 1997), 123-129. 

The Abstract Problem 
This column concerns a statistical application, having to do with a 
rating problem involving five integer variables, related as follows: 

   a >: 0 
   c <: a 
   d < 100 * c 
   t <: c 
   i <: a - c   

My interest in this application arose because the rating process is 
usually stated in quite a pedestrian way, yet has the reputation of 
being arcane and involved in the extreme. I’ll give the pedestrian 
statement first, then an analysis of the statistical boundaries of the 
problem, next a J program following the statement as closely as 
possible, and lastly a J verb which is more concise and more 
efficient. In the second section I’ll describe the physical situation 
giving rise to the statistical application. 

To obtain the rating of a given system of these five variables proceed as 
follows: 

Step 1: c divided by a. Subtract 0.3, then divide by 0.2. 

Step 2: d divided by a. Subtract 3, then divide by 4. 

Step 3: t divided by a, then divide by 0.5. 

Step 4: Start with 0.095, and subtract i divided by a. Divide the product 
by 0.04. 

The sum of each step cannot be greater than 2.375 or less than zero. Add 
the sum of steps 1 through 4, multiply by 100 and divide by 6. This is 
the rating. 

We form the argument to the program as a five-item list: 
   a, c, d, t, i   

I’ll write the program in J, Release 3.03, January 1997. The first line 
shows the change this release brings in the way of doing indirect 
assignment; one letter names are now treated in the same way as 
multiple letter names, that is, with a space separating names. 
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Rating =: verb define 
  'a c d t i' =. y. 
  step1 =. ((c % a) - 0.3) % 0.2 
  step2 =. ((d % a) - 3) % 4 
  step3 =. (t % a) % 0.05 
  step4 =. (0.095 - i % a) % 0.04 
  (100*+/2.375<.0>.step1,step2,step3,step4)%6 
)   

The number of tokens in this program is easily found: 
   #;:5!:5<'Rating' 
79   

The time required by Rating is 0.024. The four steps are roughly, 
but not exactly, the same. My impulse is to see whether I can 
make them exactly similar, for if we can we can take advantage of 
the array processing abilities of J. I take Step1 as the pattern. It has 
the form: 

   ((v % a) - w) % z   

Step2 follows the pattern exactly. Step 3 lacks the - w part, but 
that is easily fixed using the identity: 

   x - 0 
   x   

Using this, we’ll rewrite Step3 as: 
 step3 =. ((t % a - 0) % 0.05  

Step4 is only slightly more complicated. It reverses the minuend 
and subtrahend. 

  step4 =. (0.095 - i % a) % 0.04   

We can switch the two around by using the identity: 
   (s - t) % u 
   (t - s) % - u   

To give us: step4 =. ((i % a) - 0.095) % _0.04  

What I had in mind by putting them in the same form was to be 
able to take advantage of J’s array processing abilities to get rid of 
the four local variables by writing something like: 

   x =. (c, d, t, i) % a   

or, 
   x =. (}. % {.) y.   NB. behead divided by head   
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If we now form two lists, one of minuends and another of 
divisors, we can replace the four Step statements by: 

   m =. 0.3 3 0 0.095 
   n =. 0.2 4 0.05 0.04 
   (x - m) % n   

Next, reciprocate n to replace division by multiplication: 
   ] b =. % n 
5 0.25 20 25 
   b * (x - m) 

If now we distribute the multiplication within the parentheses we 
get: 

   (b * x) - (b * m)   

And, since the right limb is the product of constants, we can 
replace it by its product: 

   ] q =. b * m 
1.5 0.75 0 2.375 
   (b * x) - q   

I’m trying to arrive at an expression involving a linear 
polynomial, and am almost there. I have in mind using J’s 
polynomial primitive (p.). For that I’ll have to form a as the 
negate of q and reverse the order of the terms: 

   a =. - q 
_1.5 _0.75 0 _2.375 
   a + (b * x)   

Whew! We’ve got our linear polynomial (actually, four of them). 
This has been tedious, although eventually interesting. We now 
can replace all of the steps of Rating by: 

   (100 * +/ 2.375 <. 0 >. a + (b * x)) % 6   

or, using the polynomial primitive, 
   (100 * +/ 2.375 <. 0 >. (a , b) p. x) % 6   

Looking at this, we get irritated by that 100 * and that % 6. We 
can use two identities: 

   u * +/ v 
   +/ u * v 
 
   (+/ v) % w 
   +/ v % w   
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And arrive, after a bit of algebra, at: 
   ] e =. 100r6 * a 
_25 _25r2 0 475r12 
   ] f =. 100r6 * b 
250r3 25r6 1000r3 _1250r3 
   ] g =. e ,. f 
    _25  83.3333 
  _12.5  4.16667 
      0  333.333 
39.5833 _416.667 
   ] h =. 100r6 * 2.375   NB. 39.5833 is 475r12 
39.5833   

Table g lists in its leading column the constant coefficients, and in 
the last column the linear coefficients for each of the four linear 
polynomials. 

   Rtg=. [: +/ 0: >. h"_ <. g"_ p. }. % {.   

In this verb, the trailing four items are divided by the leading 
item, and used as the right argument to the polynomial primitive, 
with the left argument table g. The four evaluations are 
constrained to lie in the interval from 0 to 475r12, inclusive, and 
the constrained values are summed to give the rating. 

The verb Rtg has 20 tokens and takes 0.007 units of time: about a 
quarter of the size, and less than one-third the time of the 
program Rating. 

Having the four linear polynomial coefficients allows us to 
determine the meaningful boundaries of all systems. 

        Table A 
   event   min    max 
   c % a   0.3    0.775 
   d % a   3      12.5 
   t % a   0      0.11875 
   i % a   0.095  0   

Here’s how to read this table: If, for example, the result of c%a is 
0.3 or less, the rating will be 0 for the c%a event. If it is 0.775 or 
greater, the rating will be 475r12. Similarly for the next two rows. 
For the last row, a result for i%a of 0.095 or greater will give a 
rating of 0 for that event. A result of 0 (it can’t be less) will give a 
rating of 475r12 for that event. Here are some numerical 
examples: The maximum rating can be obtained by the system of 
values: 
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   mxr =. 800 620 10000 95 0 
   Rtg mxr 
158.333 

Recall that the ratings depend on the ratio of the trailing values to 
the leading value. When the leading value is 800, the list mxr 
produces the maximum rating of 158.333, since 

   620 10000 95 0 % 800   
0.775 12.5 0.11875 0 

give the values in the column headed max in Table A. Changing 
the system to give the maximum values possible given the 
constraints listed at the beginning of this section does not give a 
greater result: 

   Rtg 800 800 80000 800 0 
158.333   

Conversely, the minimum rating (zero) is obtained with the 
system: 

 
   Rtg 800 240 2400 0 76 NB. result really 0 
1e_5   

And similarly, we can say that changing the system to:  
 
   Rtg 800 0 0 0 800 
0 

will produce the same zero rating. 

The Physical Problem 
Now I have to apologize to readers outside of the United States of 
America for imposing on your good nature for so long, when 
what I was describing derives from the parochial form of football 
popular in the the USA but (I believe) not well-known outside 
that country. In that game there is a preeminent hero called the 
quarterback. He stands behind a line of seven myrmidons, the 
central one of which (called the center), hands the ball between 
his legs to the quarterback while in a crouching stance and facing 
away from the quarterback. 

The quarterback can hand the ball in turn to one of the three other 
people behind the line like himself, or can run with the ball, or he 
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can throw it forward, aiming it in the direction of one of his 
running teammates. This is called a forward pass, and it is his 
ability to deliver forward passes so that they are caught by a 
teammate before hitting the ground that is measured by the rating 
system described so laboriously above. The five variables so 
artfully abbreviated above are now made plain to you: 

a is the number of forward passes attempted. 

c is the number of passes caught by an eligible teammate. 

d is the distance traversed from the line to the point of completion of 
the play, for all pass plays. 

t is the number of completed passes which result in a goal, or 
touchdown. 

i is the number of attempted passes which are ingloriously caught 
by a member of the opposing team—an interception.  

As a sample piece of data I’ll use the lifetime data of the 
quarterback George Blanda, who played professional football in 
the USA for a number of teams from 1949 through 1975. Before 
showing you this data, I’ll interject some personal history. George 
Blanda and I were in the graduating class of 1949 at the University 
of Kentucky. George had been the successful quarterback of the 
college football team. He became a professional player 
immediately, and played for many years. When my job moved 
my family and me to Palo Alto, California, in the fall of 1974, I 
became aware that my old classmate George was still playing 
football for a living, and not only that, but he was a stellar 
performer. Week after week it was he who saved the day in the 
last minute for his team, the Oakland Raiders. Oakland is a large 
city across the bay from San Francisco, and about thirty-five miles 
north of Palo Alto. I was 48, but felt a resurgence of youth in 
seeing what my coeval Blanda was still doing on the football field. 
He played through the seasons of 1974 and 1975 before finally 
retiring (actually he was forced out by his management, who 
wanted to bring in younger players). George holds the career 
record for the total number of points scored by a football player, 
2,002. The nearest player to him has scored 1,699 points. 
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Let us see then what George Blanda’s lifetime statistics are: 
attempts:        4007 
completions:     1911 
yards:          26920 
touchdowns:       236 
interceptions:    277 

Applying our Rtg program gives us his career rating: 
   Rtg gb =. 4007 1911 26920 236 277 
60.6475   

Blanda doesn’t have a particularly good rating largely because of 
the great number of interceptions he threw. Quarterbacks with 
high ratings usually have many more touchdown passes than 
interceptions. The quarterback Joe Montana, for example, while 
playing for the San Francisco football team compiled a record of: 

   jm =. 4600 2929 35124 244 123 
   Rtg jm 
93.4999    

This was the highest career rating for any quarterback to have 
played the professional game. Ratings are also compiled during 
the football season, as well as for entire careers. Has anyone ever 
achieved the maximum rating? No one has ever done it for a 
career, or even for a season, but for a single game it has been 
done. The player John Taylor of the San Francisco team was called 
on in one game to throw the ball (he had never done this in a 
game before). It went for twenty yards, was completed, and 
scored a touchdown. So Taylor’s rating for that game was: 

   rtg 1 1 20 1 0 
158.333   

I got the title for this column from the fact that American 
sportswriters and broadcasters are confident that the formula is so 
arcane it baffles even rocket scientists. We know better, of course. 
It really only baffles sportswriters and broadcasters. 





15 Oh, No, Not Eigenvalues Again! 
First published in Vector, 14, 1, (July 1997), 135-139. 

 

I can’t explain why it is that I keep running into problems assoc-
iated with eigenvalues. I don’t seek them out, and have no interest 
in them, but there it is—they keep cropping up before me and I 
have somehow to find a way to drive a stake through their hearts 
before I can go on to something else. 

When the eigenvalue problem last loomed before me, I found that 
I had to go back to basics in order to come to terms with it. In the 
course of doing so, I happened upon a technique in J for finding 
eigenvalues which is eminently satisfying pedagogically, since it 
can be used for small matrices to show all the theory of 
eigenvalues, even though it is staggeringly inefficient, becoming 
dreadfully slow for matrices of size 5 or 6 or larger. It is its 
pedagogical merit that I commend to you. 

The basics are simple. If A is a square numeric matrix, we replace 
each diagonal atom aii with the two-atom list aii _1. What we are 
doing is replacing the problem of evaluating the determinant of a 
numeric matrix with that of evaluating the determinant of a 
matrix of polynomials. Of course, the non-diagonal terms are the 
simplest of polynomials, that is, constants, but the diagonal terms 
are all linear polynomials. Our problem is to evaluate the 
determinant of this polynomial matrix. In J we evaluate the 
determinant of a numeric matrix with the monad of the dot 
conjunction: 

   det =: -/ . *     NB.  (1) 

For example, 
   m=:2 3,:5 8 
   m 
2 3 
5 8 
   det m 
1 

The verb det is not directly suited to our purpose, but with a few 
manoeuvres we’ll get where we want to go. First, let’s take a 
suitable matrix for our example (the example and much of the 
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approach I have borrowed from Cornelius Lanczos’s book, Applied 
Analysis, Prentice-Hall, 1956, chapter II): 

   ]A =: 33 16 72 , _24 _10 _57 .: _8 _4 _17 
 33  16  72 
_24 _10 _57 
 _8  _4 _17 

We can obtain the diagonal atoms of A using the monad d [JP 
3.B.m4, meaning phrase m4 from section B of chapter 3 of the 
book J Phrases].  

   ]a0 =: d A 
33 _10 _17 

We append _1 to each of these using J’s stitch (,.): 
   ]a1 =: a0 ,. _1 
 33 _1 
_10 _1 
_17 _1 

In order to be able to work with a matrix in which a single 
number is replaced by a list of two numbers, it will be necessary 
to box the rows of the 2-column matrix above, using monad B1 [JP 
1.C.m12] 

   ]a2 =: B1 a1 
+-----+------+------+ 
|33 _1|_10 _1|_17 _1| 
+-----+------+------+ 

In order to amend the diagonal atoms of A, we’ll box the atoms of 
matrix A first, using monad B0 [JP 1.C.m11]: 

   ]a3 =: B0 A 
+---+---+---+ 
|33 |16 |72 | 
+---+---+---+ 
|_24|_10|_57| 
+---+---+---+ 
|_8 |_4 |_17| 
+---+---+---+ 

The amend adverb in J needs the indices of the places to be 
amended. We obtain these using the monad d again, modified by 
the adverb IR [JP 3.B.a3]. 

   ]a4 =: (d IR) A 
0 4 8 
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We can use amend now to obtain the matrix we want: 
   ]a5 =: a2 a4 } a3 
+-----+------+------+ 
|33 _1|16    |72    | 
+-----+------+------+ 
|_24  |_10 _1|_57   | 
+-----+------+------+ 
|_8   |_4    |_17 _1| 
+-----+------+------+ 

For use later, we’ll collect the steps taken so far to form the verb 
db: 

   db =: B1@(d ,. _1:) d IR } B0 

Now we are in position to evaluate the determinant of this matrix. 
We can’t use the det verb from above, since it can only deal with 
matrices whose atoms are simple numbers. My first thought was 
to use the definition of the Determinant conjunction u . v from 
the J Introduction and Dictionary: 

     u=: -/ [. v=: * 
     DET=: v/@,`({."1 u .v$:@minors)@.(1&<@{:@$)"2 
   minors=: }."1@(1&([\.))  

replacing the definitions of u and v by polynomial difference and 
polynomial product, dyads dif and ppr [JP 9.C.d1 and 9.C.d2]. 
However, I hadn’t proceeded far when I suddenly realized that, 
since DET was the definition of the monadic form of the dot 
conjunction, I ought to be able to use dot itself directly, and not 
mess with its sybilline definition. The first thing I did was to 
provide myself with modified forms of dif and ppr, ones which 
operated on boxed atoms: 

   difb =: dif&.> 
   pprb =: ppr&.> 

Taking this tack, I could now write, in direct analogy with (1), 
   detp =: difb/ . pprb 

and then apply this to matrix a5: 
   detp a5 
+----------+ 
|6 _11 6 _1| 
+----------+ 
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I wanted an open, not a boxed result, so modified the definition of 
detp: 

   detp=:>@(difb/ . pprb) 
   ]a6 =: detp a5 
6 _11 6 _1 

This looked promising, but was it indeed the characteristic 
polynomial of my matrix? One way to find out was to use the 
Cayley-Hamilton theorem, which says that a matrix satisfies its 
own characteristic equation. To see whether this was so, I found 
the first four powers of A, using the monad I [JP 9.A.m0] to form 
the 0th power of the matrix, that is, the identity matrix: 

   ]a7=:A&ip :(i.@>:@#`]) I A 
   1    0    0 
   0    1    0 
   0    0    1 
 
  33   16   72 
 _24  _10  _57 
  _8   _4  _17 
 
 129   80  240 
 _96  _56 _189 
 _32  _20  _59 
 
 417  304  648 
_312 _220 _507 
_104  _76 _161 

then multiplied these by the supposed coefficients of the 
characteristic equation: 

   ]a8 =: a6 * a7 
   6    0     0 
   0    6     0 
   0    0     6 
 
_363 _176  _792 
 264  110   627 
  88   44   187 
 
 774  480  1440 
_576 _336 _1134 
_192 _120  _354 
 
_417 _304  _648 
 312  220   507 
 104   76   161 
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and lastly, summed a8, trusting that the result would be the zero 
matrix: 

   +/a8 
0 0 0 
0 0 0 
0 0 0 

From here it was a short step to the eigenvalues: they are the roots 
of this polynomial, so I could use J’s polynomial primitive (p.): 

   p. detp a6 
+--+-----+ 
|_1|3 2 1| 
+--+-----+ 

The result I wanted was the open (>) of the tail ({:) of this one, so 
I made another modification: 

   a9 =: >@{:@p.@detp a6 
3 2 1 

The parts can now be assembled to give the eigenvalue finder cm: 
   cm =: > @ {: @ p. @ detp @ db 
   cm A 
3 2 1 

If these are the eigenvalues, their product should be equal to the 
determinant of the matrix. 

   */ cm A 
6 
   det A 
6 

So far, so good. Furthermore, if these are the eigenvalues, if any 
one of them is subtracted from the diagonals of A, the determinant 
of the result should be zero. Is this the case? 

   det A - 3 * I A 
0 
   det A - 2 * I A 
0 
   det A - 1 * I A 
0 

Yes it is. 

The verb cm is a model of the monad of the c. primitive described 
in the J Introduction and Dictionary. It differs in that the roots are 
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given in order of descending magnitude, which is how the poly-
nomial (p.) primitive provides them, rather than the ascending 
order prescribed in the Dictionary. Since c. has not yet been impl-
emented, it’s anyone’s guess how p. and c. will be reconciled. 
I’ve brought this matter to the attention of the proper authorities, 
so they do at least know that the problem exists. 
 



16 A Newer Random Link Generator 
First published in Vector, 14, 4, (April 1998), 122-127. 

 

The random link generator used in many J\APL systems is an 
example of the linear congruential kind introduced in 1948 by the 
mathematician D. H. Lehmer, of the University of California in 
Berkeley, California. It depends on two numbers, 16,807 and 
2,147,483,647. The first is 7 5, a primitive root of the second, 
which is Euler’s prime, <:2 31. The basis of the algorithms for 
the roll and deal primitives is the expression for computing the 
next link rl in the chain of random links:  

rl =: 2147483647 | 16807 * rl 

The chain is 2,147,483,646 links long, and contains all of the 
integers between 1 and 2147483646, but not in any easily 
discernible order. The first link in the chain is 16807, and the next 
few links are  

282475249 1622650073 984943658 1144108930 470211272  

The values seem to be suitably random. What’s more, they satisfy 
many of the tests mathematicians and computer scientists have 
devised for judging randomness. 

This column discusses a generator of a very different kind, that 
has its roots in a method devised in 1958 by G. J. Mitchell and D. 
P. Moore. Donald Knuth’s book Seminumerical Algorithms had its 
first edition in 1969 (the year I bought my copy) and discusses 
random numbers extensively, but doesn’t mention this method. It 
appears in the book’s second edition (1981), but is treated warily. 
Knuth writes, “The only reason it is difficult to recommend [it] 
wholeheartedly is that there is still very little theory to prove that 
it does or does not have desirable randomness properties”. By the 
time of the third edition (1998) it is obvious that a great deal of 
effort has been expended on it, and it is almost part of the canon. I 
first saw the technique described in Knuth’s book, The Stanford 
Graph Base, Addison Wesley, Reading, Massachusetts, 1993. He 
describes it in the section called GB_FLIP, the name of the 
program used to generate random links for the other programs 
described in the book. The generator described here comes from 
this book. 
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The basis of the generator is a bit of mathematics the gist of which 
Knuth gives as follows: 

The subtractive method. If m is any even number and if the numbers 
a0, a1, ... , a54 are not all even, then the numbers generated by the 
recurrence 

an = (an-24 − an-55) mod m     (1)  

have a period of at least 25 5  − 1, because the residues an mod 2 have a 
period of this length. Furthermore, the numbers 24 and 55 in this 
recurrence are sufficiently large that deficiencies in randomness due 
to the simplicity of the recurrence are negligible in most applications. 

If something has a period of n, it means that it can’t be made up as 
an integral number of repetitions of a smaller sequence. Knuth 
says that 25 5  − 1 is the smallest the period can be, but it is 
plausible that it is 28 5  − 230. Furthermore, the low-order bits of the 
generated numbers are just as random as the high-order bits. 
These are both very large numbers. 

    <:2 55x 
 36028797018963967 
    (2 85x)-2 30x 
 38685626227668132516855808 

There is a usage problem in giving a name to them. In the UK the 
names of numbers go up in powers of a million. Thus billion, 
trillion, and quadrillion are a million to the second, third, and 
fourth power. In the US they go up in powers of a thousand, so 
million, billion, trillion, quadrillion are a thousand to the second, 
third, fourth, and fifth powers. The names are more appropriate 
in the UK usage, but the size of the denominating numbers are 
smaller and usually more convenient in the US usage. The first 
large number would be about 36029 billion in UK usage, and 36 
quadrillion in US usage. 

36028,797018,963967 (UK)        
36,028,797,018,963,967 (US) 

The larger number would be about 39 quadrillion in the UK and 
39 septillion in the US. Whichever way you call it, it’s big.  

38,685626,227668,132516,855808 (UK)       
38,685,626,227,668,132,516,855,808 (US) 
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Since there are only <:2 31, or 2,147,483,646 positive integers, it is 
clear that each integer will appear many times in the chain, but 
the period of the chain is indeed enormously long.  

Here’s how the generator works: if a random link is needed, select 
the one indexed by gb_fptr, from a list A of 55 random numbers, 
and subtract one from gb_fptr. Thus getting a random link 
requires trivial computation, an indexing and a subtract, simply  

   gb_fptr { A 
   gb_fptr =: <: gb_fptr  

There must be more to it than that, you say, and you are right. The 
tricky problems are how to get more random links when we’ve 
used all that are in the list, and, ultimately, where did the initial 
list come from? The processes involve a fair amount of crabwise 
sidling and snakewise slithering. I’ll make it as clear as I can.  

What does one do when all 55 links in the list have been selected? 
A program gb_flip_cycle is used to provide a new list of 55 
links, guided by recurrence (1). Knuth’s C program uses two 
successive for loops; the first subtracts in sequence the last 24 
items of A from the first 24; the second subtracts the last 31 from 
the first 31 in sequence, depending on the explicit sequencing in 
the for loop specification to make sure that the overlap of 7 items 
in the middle of the two has the proper values each time it is 
traversed. We could do that, too, using the shiny new control 
words available in J, but prefer instead to emphasize the potential 
for parallelization by using the following scheme: subtract the last 
24 from the first 24, then the new first 24 from the second 24, and 
lastly the new 7 following the first 24 from the last 7.  

All these subtractions are mod m, and this is easily computed at 
the machine level by anding the result of subtraction with 
16b7fffffff. In the function below it is shown at the J language 
level by taking the residue mod 16b80000000, yielding the same 
result. 

The function gb_flip_cycle takes as argument a list of 55 
random numbers, and yields a new such list. In terms of recursion 
(1) its first use replaces a0 through a54 by a55 through a109. Each of a, 
b, and c is a two-row matrix of indices to the list.  
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For example, c is the matrix 
48 49 50 51 52 53 54 
24 25 26 27 28 29 30 

The first row gives the indices of the minuend, which are also the 
indices of the result. The second row gives the indices of the 
subtrahend. For example, the amend c g } subtracts a79 through 
a85 from a48 through a54, yielding a103 through a109, and these 
replace a48 through a54.  

   gb_flip_cycle=: monad define 
a=.  0 31 +/ i. 24    NB. 1st 24 get (1st 24) - 
(last 24) 
b=. 24  0 +/ i. 24    NB. 2nd 24 get (2nd 24) - 
(new 1st 24) 
c=. 48 24 +/ i.  7    NB. last 7 get (last 7) - (7 
after 1st 24) 
NB. v0 is difference mod m of selected parts of 
argument 
v0=: 16b80000000"_ | [: -/ { 
NB. v1 is top row of 2-row left argument -- result 
address 
v1=: [: {. [ 
NB. v2 is right argument: a 55 item list 
v2=: ] 
g=. v0`v1`v2          NB. gerund for amend 
c g } b g } a g } y.  NB. amend in three 
overlapping steps 
) 

If you look closely at the numbers, you’ll notice that recurrence (1) 
isn’t faithfully followed. Instead we have 

an = (an-55 − an-24) mod m    (2)  

Knuth claims that this doesn’t make the results any less random. 

You are probably asking, “Yes, but where did you get the original 
list of random links?” This is the part that happens only once, and 
that’s good, because it is the most complicated and time-
consuming part of the whole method. 

In outline, a next random link is formed from three values: the 
current value next, the previous value prev, and the seed. The 
current value is subtracted from the previous value, and the 
modified seed is subtracted from this, mod m.  
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The random links are stored as they are developed in list A, but 
not sequentially. The first one is stored in the 21st position, index 
20. The next number found will be stored 21 to the right, in 
position 41. And the next one 21 further to the right, in position 
62. Oops. That addition is made mod 55, so it will actually be 
stored in position 7. And so on. There’s a trifle of Fibonacci magic 
here: there are 34 positions to the right of the first one, and 55 in 
all, and the numbers 21, 34, and 55 are consecutive Fibonacci 
numbers. Also, 21 is relatively prime to 55, which means that the 
index will take on all values from 0 to 54, inclusive, once each. 
Knuth comments that the successive values are thus stored as far 
as possible from each other, and that the initializing would be 
rather poor if this dispersal were not done.  

The value of seed is not constant; it can be any one of 31 possible 
values. For each of the initial list of random links, a new value of 
seed is obtained by rotating its 31 rightmost bits one position to the 
right.  

   bwr=: [: #. _1: |. (31$2)?_ #: ] NB. rotate 
bits 1-31 to the right 
   seed=: bwr seed 

and then performing 
   temp=: next 
   next=. m | prev - next + seed 
   prev=: temp 

The seed used by Knuth is _314159 mod m, or 2147169489. This is 
also the initial value of prev. The initial value of next is 1, chosen 
because the method requires that there be at least one odd 
number in the first set of links. 

   gb_init_randx=: monad define   NB. initial list  
                                 of random numbers 
A=. 55 # 0 
m=: 2 31 
seed=. m | y. 
next=. 1 
prev=. seed 
x=. 20 
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whilst. i : 20 do. 
 A=. next x } A  
 seed=. bwr seed 
 temp=. next  
 next=. m | prev - next + seed 
 prev=. temp 
 x=. 55 | i=. i + 21 
end. 
A 
) 

To verify that A has been properly formed, you can look at the 
first few links formed. These should be: 

   A=: gb_init_randx _314159 
   20 41 7 28 { A 
1 2147326568 1073977445 536517481 

Knuth explains that the first set isn’t random enough to be used. 
Once the sequence gets far enough from its beginning, however, 
the initial transients become less perceptible. Thus after the initial 
A is formed, in order to ensure the necessary degree of 
randomness, a new list is formed from it by using gb_flip_cycle 
five times.  

When this is done, the list is ready to be used. The complete 
initializing procedure is thus 

   gb_init_rand=:monad define 
gb_fptr =: _2 
A =: gb_flip_cycle :5 gb_init_randx y. 
) 

The initial value of A is obtained by 
   A=: gb_init_rand _314159 

A link in the random link chain is obtained using the 
gb_next_rand function. 

   gb_next_rand=: dyad define 
if. gb_fptr > _56 do. 
  z=: gb_fptr { A 
  gb_fptr =: <: gb_fptr 
else. 
  A =: gb_flip_cycle A 
  z =: _1 { A 
  gb_fptr =: _2 end. 
z 
) 
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The links are accessed using the index value gb_fptr, and in 
reverse order. This doesn’t affect the randomness of the links. 
Thus the first link taken would be the one at index position 54, 
which may be accessed (using contracurrent indexing) with 
gb_fptr set to _1, and then subtracting 1 from gb_fptr. The 
links are taken from the current list of links in the if clause until 
gb_fptr reaches _56, at which time the else clause is used to 
form a new list of links. Item _1 of this new list is returned, and 
gb_fptr is set to _2. 

To verify that initializing has been done correctly, check the result 
of gb_next_rand: 

   x: gb_next_rand '' 
119318998  

Unlike the linear congruential generators, subtractive generators 
are much less choosy about the seed value used. I believe that any 
value with a generous balance of 1s and 0s will do. Thus this one 
method gives rise to an enormous number of random link chains, 
each enormously long, obtainable simply by varying the seed. 
 





17 To Summarise 
First published in Vector, 15, 1, (August 1998), 132-137. 

 

The key adverb in J, represented by slashdot (/.) is defined in the 
J Introduction and Dictionary as: 

x u/.y  is  (=x) u@# y 

that is, items of x specify keys for corresponding items of y and u 
is applied to each collection of y having identical keys. For 
example: 

  1 2 3 1 3 2 1 </. 'abcdefg' 
+---+--+--+ 
|adg|bf|ce| 
+---+--+--+ 

This may be clearer if we look at the separate parts. 
  =x 
1 0 0 1 0 0 1 
0 1 0 0 0 1 0 
0 0 1 0 1 0 0 

The first row of this has 1s in the first, fourth, and seventh 
positions, so when used as the left argument to copy (the dyad of 
#), and applied to y, yields its first, fourth, and seventh items, or 
'adg'; similarly the second row yields ’bf’ and the third row 
yields 'ce'. Each of these is then boxed and the three are 
catenated together, yielding 

+---+--+--+ 
|adg|bf|ce| 
+---+--+--+ 

The basic idea remains the same when u changes from box to a 
different monad. For example, if we replace box by tally (the 
monad of #) we get: 

  x #/. y 
3 2 2 

The same three groupings are selected, but instead of being boxed 
they are tallied, or counted, yielding the count of each group; 
three in the first, and two in the second and third. 

The key adverb was not in the initial version of J. It came in later 
at the request of the J user community, notably Joey Tuttle. Joey’s 
interests were not merely theoretical; he had practical ends in 
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view. He was in the business of analysing huge amounts of data 
and summarising time and amount fields by accounts. We’ll use 
an abbreviated version so we can fit the data onto a small page. 
Suppose we have three accounts, 1001, 1002, and 1003, and 
suppose further that we have a table whose rows give an account 
number and an amount: 

   acct=:1001 1002 1003 
   table=:((?10#3){acct),.?10#100 
   table 
1001 51 
1003 83 
1002  3 
1002  5 
1001 52 
1001 67 
1003  0 
1003 38 
1003  6 
1002 41 

To summarise this table by account, we transpose (|:) it, so that the 
accounts are in the first row, and the amounts in the second, then 
insert (/) sum key (+//.) between the account row and the amount 
row: 

   +//./|:table 
170 127 49 

If you check the first amount in the sum, 170, you can verify that it 
is indeed the sum of the three amounts associated with the first 
occurring account, 1001, that is, it is the sum of 51, 52, and 67. 
Similarly the second amount 127, is the sum of the four amounts 
associated with the second occurring account, 1003, that is, it is 
the sum of 83, 0, 38, and 6. Lastly, the third amount, 49, is the sum 
of the three amounts associated with the third occurring account, 
1002, that is, 3, 5, and 41.  

This result may not be completely satisfactory, since the amounts 
are not in the order of the accounts: they are in the order in which 
they fortuitously occur in the table. One way to remedy this is to 
place some dummy rows at the beginning of the table, one for 
each account, with the accounts in the desired order, and with the  
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amounts set to zero (acct,.0). 
  (acct,.0),table  
1001  0 
1002  0 
1003  0 
1001 51 
1003 83 
1002  3 
1002  5 
1001 52 
1001 67 
1003  0 
1003 38 
1003  6 
1002 41 

Now when we summarise the amounts will be in account order. 
   +//./|:(acct,.0),table 
170 49 127 

We can produce a summary of accounts and amounts by 
prefacing the above with the list of account numbers and stitching 
(,.) the lists together. 

   acct,.+//./|:(acct,.0),table 
1001 170 
1002  49 
1003 127 

This gives you the theory and the practice of the key adverb, so 
it’s time to play, and incidentally to learn another way to use key. 

How are the digits of pi distributed? If the digits were distributed 
evenly, then the frequency of occurrence of all digits would be 
about 10%. J enables you to compute as many digits of pi as you 
have room for and time for. A convenient way to obtain n digits 
of pi is to subtract 1 (<:) from n, make this an extended integer 
(x:) use this as an exponent of 10 (10 ), apply floor atop pi times 
(<.@o.) and take the format (":) of this: 
  dp=: monad def '":<.@o.10 x:<:y.' NB. digits of pi 

Try this on a small integer: 
   q10=:dp 10 
   q10 
3141592653 
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This is correct. Try it on a somewhat larger integer: 
   q30=:dp 30 
   q30 
314159265358979323846264338327 

Checking this against the value of pi to many places in a table 
such as may be found in a volume of Knuth’s The Art of Computer 
Programming shows that q30 is accurate, too. 

Let’s compute some more (q3000 may take several minutes): 
   q100=:dp 100 
   q300=:dp 300 
   g1000=:dp 1000 
   q3000=:dp 3000 

Now let’s see how the digits are distributed in each of these, in 
order. We need a digit distribution function. This is where a new 
use of key comes in. In order to make the result of the digit 
distribution function be in the right order, we’ll preface the 
argument with d, a list of the decimal digits in order. 

   d=:'0123456789' 

To get the distribution we preface the formatted digits of pi with d 
(d,y.), then apply count (#) key (/.) reflexive ( ) to this, giving us 
the distribution of d,y. , then subtract 1 (<:) to adjust the count 
for the presence of d. 

   dd=: monad def '<:#/. d,y.' 

And try this out on q10, which is easy to verify by eye: 
   /: q10 
1123345569 
   dd q10 
0 2 1 2 1 2 1 0 0 1 

No zeros, two ones, one two, two threes, one four, two fives, one 
six, no sevens or eights, and one nine. Now let’s see the digit dis-
tribution of each of the other lists of pi digits. 

   dd q30 
0 2 4 7 3 3 3 2 3 3 
   dd q100 
8 8 12 12 10 8 9 8 12 13 
   dd q300 
26 30 35 31 37 27 31 19 34 30 
   dd q1000 
93 116 103 103 93 97 94 95 101 105 
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   dd q3000 
259 308 303 266 318 315 302 287 310 332 

These look somewhat reasonable, but it would be better to see 
how closely each gets to having 10% of each digit, using a 
function pd, which takes a distribution as argument, and yields 
the percentage of each value, rounded to the nearest one per cent. 
Do this by dividing the values by the sum of the values (y.%+/y.), 
multiply this by 100 (100*), to get percentages, and round, getting 
the nearest percentage, by adding a half (0.5+) and taking the 
floor (<.). 

   pd=: monad def '<.0.5+100*y.%+/y.' 
 
   pd dd q10 
0 20 10 20 10 20 10 0 0 10 

We can compare this to dd q10 and see that it is simply the same 
values multiplied by 10 to give percentages, as desired. There are 
so few digits to take into account that it is difficult to say whether 
the distribution is even or not. Trying the next distribution, of 
thirty values, still leaves us uncertain. 

   pd dd q30 
0 7 13 23 10 10 10 7 10 10 

There are no zeros among the first thirty digits, and a lot of threes. 
Probably still not enough digits. 

   pd dd q100 
8 8 12 12 10 8 9 8 12 13 

Except for the large number of nines, this is beginning to look 
quite even. 

   pd dd q300 
9 10 12 10 12 9 10 6 11 10 

Here, the number of sevens seems too low. Let’s keep looking. 
   pd dd q1000 
9 12 10 10 9 10 9 10 10 11 

Ones seem a bit high, but I’d say this distribution is even enough. 
   pd dd q3000 
9 10 10 9 11 11 10 10 10 11 

With 3000 digits to distribute, we can say with some satisfaction 
that this represents an even distribution. 
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Before we part, let’s look at a consecutive portion of these digits: 
   (762+i.6){q1000 
999999 

Hmmm. Well, yes, that’s not too unusual. In fact, if such strings 
didn’t occur every now and then, it would argue against random-
ness. 
 



18 Maximum Infix Sums 
First published in Vector, 15, 2, (October 1998), 100-103. 

 

In his book Programming Pearls (Addison-Wesley 1986), Jon 
Bentley collected a baker’s dozen of his columns of the same name 
that had appeared in Communications of ACM. Column 7 therein is 
called “Algorithm Design Techniques”, and the problem 
discussed in there is the subject of this column. Here’s the 
problem: Given a vector x of numbers (positive, negative, or zero), 
define a function f that yields the maximum of the sums of all the 
infixes. For example, if 

   x 
31 _41 59 26 _53 58 97 _93 _23 84 

then f x is 187, the sum of 59 26 _53 58 97. If all the numbers are 
positive the maximum infix is x, with sum +/x. When all inputs 
are negative the maximum infix is the empty vector, with sum 0. 

How many infixes are there in a vector? An infix can start at any 
point and end at any point. The number of infixes starting at the 
very beginning is #x, one for each possible ending point. The 
number of infixes beginning at the next position is (#x)-1, at the 
next is (#x)-2, and so on; the total is thus the triangular number  
-:(#x)*(1+#x), or, expressed functionally, -:@(*>:), one of the 
series 1 3 6 10 15... The number of infixes for #x where x is a 
power of 10 are: 

     #x    -:@(*>:)x 
      1            1 
     10           55 
    100         5050 
   1000       500500 
  10000     50005000 
 100000   5000050000 
1000000 500000500000 

So even for a vector of length 1000, the number of infixes to 
consider is greater than half a million. Bentley gives as a bad 
example an algorithm (I think written in Pascal) that tests the sum 
of each infix, and shows that a computer that takes an hour for 
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#x 1000 will take 39 days for #x 10000. 
MaxSoFar := 0.0 
for L := 1 to N do 
    for U := L to N do 
        Sum := 0.0 
        for I := L to U do 
            Sum := Sum + X[I] 
        /* Sum now contains the sum of X[L..U] */ 
        MaxSoFar := max(MaxSoFar, Sum) 

He goes on to discuss faster algorithms, but which still take 
quadratic time. He describes then a subquadratic algorithm which 
uses O(N log N) time. He tells how he and a colleague thought this 
was probably the best possible. They described this at a meeting 
at Carnegie Mellon University, and someone in the audience 
designed a much improved linear time algorithm in less than a 
minute. Several APL colleagues of mine have voiced their 
suspicions that the designer knew APL. 

The algorithm (again I think written in Pascal) for the linear-time 
algorithm is: 

MaxSoFar := 0.0 
MaxEndingHere := 0.0 
for I := 1 to N do 
    /*  Invariant: MaxEndingHere and MaxSoFar 
                   are accurate for X[1..I-1] */ 
    MaxEndingHere := max(MaxEndingHere+X[I], 0.0) 
    MaxSoFar := max(MaxSoFar, MaxEndingHere) 

This can be translated into a J verb: 
   mis =: monad def '>./(0:>.+)/\.y.,0'  NB. maximum infix sum 

We append 0 to the end of the list argument (y.,0), because the 
last value on the list may be negative, then do a suffix scan (/\.) 
using the verb ‘the maximum of zero and the sum so far’ (0:>.+). 
This produces a list of sums formed according to the rule that if a 
negative sum is encountered it is replaced by zero. Finally, the 
maximum of all the sums is yielded (>./). To see how this works 
we use mis0, which is like mis but without the maximum over, on 
a short list: 

   y =: _100 2 3 4 _100 5 6 _7 8 9 _100 
   mis0 y 
0 9 7 4 0 21 16 10 17 9 0 0 
   mis y 
21 
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The maximum infix is 5 6 _7 8 9, with sum 21. 

The need for appending a zero may be demonstrated by using 
mis1, which is like mis0 but without the appended zero: 

   j1=:13 : '(0:>.+)/\.y.' 
   j1 y 
0 9 7 4 0 12 7 1 8 0 _100 

Jon Bentley showed the advantage of linear over quadratic 
algorithms by writing his slow algorithm in fine-tuned Fortran 
and running it on a Cray-1 supercomputer, and the linear algo-
rithm on a Basic interpreter running on a Radio Shack TRS-80 
Model III microcomputer. The runtime for an argument of length 
N was 3.0N3 nanoseconds for the slow algorithm on the Cray, and 
19.5N milliseconds (19,500,000N nanoseconds) for the fast algo-
rithm on the TRS-80. The linear algorithm on the slow machine 
caught up with the slow algorithm on the fast machine at N=2500, 
and for N = 1,000,000, the slow algorithm/fast machine took 
95 years (estimated) and the fast algorithm/slow machine took 
just 5.4 hours. 

The moral of the story is something like, “It’s foolish to improve 
performance by getting a faster machine; one’s money is better 
spent on finding a faster algorithm.” This isn’t always possible, of 
course. Machine designers are always finding ways to build faster 
machines, but it takes a very rare skill to devise faster algorithms. 

This brings me to a confession. The J version of the algorithm 
wasn’t translated from Pascal (which is a language I don’t 
understand), but from Arthur Whitney’s K. Many of you will 
know of the existence of two different APL successors, J and K; 
some of you will know of their progenitors: Ken Iverson and 
Roger Hui for J, and Arthur Whitney for K. There are connections 
among these three. All are from Alberta, in Canada (Roger Hui by 
way of Hong Kong); all worked for I. P. Sharp Associates in 
Toronto (Whitney also worked for IPSA in Australia, Hong Kong, 
and Singapore), and all are good friends. I might also say that all 
have first-rate brains. That they have taken divergent paths in 
pushing the APL idea into the next millenium might lead you to 
think that their relationship might be strained, and they do indeed 
have a rivalry in that regard; but it is a friendly, though determin-
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ed one. I use both J and K, and believe that each language is 
excellent, but also that each has features that I wish the other had. 

The K algorithm, which I learned from Arthur Whitney (we live 
just a mile or so apart in Palo Alto, California) is: 

  f : |/0(0|+)\ 

In K the vertical bar (|) signifies the dyad ‘larger’. So |/ is ‘the 
largest of all, or maximum’. This is applied to a scan using the 
hook 0|+, where 0| is the monad ‘larger of 0 and the argument’, 
and + is the dyad ‘plus’, of course. In K the scan (like over) begins 
at the left. The 0 preceding (0|+) is the initial value of the scan, 
and serves the same purpose as the appended 0 at the end of the J 
function j. The verb f also illustrates that K can be used as a 
functional language, but unlike J, there is no stress laid on that 
fact. The verb could also have been defined by: 

  f : {|/0(0|+)\x} 

Since I have both J and K on my machine (K can be downloaded 
from the website kx.com) I was motivated to time mis and f on 
similar length arguments. The results are interesting. 

