

At Play With J

The complete Vector articles

by

Eugene E. McDonnell

Copyright © Eugene E. McDonnell, 1993-2009.

Vector Books
11 Auburn Road, Redland, Bristol, BS6 6LS, England.
in conjunction with the British APL Association.
http://www.vector.org.uk

All Rights Reserved.

The right of Eugene E. McDonnell to be identified as the author of this work
has been asserted by him in accordance with the UK Copyright, Design &
Patents Act, 1988.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise without the prior written consent of the publisher or a
licence permitting copying in the UK issued by the Copyright Licensing Agency
Ltd, 90 Tottenham Court Road, London W1P 9HE.

ISBN 978-1-898728-16-0

Typeset in Book Antiqua and APL 385 Unicode
by Undead Tree Publications
http://www.undeadtree.com

Contents
Preface by Roger Hui... 5

Introduction ... 7

1 MIMD Machines ... 9

2 Tacit Definition ..11

3 The 10,000,000,000th Prime Number..19

4 Control Structures.. 25

5 Jacobi’s Method... 29

6 Cribbage 15s... 39

7 Representing a Permutation.. 45

8 The Bauer-Mengelberg Problem... 49

9 Heron’s Rule and Integer-Area Triangles....................................... 59

10 Year’s Digits for 1996 ... 69

11 Riding a Unicycle .. 73

12 Volutes ... 79

13 Extended Integers ..91

14 Stumping the Rocket Scientist ... 101

15 Oh, No, Not Eigenvalues Again! ...109

16 A Newer Random Link Generator ... 115

17 To Summarise...123

18 Maximum Infix Sums...129

19 Crosswords and Life ...133

20 New Model Computer .. 141

At Play With J

4

21 New Big Deal..145

22 We’ll Cross That Bridge When We Come To It153

23 An Open and Shut Case..159

24 Blists in OLEIS...169

25 Someone Just Moved! Who Was It? Or, Apter’s Puzzle181

26 Four Cubes Redux ..197

27 Erdös Numbers and Pierce and Engel Expansions...................... 205

28 Boggle ...219

29 The Counterfeit Coin Problem .. 233

30 Second Order Josephus.. 245

31 J be Nimble, J be Quick: Nim Addition...251

32 Beware Scholes .. 263

33 Pick A Card, Any Card... 269

34 Greed.. 275

35 The Magical Matrix ..281

36 Giddyap.. 287

37 Jacob’s Ladder ... 293

38 The Google Test .. 309

39 Metlov’s Triumph ...317

40 Belgian Numbers... 323

41 Token Counting: APL versus J .. 329

Preface by Roger Hui

In my youth, when I was just starting in APL, on receiving an issue of
the APL Quote-Quad I would inevitably and eagerly first turn to
Eugene McDonnell’s “Recreational APL” column. Through these
columns I learned that it was possible for technical writing to be
erudite, educational, and entertaining, and through them I learned a
lot of APL.

Thus it was with Eugene’s At Play with J articles in Vector. In topics
ranging from primes to permutations to pyramids to π, with a cast of
characters that included Apter, Black, and Crelle, Jacob and Josephus,
Blanda and Montana and Taylor, and Scholes, the articles offered up
the “smoother pebbles” and “prettier shells” found while playing on
the seashore bordering the great ocean of knowledge. And we are all
beneficiaries of this play.

I am pleased that Vector is publishing the collection of At Play with J
as a book. I look forward to being educated and entertained once
more.

Roger Hui
January 2009,
Vancouver, Canada.

Introduction

In 1993 Eugene McDonnell published an article in Vector, the journal
of the British APL Association, disarmingly entitled At Play With J.*
Little did anyone suspect that this was the beginning of a scintillating
series which would continue until August, 2006, at which time Gene
let it be known that he could no longer commit to writing any more
contributions.

Here are Gene’s forty-one fine articles reprinted in one volume. They
form a series of straightforward but profound mathematical
investigations which not only entertain but exercise the intellect.

Do you need to know J to read this book?

When buying any book on a serious topic, obviously you ought to be
ready to open your mind to new ideas. This includes taking the
trouble to grasp any special notation the author thinks fit to intro-
duce. From this point of view the answer is no—you don’t need any
prior knowledge of J. The author instructs you with sufficient examp-
les in all the notation he needs as he goes along, though it’s best to
start with the first four chapters or so.

Gene’s “special notation” is ultra-terse—with a superb computer-aid
for playing with it: the J Interpreter. This comes with the J Introduction
and Dictionary, to which frequent reference is made. You can down-
load both free of charge from http://www.jsoftware.com to run
on a Macintosh™ or a Windows™ computer.

With these two items you’ll have no trouble following Gene’s line of
reasoning, to learn a host of amazing facts about number-crunching
and puzzle-solving. And, as a bonus, maybe you’ll find you’ve armed
yourself with a useful new tool of thought, even if you haven’t set out
with the intention of “learning yet another programming language”.

So… let’s play!

* Vector, 10, 2, (October 1993), 128-129. ISSN 0955-1433.
 Reprinted in this book as chapter entitled “MIMD Machines”.

1 MIMD Machines
First published in Vector, 10, 2, (October 1993), 128-129.

I had a request recently from someone who wanted to apply a
verb a different number of times to a list of arguments. What was
wanted was a simpler way of writing:

 (f a),(f f b),(f f f c)

My initial response was to say that J did not as yet have a way of
describing Multiple Instruction-Multiple Data machine architect-
ures (MIMD), although such a mechanism had been described [1].
I pointed out that a collapsing transpose could solve the problem,
but my questioner would have none of that, as it implied a great
deal of useless computation. There the matter rested for a while.
After several months I had another request from the same person
who wanted to know if I had made any progress on the problem.
Actually, I hadn’t thought about it at all in the interim, but since
my questioner seemed to be a determined type, I gave it a few
minutes more thought, and found what I think is a neat use of one
of J’s more interesting differences from APL, the way scan is
defined: that is, the verb applied is monadic, not dyadic.

For example, whereas in APL one writes +\1 2 3 to obtain the
continued sum of the values in the argument, in J one would have
to write +/\1 2 3 to obtain the same result.

 +\1 2 3
1 0 0
1 2 0
1 2 3

Here the monadic verb conjugate, denoted by +, is being applied,
first to 1, next to 1 2, and last to 1 2 3; since these are real
numbers, their conjugates are the same as the arguments, and
since J reshapes results so that they conform, and then appends
them, we get the zero fills at the right of the top two rows.
Compare this with

 +/\1 2 3
1 3 6

which is the analog to APL’s +\1 2 3.

Finally, here is the solution to the MIMD problem.

At Play With J

10

First I define three variables, a, b, and c:
 'a b c'=.3 4 5

Next, I define a verb f to be the natural logarithm (x.).
 f=.x.

and apply it once, twice, and thrice, to a, b, and c, respectively:
 f a
1.09861
 f f b
0.326634
 f f f c
_0.742579

This is the desired result, but done the hard way. Now for the
easy way:

Define a verb g which in which the verb f is applied (@) to the tail
({:) of its argument a number of times (x:) equal to the length (#)
of its argument:

 g=.f@{:x:#

For example, g 3 1 4 1 5 9 applies f six times to 9:
 f f f f f f 9
0.854804j1.01575
 g 3 1 4 1 5 9
0.854804j1.01575

Perhaps you already see how this will end. We apply the prefix
scan (\) adverb to g, and apply this derived verb to a,b,c:

 (g\)a,b,c NB. apply g to successively longer
prefixes
1.09861 0.326634 _0.742579
 NB. q.e.f.