The arguments are named xn, where 10 n is the length of the list. 
            J         K 
   x1    0.00017   0.000386 
   x2    0.0005    0.0024 
   x3    0.0077    0.0212 
   x4    0.082     0.089 
   x5    0.87      0.532 
   x6      --      5.091 

J is faster for arguments up to 1000 items. and there is a tie for 
arguments 10000 items long, but K is faster for larger arguments, 
and, indeed, can handle much larger arguments than J can. I’ve 
reported this difficulty with J and perhaps by the time you read 
this it will have been remedied. 
 



19 Crosswords and Life 
First published in Vector, 15, 3, (January 1999), 99-106. 

Making Shift  
To refresh your memory about J’s shift verb, here is what the online 
J Dictionary says: 

The phrase x |.!.f y produces a shift: the items normally brought 
around by the cyclic rotation are replaced by f unless f is empty 
(0=#f), in which case they are replaced by the normal fill defined 
under {. (take): 

   t=: 'abcdefg' 
   2 _2 |.!.'#'"0 1 t  
cdefg##  
##abcde 

The right shift is the dyadic case of |.!.f with the left argument _1.  
For example: 

   |.!.'#' t  
#abcdef 

This article uses the shift verb in numbering the squares of crossword 
puzzles and in Conway’s Game of Life. The use of the shift verb is 
similar in both: it applies to tables along both the columns and the 
rows. It also applies to the neighbours of an atom: those reachable by 
a one-square rook move in the case of the crossword puzzle, and 
those reachable by a one-square queen move in the case of Life. 

All of the shifts are of amount one. A shift of one is ahead if the last 
item is shifted out, and a fill item is introduced at the beginning; that 
is, the direction of shift is toward the larger index. A ‘shift one ahead’ 
verb is thus: 

   soa =: |.!.'' 

Notice that the fill item is empty ('') , so that soa can be used with 
nouns of any type, with the default fill for that type being used. In 
our cases we shall be working with numeric data, so the fill item will 
be the number zero. 

   L =: 2 3 4 5 6 
   soa L    NB. shift the last item out 
0 2 3 4 5 
   T =. 1 2 3 +/ L 
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   T 
3 4 5 6 7 
4 5 6 7 8 
5 6 7 8 9 
   soa T    NB. shift the last item out 
0 0 0 0 0 
3 4 5 6 7 
4 5 6 7 8 
   soa"1 T  NB. shift the last item of each item 
(row) out 
0 3 4 5 6 
0 4 5 6 7 
0 5 6 7 8 

Similarly, a shift of one is back if the first item is shifted out, and a fill 
item is introduced at the end; that is, the direction of shift is toward 
the smaller index. A ’shift one back’ verb is thus: 

   sob =: 1&soa 
   sob L    NB. shift the first item out 
3 4 5 6 0 
   sob T    NB. shift the first item out 
4 5 6 7 8 
5 6 7 8 9 
0 0 0 0 0 
   sob"1 T  NB. shift the first item of each item 
(row) out 
4 5 6 7 0 
5 6 7 8 0 
6 7 8 9 0 

A Crossword Problem 
A crossword puzzle (the kind I am familiar with, that appear in the 
newspapers in the United States) consists of two tables of numbered 
clues, labelled ‘Across’ and ‘Down’, together with a usually square 
diagram containing regularly spaced rows and columns which divide 
it into smaller squares, some black, but most white, in a usually 
symmetrical pattern. Some of the white squares contain numbers, and 
these indicate the beginning of an infix of squares going across or 
down, where the letters of a word are to be written, and these are 
keyed to the clues. The numbers are in ravel, or row-normal order, 
beginning with 1.  
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Here is a small crossword puzzle diagram, with its clues: 
 

 
1  

2 3  

4   
5  

6 

7  
8    

  
9  

10  

11 12   
13  

 
14     

 
Across Down 

 1.  Competent 1.  Common abbreviation 
 4.  Direction 2.  Helen’s mother 
 5.  Australian bird 3.  Printer’s measure 
 7.  Ran away 4.  Phantasmic celestials 
 9.  Damn euphemism 6.  Tempt 
 11.  Bath, for instance 8.  Cheese 
 13.  That is 10.  Small thing 
 14.  Leave out 12.  Italian river 

The pattern of a crossword puzzle can be represented by a matrix in 
which a white square is represented by a one, and a black square by a 
zero. For example: 

    M 
 0 1 1 1 1 0 
 1 1 0 1 1 1 
 1 1 1 1 0 1 
 1 0 1 1 1 1 
 1 1 1 0 1 1 
 0 1 1 1 1 0 

A professional composer of such puzzles undoubtedly knows from 
experience which squares are to contain a clue number. An inexper-
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ienced computer has to be taught. We’ll show how to teach a comp-
uter to number the squares, with the help of J’s shift instruction. 

In Exercise 1.3.2-23 of his book Fundamental Algorithms, Donald Knuth 
gives the rule as follows: 

A square is numbered if it is a white square and either (a) the square 
below it is white and there is no white square immediately above, or 
(b) there is no white square immediately to its left and the square to 
its right is white. 

Notice how Knuth carefully yet a bit awkwardly avoids saying ‘black 
square above’ and ‘black square to the left’, and instead says ‘no 
white square’. I think this is because of the white squares in the top 
row and leftmost column. What is above or to the left of them? 
Shades of Jim Brown’s empty array jokes! How can you tell whether 
what is above a white square in the top row is not a white square? 

The problem is solved by shifting all of the one-square rook move 
squares to coincide with that square. For the border squares, this 
ensures that zeros, signifying ‘black’ squares, are shifted to 
coincidence. This is done in two steps, producing two matrices of the 
same size as the puzzle diagram matrix.  

The verbs to solve the crossword numbering problem are:  
   f =: soa < sob 
   X =: ] *. f +. f"1 

The use of f"1 produces a one for each atom in the matrix in which 
the square to its left is less than the square to its right. This is true 
only if the square to the left is black (0) and the square to the right is 
white (1). This identifies the potential squares where an across word 
can begin. 

The following use of the verb f produces a one for each atom in the 
matrix in which the square above it is less than the square below it. 
This is true only if the square above is black and the square below is 
white. This identifies the potential squares where a down word can 
begin. 

The verb X ors these two results, producing a matrix showing all 
squares satisfying either of these tests (the same square can be 1 in 
both tests). This combined square is anded with the original square, 
yielding a result which has a 1 only where there is also a 1 in the orig-
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inal, thus definitely identifying squares to be numbered as the 
beginning of either an across or a down word.  

These steps are summarized as follows: 
      M     ;   (f M)   ;  (f"1 M)  ;(]*.f+.f"1)M 
+-----------+-----------+-----------+-----------+ 
|0 1 1 1 1 0|1 1 0 1 1 1|1 1 0 0 0 0|0 1 0 1 1 0| 
|1 1 0 1 1 1|1 0 0 0 0 1|1 0 0 1 0 0|1 0 0 1 0 1| 
|1 1 1 1 0 1|0 0 1 0 0 0|1 0 0 0 0 0|1 0 1 0 0 0| 
|1 0 1 1 1 1|0 0 0 0 1 0|0 0 1 0 0 0|0 0 1 0 1 0| 
|1 1 1 0 1 1|0 1 0 0 0 0|1 0 0 0 1 0|1 1 0 0 1 0| 
|0 1 1 1 1 0|0 0 0 0 0 0|1 1 0 0 0 0|0 1 0 0 0 0| 
+-----------+-----------+-----------+-----------+ 

The verb X encapsulates these steps. We obtain the final result by 
applying X to M: 

   c =: X M 
   c 
0 1 0 1 1 0 
1 0 0 1 0 1 
1 0 1 0 0 0 
0 0 1 0 1 0 
1 1 0 0 1 0 
0 1 0 0 0 0 

Knuth’s exercise asks for a display of the puzzle using black and 
white squares made of plusses, minuses, and stiles.  To complete the 
exercise we give with no further ado ... 
 
   clb=: [: +/ [: *./\ ' '"_ = ] NB. count leading blanks 
 
   CWD=: monad define 
NB. y. is boolean matrix giving a crossword puzzle pattern 
NB. where 0 represents a black square and 1 a white square; 
NB. yields crude numbered crossword puzzle diagram. 
   bw =. <'    +','    +',:'+++++' NB. scalar white square 
   bb =. <'+++++','+++++',:'+++++' NB. scalar black square 
   g =. [: , [: ,. / [: > ]        NB. ravel stitch insert open 
   a =. , X y.                    NB. mark across and down squares 
   b =. (clb |.])"1 ":,.>:i.+/a   NB. format & left adjust numbers 
   c =. <"2 b(<0;0 1)}"1 2>bw     NB. insert numbers in blanks 
   d =. cws0(bw;((,y.)#a);<c)     NB. insert blank white squares 
   e =. cws0(bb;(,y.);<d)         NB. insert black squares 
   f =. g"1 ($y.)$e               NB. stitch open of reshape 
   '+',.'+',(3 5*$y.)$,f          NB. reshape and border  
)  
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When this is applied to M we get: 
   CWD M 
+++++++++++++++++++++++++++++++ 
++++++1   +    +2   +3   ++++++ 
++++++    +    +    +    ++++++ 
+++++++++++++++++++++++++++++++ 
+4   +    ++++++5   +    +6   + 
+    +    ++++++    +    +    + 
+++++++++++++++++++++++++++++++ 
+7   +    +8   +    ++++++    + 
+    +    +    +    ++++++    + 
+++++++++++++++++++++++++++++++ 
+    ++++++9   +    +10  +    + 
+    ++++++    +    +    +    + 
+++++++++++++++++++++++++++++++ 
+11  +12  +    ++++++13  +    + 
+    +    +    ++++++    +    + 
+++++++++++++++++++++++++++++++ 
++++++14  +    +    +    ++++++ 
++++++    +    +    +    ++++++ 
+++++++++++++++++++++++++++++++ 

 

Conway’s Game of Life 
In Knuth’s The Metafont Book, Addison Wesley, 1986, Exercise 13.24, 
p. 121, and Answer 13.24, p. 245 are as follows: 
Exercise 13.24: In John Conway’s “Game of Life” pixels are said to be 
either alive or dead. Each pixel is in contact with eight neighbors. The live 
pixels in the (n+1)st generation are those who were dead and had exactly 
three neighbors in the nth generation, or those who were alive and had 
exactly two or three live neighbors in the nth generation. Write a short 
METAFONT program that displays successive generations on your 
screen. 

Answer 13.24: (We assume that currentpicture initially has some 
configuration in which all pixel values are zero or one; one means 
“alive.”) 

picture v; def c = currentpicture enddef;  
forever: v := c; showit;  
 addto c also c shifted left + c shifted right;  
 addto c also c shifted up + c shifted down;  
 add to c also c - v; cull c keeping (5 , 7); 
endfor. 
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(It is wise not to waste too much computer time watching this 
program.) 

It is not apparent, but Knuth’s approach assumes a flat universe, 
where, as is customary, if things are pushed beyond the edges, they 
fall off the surface. Many APL approaches, using the rotate verb, 
assume a toroidal universe, where the display is assumed to connect 
both horizontally and vertically, and if things are pushed beyond the 
edges, they wrap around, staying on the surface, and appearing on 
the opposite edge. 

Assuming that you don’t speak METAFONT, I’ll explain the logic 
behind this program. It encodes the values of the pixel and its eight 
neighbours to indicate a pixel which is to be alive or dead in the next 
generation. The encoding gives a weight of one to the pixel and a 
weight of two to each of its neighbours. If we compute the sum of the 
pixel plus twice the sum of its neighbours, we can arrive at any of the 
eighteen values from zero through seventeen: zero for a dead pixel or 
one for a live pixel, plus 0, 2, 4, 6, 8, 10, 12, 14, or 16 for twice the sum 
of its neighbours, depending on whether the number of alive 
neighbours is 0, 1, 2, 3, 4, 5, 6, 7, or 8. Then “dead and exactly three 
live neighbours” is (0+(2*3)), or 6, and “alive and exactly two or three 
live neighbours” is (1+(2*2)), or 5, and (1+(2*3)) or 7, so we get the 
next generation by replacing each sum equal to 5, 6, or 7 by one, and 
all others by zero. 

Knuth forms a new picture as the sum of the picture and the picture 
shifted one column left and the picture shifted one column right. 

He adds this new picture to the new picture shifted down one and the 
new picture shifted up one, next doubles the value of each pixel, then 
subtracts the original pixel, giving us the value we desire. It only 
remains to see whether this is one of the life-giving values. That’s 
what the cull verb does: it culls the chaff from the result, leaving only 
those having the value 5 or 6 or 7. 

J verbs to do what Knuth’s MetaFont program does are: 
   g =: ] + soa + sob 
   h =: ] -  [: +: [: g g"1 
   L =: h e. 5 6 7"_     
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The verb g will be used in somewhat the same way as the verb f in 
the crossword puzzle problem. It is used first (g"1) to form the sum of 
each column with the columns on either side, then applies g to this, 
forming the sum of each row with the rows on either side, doubles 
(+:) this, then subtracts (] - ) the original picture. The verb h 
encapsulates this. The verb L uses h to go through these steps, then 
determines which atoms of the result are equal to either 5 or 6 or 7. 

Given a picture: 
  picture =: 0 0 0 0 0,0 1 1 1 0,0 0 1 0 0,0 1 1 0 
0,:0 0 0 0 0 

Its original value and the next 5 steps of Life are: 
   q =: L :(i.6) picture 
   <"2 q 
+---------+---------+---------+---------+---------+---------+ 
|0 0 0 0 0|0 0 1 0 0|0 1 1 1 0|0 1 0 1 0|0 0 1 0 0|0 0 0 1 0| 
|0 1 1 1 0|0 1 1 1 0|0 1 1 1 0|0 1 0 0 1|0 0 0 1 1|0 0 0 1 0| 
|0 0 1 0 0|0 0 0 0 0|0 0 0 1 0|0 0 0 1 0|0 0 0 0 0|0 0 0 0 0| 
|0 1 1 0 0|0 1 1 0 0|0 0 0 0 0|0 0 0 0 0|0 0 0 0 0|0 0 0 0 0| 
|0 0 0 0 0|0 0 0 0 0|0 0 0 0 0|0 0 0 0 0|0 0 0 0 0|0 0 0 0 0| 
+---------+---------+---------+---------+---------+---------+  

 



20 New Model Computer 
First published in Vector, 15, 4, (April 1999), 106-112. 

 

Donald Knuth began writing his series called The Art of Computer 
Programming in 1962, and devised a mythical computer called 
MIX with which to illustrate computer language programs, and as 
a machine to be used for exercises. Half a lifetime has gone by 
since then – half a human lifetime, three or four computer 
lifetimes. His MIX design is now obsolete. A new machine, called 
MMIX, will replace it in subsequent revisions of his volumes. A 
preliminary writeup of this new machine is given in Knuth’s web 
site. 

His home page address is http://sunburn.stanford.edu/~knuth 

Briefly, MMIX operates on 64-bit words. It has 256 general-
purpose 64-bit registers that can hold either fixed point or floating 
point numbers, or characters, or arbitrary binary data. Most 
instructions have the form OP X Y Z, where OP, X, Y, and Z are 
each 8-bit bytes. If OP is the ADD instruction, for example, the 
meaning is “X=Y+Z”, that is, “Set register X to the contents of 
register Y plus the contents of register Z.” There are 256 op codes 
that fall into a dozen or so categories. The virtual memory 
available to an application is 2^64 bytes. There are no input-
output instructions; files are handled as memory-mapped data. 
There is no operating system at the moment for MMIX. Knuth 
writes, “Whenever I have been asked if I will be writing a book 
about operating systems, my reply has always been ‘Nix.’ 
Therefore the name of MMIX’s operating system, NNIX, should 
come as no surprise.” 

The purpose of this column is to discuss a few J-related aspects of 
this machine. I am attempting just now to write a J model of it. 
Time will tell if and how well I do this.  

On this machine numbers are 64 bits long, though the design 
tolerates shorter numbers. For floating point numbers it uses the 
IEEE/ANSI standard 64-bit form, and accommodates the 32-bit 
forms only to transform them to the 64-bit form in computations. 
More interestingly, integer numbers are also 64 bits long. Thus 
an unsigned integer can take on any value from zero through 
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18,446,744,073,709,551,615, or approximately 1.8e19.  Signed 
integers range between -9,223,372,036,854,775,808 and 
9,223,372,036,854,775,807. One of the reasons I chose J as 
simulation language is its extended integers, which allow me to 
use these large numbers directly, with the least amount of fuss: an 
occasional terminal ‘x’ on a number, or ‘x:’ preceding a number.  

Many years ago I heard Luther Woodrum, the one who gave APL 
a good grade (he designed and implemented the grade primitives 
in APL\360) ask, “When will computer designers put in a 
maximum instruction?” In almost all computers, finding the 
maximum of two numbers involves a branch instruction. 
Something like this: 

condition is x is less than y 
branch to Label if condition is true 
maximum is x 
branch to exit 
Label: maximum is y 
exit: 

One of the great motivations of computer designers is to reduce 
the number of branches required by programs executing at the 
machine level. Branches really slow things down. I recently 
attended, along with Larry Breed (the key designer and 
implemetor of APL\360), a talk Knuth gave on MMIX. I had read 
the preliminary MMIX writeup and hadn’t found a maximum 
instruction, so after the lecture, in the question period, I asked 
how one found a maximum on MMIX. Knuth fumbled a bit, and 
gave an explanation which I didn’t hear very well. Larry, however 
seemed to understand and accept it, so I didn’t pursue the issue 
then, but the next day I phoned Larry and asked him for more. He 
explained that there was an identity that could be used to obtain 
maximum at the machine level without a branch, namely: 

a max b  is  b + 0 max a - b 

I said to Larry that that looked a bit circular, didn’t it, defining 
maximum in terms of itself? Larry assured me that the circularity 
is only apparent. He said also that, before retiring from IBM a few 
years ago, he had been instrumental in getting the architects of an 
IBM computer (I think the RS6000) to add a “difference or zero” 
instruction, primarily to handle maximum, and that now Knuth 
had devised a similar feature for MMIX. It’s called ‘zero or set if 
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negative’, written ZSNI rX, rY, Z, which acts as follows:  
If register Y is negative, register X is set to Z, otherwise nothing 
happens. To see how this works in finding maximum, look at the 
three cases below. The two values are in A and B and the result is 
to appear in B. 

             case 1        case 2        case 3 
           A=8   B=3     A=3   B=8     A=3   B=3 
SUB  A,A,B   5     3      -5     8       0     3  A=A-B 
ZSNI A,A,0   5     3       0     8       0     3  A=0 max A 
ADD  B,A,B   5     8       0     8       0     3  B=A+B 

Somewhere below the machine instruction level there is a branch, 
but the machine is happy nevertheless, because the three 
instructions above execute very rapidly, and in a pipelined 
machine the pipeline is undisturbed, since no instruction-level 
branch is needed.  

The next thing I’d like to mention is exemplified by a frustrating 
aspect of IEEE floating point as implemented by two different 
systems: the little-endian and the big-endian school. In the little-
endian implementations the bytes are numbered from left to right, 
7 through 0, and the bytes in the big-endian school are numbered 
0 through 7. This leads to strange things like, in J, looking at the 
value of a floating point number on a Macintosh and on an Intel 
machine gives two different pictures, one reversed from the other. 
Another bit of explanation I need to give you is that Knuth uses 
the prefix # in front of a number expressed in hexadecimal. One of 
the ‘bit fiddling’ instructions is ‘multiple or’, denoted by MOR. 
The explanation given for it is: 

Suppose the 64 bits of registers Y and Z are indexed by pairs such 
that the bytes are numbered from 0 to 7 and the bits within the 
bytes also by 0 through 7; then the MOR operation replaces bit ij 
of register X by the bit  

y0jzi0 or y1jzi1 or  ...  or y7jz7i 

Thus, for example, if register Z contains #0102040810204080, MOR 
reverses the order of the bytes in register Y, converting between 
little-endian and big-endian addressing. 

What Knuth has designed, if the above is opaque to you, is a 
special case of the good old-fashioned ‘or dot and’ inner product. 



At Play With J 
 

144 

When I came to describing this instruction in my simulation, in 
addition to standard housekeeping, all I had to write was 

   U =. B +./ . *. A 

where B and A are 8-by-8 boolean matrices representing the 64 
bits in the two operands. 

If I get anywhere with this simulation, I’ll probably report on it in 
a future column. 



21 New Big Deal 
First published in Vector, 16, 1, (July 1999), 113-119.* 

 

Chris Burke was displeased, to begin with. He had tried J’s deal 
with a small left argument and a very large right argument, and 
this took a perceptibly long time. He tried it with a larger 
argument and was told he had run out of space. He tried it with a 
still larger argument, and was told he had exceeded deal’s limits. 
He wrote to Roger Hui about these distressing circumstances, 
showing him several examples: 

   (time=:6!:2) '1 ? 1e7'  NB. this takes too long 
0.93 
 
   1 ? 1e8 
|out of memory 
| 1 ?100000000 
 
   1 ? 1e9 
|limit error 
| 1 ?1000000000 

Roger’s first thought was how to get around this limitation. He 
said that if the left argument is much smaller than the right Chris 
would be better off just doing ?x$y ; because deal allocates a 
boolean vector of length y to compute unique answers in the 
result of x?y. Thus a very large y would give the results Chris 
noted. He forwarded Chris’s message to me, copying Chris, with 
the message “Perhaps Eugene can comment.” 

I checked the literature on my shelf but couldn’t find any 
worthwhile “selection without replacement” algorithms. I then 
remembered the very early days of APL\360, before deal was 
made a primitive – some time in 1966, perhaps. I had written a 
defined function to perform deal, using an algorithm that was 
quite fast. I remembered it vaguely, and thought that with it I 
might be able to do better with J. I wrote one, tried it out on a  

                                                      
* The original attribution read: “by Eugene McDonnell, with a major 
contribution from Roger Hui.” 
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dozen or so cases, then communicated it to Chris and Roger: 
deal =: dyad define 
NB. experimental deal 
NB. for small x. and very large y. 
count =: 0 
t =. i.0 
k =. 1.1 NB. adjust as you see fit 
NB. maybe make it a function of y. 
u =. >. k * x. 
whilst. (# t) < x. do. 
t =. . ? u # y. 
count =: count + 1 
end. 
x. {. t 
) 

As you can see, I was uncertain about the factor 1.1. I had put a 
counter in to see how often more than one execution of the whilst 
section was needed. In the few dozen cases I tried, there were 
none. Happily, the timings showed a large improvement over 
current deal for Chris’s cases: the cases that were slow were much 
faster, and the range of the right argument was significantly 
extended. Here are the timings I experienced: 

   time '1 ? 1e7' 
4.07 
   100 time '1 deal 1e7' 
0 
   1000 time '1 deal 1e7' 
0.00044 
   1000 time '1 deal 1e8' 
0.00044 
   1000 time '1 deal 1e9' 
0.00044 
   1000 time '100 deal 1e7' 
0.00082 
   count 
1 
   1000 time '100 deal 1e8' 
0.00076 
   count 
1 
   1000 time '100 deal 1e9' 
0.00083 
   count 
1 
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   ts=: 6!:2 , 7!:2@] NB. time and space 
   100 ts '1?1e7' 
0 2240 
   100 ts '1?1e8' 
0 2240 
   100 ts '1?1e9' 
0.0005 2240 
   100 ts '100?1e7' 
0.0005 4288 
   100 ts '100?1e8' 
0.0005 4288 
   100 ts '100?1e9' 
0.0005 4288 

Roger thought this was neat. He implemented my algorithm, 
invoked when x<0.01*y. 

deal =: dyad define 
u =: >. 1.1 * x. 
while. x.># t=. . ? u # y. do. end. 
x. {. t 
) 

His C implementation looked like this: 
static A bigdeal(m,n)I m,n;{A t,x,y; 
 RZ(x=sc((I)floor(1.11*m))); 
 RZ(y=sc(n)); 
 do{RZ(t=nub(roll(reshape(x,y))));}while(m>AN(t)); 
 R vec(INT,m,AV(t)); 
} /* E.E. McDonnell circa 1966, small m and large 
n */ 

But he worried that this would run into the birthday problem, 
which gets its name from its most celebrated instance, that the 
odds are in your favour if you bet that in a group of 23 or more 
people at least two of them will have the same birthday. The 
greater the number of people, of course, the higher the probability 
that this will occur. With more than 365 people, the probability is 
certain, or 1, since the pigeonhole principle dictates that if you 
have x pigeonholes and y pigeons, with x less than y, at least one 
of the pigeonholes will have more than one pigeon in it. What 
Roger wanted to know was, what is the value of x as a function of 
y where the probability of a duplicate appearing was 0.5. If he had 
this information, he could make the multiplier more accurate. 
Perhaps 1.11 wasn’t good enough. 
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I wrote the following: 
Hui_test =: dyad define 
tests =: 0 
successes =: 0 
whilst. 1000 > tests =. >: tests do. 
successes =: successes + *./ :?x.$y. 
end. 
<. 100 * 0.001 * successes 
) 

I ran this test for y in all of the hundreds, thousands, ten 
thousands, hundred thousands, millions, and 10,000,000 and 
20,000,000. To make it easier to digest I’ll only show the results for 
y=:10 2 3 4 5 6 7. The other results are consistent with these. 

       y    x 
     100   12 
    1000   37 
   10000  116 
  100000  370 
 1000000 1180 
10000000 3740 

I thought this looked roughly like a square root relationship so 
tried a few manoeuvres: 

   %:y 
10 31.6228 100 316.228 1000 3162.28 
   %:1.4*y 
11.8322 37.4166 118.322 374.166 1183.22 3741.66 

This was quite a good fit, and shows: 
   y = (x 2) % 1.4 
   x = %: 1.4 * y 

to a close approximation. I communicated these results to Roger. 
He studied this and was able to apply some more theory to it, and 
wrote back to me: in choosing m items from a universe of n items, 
the probability of all the m items distinct is (*/n-i.m) % (n m). 
The numerator is the number of ways of choosing m distinct items; 
the denominator is the number of ways of choosing m items. Thus: 

(*/n-i.m) % (n m)                      (a) 
(*/n-i.m) % (*/m$n) 
*/ (n-i.m) % (m$n) 
*/ (n-i.m) % n 
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f=: [: */ ] %  i.@[ -  ] 
 
   22 23 f"0 ] 365 NB. the classic birthday problem 
0.524305 0.492703 

The first m for which m f n is less than 0.5, is: 
   1 + (0.5 > */\ n %  n - i.n) i. 1 
   f1=: >: @ (i.&1) @ (0.5&>) @ (*/\) @ ([ %  [ - 
i.) 
   f1 365 
23 
   n=: , (,10 1 2 3 4 5)*/1 2 4 8 
   m=: f1"0 n 
   n,.m ,. %: 1.4*n 
    10    5 3.74166 
    20    6  5.2915 
    40    8 7.48331 
    80   11  10.583 
   100   13 11.8322 
   200   17 16.7332 
   400   24 23.6643 
   800   34 33.4664 
  1000   38 37.4166 
  2000   53  52.915 
  4000   75 74.8331 
  8000  106  105.83 
 10000  119 118.322 
 20000  167 167.332 
 40000  236 236.643 
 80000  334 334.664 
100000  373 374.166 
200000  527  529.15 
400000  745 748.331 
800000 1054  1058.3 

For extremely large values of n, Roger saw that the function f1 is 
impractical to compute, and he concluded that a method based on 
root finding on the original function f, using my approximation 
of m=: %: 1.4*n as an initial guess, would be more suitable. 

1e7 3724 
1e8 11775 
1e9 37234 
2e9 52656 
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The end result was that Roger found that the rule I had originally 
suggested of switching to the “roll” algorithm for m?n when 
m<0.01*n does run into the birthday problem, and he replaced it 
with the more accurate rule I had found following his suggestion. 
There the matter rests, with one small postscript. As I studied 
Roger’s mathematics, particularly the phrase (*/n-i.m) in line (a) 
above, I recalled J's “falling factorial” function. The J Dictionary 
defines this as follows: 

The fit conjunction applies to  to yield a stope defined as follows: 
x!.k n is */x + k*i. n. In particular, !._1 is the falling 
factorial function. 

Let me elaborate on this. Think of the caret ( ) as being defined in 
the first instance as denoting a function of three arguments: a 
base, a count, and a step. Then caret (base, count, step) is the 
product over base + step * integers count. For example,  

'base count step' =. 3 5 7 
   i. count 
0 1 2 3 4 
   step * i. count 
0 7 14 21 28 
   base + step * i. count 
3 10 17 24 31 
   */ base + step * i. count 
379440 
 
caret =: monad define 
NB. general caret function 
NB. y. is a list of three values: 
NB.  base 
NB.  count 
NB.  step 
'base count factor' =. y. 
*/ base + factor * i. step 
) 
   caret(3 5 7) 
379440 

This generality hides the fact that there are really just three 
variations of significant interest, steps having values _1, 0, and 1. 
These three provide falling factorials, steady factorials (powers) 
and rising factorials. Each of these has to do with a product over 
count number of values, beginning with base, and continuing 
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with values increasing by step. See what results come with a base 
of 5 and a count of 3, with each of the three significant step sizes: 

   caret 5 3 _1 
60 
   5 * 4 * 3 
60 
   caret 5 3 0 
125 
   5 * 5 * 5 
125 
   5  3 
125 
   caret 5 3 1 
210 
   5 * 6 * 7 
210 

The case with step zero is the default case of caret, and is the 
power function. We can use the falling and steady factorial cases 
to write a more compact version of Hui’s function f: 

probdupes =: dyad define 
NB. Probability of duplicates when drawing with  
NB. replacement from among the first count 
integers 
base =. x. 
count =. y. 
(base !._1 count) % (base !.0 count) 
) 
 
NB. simplified version of probdupe 
pd =: !._1 %  
 
NB. version exploiting family resemblances 
pdx =: [: %/ !._1 0 
 
   365 probdupes 23  
0.492703 
   365 pd 23 
0.492703 
   365 pdx 23 
0.492703 

These functions fail when the values of the falling factorial get 
very large, causing its value to exceed the maximum real value, 
and thus to be represented by machine infinity. When this happ-
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ens, the steady factorial (power) value will already be machine 
infinity, and the quotient of two infinities is Not a Number, or 
NaN. To get around this problem, use extended integers as 
arguments, and extended precision inverse on the result. When 
the result is smaller than the smallest nonzero number, a result of 
zero is forced: 
   365 pd 200               NB. result is NaN, from _ % _ 
_. 
   x: :_1 [ 365x pd 200x    NB. result of zero is forced     
0 



22 We’ll Cross That Bridge When We Come  
To It 
First published in Vector, 16, 3, (January 2000), 126-130. 

 

Bjorn Helgason, from Iceland, submitted this problem to the 
Internet J Forum: 

Four people, A, B, C, and D, come to a bridge at night, with only a 
flashlight to guide them. The time each one takes to cross the 
bridge is: A in 1 minute, B in 2 minutes, C in 5 minutes, and D in 
10 minutes. The bridge will only support two of them at a time, 
and the time to cross is, of course, that of the slower walker. The 
flashlight must be carried on any crossing. They want to get 
across the bridge as quickly as possible. Since they have a 
palmtop computer with J installed, they write a program that tells 
them what the minimum time is, and in what order they should 
go forth and back over the bridge. Your problem is to write an 
equivalent program. To help you get started, the program found 
that the minimum time is seventeen minutes.  

The first response to Bjorn’s problem said that there was no need 
for a program to be written, because it could be solved in one’s 
head; and complained, furthermore, that seventeen minutes was 
impossible; it was demonstrable that the minimum time was 
nineteen minutes: the fastest one, A, going across first with B and 
the flashlight, leaving B on the other side, coming back with the 
flashlight to go across with C, then coming back with the 
flashlight again to go across with D: two plus one plus five plus 
one plus ten, making nineteen, and that the order was 
unimportant so long as A was the constant companion. It couldn’t 
be done more quickly, since the fastest man was always the one to 
go back. However, Helgason kept insisting that seventeen was the 
minimum, and offered to send a private message to the 
complainer giving such a solution. 

After a fair amount of back and forth between Helgason and the 
disbeliever, the issue was resolved when Kirk Iverson finally 
submitted a solution from Toronto which gave the seventeen-
minute solution for the problem. He admitted that he wasn’t sure 
whether the program would give the minimum answer for all 
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possible combinations of number of people per crossing and times 
for each to cross, but it would handle many cases. [Yes, Kirk is 
related to Ken; he’s a nephew.] The disbeliever was converted, of 
course, and made a handsome apology. 

See whether you can arrive at a solution, either to this specific 
problem, or to the more general one solved by Kirk. When you’re 
satisfied that you either can solve the problem, or have thrown up 
your hands in frustration, or else are just too lazy to give it any 
more thought, you can go on to read Kirk Iverson’s solution. From 
here on, it is his text, slightly amended, with additional comments 
by me shown in square brackets. 

First, the “compiled” code, in case anyone wants to run this 
without seeing what it does:  

NB. ---- copy into ijs window and execute -------------------- 
".(noun define)-.LF 
bridge=:(<./@(>@(2&{))({.@],(1&{@],&.><@[),(2&{@]-.&.><@[),3&} 
.@],<@[)]) :(*@#@(>@(1&{)))@(((((>@{.@[-.]);>@{:@[)}.@(([-.[-. 
])/))@(>@(0&{)(([<.#@]){.])"1(,:|.)@(/: )@(>@(1&{)))([>@{ (>@( 
2&{)@]<&(<./)>@{:@[)+.#@(>@{:@[)=#@(>@(1&{))@])])({.@],(1&{@]- 
.&.><@[),(2&{@],&.><@[),3&}.@],<@[)]) :(*@#@(>@(1&{))) :_&.(({ 
.;}.;''"_) :.((+/@:(>./@>);])@(3&}.)))@,                       
) 
NB. ----------------------------------------------------------  

[I speculate that Kirk first wrote a series of verbs to accomplish 
the objective, then obtained this unreadable mess by applying the 
fix adverb (f.) to the main verb. Doing this replaced all the sub-
ordinate verbs by their definitions, yielding the aforesaid mess. 
He probably then obtained the character string corresponding to 
the fixed function, using the 5!:5 form of the foreign conjunction, 
and displayed this in a field 62 characters wide, giving the six 
lines shown above, and copied them. The line following the first 
NB. line contains three items that are defined in a script loaded 
when a J session starts: the variable noun has the value 0; the 
adverb define has the value : 0 (explicit definition script form) and 
the variable LF is the linefeed character, defined as 0{a. .The 
(noun define) in the first line after the comment line (beginning 
with NB.) permits entry of multiple lines of text. Kirk pasted in 
the six lines, then typed a right parenthesis on the next line, and 
hit enter, thus causing entry to terminate, and the (noun define) 
was replaced by the six lines shown. The -.LF removed the 
linefeeds from this text, and the ". executed the line, causing a 
verb named bridge to be defined.  
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I copied the bridge verb, and pasted it into a J session, and it 
worked as advertised. 

The left argument to bridge is the maximum number of people 
who can walk on the bridge at the same time; the right argument 
is a list of the length of time each person needs to cross. 

The result is a boxed list of total elapsed time, followed by all 
moves: 

   2 bridge 1 2 4 
+-+---+-+---+ 
|7|1 2|1|4 1| 
+-+---+-+---+ 

The result signifies 7 minutes total time; 1 and 2 cross; 1 returns; 4 
and 1 cross. 

[This is your last chance to try figuring out how to solve our 
problem, because the solution Kirk obtained is now going to be 
shown.] 
NB. ----------------------------------------------------------------------- 
NB. Crossing the bridge. 
 
NB.  Rules 
NB.     Move all people from one side of bridge to other. 
NB.     Each person has an individual time it takes to cross. 
NB.     At most MAXLOAD number of people on bridge. 
NB.     Torch must always be with a group on the bridge. 
NB.     Speed of a group is the speed of the slowest member. 
NB.  Strategy 
NB.     Overall strategy is to pick a good group to go over, and 
NB.     then have the fastest person to return with the torch.  Wash, 
NB.     rinse, repeat.  I call the guy to return the torch the "runner". 
NB. 
NB.     We attempt to move the slowest people together as a group, 
NB.     rather than split them up to slow down all groups.  We move 
NB.     the slowest ones over whenever there is a suitable runner 
NB.     to return, i.e., none of this slow group will have to return. 
NB. 
NB.     If there is no good runner, we select the fastest to go over 
NB.     and act as runners.  We only include enough runners which are 
NB.     necessary to bring in the rest of the people. 
NB.  Notes 
NB.     Iteration is done by repeatedly applying a function to 
NB.     the full set of data until it results in everyone moved. 
NB.     Data is   maxload;unmoved;moved;move0;move1;move2;... 
NB. Verbs to access pieces from the data 
 
maxload=: >@(0&{)   NB. maximum number of people on the bridge 
unmoved=: >@(1&{)   NB. people not yet moved 
moved=:   >@(2&{)   NB. people already moved 
moves=:   3&}.      NB. record of all moves 
more=: *@#@unmoved  NB. are there more to move? 
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NB. move/unmove  move people across bridge 
NB. x. is list of people to move; y. is data 
move=:   {.@] ,(1&{@] less each <@[),(2&{@]    , each <@[), 3&}.@] , <@[ 
unmove=: {.@] ,(1&{@]    , each <@[),(2&{@] less each <@[), 3&}.@] , <@[ 
NB. Strict <less>   Similar to -. but removes from x only the number 
NB. of matching items found in y.  All items in y are expected to be 
NB. found in x, and the items in the result are in the same order as 
NB. they appear in x.  Universe is .x, and is catenated in front of 
NB. y, therefore count (#/. ) of each returns the counts of the 
NB. respective items.  The difference (incremented to compensate for 
NB. the catenation of the universe onto y) is used to copy items from 
NB. the universe. 
 less=: universe #  [ >:@-&count universe , ] 
  universe=: .@[ 
  count=: #/.  
NB. Pick the group to go across.  Runners are the fast group to 
NB. shuttle the rest over; waddlers are the slower group put together 
NB. to capitalize on the slowest of the bunch. 
groups=: sort@unmoved (runners ; waddlers) ] 
 runners=: [ maxtake  required <. maxload@] 
  required=: 1: >:@>. #@[ <:@>.@% <:@maxload@] 
 waddlers=: maxload@] maxtake |.@[ 
 
pickslow=: nogoodrunner +. lastgroup    NB. 0-runners; 1-waddlers 
 nogoodrunner=: moved@] <:&fastest slower 
 lastgroup=: #@slower = #@unmoved@] 
NB. fastest/slowest in a group 
fastest=: <./ 
slowest=: >./ 
slower=: >@{:@[ 
maxtake=: ([ <. #@]) {. ]   NB. take, but don't overtake 
 
pick=: groups (pickslow >@{ [) ] 
NB. forward - pick group to go and move them 
NB. return - pick fastest runner and move back, if more to move 
forward=: pick move ] 
return=: (fastest@moved unmove ]) :more 
NB. iterate repeats the forward/return action until there are no more. 
iterate=: return@forward :more :_ 
NB. assemble the argument into the data structure; inverse 
NB. computes total trip time from moves, and returns that along 
NB. with the moves. 
assemble=: ({. ; }. ; ''"_) :. ((+/@:(slowest@>) ; ])@moves) 
NB.  maxload play speeds 
bridge=: (iterate&.assemble)@, 
 
NB. ----------------------------------------------------------------------- 
 

 [And now for our problem:] 
   2 bridge 1 2 5 10 
+--+---+-+----+-+---+ 
|17|1 2|1|10 5|2|2 1| 
+--+---+-+----+-+---+ 

The total time is 2+1+10+2+2, or 17, as was required. An 
alternative would have 2 return the first time, and 1 the second 
time, and this also is minimum. 
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Kirk’s J implementation consists of two dozen or so verbs, all in 
tacit form, so this is a functional programming solution. The 
iterate verb continues until there is no more to be done, using 
power to the limit, denoted by infinity ( :_). 

As this article goes to press, it is recognized that Kirk’s solution is 
not guaranteed to give the minimum result for all cases; for 
example, it fails for 1 10 11 12; but it was the first solution that 
gave the minimum result for the given case 1 2 5 10. 





23 An Open and Shut Case 
First published in Vector, 16, 4, (April 2000), 99-106. 

 

My 11-year old granddaughter, Amy Powers, brought home a 
problem the other day which her mathematics teacher had given 
to her 6th-year class. I thought it pedagogically fruitful, and 
advanced beyond any mathematics I had learned at her age. It 
demonstrates how much teaching has changed for the better in 
the more than sixty years since I was in the 6th year. A broader 
variety of subject matter beyond the elementary algebra I was 
taught and a better method of teaching mathematical topics have 
made the subject more interesting and, I am convinced, easier to 
learn.  

Some background: in many schools in the United States, lockers 
are provided in which the students may store their textbooks and 
other belongings. These are usually placed in long rows, and 
some inspired teacher was inspired to create the Locker Problem to 
give a concrete base on which to help teach some facts about 
divisors. 

The Locker Problem 
In a high school (years 9 to 12) there are 1,000 lockers placed next 
to each other along a hall. During winter break, the custodians at 
the school clean the lockers and paint fresh numbers on each 
locker door. The lockers are numbered from 1 to 1,000. When the 
1,000 students arrive back from their vacation, they decide to 
celebrate returning to school by working off some energy. Here is 
what they do: Student 1 runs down the row of lockers and inverts 
every door. (To invert a door means to open it if it was closed, and 
to close it if it was open.) Student 2 runs down the row of lockers 
and inverts doors 2, 4, 6, 8, and so on to the end of the line. Next 
student 3 inverts the doors of lockers 3, 6, 9, 12, and so on to the 
end of the line. This pattern continues until each of the 1,000 
students has had a turn to run down the hall. 

When the students are finished, which doors are open? 
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Amy set about answering this question by making a table: 
                     1 1 1 1 1 1 1 1 
   1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 
 1 O O O O O O O O O O O O O O O O O 
 2   C   C   C   C   C   C   C   C 
 3     C     O     C     O     C 
 4       O       O       C       O 
 5         C         O         O 
 6           C           O 
 7             C             O 
 8               C               C 
 9                 O 
10                   C 
11                     C 
12                       C 
13                         C 
14                           C 
15                             C 
16                               O 
17                                 C 

The first row of all Os shows that after student 1 has finished, all 
the doors are open. The next row, for student 2, shows that the 
even numbered doors are closed. The third row, for student 3, 
shows that every third door has changed its state: if it had been 
open, it is now closed, and if closed, is now open. I’ve added row 
and column stubs, and have darkened the Os along the diagonal, 
and the corresponding row and column numbers. Because doors 
1, 4, 9, and 16 were open, Amy guessed that the doors that were 
open were those of students whose numbers were squares. Was 
she right?  

The next step might be difficult for a sixth-grade student to have 
arrived at. It is to count the number of students who inverted each 
door. Each of the Os and Cs in Amy’s table is a divisor of the 
number it lies beneath. For example, the Os and Cs under 12 are 
inversions by the six students numbered 1, 2, 3, 4, 6, and 12; thus, 
the number of divisors of 12 is six. The number of divisors of a 
number varies irregularly. Counting the divisors of our seventeen 
numbers gives the table: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
1 2 2 3 2 4 2 4 3  4  2  6  2  4  4  5  2 

At first glance, there doesn’t seem to be any pattern to the number 
of divisors, except that there is a tendency for the number to incr-
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ease; however, I’ve put in bold type those integers and their div-
isor counts where the count is odd, since only those doors will be 
open that have been inverted by an odd number of students. In 
Amy’s chart the doors that are open are numbers 1, 4, 9, and 16. 
Her conjecture was that the doors that are open are those whose 
numbers are squares. I made the further conjecture that squares 
and only squares have an odd number of divisors. Both conject-
ures are true. If a number is a square, it has an odd number of div-
isors; conversely, if a number has an odd number of divisors, it is 
a square. How can we show this? 

Just studying the number of divisors doesn’t reveal any pattern. I 
shall make a great leap here, and go immediately to a description 
of the Prime Factors Exponent Numbers (PFENs). Kenneth Iver-
son’s book Algebra, an Algorithmic Treatment (Addison-Wesley, 
Menlo Park, California, 1972), gives a description of this system in 
section 16.2. In this number system a positive integer is represent-
ed by a list of non-negative integers, where the integer in column i 
represents the exponent to which prime i is to be raised, going 
from left to right. The primes corresponding to indices 0 1 2 3 4 5 
are 2 3 5 7 11 13. For example, if, in the PFEN for a number, col-
umn 3 has the value 5, the third prime, 7, is to be raised to the 5th 
power, and so 0 0 0 5 represents 16807; the decimal integer corres-
ponding to the PFEN is the product of the results of raising each 
prime to the corresponding power. The PFEN forms for the first 
17 positive integers are: 

 n   PFEN n  
 1   
 2   1 
 3   0 1 
 3   2 
 5   0 0 1 
 6   1 1 
 7   0 0 0 1 
 8   3 
 9   0 2 
10   1 0 1 
11   0 0 0 0 1 
12   2 1 
13   0 0 0 0 0 1 
14   1 0 0 1 
15   0 1 1 
16   4 
17   0 0 0 0 0 0 1 
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The PFEN for 12 is 2 1, signifying that the decimal number corr-
esponding can be obtained by */2 3 2 1, that is, */4 3, or 12. 
The PFEN for 1 is the empty list, since 1 has no prime 
components; its value is the product over the empty list, or 1. A J 
verb for producing the PFEN corresponding to a decimal number 
is given by: 

   pfd =: _&q:    NB. PFEN from decimal 
   pfd 300 
2 1 2 
   pfd 16807 
0 0 0 5 

The first example shows a number having prime factors 2, 3, and 5 
with exponents 2, 1, and 2. The second example shows a number 
having prime factors 2, 3, 5, and 7 with exponents 0, 0, 0, and 5. 
Since any integer to the zero power is 1, any number of zero 
exponents do not alter the value of the product.  

I have to be reminded from time to time that J has built-in 
inverses for a great many verbs; I was plodding through defining 
dfp, the verb inverse to pfd, the hard way late one night, and 
woke up the next morning to the realization that all I needed was 
the inverse adverb ( :_1). 

   dfp =: pfd :_1   NB. decimal from PFEN 
   dfp 2 1 2 
300 
   dfp 0 0 0 5 
16807 

There’s no need for the user to know how an inverse works − it is 
enough merely to accept the presence of an inverse as a blessing. 
If you do want to know, however, you can see what the inverse 
looks like in detail by using the basic conjunction b. as follows: 

   pfd b. _1 
(p:@i.@# */ .  ])"1 :.(_&q:) 

Studying this shows that the inverse function works by taking the 
inner product, with product (*/) as the left verb and power ( ) as 
the right verb, that is (*/ . ), applied between a list of primes 
(p:@i.@#) on the left and a conforming list of exponents (])on the 
right. 

The PFEN numbers make the calculation of the product of two 
numbers easy. To multiply two numbers, add their PFENs.  
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Thus: 
   72 * 90 
6480 
   pfd 72 90 
3 2 0 
1 2 1 
   3 2 0 + 1 2 1 
4 4 1 
   dfp 4 4 1 
6480 

A verb to multiply PFENs can be defined:  
   multp=:+/@,: 
   3 2 0 multp 1 2 1 
4 4 1 

We’re almost at the point of being able to show why squares have 
an odd number of divisors. One more detail is wanting, and that 
is, how to determine the number of divisors of a number. We 
could count the number of integers not greater than a given 
integer that have a give a residue of zero for that integer. To find 
that there are four divisors of eight, for example, one could write:  

   i =: >:@i. 
   i 8 
1 2 3 4 5 6 7 8 
   (i 8)|8 
0 0 2 0 3 2 1 0 
   0=(i 8)|8 
1 1 0 1 0 0 0 1 
   +/0=(i 8)|8 
4 

This method becomes unwieldy for large integers. A more 
compact method would be welcome. 

If a number n has prime factors with exponents e, any number 
which is a divisor of n will have the same prime factors, with exp-
onents which are less than or equal to e. Here I use q: with negat-
ive infinity as left argument. This gives another representation of 
an integer, where only the primes which have an exponent greater 
than zero are given, together with their positive exponents: 

   pfd2 =: __&q: 
   pfd2 666 
2 3 37 
1 2  1 
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This signifies that 666 is composed of (2 1)*(3 2)*(37 1), or 
2*9*37. 

The inverse is given by: 
   dfp2 =: pfd2 :_1 
   dfp2 pfd2 666 
666 

We can enumerate the divisors of 666 by taking all combinations 
of 1 2 with 1 3 9 with 1 37. A divisor will thus be one of the 
numbers generated as follows: 

   (2 i.2)*/(3 i.3)*/(37 i.2)  
 1  37 
 3 111 
 9 333 
 2  74 
 6 222 
18 666 

This array shows all the divisors. There are twelve altogether, and 
the twelve comes from the product over one plus the exponent of 
each prime: */ 1 + 1 2 1, or */2 3 2, or 12. Thus we can 
compute the number of divisors of a number by taking its PFEN, 
adding one to it, and taking the product: 

   */ >: 1 2 1 
12 

All the powers that each prime in the composition of the number 
can take will be given by a table such as the one below, essentially 
all the numbers in the radix given by 1 + PFEN n : 

   pfx =: ] #: [: i. */ 
   pfx 1 + 1 2 1 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
0 2 0 
0 2 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 
1 2 0 
1 2 1 
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   2 3 37 "1 pfx 1 + 1 2 1 
1 1  1 
1 1 37 
1 3  1 
1 3 37 
1 9  1 
1 9 37 
2 1  1 
2 1 37 
2 3  1 
2 3 37 
2 9  1 
2 9 37 
   */ |: 2 3 37 "1 pfx 1 + 1 2 1 
1 37 3 111 9 333 2 74 6 222 18 666 

But we’ve gone a step too far; we don’t need or want the values of 
the divisors, merely how many divisors there are. In reaching this 
point, however, we’ve found out how to arrive at this number: 
take the product over one plus the PFEN. We define the square 
verb squrp2 and the number of divisors verb nd2: 

   squrp2 =: 1 2 * ] 
   pfd2 666 
2 3 37 
1 2  1 
   squrp2 pfd2 666 
2 3 37 
2 4  2 
   dfp2 squrp2 pfd2 666 
443556 
   *: 666 
443556 
   nd2 =: 13 : '*/ >: {: y.' 
   nd2 
[: */ [: >: {: 
   nd2 pfd2 666 
12 

We see that 666 has 12 divisors. How many does its square have?  
   nd2 squrp2 pfd2 666 
45 

So the square of 666 (443556) has an odd number of divisors. 
Perhaps now we can see why. If we take any number, having any 
arbitrary PFENa, consisting of some mixture of odd and even 
numbers (zero is even), and add it to itself, (thus producing a 
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square) we’ll obtain a PFENb in which all the numbers are even, 
since even plus even is even (2n+2n is 4n, an even number), and 
odd plus odd is even (2n+1 + 2n+1 is 4n+2, an even number), and 
it is the square of the number given by PFENa. If we take the 
PFEN of 443556, or 2 4 2, and add 1 to each exponent, giving 3 5 3, 
we have a list of all odd numbers; taking the product of this, to 
yield the number of divisors of the square number PFENb, gives 
45, an odd result (the only way a product can be odd is if all of the 
multiplicands are odd—any even multiplicand means the product 
will be even), so that the square PFENb has an odd number of 
divisors. This is a completely general result, and means that all 
square numbers, and only square numbers, have an odd number 
of divisors. 

Amy only tested the first dozen or so numbers. I wrote a set of J 
verbs to allow testing all thousand locker numbers: 
   i =: integers      =: [: >: i. NB. +ve integers thru y. 
   z =: gauge         =: = i  NB. gauge 4 is 0 0 0 1, etc. 
   c =: cycles        =: $ z  NB. recycle gauge y. times 
   t =: table         =: c"0 I    NB. make square table 
   tk=:table 1000 
   $tk 
1000 1000 
   m19=: +/{.\:     NB. locate 1s in Boolean list 
   dc=:+/tk 
   $dc 
1000 
   17{.dc 
1 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5 2 
   p1=:>: m19 2|dc  NB. lockers open should all be squares 
   $p1 
31 
   p1 
1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 
324 361 400 441 484 529 576 625 676 729 784 841 900 961 
   sqdc=: nd2"2 pfd2"0 p1  NB. squares divisor count;  
                           NB.      all should be odd 
   sqdc 
1 3 3 5 3 9 3 7 5 9 3 15 3 9 9 9 3 15 3 15 9 9 3 21 5 9 7 
15 3 27 3 
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Here are the rest of the questions Amy had to answer. See if you 
can answer them. 
 
A). What do you notice about the lockers that were touched by exactly 
two students? (Try m19 >: 2=dc) 

B). What do you notice about the lockers that were touched by exactly 
three students? 

C). What do you notice about the lockers that were touched by exactly 
four students? 

D). What was the first locker touched by both student 6 and student 8? 

E). What do you notice about the student numbers of the students that 
touched both locker 24 and locker 36? 

F). Which students touched both locker 100 and 120? What do you notice 
about their student numbers? 





24 Blists in OLEIS 
First published in Vector, 17, 1, (July 2000), 110-120. 

 

This article discusses a kind of list I call a blist. The first part 
defines a blist, and covers material that is well known in 
combinatorial circles, and reported on by me in an earlier article 
[1], and also gives an actual use of J’s Weighted Taylor Coeffic-
ients adverb t:. The second part breaks new ground, providing a 
tabulation that hasn’t been seen before. 

Part 1: What is a blist? 
A basic list, or blist, is a list of length n with at least one of each of 
the items of i. k, where 1 <: k and k <: n. For example, 0 2 1 
0 is a blist, since it has at least one each of i.3, but 1 0 1 3 is 
not, since it has a three but no two. There is a many-to-one 
correspondence between the infinite number of arrays of n items 
and the corresponding finite number of blists of length n. The 
finitude of the number of blists of length n comes from the 
finitude of their permitted items. Since J’s grade functions are 
omnivorous, the grade of any rank array can be found, and any 
array can be sorted, whether scalar or structured, boolean, integer, 
real, complex, literal, or boxed, and thus the blist of any array can 
be determined. The blist of an array can be determined by the 
function:  

   bl =: ] i.  [: /:  . 

This finds the indices of the items of the array in the sorted nub of 
the array. For example, given the list: 

   ] list =: ? 10 # 15 
7 12 0 0 7 10 0 5 1 6 

Its nub is 
   .list 
7 12 0 10 5 1 6 

and its ordered nub is 
   /: .list 
0 1 5 6 7 10 12 
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and its indices in the ordered nub, that is, its blist, are 
   list i.  /:  . list 
4 6 0 0 4 5 0 2 1 3 

and this has each of the values in i.7 at least once.  

A blist has the useful property that it has the same ordering 
relations as infinitely many other, more complex, lists and arrays, 
and thus can be substituted for those other lists and arrays in 
discussions of such properties. For example, an array and its blist 
have the same upgrade: 

   list 
7 12 0 0 7 10 0 5 1 6 
   bl list 
4 6 0 0 4 5 0 2 1 3 
   /: list 
2 3 6 8 7 9 0 4 5 1 
   /: bl list 
2 3 6 8 7 9 0 4 5 1 

Other common properties of arrays and their blists are the same, 
for example their cycle structure, the number of operations 
needed to sort them, and their number of runs (up or down).  

BLT is a brute-force function to give tables of all the blists of a 
given length. There is only one blist of length 1, since the only 
permitted item is 0. 

   BLT 1 
0 

The blists of length two are: 
   BLT 2 
0 0 
0 1 
1 0 

The blists of length three are: 
   BLT 3 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
0 1 2 
0 2 1 
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1 0 0 
1 0 1 
1 0 2 
1 1 0 
1 2 0 
2 0 1 
2 1 0 

The number of blists of the first three orders can be counted 
easily: 1, 3, and 13. On the other hand, the function BLT soon runs 
out of space on my computer, requiring 4*n*n n bytes to build 
the table from whose rows the blists are selected, and I can’t use 
BLT beyond n=7. The space in bytes required for the tables for the 
first few values is given by: 

   j=:13 : '4*y.*y. y.' 
   j 1 2 3 4 5 6 
4 32 324 4096 62500 1119744 

and for a few larger values: 
   ,.j 7 8 9 10 11 12x 
       23059204 
      536870912 
    13947137604 
   400000000000 
 12553713506884 
427972821516288 

Although it is difficult to determine the values of blists of length n 
for large n, the number of such blists is much easier to find. The 
answer to exercise 5.3.1-3 in Knuth’s Searching and Sorting volume 
gives a variety of ways for doing this. We can write a function F to 
give the number of blists of length n, based on Gross’s formula 
∑k≥1k

n/21 + k, n≥1. A version of Gross’s formula in J is easy to write: 

   Gross =: 13 : '+/(x. y.)%2 >:x.' 

The formula implies an infinite number of values of k are 
required, but in practice I find that using the first 101 positive 
integers suffices. 

   k=: >:i.101 
   F =: k&Gross 
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The number of possible blists for arrays of ranks 1 through 15 are: 
n  F n      n        F n       n              F n 
1    1      6       4683      11       1622632573 
2    3      7      47293      12      28091567595 
3   13      8     545835      13     526858348381 
4   75      9    7087261      14   10641342970443 
5  541     10  102247563      15  230283190977853 

The terminal digits of the values repeat in the pattern 1 3 3 5, so 
that if 4|n is 1 2 3 0, then 10|F n is 1 3 3 5, respectively, for 
positive n. This series is number A000670 in N. J. A. Sloane’s 
magnificent website, On-Line Encyclopedia of Integer Sequences 
(OLEIS):  http://www.research.att.com/~njas/sequences/ 

I shall be referring to Sloane’s OLEIS numbers frequently in what 
follows.  

This sequence of numbers arises naturally in a variety of areas, in 
addition to sorting, including trees with n+1 leaves, combination 
locks, compositions of numbers, and left arguments to APL’s 
transpose dyad, but it is the sorting topic that is most interesting. 
It allows one to say in exactly how many ways an arbitrary list of 
length n can be arranged. For example, three items A, B, and C of 
any value can be arranged in thirteen ways, depending on their 
size interrelationships, using the relations = and < and the 
convention that A=B<C means (A=B)*.(B<C). Next to each 
relation list I’ve placed the corresponding blist, to show the 
kinship of the two forms. 

   A=B=C  0 0 0 
   A=B<C  0 0 1 
   A=C<B  0 1 0 
   A<B=C  0 1 1 
   A<B<C  0 1 2 
   A<C<B  0 2 1 
   B=C<A  1 0 0 
   B<A=C  1 0 1 
   B<A<C  1 0 2 
   C<A=B  1 1 0 
   C<A<B  1 2 0 
   B<C<A  2 0 1 
   C<B<A  2 1 0 

Gross’s formula, even after increasing the number of terms in the 
left argument, begins to lose accuracy after length 14. To obtain 
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accurate values for Pn, the number of blists of length n, one can 
use the identity:  2Pn=∑k (k!n) * Pn-k  , for n> 0 . 

Instead of obtaining just one value, we obtain a list of all the 
values up to the one we’re seeking, given that the first value is 1, 
and that all successive values can be appended to this value by a 
sum of the products of the list and a conforming list of binomials. 
For example, assuming we have the list 1 1 3, we can get the next 
two longer lists by: 

   1 1 3 , +/ 1 1 3 * ((i.3)!3) 
1 1 3 13 
   1 1 3 13 , +/ 1 1 3 13 * ((i.4)!4) 
1 1 3 13 75 

The function LPA encapsulates this strategy: 
   LPA =: 13 : 'y.,+/y.*(i.!])#y.' 
   LPA 1 
1 1 
   LPA LPA 1 
1 1 3 
   LPA LPA LPA 1 
1 1 3 13 
   LPA :3[1 
1 1 3 13 

To produce the list of the first n terms, one would write LPA :n 1. 
Because the terms grow large quite rapidly, it is necessary to use 
extended arguments if terms of high degree are wanted. We can 
thus obtain arbitrarily large values. 

   LPA =: 13 : 'y.,+/y.*(i.!])#y.' 
   ,.28 29 30 31{LPA :31[1x 
     6297562064950066033518373935334635 
   263478385263023690020893329044576861 
 11403568794011880483742464196184901963 
510008036574269388430841024075918118973 

Approximate values can be obtained by the function L, built 
around the powers of the logarithm of 2 (this isn’t in Knuth, I 
found it accidentally by playing with the series): 

   L=: 13 : '(!y.)%+:( .2) >:y.' 
   L 8 
545834.99790748546 
   L 9 
7087261.0016229022 



At Play With J 
 

174 

Rounding to the nearest integer, this function will give accurate 
results up to 13,  

   <.0.5+L 13 
526858348381 

but is off by one for 14: 
   <.0.5+L 14 
10641342970444  

We know this can’t be right, since if 4|14 is 2, then 10| L 14 
must be 3, not 4. 

Another way to get the number of blists for a given n is to use its 
exponential generating function (egf). I look back wistfully on 
myself at the age of 19 learning the calculus necessary to 
understand exponential generating functions, but in the 55 years 
since the knowledge has somehow departed from me. Now I can’t 
tell you how to derive it, but will merely state it. If you have the 
necessary mathematical background to understand it (which I 
don’t any more), you can read the answer to exercise 7.44 in 
Knuth et al’s Concrete Mathematics. In common mathematical 
notation the egf for the number of blists is 1/(2-en), and the J 
version can be written directly from this: 

   paegf=: %@(2:- ) 

The values don’t seem to have much of a pattern: 
   paegf i.11 
1 _1.3922 _0.18556 _0.055293 _0.019012 _0.00683 
_0.0024911 _0.00091355 _0.00033569 _0.00012344 
_4.5404e_5 

However, if you apply J’s Weighted Taylor Coefficients adverb to 
it, it becomes a marvel: 

   (paegf t:) i.11 
1 1 3 13 75 541 4683 47293 545835 7087261 
102247563 

Lastly, and something else I discovered by playing with the series, 
if we divide the n-1th value by the nth, and multiply this by n, we 
get a number which more and more closely approaches the natur-
al log of 2.  
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   qq=:LPA :(20)1 
   (1+i.20) * ,.2 %/\qq 
                  1 
0.66666666666666663 
0.69230769230769229 
0.69333333333333336 
0.69316081330868762 
0.69314541960281872 
0.69314697735394248 
0.69314719649710999 
0.69314718337591907 
0.69314718043695578 
0.69314718052316582 
0.69314718056053715 
0.69314718056040159 
0.69314718055994917 
0.69314718055993996 
0.69314718055994518 
 0.6931471805599454 
0.69314718055994529 
0.69314718055994529 
0.69314718055994529 

Compare this with the machine-precision value of the logarithm 
of 2: 

   . 2 
0.69314718055994529 

Part 2: How many blists of length n begin with k? 
Inspecting the tables of blists of various lengths, I began to 
wonder how many of each table began with each possible 
number. I wrote this function to count how many times each 
leading digit appeared. 

   CL =: [: #/.  [: {."1 ] 

I began building an upper triangle matrix (analogous to the Pascal 
triangle), where an entry in row i, column j gives the number of 
blists of length j+1 that begin with integer i.  

   CL BLT 1 
1 
   CL BLT 2 
2 1 
   CL BLT 3 
6 5 2 
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   CL BLT 4 
26 25 18 6 
   CL BLT 5 
150 149 134 84 24 
   CL BLT 6 
1082 1081 1050 870 480 120 
   CL BLT 7 
9366 9365 9302 8700 6600 3240 720 

The last one took a looong time. With these I was able to create 
table t1: 

   t1 
1 2 6 26 150 1082 9366 
0 1 5 25 149 1081 9365 
0 0 2 18 134 1050 9302 
0 0 0  6  84  870 8700 
0 0 0  0  24  480 6600 
0 0 0  0   0  120 3240 
0 0 0  0   0    0  720 

Portions of this table appear in OLEIS. Its sum is A000670. The 
first row is Series A000629. The second row is one less than the 
first row, and is Series A002050. The third row is the first row 
minus 2n, and is twice Series A002051. The lowest counterdiagon-
al is !n. The penultimate counterdiagonal is A038720. I massaged 
the numbers in various ways, the fruitful one being to take its first 
difference, providing a new last row of all zeros to preserve the 
data: 

   ] t2=:2-/\t1,0 
1 1 1  1  1   1    1 
0 1 3  7 15  31   63 
0 0 2 12 50 180  602 
0 0 0  6 60 390 2100 
0 0 0  0 24 360 3360 
0 0 0  0  0 120 2520 
0 0 0  0  0   0  720 

This is series A028246 from OLEIS. It looks promising, but I want 
to remove the factorials from the rows: 

   ] t3=:t2%!i.#t2 
1 1 1 1  1  1   1 
0 1 3 7 15 31  63 
0 0 1 6 25 90 301 
0 0 0 1 10 65 350 
0 0 0 0  1 15 140 
0 0 0 0  0  1  21 
0 0 0 0  0  0   1 
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And this brings me to familiar territory. It is the table of the 
Stirling numbers of the second kind, also called subset numbers, 
and is series A008277 from OLEIS. It is usually displayed 
transposed from the table above, and with an added first row and 
first column. 

   ((1+#t3){.1),.0,|:t3 
1 0   0    0    0    0    0   0 
0 1   0    0    0    0    0   0 
0 1   1    0    0    0    0   0 
0 1   3    1    0    0    0   0 
0 1   7    6    1    0    0   0 
0 1  15   25   10    1    0   0 
0 1  31   90   65   15    1   0 
0 1  63  301  350  140   21   1 

The reason these are called subset numbers is that entry (i,j) 
gives the number of ways to partition a set of i items into j 
nonempty parts. Thus, the value 7 in row 4, column 2, says there 
are 7 ways to put 4 items into 2 nonempty parts: 

(abc,d);(abd,c);(acd,b);(bcd,a);(ab,cd);(ac,bd);(ad,bc) 
 
      +/t3 
1 2 5 15 52 203 877 

These are the Bell numbers (series A000110), which give the total 
number of ways of placing n distinct objects in n boxes. This is to 
be expected, since the subset number in item (n;k) gives the 
number of ways to partition a set of n things into k nonempty 
subsets. The Bell numbers thus summarize the subset numbers. 

But now I know how to create my table of numbers. I can use the 
nonrecursive function s2nr from Iverson’s Concrete Math Compan-
ion to generate the subset numbers.  

This may be a bit mysterious at first, so I’ll show you how its par-
enthesized central portion works. 

   s2nr=:|:@( /  %. !._1/ )@i."0  
   ] v0 =. i.7x 
0 1 2 3 4 5 6 
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Form the table of powers t4 
   ] t4 =. /  v0 
1 0  0   0    0    0     0 
1 1  1   1    1    1     1 
1 2  4   8   16   32    64 
1 3  9  27   81  243   729 
1 4 16  64  256 1024  4096 
1 5 25 125  625 3125 15625 
1 6 36 216 1296 7776 46656 

and the table of falling factorials t5 
   ] t5 =. !._1/  v0 
1 0  0   0   0   0   0 
1 1  0   0   0   0   0 
1 2  2   0   0   0   0 
1 3  6   6   0   0   0 
1 4 12  24  24   0   0 
1 5 20  60 120 120   0 
1 6 30 120 360 720 720 

and make these the left and right arguments to matrix divide, 
yielding the table of subset numbers. 

   ] t6=: |: t4 %. t5 
1 0  0  0  0  0 0 
0 1  0  0  0  0 0 
0 1  1  0  0  0 0 
0 1  3  1  0  0 0 
0 1  7  6  1  0 0 
0 1 15 25 10  1 0 
0 1 31 90 65 15 1 

I now can produce the table of leading digits versus length of 
splits. The first step is to build a table of subset numbers.  

   ] a =. s2nr 10x 
1 0   0    0    0    0    0   0  0 0 
0 1   0    0    0    0    0   0  0 0 
0 1   1    0    0    0    0   0  0 0 
0 1   3    1    0    0    0   0  0 0 
0 1   7    6    1    0    0   0  0 0 
0 1  15   25   10    1    0   0  0 0 
0 1  31   90   65   15    1   0  0 0 
0 1  63  301  350  140   21   1  0 0 
0 1 127  966 1701 1050  266  28  1 0 
0 1 255 3025 7770 6951 2646 462 36 1 
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Drop the leading row and column, then transpose. 
   ] b =. |: 1 1 }. a 
1 1 1 1  1  1   1    1    1 
0 1 3 7 15 31  63  127  255 
0 0 1 6 25 90 301  966 3025 
0 0 0 1 10 65 350 1701 7770 
0 0 0 0  1 15 140 1050 6951 
0 0 0 0  0  1  21  266 2646 
0 0 0 0  0  0   1   28  462 
0 0 0 0  0  0   0    1   36 
0 0 0 0  0  0   0    0    1 

Multiply row i by factorial i. 
   ] c =. b * ! i. # b 
1 1 1  1  1   1    1     1      1 
0 1 3  7 15  31   63   127    255 
0 0 2 12 50 180  602  1932   6050 
0 0 0  6 60 390 2100 10206  46620 
0 0 0  0 24 360 3360 25200 166824 
0 0 0  0  0 120 2520 31920 317520 
0 0 0  0  0   0  720 20160 332640 
0 0 0  0  0   0    0  5040 181440 
0 0 0  0  0   0    0     0  40320 

Sum from the bottom up. 
 
   ] d =. +/ \. c 
1 2 6 26 150 1082 9366 94586 1091670 
0 1 5 25 149 1081 9365 94585 1091669 
0 0 2 18 134 1050 9302 94458 1091414 
0 0 0  6  84  870 8700 92526 1085364 
0 0 0  0  24  480 6600 82320 1038744 
0 0 0  0   0  120 3240 57120  871920 
0 0 0  0   0    0  720 25200  554400 
0 0 0  0   0    0    0  5040  221760 
0 0 0  0   0    0    0     0   40320 

And this is the table I wanted to be able to create. 

I’ve told you the series numbers in OLEIS of parts of my table. 
What about the table itself? I’m pleased and proud to be able to 
tell you that when I emailed information about it to Neil Sloane, 
proprietor of OLEIS, he agreed it was new, and assigned the 
number A054255 to it, with credit to me. I feel as if I’ve gained a 
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speck of immortality. We now have blists in OLEIS. You can look 
it up!  

Reference 
[1] McDonnell, E. E., How Shall I Transpose Thee? Let Me Count The 

Ways. APL Quote Quad, 8, 1, (1977-09). 



25 Someone Just Moved! Who Was It? 
Or, Apter’s Puzzle 
First published in Vector, 17, 2, (October 2000), 116-130. 

The Puzzle 
Stevan Apter recently proposed this puzzle to the online K group: 
Given a list of distinct items, and a second list changed by moving 
only one item of the original, find which item has been moved. 
There was a fair amount of discussion about this, and a number of 
proposed solutions, a surprising number of which were 
erroneous. This paper gives a solution that I believe works 
properly in all cases. The greater part of the paper, however, 
discusses the reverse problem: Given a solution, find the list that 
gave rise to it. 

Rotated Infix Permutations 
First, to solve Apter’s problem: Given the two lists A and B: 

   A 
3 1 4 5 9 2 6 
   B 
3 1 5 9 2 4 6 

tell which item in A was moved in order to produce B. It couldn’t 
have been the 5 or 9 or 2 because they form an infix in the order of 
the original. The 4, which had preceded 5 and 9 and 2 is the one 
that is out of order: it is now at their right: it has been moved from 
index 2 to index 5. 

The problem is simplified if the items are replaced by their 
indices. Since the items are distinct, A can be replaced by the 
identity permutation, and B by the indices of its items in A. For 
example: 

 
   C =: i. # A 
   D =: A i. B 
   C ,: D 
0 1 2 3 4 5 6 
0 1 3 4 5 2 6 

C and D contain all the information needed to solve the original A 
and B problem. In fact, D is all that is needed: the identity permut-
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ation C can be understood. In what follows, I’ll assume that a 
problem list is given in this D form. Thus an argument to the 
solution program might be: 

   D 
0 1 3 4 5 2 6 

Comparing D to C shows that some of the items remain in their 
original positions, but others have been moved. The following 
shows the items that have been moved in bold. These form a 
rotated infix; because of this I’ll call D a rotated infix permutation, 
which for convenience will be abbreviated to rip. 

0 1 3 4 5 2 6 

The nonzero items of D-C show which have been moved: 
   D-C 
0 0 1 1 1 _3 0 

Those which have been displaced by the move produce a 1 in the 
difference; the one moved produces _3. But an item can be moved 
to a lower position as well as to a higher. Suppose we are given to 
solve: 

   E 
0 1 5 2 3 4 6 

The items in bold again represent a 1-rotation, but this time it is to 
the right. If we subtract C from this we get: 

   E-C 
0 0 3 _1 _1 _1 0 

Here the value corresponding to the moved item is positive value, 
and the displaced items produce _1s. Considering both cases, it is 
evident that the moved item is determined by finding the 
maximum magnitude in the difference between the list to solve 
and the identity permutation. There are two difficulties to discuss. 
The first difficulty: suppose we move an item just one position to 
the right or left: what results? 

   F=.0 1 3 2 4 5 6 
   F-C 
0 0 1 _1 0 0 0 

The magnitudes of F-C show two possible results. It’s unclear 
whether the 3 has been moved to position 2, or the 2 has been 
moved to position 3. Either one can be chosen. The rule used here 
is: Among equal maxima, choose the one occurring first. This is 
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easiest because of the way J’s Index of primitive (i.) is defined, 
because it gives the index of the first occurrence of the item 
sought. This primitive has right of seniority over J’s Index of Last 
primitive (i:), which is a relative newcomer; Index of antedates 
even APL: it is described in Iverson’s 1962 book A Programming 
Language (Wiley, 1962) in section 1.16 Ranking, page 31: 

The rank or index of an element cb is called the b index of c and is 
defined as the smallest value of i such that c = bi . 

Thus, for the rip F above, 3 will be identified as the item that has 
been moved—even though it might in fact have been produced by 
moving 2 to position 3. 

The second difficulty arises from the possibility, not excluded in 
Apter’s statement of the problem, of moving an item from its 
original position to its original position. For example, the list: 

   G 
0 1 2 3 4 5 6 

if proposed as a problem to solve, might be the result of moving 
any of the seven items back to its original position. What we get if 
we subtract C from G is: 

   G - C 
0 0 0 0 0 0 0 

Again following the rule among equal maxima, choose the first I 
would find 0 as the one having been moved (to 0).  

Canonical Specifications 
A rip such as D, E, F, or G can be represented by a list of three 
integers: its length L, the initial position I of the moved item, and 
its final position F. For example, the rip D is specified by 7 2 5; E 
by 7 5 2; F by 7 3 3; and G by 7 0 0. I’ll call such a list the rips’s 
canonical representation, or casp. 

The function CfR below solves Apter’s problem, yielding the casp  
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from the rip: 
   CfR =: monad define"1 
NB. casp from rip 
R=.y. 
F=.(i.>./)|(-i.@#)R 
L=.#R 
I=.F{R 
L,I,F 
) 

Applying it to the sample rips: 
   CfR D 
7 2 5 
   CfR E 
7 5 2 
   CfR F 
7 3 2 
   CfR G 
7 0 0 

For aficionados of the one liner: 
OLCfR =. # , (([ ,  {)  (i. >. /) @ ([: | ] - [: i. #))  

A function inverse to CfR would take a casp L,I,F and yield the 
rip which gave rise to it. It can be described informally like this:  

lay out a row of L numbered blocks 

0 1 2 3 4 5 6 

remove the Ith block (which has the number I on it) and set it aside 

0 1   3 4 5 6  2 

collapse the remaining blocks over the empty space 

0 1 3 4 5 6  2 

separate these into two parts, the first F and the rest  

0 1 3 4 5   6  2 

and insert the removed block in the space made (which is F) 

0 1 3 4 5 2 6 
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This function RfC which, given a casp, yields a rip, is: 
   RfC =: monad define"1 
'L I F'=.y. 
M=.I-. i.L  
(F{.M),I,(F}.M) 
) 

Here are some uses of RfC: 
   RfC 7 2 5 
0 1 3 4 5 2 6 
   RfC 7 5 2 
0 1 5 2 3 4 6 
   RfC 7 3 2 
0 1 3 2 4 5 6 
   RfC 7 0 0 
0 1 2 3 4 5 6 

Roughly speaking, CfR and RfC are inverses, and thus we’d like to 
be able to say that: 

   P -: RfC CfR P 

and  
   C -: CfR RfC C 

The function MC below, given a positive integer argument, yields a 
3-column table of all the casps for rips of that length. For a list of 
length n, there are n2 rips, one for each initial position versus each 
final position. A variation of the odometer function is required. 
Given a length L, form i. *: L, then the (L,L) representation of 
each, and finally, prefix L to each, ending with an L2 by 3 table: 

   MC=:13 : 'y.,.(2#y.)#:i.*:y.' 
   ]C3=.MC 3 
3 0 0 
3 0 1 
3 0 2 
3 1 0 
3 1 1 
3 1 2 
3 2 0 
3 2 1 
3 2 2 

Next, I’ll get the corresponding rips: 
   R3 =. RfC C3 
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And finally, put C3 next to R3 so we can see the correspondences: 
   2 2 2 6 2 2": C3,.R3 
 3 0 0     0 1 2 
 3 0 1     1 0 2 
 3 0 2     1 2 0 
 3 1 0     1 0 2 
 3 1 1     0 1 2 
 3 1 2     0 2 1 
 3 2 0     2 0 1 
 3 2 1     0 2 1 
 3 2 2     0 1 2 

The number of distinct results is not L2, but less than that. When I 
and F are the same the results are the same: each of 3 0 0, 3 1 1, 
and 3 2 2 yields 0 1 2. From these three solutions we get only 
one casp, so we can reduce the initial 9 by 2. In general, the 
diminishment coming from this case is L–1. Next, the results are 
the same when I and F are adjacent numbers, as in 3 0 1 and 
3 1 0, and 3 1 2 and 3 2 1. From these four casps we get only 
two rips, so we can reduce the total by another 2. In general, the 
diminishment coming from this case is also L–1, one for each 
adjacent pair. The 9 results are thus reduced by another 2, leaving 
just 5. The general formula for the number of distinct rips is  
L2–2(L–1), or, simplified, L2–2L+2, which gives the J polynomial 
function 2 _2 1&p. . 

The function NR below, given an integer argument, yields the 
number of distinct rips of that length: 

   NR=.2 _2 1&p. 
   (],.NR)>:i.10 
 1  1 
 2  2 
 3  5 
 4 10 
 5 17 
 6 26 
 7 37 
 8 50 
 9 65 
10 82 
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The Anatomy of Rips 
I’ve been in the habit of checking sequences such as the second 
column above against the entries in Neil Sloane’s invaluable 
collection, which appeared in print first in his A Handbook of 
Integer Sequences (Academic Press, 1973). Recently the book has 
been supplemented by an ever growing collection on his web site, 
On-Line Encyclopedia of Integer Sequences, at: 

http://www.research.att.com/~njas/sequences/ 

The series 1 2 5 10... is ID Number A002522, which describes it in 
offset 0 as n2+1. My series is offset 1, which implies the formula 
previously given, namely n2–2n+2. It also notes that this sequence 
is the “Left edge of A055096” and if you refer to this sequence you 
will find that it is a triangle like Pascal’s, where the entries are 
sums of distinct squares: 

         5 
      10  13 
    17  20  25 
  26  29  34  41 
37  40  45  52  61 

The left edge is a truncated version of our series, lacking its first 
two items. Pursuing this any further will take me on too wide a 
detour from my main goal: the analysis of rips; but I shall be refer-
ring often to Sloane’s Encyclopedia in what follows. 

I began my study of rips by finding the anagram index of a fair 
number of them, using J’s A. primitive, and listing on a sheet of 
paper those of length seven in order by length of rotated infix, 
and within that by highest maximum I and F. Here are those with 
rotated infix of length 3, and the associated anagram index (I’ve 
put the disordered infix items in bold type).  

 I<F 
L I F        rip        A. 
7 4 6   0 1 2 3 5 6 4    3 
7 3 5   0 1 2 4 5 3 6    8 
7 2 4   0 1 3 4 2 5 6   30 
7 1 3   0 2 3 1 4 5 6  144 
7 0 2   1 2 0 3 4 5 6  840 
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I>F 
L I F        rip        A. 
7 6 4   0 1 2 3 6 4 5    4 
7 5 3   0 1 2 5 3 4 6   12 
7 4 2   0 1 4 2 3 5 6   48 
7 3 1   0 3 1 2 4 5 6  240 
7 2 0   2 0 1 3 4 5 6 1440 

The obvious way of entering the data thus gathered was to 
identify the rows with I and the columns with F, and to put the 
anagram index in item for I,F in row I, column F. This was 
unsatisfactory, since the numbers were going in what seemed the 
wrong direction, so instead I made tables where the rows were 
numbered by how far the right edge of the infix was from the 
right end of the table, and the columns were numbered by the 
length of the infix. Thus the anagram index of 30 where the L I F 
is 7 2 4, which has the infix 2 spaces from the right edge and has 
length 3 would be entered at row 2 column 3 of the I<F table. 

          I<F 
   1   2   3   4   5   6   7 
0  0   1   3   9  33 153 873 
1  0   2   8  32 152 872 
2  0   6  30 150 870 
3  0  24 144 864 
4  0 120 840 
5  0 720 
6  0 
          I>F 
   1   2    3    4     5     6    7 
0  0   1    4   18    96   600 4320 
1  0   2   12   72   480  3600 
2  0   6   48  360  2880 
3  0  24  240 2160 
4  0 120 1440 
5  0 720 
6  0 

Studying these tables convinced me that I could see the rule 
determining the value of an entry. For the I<F table, column 1 
would always be zero; an infix of length one meant that I and F 
were the same, so the result would be the identity permutation, 
which is permutation 0 for permutations of all lengths. Column 2 
would always be !(1+row number). Column j for j>2 would be 
sums of (j-1) successive items of column 2. For example, the 
entries in column 3 would be 1+2, 2+6, 6+24...; in column 4 would 
be 1+2+6, 2+6+24, 6+24+120,… and so forth. This can be shown 
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using J’s Infix adverb, x u\y, where the function u (in our case +/) 
is applied over successive length-x infixes of y : 

   ]fs=.!i.10 
1 1 2 6 24 120 720 5040 40320 362880 
   2+/\fs 
2 3 8 30 144 840 5760 45360 403200 
   3+/\fs 
4 9 32 150 864 5880 46080 408240 
   4+/\fs 
10 33 152 870 5904 46200 408960 

For the I>F table, the entries in column 1 and 2 would be the same 
as in the I<F table, for the same reasons. Column j for j>2 would 
be (j-1)*(j-2) drop column 2. For example, the entries in 
column 3 would be 2*1 drop 1 2 6 24 120...; in column 4 would 
be 3*2 drop 1 2 6 24 120...; and so forth. 

I was able to verify my conjectures for both tables after a few 
experiments, and wrote two functions that would give me the 
value for any entry in either table: 

   ILF =: 13 : '+/!(x.+1)+i.y.-1'"0 
   IGF =: 13 : '(y.-1)*!(y.-1)+x.'"0 
   3 ILF 4 
864 
   3 IGF 4 
2160 

The by, over, and tab functions below come from J’s 
Help|Phrases|2.c 

d16=: by=: ' '&;@,.@[,.] 
d17=: over=: ({.;}.)@":@, 
a18=: tab=: 1 :'[ by ]over x./' 
   (i.7) ILF tab 1+i.7x 
 
+-+----------------------------------------------+ 
| |1    2     3      4       5        6         7| 
+-+----------------------------------------------+ 
|0|0    1     3      9      33      153       873| 
|1|0    2     8     32     152      872      5912| 
|2|0    6    30    150     870     5910     46230| 
|3|0   24   144    864    5904    46224    409104| 
|4|0  120   840   5880   46200   409080   4037880| 
|5|0  720  5760  46080  408960  4037760  43954560| 
|6|0 5040 45360 408240 4037040 43953840 522955440| 
+-+----------------------------------------------+ 
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   (i.7) IGF tab 1+i.7x 
+-+--------------------------------------------------+ 
| |1    2     3       4        5         6          7| 
+-+--------------------------------------------------+ 
|0|0    1     4      18       96       600       4320| 
|1|0    2    12      72      480      3600      30240| 
|2|0    6    48     360     2880     25200     241920| 
|3|0   24   240    2160    20160    201600    2177280| 
|4|0  120  1440   15120   161280   1814400   21772800| 
|5|0  720 10080  120960  1451520  18144000  239500800| 
|6|0 5040 80640 1088640 14515200 199584000 2874009600| 
+-+--------------------------------------------------+ 

In both ILF and IGF the arguments are modified by adding or 
subtracting 1. I wondered whether I could get any further 
insights by writing versions of ILF and IGF in which the 
arguments were not offset. 