Showing once again that where there’s a will there’s a way. Note
that because of the way prefix scan is defined, it is easy to
visualize how, in a multiprocessor environment, the applications
of g to all three arguments can be carried out simultaneously.

Reference
[1] Bernecky, R., Hui, R. K. W., Gerunds and Representations. APL

Quote Quad 21, 4, Stanford, Calif., (1991-08), 39-45.

2 Tacit Definition
First published in Vector, 10, 3, (January 1994), 100-105.

You may be among the readers of Vector whose stomachs start
churning or whose eyes glaze over when they read the words
“tacit definition” in articles about J. This column is meant for you.
It is going to take the approach that you know how to write an
APL function, and might not be averse to learning how to write a
J function in a similar fashion.

The example I shall use is fairly short – just ten lines – and may
possibly even be of use to some of you. It was shown to me by
Joey Tuttle many years ago. It’s called factors and it factors a
positive integer n. The result of factors n is an ordered list of
primes such that n is the product over the list, that is,
n = */ factors n. It was able to find the factors of the 18-digit
number (2x59)- 1 (576460752303423487), which are 179951 and
3203431780337, in 3 minutes and 37.1 seconds on a Macintosh
Quadra 700.

Various methods of finding the prime factors of a number are
given in Knuth, Seminumerical Algorithms, Section 4.5.4 “Factoring
into primes”, pp. 338-360. The method used here is the simplest
one, Algorithm A, which divides the number by increasingly
larger primes until all factors have been found, but the method
has been vectorized so that more than one factor may be found at
once.

The argument must be a positive integer not greater than max,
where max is a number derived from the floating-point
characteristics of your computer. This discussion assumes that
your computer uses IEEE floating point arithmetic, which is the
case for PCs, Macintoshes, and most Unix machines. On PCs and
Unix machines the maximum is the 16-digit (2x53)-1
(9007199254740991). For Macintoshes it is the 19-digit (2x63)-1
(9223372036854775807), or 1024 times as large. These are the
largest integers which can be represented to full accuracy on those
machines without special programming.

At Play With J

12

First I’ll show the function definition, then give explanations of its
lines, paying special attention to those things that differ from
APL.

Function Definition
Let’s assume for the moment that you created the function text,
called “text”, below. It could be in the form of a character matrix,
a character string delimited by carriage returns, or a vector of
boxed character vectors.

0. f =. i. 0
1. t =. 2 3 5 7 11 13 17 19 23 29 31 37
2. o =. +/\ 432 $ 4 2 4 2 4 6 2 6
3. L) m =. (-. * t |!.0 y.) # t
4. f =. f , m
5. y. =. y. % */ m
6. $. =. > (* # m) { $. ; L
7. t =. o + {: t
8. $. =. > (y. >: *: {. t) { $. ; L
9. f =. /:y f , y. -. 1

The line numbers are merely for reference. They are not part of
the function.

The first thing to notice is that there is no header line, so it would
seem that we can’t tell whether there is an explicit result or not,
nor what its name is if there is one, nor what the function name is,
nor what its valence is, nor what the argument is named, nor
which variables are local.

Here is how each of these questions is resolved:
Explicit result. Every J function has an explicit result, and it is the
value of the last expression executed.

Function name. In J a function is named the same way that a variable
is named, by assignment, denoted by (=.). However, we can’t just
write factors =. text because all that this would do would be to
create another variable named “factors” with the same value as
“text”. We have to use the “definition” operator, symbolized by the
colon (:), whose result is a function, not a variable. Our function is
monadic, so to give it a name we write factors =. text : ''
and this creates the function named “factors”.

Valence. For an ambivalent function, the monadic case is given by the
left argument to (:), and the dyadic case is given by the right
argument. If the function is monadic, as in our case, the right

Tacit Definition

13

argument is empty; if it is dyadic, the left argument is empty. There is
no such thing as a niladic function in J.

Argument name. By convention, the argument to a monadic function
is (y.). In a dyadic function the left argument is named (x.) and the
right argument is named (y.).

Local variables. J makes a distinction between local assignment (=.)
and global assignment (=:). This removes the need for a list of local
names. The rule is that on the first assignment of a name using (=.)
the name is made local.

Here beginneth the detailed description of the function’s lines:
Line 0 sets the initial factor list to empty. J’s iota is denoted by
(i.). By the way, if the argument is 1, this will be the result as
well, since 1 is not a prime and has no prime factors. However, it
will still be true that n = */ factors n, since the product over an
empty vector is 1.

Line 1 creates as the initial list of trial divisors the first 12 primes.
This enables the function to use just one iteration for all
arguments less than 1370 (37x2 is 1369).

Line 2 forms the list of offsets to be used in creating a new list of
trial divisors, after there are no more values left in the current list
that divide the current value of the number being factored. In J,
the scan operator is defined differently from the APL scan
operator. In APL the scan operator implies the reduction operator.
In J the function argument to scan is monadic, not dyadic, so that
one has to use “sum” (+/) not “add” (+) if we want the sum scan.

There are 432 items in this vector: 54 repeats of the eight items 4 2
4 2 4 6 2 6. The purpose of this vector is to remove multiples of
2 3 5 from consideration as trial divisors, since these can’t be
primes. For example,

37 + +/\ 4 2 4 2 4 6 2 6 ...
41 43 47 49 53 59 61 67 ...

Some of the items in these new trial divisors will not be primes. In
the list above 49 is composite. Eliminating multiples of 2 3 5
reduces the number of trial divisors by over 73%.

At Play With J

14

Line 3 looks as if it begins with a label, but the label name is
followed by a right parenthesis instead of a colon. This is because
the colon is used for function definition, as described above, and
so J uses the right parenthesis “)” to separate the label name from
the instruction. A label in J is a vector. The value of label “L” is 3
4 5 6 7 8 9; that is, it is a vector of instruction numbers,
beginning with the number of the instruction in which it appears,
and followed by each of the subsequent instruction numbers.
We’ll see the use of this when we discuss instructions 6 and 8.

This line begins the iteration, and forms the vector m of newly-
found factors of the argument. The factors are found by using the
vector of trial divisors of the argument as the left argument to the
residue function. However, the residue function in J is fuzzed, just
as it is in some APLs, in order to permit proper-looking results
when used with near-integers, and also to permit the use of
decimal rational numbers as arguments to residue. We are dealing
with exact integer arguments, so in order to extend the domain of
the residue function we require that it not be fuzzed. To
accomplish this in APL systems, the comparison tolerance system
variable, ĩct, is set to 0. In J this is done by explicitly modifying
the residue function with the “fit” or “customize” operator (!.)
using 0 as right argument. Thus, instead of writing t | y. We
write t | !. 0 y. and this allows us to work with a residue that
has zero fuzz.

Curiously, the Dictionary of J, which says that the “fit” operator
“modifies certain verbs in ways prescribed in their definitions”,
doesn’t describe this use of it with respect to residue. Tsk tsk. The
advantage of having the modification of the verb occur in direct
connection with its use is obvious: one doesn’t have to remember
whether or not ĩct has been modified, nor run into the hazard of
not restoring it when it should be. The use is direct and
immediate, and applies only to the function in question.
Furthermore, anyone reading the function knows immediately
that it is unfuzzed.