   ILFx=:13 : '+/!x.+i.y.'"0 
   ILFx tab i.7x 
+-+----------------------------------------+ 
| |0   1    2     3      4       5        6| 
+-+----------------------------------------+ 
|0|0   1    2     4     10      34      154|3422 
|1|0   1    3     9     33     153      873|7489 
|2|0   2    8    32    152     872     5912|54116 
|3|0   6   30   150    870    5910    46230|54117 
|4|0  24  144   864   5904   46224   409104|54118 
|5|0 120  840  5880  46200  409080  4037880| 
|6|0 720 5760 46080 408960 4037760 43954560| 
+-+----------------------------------------+ 
   4 142 1048 
 
   IGFx=:13 : 'y.*!y.+x.'"0 
   IGFx tab i.7x 
+-+--------------------------------------------------+ 
| |0    1     2       3        4         5          6| 
+-+--------------------------------------------------+ 
|0|0    1     4      18       96       600       4320|1563 
|1|0    2    12      72      480      3600      30240|18931 
|2|0    6    48     360     2880     25200     241920|52571 
|3|0   24   240    2160    20160    201600    2177280|52520 
|4|0  120  1440   15120   161280   1814400   21772800|52557 
|5|0  720 10080  120960  1451520  18144000  239500800|52521 
|6|0 5040 80640 1088640 14515200 199584000 2874009600| 
+-+--------------------------------------------------+ 
   4  142 52849   52560    52578     52648 

I’ve put numbers to the right of those rows and at the bottom of 
those columns which correspond to entries in Sloane’s Encyclo-
pedia. The Encyclopedia doesn’t contain entries for all the rows and 
columns of ILFx and IGFx, but they are easily obtained.  
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The functions below give the first ten items of the indicated row 
or column: 

NB. x items of row y of ILFx 
   ILFI=.13 : '+/\!y.+i.x:x.' 
NB. x items of column y of ILFx 
   ILFJ=:13 : 'y.+/\!i.<:y.+x:x.' 
NB. x items of row y of IGFx 
   IGFI=:13 : '(!y.+i.10x)*i.x:x.' 
NB. x items of column y of IGFx 
   IGFJ=.13 : 'y.*!y.+i.x:x.' 

And here they are, applied to 10 items of row 3 and column 3 for 
each table: 

   10 ILFI 3 
6 30 150 870 5910 46230 409110 4037910 43954710 522956310 
   10 ILFJ 3 
4 9 32 150 864 5880 46080 408240 4032000 43908480 
   10 IGFI 3 
0 24 240 2160 20160 201600 2177280 25401600 319334400 4311014400 
   10 IGFJ 3 
18 72 360 2160 15120 120960 1088640 10886400 119750400 1437004800 

Sloane contains tables and triangles as well as linear sequences. 
Table ILFx is closely related to Sloane’s sequence 54115: 

            1 
          1   1 
        1   2   3 
      1   6   8   9 
    1  24  30  32  33 
  1 120 144 150 152 151 

The formula for this triangular array T is given as:  

 
Triangular array generated by its row sums:  
T(n,0) = 1 for n≥1,  
T(n,1) = r(n-1),  
T(n,k) = T(n,k-1)+r(n-k) for k=2, 3, …, n, n≥2,  
r(h) = sum of the numbers in row h of T. 

 

The rows of this triangle are derived from ILFx by reading the 
counterdiagonals from left to right.  
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We can get the counterdiagonals in J by using J’s Box and Oblique: 
,.7{.</.|:ILFx/ i.7 
+-------------------------+ 
|0                        | 
+-------------------------+ 
|0 1                      | 
+-------------------------+ 
|0 1 2                    | 
+-------------------------+ 
|0 2 3 4                  | 
+-------------------------+ 
|0 6 8 9 10               | 
+-------------------------+ 
|0 24 30 32 33 34         | 
+-------------------------+ 
|0 120 144 150 152 153 154| 
+-------------------------+ 

Here it is in triangular form: 
              0 
            0   1 
          0   1   2 
        0   2   3   4 
      0   6   8   9  10 
    0  24  30  32  33  34 
  0 120 144 150 152 153 154 

Table IGFx is closely related to Sloane’s 51683: 
                    1 
                  2    4 
               6   12   18 
            24   48   72   96 
        120  240  360  480  600 
      720 1440 2160 2880 3600 4320 

The rule for this triangle is given in 1-offset as Table: 
a(n,k)=n!*k; they are just integer multiples of factorials. For 
example, a(5,3) = 5!*3, or 120*3 or 360. 

The J Phrases book gives only a limited number of functions 
concerning rips. 

NB. Phrases from 7.A 
NB. Rotate last three to the left 
   m7  =: 3&A. 
NB. Rotate last three right 
   m8  =: 4&A. 



Someone Just Moved: Who Was It? Or: Apter’s Puzzle 
 

 

193 

 

NB. Rotate last x to the left 
   d9  =: ([: +/[:![:}.[:i.[) A. ] 
NB. Rotate last x to the right 
   d10=: (!@[ - !@<:@[) A. ]  

The functions given here expand the possibilities significantly. 
They are of dubious practical value, because the factorials grow so 
large so quickly that they really aren’t practical to generate rips of 
any great length. For that, the function RfC is far more practical. 

Contracurrency 
All the while I was working on this material it had been bothering 
me that the Anagram index grew with respect to the end of the 
rip, not the beginning. For example, 

   A. 1 2 0 
3 
   A. 0 2 3 1 
3 
   A. 0 1 3 4 2 
3 
   A. 0 1 2 4 5 3 
3 

The Anagram index is the same regardless of the length of the rip, 
when the infix is the same distance from the right end. When the 
infix is the same distance from the front end, it varies: 

   A. 1 2 0 
3 
   A. 1 2 0 3 
8 
   A. 1 2 0 3 4 
30 
   A. 1 2 0 3 4 5 
144 

J supports contracurrent indexing, which is right-end oriented: 
the last item has contracurrent index _1, the penultimate has _2, 
and the antepenultimate has _3, regardless of the number of 
items. The previous tables were labelled by length of infix and 
distance from right edge, with the direction of 1-rotation used to 
distinguish two separate tables, as produced by the functions ILF 
and IGF. The function below produces a table labelled by 
contracurrent indices: 

   RfMC=: 13 : '(-y.)]\A.RfC MC y.' 
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This forms the table of all casps for rips of length y., then obtains 
the rips, next obtains the Anagram indices, and last, reshapes this 
into a square table. 

   ] q =. |.->:i.8 
_8 _7 _6 _5 _4 _3 _2 _1 
   q by q over RfMC 8 
+--+----------------------------------------+ 
|  |   _8   _7   _6   _5   _4   _3   _2   _1| 
+--+----------------------------------------+ 
|_8|    0 5040 5760 5880 5904 5910 5912 5913| 
|_7| 5040    0  720  840  864  870  872  873| 
|_6|10080  720    0  120  144  150  152  153| 
|_5|15120 1440  120    0   24   30   32   33| 
|_4|20160 2160  240   24    0    6    8    9| 
|_3|25200 2880  360   48    6    0    2    3| 
|_2|30240 3600  480   72   12    2    0    1| 
|_1|35280 4320  600   96   18    4    1    0| 
+--+----------------------------------------+ 

Entry (i,j) in this table is the Anagram index of a rip of any length 
in which item i has been moved to index j, where i and j are 
contracurrent indices. 

Here are functions to convert between direct casps and 
contracurrent casps (ccasps): 

NB. contracurrent casp from direct 
   CCfD =: - `,`:3"1 
NB. direct casp from contracurrent 
   DfCC =: (|@<. + 0: , ,)/"1 

Here is a little experiment with the above two functions which 
shows the limitations of the ccasp form: 

   MC3 =. MC 3 
   MCC3 =. CCfD MC3 
   MC3x =. DfCC MCC3 
   MCC3x =. CCfD MC3x 
   format =. 2 2 2 5 3 5 2 2 5 3 
   format ": MC3,.MCC3,.MC3x,.MCC3x 
 3 0 0   _3 _3    3 0 0   _3 _3 
 3 0 1   _3 _2    3 0 1   _3 _2 
 3 0 2   _3 _1    3 0 2   _3 _1 
 3 1 0   _2 _3    3 1 0   _2 _3 
 3 1 1   _2 _2    2 0 0   _2 _2 
 3 1 2   _2 _1    2 0 1   _2 _1 
 3 2 0   _1 _3    3 2 0   _1 _3 
 3 2 1   _1 _2    2 1 0   _1 _2 
 3 2 2   _1 _1    1 0 0   _1 _1 
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A ccasp needs only two items: the contracurrent indices of the 
item moved and where it is moved to. This loses the information 
of the length of the rip involved, and so the conversion from ccasp 
back to casp is not exact: the length imputed is the magnitude of 
the minimum item. For example, 3 2 1 is converted to _1 _2, but 
the back conversion is 2 1 0, since the magnitude of the 
minimum item _2 is 2. However, 2 1 0 is converted exactly back 
to _1 _2. 





26 Four Cubes Redux 
First published in Vector, 17, 3, (January 2001), 113-120. 

 

A Festschrift for Kenneth Iverson  
on his 80th birthday, 

2000 December 17 

I recently cleaned out the chest of drawers in my bedroom, in the 
course of which I got rid of many frayed and yellowed handker-
chiefs, never-worn T-shirts, paper thin undergarments, and, much 
to my pleasant surprise, I excavated a set of four coloured cubes, 
an inch and a quarter to the side, a modern version of a puzzle 
dating back at least a century, under various names; the set I had 
is marketed under the name Instant Insanity in the United States 
by Parker Brothers, the purveyor of many other games, most 
notably Monopoly. The cubes’ faces are coloured with one of the 
four colours blue, green, red, or white, in some mixture. You are 
asked to stack the cubes one above the other in such a way that 
each side of the stack contains a face with each of the four colours, 
in some order.  

In 1981 I had written a pamphlet on the puzzle called The Four 
Cube Problem[1], subtitled “a case study in Basic, APL, and 
functional programming.” In the pamphlet a prize-winning Basic 
solution and an APL solution written by me were compared.  

The Basic program had 91 non-comment lines, and the APL had 
nine; the average length of a Basic line was 31 characters; of the 
APL line 21 characters; Basic used 18 variables, APL none; Basic 
had 21 loops, APL none. The Basic program was written for and 
executed on the Sorcerer computer, which I suspect was a fairly 
early desktop computer, and so its execution time of 3 minutes 
and 5 seconds can’t be fairly compared with the APL program, 
which took 0.7 seconds to execute on one of the largest and fastest 
commercial computers available in 1981, the Amdahl V8 
computer in the I. P. Sharp machine room in Toronto. 

The APL solution emphasized the functional programming 
approach introduced by John Backus[2], employing the direct 
definition form by K. E. Iverson as a way of facilitating the 
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definition of functions and their use in exposition. The solution 
used one constant function, one dyad, and seven monads. 

The APL solution from my 1981 pamphlet could, I believe, be 
easily translated into Dyalog APL: 

I:C S (BΩ[1;A])O S(BΩ[2;A])O S(BΩ[3;A])O G BΩ[4;X] 
X:3 4Ρ 3 5 4 6  1 3 2 4  1 6 2 5 
G:2 1 3 4 (1,ΡΩ)ΡΩ 
B:(RΩ) .='BGRW' 
R:( /< Ω) .= Ω) Ω 
A:(Ι24) 4 X,[1] X 
O:((1 ΡΩ) Α),[2](((1 ΡΑ),3Ρ1)×ΡΩ)ΡΩ 
S:( / / /Ω=<\[2]Ω) Ω 
C:'BGRW'[Ω+.×Ι4] 

This solution took as argument a 4 by 6 character matrix 
representing the cubes, with the initial letters of the face colours 
given in the order top, bottom, left, right, front, and back; the 
colours were blue, green, red, and white, abbreviated by ‘bgrw’. 
The result yielded was a three-dimensional array of shape n, 4, 4, 
where n is the number of solutions for the given set of cubes. A 
belt in a cube consists of a circuit of four faces; there are three 
basic belts in a cube: left, front, right, back; top, left, bottom, right; 
and top, back, bottom, front. The last cube is taken as the base of 
the stack, and only its three basic belts are considered, since 
rotating or reversing these belts will not provide any essentially 
different solutions. The face numbers of the basic belts are given 
by the constant X. For the other cubes, a total of 24 belts are 
considered, obtained by rotation and reversal of the basic belts in 
all possible ways. These are given by the function A. 

The faces are represented by a boolean vector of length four 
containing a single 1 in the position corresponding to the colour: 

Blue:      1 0 0 0 
Green:     0 1 0 0 
Red:       0 0 1 0 
White:     0 0 0 1 

A boolean representation was chosen in order to economize on 
space. This conversion is done by B, and the inverse by C. In the 
display below you can see the sizes of the intermediate arrays 
formed during execution. The largest needs space for 
*/720 4 4 4 or 46,080 items. That is how many bytes are needed 
for a character representation. If bits are substituted, only one-
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eighth, or 5,760 bytes are needed. Integers would require four 
times, or 184,320 bytes: a prohibitive size for many systems of that 
day. 

The development of the result, and the shapes of the intermediate 
arrays are shown below: 

I:C S (BΩ[1;A])O S(BΩ[2;A])O S(BΩ[3;A])O G BΩ[4;X] 
        2 4 4      2 4 4      2 4 4      3 4-    1 
      16 4 4-    24 4 4-    24 4 4-     3 4 4    2 
                                         3 1 4 4    3 
                              -----72 2 4 4-----    4 
                             -----28 2 4 4------    5 
                  ------------672 3 4 4---------    6 
                 -----------45 3 4 4------------    7 
      -----------------720 4 4 4----------------    8 
    -----------------1 4 4 4--------------------    9 
  -----------------1 4 4------------------------   10 

At the right of line 1 the shape of the belts of the bottom cube is  
3 4. In line 2 the boolean conversion has been made, and the 
shape is 3 4 4. In line 3 the function G has added a dimension of 
length 1; this is needed so that each belt from the next cube can be 
stacked on each existing stack.  

Function O does this stacking; function S removes stacks 
containing duplicate face colours. This process continues with the 
remaining cubes, and finally C converts the boolean vector forms 
into colour letters. 

This brief synopsis is a necessary prelude to the description of the 
J solution. 

The function I in APL has this equivalent in J: 
i =: (0&{) (s@o) (1&{) (s@o) (2&{) (s@o x) (3&{) 

J’s insert (/) adverb is defined this way in the J Dictionary on 
gerund left arguments: 

m/y inserts successive verbs from the gerund m between items of y, 
extending m cyclically as required. Thus, +`*/i.6 is 0+1*2+3*4+5.  

This suggests that i could be rewritten like this: 
   g =: (s@o)`(s@o)`(s@o x)/ 
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Whereas in both APL’s I function and J’s (irrelevant) i function it 
is necessary to specify index values to select rows of the 
argument, the gerund form of g, using J’s insert primitive (/) 
depends on the nature of insertion to go through the rows of the 
argument in the proper order, from the bottom up. 

The remaining functions are detailed as follows: 
   b =: 0 2 1 3  0 4 1 5  2 4 3 5 
   x =: (3 1 4$ b)&{ 
   o =: [: ,/ ([: . [: a [) ,"1 2/ ] 
   a =: (i.24)"_ |."_1 [: [ 4: # [: (] , |."1) (3 4$b)"_ { ] 
   s =: ] #  2: > [: >./"1 [: ,"2 [: +/"3 ] =/ [: . , 

The constant b is used here in order to keep the length of displays 
within the confines of the page width. The b’s in functions x and a 
should be replaced by the value of b. Thus there are actually only 
five functions needed: g, x, o, a, and s, and, indeed, g could be 
replaced by its body, reducing it to only four functions. The 
function R of the APL version is replaced by the J primitive nub 
( .). The functions B and C of the APL solution convert between 
the character and the boolean list representations used. These are 
not needed in the J solution because it is designed to be generic, 
permitting any form of representing the cubes. The nine APL 
functions use 151 tokens. The five J functions use 106 tokens. 

The function x applies to the bottom row of the argument, and 
produces the three basic belts in the form of 1 by 4 tables. Because 
it is used with the insert primitive, there is no need to specify the 
index value 3; this comes about because of the nature of insertion. 
This is the seed needed to start the building of the candidate piles. 
The result of each step is a three-dimensional array of shape 
m,n,4, where m is the number of successful piles so far, initially 3; 
and n is the height of each pile, starting at 1, and ending at 4.  

The effect of s@o is to insert the dyad o between two arrays c and 
d, where c is shape k by 24, where k is at most 24, and at least 1; 
and d is the result of the previous step, with shape m,n,4 as 
described above. Each of the k rows of a is placed on each of the n 
by 4 tables, and then these are joined to form a single table of k 
times m items. As noted above, the winnowing of the 24 belts 
selected by function a is accomplished by the J nub primitive ( .) 
within o, ensuring that there are no duplicate solutions. 
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The result of o is passed on to s. I rather like s; notice the nice way 
the rank operator gets used: first rank 3, then rank 2, then rank 1. 
It uses the phrase ] =/ [: . , to form the outer product equal 
of the argument with the nub of its ravel. This gives a four-
dimensional array of k boolean tables, with a table for each of the 
rows in each solution. It sums the 3-dimensional arrays, which 
effectively counts the number of appearances in each column of 
each colour. The tables are raveled, and a mask is formed with a 1 
for each row which contains no item greater than 1, and applied 
to the argument, which gets rid of all of the candidate solutions 
containing duplicate colours, leaving only those which remain as 
candidates for final solutions. Here is a sample of how s works, 
using t, containing two 3-high stacks: 

   $t 
2 3 4 
   t 
brwg 
wwgr 
rgbg 
 
brwg 
wwgr 
rbbw 
   $t0=: t = / . , t 
   $t0 
2 2 2 4 
   $t1=:+/"3 t0 
2 4 4 
   t1 
1 1 1 0 
0 1 1 1 
1 0 1 1 
0 1 0 2 
 
1 1 1 0 
1 1 1 0 
1 0 1 1 
0 1 1 1 
   ] t2=:,"2 t1 
1 1 1 0 0 1 1 1 1 0 1 1 0 1 0 2 
1 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1 
   $t3=:>./"1 t2 
2 1 
   ] t4=:2>t3 
0 1 
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This solution can be improved a bit. Suppose I replace the func-
tion x with a similar function y which has the property that it is 
executed only if its argument has shape ,6,. This can be done 
using J’s function power primitive. Then we could do without the 
gerund form altogether. Here is function y: 

   y=:(3 1 4$b)&{ :((,6)"_ -: $) 

Now we can solve the problem with: 
   (s@o y)/ 

That’s all there is to it. J has helped to give a solution significantly 
shorter than the APL solution.  

Now that I had a generic solution, I was able to test it on four 
different representations: a single character, a symbol, an integer, 
and a boxed name. All of these are scalars. Here are the four 
representations of the one-solution set of cubes: 

   nu 
3 1 0 0 2 2 
3 2 2 1 3 0 
3 3 1 1 2 0 
3 0 1 1 3 2 
   ch 
wgbbrr 
wrrgwb 
wwggrb 
wbggwr 
   sy 
`white `green `blue  `blue  `red   `red  
`white `red   `red   `green `white `blue 
`white `white `green `green `red   `blue 
`white `blue  `green `green `white `red  
   bn 
+-----+-----+-----+-----+-----+-----+ 
|white|green|blue |blue |red  |red  | 
|white|red  |red  |green|white|blue | 
|white|white|green|green|white|blue | 
|white|blue |green|green|white|red  | 
+-----+-----+-----+-----+-----+-----+ 

And the solutions for each: 
   (s@o y)/ nu 
1 0 3 0 
2 2 1 3 
0 1 2 1 
3 3 0 2 



Four Cubes Redux 
 

 

203 

 

   (s@o y)/ ch 
gbwb 
rrgw 
bgrg 
wwbr 
   (s@o y)/ sy 
`green `blue  `white `blue  
`red   `red   `green `white 
`blue  `green `red   `green 
`white `white `blue  `red   
   (s@o y)/ bn 
+-----+-----+-----+-----+ 
|green|blue |white|blue | 
|red  |red  |green|white| 
|blue |green|red  |green| 
|white|white|blue |red  | 
+-----+-----+-----+-----+ 

A set of cubes which gives 22 solutions is: 
`white `blue  `red   `blue  `white `green 
`red   `blue  `red   `blue  `green `white 
`red   `blue  `red   `green `green `white 
`green `white `white `red   `blue  `red 

I measured the time needed to produce solutions for each of these 
representations using two different cube sets, one which had only 
one solution, and one which had 22 solutions.  

Here is a tabulation of the times taken using each of the two test 
cubes: 

 one solution 23 solutions 

integer 0.012 0.047 

single character 0.010 0.036 

symbol 0.012 0.047 

boxed name 0.058 0.254 

The table shows that the symbol datatype is competitive in time 
with the single character and integer data types, which is what we 
hoped would happen. Symbols are a much more efficient 
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datatype to work with than are boxed names. It also shows, which 
should not be a surprise to anyone, that I have on my desk a 
computer that is seventy times faster and has much larger 
memory and disk storage than did the large roomful of computer 
and disk packs that had seemed so very powerful twenty years 
ago.  
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If you wish in the world to advance,  
Your merits you’re bound to enhance,  

You must stir it and stump it,  
And blow your own trumpet,  

Or, trust me, you haven’t a chance! 
                           W. S. Gilbert, Ruddigore 

Introduction 
This paper discusses a way in which mathematicians are connect-
ed to each other, much like the six degrees of separation of the play 
and film of that title by John Guare, or the Bacon numbers associat-
ed with the film actor Kevin Bacon. It then discusses a paper writ-
ten by two of these interconnected mathematicians that gives two 
ways of representing a rational number that were new to me. The 
paper also had some personal relevance. In discussing the subject 
matter of the paper I’ll define a number of adverbs and a conjunc-
tion, the first serious use I’ve made of these J possibilities. Finally, 
I’ll apply the verbs I define in connection with the almost 4000-
year old Egyptian mathematics found on the Rhind papyrus. 

Erdös Numbers 
I heard a talk a few years ago given by the mathematician Ronald 
Graham, of the Bell Laboratories, in the course of which he dis-
cussed Erdös numbers. Graham had been a frequent collaborator 
with the mathematician Paul Erdös and even had a room set aside 
in his home for him. This was to facilitate visits by this eccentric 
nomad, who, in his later life, drifted from one collaborator to 
another, with only his suitcase and his mind, greeting his next 
host with the words, “My brain is open!”[1]. The web site: 

   http://www.oakland.edu/~grossman/erdoshp.html 

is devoted to Erdös numbers. The next paragraph is copied from 
that source: 
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Most practicing mathematicians are familiar with the definition of 
one’s Erdös number ... Paul Erdös (1913−1996), the widely-travel-
ed and incredibly prolific Hungarian mathematician of the high-
est caliber, wrote hundreds of mathematical research papers in 
many different areas, many in collaboration with others. His 
Erdös number is 0. Erdös’s co-authors have Erdös number 1. 
People other than Erdös who have written a joint paper with 
someone with Erdös number 1 but not with Erdös have Erdös 
number 2, and so on. If there is no chain of co-authorships conn-
ecting someone with Erdös, then that person’s Erdös number is 
said to be infinite.  

Here are some data that I gathered from this web site, giving the 
number of people known to have each of the first several Erdös 
numbers (the site is updated periodically so the data will change 
from time to time): 

Erdös number 0 1 2 3 4 5

1st kind 1 502 5713 26422 62136 66158

2nd kind 1 229 1969 8602 22668 36112

The row labelled “2nd kind” refers to a more stringent classificat-
ion, described in the web site as follows: 

The entire discussion so far has been based on linking two math-
ematicians if they have written a joint paper, whether or not other 
authors were involved. A purer definition of the collaboration 
graph (in fact, the one that Paul Erdös himself seemed to favor) 
would put an edge between two vertices if the mathematicians 
have a joint paper by themselves, with no other authors ... Let 
C' denote the collaboration graph under this more restrictive 
definition, and let us call the associated path lengths “Erdös 
numbers of the second kind” (and therefore call traditional Erdös 
numbers “Erdös numbers of the first kind” when we need to 
make a distinction). 

Since those with Erdös number 2 got their numbers from writing 
with someone with Erdös number 1, we can get the average 
promiscuity number of the Erdös 1 authors by dividing their total 
into the total of Erdös 2 authors. The average number of co-auth-
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ors for those with Erdös number 1 of the 1st kind is 11.4 and for 
those of the 2nd kind is a more selective 8.6. All sorts of people 
have Erdös numbers. You may be surprised to learn that Bill 
Gates has Erdös number 4, that Sir Francis Crick has Erdös 
number 7 and that his double helix collaborator Jim Watson has 
Erdös number 8.  

This is the background you need in order to make sense of this 
message I received from Roger Hui about a year ago: 

Subj: Erdos Number 
Date: 12/18/99 6:36:06 AM Pacific Standard Time 
From: RHui@Interlog.Com (Roger Hui) 
To: EEMcD@AOL.Com (E.E. McDonnell) 
CC: KEI@Interlog.Com (Kenneth E. Iverson) 

Apparently my Erdos number is 2, having co-authored a paper[2] 
with Shlomo Moran (during my grad school days in the early 1980's), 
who co-authored a paper with Erdos himself[3]... Neither you nor 
Ken are in [the] list [of people with Erdös numbers 0, 1, or 2]. 
Therefore,... both you and Ken have a Erdos number of 3 or less, 
having co-authored a paper with me.[4] 

This was a surprise, since, although I have written a lot of semi-
mathematical papers, I am not really a mathematician. Since there 
were three co-authors of the paper I wrote with Roger, I had an 
Erdös number 3 of the first kind, but not of the second kind. 
Similarly Shlomo Moran has an Erdös number 1 of the first kind, 
but not of the second, since there were three co-authors of his 
paper with Erdös. 

Thus matters stood until a few months ago, when Roger sent me 
another message on the same subject: 

Subj: Erdos Number 
Date: 11/15/00 9:57:21 AM Pacific Standard Time 
From: rhui@ADAYTUM-CAN.COM (Roger Hui) 
To: EEMcD@AOL.Com (E.E. McDonnell) 
 
According to  http://www.acs.oakland.edu/~grossman/erdoshp.html 
Jeffrey Outlaw Shallit wrote a joint paper[5] with Erdos in 1991. Since 
you wrote at least one paper with Shallit ("Extending APL to 
Infinity")[6], that makes you an Erdos 2. 
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Since Erdös died in 1996, I had now reached the highest I can get 
on the Erdös graph. What is more, since my paper with Shallit 
had just the two of us as authors, and Shallit’s with Erdös had just 
the two of them, I now had Erdös number 2 of both the 1st and 
2nd kind, and Shallit’s Erdös number 1 is also of the 1st and 2nd 
kind. Among my fellow number twos are such luminaries as 
Albert Einstein, G. H. Hardy and Donald Knuth. As I chat with 
my fellow 2’s, I appreciate the rather better class of thinkers they 
are, and wonder now that I was able at all to tolerate those 
arriviste 3’s with whom I rubbed shoulders. I know personally 
only one other number two, and that is my friend Charles 
Brenner, about whom you may have read in my letter in the 
Technical Correspondence of the January 2001 Vector, vol. 17, No. 3, 
p. 112. He is today best known as the forensic mathematician. See his 
very interesting website at www.dna-view.com. Charles was just 
sixteen in 1961 when he and his father, the mathematician Joel Lee 
Brenner, collaborated on a paper[7]. In 1987 the elder Brenner 
collaborated on a paper with Erdös[8], thereby promoting his son 
Charles’s Erdös number from infinite to 2. This raises a question. 
His father’s collaboration with Erdös involved a total of six co-
authors, so his father’s Erdös number 1 is of the first kind only. 
Charles and his father were the only co-authors of their paper. 
How does this rank Charles? I’d say that the sins of the fathers 
should not be visited on the sons, so that Charles’s number 2 is, 
like mine, of the first and second kind. The promiscuity number of 
Joel Lee Brenner is 37; of Jeffrey Outlaw Shallit is 47; and of 
Shlomo Moran is 54, all three of them well above average. 

I got to know Jeffrey Shallit when he was a young teenager with a 
gift for mathematics. He was a regular visitor to the IBM Phila-
delphia Scientific Centre when I worked there. When he went to 
college at Princeton University, he wrote his bachelor’s paper on 
the mathematical aspects of my design of the complex floor 
function[9]. Jeff came to work for me at I. P. Sharp Associates in 
Palo Alto in the summer of 1979, after graduating from Princeton 
and just before beginning graduate work at the University of 
California at Berkeley. It was then that he and I wrote our joint 
paper on APL and the infinite. I wrote the part on infinite values, 
and Jeff worked out the details of infinite-sized arrays, including a 
very nice way of displaying them using a diagonal transformat-
ion. Upon getting Roger Hui’s second message I emailed Jeffrey, 
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who is now a full professor at Waterloo University in Ontario, 
Canada, saying how grateful I was to him for making this possib-
le, but said that I didn’t feel worthy of the honour. He answered: 

Subj: Re: thanks for raising my erdos number 
Date: 11/19/00 5:35:42 AM Pacific Standard Time 
From: shallit@graceland.uwaterloo.ca (Jeffrey Shallit) 
To: Eemcd@aol.com 
 
Au contraire, it’s I who should be grateful to you. The paper that I 
wrote with Erdos was on expansions of the form 
  1/a - 1/(ab) + 1/(abc) - .... 
which I learned about from you in your APL article on “Spirals and 
Time”[10]. If I hadn't had the opportunity to learn from you in Phila-
delphia and later in Palo Alto, I would never have explored this inter-
esting topic! 
 
Best, Jeff 

This, unlike the essentially shallow glamour of my Erdös number, 
was something that I felt I could take legitimate pride in. The 
“Spirals and Time” article was a very early one of my articles. It 
gives me no little gratification when someone tells me they’ve 
enjoyed one. This message gave me an exceptionally large boost 
because Jeff had actually learned from it something useful to him 
professionally, and may even, as he suggests, have led to his 
involvement with Erdös. By the way, it had another satisfying 
repercussion, which I heard about from someone in Denmark 
who had shown my article to his fiancée. The article noted that 
the Gregorian calendar intercalation scheme had leap years in a 
4-100-400 year cycle, but could be made exactly accurate if it were 
extended to a 4-100-400-3200-86400 cycle. The fiancée told Henry 
that on reaching the conclusion, where I noted that 86400 was also 
the number of seconds in a day, she “had an intellectual orgasm.” 

Notice that successive terms in the Gregorian sequence are 
multiples of the preceding term. That is, 100 is 25*4 and 400 is 
4*100. In the extension suggested in my article, 3200 is 8*400 
and 86400 is 27*3200. The sequence of multipliers 4 25 4 for the 
Gregorian sequence and 4 25 4 8 27 can each be used to deter-
mine the average length of the year in each system. In the next 
section I’ll discuss how this may be done. For now, I’ll only point 
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out that the current method of adding leap seconds to a year is 
sufficient to make it unnecessary to do any extensions to the Greg-
orian sequence, so discussions (like this) concerning changing or 
extending the current Gregorian scheme are purely academic. 

Pierce and Engel Expansions 
That brings us, at last, to the At Play With J part of this paper.  

The expansion in Shallit’s message lies behind the design of the 
Gregorian calendar. 

     1/a - 1/(ab) + 1/(abc) - .... 

In the case of the Gregorian calendar the values a, b, and c are 4, 
25, and 4.  

   'a b c' =: 4 25 4 

The product scan (*/\) of this list gives the cumulative products, 
in this case defining the intervals in years when to intercalate and 
when not: every fourth year but not every hundredth year unless 
it is also a four-hundredth year. 

   ] m =: */\ a,b,c 
4 100 400 

We reciprocate these values: 
   ] n =: % x: m 
1r4 1r100 1r400 

The alternating sum of this gives the part of a day p which, when 
added to 365, gives the average length of the year in calendar 
days in the Gregorian calendar. 

   ] p =: -/ n 
97r400 

It also gives the number of leap years (97) in the cycle (400). One 
gets 97 this way: 

   400 % 4 100 400 
100 4 1 
   -/100 4 1 
97 

The number of days in 400 years gives the length of the Gregorian 
cycle in days, which keeps repeating as the millennia roll on. 

   400 * 365 + 97r400 
146097 
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Shallit’s curriculum vitae lists three papers, each bearing on the 
topic of Pierce expansions. These are not widely known, but they 
and the companion Engel expansions are the topics of the rest of 
this article. What are they? They are algorithms for converting a 
rational number into a series of integers, which, much like a 
continued fraction, give a way of representing a rational. The 
algorithm for Pierce expansions is described by Shallit in his 
paper on their metric theory as follows: 

[Pierce expansion algorithm]: Given a real number x in (0, 1], this 
algorithm produces the sequence of ai such that x = {a1, a2, …}. 

P1. [Initialize]. Set x0 to x, set i to 1. 

P2. [Iterate]. Set ai to floor (1/xi-1); set xi to 1 - aixi-1. 

P3. [All done?]. If xi = 0, stop. 
                 Otherwise set i to i + 1 and return to P2. 

Jeff points out that if x is a rational p/q, step P2 replaces p by q 
mod p, that this is less than p, and so eventually x will become 0, 
and the algorithm will terminate.  

Several friends of mine asked if I could find out what Shallit’s 
joint paper with Erdös was about. It dealt with Pierce expansions, 
but also with something called Engel expansions. All I could find 
out about them was that they involved sums of reciprocals, as 
opposed to alternating sums, but I was unable to work out the 
details on my own, so asked Jeffrey for help. His reply: 

From: shallit@graceland.uwaterloo.ca (Jeffrey Shallit) 
To: Eemcd@aol.com 
 
Do you read Maple? Here is a maple program to compute the engel 
expansion of x up to the first n terms: 
engel := proc(x,n) local xp, z, k;  
xp := x;  
z := [];  
k := 0;  
while ((k <= n) and xp <> 0) do  
k := k+1;  
y := ceil(1/xp);  
z := [op(z),y];  
xp := y*xp - 1;  
od;  
z;  
end;  
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Basically you take ceiling of 1/x, and that's the next output. 
Then you multiply that by your current x and subtract 1.Then 
continue. 
 
Jeff  

I’m not familiar with Maple, but I did manage to feel my way 
through this code. Having digested it, I concluded that the Pierce 
and Engel expansions were closely related. The Pierce list of 
integers implies an alternating sum, and the Engel list of integers 
implies a direct sum. This simplified my work in turning them 
into J, since one pattern would do for both.  

To begin with, I changed Jeff’s approach in two important ways: 
first, to simplify termination control, I would work only with 
rational arguments; second, instead of having essentially two 
main variables, a continually modified rational and a continually 
lengthening list of integers, I would combine the two, beginning 
with a scalar rational, and successively modifying this in two 
ways: first appending a tail, and then modifying the head. The tail 
extension would be obtained by applying an integer function to 
the reciprocal of the current head value, and appending this; the 
floor (<.) for Pierce expansions, and the ceiling (>.) for Engel 
expansions. The head modification would be obtained by apply-
ing a subtracting function to the product of the head and the tail, 
and replacing the head with this; the one minus (-.) function for 
Pierce expansions, and the minus one (<:) function for Engel ex-
pansions. Similarly, in computing the inverses to these functions, 
obtaining the rational from a list of integers, the same pattern 
would be used, with minus (-) for Pierce contractions, and plus 
(+) for Engel contractions. This is summarized in the following 
table: 
 

 Pierce Engel 

tail <. >. 

head -. <: 

inverse - + 
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First I defined an adverb which would serve for both tail extens-
ions: 

BT =: 1 : '(, u. @ % @ {. ) y.' 

where u. stands for the appropriate integer function to be used in 
its place, floor or ceiling. It works by applying the appropriate 
integer function (u.) to the reciprocal (%) of the head ({.), then 
appending it (,). Here’s how this works with each form of 
expansion: 

   <. BT 97r400 
97r400 4 
   >. BT 97r400 
97r400 5 

Next comes an adverb for both head modifications: 
BH =: 1 : '((0 } )u. @ ({. * {:))y.' 

This replaces the head (0 } ) with the appropriate subtracting 
function (u.) applied to the product of the tail and the head 
({. * {:). For example: 

   -. BH <. BT 97r400 
3r100 4 
   <: BH >. BT 97r400 
17r80 5 

Next, these are combined in a conjunction that will allow a step 
function to be defined for both expansions: 

   BS =: 2 : '(u. BH)@(v. BT)y.' 

Here the u. and v. stand for the left and right function arguments 
to be used. For example: 

   -. BS <. 97r400 
3r100 4 
   <: BS >. 97r400 
17r80 5 

A control structure is needed to allow the steps to be applied as 
often as necessary. This requires a sequence of two uses of the 
power conjunction; the first to control termination, with a right 
argument which gives the signum of the head (* @ {.). This will 
be one for any nonzero head value (I assume the argument is 
always positive), which allows the function to be applied; when 
the head eventually becomes zero, as it must since it is continually 
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being reduced, the function will not be applied, and the result will 
be the same as the argument. The second use of the function 
power conjunction will cause the steps to be applied to the limit, 
that is, until two successive results are equal. The convention 
proposed by Iverson[11] is that positive infinity ( _ ) be used to 
describe application of a function to the limit. Nicely enough, this 
proposal was seconded by Shallit and me in our paper on 
infinities, and it is now part of J.  

CS =: ( :(* @ {.)) : _ 

We can use CS with both steps: 
   (-. BS <.)CS 97r400 
0 4 33 100 
   (<: BS >.)CS 97r400 
0 5 5 16 

These results show that the head is indeed zero. The zero is 
extraneous, so now we define two functions that yield just the 
needed Pierce and Engel expansion from a rational. We only have 
to behead ( }. ) the results we just got: 

   PR =: 3 : '}. @((-. BS <.)CS)y.' 
   ER =: 3 : '}. @((<: BS >.)CS)y.' 
 
   PR 97r400 
4 33 100 
   ER 97r400 
5 5 16 

Let’s define the functions inverse to PR and ER and check whether 
each expansion contracts to 97r400. The method is essentially the 
same for both, so again we define an adverb that applies the 
appropriate subtraction function to insert (u. /) between the 
result of reciprocating (%) and product scanning (* / \) our lists 
of integers: 

   RB =: 1 : 'u. / * / \ % y.' 

and this makes the inverses easy to define: 
   RP =: - RB 
   RE =: + RB 

So now we use each of them: 
   RP PR 97r400 
97r400 
   RE ER 97r400 
97r400 
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So the expansions contract properly. We saw above that the list 
4 25 4 contracted to 97r400, and now have verified that the list 
4 33 100 does as well. In other words, both intercalation schemes 
will give an exact Gregorian year. The difference is that the cycle 
for the present Gregorian year is 400 years; for a 4 33 100 
calendar the cycle is 13,200 years. For each, the resulting average 
year length is 365.2425 days.  

By the way, the result 97r400 is given rather than the decimal 
equivalent 0.2425 because the results of PR and ER are both 
rationals, the same type as their arguments. See what happens if 
one just types in the numbers: 

   RP 4 33 100 
0.2425 
   RE 5 5 16 
0.2425 

The functions PR and ER will work properly only when applied to 
rational arguments. 

Engel Expansions and Gypsy Math 
The very ancient document called the Rhind papyrus includes a 
table of all fractions of the form 2/n from 2/3 through 2/101, and 
for each gives a list of from two to four unit fractions that sum to 
it. For example, 

2r3  = 1r2 + 1r6 
2r61 = 1r40 + 1r244 + 1r488 + 1r610 

The Engel expansions of rationals of the form 2/p for the first four 
odd primes give the same results as those listed in the Rhind 
papyrus: 

   BE =: [: % */\ 
 
   (BE @ ER)"0 [ 2r3 2r5 2r7 2r11 
1r2  1r6 
1r3 1r15 
1r4 1r28 
1r6 1r66 

This is not generally true, however. For example, the Rhind values 
for 2r21 are 1r14 and 1r42, whereas the rationals given by the 
Engel expansion are 1r11 and 1r231. However, I am now in a 
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position to bring some unfinished business to a close, that I’ve left 
in abeyance since June, 1981. In my last column as Recreational 
APL editor for APL Quote Quad, in a section called “Gypsy Math” 
I wrote: 

The Rhind papyrus ... shows, for each odd integer from 3 to 101, 
several integers whose reciprocals sum to 2÷Ω. For example, 
(2÷17)=+/÷9 153. Write a function F such that, for odd positive 
argument Ω, 

(2÷Ω)=+/FΩ 

2=ΡFΩ 

Ω FΩ 

Thus, F 17  9 153. 

I’m impressed by the fact that twenty years ago I knew how to 
give unit fraction results for Rhind fractions such as 2r17 without 
knowing anything about Engel expansions. However, the Engel 
expansion is completely general, and will handle any positive 
rational less than 1. Our Egyptian predecessors probably used a 
simpler formula which we would write in J notation as: 

   Egypt =: [: */\ (,  -:@>:) 
   Egypt"0 [ 3 5 7 11 
2  6 
3 15 
4 28 
6 66 

Postscript 
Erdös, by-the-bye, has a Bacon number of 4. Schechter explains 
how this came about in his book on Erdös: 

A mathematician and sometime actor named Gene Patterson 
appeared briefly in the 1993 documentary about Erdös, N is a 
Number. Patterson also had a role in Box of Moonlight with John 
Turturro, who was in The Color of Money with Tom Cruise, who 
appeared in A Few Good Men with Kevin Bacon. 

And Jeffrey Shallit is the proud possessor, in addition to his Erdös 
number of 1, of an Elvis number of 3. If you can’t guess what this 
is, you can read all about it at his web site:  

http://www.math.uwaterlooo.ca/~shallit 
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28 Boggle 
First published in Vector, 18, 1, (July 2001), 91-102. 

Boggle 
I suppose many of you have played as a child with a set of blocks, 
wooden cubes about an inch and a half on a side, with pictures, 
letters, numbers, and designs on the faces. Did you ever set the 
alphabet faces in a row to spell a word? Suppose you had such a 
set of blocks in which all of the faces had letters on them, and that 
you had a tray divided by partitions to form rows and columns, 
giving cells into which the blocks just fitted. Now if you jumble 
up your blocks in a bag, then take out a block at a time and with 
your eyes closed, put it securely in one of the cells at random until 
they are all full, you will find when you then open your eyes that 
the letters that are face up will be in all different orientations. 

Now if you are given the task of finding among these as many 
words of four or more letters formed among blocks that are conn-
ected either by an edge or a corner within three minutes, you will 
have some idea of how to play a word game I very much like. The 
game comes in two forms; the original game, the one I cut my 
teeth on, is called Boggle™, and is played on a 4-by-4 tray. The 
other game, which I now favour, and which appeared several 
years after Boggle was introduced, is called Big Boggle™, and is 
played on a 5-by-5 tray. The blocks are miniature, about five-
eighths of an inch on a side and made of plastic, as is the tray. 
There is also a clear plastic dome which fits snugly over the tray, 
permitting the whole to be turned upside down, shaken, and 
turned upright, so that with a little jiggling each block nestles 
upright in one of the cells. The game comes with a three-minute 
egg-timer and a little sheet of instructions. 

The letters on each of the sixteen Boggle cubes and the 25 Big Bog-
gle cubes are given by the columns of the tables below. They are 
shown as lower-case here, but in the game they appear as capitals.  
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The letter shown as ‘q’ is actually the digraph ‘qu’, and if used in 
a word counts as two letters: 

aaaaacdddeeeeehh    aaaaaaaabccccddddeeefgino 
abcfoieeieehilil    fdeaeaeajceeehhdhnmiiopoo 
ebhfomilsgirormn    ieeageefkeiiillhhsoiprroo 
ejoktolrthntstnn    rnefmegiqnlipnnnlstirrrtt 
goppttrvtnsvstqr    snernemrxsplsoooosttsvrut 
nosswuxyywuwtyuz    ynmsneuszttttrrtruttywywu 

Here are the rules supplied with the game: 

Object: To list, within 3 minutes, as many words of the highest 
point value as you can find among the random assortment of 
letters in the cube grid. 

Preparation: Each player should have a pencil and a piece of 
paper. Drop the letter cubes into the dome and place the grid, 
open side down, over the dome. Turn the domed grid right-side 
up, vigorously shake the cubes around, and maneuver the grid 
until each cube falls into place. Then, as one player removes the 
dome, another player starts the timer. 

Playing: When the timer starts, each player searches the 
assortment of letters for words of four letters or more. When you 
find a word, write it down. 

Words are formed from adjoining letters. Letters must join in the 
proper sequence to spell a word. They may join horizontally, 
vertically or diagonally to the left, right, or up-and-down. No 
letter cube, however, may be used more than once within a single 
word. 

Type of words allowed: The only words that are allowed are 
those that can be found in a standard English dictionary. You may 
look for any type of word − noun, verb, adjective, adverb, etc. 
Plural nouns are acceptable as are all verb tenses. Words within 
words are also allowed, e.g., master: mast, aster.  

Type of words not allowed: Proper nouns, abbreviations, 
contractions, hyphenated words, and foreign words that are not 
in an English dictionary. 

Scoring and winning: When the timer runs out, everyone must 
stop writing. Each player in turn then reads aloud his or her list of 
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words. Any word that appears on more than one player’s list 
must be crossed off all lists, including that of the reader. The same 
word found by a player in different areas of the grid may not be 
counted for multiple credit. 

After all players have read their lists, each player scores his or her 
remaining words, differing point values accorded to the words 
according to their lengths, as follows: 

no. of letters 4 5 6 7 8+ 

points 1 2 3 5 11 

The winner is a) the player whose words have earned the most 
points, or b) the first to reach 50 points, 100 points or whatever 
score is considered by all to be a reasonable target. 

I usually play until at least one player has reached or passed 100 
points. I’ve played the game with three or four players, but prefer 
the two-person game. My wife and I have established several 
additional house rules. Since I frequently wrote down spurious 
words, my wife insisted that there be a penalty for such. Thus, 
any word may be challenged. If it is not found in the dictionary 
the player is given a score of -1 for it. If it is in the dictionary, the 
player gets an additional point for it. We began by using our huge 
unabridged Merriam-Webster dictionary, but this, my wife 
claimed, gave me an unfair advantage, since I frequently wrote 
down archaic Scottish words and the like that were in this diction-
ary but not in smaller ones. We then began using the Concise Ox-
ford Dictionary (COD), but had to give up on that, too, since it 
favoured English words and English spellings. My wife was tired 
of me putting down words like twee and nous that are unknown 
on our side of the Atlantic. We now use the American Heritage 
Dictionary (AHD), Ken Iverson’s favourite. Here is a sample grid: 

t i n e 
n i n t 
o c n a 
r e t l 

These letters are shown in normal position; in practice they can 
have any of the four possible orientations. Try your hand at find-
ing words in this grid. Remember, you have just three minutes. 
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You can see the words I found, unaided by computer, at the end 
of this paper. 

The Problem 
Twenty years ago, when I was Recreational APL editor of APL 
Quote Quad, I received a letter from Robert Ashworth, of 
Carbondale, Illinois, asking if I could write a column on the 
Boggle game. I was agreeable to the extent of posing these 
problems to my readers (this was before Big Boggle was born, so 
assumes the smaller Boggle situation): 

a. Find the number of paths of length 4 in the grid. 

b. Find the number of paths of length 5. 

c. Write a suite of functions that, given a 4-by-4 character table, 
finds all words of length 4 and 5, using the rules of Boggle. 
Assume the existence of two tables w4 and w5 containing all the 
acceptable words of length 4 and 5, respectively. 

I thought this was the most difficult problem I’d ever proposed. 
Furthermore, at the time I had only vague ideas of how to go 
about solving it. Recently, nagged by this unfinished business, I 
revisited the problem, with a degree of success. 

A Boggle path is a sequence of distinct connected cells, connected 
in the Boggle sense. An interior cell is connected to the eight 
surrounding cells. An edge cell, not on a corner, is connected to 
the five surrounding cells. A corner cell is connected to the three 
surrounding cells. It may be suitable at times of to use the cell’s 
list indices: 

   ]m=:i.4 4 
 0  1  2  3 
 4  5  6  7 
 8  9 10 11 
12 13 14 15 

and at other times their row-column indices: 
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   ]q=:<"1 (4 4#: m) 
+---+---+---+---+ 
|0 0|0 1|0 2|0 3| 
+---+---+---+---+ 
|1 0|1 1|1 2|1 3| 
+---+---+---+---+ 
|2 0|2 1|2 2|2 3| 
+---+---+---+---+ 
|3 0|3 1|3 2|3 3| 
+---+---+---+---+ 

Normalizing any 3-by-3 portion of the row-column index grid by 
subtracting the central item from each of the items, shows that 
two cells are connected if the maximum magnitude of the 
difference of their row-column indices is 1.  

   (] -&.> (<1 1)"_ { ])3 _3{.q 
+-----+----+----+ 
|_1 _1|_1 0|_1 1| 
+-----+----+----+ 
|0 _1 |0 0 |0 1 | 
+-----+----+----+ 
|1 _1 |1 0 |1 1 | 
+-----+----+----+ 

The only way I know to find the number of paths for different 
cases is by constructing the paths. So to solve problems a and b 
above implies finding the paths themselves.  

An easy but expensive way is to find a superset of the paths, by 
taking all the combinations of sixteen things taken four at a time, 
that is, 4!16 or 1,820, then get each of the 24 permutations of 
every combination, giving (!4)*(4!16) or 43,680 four-item lists, 
then select from the table all rows giving Boggle-connected paths. 
The verb comb is due to Roger Hui, and it and its component parts 
are given at the end of this paper.  

The function paths has syntax r =: n paths k and gives the 
paths of length n in a k-by-k grid. 

paths =: dyad define 
 
NB. find all paths of length x. in a grid of size y. * y. . 
NB. px is a table of all the permutations of length x. .  
   px =. (i.!x.)A.i.x.   
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NB. cxn is a table of all the combinations 
NB. of y. things taken x. at a time.  
   cxn =. x. comb *: y.  
NB. pc is a table of all the permutations 
NB. of each of the combinations.  
   pc =. ,/px{"2 1 cxn   
NB. (i{mpc) is 1 if (i{cxn)is Boggle-connected and 0 otherwise.  
   mpc =. y. okf pc      
NB. cxno is all the paths of length x. in a y.*y. grid.  
   cxno =. /:  mpc#pc  
)  

This is the okf function: 
   okf=: 13 : '1=>./,|2-/\(2#x.)#:y.'"1 

Given a list y., this takes the row-column representation 
((2#x.)#:y.) of each item, the difference of pairs of successive 
representations (2-/\), their magnitudes (|), ravels these (,), 
finds their maximum (>./), compares this to 1 (1=), yielding 1 if 
the list is Boggle-connected, and 0 otherwise. 

For example, the number of paths of length 3 in a 4-by-4 grid is 
given by: 

   #3 paths 4 
408 

Here are four successive items from pc: 
   37 38 39 40{pc 
2 0 4 1 
2 1 0 4 
2 1 4 0 
2 4 0 1 

And here is the result of applying 4 okf to each of these rows: 
   4 okf 37 38 39 40{pc 
0 1 1 0 

If you look again at m you can verify that 2 0 4 1 and 2 4 0 1 
are not Boggle-connected, but 2 1 0 4 and 2 1 4 0 are: 

   m 
 0  1  2  3 
 4  5  6  7 
 8  9 10 11 
12 13 14 15 

Don’t bother to use this function. It takes an unbearably long time 
as the path lengths get just a little larger. It is intended only to let 
you know how my thinking was going. 



Boggle 
 

 

225 

 

An easier way to get the paths is to build them up starting with 
the n2 paths of length 1, and extending these only with promising 
items. At this point I showed my astuteness by sending a message 
to Roger Hui explaining what I was doing, and asking him if 
anything bright in a combinatorial way occurred to him. I 
received, in rapid succession, four replies, written while he was 
babysitting his son Nicholas as he was in the middle of moving 
from Toronto to Vancouver. I’ll pass over the first three messages 
because, as usual with Roger, one idea suggested a better idea. 
Here is his last effort: 

rimb   =: _1: ,. (_1: , ] , _1:) ,. _1: 
tileb =: 3 3 &(,;._3) 
nborsb=: (4 1 4#1 0 1)&#"1 @ (,/) @ tileb @ rimb @ i. @ ,  
 
initb  =: ,. @ i. @ *: 
extendb=: 8&#@] ,. [: , {:"1@] { [ 
testb  =: *./"1@(0&<:) *. i.@{:@$ -:"1 i."1  
stepb  =: (testb # ])@extendb 
pathb=: 4 : '(nborsb x.) stepb :(y.-1) initb x.' 

The pathb dyad has syntax z =: n pathb k, and yields a table 
with k columns, with rows giving all the paths of length k to be 
found in an n-by-n grid. It begins by using initb to form a seed 
table having all possible starting cells of paths, namely, a single 
column with values i. *: n. Each use of its step dyad, 
beginning with the seed table, extends its argument, a table of 
paths of length k-1, to form the table of paths of length k. The 
stepb dyad requires as its left argument a table with eight 
columns and as many rows as there are cells in the grid. Each row 
contains a list of all the neighbours of each cell. In the case of edge 
cells, which have only five neighbours, and corner cells, with only 
three, the lists are filled out with _1 values. The nborsb monad 
builds this table by forming an n-by-n grid with (i.@, ) and 
using the rimb monad to border this with _1s. This is tesselated 
into raveled 3-by-3 squares with the tileb monad. , and (,/) 
makes the individual tables into one large table. To complete the 
table the central column is deleted with (4 1 4#1 0 1)&#"1.  
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Here is what this table for the 4-by-4 case looks like: 
   nborsb 4 
_1 _1 _1 _1  1 _1  4  5 
_1 _1 _1  0  2  4  5  6 
_1 _1 _1  1  3  5  6  7 
_1 _1 _1  2 _1  6  7 _1 
_1  0  1 _1  5 _1  8  9 
 0  1  2  4  6  8  9 10 
 1  2  3  5  7  9 10 11 
 2  3 _1  6 _1 10 11 _1 
_1  4  5 _1  9 _1 12 13 
 4  5  6  8 10 12 13 14 
 5  6  7  9 11 13 14 15 
 6  7 _1 10 _1 14 15 _1 
_1  8  9 _1 13 _1 _1 _1 
 8  9 10 12 14 _1 _1 _1 
 9 10 11 13 15 _1 _1 _1 
10 11 _1 14 _1 _1 _1 _1 

The table for the 5-by-5 case is similar, but with 25 rows instead 
of 16.  

At each step, the last item of each of the current paths is used to 
select the appropriate row from the neighbours table, that row is 
replicated eight times, and each neighbour is appended to one of 
the eight replicated rows, using the extendb dyad. The testb 
monad removes illegal rows from this extended table, ensuring 
that no item is duplicated, and no _1s are present in the result. 
This process continues for k-1 steps, at the end of which we have 
obtained the desired table. 

The pathb function executes 4 pathb 4 in 0.02 seconds, and  
4 pathb 5 in 0.09 seconds on my 233MHz computer. With its 
help I found the answers to problems a and b: 

   #4 pathb 4 
1764 
   #4 pathb 5 
6712 

The time for my path function to do 4 path 4 is 43.4 seconds. I 
don’t have the patience to try cases involving longer paths. 

Now it’s time to solve problem c. I have carried about with me for 
about 15 years word lists from the American Heritage Dictionary. 
The original data came from the publisher Houghton-Mifflin on a 
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single file on a magnetic tape which Joey Tuttle had mounted on a 
tape drive in the Toronto machine room of I. P. Sharp Associates 
and read into the Amdahl V8 then in use there. He processed this 
file in several ways, the one of most use to me being sorted lists of 
words all of the same length, which I have named Words02 
through Words26. These are now resident on a Macintosh 
computer in my home. With the tools you’ve seen developed, you 
could probably arrive at a solution yourself. Assume that you 
have the b, the ravel of the letters in the grid, p the table of paths, 
and w the list of words, all for a given length. Then 

   r =: /:  . (w e. p { b) # w 

will give r, a sorted table of all the words of a given length, with 
no duplicates, satisfying a legal path on the grid.  

Before showing the results I obtained using the phrase above, I 
give first the words I found unaided by computer in this grid: 

t i n e 
n i n t 
o c n a 
r e t l 
 
ante 
cent 
coin 
core 
lane 
late 
nice 
nine 
rent 
tine 
tint 

alter 
inner 
inter 
lance 
later 
nance 
nicer 
octal 
renal 

cental 
lancer 
lancet 
lanner 
recoin 
rennet 
rental 
tanner 
tannin 
tinner 

All of these are in COD. All but “nance” and “recoin” are in AHD.  
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And here are those found by the computer: 
anne 
ante 
cent 
cero 
coin 
core 
etna 
icon 
lane 
late 
neon 
nero 
nice 
nine 
nore 
once 
reni 
rent 
tate 
tent 
tine 
tint 

alter 
ancon 
anent 
anion 
conti 
creon 
enate 
inane 
inner 
inter 
lance 
later 
nicer 
renal 
renan 
renin 
rente 
tater 
tinct 

alnico 
cental 
cetane 
encina 
encore 
innate 
lancer 
lancet 
lanner 
latent 
nocent 
octane 
octant 
rectal 
rennet 
rennin 
rental 
tanner 
tannic 
tannin 
tenant 
tinner 

The results of me versus the computer are: 4-letter words, 11 vs 
16; 5-letter words, 9 vs 16; and 6-letter words, 10 vs 22. The second 
table shows a defect of my word collection. The tape we got from 
Houghton Mifflin includes biographical and geographical entries, 
and these have not been removed. I’ve put in italics those words, 
which, by Boggle rules, are not legal words. Also, COD has some 
words not in AHD and vice-versa. For example, “cero” (a western 
Atlantic fish) is in AHD, but not in COD, and “recoin” is in COD 
but not AHD.  

There are longer words in the list. How many of you found 
“continent”? And “continental”? And the 16-letter behemoth 
“intercontinental”? Of course, I contrived this case, choosing a 
suitable looking word from my Word16 file, in order to fill a 4-by-
grid completely. 

Here is an incomplete table of the number of paths of given 
lengths in grids from size two to five: 

paths =: 0 : 0 
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The number of paths of length k connecting distinct adjacent 
points in a square grid of n * n points: 

k\n    2      3       4       5 
1      4      9      16      25 
2     12     40      84     144 
3     24    160     408     768 
4     24    496    1764    3768 
5          1208    6712   17280 
6          2240   22672   74072  
7          2984   68272  296360 
8          2384  183472 
9           784  436984 
) 

I’ve been unable to find the law of this table. Row 1 are the 
squares, of course. Row 2 is four times the alternate triangular 
numbers (3 10 21 36). Beyond that deponent witnesseth not. The 
columns headed 2 and 3 are complete, but even with Hui’s much 
more efficient functions, larger cases for columns 4 and 5 are still 
unattainable with my computer (and my patience).  

There are two ways the task can be made more efficient: 1) instead 
of using pathb, which necessitates going back to the beginning for 
each case computed for a given grid size, the previous results can 
be stored, allowing case k to be computed by using the stepb fun-
ction on the k-1 result; and 2) by taking advantage of the symmet-
ries of the square grid. The number of paths of a given length pro-
ceeding from any corner point are the same; similarly for symmet-
rically located edge points and interior points. The symmetries are 
evident if the number of paths beginning from each grid point are 
displayed. For example, here are the number of paths from each 
point for a 4-by-4 case and a 5-by-5 case: 

   4 4$#/. {.|:4 pathb 5 
322 435 435 322 
435 486 486 435 
435 486 486 435 
322 435 435 322 
   5 5$#/. {.|:5 pathb 6 
1874 2752 2998 2752 1874 
2752 3524 3672 3524 2752 
2998 3672 3784 3672 2998 
2752 3524 3672 3524 2752 
1874 2752 2998 2752 1874 
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In general, for a grid of side n, containing n2 points, there are only 
g(n) distinct numbers of paths, where g is  

   g=:2&!@>:@>.@-: 

Here are the results of g applied to grid sizes 1 through 8: 
   (,:g) 1+i.8 
1 2 3 4 5 6  7  8 
1 1 3 3 6 6 10 10 

So that, for the 4-by-4 case, only three values have to be comput-
ed, not 16, and for the 5-by-5 case, only six, not 25.  The total 
number of cases for a given path length k in a grid of size n can be 
obtained by an inner product: 

   4 4$#/. {.|:4 pathb 4 
 75 109 109  75 
109 148 148 109 
109 148 148 109 
 75 109 109  75 
   4 8 4+/ . * 75 109 148 
1764 
   #4 pathb 4 
1764 

When the actual paths are needed, the additional cases can be 
obtained from the abbreviated tables by using the appropriate 
indices to select from them, the indices being the permutations 
obtained from the ravels of the rotations and reversals of the table 
i.(n.n).   

Here is how this is done: 
NB. get neighbours table 
   n4=:nborsb 4 
NB. form monad to step previous case by bonding  
NB. stepbs left argument 
   f=:n4&stepb 
NB. initial case for abbreviated situation 
   ] ip=:,.0 1 5 
0 
1 
5 
NB. Get all paths for abbreviated argument 
   $p42=:f ip 
16 2 
NB. Only 16 cases of 84 obtained using full arg 
   $4 pathb 2 
84 2 
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NB. Use phrase 7.b.d8 to obtain desired permuted 
NB.                    lists of all cell numbers 
   ] allpcn=:,"2 (i.8)d8"0 2 i.4 4 
 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 
12  8  4  0 13  9  5  1 14 10  6  2 15 11  7  3 
15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0 
 3  7 11 15  2  6 10 14  1  5  9 13  0  4  8 12 
12 13 14 15  8  9 10 11  4  5  6  7  0  1  2  3 
15 11  7  3 14 10  6  2 13  9  5  1 12  8  4  0 
 3  2  1  0  7  6  5  4 11 10  9  8 15 14 13 12 
 0  4  8 12  1  5  9 13  2  6 10 14  3  7 11 15 
NB. Get all length-2 paths (with possible  
    duplicates) 
   $q42=:,/p42{"1/allpcn 
128 2 
NB. Get ordered set of all length-2 paths 
   $s42 =: /:  . ,/ q42 
84 2 
NB. compare ordered set to long-winded but  
    accurate set 
   (4 pathb 2) -: s42 
1  
 

Appendix 
Hui’s combinations suite: 
   startc =. i.@-.@- 
   countc =. <:@[ ! <:@[ + |.@startc 
   indexc =. ;@:((i.-])&.>) 
   recurc =. (countc#startc) ,. (indexc@countc{comb&.<:) 
   testc  =. *@[ *. < 
   basisc =. i.@(<: , [) 
   comb  =. basisc`recurc @. testc 
 





29 The Counterfeit Coin Problem 
First published in Vector, 18, 3, (January 2002), 93-103. 

 

The Counterfeit Coin Problem, unlike many mathematical 
puzzles, is not a creation of ancient times nor of the 19th century, 
and does not appear in the classical works of Loyd, Dudeney, Ball, 
or Kraitchik. It springs from a problem posed by E. D. Schell in 
the January 1945 issue of the American Mathematical Monthly: 

You have eight similar coins and a beam balance. At most one coin is 
counterfeit and hence underweight. How can you detect whether 
there is an underweight coin, and if so, which one, using the balance 
only twice? 

Try solving this. I give my solution at the end of this paper.  

Most of the solutions I have seen for this kind of problem give an 
initial allocation of the coins to the balance’s pans, and on the 
basis of the weighing give another allocation, and so on. In 1978 J. 
G. Mauldon published an IBM Research Report RC 7476, in which 
he gave a solution in which the weighings were predetermined, 
not a result of a previous weighing, entitled “Strong Solutions for 
the Counterfeit Coin Problem”. His statement of the problem is 
generalized from Schell’s. I’ll call this the first problem: 

Given C coins, of which it is suspected that one (at most) is counterfeit 
(either underweight or overweight), it is required, in at most W 
weighings on an ordinary beam balance, to identify the counterfeit (if 
present) and to determine whether it is heavy or light. 

He defines a strong solution to which “The choice and 
distribution of coins for each weighing is to be independent of the 
other weighings.” In support of his method, he proves the 
theorem that “if the pair (W,C) admits a solution at all, then it 
admits a strong solution.” Thus, no other solution can be better 
than his strong technique. His method is array oriented, and he 
gives a suite of APL direct definition functions which give a 
solution to the problem, acknowledging “his indebtedness to the 
encouragement and valuable advice of Dr. Kenneth Iverson.” He 
also gives solutions for a second problem, where we are given that 
exactly one coin is counterfeit, and we are not required to specify 
whether it is heavier or lighter, but merely to identify it, and a 
third problem in which in addition to the given set of coins, we 
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are allowed to incorporate into the weighings an arbitrary number 
of coins known to be of standard weight. I’ll only discuss the first 
problem. His solutions to all three problems are similar. 

He defines a solution as a table of weighings showing the 
allocation of coins at each weighing. In table (A) are his solutions 
for all nine cases for which W is 3. These are for values of C from 4 
through 12, inclusive.  

 C = 4, 7, 10        C = 5, 8, 11          C = 6, 9, 12 
+-------------------+---------------------+-----------------------+ 
|0 0 1 2            |1 1 0 2 2            |0 1 2 0 1 2            | 
|0 2 1 0            |1 2 2 1 0            |0 1 2 1 2 0            | 
|1 0 0 2            |2 1 2 1 0            |1 2 0 0 1 2            | 
+-------------------+---------------------+-----------------------+ 
|0 1 2 0 0 1 2      |2 0 1 1 1 0 2 2      |0 1 2 0 1 2 0 1 2      | 
|1 2 0 0 2 1 0      |2 1 0 1 2 2 1 0      |0 1 2 1 2 0 1 2 0      | (A) 
|2 0 1 1 0 0 2      |2 0 1 2 1 2 1 0      |1 2 0 0 1 2 1 2 0      | 
+-------------------+---------------------+-----------------------+ 
|0 1 2 0 1 2 0 0 1 2|0 1 2 2 0 1 1 1 0 2 2|0 1 2 0 1 2 0 1 2 0 1 2| 
|1 2 0 1 2 0 0 2 1 0|1 2 0 2 1 0 1 2 2 1 0|0 1 2 1 2 0 1 2 0 1 2 0| 
|1 2 0 2 0 1 1 0 0 2|2 0 1 2 0 1 2 1 2 1 0|1 2 0 0 1 2 1 2 0 2 0 1| 
+-------------------+---------------------+-----------------------+ 

Mauldon calls the solution for twelve coins maximal. A maximal 
solution is one in which C is the largest number of coins admitting 
a solution for a given W. Solutions for less than the maximal 
number of coins he calls submaximal. He tackles maximal solutions 
first, for these are used in forming submaximal solutions as well.  

Each solution has three rows, one for each of the three weighings, 
and four through 12 columns, one for each of the coins. Each row 
gives an allocation of the coins as being either set aside, or put in 
the left pan, or put in the right pan, represented by 0, 1, or 2, 
respectively. Notice that in each weighing the number of coins 
placed on the left pan is the same as the number placed on the 
right pan, that is, the solutions are balanced. For example, in the 
four-coin case the first weighing sets aside coins 0 and 1, puts coin 
2 in the left pan, and coin 3 in the right pan. When 3|C is one, that 
is, for C of 4, 7, and 10, the number of coins set aside is one more 
than the number on each pan. When 3|C is 2, for C of 5, 8, and 11, 
the number of coins set aside is one less than the number on each 
pan. When 3|C is 0, as in the right column, for 6, 9, and 12, the 
number of coins set aside is the same as the number on each pan. 
At each weighing, the possible results are: the pans are level, or 
the left pan is lower, or the right pan is lower, represented by 0, 1, 
and 2, respectively. The result of all three weighings is thus a list V 
of three items, chosen from 0 1 2.  
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For example, if there are four coins, and the counterfeit is coin 0, 
and is heavier than a good coin, the result of the first weighing is 
0, since coin 0 is set aside; for the same reason, the result of the 
second weighing is also 0; in the third weighing coin 0 is in the 
left pan, so the result is 1. The overall result V is thus 0 0 1, and 
this corresponds to column 0 of the 4-coin solution. Additional 
complications come about if the counterfeit is lighter, for which 
table (B) is appropriate: 

+-------------------+---------------------+-----------------------+ 
|0 0 2 1            |2 2 0 1 1            |0 2 1 0 2 1            | 
|0 1 2 0            |2 1 1 2 0            |0 2 1 2 1 0            | 
|2 0 0 1            |1 2 1 2 0            |2 1 0 0 2 1            | 
+-------------------+---------------------+-----------------------+ 
|0 2 1 0 0 2 1      |1 0 2 2 2 0 1 1      |0 2 1 0 2 1 0 2 1      | 
|2 1 0 0 1 2 0      |1 2 0 2 1 1 2 0      |0 2 1 2 1 0 2 1 0      | (B) 
|1 0 2 2 0 0 1      |1 0 2 1 2 1 2 0      |2 1 0 0 2 1 2 1 0      | 
+-------------------+---------------------+-----------------------+ 
|0 2 1 0 2 1 0 0 2 1|0 2 1 1 0 2 2 2 0 1 1|0 2 1 0 2 1 0 2 1 0 2 1| 
|2 1 0 2 1 0 0 1 2 0|2 1 0 1 2 0 2 1 1 2 0|0 2 1 2 1 0 2 1 0 2 1 0| 
|2 1 0 1 0 2 2 0 0 1|1 0 2 1 0 2 1 2 1 2 0|2 1 0 0 2 1 2 1 0 1 0 2| 
+-------------------+---------------------+-----------------------+ 

The entries in (B) are not used for allocating the coins, but rather 
to determine the false coin when it is lighter than the good coins. 
For example, if their are four coins, and the false coin is coin 0, 
and is lighter than the others, the result would be 0 0 2, 
corresponding to column 0 of the 4-coin table in (B). The tables in 
(B) are the 3s complement of those in (A).  

The table below gives some of the vital statistics of the problem: 
+-+----+----+----+ 
|W| N  | L  | G  | 
+-+----+----+----+ 
|3|   9|   4|  12| 
|4|  27|  13|  39| 
|5|  81|  40| 120| 
|6| 243| 121| 363| 
|7| 729| 364|1092| 
|8|2187|1093|3279| 
+-+----+----+----+ 

Column W gives the number of weighings required, column N 
gives the number of different cases that W weighings can solve, 
column L gives the least number of coins for W, and column G 
gives the greatest number of coins for W. For example, if W is four, 
27 cases are solvable, with 13 coins the smallest case, and 39 coins 
the largest. I don’t show the case for W of 2, since three is the only 
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meaningful case. A one-coin case admits of no comparisons, and a 
2-coin case can’t discriminate between heavier and lighter coins. 

Given any number of coins K between L and G inclusive, W may be 
found from K by taking the ceiling of the base-3 log of 3 plus twice 
K: 

   WK =: >.@(3& .)@(3&+)@(2&*) 
   WK 4+i.9 
3 3 3 3 3 3 3 3 3 
   WK 13+i.27 
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4  

N is a power of three, namely 3 W-1, and is included between L 
and G, and is the only power of 3 included. Column L is the sum-
scan of powers of 3; the first item is 1+3, the second is 1+3+9, and 
so forth. Column G is thrice column L, and is also given by 

   ((3 W)-3)%2 
12 39 120 363 1092 3279 

Given any positive integer q greater than one, its representation in 
base q has 1 as its most significant digit (msd), and is in fact 10. 
For any q greater than 2, its double is represented in base q by 20. 
Its square is 100 and the square’s double is 200. Its cube is 1000, 
and so forth. All the numbers from q up to but not including its 
double have msd of 1. All the numbers from p any power of q up 
to but not including its double have msd of 1. For example, the 
ternary representations 1 and 2 are 1, 2; of 3, 4, 5, 6 are 10, 11, 12, 
20; of 9 through 18 are: 

100 101 102 110 111 112 120 121 122 200 

There are L integers less than N that have msd of 1. For example, 
if W is 3, then N is 9 and there are 4 ternary integers with msd 1 
less than 9; these are 1, 3, 4, and 5, which have ternary 
representations of 1, 10, 11, and 12. When represented in a radix 
large enough to represent N, the msd numbers have leading zeros. 
For example, 9 is represented by 100, and those for 1, 3, 4, and 5 
are then 001, 010, 011, and 012.  

Constructing a maximal solution 
We’ll use the case where W is 3 to exemplify the general case. 

Start with the ternary representations of the msd numbers less 
than 3 W-1. In our case these are 1 3 4 5.  
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First we produce the powers of 3 less than 3 W-1: 
   W =: 3 
   3  i. <: W 
1 3 

Next we use the hook (+i.) with each of these: 
   (+ i.) &.> 3  i. <: W 
+-+-----+ 
|1|3 4 5| 
+-+-----+ 

Last, we raze this: 
   ; (+ i.) &.> 3  i. <: W 
1 3 4 5 

We convert these to ternary, getting four distinct representations: 
   ] za =: (W # 3) #: ; (+ i.) &.> 3  i. <: W 
0 0 1 
0 1 0 
0 1 1 
0 1 2   

Each row of za is used to create two additional rows by adding 1 
and 2, mod 3, to it. Adding 1, mod 3, to 0 1 2 gives 1 2 0; 
adding 2 to 0 1 2 gives 2 0 1. Consequently each three-row 
subtable has distinct rows. Notice that each column is also 
balanced, having one each of 1 and 2. 

   ] zb =: 3|0 1 2+/"1 za 
0 0 1 
1 1 2 
2 2 0 
0 1 0 
1 2 1 
2 0 2 
0 1 1 
1 2 2 
2 0 0 
0 1 2 
1 2 0 
2 0 1 

This is turned into a single table by applying append insert (,/) to 
it. Since the individual columns of the subtables were balanced 
the whole column is also balanced. In this case each weighing  
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places four coins in each pan. 
   ,/ zb 
0 0 1 
1 1 2 
2 2 0 
0 1 0 
1 2 1 
2 0 2 
0 1 1 
1 2 2 
2 0 0 
0 1 2 
1 2 0 
2 0 1 

I’ll transpose this to allow you to more easily to compare with the 
lower right-hand corner of table (A): 

   ] zc =: |: , / 3 | 0 1 2 +/ "1 zb 
0 1 2 0 1 2 0 1 2 0 1 2 
0 1 2 1 2 0 1 2 0 1 2 0 
1 2 0 0 1 2 1 2 0 2 0 1 

The entire maximal solution process can be encapsulated in 
monad SX, which takes the number of weighings as argument. 

   SX =: 13 : ',/ 3 | 0 1 2 +/"1 (y. # 3) #: ; (+ i.) &.> 3  i. <: y.' 

   |: SX 3 
0 1 2 0 1 2 0 1 2 0 1 2 
0 1 2 1 2 0 1 2 0 1 2 0 
1 2 0 0 1 2 1 2 0 2 0 1 

Constructing a general solution 
Mauldon’s method of obtaining a general solution involves a 
fairly complicated way of choosing one of two tables to be 
appended, in the cases where the number of coins has a 3-residue 
of 1 or 2, or no appended table for the case where the 3-residue is 
0. It simplifies things considerably if a third, empty table, is 
provided for this last case. If we call the appended tables A0, A1 
and A2, for residues of 0, 1 and 2, respectively, and form them 
into a list of boxes AS. Mauldon doesn’t give the principles used in  
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constructing A1 and A2, he merely presents them without apology. 
   ] AS =: A0;A1;A2 
+---+-----+-----+ 
|   |0 0 1|2 2 2| 
|   |0 2 0|0 1 0| 
|   |1 1 0|1 0 1| 
|   |2 0 2|1 1 2| 
|   |     |1 2 1| 
|   |     |0 2 2| 
|   |     |2 1 1| 
|   |     |2 0 0| 
+---+-----+-----+ 

Each of these is balanced, and the last five rows of A2 are also 
balanced. If K is the number of coins in C, the proper table to 
append can be given by: 

   > AS {  3 | K 
2 2 2 
0 1 0 
1 0 1 
1 1 2 
1 2 1 
0 2 2 
2 1 1 
2 0 0 

This isn’t all that is needed. The three columns in the tables are 
suited to the least number of weighings that may be required. If 
more weighings than three are needed, the first column is 
replicated W-2 times. For example, if W is 5 there are five 
weighings and the first column is replicated thrice: 

   ((W-2)#0), 1 1#"1 A2 
2 2 2 2 2 
0 0 0 1 0 
1 1 1 0 1 
1 1 1 1 2 
1 1 1 2 1 
0 0 0 2 2 
2 2 2 1 1 
2 2 2 0 0  

A dyad SA to produce a table to append having the necessary 
number of columns can thus be given by: 

   SA =: 13 : '(((y.-2)#0),1 2){"1>AS{ 3|x.' 
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where x. is the number of coins and y. is the number of 
weighings. 

The two dyads SX and SA can be combined to give a general 
solution function SG: 

   SG =: 13 : '(-x.){.x.(SX,SA)y.' 

where x. and y. are as in SA. The phrase (-x.){ forms the 
solution by taking the last x. rows of the table formed by 
appending the maximum and the appended tables.  

A solution for the case of 8 coins and 3 weighings can be obtained 
by: 

   8 SG 3 
2 2 2 
0 1 0 
1 0 1 
1 1 2 
1 2 1 
0 2 2 
2 1 1 
2 0 0 

I found it convenient to have a monad which takes a list of coins 
as argument. The monad is: 

   SC =:(SG WK)@# 
   C =: 0 0 0 0 0 1 0 0 
   SC C 
2 2 2 
0 1 0 
1 0 1 
1 1 2 
1 2 1 
0 2 2 
2 1 1 
2 0 0 

Finding a false coin 
We can find a solution by writing: 

   S+//."1&.|:C 

The dual transpose (&. |:) causes the arguments to be transposed 
before being used. This has no effect on the coin list C, but is 
effective on S, interchanging columns and rows. The rank one ("1) 
allows the rows of transposed S to be used individually with C. 
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The sum by key (+//.) adds the items of C according to the keys 
in the row of transposed S. The result of sum key of the first row 
with C is: 

   2 0 1 1 1 0 2 2 +//. 0 0 0 0 0 1 0 0 
0 1 0 

The result comes from summing all the items of the right 
argument corresponding to 2s in the left argument (0), then those 
corresponding to 0s (1) then those corresponding to 1s (0).  

The same thing occurs when I use all the rows of transposed S 
with C: 

   S +/ /."1 &. |: C 
0 1 1 
1 0 0 
0 0 0 

This is difficult to interpret because the first column 0 1 0 is in 
the order 2 0 1, the order in which they occur in the first column 
of S; the second column 1 0 0 is in the order 2 1 0; the third 
column is in the order 2 0 1.  

In order to avoid this difficulty, I prefix the solution rows 
(transposed columns) with 0 1 2 and the coin list with 0 0 0. 
The prefixed zeros on the coin list can’t alter the result, but the   
0 1 2  prefixed to the columns ensures that the result comes in a 
way that is easy to interpret.  

   ] zr =: }. S (0 1 2&,@[ +//. 0 0 0&,@])"1&.|: C 
0 0 0  
0 1 1 

I drop the first row of the result, which corresponds to the coins 
set aside, because in the physical experiment these are not seen. 
The table zr is interpreted thus: the rows correspond to left pan 
and right pan, and the columns correspond to weighings. In the 
first weighing the left and right pans were level. In the second and 
third weighing the right pan was lower. 

Now, if I take the difference of the left and right pan rows I get: 
   -/}.S (0 1 2&,@[ +//. 0 0 0&,@])"1&.|: C 
0 _1 _1 
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And I need the 3s-complement of this: 
   3|-/}.S (0 1 2&,@[ +//. 0 0 0&,@])"1&.|: C 
0 2 2 

This tells me that in the first weighing the pans were level, and in 
the last two the right pan was lower. 

The dyad WR encapsulates the preceding steps: 
   WR =: 13 : '3|-/ }. x. (0 1 2&,@[ +//. 0 0 
0&,@])"1&.|: y.' 
   ] WL =: S WR C 
0 2 2 

The next step is to find the index of WL in either S or its 
3s complement. The 3s complement is formed by taking the 
3-residue of -S.This is laminated (,:) to S, forming SC:  

   ] SC =: (,:3&|@-)S 
2 2 2 
0 1 0 
1 0 1 
1 1 2 
1 2 1 
0 2 2 
2 1 1 
2 0 0 
1 1 1 
0 2 0 
2 0 2 
2 2 1 
2 1 2 
0 1 1 
1 2 2 
1 0 0 

By using rank 2 1 with the index of function. we can obtain the 
indices in both planes of SC: 

   SC i."2 1 WL 
5 8 

Since there are 8 items in each of the tables, the result 5 8 means 
that the weighing list was found in item 5 of the first table, and 
not at all in the second. This sequence is encapsulated in dyad WI: 

   WI =: 13 : '((,:3&|@-)x.)i."2 1 y.' 
   S WI WL 
5 8 



The Counterfeit Coin Problem 
 

 

243 

 

This has all the information needed for the answer. The index is 
clearly the smaller of the two values. The heavier or lighter 
indication is given by whether the index is in the first or second 
table: if in the first, it is heavier; if in the second it is lighter. The 
final result can thus be given by RW: 

   RW =: 13 : '((<./y.),({&_1 1)</y.)' 
   RW 5 8 
5 1 

This says that coin 5 is false, and it is heavier than a good coin. 

To complete the problem, it would be necessary to provide for the 
case where there isn’t a false coin. What happens then? 

   S WI 0 0 0 
8 8 
   RW 8 8 
8 _1 

So the result when there is no false coin is an impossible index 
and a lighter coin indication. 

Solution to Schell’s Problem 
Assume the eight coins are labeled A B C D E F G H. Then the 
steps below show how to solve the problem with two weighings. 
The first column gives the step number, and the next two columns 
give the allocation of coins to pans. The three columns at the right 
indicate the result of the weighing. After step 1, only one of either 
step 2 or step 3 or step 4 is executed. Each of these steps has 3 
possible outcomes. For example, if the result of step 1 is “right pan 
high”, go to step 3, which tells us to place coin D in the left pan 
and coin E in the right pan. If the left pan is now high, this means 
that D is the false coin, and so forth. 
 

step left pan right pan left pan high right pan high pans level 

1 A B C D E F go to step 2 go to step 3 go to step 4 

2 A B A B C 

3 D E D E F 

4 G H G H none 

 





30 Second Order Josephus 
First published in Vector, 18, 4, (April 2002), 132-138. 

 

Every once in a blue moon this column is relatively easy to write. 
This one almost writes itself. Just a short while ago I received an 
intriguing message. It forms the bulk of this column. I’ve just had 
to change a word here and there and adjust typography as 
needed. Here’s how the message opens: 

From  bantchev@math.bas.bg Thu Jan 17 18:07:53 2002 
Date:  Fri, 30 Nov 2001 18:32:13 -0800 (PST) 
From:  Boyko Bantchev  
To:  forum@jsoftware.com 
Subject:  Second-order Josephus 

In a recent posting Eugene McDonnell defined the verb S that gives 
the survivor number for the Josephus problem (also in Vector 9/2 
(1992)): 
   S=. 1&|.&.#: 
Now suppose that, for n persons, S(n) is not the survivor number, 
but the one to be eliminated; i.e., every second person in a circle is 
marked until only one remains—and that one is eliminated. 

This leads to a “second-order survival problem”; having eliminated 
S(n), start again from the beginning with the remaining n-1 people, 
eliminate the one whose ordinal number in the new sequence is  
S(n-1), then do the same with S(n-2) and so forth until only one is 
left. What is the number S2(n) of the second-order survivor? 

I must confess that my first reaction was somewhat guarded. I 
wasn’t at all sure that this problem would lead to as much in the 
way of theory as the original Josephus did. For example, the book 
Concrete Mathematics, by Graham, Knuth, and Patashnik, devotes 
a full nine pages to Josephus, and gives half a dozen Josephus 
problems, in section 1.3. However, my mind was open, so I 
plowed on. Bantchev’s message continues: 

The verb 

   E=: ((<:@[{.]),}.) S@# 
eliminates the S#y -th member from any list y, so, if: 

   n=: 9 
and 

   ]y=: 1+i.n 
1 2 3 4 5 6 7 8 9 
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   E y 
1 2 4 5 6 7 8 9    NB. since 3=S 9 
   E :2 y 
2 4 5 6 7 8 9      NB. since 1=S 8 
   E :3 y  
2 4 5 6 7 8        NB. since 7=S 7 
   E :4 y 
2 4 5 6 8          NB. since 5=S 6 
   E :5 y 
2 4 6 8            NB. since 3=S 5 
   E :6 y 
4 6 8              NB. since 1=S 4 
   E :7 y 
4 6                NB. since 3=S 3 
   E :8 y 
6                  NB. since 1=S 2 

 

Therefore, 6 survives ( 6=S2(9) ). 