After finding the residues, their signum (*) is taken, yielding a
vector of 0s and 1s, and these are negated (-.) complementing
them to 1s and 0s. This boolean vector is used to select (#) the
corresponding items from t, giving in m the new factors to be
appended to the result. In APL there has always been a confusion

Tacit Definition

15

about slash: is it an operator or a function? If we write +/1 2 3 it
acts like an operator, but when we write 1 0 1/1 2 3 it acts like
a function. In J the “#” function is used for the functional case, as
in 1 0 1#1 2 3.

Line 4 appends the new factors to the result vector.

Line 5 factors the argument, by dividing (%) it by the product (*/)
of the new factors, thus diminishing it.

Line 6 is a branch instruction. There is no branch arrow in J,
however. What takes its place is a variable called “suite” and
denoted by ($.). This variable determines the sequence in which
instructions of a defined function are executed. At the beginning
of execution of a defined function, suite is set to a vector of the
instruction numbers in the defined function. In our factors
program, which has ten instructions, it would have the initial
value 0 1 2 3 4 5 6 7 8 9. At the beginning of execution of
each instruction, the leading item of ($.) is removed. Thus, if a
five instruction program were written in which each instruction
displayed the current value of ($.), the initial value of ($.) would
be 0 1 2 3 4, and the display of each instruction would be:

Instruction
 0 1 2 3 4
 1 2 3 4
 2 3 4
 3 4
 4 (empty)

The expression at the end of line 6 ($. ; L) forms a two-item
vector of boxes, using the link (;) function. The head of the vector
is the boxed current value of suite, and its tail is the boxed vector
L. Selection by index (x { y means select item x of y) is used to
choose one of them, and the one chosen is opened (>). The signum
(*) of the number of (#) factors in m is determined. This will be 0 if
there are no new factors, and 1 otherwise. If there are no new
factors, suite is reassigned to itself – effectively a fall-through. If
there are new factors, L is assigned to suite, causing a branch to
line L. Thus, if there were any factors in the current vector of trial
divisors, we may not have finished with it, and return to L to try

At Play With J

16

again with it. If there were none, we are through with the current
vector, and fall through to the next instruction.

Line 7 forms a new vector of trial divisors, by adding the offset
vector to the last ({:) item of the current vector.

Line 8 is another branch instruction. This one causes control to be
returned to instruction L if the reduced argument is greater than
or equal to (>:) the square (*:) of the first item ({.) of the new
vector of trial divisors, since in this case there may be more
factors. If it is less, this means that there can’t be any new factors
in the reduced argument, and thus it is either 1 or a prime.

Line 9 removes 1 from the argument (the result of x -. y is x
with items equal to y removed; 17 -. 1 is 17; 1 -. 1 is empty).
This leaves it unaltered if it is a prime, or makes it empty
otherwise. It then appends the argument to the list of factors
(essentially doing nothing if it had been 1), sorts (/:y) the list into
ascending order, and terminates. In J the semantics of dyadic
upgrade and downgrade have been changed. They no longer have
the significance of using the left argument as a collating sequence
to produce a grade with reference to it. Instead, they are used to
sort the left argument into an order specified by the right
argument. The definition of dyadic upgrade (x /: y) is (/:y) {
x; that is, the permutation that puts y in ascending order is used to
permute the items of x.

The most frequent use of these sort verbs is with the left and right
arguments identical, in which case the result is the sorted
argument, either ascending or descending. The reflexive operator
(y) applies to a monadic verb to produce a dyadic verb with left
argument the same as the right argument. For example, +y1.2 is
2.4, and /:y 2 7 1 8 2 8 is 1 2 2 7 8 8.

Below are some examples of the use of the factors function with
some ten-digit numbers to give you some idea of how it behaves.
Notice that the time to factor a number is longest when the
argument is a prime, and fairly long also when there are two
factors roughly equal to the square root of the argument. The
comment symbol in J is (NB.).

Tacit Definition

17

time =. 6!:2 NB. yields seconds to execute its
string argument
fmt=.":!.20 NB. formats (":) numbers to 20 places
(!.20)

time 'k=.factors 6307059899'
1.11667
fmt k
7 19 47421503

time 'k=.factors 6307059901'
0.85
fmt k
379 16641319

time 'k=.factors 6307059903'
0.983333
fmt k
3 127 3461 4783

time 'k=.factors 6307059907'
0.65
fmt k
1201 5251507

time 'k=.factors 6307059909'
3.51667
fmt k
3 24749 84947

time 'k=.factors 6307059911'
10.0167
fmt k
6307059911

3 The 10,000,000,000th Prime Number
First published in Vector, 10, 4, (April 1994), 110-113.

What is the 10,000,000,000th prime number? This column tells a
story, and it has a moral. It does not concern itself directly with J,
the ostensible reason for these columns, but it can be justified
because one of the direct antecedents of J is the language A,
developed by Arthur Whitney while he worked at the investment
banking firm of Morgan Stanley.

It was one page of C code for an A-like interpreter, written one
afternoon by Whitney at Ken Iverson’s Kiln Farm in Ontario, that
gave Roger Hui the direction he needed to start work on what
was to become J. Roger exhibits this code in Appendix A of “An
Implementation of J”, published by Iverson Software Inc. Whitney
no longer works at Morgan Stanley: he has set out as a freelance
and is developing a language called K, which has some affinity
with A and J. Hui now works at Morgan Stanley, and it is his
adventure hunting down a large prime that the story is about, and
Hui used A as the weapon with which he targeted the large
prime.

The story begins when Hui’s boss at Morgan Stanley challenged
him by saying, “You think you’re smart, but you don’t even know
what the 10-to-the-10-th prime is.” Hui’s immediate response was,
“Do you start counting from 0 or 1?” The boss was so taken aback
that for a minute or so he didn’t understand Roger’s question.

The boss’s challenge seems to have been meant as an example of a
theoretically attainable but practically impossible computational
task. This article tells how Roger went about achieving the
impossible. I look on it as a triumph of the client-server
technology. This column is not so much an article about
programming as it is about computer logistics. The programming
aspects, while important, are secondary to the story of how Roger
went about organizing the solution.

The germ of Hui’s solution was to envision a Boolean vector p of
length k such that the ith element of p is 1 if i is prime, and 0
otherwise. Just sum-scan this very long vector and look for the
index of 1e10 in it. How long should such a vector be? The Prime

At Play With J

20

Number Theorem says that the number of primes less than k is
roughly k%(log k). Solving for k in the equation 1e10=k%(log
k) gives a value for k about 2.63e11. Roger, out of prudence,
used the value 2.7e11. A vector of 2.7e11 elements is
unrealizable in the present state of computer memories, especially
since A doesn’t have a Boolean type: Boolean vectors require the
same space as integer vectors. A vector of 4*2.7e11, or 1e12
bytes long is simply not on the cards. Even a Boolean vector
taking just 1 bit per element would have to be more than 3e10
bytes long, so it was clear that the problem had to be partitioned.

Hui’s central program computes the primes between m and n,
using the sieve method, eliminating multiples of 2, 3, 5, 7, 11, 13,
17, etc. This can be done independently in parallel on many small
intervals that make up the larger interval of interest, and, if
portioned out to computers that can communicate with a common
central file, will permit the problem to be solved in a shorter time
than if only one computer were to tackle it.

The method of partitioning was suggested by the presence of
more than 150 workstations on the floor in Hui’s part of Morgan
Stanley. They are all interconnected Unix machines, and any
machine can be used from any other machine. With relatively
small effort a multi-processor solution could be set up, using these
machines in parallel. The machines are not heavily used at
weekends, and it was on a weekend that the experiment took
place.