In general, we can set 
   S2=: E :(<:@#)@(>:@i.) 
but, in fact, it can be shown that, for any n > 1, S2(n) is 
>: k+2 <:m when k<2 <:m , and 2 m otherwise, where 
m =: <.2 .n  (i.e.(n>:2 m) *. n<2 >:m ) and k =: n-2 m.  
So, S2 can be defined without resorting to E or S: 
   S2 =: (>:@(1&,@({.+.}.)@}.&.#:))"0 
and we can check the definition: 
   S2 2+i.30 
2 2 3 4 4 4 5 6 7 8 8 8 8 8 9 10 11 12 13 14 15 16 
16 16 16 16 16 16 16 16 

To my regret S2 is, though clearly inspired by the definition of S, 
three times longer than S is, and not at all that elegant. But I did get 
some fun while writing it, hence my posting it to you. 
/Boyko 

I studied this message for a while and was confused. Mr. 
Bantchev gives a formula for S2 which seemed completely 
different from the immediately preceding formulas. I couldn’t 
reconcile: 
     when k < 2  <: m, S2(n) is >: k + 2  <: m  
     otherwise 2  m  
     m =: <. 2 . n 
     k =: n  2  m 
with: 
  S2=: (>: @ (1 & , @ ( {. +. }. ) @ }. &. #: ) ) " 0 
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The leap was too great. I decided to go step by step until I had a 
better grasp of what was going on. I wrote this function, which 
follows Boyko’s analysis faithfully: 

Boyko =: monad define 
n =. y. 
m =. <. 2 . n 
k =. n - 2  m 
if.  
 k < 2  <: m 
do.  
 >: k + 2  <: m 
else. 
 2  m 
end. 
) 

The argument to Boyko is an integer > 1. It yields the 2nd-order 
Josephus survivor number of that integer: 

   Boyko"0 [ 2+i.30 
2 2 3 4 4 4 5 6 7 8 8 8 8 8 9 10 11 12 13 14 15 16 
16 16 16 16 16 16 16 16 (B) 

This agrees with the result of S2 in his message. The next step was 
to take his S2 apart, piece by piece. I’ll repeat S2 here, so you can 
follow the steps: 

S2=: (>: @ (1 & , @ ( {. +. }. ) @ }. &. #: ) ) " 0 

Taking 19 as argument, convert it to binary: 
   #:19 
1 0 0 1 1 

Behead this: 
   }.#:19 
0 0 1 1 

“Or” the head with the behead: 
   ({.+.}.)}.#:19 
0 1 1 

Prefix a 1: 
   1,({.+.}.)}.#:19 
1 0 1 1 

Find its base-2 value: 
   #.1,({.+.}.)}.#:19 
11 
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Add 1: 
   >:#.1,({.+.}.)}.#:19 
12 

This validates, but doesn’t clarify, how S2 was put together. Since 
we know that Mr. Bantchev was trying to arrive at a solution that 
used the binary representations of numbers, I suspected that the 
answer might be found by looking at the binary values of 
argument and result side by side: 

   q=:2+i.20 
   (,.q);(#:q);(#:w);(,.w =: Boyko"0 q) 
+--+---------+-------+--+ 
| 2|0 0 0 1 0|0 0 1 0| 2| 
| 3|0 0 0 1 1|0 0 1 0| 2| 
| 4|0 0 1 0 0|0 0 1 1| 3| 
| 5|0 0 1 0 1|0 1 0 0| 4| 
| 6|0 0 1 1 0|0 1 0 0| 4| 
| 7|0 0 1 1 1|0 1 0 0| 4| 
| 8|0 1 0 0 0|0 1 0 1| 5| 
| 9|0 1 0 0 1|0 1 1 0| 6| 
|10|0 1 0 1 0|0 1 1 1| 7| 
|11|0 1 0 1 1|1 0 0 0| 8| 
|12|0 1 1 0 0|1 0 0 0| 8| 
|13|0 1 1 0 1|1 0 0 0| 8| 
|14|0 1 1 1 0|1 0 0 0| 8| 
|15|0 1 1 1 1|1 0 0 0| 8| 
|16|1 0 0 0 0|1 0 0 1| 9| 
|17|1 0 0 0 1|1 0 1 0|10| 
|18|1 0 0 1 0|1 0 1 1|11| 
|19|1 0 0 1 1|1 1 0 0|12| 
|20|1 0 1 0 0|1 1 0 1|13| 
|21|1 0 1 0 1|1 1 1 0|14| 
+--+---------+-------+--+  

 
It takes a bit of study, but it should be possible eventually to 
arrive at the S2 solution. Notice that the leading bit plays no role. 
The significant bit is the second. When this is 1, the result will be 
a power of 2, because the “or” of the second bit with the trailing 
bits will produce all 1s, prefixing a 1 keeps them all ones, 
converting this to integer will produce a result one less than a 
power of two, and adding one to this will yield a power of two. 
When the second bit is 0, the trailing bits are unaltered. When 1 is 
prefixed, the result will be a power of two only when the trailing 
bits are all 1, as in the case of 11. The binary form of 11 is 1 0 1 1; 
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beheading gives 0 1 1; “or”ing 0 with 1 1 gives 1 1; prefixing 1 
gives 1 1 1; converting to integer gives 7; adding one gives 8, 
a power of two. 

I’m guessing that Mr. Bantchev followed a process much like the 
one I’ve described just above: finding the values with his algebraic 
analysis, converting these to binary, and comparing them with the 
binary form of the arguments. This is now enshrined in Sloane’s 
On-Line Encyclopedia of Integer Sequences as sequence A066997.  

I thought I had found an interesting property of (B). I noted the 
indices (in 2-origin) of the first appearance of a power of two were 
at indices 2, 5, 11, 23. I checked in the Online Encyclopedia of Integer 
Sequences and found that it corresponded to sequence A055010. 
The entry notes that these numbers, written in binary, are of the 
form a(n) is 1011111−1. Furthermore, it gave the following 
formula for a(n): 

   a(n) = (3*2 n)-1  

I sent a message to Henry Bottomley, the author of this entry, and 
he in his reply alerted me to the existence of sequence A006165, 
which is: 

1 1 2 2 3 4 4 4 5 6 7 8 8 8 8 8 9 10 11 12 13 14 
15 16 16 16 16 16 16 ... 

This should be familiar, as it is the S2 sequence, with two leading 
1s. I kicked myself for not having found this on my own, and 
began to appreciate that Mr. Bantchev might be on to something 
not completely trivial.  

The entry for series A006165, gives two recursive formulas, one 
for odd n, and the other for even: 

a((2*n)+1) = a(n+1)+a(n)   (A) 
a(2*n) = 2*a(n)            (B) 

By a bit of finagling it’s possible to combine these two into one. 
The ceiling and floor of (2*n)+1 are (n+1) and (n), as in (A) 
above. The ceiling and floor of 2*n are both n, as in (B) above. 
This makes it possible, for whatever integer, to get the result by 
the same formula, which takes the sum of the ceiling and floor of 
half the number. The explicit function A below takes as argument 
the number of consecutive survivor numbers desired, and yields 
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that many. For an argument of 0 it yields an empty list, and for an 
argument of 1 it yields a list whose item is 1. 

A =: monad define 
if.  
 y. < 2 
do. 
 y. # 1 
else. 
 a =. 1 1 
 while.  
  y. > # a 
 do. 
  b =. ( <. , >. ) -: <: # a 
  a =. a , + / b { a 
 end. 
end. 
) 

This duplicates A006165 faithfully. It differs from Bantchev’s 
series in using offset 1. I found a much faster way to generate the 
sequence. It forms two lists, first just the 1-origin integers, then 
the extra powers of two needed: 

   (>:i.+/2 i.y.) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
   ;(#each+:)2 i.y. 
2 4 4 8 8 8 8 16 16 16 16 16 16 16 16 

Joins these, and sorts them: 
1 2 2 3 4 4 4 5 6 7 8 8 8 8 8 9 10 11 12 13 14 15 
16 16 16 16 16 16 16 16 

Here is the high-speed Josephus 2 function: 
   hsJ2=: 13 : '/: (>:i.+/2 i.y.),;(#each+:)2 i.y.' 

Its argument is the number of powers of 2 to use in generating the 
lists, and the result is a list as long as twice the sum of those 
powers of 2: 

   2 i.4 
1 2 4 8 
   +/2 i.4 
15 
   +:+/2 i.4 
30 
   hsJ2 4 
1 2 2 3 4 4 4 5 6 7 8 8 8 8 8 9 10 11 12 13 14 15 16 16 
16 16 16 16 16 16 
   #hsJ2 4 
30 
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Nim Addition 
Nim is a simple game that someone knowledgeable playing 
against someone naïve can almost always win. It was featured in 
the 1960s film Last Year in Marienbad, where two men in a bar play 
with a number of piles of matchsticks. The players, in turn, take 
any number of matchsticks from any one of the piles. The object is 
to be the player who takes the last match or matches. Its name 
came perhaps from nimm, the third person singular imperative of 
the German verb nehmen, meaning to take. The trick in Nim is 
knowing that a position is either safe or unsafe, depending on 
whether the Nim sum of the number of matches in each pile is or 
is not zero. The Nim sum can be obtained by converting the 
number of matchsticks in each pile to binary, and inserting not-
equals, or exclusive-or over this, then converting back to integer. 
For example, if there are three piles, with three, five, and seven 
matches in the piles, the Nim sum is obtained in three steps. First, 
the binary forms of the numbers are taken: 

   piles =: 3 5 7 
   #: piles 
0 1 1 
1 0 1 
1 1 1 

The not-equal function yields the parity of its summands: 
   : / #: piles 
0 0 1 

This is converted to decimal: 
   #. : / #: piles 
1  

The function NS encapsulates this: 
   NS =: : / &. #: NB. not-equal insert dual 
antibase 
   NS piles 
1 

A safe move can be made if and only if the Nim sum of the piles is 
not zero, meaning unsafe. If a position is safe, any move will 
change it to unsafe. Furthermore, if the Nim sum of the piles is 
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nonzero, it can always be made safe by subtracting from one of 
the piles. There will always be at least one such pile. For example, 
given the piles 3 5 7, with Nim sum 0 0 1, we can subtract one 
from any one of the piles. Thus, three different safe moves can be 
made, resulting in one of 2 5 7 or 3 4 7 or 3 5 6.  

   NS/"1 [ 2 5 7, 3 4 7,: 3 5 6 
0 0 0 

The choice of which pile to subtract from, when more than one is 
a candidate, is arbitrary. 

Now, suppose we have a Nim sum of a list of piles that is a bit 
more complicated (the function h displays the binary form of the 
piles and its binary sum): 

   h =: ,. @ (#: ; [: :/ #:) 
   h 10 11 4 
+-------+ 
|1 0 1 0| 
|1 0 1 1| 
|0 1 0 0| 
+-------+ 
|0 1 0 1| 
+-------+ 

The only solution for this is to subtract 3 from the last pile, which 
yields 10 11 1: 

   h 10 11 1 
+-------+ 
|1 0 1 0| 
|1 0 1 1| 
|0 0 0 1| 
+-------+ 
|0 0 0 0| 
+-------+ 

There is a certain amount of art in playing a winning game of 
Nim. 

Nim multiplication 
John H. Conway and Richard K. Guy have written The Book of 
Numbers. I was encouraged to read this by Ken Iverson’s Lab 
which uses J to explore many of the parts of this book. Its last 
chapter is “Infinite and Transcendental Numbers”, and in it, to 
my surprise, is a discussion of the game of Nim. Conway & Guy 
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coined the word nimbers for the ordinary decimal integers, in the 
Nim context. I think they are confusing the numbers involved 
with the functions used with them. Conway & Guy, in addition to 
discussing Nim addition, also treat Nim multiplication, which 
they state is valuable in studying the digital transmission of 
information, in particular “the integral lexicographical code of 
minimal distance 3”. They give a multiplication table for the first 
sixteen nonnegative integers. They also write  

And here’s all you need to know about the multiplication of nimbers: 

If the ’larger’ of two different nimbers is 1 or 2 or 4 or 16 or 256 or 
65536 or 4294967296 or ..., you multiply them just as you multiply the 
corresponding ordinary numbers. The product of one of these special 
nimbers with itself is obtained by taking 1½ times its ordinary value. 

I found it impossible to use this rule for nimbers greater than 4. I 
turned to Google for help, and found that Sloane’s On Line 
Encyclopedia of Integer Sequences contained entries on Nim 
multiplication which included a function which built a Nim 
multiplication table. The problem was that the function was 
written in Maple, and although I am able to read very simple 
Maple, this one used built-in functions with meanings I couldn’t 
grasp, even after I found a Maple manual on the Web. After 
weeks of trying to come to terms with it, appealing for help to 
several people I thought could help, but didn’t, I appealed for 
help to the J discussion group on the Web and also wrote appeals 
to Conway & Guy. Both pleas were successful; Mike Day read my 
appeal to the J group, was able to decipher the Maple, and turned 
it into J, and Professor Guy’s return letter gave me examples 
showing more in detail how Nim multiplication was done. Here is 
Mike Day’s function: 
NB. Mike Day mt 
 
nimsum =: :/&.#:@,"0/     NB. EEmcD 
sort =: /:                  
nimtimes =: (< @: ,) { (mt @: >./ ) NB. exploit mt  
 
NB. verb mt is a fairly close simulation of the maple 
NB. source - not necessarily good J! 
NB. 
mt =: verb define  
iN =. i. >: N =. y. 
NB. ====================================================== 
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NB. lines 1 to 6 
MT =. 0 $  2 # N + 1    NB. initialise MT with 0 top & 
left 
MT =. iN 1 } MT         NB. and indices in row 1 
NB. MT =. iN 1 }"_1 MT  NB. originally also in col 1 
NB. - We can defer symmetrising and just work on diag  
NB. and upper triangle 
NB. ====================================================== 
NB. lines 7 - 11 - should be able to cut out some loops  
                   NB. by eg recursion or scan  
for_a. 2 }. iN do.     
 for_b. iN }.  a do.   
  t1 =. i. 0            
  for_i. i. a do. 
   for_j. i. b do.  
NB. ====================================================== 
    NB. lines 12-24 are preamble to line 25 
    NB. references to stored AT where available   
    NB. or nimsum where not avail. obscures the process -  
    NB. This is ok on a fast m/c and/or for small N 
 
    NB. line 25 (26 is a comment) ...  
    NB. sort refs since using diag and upper triangle only 
    refs =. sort each (i,b);(a,j);(i,j) 
    t1 =. t1 , nimsum / refs { MT 
NB. ====================================================== 
   end.   NB. line 27 
  end.    NB. line 28 
NB. ======================================================   
  NB. line 29 - seems to require the nub 
  t2 =. sort . t1   
NB. ====================================================== 
  NB. lines 31 - 36 - locate first element of t2  
  NB. not equal to its index 
  j =. 1 i.  t2 : i. # t2 
NB. ======================================================   
  NB. line 37 only  
  MT =. j (<a,b) } MT  NB. don't need line 38  
NB. ====================================================== 
 end.     NB. line 39 
end.      NB. line 40 
NB. ====================================================== 
 
NB. extra line to symmetrise 
MT + (iN >/ iN) * |: MT    
)  

This function is a faithful translation of the Maple program. Day 
made no pretense that this was good J. All credit is owed to him 
for enabling others to contribute. Ken Iverson made some 
revisions to Day’s function and I added my own changes.  
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Here is its latest manifestation: 
mt=: monad define 
iN=.i.N=.y. 
MT=.(>.|:)iN 1}0$ , N 
for_a. 2}.iN do.for_b. a}.iN do. 
 c=.a,b,|:(#:i.@*/)a,b 
 r=.<"1[0 1|:(2 1,0 3,:2 3){c 
 t=. .( :/&.#:)"1 r{"1 2 MT 
 j=.(0:i. ]e. [:i.2:+>./)t 
 MT=.j((;|.)a,b)}MT 
end.end. 
) 

The argument N=.y. is the size of the square desired. Nim 
multiplication is commutative so the derivation of one 
nondiagonal value allows its symmetrical twin to be created at the 
same time. I use the term nonneg in order to shorten the phrase 
nonnegative integer. The list iN of the first N nonnegs serves to 
initialize row 1 and column 1, and is also used to determine the 
values of the loop counters a and b. An NxN matrix of zeros is 
created (0$ , N) and row one is amended with iN; column 1 is set 
by forming the maximum of this matrix and its transpose (>.|:). 
For N=5 the result is: 

   y.=:5 
   ]iN=.i.N=.y. 
0 1 2 3 4 
   ]MT=.(>.|:)iN 1}0$ , N 
0 0 0 0 0 
0 1 2 3 4 
0 2 0 0 0 
0 3 0 0 0 
0 4 0 0 0 

Having handled rows and columns 1 and 2 thus easily, the next 
value we need to create is that in row 2, column 2. After that 
comes the item in row 2 column 3 and row 3 column 2, and so on 
until row 2 and column 2 is completed. Then comes 3 3 and 3 4 
(and 4 3), and finally 4 4.  

The process for 2 2 is as follows: 
   a=.b=.2 
   |:(#:i.@*/)a,b 
0 0 1 1 
0 1 0 1 
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This matrix gets two new rows, a row of all a’s on a row of all b’s. 
The resulting four rows correspond to those labeled a, b, i and j 
in the Maple function. Combinations of these rows can be 
assembled so that critical values preceding the one currently 
being made can be used according to a rule which I can’t explain, 
since I don’t understand it. 

   ]c=.a,b,|:(#:i.@*/)a,b 
2 2 2 2 
2 2 2 2 
0 0 1 1 
0 1 0 1 

The actual selection uses items at 2 1 (i,b), 0 3 (a,j), and 2 3 
(i,j).  

   (2 1,0 3,:2 3){c 
0 0 1 1 
2 2 2 2 
 
2 2 2 2 
0 1 0 1 
 
0 0 1 1 
0 1 0 1 

These are transposed by placing the first two axes at the end  
(0 1|:) 

   0 1|:(2 1,0 3,:2 3){c 
0 2 
2 0 
0 0 
 
0 2 
2 1 
0 1 
 
1 2 
2 0 
1 0 
 
1 2 
2 1 
1 1 
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In order for these to be used as indices to MT, their rows are boxed: 
    ]r=.<"1[0 1|:(2 1,0 3,:2 3){c 
+---+---+---+ 
|0 2|2 0|0 0| 
+---+---+---+ 
|0 2|2 1|0 1| 
+---+---+---+ 
|1 2|2 0|1 0| 
+---+---+---+ 
|1 2|2 1|1 1| 
+---+---+---+ 

The table of indices selects the needed values: (r{"1 2 MT), and 
the Nim sums of the rows determined (( :/&.#:)"1) and 
duplicate sums are removed ( .)  

   r{"1 2 MT 
0 0 0 
0 2 0 
2 0 0 
2 2 1 
   ( :/&.#:)"1 r{"1 2 MT 
0 2 2 1 
   t=. .( :/&.#:)"1 r{"1 2 MT 
   t 
0 2 1 

The mysterious part comes now. The value j to be stored at (a,b) 
is the least nonneg not in t. Why this produces the Nim 
multiplication of a and b is beyond me to explain.  

The candidates for j are all in the first 2+>./t nonnegs:  
   i.2+>./t 
0 1 2 3 

The ones already present in t are identified: 
   t e.  0 1 2 3 
1 1 1 0 

and j is the index of the first zero in this list: 
   0 i. 1 1 1 0 
3 

Here’s the whole: 
   ]j=.(0:i. ]e. [:i.2:+>./) 
3 
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and here is the finished 5×5 table: 
   mt 5 
0 0 0  0  0 
0 1 2  3  4 
0 2 3  1  8 
0 3 1  2 12 
0 4 8 12  6 

We now know how to make a Nim multiplication table, and 
I wanted to know how efficient this function was. I found that the 
number of times t the inner j loop of Day’s program was used, 
for differing sizes s of arguments, to be: 

s   t 
2   4 
3  19 
4  55 
5 125 
6 245 
7 434 
8 714 

The fifth difference of t is zero, so a polynomial of degree 4 can be 
found: 

   diff=:2: - /\ ] 
   t =: 4 19 55 125 245 434 714 
   diff t 
15 36 70 120 189 280 
   diff :2 t 
21 34 50 69 91 
   diff :3 t 
13 16 19 22 
   diff :4 t 
3 3 3 
   diff :5 t 
0 0 

The polynomial is formed like this: 
   x=:i.#t 
   t %. x /i.5x 
4 97r12 43r8 17r12 1r8 

These can be made the numerators for a rational polynomial: 
   ]c=:24 2 3 2 3*4 97 43 17 1 
96 194 129 34 3 
   polyn=: c&p.%24&p. 
   polyn i.7 
4 19 55 125 245 434 714 
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I’ll make a slight detour here, to explore the result of polyn t 
further. I found that the fourth degree polynomial for the figurate 
numbers of order 5 is relevant. These numbers are those in the 
fifth diagonal of the Pascal triangle. In fact, I found that a multiple 
of these added to the figurate numbers of order 4 gives us our 
numbers: 

   ]p4=:3!3+i.7 
1 4 10 20 35 56 84 
   ]p5=:4!4+i.7 
1 5 15 35 70 126 210 
   p4+3*p5 
4 19 55 125 245 434 714 

The detour is over. Now I’ll use our polynomial to find how often 
the inner loop is entered for a size 209 table: 

   poly 209x 
251673415 

A quarter of a thousand million iterations seems excessive. 

This makes clear how ridiculous and expensive it is to have to 
make a 209×209 table in order to get the Nim product of 167 and 
208! The letter I got from Professor Guy helps here. I had asked 
him how to Nim multiply 8x8, and his letter showed how, and 
also how to multiply 5 by 11. 

Here it is. He uses the plus and times signs within circles, and I’ve 
substituted + and *. I’ve also replaced his linear ordering of equal 
statements with Iverson’s convention of placing them one below 
the other. 

Dear Eugene McDonnell, 

Nim-multiplication is tricky, but you can probably catch on by 
remembering to deal with the exponents in the same way that you 
deal with numbers in nim-addition, namely split them into powers  
of 2. Nim multiplication of powers of 2 is defined, in the first instance, 
only for the ‘Fermat powers of 2’ 
  (2 2 0) = 2 
  (2 2 1) = 4 
  (2 2 2) = 16 
  (2 2 3) = 256 
  (2 2 4) = 65536 
  ... 
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each, after the first, being the square of the previous one, but if 
instead of ’square’ you mean ’nim-multiply by itself’, than the answer 
is defined to be 

  (x*x) 
  (3%2)*x 

(just if x is a Fermat power of 2). 

To deal with other powers of 2, you work at one level higher up, 
thinking of (2 13), for example, as (2 (8+4+1)) and use the 
associative, commutative and distributive laws, e.g., 

  8*8 
  (2 3)*(2 3) 
  (2 (2+1))*((2 (2+1)) 
  (2 2)*(2 1)*(2 2)*(2 1) 
  ((2 2)*(2 2))*((2 1)*(2 1)) 
  (4*4)*(2*2) 
  6*3 
  (4+2)*(2+1) 
  (4*2)+(4*1)+(2*2)+(2*1) 
  8+4+3+2 
  13 

To deal with numbers which are not powers of 2 leads to a 
corresponding extra level of complication. E.g., 

  5*11 
  (4+1)*(8+2+1) 
  (4*8)+(4*2)+(4*1)+(1*8)+(1*2)+(1*1) 
  (4*4*2)+8+4+8+2+1 
  (6*2)+7 
  ((4+2)*2)+7 
  (4*2)+(2*2)+7 
  8+3+7 
  12 

8 is the first power of 2 that is not a Fermat power, and the first place 
where you run into any difficulty. 

Best wishes, 

Yours sincerely, 

Richard K. Guy, 
Faculty Professor of Mathematics 
University of Calgary. 



J be Nimble, J be Quick: Nim Addition 
 

 

261 

 

I end with a complete 16x16 Nim multiplication table: 
+--+-----------------------------------------------+ 
|  | 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15| 
+--+-----------------------------------------------+ 
| 0| 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15| 
| 1| 1  0  3  2  5  4  7  6  9  8 11 10 13 12 15 14| 
| 2| 2  3  0  1  6  7  4  5 10 11  8  9 14 15 12 13| 
| 3| 3  2  1  0  7  6  5  4 11 10  9  8 15 14 13 12| 
| 4| 4  5  6  7  0  1  2  3 12 13 14 15  8  9 10 11| 
| 5| 5  4  7  6  1  0  3  2 13 12 15 14  9  8 11 10| 
| 6| 6  7  4  5  2  3  0  1 14 15 12 13 10 11  8  9| 
| 7| 7  6  5  4  3  2  1  0 15 14 13 12 11 10  9  8| 
| 8| 8  9 10 11 12 13 14 15  0  1  2  3  4  5  6  7| 
| 9| 9  8 11 10 13 12 15 14  1  0  3  2  5  4  7  6| 
|10|10 11  8  9 14 15 12 13  2  3  0  1  6  7  4  5| 
|11|11 10  9  8 15 14 13 12  3  2  1  0  7  6  5  4| 
|12|12 13 14 15  8  9 10 11  4  5  6  7  0  1  2  3| 
|13|13 12 15 14  9  8 11 10  5  4  7  6  1  0  3  2| 
|14|14 15 12 13 10 11  8  9  6  7  4  5  2  3  0  1| 
|15|15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0| 
+--+-----------------------------------------------+  

This is identical with Table 10.2 in the Conway & Guy book.





32 Beware Scholes 
First published in Vector, 19, 3, (January 2003), 137-142. 

Beware Scholes! 
This article is about a J version of the Black-Scholes formulas, the 
brainchild of Myron Scholes and the late Fischer Black. The docu-
ment:  http://bradley.bradley.edu/~arr/bsm/pg04.html  gives 
a lot of information on the formula and its creators (which won the 
surviving creator the Nobel Prize in economics in 1997), and if you 
want to find out more about Black and Scholes or the theory behind 
their formula, I recommend it. 

A call is an option to buy a stipulated amount of stock at a specified 
time and price, and a put is an option to sell ditto. A person might 
acquire a call option who expects the price of the asset to rise. The 
Black-Scholes formulas enable the seller of the option to determine 
quite accurately what price to charge for such options.  

Here are the formulas in conventional mathematical notation: 

C = S N(d1) – X e ( – r T )N(d2) 

P = X e ( – r T )N(–d2) – S N(–d1) 

  ln(S / K) + (r + v2/ 2) T 
d1 = ___________________ 
                        v √T 

d2  = d1 – (v √T) 

 
C = Theoretical Call Premium  
P = Theoretical Put Premium  
r = Risk-Free Interest Rate  
T = Time in years until strike date 
N = Cumulative Standard Normal Distribution 
ln = Natural Logarithm 
S = Current Stock Price  
X = Option Strike Price 
v = volatility, or Standard Deviation of Asset Price. 
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Many different programming languages have been used to write 
programs for these formulas. The document: 
http://home.online.no/~espehaug/SayBlackScholes.html  
contains a couple of dozen of these programs, written in these 
languages: 

C#  O'Caml 
C++  Pascal 
Fortran Perl 
Haskell PHP 
HP48 Python 
Icon Real Basic 
IDL Rebol 
JAVA Scheme 
JavaScript S-Plus 
K Squeak 
Maple Transact SQL 
Mathematica VBA 
Matlab 

The programs are in one of two forms, both adhering closely to the 
original mathematical formulas shown above. Some have separate 
programs for calls and puts; some exploit the family resemblance of 
calls and puts and so write just one general program that requires an 
additional parameter to indicate whether a solution for a call or a put 
is desired. Here is a typical general program, this one written in C++: 

Double BlackScholes(char CallPutFlag, double S, X, 
T, r, v) 
{ 
double d1, d2 
d1=(log(S/X)+(r+v*v/2)*T)/(v*sqrt(T)); 
d2=d1-v*sqrt(T); 
if(CallPutFlag) == 'c' 
return S * CND(d1)-X * exp(-r*T)*CND(d2) 
elseif(CallPutFlag == 'p') 
return X * exp(-r * T) * CND(-d2)  S * CND(-d1); 
} 

This program includes as its first argument the letter ’c’ for a call 
option, and ‘p’ for a put option, and then discriminates between the 
two by an if/elseif control structure. Otherwise, it follows the 
Black-Scholes formulas closely. The entry includes a long separate 
program for the required cumulative normal distribution function, as 
do many of the other entries. 
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At present the document has no contribution written in J (or APL, for 
that matter). The rest of this paper describes the evolution of J prog-
rams for the Black-Scholes formulas. Five different people made 
transformations of the formulas that ended in a J version radically 
different from all the others. 

My attention was first called to this subject by a message from Hu 
Zhe to the J Forum that uses separate functions for call and put. 

load 'c:\j406\system\packages\stats\statdist.ijs' 
cnd =: 3 : 'normalprob 0, 1,__,y.' 
d1 =: 3 : 0 
'S X T r v' =. y. 
(( .S%X)+(r+-:*:v)*T)%(v*%:T) 
) 
d2 =: 3 : 0 
'S X T r v' =. y. 
(( .S%X)+(r--:*:v)*T)%(v*%:T) 
) 
BlackScholesCall =: 3 : 0 
'S X T r v' =. y. 
(S*cnd d1 y.) - (X*( -r*T)*cnd d2 y.) 
) 
BlackScholesPut =: 3 : 0 
'S X T r v' =. y. 
(X*( -r*T)*cnd -d2 y.) - (S*cnd -d1 y.)  
) 

These are reasonably concise and straightforward. They show what 
was to be expected: that J, as well as any other programming 
language, can translate the mathematical notation directly into 
computer programs. Notice that he loads a J library function for the 
cumulative normal distribution. 

Shortly after this appeared, Oleg Kobchenko sent the following 
version, a single function for both calls and puts, that incorporates d1 
and d2: 

BlackScholes=: 4 : 0 
'S X T r v' =. y. 
d1=. ((ln S%X)+(r+-:*:v)*T)%(v * sqrt T) 
d2=. d1 - v * sqrt T 
(S, X * exp-r*T) (-/ . * cnd)&(- :x.) (d1, d2) 
) 
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The lines forming d1 and d2 are like those in the C++ program. The 
last line is an instance of array thinking. They exploit the similarity of 
the call and put functions. The put option definition can be rewritten.  

Here are the call and put options, with put in its new form. 
c =:  (s*cnd( d1))-((x*exp-r*t)*cnd( d2)) 
p =: -(s*cnd(-d1))-((x*exp-r*t)*cnd(-d2)) 

This shows that p differs from c solely in the use of negation of d1 
and d2, and in negating the overall result. Kobchenko exploits this by 
rearranging things so that a left argument of 0 or 1 discriminates call 
and put, respectively,  

More abstractly, the last line of his function can be written as: 
a ((b c)&d) e 
(d a)(b c)(d e) 
(d a) b (c(d e)) 
(d      a         ) b      (c  (d e    )) 
(- :x.)(S,X* -r*T)(-/ . *) (cnd(- :x.)(d1,d2)) 

This shows the conditional negation of the left and right hand sides, 
the application of cnd to the right hand side, and the difference of the 
product, so that for a call we would have:   

c =: ( s,x*exp-r*t) -/ . * cnd( d1,d2) 

and for a put we would have: 
c =: (-s,x*exp-r*t) -/ . * cnd(-d1,d2)   

At the same time that Kobchenko was working on his array approach, 
I had been working on the other main part of the program, the 
formation of d1 and d2. I wrote down the definition of d2: 

d2 =: d1 - v*%:t 

Then I replaced d1 by its definition, and with a bit of algebra arrived 
at: 

d2 =: (( .s%x)+(r--:*:v)*t)%(v * %:t) 

and if you compare this with the definition for d1, you will find that 
the only difference is that (r+-:*:v) is changed to (r--:*:v). This 
being the case, it was simple to replace the two lines defining d1 and 
d2 by a single line that forms a two-item list d that uses the fork 
(+,-): 

d =: (( .s%x)+(r(+,-)-:*:v)*t)%v*%:t 
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This permitted the definition of BlackScholes to become: 
BlackScholes =: dyad define 
's x t r v' =. y. 
d =: (( .s%x)+(r(+,-)-:*:v)*t)%v*%:t 
(s,x* -r*t)(-/ .*cnd)&(- :x.)d 
) 

The only thing about this that I found not to my liking was the need 
to specify a left argument to indicate call or put. Happily for me, just 
about this time Arthur Whitney posted a message to the K forum that 
showed that v can be used to discriminate the two cases, by using it 
positively for call, and negatively for put. Thus it became possible to 
do without the left argument, and write: 

BS =: monad define 
'S X T r v' =. y. 
d=.(( .S%X)+T*r(+,-)-:*:v)%v*%:T 
-/(S,X* -r*T) * cnd d 
) 

Notice that I have separated the parts of (-/ . *), giving, I believe, a 
program easier to explain and understand. 

Here are examples of call and put. The result for put is negative, and 
this differs from the usual put result, which is positive. The negative 
result can be useful to distinguish a call result from a put result. If a 
positive put result is necessary, a magnitude sign (|) can be placed in 
front of the last line of BS. 

   yc=:60 65 0.25 0.08     0.3 
   BS yc 
2.13337 
   yp=:60 65 0.25 0.08 _0.3 
   BS yp 
_5.84628 

We haven’t ended quite yet. Perhaps you remember the article by 
Ewart Shaw in Vector 18.4, in which he defined the error function erf 
using J’s hypergeometric conjunction: 

erf =: (*&(%:4p_1)% @:*:)*[:1 H. 1.5*:   NB. A&S 
7.1.21 (right) 

and then defined the cumulative distribution function of the normal 
distribution by: 
cnd =: [:-:1:+[:erf%&(%:2)   
NB. A&S 26.2.29 (solved for P) 
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All of the functions written in other languages must do something 
special to define cnd, either using a library function, or writing the 
definition using approximation A&S 26.2.16.  

I’m going to contribute BS, erf, and cnd to the Black-Scholes web site, 
but in the following training-wheels versions so that the innocent 
reader may come close to understanding them without having to 
learn any J.  

BS =: monad define  
'S X T r v' =. y. 
d=.((ln S dv X) + T * r (+,-) hlf sqr v) dv (v * 
sqrt T) 
diff (S , X * exp - r * T) * cnd d 
) 
erf =: monad define  NB. A&S 7.1.21 (rightmost) 
((2 * y.) dv (sqrt pi)) * (exp - y.  2) * (1 H. 
1.5) y. 2 
) 
 
cnd =: monad define           NB. A&S 26.2.29 
(solved for P) 
(1 + erf y. * sqrt 0.5) dv 2 
) 

Where: 
diff =: -/ 
dv   =: % 
exp  =:  
hlf  =: -: 
ln   =: . 
pi   =: 1p1 
sqr  =: *: 
sqrt =: %: 



33 Pick A Card, Any Card 
First published in Vector, 19, 4, (April 2003), 101-107.* 

Introduction 
The crowd sits and waits, eagerly anticipating the showman’s grand 
entrance. Eventually he arrives, bringing his glamorous assistant and 
a pack of cards with him. He selects a volunteer from the audience 
and asks them to pick five cards out of the pack and give them to the 
assistant, without of course seeing them himself. The assistant then 
shows him four of the cards, and, after a suitable dramatic pause, the 
showman identifies the fifth. The crowd applauds, and the magician 
and his assistant leave after a few repeats to show it wasn’t a fluke. 

Those of you who were at last month’s Finnish conference will 
already have seen this spectacle, know that the showman in question 
is actually Adrian, and moreover will know the twist, which is that 
the assistant is not a 5’6” blonde but a 4” by 2” grey box which comes 
with a screen and a stylus. 

I’m sure that some of you asked him afterwards how he did it, and I 
suspect that instead of the usual “Magic!” he said “Wait for the next 
Vector”; this article shows you how the trick works and how the 
digital Esmerelda is written. (Of course, the assistant is far more 
important than the magician.) 

The Trick 
Anyone who reads New Scientist can skim-read this section, as the 
trick follows the same principle as that described in one of its recent 
articles. However, it is obviously vital to understand the trick before 
trying to understand the implementation. 

The interesting nature of this trick stems from the fact that using a 
simple analysis, it would seem to be impossible. 4 cards can only 
encode 4!, or 24, combinations, while there are 48 options for the fifth 
card. We can narrow it down by using one of the cards to pin down 
the suit of the fifth (there must be at least 2 cards which share a suit in 
the five), but then we only have 3 cards, giving 3! or 6 combinations, 
to account for 12 possibilities. 
                                                      
* The original attribution read: “by Gene McDonnell and Richard Smith”. 
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The secret, of course, lies in the ordering of the cards. Because the 
assistant gets to choose which of the five cards is hidden, she can 
choose such that the hidden card is within 6 of the visible card in that 
suit. For example, if two of the cards were the 10 and 2 of spades, 
hiding the 10 would not work (10 − 2 = 8, which is more than 6), but 
hiding the 3 gives a difference of 5 (J-Q-K-A-2). There is always a way 
to arrange two cards in a suit so this is true. 

Now we can use the 6 combinations of the other three cards, 
combined with a suit card, to find the missing card. We take the 
relative sizes of the cards, and use their order to generate a number: 1 
for small-medium-large, 2 for small-large-medium all the way up to 6 
for large-medium-small. Then add this number to the number on the 
exposed card of the suit to find the missing card. 

There is one small complication – what if we have, say, two 3’s? We 
define the suits to have an order, so that the 3 of spades is ‘higher’ 
than hearts, diamonds or clubs. 

The Implementations 
Both of us have produced an implementation of Esme; Gene’s is 
written in J and Richard’s is in Dyalog APL. (Richard’s is the one you 
may have seen in Finland, running under Pocket APL.) Both are very 
simple and easy to follow. 

Gene’s Version 
suits =: '♣♦♥♠' 
values=: 'A23456789TJQK' 

 
A♣ 2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣ 
A♦ 2♦ 3♦ 4♦ 5♦ 6♦ 7♦ 8♦ 9♦ 10♦ J♦ Q♦ K♦ 
A♥ 2♥ 3♥ 4♥ 5♥ 6♥ 7♥ 8♥ 9♥ 10♥ J♥ Q♥ K♥ 
A♠ 2♠ 3♠ 4♠ 5♠ 6♠ 7♠ 8♠ 9♠ 10♠ J♠ Q♠ K♠ 
 

Here is a sketch showing the results of the steps in performing the 
magical trick.  

The argument is list of 5 distinct integers from i.52. 
   y. =: 45 24 49 20 40  
   vsi y. 
+--+--+--+--+--+ 
|7S|QD|JS|8D|2S| 
+--+--+--+--+--+ 
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Sort the integers and append them below a 2 × 5 table of suits and 
values. 

   sv =. ((] ,  [: |: 4 13 " _ #: ]) @ /: ) y. 
   sv 
 1  1  3  3  3 
 7 11  1  6 10 
20 24 40 45 49 

Get a list of sublists, each sublist giving the indices of cards having 
the same suit.  

   ta =. ({. < /.  0 1 2 3 4 " _) sv 
   ta 
+---+-----+ 
|0 1|2 3 4| 
+---+-----+ 

Select the sublists having more than one card. 
   tb =. (] #  1: < [: # & > ]) ta 
   tb 
+---+-----+ 
|0 1|2 3 4| 
+---+-----+ 

Select one of these sublists at random. 
   tc =. (> @ ({  ? @ #)) tb 
   tc 
2 3 4 

Select two of its indices at random, preserving order. 
   td =. (] {  /:  @ (2 & ?) @ #) tc 
   td 
2 4 

Move the two columns with the selected indices to the front. 
   pc =. td(([:([ , ] -.  0 1 2 3 4 " _)[) { " 1 [: }. ])sv 
   pc 
 1 10  7 11  6 
40 49 20 24 45 

Find the commuted difference of the first two columns of the value 
row. This is positive, in the range 1-12. Take top row only of result, 
and append difference. 

   cd =. ((([: -  / 2: {. {.) ,  {:) @ }. )pc 
  cd 
40 49 20 24 45 9 
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If the tail is less than 7, delete the second item, otherwise the first. 
   dc =. (([: < [: < [: < {: < 7:) { ]) cd 
   dc 
49 20 24 45 9 

If the tail is less than  7, leave it unaltered; otherwise replace it by 13 - 
tail. 

   ce =. ((] ` (13 & | @: -) @. (7 & <:)) {: dc)4 } dc 
   ce 
49 20 24 45 4 

Determine which special permutation to apply, using the tail value as 
determinant; drop the tail; apply the permutation. 

   rs =: (((5 3 & p. - -. @ (2 & |)) {: ce) A. i. 4) { }: ce 
   rs 
24 45 49 20 
  vsi rs 
+--+--+--+--+ 
|QD|7S|JS|8D| 
+--+--+--+--+ 

The magician sees that the third card is a spade, and that the other 
cards are in the order 1 2 0, which is the fourth permutation of order 
3. The fourth card beyond JS is 2S. QEF. 

Richard’s Version 
This implementation is very much in the same mould, with IO set to 
0 so as to match the J. Here is the code for the core algorithm, together 
with the (totally minimal) user-interface to make it workable in the 
field on Pocket APL: 

      Go;inp;deck 
[1]    Run ESME simulator 
[2]    'Tell me the 5 cards ...' 
[3]    'Suits are CDHS and cards' 
[4]    'range from A,2 to 9,TJQKA' 
[5]    'e.g. 5s 8d 3c 4h as' 
[6]    ' ' 
[7]   Next: '>' 
[8]    inp 1 ,   (Ρinp) Done 
[9]    deck Cards2Nums inp 
[10]   (5 Ρdeck) Badboy 
[11]   ( /deck<52) Badboy 
[12]   'Say these 4 ...'  ' ' 
[13]   Nums2Cards Esme deck 
[14]   ' '  '(in this order!)'  ' ' 
[15]   Next 
[16]  Badboy:'Try to fool me eh!' 
[17]   'We need 5 distinct cards here ...'  ' ' 
[18]   Next 
[19]  Done:'Easy, for a PocketAPL' 
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      nv Cards2Nums str;lkp;vtv 
[1]    Look up names and return card index 
[2]    lkp , names .,suits 
[3]    vtv 1 ¨(+\1,str ', /;') ',',toupper str 
[4]    nv lkpΙvtv 
      
 
      r Esme cards;sv;ta;tb;tc;td;pc;cd;diff;dc; IO; ML 
[1]    Do the sorting. See MagicCD.doc 
[2]    IO 0 
[3]    ML 3  for partition enclose 
[4]    sv {3 5Ρ{( Ω÷13),(13|Ω),Ω}Ω[ Ω]}cards 
[5]    ta (1+sv[0;]) Ι5 
[6]    tb ({1 1<ΡΩ}¨ta)/ta 
[7]    tc 0 tb[?Ρtb] 
[8]    td tc[{Ω[ Ω]}2?Ρtc] 
[9]    pc sv[1 2;td,((Ι5) td)] 
[10]   cd pc[1 0;]  diff ,--/1 2 pc 
[11]   dc ((6 diff),(6<diff),1 1 1)/cd 
[12]   :If 6<diff  diff 13-diff  :End 
[13]   dc dc[0;0,1+ dc[1;1 2 3]]  Reorder numerically 
[14]   r dc[(diff-1) ∆perms] 
      
 
      vtv Nums2Cards nv;lkp 
[1]    Report names  
[2]    lkp (, names .,suits), '??' 
[3]    vtv tolower lkp[nv]  
      
names suits 
 A23456789TJQK  CDHS 
∆perms 
 1 2 0 3  1 3 0 2  2 1 0 3  2 3 0 1  3 1 0 2  3 2 0 1 
      Go 
Tell me the 5 cards ... 
Suits are CDHS and cards 
range from A,2 to 9,TJQKA 
e.g. 5s 8d 3c 4h as 
  
>5c 9d ad th 2c 
Say these 4 ... 
  