The strategy was to let the machines tackle the problem a billion
integers at a time. Hui’s colleague at Morgan Stanley, Seth
Breitbart, suggested creating 271 files, named 0, 1, 2, ..., 270, each
denoting the named interval of 1e9 consecutive numbers, and
each one empty.

What a machine would do once it was set going was to look at the
list of files, pick one at random (named m), erase it, work on the
interval (1e9*m)+i.1e9, a million numbers at a time, and after
finishing, write a file containing a record giving the number of
primes in each of the million-number intervals within that 1e9
(there are a thousand of them). After finishing, it repeats that
process, stopping only when the list of files/intervals is empty.
The machines were set up to process a million numbers at a time

The 10,000,000,000th Prime Number

21

since the smallest machine available had enough memory to
handle that many numbers at once. Roger notes that there’s no
great harm if two machines accidentally happen to pick the same
file/interval. In the flexible Unix universe additional machines
could be brought on stream at any time.

If one is a Unix system superuser it is possible to take all sorts of
liberties with these machines, like finding the ids of all other
machines, but Hui prefers (wisely, I think) not to be tainted by
such capabilities, so to get the machines’ names he went about the
floor reading the names of the machines from strips of paper
affixed to each one, then sat down at his machine and made
inquiries about the state of each machine on his list.

If it was idle, he set it going on the problem. As he was doing this,
there was a nice dilemma to resolve. Should his time be spent
improving the algorithm before launching more machines, or
should he spend time looking for additional machines? He
favoured the latter approach for the novelty of it, and ended up
using about 15 IBM RS/6000s and 60 Sun Sparc 2s and Sparc 10s.

After 20 hours, he had 271 files, each with 1,000 records. From
these he made a 271,000-element vector of the number of primes
in the intervals 1e6*i.271000. By sum-scanning this he knew the
interval containing the 10x10th prime. His function psieve
returns a Boolean list selecting the primes between m and n.
Applying this to the magic interval gets the actual 10x10th prime.

Some details about his program psieve:
If a number q is not divisible by any number less than or equal to
sqrt(q), then q is prime. Therefore, to test a number less than 2.7e11
for primality one need only use trial divisors less than sqrt(2.7e11) or
roughly 6e5.

In practice, Hui precomputed a list of all the 78,498 primes less than
1e6 recursively, bootstrapping up from 2 3 5 7. (This only takes a few
seconds.)

It was then a routine matter to determine for any number less than
1e12 whether or not it was prime: just see whether its residues with
respect to each of the primes less than a million was nonzero; if so, it
was a prime.

At Play With J

22

For the curious, here is a condensed list of the first 10,000,000,002
primes, with their 0-origin ordinal numbers.

 0 2
 1 3
 2 5
 3 7
 4 11

...

1e10-1 252,097,800,623
 1e10 252,097,800,629
1e10+1 252,097,800,637

After doing this, Hui found that there is a table in William Judson
LeVeque’s “Fundamentals of Number Theory”, section 1.1, giving
the number of primes less than 10x3+i.8. Hui’s table agrees with
LeVeque’s for 10x3+i.7. For 10x10, however, LeVeque says
455,052,512 and Hui says 455,052,511. It turns out that LeVeque is
wrong, Hui having checked his results with some help from Lee
Dickey at Waterloo University. Dickey tells Hui that his
colleagues speculate that LeVeque may have gotten his numbers
from lists that D.N. Lehmer compiled, which included 1 as a
prime, and LeVeque may have slipped in not subtracting 1 from
that particular count. (1 isn’t a prime since it doesn’t satisfy the
definition of a prime: a positive integer n with exactly two distinct
factors, 1 and n.)

Now for the moral of the story: Hui tells me he has also since found
some work that would have made it much easier to discover the
nth prime, for any n. E.D.F. Meissel, a German astronomer, found
in the 1870s a method for computing individual values of pi(x),
the counting function for the number of primes <:x. His method
was based on recurrences for partial sieving functions, and he
used it to compute pi(1e9), where pi is a function that computes
the number of primes less than or equal to its argument.

D.H. Lehmer simplified and extended Meissel’s method. Recently,
further refinements of the Meissel-Lehmer method which
incorporate some new sieving techniques have been reported by
Lagaria et al [1]. In this article the authors give an asymptotic
running time analysis of the resulting algorithm, showing that for
every e>0 it computes pi(x) using at most O(xx(2%3)+e)

The 10,000,000,000th Prime Number

23

arithmetic operations and using at most O(xx(1%3)+e) storage
locations on a computer using words of length 1+<.2x.x bits.

The algorithm can be further speeded up using parallel
processors. They show that there is an algorithm which, when
given M parallel processors, computes pi(x) in time at most
O((%M)*xx(2%3)+e) using at most O(xx(1%3)+e) storage
locations on each parallel processor, provided M <: xx%3. A
variant of the algorithm was implemented and used to compute
pi(4e16).

They report that pi(4e16) took them 1730 minutes on an IBM
3081K; pi(2e12) took 3 minutes; pi(3e12) took 4 minutes. Had he
known about this method, Hui could have used a binary search
technique to find the 1e10th prime, using an O(2 log n) technique,
after narrowing the interval to be searched in by a reasonably
generous use of the Prime Number Theorem. The value Hui
computed was pi(2.52e11) and it took him 20 hours on 60-70
workstations.

Brains win again over brawn: a well-designed, mathematically
knowledgeable algorithm beats brute force!

Reference
[1] Lagaria, Miller, Odlyzko, Computing pi(x): Meissel-Lehmer

Method. Mathematics of Computation 44, 170, (1985-04), 537-560.

4 Control Structures
First published in Vector, 11, 1, (July 1994), 136-138.

There have been many proposals for control structures in APL
systems before, and there are now current several APL systems
which have them. This article will describe the control structures
which are made available in the new release of J (version 8).

The material is largely drawn from the latest edition of the
J Introduction and Dictionary, available from Iverson Software Inc,
33 Major Street, Toronto, Ontario, Canada M5S 2K9. The
documentation which I have seen was in a preliminary form at
the time of writing, so be sure to get a copy of the official
document if you would like to use these new facilities.

This article assumes that you, like me, are not overly familiar with
the general notion of control structures. If in fact you are a long-
time user of Fortran or Algol or C, please forgive these callow
comments.

The control words introduced are:
break.
catch.
continue.
do.
else.
elseif.
end.
goto_<name>.
if.
label_<name>.
return.
try.
while.
whilst.

The four control words if., try., while., and whilst. mark the
beginnings of control structures that are each terminated by a
matching end. control word.

The control words while. and whilst. differ in that the test
block in a whilst. statement is skipped the first time (the “st” in
whilst. can be thought of as meaning “skip test”) whereas in a

At Play With J

26

while. statement it is always executed. As a consequence, the
execution block in a whilst. statement is always executed at least
once, but in a while. statement, it may execute zero times.

The words do. and else. and elseif. occur within control
structures, separating them into blocks. The control word forms
goto_. and label_. represent an infinite family of possible
control words, for each of which is a different text. For example,
one may write:

goto_ahead.
...(statements)
label_ahead.

or:
label_back.
...(statements)
goto_back.

A block consists of zero or more control words and sentences that
are grouped together by control words occurring within a control
structure. The role of blocks is summarized as follows:

if. T do. B end.
if. T do. B else. B1 end.
if. T do. B elseif. T1 do. B1 ... elseif. Tn do.
Bn end.
try. B catch. B1. end.
while. T do. B end.
whilst. T do. B end.