 9d  ad  2c  th  
  
(in this order!) 
  
> 
Easy, for a PocketAPL 

There is still a small amount of brain-work left for the magician – in 
this case the thought process would be “It’s a club. Nine,Ace,Ten is 
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Medium,Small,Large (Ace is low) which is 3 on our scale of 1-6 
(SML→LMS) so 2+3 is the Five of Clubs.” As for the ‘inverse’ 
function, it could be an exercise for the reader, but it would take 
longer to enter the data than it takes to do the logic in your head. 
Anyway, people would suspect a WiFi network! 



34 Greed 
First published in Vector, 20, 1, (July 2003), 117-121. 

 

My first experience of the British monetary system was in early 1953, 
in London. As was the case with many other visiting Americans, I felt 
daunted by the pound-shilling-pence currency. I had no idea what 
value the coins had. At a kiosk I picked up a newspaper, and then, 
expecting that a newspaper would be sold for just a few pennies, 
tendered, from the handful of coins I had, a smallish one. The vendor 
rapidly poured into my hand so many coins in change that I was 
completely unnerved. I took on faith that this was not a mistake, but I 
realized that I had better study the coins much more than I yet had. 
To this day I don’t know what the coin was that produced such a 
flood of change. To solve the problem, I got in the habit, when I 
bought something, of just holding out a handful of coins, expecting 
that sturdy British honesty would ensure that vendors would take 
only the coins that would satisfy the transaction. This seemed to work 
quite well. 

This paper discusses the problem of making change. When change is 
made in a store, we are used to seeing the clerk reach into the till and 
then take coins from its separate compartments. Unless there is a 
shortage of one or more coins, this is done by taking as many of the 
largest coin as are needed, followed by as many of the next largest, 
and so on, down to the penny. This almost instinctive method is 
called the greedy algorithm by computer scientists. The design of 
many, if not all, currency systems is such that the greedy algorithm 
also minimizes the number of coins that make up the amount of 
change. 

I’ll represent a set of coins by a list of the values in descending order. 
For example, the set of coins in the US* is 25 10 5 1; the coins are 
called, in order, quarter, dime, nickel and cent, or penny. The list for 
European coinage is 200 100 50 20 10 5 2 1. In order to be able to give 
just 1 pence in change it is necessary that every coinage set have as its 
least coin one that is worth just one penny. The change itself can be 
represented by a corresponding list with the values showing the 
                                                      
* There is a 50-cent piece in the US, but it is rarely used; the half-dollar is as 
rare in circulation as the two-dollar bill—which is very rare. 
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number of coins of each denomination used. For example, 99 pence 
change in the US would be represented by 3 2 0 4; in Europe by 0 0 1 2 
0 1 2 0.  

Although the greedy algorithm will give the fewest coins possible for 
any amount of change, it is not necessarily the case that existing 
coinage systems give the fewest number of coins possible. Jeffrey 
Shallit [1] recently suggested (with tongue firmly planted in cheek) 
that in order to make it possible in the United States to make change 
using the fewest coins, and still using just four values, the coinage 
should be replaced by one having coins worth either 25 18 5 1 or 29 18 
5 1 cents. He showed that with the existing coins, assuming all values 
from 0 to 99 to occur equally often, which he admits may be far from 
the truth, the average number of coins needed to give change is 4.7; 
with either of his suggested sets only 3.89 coins would be needed. He 
recommended the 25 18 5 1 set, since only the 10-cent piece would 
need to be changed. To show the benefit of the proposal, note that to 
give 36¢ change, the minimum number of coins with the current 
system is three: 1 1 0 1; with the alternative, only two are needed: 0 2 
0 0.  

Shallit points out that there is a problem with his suggested change, 
and it has to do with the failure of the greedy algorithm. For example, 
to give 36¢ change using the set 25 18 5 1, the greedy algorithm gives 
the four-coin solution 1 0 2 1, but the optimal solution, as shown 
above, needs only two coins: 0 2 0 0. If a coinage system was such that 
the greedy algorithm was not always optimal, it would require such 
expertise in all those who make change to do so optimally that, if for 
no other reason, it would simply be too impractical. In the rest of this 
paper I’ll concentrate on a set of J functions for the greedy algorithm. 

A Greedy J Algorithm 
In looking for a solution to a programming problem, I frequently try 
to picture the steps required. For the greedy algorithm, the picture 
that eventually stabilized was of two linked lists: one, a list A, 
beginning with a list of the number of coins needed for each coin 
considered so far, initially empty, followed by the total amount of 
change needed; the second list, C, was of the coins not yet considered, 
initially the complete coinage set in descending order. The two lists 
were linked to form the list AC. Assuming these two lists were 
available, the processing required to obtain the next result was to 
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replace the last item of A by the quotient and remainder of this last 
item divided by the leading coin of C, and C was then modified by 
removing its leading item. For example, assuming that a function CS 
was available, that performed one step of the change process, the 
steps in obtaining 99 pence change in the Euro system would be: 

   EU =: 200 100 50 20 10 5 2 1 
   A =: (i. 0) , 99 
   C =: EU 
   ] AC =: A ; C 
+--+----------------------+ 
|99|200 100 50 20 10 5 2 1| 
+--+----------------------+ 
   ] AC =: CS AC 
+----+------------------+ 
|0 99|100 50 20 10 5 2 1| 
+----+------------------+ 
   ] AC =: CS AC 
+------+--------------+ 
|0 0 99|50 20 10 5 2 1| 
+------+--------------+ 
   ] AC =: CS AC 
+--------+-----------+ 
|0 0 1 49|20 10 5 2 1| 
+--------+-----------+ 
   ] AC =: CS AC 
+---------+--------+ 
|0 0 1 2 9|10 5 2 1| 
+---------+--------+ 
   ] AC =: CS AC 
+-----------+-----+ 
|0 0 1 2 0 9|5 2 1| 
+-----------+-----+ 
   ] AC =: CS AC 
+-------------+---+ 
|0 0 1 2 0 1 4|2 1| 
+-------------+---+ 
   ] AC =: CS AC 
+---------------+-+ 
|0 0 1 2 0 1 2 0|1| 
+---------------+-+ 
   ] AC =: CS AC 
+-----------------++ 
|0 0 1 2 0 1 2 0 0|| 
+-----------------++ 
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The process stops when there are no more coins to be used. Since the 
last divisor is 1, only the quotient is germane, and after razing AC, the 
spurious remainder is discarded, forming the result R. A vector 
product shows that the number of coins provided does indeed give 
the needed amount of change:  

   ] R =: }: ; AC 
0 0 1 2 0 1 2 0 
   EU +/ . * R 
99 

We’ll start by building the nuts and bolts that go into making CS. This 
involves developing a new A and a new C, and linking them. 

   CS =: NA ; NC 

The new A is formed by curtailing A and appending the result of the 
quotient-remainder function QR.  

   NA =: CA , QR 

CA is straightforward: 
   CA =: }: @ > @ {.  

QR uses the quotient-remainder primitive of J: the quotient and 
remainder of X divided by Y is given by (0,Y)#:X. For example, the 
quotient and remainder of 99 divided by 50 is 1 49. The two-part 
divisor is formed by appending the head of C, which is the largest 
remaining coin, to 0. The head of C is trivial: 

   HC =: {. @ > @ }.  

The divisor is: 
   DR =: 0: , HC 

The dividend is the current tail of A: 
   TA =: {: @ > @ {. 

And QR is now easily formed: 
  QR =: DR #: TA 

The new A is the curtailed current A appended with QR. 
   NA =: CA , QR 

The new C is just the behead of the old C: 
   NC =: }. @ > @ {: 
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CS can now be used to obtain the successive results, as shown above. 
We need to find the number of times CS should be used, which is the 
number of coins in the coinage system, given by NS: 

   NS =: # @ > @ }. 

A function which executes the change step function CS the correct 
number of times is ES: 

   ES =: CS : NS 

After CS has been executed the proper number of times, the result is 
still two linked lists, the first list having a spurious item at the end, 
and the second list empty. To get the final result, the result of ES is 
razed and curtailed. The outermost function which encapsulates all 
that has preceded is MC: 

   MC =: }: @ ; @ ES 

You’ll notice, I’m sure, that this is a great many defined functions. 
Perhaps it says something about my attention span. I prefer to think 
that by making every function as simple as possible, with as few steps 
as are meaningful, it is easier for me to test for errors as I go along. 
Since J has the fix adverb (f.), it is easy to obtain a single longish 
function, which on my computer executes eleven times faster, 
although when displayed it probably appears quite daunting. It’s not 
necessary to look at the result of fix, any more than one would look at 
the result of compiling a program written in a compiler environment.  

For the diehard masochist, I offer: 
   ] q =: 5 !: 5 < 'MCf'  NB. in character form 
}:@;@(((}:@>@{. , (0: , {.@>@}.) #: {:@>@{.) ; 
}.@>@{:) :(#@>@}.)) 

 

Notice that of the 45 tokens, ten are parentheses. The line above may 
make more sense if I use words for most of the tokens: 

curtail@raze@(((curtail@A , (0 , head@C) #: 
tail@A) ; behead@C) : (tally@C)) 
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For convenience, here are the functions that have been defined, in 
top-down order: 

MC =: }: @ ; @ ES     NB. make change: curtail 
raze IS 
ES =: CS : NS        NB. iterate change step NI 
times 
NS =: # @ > @ }.      NB. how many iterations: 
count C 
CS =: NA ; NC         NB. change step: new A link 
new C 
NC =: }. @ > @ {:     NB. behead C 
NA =: CA , QR         NB. new head: curtail A,  
                      NB. append QR 
CA =: }: @ > @ {.     NB. curtail A     
QR =: DR #: TA        NB. divisor antibase tail A 
TA =: {: @ > @ {.     NB. tail A 
DR =: 0: , HC         NB. divisor: 0, head C 
HC =: {. @ > @ }.     NB. head C   
 

Reference 
[1] Shallit, Jeffrey, What this country needs is an 18¢ piece. Math. 

Intelligencer 25, 2, (2003), 20-23. Also available at Shallit’s website: 
http://www.math.uwaterloo.ca/~shallit/papers.html.  
This gives pointers to the paper in two forms: PostScript and PDF. 



35 The Magical Matrix 
First published in Vector, 20, 2, (October 2003), 122-126. 

 

Christ! What are patterns for? 
 Amy Lowell, “Patterns” 

Books on combinatorial subjects seem to believe that results are 
obtained seriatim, that the problem is to find the next combination or 
permutation or partition. Such is the case in the book Combinatorial 
Algorithms. [1] It is also the way the latest chapters in Knuth’s Art of 
Computer Programming treat these topics [2]. Roger Hui, on the other 
hand, takes a more organic view, and his programs all grow an entire 
table from a seed. This article discusses perm, his algorithm for 
obtaining permutation tables, using a magical matrix. I call it that 
because, in studying his algorithm I stumbled hard against the critical 
part of his algorithm that used it, and puzzled over it for a long, long 
time before I could see how it worked. When I did finally understand 
it, all I could say was that it was magic. 

Here are the tables of all the permutations from one to four: 
+-+---+-----+-------+ 
|0|0 1|0 1 2|0 1 2 3| 
| |1 0|0 2 1|0 1 3 2| 
| |   |1 0 2|0 2 1 3| 
| |   |1 2 0|0 2 3 1| 
| |   |2 0 1|0 3 1 2| 
| |   |2 1 0|0 3 2 1| 
| |   |     |1 0 2 3| 
| |   |     |1 0 3 2| 
| |   |     |1 2 0 3| 
| |   |     |1 2 3 0| 
| |   |     |1 3 0 2| 
| |   |     |1 3 2 0| 
| |   |     |2 0 1 3| 
| |   |     |2 0 3 1| 
| |   |     |2 1 0 3| 
| |   |     |2 1 3 0| 
| |   |     |2 3 0 1| 
| |   |     |2 3 1 0| 
| |   |     |3 0 1 2| 
| |   |     |3 0 2 1| 
| |   |     |3 1 0 2| 
| |   |     |3 1 2 0| 
| |   |     |3 2 0 1| 
| |   |     |3 2 1 0| 
+-+---+-----+-------+ 
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The bold portion of the 4-table is one plus the 3-table; that of the 3-
table is one plus the 2-table; and even, quite trivially, that of the 2-
table is 1 plus the 1-table. Hui’s algorithm is recursive for arguments 
2 or greater. For arguments 0 and 1 it simply returns ,.y.$0, which 
gives an empty table with shape 1 0 when y. is 0, and a table of shape 
1 1, having the single value 0, when it is 1. The table of order 1 is the 
seed used to grow all the larger tables. If we want the table of order 4 
this means that we have to go back to the seed to get the table of 
order 2, then the table of order 3, before we work on the one we want, 
of order 4.  

Assuming we have the table of order 3, we can get what we need by 
adding 1 to it, then prefixing 0 to each row: 

   ] p3=:0,.>:perm 3    NB. prefix 0 to rows after 
adding 1 
0 1 2 3 
0 1 3 2 
0 2 1 3 
0 2 3 1 
0 3 1 2 
0 3 2 1 

After studying the code that produced this, I was sure it was going to 
be worked on in such a way that three more analogous tables would 
be made and strung together with it to give the desired result. But as I 
looked more at Hui’s function I couldn’t believe what I saw: it 
appeared that it was going to be used as an index!  What in the world 
was happening? The thing being indexed was table mm: 

   ] mm =: \: 1=i.4 
0 1 2 3 
1 0 2 3 
2 0 1 3 
3 0 1 2 

I was sure that mm should be the index and p3 the thing indexed. 
I tried various ways of doing this, ending with: 

  qw=:mm{"2 1 p3 
   $qw 
6 4 4 
   ;/qw 
+-------+-------+-------+-------+-------+-------+ 
|0 1 2 3|0 1 3 2|0 2 1 3|0 2 3 1|0 3 1 2|0 3 2 1| 
|1 0 2 3|1 0 3 2|2 0 1 3|2 0 3 1|3 0 1 2|3 0 2 1| 
|2 0 1 3|3 0 1 2|1 0 2 3|3 0 2 1|1 0 3 2|2 0 3 1| 
|3 0 1 2|2 0 1 3|3 0 2 1|1 0 2 3|2 0 3 1|1 0 3 2| 
+-------+-------+-------+-------+-------+-------+ 
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This can’t be right, because, for example, the row 1 0 2 3 appears 
three times. In order to show you how I was at last able to understand 
this strange indexing, I’ll show the proper table of order 4 with its 
four sections side by side: 

   ;/_6]\perm 4 
+-------+-------+-------+-------+ 
|0 1 2 3|1 0 2 3|2 0 1 3|3 0 1 2| 
|0 1 3 2|1 0 3 2|2 0 3 1|3 0 2 1| 
|0 2 1 3|1 2 0 3|2 1 0 3|3 1 0 2| 
|0 2 3 1|1 2 3 0|2 1 3 0|3 1 2 0| 
|0 3 1 2|1 3 0 2|2 3 0 1|3 2 0 1| 
|0 3 2 1|1 3 2 0|2 3 1 0|3 2 1 0| 
+-------+-------+-------+-------+ 

Studying this I at last saw the pattern that Hui was using. The actors 
are typecast in the first section, with 0, 1, 2 and 3 playing themselves. 
In the second, actors 0 and 1 change roles; in the third, the three 
actors 0, 1 and 2 play the roles of 1, 2 and 0; in the last all four actors 
are in disguise: 0 acts as 1, 1 acts as 2, 2 acts as 3, and 3 acts as 0. If you 
look at the first rows of each of the four sections, you’ll see that they 
are exactly the rows of mm, the magical matrix! 

Now we have to study how the magical matrix was produced. The 
first part gets the cast of actors: 

   i.4 
0 1 2 3 

Classifying this gives an identity matrix: 
   =i.4 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

And last, each row is replaced by its downgrade: 
   ] mm=:\:"1=i.4 
0 1 2 3 
1 0 2 3 
2 0 1 3 
3 0 1 2 

Now, if we index each row of mm with all of p3, we get an array of 
four 6 by 4 tables: 
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  p3{"2 1 mm 
0 1 2 3 
0 1 3 2 
0 2 1 3 
0 2 3 1 
0 3 1 2 
0 3 2 1 
1 0 2 3 
1 0 3 2 
1 2 0 3 
1 2 3 0 
1 3 0 2 
1 3 2 0 
2 0 1 3 
2 0 3 1 
2 1 0 3 
2 1 3 0 
2 3 0 1 
2 3 1 0 
3 0 1 2 
3 0 2 1 
3 1 0 2 
3 1 2 0 
3 2 0 1 
3 2 1 0 

Last, join the tables: 
  ,/p3{"2 1 mm 
0 1 2 3 
0 1 3 2 
0 2 1 3 
0 2 3 1 
0 3 1 2 
0 3 2 1 
1 0 2 3 
1 0 3 2 
1 2 0 3 
1 2 3 0 
1 3 0 2 
1 3 2 0 
2 0 1 3 
2 0 3 1 
2 1 0 3 
2 1 3 0 
2 3 0 1 
2 3 1 0 
3 0 1 2 
3 0 2 1 
3 1 0 2 
3 1 2 0 
3 2 0 1 
3 2 1 0 
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And this gives the desired result. The same process works for tables 
of all sizes greater than one. 

Here is perm in all its flabbergasting entirety: 
perm=: 3 : 'if.1>:y.do.,:y.$0 else.,/(0,.perm  
                        &.<:y.){"2 1\:"1=i.y. end.' 

Sometimes I feel that Hui has an advantage over the rest of us, even 
more than is given him by his native intelligence. Since he wrote it all, 
and keeps improving it, he must have an instinctive knowledge of the 
performance of each of its parts, and thus can (usually) write 
functions that are faster than those written by the rest of us. I suspect 
that indexing is one of the fastest ways to do selecting, and thus perm 
is likely to be the fastest way to build permutation tables. 

References 
[1] Nijenhuis, A., Wilf, H. S., Combinatorial Algorithms. Academic Press, 

New York, (1978). 

[2] Knuth, D., (home page): 
http://www-cs-faculty.stanford.edu/~knuth/news.html 

Pre-Fascicle 2a: Generating all n-tuples (version of 29 Aug 2003)  

Pre-Fascicle 2b: Generating all permutations (version of 29 Aug 2003)  

Pre-Fascicle 2c: Generating all combinations (version of 29 Aug 2003). 





36 Giddyap 
First published in Vector, 20, 3, (January 2004), 117-122. 

Giddyap 
The OED doesn’t have a giddyap entry; the Concise Oxford Dictionary 
has a giddap entry; Webster 3 has an entry for giddap, giddyap, giddyup.  
I think it must be a children’s word; I don’t think I’ve ever heard it 
used by an adult.1  When I was 70 or so years younger I know that 
when I pretended I was riding a horse – which was surprisingly often 
– I swung my imaginary whip on my imaginary horse as I pranced 
about, shouting giddyap with every stroke of the whip. I find it to be a 
suitable title because the article deals with a problem concerning 
horseraces, and also treats of the speeding up of programs that solved 
the proposed problem. The answer to the problem turned out to be an 
old friend of mine. 

I don’t recall now where it was that I found the problem, but when I 
ran across it, it sounded as if it might a suitable challenge for the J 
Forum. In any event, on September 25 I sent this message to the J 
Forum: 

N horses enter a race. Given the possibility of ties, how many 
different finishes to the horse race exist? Write a program that shows 
all the possibilities. 

By way of example: here is the solution by brute force for N=3. There 
are 13 solutions.  horses are named a, b and c. The expression {{b,c},a} 
denotes a finish in which b and c tie for first and a comes in next. 

{a, b, c}, {a, c, b}, {b, a, c}, {b, c, a}, {c, b, a}, {c, a, b}, {a,{b,c}}, {{b,c},a}, 
{b,{a,c}}, {{a,c},b},{{c,{a,b}},{{a,b},c},{{a,b,c}} 

                                                      
1  It was shortly after writing this that I attended  a Choral  Christmas Spectacular  at 
San Francisco’s Davies Symphony Hall with my granddaughter and wife,  and heard 
3000 adults singing the second stanza of a song called “Sleigh Ride”, which goes: 

Giddyyap, giddyyap, giddyyap, let’s go. Let’s look at the show. 
We’re riding in a wonderland of snow. 
Giddyyap, giddyyap, giddyyap, it’s grand just holding your hand. 
We’re gliding along with a song of a winter fairyland. 

Notice the fourth variant  in spelling of the key word. 
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Methods for finding how many different Finishes 
There were over two dozen responses over the next two weeks. The 
first response misunderstood the problem, and assumed that a race 
with three horses was the only one to consider. Since I had already 
given the solution of this one, it was clear that more had to be done 
than to submit the number 13. The answers to the first question, the 
number of solutions, were various. The brute force way is good only 
for the first few number of horses – the answer for eight horses is 
already 545,835. The nicest early entry used a table of Stirling subset 
numbers and factorials to give the number of different finishes 
effectively: 

   ] fc=:!i.9 
1 1 2 6 24 120 720 5040 40320 
   ] s8=:subsets 8 
1 0   0   0    0    0   0  0 0 
0 1   0   0    0    0   0  0 0 
0 1   1   0    0    0   0  0 0 
0 1   3   1    0    0   0  0 0 
0 1   7   6    1    0   0  0 0 
0 1  15  25   10    1   0  0 0 
0 1  31  90   65   15   1  0 0 
0 1  63 301  350  140  21  1 0 
0 1 127 966 1701 1050 266 28 1 
   s8 +/ . * fc 
1 1 3 13 75 541 4683 47293 545835 

Here’s another way  that uses curtailed binomial lists and the list of 
terms so far found: 

   1 +/ . * 1 
1 
   1 2 +/ . * 1 1 
3 
   1 3 3 +/ . * 1 1 3 
13 
   1 4 6 4 +/ . * 1 1 3 13 
75 
   1 5 10 10 5 +/ . * 1 1 3 13 75 
541 

Which can be done either iteratively or recursively. 

Still another way to get the number of different finishes uses the 
Weighted Taylor coefficient adverb t: defined in the J Dictionary as: 
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“The result of u t: k  is (!k)*u t. k”. In other words, the coeffic-
ients produced by t: are the Taylor coefficients weighted by the fact-
orial. As a consequence, the coefficients produced by it when applied 
to functions of the exponential family show simple patterns. For this 
reason it is sometimes called the exponential generating function.  

The exponential generating function for the our numbers is (1/(2-en)) 
so we can write a function fn using it, modified by the Weighted 
Taylor adverb: 

   fn =: (%@(2: - )) t: 
   fn 8 
545835 
   fn i. 9 
1 1 3 13 75 541 4683 47293 545835 

All of these methods are discussed in Sloane’s On-Line Encyclopedia of 
Integer Sequences, sequence 670. 

Methods for representing all the possible Finishes 
The method I used for representing all 13 of the finishes for a three-
horse race was informal. Various methods were used in the J 
solutions. This is one of the J solutions for a three-horse race: 

+-----+-----+-----+-----+-----+-----+----+----+----+----+----+----+---+ 
|a b c|a c b|b a c|b c a|c a b|c b a|a bc|bc a|ab c|c ab|b ac|ac b|abc| 
+-----+-----+-----+-----+-----+-----+----+----+----+----+----+----+---+ 

Results using boxed arrays, like this, were relatively slow. Faster 
results were obtained using a list of post positions to show the finish, 
with the finish order of the horse in post position k given as the value 
of item k of the result. Here is how the finishes of a three-horse race 
are displayed using this method: 

0 0 0       abc 
0 1 1       a bc 
1 0 0       bc a 
0 0 1       ab c 
0 1 0       ac b 
1 0 1       b ca 
1 1 0       c ab 
0 1 2       a b c 
0 2 1       a c b 
1 0 2       b a c 
1 2 0       c a b 
2 0 1       b c a 
2 1 0       c b a 
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I’ve appended to the right of each finish the order of finish of three 
horses a, b and c, having post positions 0, 1 and 2, respectively. 
Horses tied in a finish are shown by abutting letters—for example, 
a bc shows horse a in first place and horses b and c tied for second 
place. 

The function to produce the finishes in this order is fin3, by Roger 
Hui: 

rankings=: ,"1 0 @i. , /:"1@=@i.@>: 
ext     =: [: ,/ _1&,. {"2 1 rankings@#@ .@{. 
fin3    =: ([: ; >./"1 <@ext/. ])@$:@<: ` 
(i.@(1&,)) @. (1&>:) 

Here is his explanation: 

To generate the finishes for n, fin3 first partitions the finishes for n-
1 by the maximum ranks.  Then for each partition with maximum 
rank m and each finish v therein, (_1,v) is indexed into the matrix ,"1 
0 i.1+m (tieing the new competitor with each possible rank) and into 
the matrix /:"1=i.2+m (slotting the new competitor into each 
possible position ("no ties")). 

Therefore, if c is a vector of the number of finishes with maximum 
ranks i.#c, the corresponding counts for 1+#c are: (c*1+i.#c) are the 
number of finishes for ranks i.#c coming from ties, and c*2+i.#c 
are the number of finishes for ranks 1+i.#c coming from non-ties.  
For example, for n=2: 

                          each finish indexed into 
   max rank    finishes      ties      nonties 
    0            0 0         0 0        1 0 
                                        0 1 
    1            0 1         0 1 0      1 2 0 
                 1 0         0 1 1      0 2 1 
                                        0 1 2 

There is 1 finish for max rank 0 and 2 finishes for max rank 1. 

The new counts are for n=3 are: 
   max ranks    0     1     2 
   ties         1*1   2*2 
   nonties            2*1   3*2 
   total        1     6     6 
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And for n=4: 
   max ranks    0     1     2     3 
   ties         1*1   2*6   3*6 
   nonties            2*1   3*6   4*6 
   total        1     14    36    24 

The following functions encode the algorithm: 
ntie1=: 0: ,  ] * 1&+@i.@# 
ntie0=: 0: ,  ] * 2&+@i.@# 
nfin2=: (ntie1 + ntie0)@$:@<: ` ((,1x)"0) @. 
(1&>:) 
   nfin2 1 
1 
   nfin2 2 
1 2 
   nfin2 3 
1 6 6 
   nfin2 4 
1 14 36 24 

 [end of Hui’s explanation]. 

In a race where there are no ties the order of finish is a permutation. 
Notice that the bottom six results give the permutation table of order 
3. In the rankings function you see /:1@=@i .   This is the “magical 
matrix” described in my last column  (Vector 20.2, October 2003), and 
it is used in precisely the same way: to produce a table of 
permutations. 

The results of the function nfin2 above give the number of finishes of 
n horses having k as the maximum rank. If we form a triangle from 
these results: 

1 
1  2 
1  6  6 
1 14 36 24 

and ravel it,  
1 1 2 1 6 6 1 14 36 24 

we get a list that is sequence 19538 in 
http://www.research.att.com/~njas/sequences/  
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It is described as “the number of ways n labelled objects can be 
distributed into k nonempty parcels”. I wanted to obtain a different 
triangle, one showing the number of finishes having each leading 
digit. An easy way to do this is to look at the first column of the table 
of order n, as found by fin3.  Thus if one transposes table fin3 n, 
takes its head item, applies tally modified by the key adverb and 
reflexive to tally one would get the number of instances of each 
leading digit, in order. 

   # /.  {. |: fin3 3 
6 5 2 

This says that the digits 0, 1 and 2 occur 6, 5 and 2 times as leading 
digits, respectively, in the table of order 3. You can verify this by 
inspecting the table above. Here are the results for tables of order 1 
through 7: 

   1 
   2    1 
   6    5    2 
  26   25   18    6 
 150  149  134   84   24 
1082 1081 1050  870  480  120 
9366 9365 9302 8700 6600 3240 720 

I’ve submitted this triangle to Sloane’s Online Encyclopedia. 

I’ve come across the sequence given by the row sums of the triangle 
above, namely 

1 3 13 75 541 4683 47294 

in several different contexts. In 1977 I found that it enumerates the 
number of different left arguments for APL’s dyad transpose [1]. In 
2000 it enumerated the number of distinct basic lists, I called Blists, 
which mathematicians call preferential arrangements [2]. And now, 
here they come galloping again to enumerate horserace finishes! 

References 
[1] McDonnell, E. E., How Shall I Transpose Thee? Let Me Count The 

Ways. APL Quote Quad, 8, 1, (1977-09). 

[2] McDonnell, E. E., Blists in OLEIS. Vector 17, 1, (2000-07), 110-120. 



37 Jacob’s Ladder 
First published in Vector, 20, 4, (April 2004), 84-97. 

 

 And he dreamed, and behold a ladder set up on the 
 earth, and the top of it reached to heaven: and behold 

 the angels of God ascending and descending on it. 
                                                                Genesis 28:12 

     Dedicated to my grandson Jacob (15 months old). 

The Name of the Game 
Lewis Carroll invented a game he called Doublets in 1879. He used 
doublet to describe two words of the same length, which were to be 
connected by a chain of other words, called links. Two words are 
linked if they use the same letters in every position but one, like rota 
and iota. As an example, he gave as a doublet the words head and tail, 
and for the links the words heal, teal, tell and tall, so that the entire 
chain was head, heal, teal, tell, tall and tail. The word Doublet hasn’t 
stuck, however, and the game is now usually called Word Ladders. 

The Word Ladder game can be played mentally, and many people 
enjoy playing in their head, sometimes making it a game for two or 
more people, to see who can find a ladder quickest. This article, 
however, treats computer solutions to the problem, which now asks 
that the chain be as short as possible. There may be more than one 
shortest solution. For example, 

+----+----+ 
|head|head| 
|heal|heal| 
|teal|heil| 
|taal|hail| 
|tail|tail| 
+----+----+ 

are two solutions shorter by one link than Carroll’s. Carroll would 
probably point out that taal is usually capitalized, in phrases like the 
Taal; it is a name for a language, like English or Italian, and is another 
name for Afrikaans, one of the official languages of South Africa; and 
heil is a German interjection used infamously by the Nazis in phrases 
like Heil Hitler. These words let me point out that all the words in my 
word tables are in lower case, even names like Hugo and Clive; and 
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that they include numerous words from foreign languages that have 
gained currency in English, like Russian dvor and Spanish amigo. 
Different word lists will give different results. 

Some doublets give rise to eight or more solutions – here are the 
solutions for the doublet white and black. 

+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 
|white|white|white|white|white|white|white|white|white| 
|whine|whine|whine|whine|whine|whine|whine|whine|whine| 
|chine|chine|chine|chine|chine|chine|chine|chine|chine| 
|chink|chink|chink|chink|chink|cline|cline|cline|cline| 
|chick|clink|clink|clink|clink|clink|clink|clink|clink| 
|click|blink|clank|clank|click|blink|clank|clank|click| 
|clack|blank|blank|clack|clack|blank|blank|clack|clack| 
|black|black|black|black|black|black|black|black|black| 
+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 

Later on I’ll bring to your attention the ladders for the doublet dvor 
and lade: there are eighty solutions to it, each nine words long! 

My word tables have a history. Many years ago, in our IPSA office in 
Palo Alto, Joey Tuttle acquired a tape from Houghton Mifflin, the 
publishers of The American Heritage Dictionary, that contained an 
alphabetical listing of all the words in their dictionary. Joey extracted 
a number of files, each file giving all of the words having the same 
length, and mounted these on the I. P. Sharp computer in Toronto. I 
found the list useful in a number of ways, and one of the things I did 
was to write an APL program to form Word Ladders, of which more 
later. I have these word files now on my personal computer.  

Structure of the Game 
Looked at from the point of view of the game, a table of words is seen 
as an undirected graph, where the nodes are the words, and the edges 
are the links for each word. Linkness is symmetric: if iota is a link of 
rota, then vice-versa. This being the case, the graph is also symmetric, 
and the counterdiagonal is all zero – a word is not a link of itself. A 
word may have many links. For example, bare has 26, using my table. 
They are: 

+----+----+----+----+----+----+----+----+----+----+----+----+----+ 
|babe|bake|bale|bane|base|bate|barb|bard|bari|bark|barm|barn|bars| 
+----+----+----+----+----+----+----+----+----+----+----+----+----+ 
|care|dare|fare|hare|mare|pare|rare|tare|vare|ware|yare|bore|byre| 
+----+----+----+----+----+----+----+----+----+----+----+----+----+ 

A word may have no links, as well. Some four-letter hermits are agog, 
ecru, idol, ugly, xmas, yeti and zarf.  
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I’ve adopted some naming conventions. A word list – actually a 
character table – is called Tn, where n is the length of the words in the 
table. Thus my four-letter word table is T4. A link list, one that gives 
the links for each word, is called En. Thus, the link list for four-letter 
words is E4. Later on, in the discussion of J functions, I’ll introduce 
some more conventions.  

The Link List 
There’s a story to do with the creation of link lists from a word table. I 
wrote one for myself that took a Tn as argument, and produced the 
corresponding En. I showed this to Roger Hui, who noted that it had 
quadratic time. He thought it would be possible to make one that had 
linear time. At the time of this message we were still calling link lists 
neighbour lists. 

 From:  rhui000@shaw.ca 
 Subject:  Re: Word Ladders 
 Date:  February 14, 2004 8:10:30 AM PST 
 To:  eemcd@mac.com 
 Reply-To:  RHui@Jsoftware.Com 
 
There is indeed a much faster, linear, method for generating 
the neighbors list.  The idea is this: for each word, blank 
out successive letters, and use these blanked out words 
to match for neighbors.  e.g. if the words are abba and abbe, 

   _bba  _bbe 
   a_ba  a_be 
   ab_a  ab_e 
   abb_  abb_ 
 
So if you have a (m,n) matrix of words, in the matching 
you'd be dealing with a ((n*m),n) matrix and doing linear 
operations on it, rather than the (m,m,n) outer product. 
 
mlx =: <@I.@(<:@#@[ = +/@|:@:="1)"1 2     NB. eemcd 
 
mlx1=: [: <@I."1 <:@{:@$ = +/ @: = 1 /   NB. eemcd 
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mlx2=: 3 : 0                    NB. hui 
 'm n'=. $y.                    NB. # of words, # letters 
 i=. n (* + i.@[ *"1 -.@])=i.n  NB. indices for blanking  
                                NB.  successive positions 
 t=. ,/ i{"_ 1 y.,.'_'          NB. blanked words 
 p=. ,/@:(([ ,. -. )"0 1)       NB. verb for pairing 
 j=. ; t <@p/. n#i.#y.          NB. group word indices 
                                NB.  per blanked words 
 h=. ({."1 </. {:"1) j          NB. unordered neighbors 
 k=. . {."1 j                  NB. word indices 
                                NB.  corresponding to h 
 (m{.h-.&.>k) /: k,(i.m)-.k     NB. reorder 
) 
 
mlx and mlx1 give identical results.  mlx2 gives neighbor 
indices that are unordered, but is otherwise identical. 
The improved efficiency in mlx2 is more pronounced as the  
number of words gets large. 
 
   alp=: a.{ 97+i.26 
   x=: . alp {  4000 4 ?@$ #alp      NB. table of 4000 words  
   $x                          NB. 3980 after duplicates removed 
3980 4 
 
   (mlx  -: /: &.>@mlx2) x 
1 
   (mlx1 -: /: &.>@mlx2) x 
1 
 
   ts=: 6!:2 , 7!:2@]          NB. to find time and space used 
   ts 'mlx x' 
81.9158 608640 
   ts 'mlx1 x' 
12.1867 8.3887e7 
   ts 'mlx2 x' 
0.490401 1.47846e6 

As you can see, for a table of 3980 words, Hui’s program is about 160 
times faster. That’s a lot. It does use twice the space, but it’s worth it. 
I’ve been happily using mlx2 since to form my link lists. It’s always a 
joy to get instant results rather than “start the process, go out and 
mow the lawn, then come back and maybe it will be done.” 

Two Schools of Thought 
I’ll discuss two different ways of building ladders, given a table Tn, 
and a links list En. The first way is the standard approach to finding 
paths in a graph: search forward from one of the words, the starting 
word, and work one’s way through until the other word, the goal 
word is reached, or it is found that there is no path. This is the 
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approach used in Edsgar Dijkstra’s well-known algorithm. The 
function that uses this forward search I call FL, for “forward ladders”.  

The second way, one I used a quarter-century ago, started searching 
from both ends of the problem. This can be done because of the 
problem’s symmetry: if I find the shortest path from white to black, 
I’ve also found the shortest path from black to white. My intuition 
told me that a forward search algorithm would take significantly 
more space, and possibly more time, than a two-way search. 
Somewhat fortuitously, the two-way search can be identified with the 
biblical ladder in Jacob’s dream, with angels going up and down. 
Because of this, and in honour of my grandson Jacob, I’ll call the two-
way search the Jacob’s Ladder way,  and the associated function JL, for 
“Jacob’s Ladder ”. 

My reasoning was this: suppose we use FL, starting with a one-by-
one matrix, and that there are three links in every item of En. After 
one step, we have at most a three-by-two matrix; after two a nine-by-
three … and after eight we have at most a 6561-by-9  matrix. Suppose 
that we have now found the goal. We’ve looked at 6561 nodes. 

If, on the other hand, we use JL, after four iterations forward and 
backward, we have at most two 81-by-5 matrices, meaning that we 
have, at most, 162 nodes. In each case we’ve taken eight steps. The 
backward steps begin with a node that is necessarily one of the 6561. 
The next backward step continue with 3 nodes, one of which is in that 
of the 2187 of the forward search. Likewise, the next backward step 
finds 9 nodes, one of which is in the 729 of the forward search. Next 
27, one included in the 243. By the next step, finding 81 nodes, the 
forward search has also found 81, and one of the backward 81 nodes 
must be among the 81 in the forward search. Thus the forward search 
has worked with 40 times more nodes than the forward and 
backward search. I had to conclude that it would take less time and 
less space for the two-way search. 

The Case of the Mysterious Test 
I wrote FL and JL,  tested them, and found that my reasoning was 
correct, and communicated the results to Roger Hui. His response 
was dumbfounding. Earlier I had sent Roger a copy of the first fifty 
words in T4. He generated a two-column table called pairs giving all 
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1225 combinations of two out of fifty, and used this as the right 
argument in a timing test. He made the left argument E using mlx2 on 
the first fifty words. This is what he saw: 

   $pairs=: 2 comb 50 
1225 2 
   ts 'E FL"1 pairs' 
0.94485 1.1991e6 
   ts 'E JL"1 pairs' 
0.90665 1.1991e6 

I tried this test on  my machine and got the same kind of result: the 
forward search had essentially the same speed and the same use of 
space as Jacob’s Ladder. This was completely contrary to all the 
earlier measurements I had made, but I couldn’t deny what my own 
senses told me. For several days I was at a standstill – I had no idea 
what was wrong with my earlier measurements – or, less likely, 
whether there was anything wrong with Roger’s measurements that I 
didn’t understand. 

The Case Solved 
There was to be a happy ending however. Roger had earlier told me 
that he knew a way to do pathfinding that was yards better than 
mine, and not only that, but would find the shortest paths for all 
possible pairs. I asked him if he had experimented with this yet. Then 
this message came: 

A few minutes of experimentation with the 4-letter words reviews the 
fallacy of my approach.  The transitive closure of that neighbors list 
took so long that I interrupted it after about 10 minutes.  Further 
investigation reveals that most words are reachable from most other 
words. Starting from every way possible generates too much inform-
ation (and too much redundant information). 

If I had to choose, I'd choose the your original FL approach.  JL is not 
sufficiently faster enough to warrant the extra complications. 

This was interesting, but still left me baffled by the anomalous timing 
we both had seen. But then, the same day, came a new message: 

Further … The up-and-down approach is enough faster after all… 
   ts 'i=: E FL 704 1407' 
11.9041 3.04531e6 
   ts 'i=: E FL2 704 1407' 
2.27514 1.66336e6 
   ts 'i=: E JL 704 1407' 
0.881336 515264 
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The test he now used, timing for the pair 704 1407, was one that had 
eighty(!) nine-node solutions. The first test above used my original 
FL; the second used FL2, his rewriting of FL; the third used my 
original JL. This was very welcome news, but what about those 
anomalous timings? How explain them? I looked at all aspects of the 
data and I believe I can now explain it. 

The anomalous results occurred because the 1st 50 words had no link 
list longer than 5, and most were 3 or less; the average number of 
links per node was 1.8; 18 out of the 50 link lists were empty, a very 
large percentage; thus the timings reflected an atypical set, one in 
which the up-and-down program couldn’t show itself better than the 
forward search. 

The best demonstration is to compare the results of a test using E 
which has only 50 items, with tests using E4, which has 2962 items. 
Here are the tests using E, showing FL and JL essentially equal in 
time and space: 

   ts 'E FL"1 pairs' 
0.94485 1.1991e6 
   ts 'E JL"1 pairs' 
0.90665 1.1991e6 

The only change in the next tests is using the E4 of 2962 nodes. This 
averages 8.1 links per node, as many as 31; 91 are empty, only 3.2%. 
The distribution of links in the first 50 items of E4 is also quite 
different from that of E. There are 155 links, an average of 3.1 per 
item, and one has as many as thirteen. Only seven are empty. Here 
are the tests using E4: 

   ts 'E4 FL"1 pairs' 
674.971 6.14182e6 
   ts 'E4 JL"1 pairs' 
24.1225 2.28742e6 

To me, this is conclusive. With this one change, JL is 28 times faster 
than FL, instead of being equal. It uses less space, less than half as 
much as FL. 