Words with B or T denote blocks. If the first (or only) atom of the
result of the last sentence executed in a T block is zero, the B block
following is not executed, otherwise it is executed.

In a series of elseif. Ti do. Bi, if the Ti are not exhaustive, it
is good practice to put a final elseif. 1 do. Bz, where Bz is a
block covering the default procedure when all else has failed, so
that Bz is executed when no other test has succeeded.

Perhaps an example will make some of these details more
concrete. The program p23 represents a crude but effective
process for determining x as the two-thirds power of y. for y.
any positive cube.

The statement numbers are not part of the program. They are
shown only for reference purposes.

Control Structures

27

 p23=.3 : 0
1 v=.0
2 w=.1
3 while. y.y:z=.v*x=.v*v do.
4 if. z>y. do. v=.v-w=.-:w
5 else. v=.v+w=.+:w
6 end.
7 end.
8 x
)

Statements 1 and 2 give initial values to the local variables v and w.
Statements 3 through 7, inclusive, are a while. statement. Statements 4
through 6 inclusive are an if. statement. The T block in the while.
statement compares the argument (y.) for inequality with z, which is
the cube of v. If they are unequal, the result of the T block will be 1
(nonzero) and the if. statement will be executed. The T block in the
if. statement determines whether z is greater than y., and if it is the
block following do. will be executed. Otherwise, the block following
else. will be executed. The block following do. halves w and
subtracts this from v; the block following else. doubles w and adds
this to v. Continuing this process will eventually create a z which is
equal to y., making the result of the test zero, and when this occurs
the if. statement will no longer be executed. Line 8 will then be
executed, giving as the program’s result the value of x, since the
result of a program is the result of the last sentence executed that was
not in a T block.

The purpose of the try. and catch. blocks is to permit recovery
from a failure in execution. In a statement such as try. B catch.
B1 end. if block B executes successfully, then B1 is not executed.
If the execution of block B fails, then block B1 is executed.

The behaviour of the remaining control words can be summarized
as follows:

break. Go to the end of a while. or whilst.
control block
continue. Go the top of a while. or whilst.
control block
goto_<name>. Go to the statement beginning with
label_<name>.
label_<name>. Target of goto_<name>.
return. Exit the program

At Play With J

28

I must add a warning: I have not yet had access to the latest
released J system, so that the information above is based on a
reading of a preliminary version of the latest J Introduction and
Dictionary and not on an actual machine execution. I have,
however, submitted the program to two people who had access to
the latest J system, and am told that it executed properly.

5 Jacobi’s Method
First published in Vector, 11, 3, (January 1995), 111-118.

Parallel Jacobi
Warning: this column contains material which may either put you
to sleep or turn you against applied mathematics altogether. To
take some of the sting away I have added a problem which may
give you some pleasure in trying to solve. If you completely
distrust your ability to read descriptions of programs, no matter
how well-written, I advise you to go at once to the section headed
“Problem” and avoid the preliminary exposition, or the material
following, valuable as it is.

Background
Recently I had need of a program to perform eigenanalyses of
square symmetric matrices, and went to Vector 9, 3, January 1993,
which had Donald McIntyre’s article “Jacobi’s Method for
Eigenvalues: an Illustration of J”. I refer you to that article for
McIntyre’s lucid explanation of what the method is. In the course
of transcribing his 11-line Jacobi program, along with its sixteen
subprograms and its seven utility verbs, I thought I saw the
possibility of speeding it up significantly by taking advantage of
some of the parallelism inherent in the problem. I have
communicated with McIntyre concerning this, and he tells me
that he has used this method for many years, beginning with a
Fortran program which he obtained from someone many years
ago, transcribing it into APL and recently, as his article shows,
into J.

If you look at his program, you will see that at the heart of it are
the lines

 r=. ((cos,-sin),sin,cos) (ia R)} I
 Q=. q ip |:r [R=. r ip R ip |:r

The first line amends an identity matrix conforming to the
argument matrix by replacing two of its diagonal elements and
the two corresponding off-diagonal elements with a 2-by-2
rotation matrix. The elements amended are chosen by finding the
off-diagonal element of maximum magnitude, say at row-column
indices p,q, and inserting the 2-by-2 matrix items at locations

At Play With J

30

(p,p), (p,q), (q,p) and (q,q). This amended identity matrix r is then
used with two matrix products involving R, the original
argument, and Q, originally an identity matrix. Those involving R
have the effect of zeroing out elements (p,q) and (q,p) of R, while
leaving the eigenvalues of R unaltered. When this operation has
been performed a sufficient number of times, one finds that all of
the off-diagonal elements are essentially zero, and that the
diagonal elements are the eigenvalues of the argument matrix .
Those involving Q produce the eigenvectors of the argument
matrix.

The valuable book Matrix Computations by Golub and Van Loan
describes this method (section 8.5), but because the search for
(p,q) is O(n2), goes on to suggest that it might be more efficient to
select p and q in a more rigid way. For the case of a 4-by-4
argument, they suggest that p and q be selected in the following
order:

 p q
 0 1
 0 2
 0 3
 1 2
 1 3
 2 3

and go back to the beginning, repeating until a sufficiently good
solution appears. Golub and Van Loan go on to point out that the
rows of the (p,q) table can be arranged in a disjoint, or non-
conflicting fashion:

 a b c
 0 1 0 2 0 3
 2 3 1 3 1 2

and that, in a parallel machine, separate processors can be
assigned to perform the individual matrix product operations. For
example, in the 4-by-4 case, two processors are needed, so that in
step A one processor could do the (0,1) case and the other
processor could do the (2,3) case; in step B one processor could do
the (0,2) case and the other processor could do the (1,3) case; and
similarly for step C. They point out that this method works only
for even-order matrices, but that the odd case can be handled by
bordering the argument matrix on the right and at the bottom

Jacobi’s Method

31

with zeros, and then dropping these excess columns at the end.
Thus the rotation matrices needed would look like this:
 step A | step B | step C
 c01 s01 0 0 | c02 0 s02 0 | c03 0 0 s03
 -s01 c01 0 0 | 0 0 0 0 | 0 0 0 0
proc1 0 0 0 0 |-s02 0 c02 0 | 0 0 0 0
 0 0 0 0 | 0 0 0 0 |-s03 0 0 c03
 0 0 0 0 | 0 0 0 0 | 0 0 0 0
 0 0 0 0 | 0 c13 0 s13| 0 c12 s12 0
proc2 0 0 c23 s23| 0 0 0 0 | 0 -s12 c12 0
 0 0 -s23 c23| 0 -s13 0 c13| 0 0 0 0

My contribution enters here. I realized that one doesn’t need a
parallel machine to obtain the benefits of this parallel Jacobi
method. One can combine the rotation matrices, since they are
disjunct, as follows:
 step A | step B | step C
 c01 s01 0 0 | c02 0 s02 0 | c03 0 0 s03
-s01 c01 0 0 | 0 c13 0 s13| 0 c12 s12 0
 0 0 c23 s23|-s02 0 c02 0 | 0 -s12 c12 0
 0 0 -s23 c23| 0 -s13 0 c13|-s03 0 0 c03

This technique reduces the number of matrix products required
for a matrix of size n by a factor of n%2. Thus the larger the matrix,
the greater the savings. A 10-by-10 problem can be reduced by a
factor of 5; a 100-by-100 problem by a factor of 50, and so forth.