   675%24       NB. time ratio 
28.125 
   6.142%2.287  NB. space ratio 
2.69 



At Play With J 
 

300 

Just for the purpose of this paper I’ve made some more tests, using 
both E4 and E5, with right argument 100 random pairs of nodes, with 
no node repeated. The results are what I have come to expect to get. 

Tests of 100 random pairs from T4 and T5, no node repeated,  
2004 03 05 
   $E4 
2962 
   pr4=: 100 2$200?#E4         NB. 200 distinct numbers  
                               NB.  from i. 2962 
   f4 =: ts 'E4 FL"1 pr4' 
   j4 =: ts 'E4 JL"1 pr4' 
   f4,:j4 
58.3915 4.19264e6              NB. FL numbers            
4.08996 2.68454e6              NB. JL numbers 
   f4%j4                       NB. ratio of test numbers 
14.2768 1.56177                NB. JL 14 times faster,  
                               NB.  1.5 times less space 
   $E5 
5604 
   pr5=: 100 2$200?#E5         NB. 200 distinct numbers  
                               NB.  from i. 5604 
   f5 =: ts 'E5 FL"1 pr5' 
   j5 =: ts 'E5 JL"1 pr5' 
   f5,:j5 
69.0011 2.84186e6              NB. FL numbers 
4.43224    843456              NB. JL numbers 
   f5%j5                       NB. ratio of test numbers 
15.568 3.3693                  NB. JL 16 times faster.  
                               NB.  3.4 times less space 

Function Syntax and Use 
The versions of FL and JL I wrote were gone over and tightened up 
by Roger Hui. Their syntax is: 

   R =: En FL a,b 
   R =: En JL a,b 

Where  a and b are indices of words in some Tn. The result is an 
integer table, where each row is distinct, and the successive values in 
a row are pairwise links, with first item a and last item b.  

   ] R =: E4 JL 2182 861 
2182  628  617  616 589 810 859 861 
2182 1505 1483 1455 812 810 859 861 
2182 2619 2608 2573 812 810 859 861 

To obtain the desired word ladder, use this result as an index to T4: 
   <"2 T4 {  R 
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For example, 
   <"2 T4 {  E4 JL 2182 861 
+----+----+----+ 
|rips|rips|rips| 
|dips|lips|tips| 
|dies|lies|ties| 
|died|lees|tees| 
|deed|fees|fees| 
|feed|feed|feed| 
|fled|fled|fled| 
|flew|flew|flew| 
+----+----+----+ 

Forward March 
The program FL is easier to explain than the more intricate JL. 

FL =: 4 : 0 
  's e'=. y. 
  u=.d=.  ,s 
  c=. ,.s 
  while. -. e e. d do. 
   d=. ; v=. (d{x.) -. &.> < u 
   if. '' -: d do. _1 return. end. 
   u=. u , . d 
   c=. ((#&>v)#c) ,. d 
  end. 
  c #  e=d 
) 

The two word indices are s and e. In FL, these signify start and end, 
but in JL they don’t have that mnemonic significance, since they start 
separate chains. The variable x. is the links list, some En. 

Variable d is an integer list, initially ,s. It is used to select boxed lists 
of potential new links.  The first time through it gets all the links of s. 
Next time it gets all the links of those links, and so forth. Variable u 
contains all of the links already seen. No link appears in u more than 
once. Initially it is ,s. It is used to ensure that no later use is made of a 
link that has already been used. This is because once a link is used in 
any step, there is no point to using it again in a new step – any chain 
with a later appearance of an earlier link must be longer than one 
with an earlier appearance. 
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Variable c is the table of chains, initially with s as its only value. 
Within the while. loop it will be extended.  Each of its rows 
represents a potential shortest path. 

The while. loop continues until d contains e as an item; when it does, 
it means that one or more shortest paths have been found. 

Variable d is used to select boxed lists of links from x. .  Before 
further use, each box has removed from it all links that have already 
been used. These cleaned-up boxes are assigned to v, the raze of 
which becomes the new link selector list d.  

If d is empty, there are no new links, and since e hasn’t been found, 
we’ll have to admit that there are no paths between s and e. When 
this happens, the scalar _1 is returned. 

Variable u is updated with all the new links, by appending d to it. 
Because u should never contain two appearance of the same link, 
duplicates are removed from d before appending it. 

Table c is updated by adding a new column, with the items of d. 

When the while. loop ends, a selecting mask is formed by the 
equality of scalar e and list d, and this mask is used to remove from c 
all those rows not ending in e. This gives the desired result. 

The Angels of God Ascending and Descending 
Since JL goes forwards and backwards, there are separate variables 
for the forward and backward sequences. Instead of c we have sc and 
ec – two chains; instead of u and d we have su and eu, sd and ed. 

The while. is different – it says, effectively, “while forever”, since the 
loop continues as long as the value of the while. phrase is 1. The 
exiting from the loop will take place by way of if. statements. 

JL =: 4 : 0 
 sc=. ,. su=.sd=. ,{.y. 
 ec=. ,. eu=.ed=. ,{:y. 
 while. 1 do. 
  if. +./ sd e. ed do. break. end. 
  if. '' -: sd=. ; v=. (sd{x.) -.&.> <su do. _1 
return. end. 
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  su=. .su,sd [ sc=. sd ,.  (#&>v)#sc 
  if. +./ sd e. ed do. break. end. 
  if. '' -: ed=. ; v=. (ed{x.) -.&.> <eu do. _1 
return. end. 
  eu=. .eu,ed [ ec=. ed ,.  (#&>v)#ec 
 end. 
 sc join ec 
) 

The variables ending in u, d and c have the same functions as the u, d 
and c variables in FL.  The first and the last three statements in the 
while. loop have almost identical  structure.  With two path tables 
being built in the same loop, the test for termination is by finding that 
the same item or items appear in sd and ed. The test for “no path 
found” is essentially the same as in FL, but there are separate ones for 
sd and ed. An important difference is that sc is built from left to 
right, but ec is built from right to left. This makes joining the two 
easier. 

Linking the Chains 
When the while. of JL terminates, the fitting together of the two path 
tables requires some agility. It is complicated enough so that a special 
join function has been made. It was written by Roger Hui as a 
rewrite of a joinends function provided to me by R. E. Boss when I 
sent a message to the J forum explaining the problem and asking for a 
solution. 

join=: 4 : 0 
 x.=. x.#  ({:"1 x.) e. {."1 y. 
 y.=. y.#  ({."1 y.) e. {:"1 x. 
 (({."1 i){}:"1 x.) ,. ({:"1 i){y.  
     [ i=. (0,#y.)#:I.,({:"1 x.)=/{."1 y. 
) 

The variables x. and y. are the forward and backward chains, 
respectively. We have reached this point because one or more items of 
the last column of x. and the first column of y. match. We want to 
keep only those rows containing these matching items. The first two 
lines remove from x. and y. all the rows that don’t  have matching 
values in them. I’ll invent an x. and a y. and go slowly through the 
steps that lead to the desired result. 



At Play With J 
 

304 

Here are the two: 
   x. 
200 300 400 
  0   1 130 
  2   3 120 
  4   5 130 
  6   7 120 
  8   9 130 
500 600 700 
 
   y. 
500  600  700  800 
130    2    1    0 
120    5    4    3 
120    8    7    6 
120   11   10    9 
120   14   13   12 
130   17   16   15 
900 1000 1100 1200 

Only five rows of x. and six of y. match. First we remove the rows of 
x. that don’t end in one of the matching values: 

   ] x.=. x.#  ({:"1 x.) e. {."1 y. 
0 1 130 
2 3 120 
4 5 130 
6 7 120 
8 9 130 

And similarly, remove the rows of y. that don’t begin with one of the 
matching values. 

   ] y.=. y.#  ({."1 y.) e. {:"1 x. 
130  2  1  0 
120  5  4  3 
120  8  7  6 
120 11 10  9 
120 14 13 12 
130 17 16 15 

Now we have to maneuver to get the rows of x. ending in 120 in line 
with those of y. beginning with 120, and similarly for 130. First we 
compare for equality the tail of each row of x. with the head of each 
row of y.: 

   ({:"1 x.)=/{."1 y. 
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1 0 0 0 0 1 
0 1 1 1 1 0 
1 0 0 0 0 1 
0 1 1 1 1 0 
1 0 0 0 0 1 

This is ravelled and the indices of 1s found: 
   I.,({:"1 x.)=/{."1 y. 
0 5 7 8 9 10 12 17 19 20 21 22 24 29 

We convert this into their base #y. representation.  
   (0,#y.)#:I.,({:"1 x.)=/{."1 y. 
0 0 
0 5 
1 1 
1 2 
1 3 
1 4 
2 0 
2 5 
3 1 
3 2 
3 3 
3 4 
4 0 
4 5 

It’s another Magical Matrix [1]. The first column is used to select rows 
from x. and the second to select rows from y. . 

Use the second column to select rows from y. in the right quantity 
and in the right order: 

  ({:"1 i){y.  
130  2  1  0 
130 17 16 15 
120  5  4  3 
120  8  7  6 
120 11 10  9 
120 14 13 12 
130  2  1  0 
130 17 16 15 
120  5  4  3 
120  8  7  6 
120 11 10  9 
120 14 13 12 
130  2  1  0 
130 17 16 15 
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and use the first column to select rows of x., at the same time 
removing the last column; it merely repeats the first column of y. . 

   (({."1 i){}:"1 x.) 
0 1 
0 1 
2 3 
2 3 
2 3 
2 3 
4 5 
4 5 
6 7 
6 7 
6 7 
6 7 
8 9 
8 9 

Lastly, stitch these together, and we have the desired result: 
   (({."1 i){}:"1 x.) ,. ({:"1 i){y. [ i=. 
(0,#y.)#:I.,({:"1 x.)=/{."1 y. 
0 1 130  2  1  0 
0 1 130 17 16 15 
2 3 120  5  4  3 
2 3 120  8  7  6 
2 3 120 11 10  9 
2 3 120 14 13 12 
4 5 130  2  1  0 
4 5 130 17 16 15 
6 7 120  5  4  3 
6 7 120  8  7  6 
6 7 120 11 10  9 
6 7 120 14 13 12 
8 9 130  2  1  0 
8 9 130 17 16 15 

And we’ve matched the three 130s in the last column of x. with the 
two 130s in the first column of y., giving six rows; and matched the 
two 120s in the last column of x. with the four 120s in the first 
column of y., giving eight rows, which makes fourteen rows 
altogether. This contrived example shows a solution where there are 
fourteen different ladders with six links each, giving the links we can 
use to select the words that make Word Ladders. 
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Highway 101 in the San Francisco bay area is a busy commuter 
highway, with employees commuting to work at the headquarters of 
such companies as Adobe, Apple, Applied Materials, Cisco, eBay, 
Genentech, Google, Hewlett Packard, Informatics, Intuit, Oracle, 
Silicon Graphics, Sun Microsystems, Yahoo, and hundreds more 
high-tech companies. These commuters recently drove past a large 
poster paid for by Google, reading: 

{first 10-digit prime found in consecutive digits of e}.com 

Google apparently trusted that some among those passing the poster 
would understand it, and of these some might be intrigued enough 
by it to see if they could find that prime, and perhaps some of them 
might use it to go to the resulting web address. Those who did go the 
whole route would then find themselves with this message: 

Congratulations. You’ve made it to level 2. Go to www.linux.org 
and enter Bobsyouruncle as the login and the answer to this 
equation as the password. 

F(1)= 7182818284 
F(2)= 8182845094 
F(3)= 8747135266 
F(4)= 7427466391 
F(5)=__________ 

Those who find the value of F(5), and go to the site shown, would get 
this message from Google Labs: 

Congratulations. 

Nice work. Well done. Mazel tov. You’ve made it to Google Labs and 
we’re glad you’re here. 

One thing we learned while building Google is that it’s easier to find 
what you’re looking for if it comes looking for you. What we’re 
looking for are the best engineers in the world. And here you are. 

As you can imagine, we get many, many resumes every day, so we 
developed this little process to increase the signal to noise ratio. We 
apologize for taking so much of your time just to ask you to consider 
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working with us. We hope you’ll feel it was worthwhile when you 
look at some of the interesting projects we’re developing right now. 
You’ll find links to more information about our efforts below, but 
before you get immersed in machine learning and genetic algorithms, 
please send your resume to us at problem-solver@google.com. 

We’re tackling a lot of engineering challenges that may not actually be 
solvable. If they are, they’ll change a lot of things. If they’re not, well, 
it will be fun to try anyway. We could use your big, magnificent brain 
to help us find out. 

You now have all you need to know to dazzle Google with your 
magnificent brain. I haven’t spoiled it for you, so you can legitimately 
do it on your own. I will, however, give you a similar puzzle, in two 
parts, and will solve it for you. It uses the digits of pi. 

Problem 1: Finding 10-digit primes 
The first problem is to find among the digits of pi a ten-digit sequence 
that, when evaluated in base ten, is a prime number, and is the eighth 
such. Your first problem, then, is to obtain the first few hundred or so 
digits of pi. We’re in luck! The great Indian mathematician 
Ramanujan used the theory of complex multiplication of elliptic 
curves to give a number of beautiful formulas for pi’s digits, and a 
variation of this technique was discovered by the ingenious 
Chudnovsky brothers, from New York City by way of Kiev. A J 
function for their method is: 

Bigpi =: 3 : 0 
a=. 545140134x 
b=. 640320x  3 
c=. 13591409x 
d=. 6541681608x 
n=. i. >: x: y. 
s=. (! 6 *n) * c + a * n 
e=. (! 3 * n) * ((! n)  3) * b n 
m=. {: e 
f=. d * - / (s * m) % e 
k=. (a * m) * <. @ %: b * 10x  28 * y. 
k <. @ % f 
) 

Given an integer argument n it finds 1+14*n places of pi. To solve the 
problem you should use a hundred or so digits, so 15 would give 
about the right number.  

   q =: bigpi 15 
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To work with the individual digits it is convenient to work with the 
character form of q. 

   w =: ": q 
   # w 
211  

Here are the first 210 digits: 
   7 30 $ w 
314159265358979323846264338327 
950288419716939937510582097494 
459230781640628620899862803482 
534211706798214808651328230664 
709384460955058223172535940812 
848111745028410270193852110555 
964462294895493038196442881097 

We need these ten at a time: 
   t =: 10 [ \ w 
   $ t 
202 10 
   5 {. t 
3141592653 
1415926535 
4159265358 
1592653589 
5926535897 

To determine which of these are prime we have to convert each row 
into a number. 

   p =: ". t 
   $p 
202 
   5 {. x: p 
3141592653 1415926535 4159265358 1592653589 
5926535897 

Some of these may have had leading zeros, so that they are effectively 
9-digits long. We remove them – some of these may be prime, but 
they don’t qualify as ten-digit primes. 

   pa =: (p > 999999999) # p 
   $ pa 
183 

A convenient way to determine whether a number is prime is to 
count how many prime factors it has; if it has just one, the number is 
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prime. We can think of using J’s prime factors primitive q: to obtain 
the factors of the numbers in p, but will find that this is not always 
possible; many of the numbers are outside its domain. 

   q: 2004 
2 2 3 167 
   # q: 2004 
4 
   q: 2003 
2003 
   # q: 2003 
1 

So 2003 is prime, and 2004 isn’t. Here is an is prime function ip:  
   ip =: 13 : '1 = # q: y.' 
   ip 2003 
1 
   ip 2004 
0 
   ip 2000000000 
0 
   ip 2100000000 
0 
      ip 2200000000 
|domain error: ip 
|       ip 2.2e9 
   2200000000 = * / 11 5 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2  
1  
 

At this writing, the q: function will yield a domain error for many 
integers with ten or more digits, even when it is obvious the number 
isn’t prime. 

To circumvent this, we can use J’s adverse conjunction, defined as 
“The result of u :: v is that of u, provided that u completes without 
error; otherwise the result is the result of v.” We can write a special is 
prime function sip to return _1 as result if otherwise a domain error 
would be reported: 

   sip =: ip :: _1: 
   sip 2200000000 
_1 

We use sip on pa to let us know which are known composites (0), 
which are known primes (1), and which are not determined yet (_1). 

   pb =: sip " 0 pa 
   . pb 
_1 0 1 



The Google Test 
 

 

313 

 

   # /.  pb  NB. how many of each 
159 23 1 

We can  remove the known composites, leaving us with just the 
known primes and the suspects. 

   pc =: (pb : 0) # pa 
   $ pc 
160 

Now comes the hard part: determining which of these are prime 
without the use of q: . 

A number is composite if it has two or more prime factors. Twenty-
five is composite since it has the two factors 5 and 5. The larger 
number 9999399973 is also composite, with the two factors 99991 
and 100003.  

A prime number z has only one prime factor, namely z. A composite 
number w must have one or more prime factors less than its square 
root r. It can only have one prime factor s larger than its square root 
r. It may be that all of its prime factors are less than r. In any case, to 
find whether a number is prime or not it suffices to see whether any 
of the primes less than its square root divides it, that is, gives a 
residue of zero with n. Thus, if we have a list pf of all of the primes 
less than r we will be able to determine whether a number n is 
composite by seeing if it has a residue of zero for any of pf. If it 
doesn't then we know that n is a prime.  

We know that the numbers we are interested in will have values from 
1000000000 to 9999999999, inclusive. The square root of the largest 
number we may find is thus less than 100000, so it suffices that pf 
contain just the primes less than 100000. 

We can find these easily by using the function inverse to p:, that is, 
p: : _1. 

   p: : _1 [ 100000 
9592 
   p: 9592 
100003 
   p: <: 9592 
99991 
   pf =: p: i. 9592 
   {: pf 
99991 
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We need a function that finds the residues of a number with respect 
to each prime in pf and gives 0 if the number is composite and 1 if it 
is not, that is, if it is prime. 

nc =: 13 : '-. 0 e. pf | y.'"0 

This reads “not 0 in pf residues of y”. We apply it to pc: 
pd =: nc pc 

How many 10-digit primes have we found? 
   +/pd 
9 

More than enough to solve the puzzle. Which are they? 
  ] pe =: I. pd 
2 33 36 43 73 108 128 135 149 

And what are they? 
   pg =: x: pc {  pe 
   ,. x: pg 
5926535897 
4197169399 
1693993751 
7510582097 
4825342117 
5822317253 
2841027019 
8521105559 
8954930381 

Just for fun, locate these in the digits of pi: 
   7 30 $ w 
314159265358979323846264338327 
950288419716939937510582097494 
459230781640628620899862803482 
534211706798214808651328230664 
709384460955058223172535940812 
848111745028410270193852110555 
964462294895493038196442881097 

Three of them overlap. We want the eighth, 8521105559 . 
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Problem 2: Finding the fifth in a series 
You are given five 10-digit numbers from the digits of pi, and must 
find the sixth. Here are the numbers: 

4338327950 
2795028841 
6939937510 
3993751058 
2110555964 

Here they are, embedded in pi: 
   7 30 $ w 
314159265358979323846264338327 
950288419716939937510582097494 
459230781640628620899862803482 
534211706798214808651328230664 
709384460955058223172535940812 
848111745028410270193852110555 
964462294895493038196442881097 

The first and second overlap, as do the third and fourth. 

I’ll give two hints, the second vacuous:* 
Hint 1: Primarily, the sixth number has three doublets and overlaps the fifth. 

Hint 2: Alternately, something for nothing. 

                                                      
� Here the author originally invited readers to contact him if they wanted to 
know the sixth number, but this is no longer appropriate. (Ed.) 





39 Metlov’s Triumph 
First published in Vector, 21, 4, (Autumn 2005), 25-30. 

 

A puzzle was recently announced by Frank Buss on the Internet 
that led to some interesting discoveries. The puzzle is to be found 
by Googling “Frank Buss Triangle Problem” and then clicking on 
“Triangles Challenge” or browsing directly to 
http://www.frank-buss.de/challenge/ if you prefer. It says: 

The challenge is to write a program, which counts all triangles 
with area >0 in this figure: 

 

But count only the triangles, which are bounded by lines, like (P0, 
P7, P8), not all possible connections between the points, like (P7, 
P8, P9). If anything is unclear, the solution is 27 and looks like 
this: 
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Graphic output is not needed, but you can do what you want. If a 
GUI or something else is included, it would be nice to write: how 
long you needed for the pure algorithm and for the rest. 

This is not a quantitative, but more a qualitative challenge. 
Neither the number of lines nor the time (which I can’t verify 
anyway) is important, but I’m interested in good solutions, which 
show the advantages of the chosen language. 

Every program should be documented enough to understand 
how it works and it should not simply print 27, but somewhere it 
should read from a file or integrate the points and geometry, so 
that it is easy to change it for similar problems, for example if an-
other line is added, but it need not to be so general as to count the 
number of squares. 

There were 31 entries. The languages they used, the number of 
entries in that language, and the average number of lines in the 
programs are tabulated below: 
 

Language  Number of entries  Average number of 
lines 

C++ 3 115 

Java 4 105 

Python 1 94 

Haskell 1 93 

Ruby 1 75 

Scheme 1 66 

Awk 1 59 

Lisp 17 56 

Kogut 1 29 

J 1 1 

 
Most of these had a generous amount of documentation along 
with the actual program. I don’t know most of the languages 
used, but I could come to some conclusions about them. It seems 
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to me that most of the authors were more programmers than 
mathematicians. Almost all of them tackled the problem as one of 
establishing the proper way to represent the points, lines, and 
intersections in the triangle. Most of them gave solutions which 
were wired in, and their programs could not easily be extended to 
variations of the problem. 

Since Haskell is supposed to be a functional programming lang-
uage, I thought it might give an interesting and useful result, but 
I was disappointed. It hard-coded the geometry of the problem, so 
that it, like many others, couldn’t be extended. 

The J solution was submitted by Dr. K. L. Metlov. Here it is: 
* -: @ * + 

Metlov is a physicist, with many publications in his field, and he 
obviously studied the triangle puzzle as a mathematical one. In 
his notes, one sees that he experiments with variations of the 
problem, and in a relatively short time had concluded that a 
simple expression could be formed that would apply to a triangle 
with any number of lines. 

This is a fork, and a dyad, and it is better understood by 
emphasizing its forkiness.  

     *   + 
      \ /  
       | 
       * 
       | 
       -: 

The arguments are multiplied and added, this product and sum 
are multiplied, and the product is halved. 

I give Metlov’s Documentation over the next three pages: 
“When both sides of the triangle are divided into an 
equal number of steps (let’s call this number – n), the 
number of triangles is n^3 (n to the third power). For 
the example Frank Buss gives n=3 and the answer is  
3^3 = 27. 
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When sides are subdivided into a different number of 
subdivisions, say, n and m, the number of triangles is 
equal to 

½m × n(m + n) 

which is integer for any integer m and n. 

In J language (see http://www.jsoftware.com/ for 
description and download) the first formula is coded 
and invoked as 
    nt =: &3 
    nt 3 
27 

The second formula is coded and invoked as 
    nt =: * -: @ * + 
    3 nt 3 
27 
    2 nt 5 
35 

The first variant of the program is three characters, the 
second is 6 characters. 

It took me 15-20 minutes of drawing rectangles to 
derive the formula. J is an array-oriented language, 
descendent of APL. Therefore, the above programs 
(without change) can indeed be used to process 
millions of rectangles very fast. In order to achieve 
this the arguments must be arrays (of equal length in 
the second case). For example: 
    (3 2) nt (3 5) 
27 35  

How the formula was developed: 

Here is the link to the page of notes I made when 
thinking about the problem.  

http://www.livejournal.com/users/dr_klm/ 
51584.html?thread=435072#t435072 

and [overleaf] is a copy of the page.  
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The direct link is here:  
 http://galaxy.fzu.cz/~metlov/Triangles_Deriv.gif 
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I do not know if that will be enough to communicate 
the basic idea used for deriving the formula. On the 
other hand I do not have time to explain it in full 
detail. 

The interesting part occupies the lower left quarter of 
the page. Triangles are counted separately for two 
lower corners of the big triangle (left and right) and 
then the result is multiplied by 2 (if n=m), or added up 
with exchanging n<->m (if n!=m). To count triangles 
for one corner I sum up the triangles, occupying all 
single sub-sectors, the triangles, occupying all pairs of 
two consecutive sub-sectors, ... three sub-sectors... 
etc... In this sum, the triangles, which include both left 
and right corners of the big triangle are counted with 
weight ½ (to note that they will be counted again, in 
the sum for the other corner). 

I ran this procedure for n=3, m=3 approximately in 
the middle of the page. Then, by induction, wrote a 
general formula with the sum. The sum is nothing else 
but an arithmetic progression, which is immediately 
summed up. Then, with very basic algebra, the final 
formulas are obtained.” 

 

Comment from Frank Buss: 
This is a nice solution and the language looks interesting. It is the same 
concept as the Scheme solution, which uses a formula instead of 
counting the triangles, but this formula is much easier than the one used 
in the Scheme solution. 



40 Belgian Numbers 
First published in Vector, 22, 1, (November 2005), 96-101. 

 

Belgian numbers were recently introduced by Eric Angelini. For N 
to be a Belgian number, it is necessary that it appear in the sum 
scan of lots of replications of N’s digits. For example, try the digits 
of 16: 

   +/\8 $ 1 6 
1 7 8 14 15 21 22 28   

So 16 isn’t Belgian. What about 17? 
   +/\8$ 1 7 
1 8 9 16 17 24 25 32   

So 17 is Belgian. 

My first concern on hearing of them was to find out how one 
could tell whether a number was Belgian or not. Assume that N is 
176; how many copies of 1 7 6 would be needed to reach 176 or 
thereabouts? This can be found by taking the ceiling of N divided 
by the sum of its digits S. Like this: 

     N =: 176 
     ] D =: 10&#. :_1 N 
     1 7 6 
   ] S =: + / D 
14 
   ] C =: >. N % S 
13   

Then multiplying this by its number of digits, in this case, 3, and 
sum scanning: 

   ] R =: + / \  (C * 3) $ 1 7 6 
1 8 14 15 22 28 29 36 42 43 50 56 57 64 70 71 78 
84 85 92 98 99 106 112 
113 120 126 127 134 140 141 148 154 155 162 168 
169 176 182   

and, sure enough, we find that 176 is a Belgian number. This was, 
for the moment, an easy way to determine which numbers were 
Belgian—if they were not too big. I thought it might be possible to 
use it for numbers up to about ten million—but thereafter it gets 
ridiculous.  
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For example, suppose that one wants to see whether 1234567898765 
is Belgian: 

   N =: 1234567898765x 
   ] D =: 10 &. #. _1 N 
   #D 
13 
   ] N=:+/D 
71 
   >. B % S 
17388280265 
   13 * >. B % S 
226047643445   

Ouch. A fifth or so of a trillion (US style) digits. I concluded that 
this was impractical. 

There had to be a better way. Eventually I thought I saw that in 
the case of 176 there was a threeness lurking. I decided to form 
them into a table of three-item rows, together with the first 
difference of the rows, and the 14-residues of the whole table: 

   qn =: 13 3 $ + / \ 39 $ 1 7 6 
   qn      ;(2- /\qn);14|qn 
+-----------+--------+-----+ 
|  1   8  14|14 14 14|1 8 0| 
| 15  22  28|14 14 14|1 8 0| 
| 29  36  42|14 14 14|1 8 0| 
| 43  50  56|14 14 14|1 8 0| 
| 57  64  70|14 14 14|1 8 0| 
| 71  78  84|14 14 14|1 8 0| 
| 85  92  98|14 14 14|1 8 0| 
| 99 106 112|14 14 14|1 8 0| 
|113 120 126|14 14 14|1 8 0| 
|127 134 140|14 14 14|1 8 0| 
|141 148 154|14 14 14|1 8 0| 
|155 162 168|14 14 14|1 8 0| 
|169 176 182|        |1 8 0| 
+-----------+--------+-----+   

The first row of the first table shows that the sum of the integers is 
14; the second table shows that each row differs from the previous 
row by 14, the third table shows that the 14-residue of each row is 
1 8 0.  

The point made by the second table is that each row after the first 
is formed by adding 14 to the preceding row. This means that 
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I could create qn exactly by adding multiples of 14 to the starting 
row: 

   (14 * i. 13) + / 1 8 14 
  1   8  14 
 15  22  28 
 29  36  42 
 43  50  56 
 57  64  70 
 71  78  84 
 85  92  98 
 99 106 112 
113 120 126 
127 134 140 
141 148 154 
155 162 168 
169 176 182 

The point made by the third table is that any concern about 
residues after the first row is irrelevant.  

With this information at hand, we’re almost there. The number 
176 is 8 beyond 168, which is 14 * 12. The 14 * 12 is irrelevant; 
the 8 is significant. It means that 8, which is 14|176, is of great 
importance. It is one of the numbers in the first row of the table, 
and after being added to by multiple 14s, must arrive at 176, and 
so, is Belgian! This is a perfectly general observation, and allows 
any integer to be tested for Belgianity. Here is an outline of the 
steps to take to see if N is Belgian: 

Let D be the digits of N. 
Let S be the sum-scan of the digits of N. 
Let T be the sum of D (which is also the last item of S). 
Let R be the T-residue of N. 
Then N is Belgian if R is in S. 

For the case of N = 176, we have: 
D is 1 7 6 
S is 1 8 14 
T is 14 
R is the T-residue of N, or 8. 
 

We ask: is R in S? The answer is Yes! 
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The general case is that N is Belgian if: 
              (M | N) e. S  
is 1. 

Now it’s clear that 176 is Belgian if any of these residues is the 
same as 14 | 176: 

   14| 176 
8 

It is certain that if one adds the proper multiple of 14 to 8, the 
result must be 176. It isn’t necessary to find what this multiple is. 
It is sufficient that there is an 8 in the sum scan of 1 7 6. 

Now we can write an expression to let us determine whether 176 
is Belgian: 

   (14 | 176) e. + / \ 1 7 6 
1   

Another way of doing this is: since 8 is the 14 residue of 176, it is 
sufficient to see whether there is a zero in the 14 residue of  
176 - + / \ 1 7 6  

   14 | 176 - 1 8 14 
7 0 8   

So we may write: 
   0 e. 14 | 176 - + / \ 1 7 6 
1   

to determine that 176 is Belgian. 

We can now work with large numbers with some confidence. 
First, we’ll need a way of getting the integer components of N. The 
function dig works very well: 

   dig =: 1j1 & # &. ": @ x: 

We’ll use this on 1234567898765: 
   dig 1234567898765 
1 2 3 4 5 6 7 8 9 8 7 6 5 
   + / \ dig 1234567898765 
1 3 6 10 15 21 28 36 45 53 60 66 71 
   +/1 2 3 4 5 6 7 8 9 8 7 6 5 
71 
   71 | 1234567898765 - + / \ dig 1234567898765 
20 18 15 11 6 0 64 56 47 39 32 26 21 
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There is a zero in this list, indicating that N is Belgian. We can 
verify this.  

   N =: 1234567898765x 
   S =: + / \ dig N 
   M =: {: s 
   S 
1 3 6 10 15 21 28 36 45 53 60 66 71 
   M 
71 
   Q =: <. N % M 
   Q 
17388280264 
   P =: Q * M 
   P 
1234567898744 
   R =: S + P 
   R 
1234567898745 1234567898747  1234567898750 
1234567898754 
1234567898759 1234567898765 1234567898772 
1234567898780 
1234567898789 1234567898797  1234567898804 
1234567898810  
1234567898815 
   N e. R 
1   

So 1234567898765 is Belgian.  

Here is a function that will determine whether or not a number is 
Belgian: 

   BN =: 3 : 0 " 0 
   N =. x: : (y. >: 2147483648) y. 
   'S M' =. (] ; {:) + / \ (1j1 & # &. ":) N 
   (M | N) e. S 
   )   

The first line makes the argument an extended integer N if it is 
larger than the largest positive 32-bit integer, and otherwise 
leaves it alone. M and S are modulus and digits sum, as discussed 
above.  

See if BN agrees that N is Belgian: 
   BN 1234567898765 
1 
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Why Belgian? 
Why Belgian, indeed. Well, there are Roman numbers, Arabic 
numbers, even Catalan numbers. It’s about time Belgium was 
recognized. I could pretend that Eric Angelini (the creator of these 
numbers) knew that my wife Jeanne was a Fulbright Scholar at 
the University of Brussels for the 1952-1953 year – and named 
them Belgian in her honour. But I have to admit that this is quite 
far-fetched. The truth undoubtedly is – because Angelini is 
Belgian. 



41 Token Counting: APL versus J 
First published in Vector, 22, 3, (August 2006), 49-54. 

 

One measure of the difference between APL\360 and J is the number 
of tokens needed in a function to do the same work. I’ll discuss two 
examples, comparing well-written, but rather old, APL solutions, to 
well-written J solutions.  

Direct from Atomic 
The first APL example is a marvellous function written by Luther 
Woodrum, that appears on page B.11 of the APL\360 User’s Manual 
of 1968. Luther is best known to me by his design and implementa-
tion of the original upgrade and downgrade. His function PERM, 
below, is given a left argument A, the length of the permutation to be 
constructed, and a right argument B, the anagram index of the 
permutation to be constructed. It uses an algorithm first discussed, I 
believe, by D. H. Lehmer of the University of California in Berkeley. 
Here it is: 

         Z A PERM B;I;Y 
   [1]   I ΡZ 1+( ΙA) B-1 
   [2]   0×Ι0=I I-1 
   [3]   Z[Y] Z[Y]+Z[I] Z[Y I+ΙA-1]  
   [4]   2 
        

Disregarding the header, footer and line numbers, this has 55 
tokens. What does it do? Let’s suppose that A is 9 and N is 288918. 
Then the result Z is  

   7 1 3 2 6 4 0 5 8 

and this is the 288918th permutation of order 9. 

Here I should tell you that much of the material that follows is 
taken from my At Play With J article in Vector 12.1 (July 1995). This 
is not surprising, since it deals with the subject of Luther’s func-
tion. 

The first step is to make a function that gives the factorial digits of 
permutations of length A. Luther’s function uses origin 1, and that 
obfuscates things, so I’ll use the more suitable 0-origin indigenous 
to J. To give you some idea of what the factorial digits number 
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system is like, here are the six factorial digits in the system for 
three: 

     fdb =: >: @ i. @ - 
 
     (fdb 3) #: i. ! 3 
  0 0 0 
  0 1 0 
  1 0 0 
  1 1 0 
  2 0 0 
  2 1 0 

You can see the regularity in the rows. Notice also that every row 
ends in zero. This is true for all factorial digits systems.  

In PERM, line 1 gives Z the factorial digits value for B. 
     NB. fdb n yields the radix digits of order 9 
     fdb 9    
  9 8 7 6 5 4 3 2 1 
     (fdb 9) #: 288918 
  7 1 2 1 3 1 0 0 0   

Lines 2 and 4 control the executions of line 3, so that line 3 is 
executed only as long as I is positive. Line 3 can be defined as 
function g : 

g =:  [ , ] + ] <: [     
NB. left , right + right >: left 

Here I’ll have to pause, and to point out that what I’m doing with 
g is taking the clutter out of PERM line 3. What we’ve done so far 
reduces line 3 from 26 tokens to 7, yet it does precisely what line 3 
does. Perhaps if I show the successive uses of g you’ll get the idea:  

                   0 
                 0 1 
               0 1 2 
             1 0 2 3 
           3 1 0 2 4 
         1 4 2 0 3 5 
       2 1 5 3 0 4 6 
     1 3 2 6 4 0 5 7 
   7 1 3 2 6 4 0 5 8 

Successive lines are formed this way: for example, given line  
1 4 2 0 3 5 
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the next line is formed by beginning with the corresponding 
factorial digit, in this case 2, and following with the previous line 
in which each item greater than or equal to 2 has 1 added to it.  

2 1 5 3 0 4 6 

Notice that each line is a permutation. 

The function g  is made of three forks: 
      g 
   +-+-+--------------+ 
   |[|,|+-+-+--------+| 
   | | ||]|+|+-+--+-+|| 
   | | || | ||]|>:|[||| 
   | | || | |+-+--+-+|| 
   | | |+-+-+--------+| 
   +-+-+--------------+ 

The three forks are:  
   fz =: ] >: [ 
   fy =: ] + fz 
   fx =: [ , fy 

Here’s a J function, a functional duplicate of PERM: 
      sr                  NB. standard form from reduced 
   /:@/:@,/ 
      ra                  NB. reduced form from atomic 
   ([: fdb [) #: ] 
      sra =: sr@ra f.     NB. standard from atomic 
      sra 
   /:@/:@,/@(([: >:@i.@- [) #: ]) 
      ;: sra              NB. tokens of sra 
   +--+-+--+-+-+-+-+-+-+--+--+-+--+-+-+-+-+--+-+-+ 
   |/:|@|/:|@|,|/|@|(|(|[:|>:|@|i.|@|-|[|)|#:|]|)| 
   +--+-+--+-+-+-+-+-+-+--+--+-+--+-+-+-+-+--+-+-+ 
      # ;: 5!:5 <'sra'    NB. count of tokens in sra 
   20    

The function sr uses an identity I found March 9, 1970, when I 
was looking at Luther’s PERM once more: 

      N =: 7 
      P =: 1 3 2 6 4 0 5 7 
      (/:/:N,P) -: (N,P+N<:P)  
   1 
      NB. double upgrade matches addition. 
      N,P+N<:P 
   7 1 3 2 6 4 0 5 8 
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      /:/:N,P 
   7 1 3 2 6 4 0 5 8 

So double-upgrade can take the place of Luther’s line 3, and sra 
squeezes PERM down from 55 to 20 tokens. 

Pyramigram 
In APL Quote Quad 11.1, September, 1980, I asked for solutions to a 
problem posed by Linda Alvord, of Scotch Plains Fanwood High 
School in Scotch Plains, New Jersey. Here it is: 

Write an APL function PG that takes a scalar integer argument 
from 1 to 26 and produces a rectangular character matrix 
containing a pattern like this: 

      PG 5 
       Q 
      W Q 
     Q E W 
    R Q W E 
   Q E R T W 

 
In each row r there are r randomly selected and randomly 
ordered letters, separated by single spaces, arranged to form an 
equilateral triangle. The (n-1) letters in row n-1 are selected from 
the n letters in row n. 

This was one of the most popular problems I’d ever given, and 
there were a wide variety of solutions, including ones by some 
fairly gifted programmers, but one stood out from the rest, from  
Roger Hui. It took me several hundred words to describe what his 
function did. Roger recently told me that he had written his 
function without having access to an APL implementation. His 
function PG was not written in the conventional way that a 
function was defined in APL\360. Instead, it uses the alpha-
omega form introduced by Ken Iverson, in which the left and 
right arguments are denoted by Α and Ω. Here is a J function 
which uses the same algorithm as his from 1980: 
PG =: ([:i.[:-])(|."0 1)1j1"_ #"0 1(([:/:(([:-/\]- 
[:|.[:i.[:+:])#([:i.[:+:]) 

*[:*:])+[:? [:*:]){[:,(],]){.(('ABCDEFGHIJKLMNOPQRSTUVWXYZ'"_{ ]?26"_ 
) {. [:-.[:+:])$ ],[:+:])$ ],] 

I won’t dwell on this version other than to say that (1) it has 103 
tokens and (2) it is in tacit form. The details are discussed in the 
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cited issue of APL Quote Quad. It is a truth universally acknow-
ledged that a good programming language, worked over and 
pondered over for a sufficiently long time by the same people 
who had produced the original, may very well show advantages 
over the original. Thus I sent an email to the J Forum list, and 
messages to key people in the APL community, for new solutions 
to the problem. I made it clear that the degree of improvement in 
expressiveness, as measured by token count, would be the criter-
ion used. I received new solutions from the J and the APL comm-
unities. The shortest token count among the numerous APL 
solutions was 30, and there were several that used up to 60 
tokens. The shortest J solution, by Roger Hui, was 20 tokens long, 
so I’ll discuss that one only. This is it: 

   h   =:  /: # ? # 
   pyr =:  i. &. - @ # |. " _1 [: 1j1 & # @ h \ h 

His h has 4 tokens, and pyr has 16, totalling 20. 

The subfunction h is a hook.  It randomizes its argument. Its first 
function is /: and its second function is the fork # ? # . 

   h 'qwert' 
   ertqw 

The function pyr’s structure may best be seen using box display: 
   +---------------+---------+--------------------------+ 
   |+---------+-+-+|+--+-+--+|+--+-------------------+-+| 
   ||+--+--+-+|@|#||||.|"|_1|||[:|+---------------+-+|h|| 
   |||i.|&.|-|| | ||+--+-+--+||  ||+---------+-+-+|\|| || 
   ||+--+--+-+| | ||         ||  |||+---+-+-+|@|h|| || || 
   |+---------+-+-+|         ||  ||||1j1|&|#|| | || || || 
   |               |         ||  |||+---+-+-+| | || || || 
   |               |         ||  ||+---------+-+-+| || || 
   |               |         ||  |+---------------+-+| || 
   |               |         |+--+-------------------+-+| 
   +---------------+---------+--------------------------+ 
          A             B                 C 

The three outer boxes, A, B, and C, tell us that we have a fork. Box 
C yields the object to be rotated, and is the most interesting part. It 
produces a right-triangle version of the equilateral result required. 

Its copy function # is a dyad. By bonding ( & ) it on the left with 
1j1 we create a monad that makes one copy of its argument item 
and follows this with one fill item. A further function is made by 
using atop ( @ ) between the aforesaid monad and h. One further 
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step is to apply the prefix adverb ( \ ) to this combined function to 
yield 1j1 & # @ h \ . One last step supplies cap ( [: ) to the left 
of this and h to the right, and we have a function that randomizes 
the argument 'qwert', then randomizes each prefix, and provid-
es a space after each item of the prefix, like this: 

   ([: 1j1 & # @ h \ h) 'qwert' 
r 
r t 
t q r 
e r t q 
w q e r t 

Rotation (box B) uses reversal, item rank (|." _1) so that scalar 
items from the left argument (box A) rotate list arguments from 
the right argument (box C). 

Box A creates the left argument. It makes good use of negative 
arguments to i. and of dual.  Ordinarily i.  y yields a descend-
ing list of positive integers, but we want to do right rotations, 
which require a negative value. That’s the reason for using dual 
minus. (&. - ). 

   i. _5 
4 3 2 1 0 
   (i. &. -) 5 
_4 _3 _2 _1 0 

Thus, the whole result is given by 20 tokens: 
   (i. &. - @ # |. " _1 [: 1j1 & # @ h \ h)'qwert' 
    e 
   r e 
  r e t 
 e q r t 
r w q t e 

From 103 tokens in 1980 to 20 in 2005,  and by the same author, is a 
huge reduction.  