The Problem
Now we come to the playful part. As you can see, the row-column
pairs to be included at each step must somehow be derived. In the
case of a 4-by-4 matrix, we see that step A uses the pairs (0 1) and
(2 3); step B uses (0 2) and (1 3); and step C uses (0 3) and (1 2).
The problem is to determine a permutation z that produces the
desired result. For example, for n=4 any of the following
permutations will do:

 0 2 3 1
 0 3 1 2
 1 2 0 3
 1 3 2 0
 2 0 1 3
 2 1 3 0
 3 0 2 1
 3 1 0 2

At Play With J

32

If we set z=.0 3 1 2, we can experiment as follows:
]a=.(z&{)x:(i. <:#z) i. #z NB. all of the
possible permutations
 0 1 2 3
 0 3 1 2
 0 2 3 1

]b=.((2!#z),2)$,a NB. exhibit all the pairs of
items
 0 1
 2 3
 0 3
 1 2
 0 2
 3 1

]c=.(>/"1)b NB. mask shows where lead item is
greater than trail
 0 0 0 0 0 1

]d=.c |."_1 b NB. pairs with leading smaller
item
 0 1
 2 3
 0 3
 1 2
 0 2
 1 3

]e=./:yd NB. pairs in ascending order
 0 1
 0 2
 0 3
 1 2
 1 3
 2 3

Problem 1: Define a verb which takes as argument a positive
even integer n and yields a permutation which, repeatedly
applied to a conforming identity permutation, produces, in
successive pairs of items, all possible choices of 2 items from n,
with no duplications.

Jacobi’s Method

33

Problem 2: How many of the !n permutations of even order n
are solutions to problem 1?*

Principal verbs
The verbs described below were written for J8. If you are using an
earlier version of J you may wish to get your system upgraded.
Here are the verbs making up my solution to the parallel Jacobi
problem. The two verbs CEA and CEAI produce identical results,
but CEA is written using the rhetorical control structures which
have been added to J recently (see my last article) and CEAI uses
the algebraic control structures which have been in J from the
beginning.

Each main verb CEA and CEAI (Complete EigenAnalysis) takes as
argument a square symmetric matrix A and returns two
conforming matrices, the first with the eigenvalues along the
diagonal, and zeros elsewhere, and the second whose columns are
the eigenvectors for the corresponding eigenvalues. They each test
the parity of the number of rows of A. If this is even they laminate
to A a conforming identity matrix, using the utility verb IM, and
then apply the subverb PJ to this initial argument. If it is odd, the
action is to border A on the right and the bottom with a column
and row of zeros, using the utility verb bz, and then to apply CEA
(or CEAI) to this, and at the end removing the bottom row and
rightmost column of each matrix of the result with the utility verb
ub.

CEA =. 3 : 'if. (2|#y.) do. ub"2 CEA bz y. else. PJ y.,:IM y. end.'
CEAI=.(PJ@(,:IM))`(ub"2@(CEAI@bz))@.(2:|#)

The subverb PJ (parallel Jacobi) takes as argument an array of two
square matrices. It prepares four global variables for use by hsjr: a
quantity eps as the product of a globally defined tolerance tol
and the Frobenius norm of the first matrix, yielded by the utility
verb NF; a quantity s, the number of rows in the first square
matrix; a list k, the integers from 0 to s-1; and a list p, a
permutation which will be used to alter the arrangement of the
atoms of k, using the utility verb mxp. It then employs the verb

* Here the author originally invited the reader to send him solutions by
email. This is no longer appropriate. (Ed.)

At Play With J

34

hsjr (half of s Jacobi rotations) to the limit. At the limit, it yields
the desired complete eigenanalysis of the original argument.

PJ=. 3 : 0
 eps=:tol*NF {. y.
 s=:# {. y.
 k =: i. s
 p=:mxp s
 hsjr x:_ y.
)

The subverb hsjr (half of s Jacobi rotations) takes as argument an
array of two square matrices. It begins by making a rotation
matrix rm, using the verb RM. This rotation matrix is used with the
first matrix of the argument to develop PJ0, the next stage of the
eigenvalue matrix, one which has a smaller off-diagonal norm
than the previous one, and setting to zero any of its elements
which are less than or equal to the quantity eps, using the utility
verb clean. Next, it uses the same rotation matrix rm with the last
matrix of the argument, to develop PJ1, the next stage in the
eigenvector matrix. The two matrices are laminated to give the
result array.

hsjr=.3 : 0
 rm=.(k=:p{k) RM {.y.
 PJ0=.((|:rm)+/ .*({.y.)+/ .*rm) clean eps
 PJ1=.({:y.)+/ .*rm
 PJ0,:PJ1
)

The subverb RM (rotation matrix) builds a parallel Jacobi rotation
matrix.

It takes as left argument a particular permutation of the integers
from 0 through sP1. It fashions this into a two-column table t,
then reverses those rows of t in which the first atom is greater
than the second atom. An array cs of 2-by-2 cosine-sine matrices,
one for each row of t, is formed, using the verb csm. These will be
used to amend a matrix of zeros in locations specified by a
conforming array of 2-by-2 boxes ix, whose atoms are each a 2-
atom list derived from the corresponding row of t, formed using
the utility verb CP (Cartesian product).

For example, if a row of t is 2 3, the 2-by-2 boxes corresponding
to it will be:

Jacobi’s Method

35

 +---+---+
 |2 2|2 3|
 +---+---+
 |3 2|3 3|
 +---+---+

Finally, a matrix of zeros is formed, conforming to the right
argument y., and the positions in this corresponding to positions
given by the matrices of ix will be amended with the
corresponding matrices of cs, yielding the desired parallel Jacobi
rotation matrix.

 RM=.3 : 0
 :
 t=.((-:s),2)$x.
 t=.(>/"1 t)|."0 1 t
 cs=.y. csm"2 1 t
 ix=.CP t
 cs ix}0:"0 y.
)

The subverb csm (cosine-sine matrix) takes as left argument a
square matrix and as right argument a 2-element list of indices for
that matrix, the first element giving a row number and the second
element giving a column number, with the row number less than
the column number. If the entry in the matrix at that row-column
position is zero, the result will be a 2-by-2 identity matrix. If it is
nonzero the result will be a 2-by-2 Jacobi rotation matrix, using
the verb makecs.

csm=.makecs`(=@(i.@2:))@.(0:=<@]{[)

The subverb makecs (make cosine-sine table) takes as left
argument a square matrix and as right argument a 2-element list
of indices for that matrix, the first element giving a row number
and the second element giving a column number, with the row
number less than the column number. It yields a 2-by-2 Jacobi
rotation matrix.

makecs=. 3 : 0
 :
 tau=.(((<2#}. y.){x.)-(<2#{. y.){x.)%+:(<y.){x.
 t=.(*tau)%(|tau)+4 o. tau
 c=.%4 o. t
 s=.t*c
 (c,s),:(-s),c
)

At Play With J

36

The subverb mxp (make index permutation) takes a positive even
integer as argument and yields a list which is a permutation of the
integers from 0 through one less than the argument. The
permutation is such that when applied repeatedly to a conforming
list, none of the successive pairs in the lists are equal.

mxp=.[: C. 0: ; <: , (,y >:@|.)@>:@+:@i.@<:v

Utility verbs
The utility verb CP takes a list as argument and returns the
Cartesian product of the items of the list.

CP=. {@;"1y

The utility verb IM takes as argument a matrix and yields an
identity matrix having the same number of rows.

IM=. [: = [: i. #

The utility verb NF takes a matrix argument and yields its
Frobenius norm as result.

NF=. [: %: [: +/ [: , *:

The utility verb clean takes a numeric array as left argument and a
positive atom as right argument. It yields a conforming array as
result, wherein each element of the left argument with magnitude
less than the right argument is replaced by zero.

clean=. [*] < [: | [

The utility verb bz takes a matrix argument and yields a similar
matrix bordered on the right and below by a new column and row
of zeros.

bz=. >:@$ {.]

The utility verb ub takes a matrix argument and yields a similar
matrix with the rightmost column and bottom row removed.

ub=. _1 _1&}.

Jacobi’s Method

37

Test Information
Alter the following value as desired to control accuracy and
speed:

tol=.1e_6 NB. value should be in the range 1e_2 to
1e_17

 NB. Test matrices

]A=.1 1 1 1,1 2 3 4,1 3 6 10,:1 4 10 20
 1 1 1 1
 1 2 3 4
 1 3 6 10
 1 4 10 20

]m=.1.5 _1 _0.5,_1 2 _1,:_0.5 _1 1.5
 1.5 _1 _0.5
 _1 2 _1
 _0.5 _1 1.5

]r=.1 1 0.5,1 1 0.25,:0.5 0.25 2
 1 1 0.5
 1 1 0.25
 0.5 0.25 2

NB. test results, using tol as specified above
(executed on a Macintosh)

 CEA A
 0.453835 0 0 0
 0 0.038016 0 0
 0 0 2.20345 0
 0 0 0 26.3047
 0.787275 _0.308686 0.530366 0.0601868
 _0.163234 0.723091 0.640331 0.201173
 _0.532107 _0.59455 0.391833 0.458082
 0.265358 0.168411 _0.393897 0.863752

At Play With J

38

 CEA m
 2 0 0
 0 3 0
 0 0 0
 0.707107 _0.408248 0.57735
 _9.8829e_10 0.816497 0.57735
 _0.707107 _0.408248 0.57735
 CEA r
 _0.0166473 0 0
 0
1.48012 0
 0 0 2.53653
 0.721208 0.44428 0.531483
 _0.686348 0.56211 0.461473
 _0.093729 _0.697601 0.710329

6 Cribbage 15s
First published in Vector, 11, 4, (April 1995), 135-138.

Sir John Suckling (1609-1642) lived to just the age of 33, as you can
see. He is supposed to have taken poison to avoid a life of penury,
during the Civil War, in which he was a cavalier, not a round-
head. He was also a poet with an entrancing lyrical gift. He wrote:

Her lips were red, and one was thin
Compared to what was next her chin
(Some bee had stung it newly);

More to the point, John Aubrey, in his Brief Lives, tells us that
Suckling also invented the game of cribbage, developing it from
an earlier game, called noddy. I know nothing of noddy, but I was
taught cribbage while I was in the army (1944-6) by a fellow
soldier named Goman, who came from Duluth, Minnesota
(named for a French explorer named Du Luth). According to
Goman, Duluth was the cribbage capital of the world. The reason
for this was that Duluth is at the very western end of the
westernmost of the Great Lakes, Lake Superior, and in the winter,
when lake traffic has stopped, there is nothing for people to do
but go to their neighbourhood pub and play cribbage while
drinking beer. They also had the world’s championship cribbage
match, to which all of the best cribbage players in the world came.
Most of them didn’t have to come far, since many were from
Duluth. This may have changed over the last 50 years.

Just recently, when our nightly double solitaire game palled, my
wife and I decided to play cribbage instead. I got out the cribbage
board I had made, close to fifty years ago, and, with the aid of
some wooden matches to use as pegs, we began to play. My wife
hadn’t played the game as much as I had, and it was clear that she
was missing some opportunities to score because she didn’t see
some of the card combinations that added to 15. Such scores are a
key part of the game.

To help her out, I decided to tabulate all the combinations of cards
of length two through five that added to 15. This was easy enough
for length two and three, but it became a little tedious and

At Play With J

40

uncertain for greater lengths. I decided to take a few minutes
longer and get it right by doing it with J.

Because I had been spending most of my time recently on studies
involving Jane Austen, I hadn’t been doing much programming,
and I was a bit rusty. My first attempt used a technique which
generated all of the representations of 2, 3, 4, and 5-digit decimal
numbers, removed those which had more than four of any digit,
sorted the rows that were left (so that 4 1 became 1 4, for
example), removed duplicates, and removed rows that didn’t add
to 15. This strategy foundered because I ran out of space.

I took a few more minutes to think of a more space-efficient
strategy, and decided to use a program called part that had been
communicated to me several years ago by Roger Hui, which
allowed one to generate all the length k partitions of a positive
integer n. For example,

 2 part 7
 1 6
 2 5
 3 4
 3 part 6
 1 1 4
 1 2 3
 2 2 2

Having this made it almost too easy.
First I had to generate the partitions of 15 having length 2, 3, 4, and 5.

Next, since in cribbage the card values are from 1 (for ace) to 10 (for
10, jack, queen, or king), I had to remove rows having elements
greater than 10.

Next, for the 5-partitions, I had to remove the last row, since this
would consist of five threes (how did I know this?), and thus not be
valid (there are only four threes in a deck of cards).

Last, I wanted to box the results so they could be joined together.

To get rid of rows containing values beyond 10 I wrote:
 i=.*./"1@(10&>:) #]

This takes as argument a table of numbers and produces a
Boolean list by taking the and (*.) over (/) the rows ("1) of the
conforming table having a 1 for values for which 10 (10:) was

Cribbage 15s

41

greater than or equal (>:), and using this to copy (#) only those
rows from the argument (]).

To get rid of the last row if the rows had length 5, I wrote:
m=.}: x: (5: = #@{.)

This curtails (}:) the table if (x:) 5 (5:) is equal to (=) the length
(#) of its first ({.) row.

Boxing is primitive, so the entire result could then be obtained by
writing:

]p=.2 3 4 5 <@m@i@part"(0) 15

+----+------+--------+----------+
5 10	1 4 10	1 1 3 10	1 1 1 2 10
6 9	1 5 9	1 1 4 9	1 1 1 3 9
7 8	1 6 8	1 1 5 8	1 1 1 4 8
	1 7 7	1 1 6 7	1 1 1 5 7
	2 3 10	1 2 2 10	1 1 1 6 6
	2 4 9	1 2 3 9	1 1 2 2 9
	2 5 8	1 2 4 8	1 1 2 3 8
	2 6 7	1 2 5 7	1 1 2 4 7
	3 3 9	1 2 6 6	1 1 2 5 6
	3 4 8	1 3 3 8	1 1 3 3 7
	3 5 7	1 3 4 7	1 1 3 4 6
	3 6 6	1 3 5 6	1 1 3 5 5
	4 4 7	1 4 4 6	1 1 4 4 5
	4 5 6	1 4 5 5	1 2 2 2 8
	5 5 5	2 2 2 9	1 2 2 3 7
		2 2 3 8	1 2 2 4 6
		2 2 4 7	1 2 2 5 5
		2 2 5 6	1 2 3 3 6
		2 3 3 7	1 2 3 4 5
		2 3 4 6	1 2 4 4 4
		2 3 5 5	1 3 3 3 5
		2 4 4 5	1 3 3 4 4
		3 3 3 6	2 2 2 2 7
		3 3 4 5	2 2 2 3 6
		3 4 4 4	2 2 2 4 5
			2 2 3 3 5
			2 2 3 4 4
			2 3 3 3 4
+----+------+--------+----------+

At Play With J

42

To make this a bit more useful, I copied it to my text editor
(MacWrite Pro) and changed 10 to T and 1 to A, adjusted widths a
bit, and added a few header and footer lines, giving:

Ways of counting fifteen
with 2 3 4 5 cards in cribbage

+----+------+--------+----------+
5 T	A 4 T	A A 3 T	A A A 2 T
6 9	A 5 9	A A 4 9	A A A 3 9
7 8	A 6 8	A A 5 8	A A A 4 8
	A 7 7	A A 6 7	A A A 5 7
	2 3 T	A 2 2 T	A A A 6 6
	2 4 9	A 2 3 9	A A 2 2 9
	2 5 8	A 2 4 8	A A 2 3 8
	2 6 7	A 2 5 7	A A 2 4 7
	3 3 9	A 2 6 6	A A 2 5 6
	3 4 8	A 3 3 8	A A 3 3 7
	3 5 7	A 3 4 7	A A 3 4 6
	3 6 6	A 3 5 6	A A 3 5 5
	4 4 7	A 4 4 6	A A 4 4 5
	4 5 6	A 4 5 5	A 2 2 2 8
	5 5 5	2 2 2 9	A 2 2 3 7
		2 2 3 8	A 2 2 4 6
		2 2 4 7	A 2 2 5 5
		2 2 5 6	A 2 3 3 6
		2 3 3 7	A 2 3 4 5
		2 3 4 6	A 2 4 4 4
		2 3 5 5	A 3 3 3 5
		2 4 4 5	A 3 3 4 4
		3 3 3 6	2 2 2 2 7
		3 3 4 5	2 2 2 3 6
		3 4 4 4	2 2 2 4 5
			2 2 3 3 5
			2 2 3 4 4
			2 3 3 3 4
+----+------+--------+----------+

 T = 10, J, Q, or K

Cribbage 15s

43

The key to this is Roger Hui’s partition function, part:
 part =. basis`recur@.test
 basis =. (0&<@] , [) $ (1&=@[1&>.@*])
 recur =. (mask form])@(part&<:)
 mask =. start <:/ {."1 <. -.@(-/)@(_2&{.)"1
 start =. +/@{. >:@i.@<.@%&>: {:@$
 form =. pfx@[decr@,. ind@[{]
 pfx =. +/"1 # >:@i.@#
 decr =. (>:@(-/)@(_1 0&{) _1}])"1
 ind =. , # */@$ $ i.@{:@$
 test =. 1&<@[*. <

All in all, I spent a happy half-hour at play with J, and my wife
now beats me pretty regularly at cribbage.

7 Representing a Permutation
First published in Vector, 12, 1, (July 1995), 125-128.

This column explores some ways of changing among different
ways of representing a permutation.

Representations of a permutation:
 standard reduced atomic
 0 1 2 0 0 0 0
 0 2 1 0 1 0 1
 1 0 2 1 0 0 2
 1 2 0 1 1 0 3
 2 0 1 2 0 0 4
 2 1 0 2 1 0 5

The tables above give three different forms of length-3
permutations. It is useful to be able to go between the standard
and the atomic forms, and this conversion is facilitated by the
reduced form. We develop the following verbs:

ra reduced from atomic
ar atomic from reduced
sr standard from reduced
rs reduced from standard.

With these we can convert from each of the forms to any other. A
factorial digits number base is used to convert between the atomic
and reduced forms. The verb fdb gives the factorial digits base for
permutations of the order of its argument.

 fdb=. >:@i.-

For example,
 fdb 3
3 2 1

With this base we can convert an atomic to a reduced form and
vice-versa:

 (fdb 3)#: 4
2 0 0
 (fdb 3)#. 2 0 0
4

At Play With J

46

So the two verbs ra and ar are easily defined:
 ra=. ([: fdb [) #:]
 ar=. ([: fdb #) #.]

For example:
 3 ra 4
2 0 0
 ar 2 0 0
4

To convert from a reduced to a standard form is somewhat more
difficult. The trick is to begin at the right and add 1 to each atom
which is equal to or greater than the atom at the left. This ensures
that all atoms are kept distinct, and that at each step we have a
permutation. For example, suppose we take the length 9 reduced
form of the atomic form 288918:

]r=. (fdb 9) #: 288918
7 1 2 1 3 1 0 0 0

and then work from the right to develop the standard form:
 0
 0 1
 0 1 2
 1 0 2 3
 3 1 0 2 4
 1 4 2 0 3 5
 2 1 5 3 0 4 6
 1 3 2 6 4 0 5 7
 7 1 3 2 6 4 0 5 8

and the last result is the desired standard form. We can
encapsulate this in a verb as follows:

 g=. [,] +] >: [
 7 g 1 g 2 g 1 g 3 g 1 g 0 g 0 g 0
7 1 3 2 6 4 0 5 8

This suggests that we define a verb
 f=. g/

and use it on r directly:
 f r
7 1 3 2 6 4 0 5 8

But we can do better than this, employing the identity, for integer
k and permutation p,

 k , p + p >: k <-> /: /: k , p

Representing a Permutation

47

and arrive finally at the desired verb:
 sr=. /:@/:@,/
]s=. sr r
7 1 3 2 6 4 0 5 8

The last verb we need, to translate from standard to reduced form,
is arrived at by noting that, if r is the reduced form of a atandard
form s, then i{r is obtained from i{s by taking a count of how
many atoms to the right of i{s are less than i{s. For example:

 7 1 3 2 6 4 0 5 8
 7 > x x x x x x x x = 7
 1 > x = 1
 3 > x x = 2
 2 > x = 1
 6 > x x x = 3
 4 > x = 1
 0 > = 0
 5 > = 0
 8 > = 0

This sounds like a scan, but it isn’t exactly. J provides the \ adverb
to fulfil the function of APL’s scan adverb, but calls this prefix, to
emphasize that the derived verb is applied to longer and longer
prefixes. It calls the \. adverb suffix to emphasize that the derived
verb is applied to shorter and shorter suffixes. Thus the rs verb
we need can be defined as:

 rs=. ([: +/ }. < {.)\.
 rs s
7 1 2 1 3 1 0 0 0

With these four verbs, ar, ra, rs, sr, it is possible to obtain any of
the three forms from any other. We don’t need a verb to go
directly from standard to atomic or vice-versa. However, J
provides this as a primitive verb, denoted by A. and called
‘Atomic Index’ for its monad and ‘Atomic Permute’ for its dyad.
For example,

 A. s
288918
 288918 A. i. 9
7 1 3 2 6 4 0 5 8

At Play With J

48

So with A. a primitive, the four verbs we laboured over above are
more interesting for pedagogical than for practical reasons.
Atomic permute doesn’t care what its right argument is; it will
permute any object of sufficient length:

 288918 A. 'netrilacy'
certainly

A useful verb to generate a table of all permutations of a given
length is easy to write:

 apn=. i.@! A. i.
 apn 3
0 1 2
0 2 1
1 0 2
1 2 0
2 0 1
2 1 0

You would need a computer with a rather large amount of main
store to generate apn 12 —about 46e9 bytes (8 bytes per element,
12 elements per row, 479,001,600 rows). Of course, the computer
would also have to be able to address that large a store, too.
Judging from the current state of affairs, it may well be almost the
year 2000 before we routinely have these capabilities on our
desktops.

8 The Bauer-Mengelberg Problem
First published in Vector, 12, 2, (October 1995), 115-122.

This paper discusses a combinatorial problem arising in the field
of music, and shows the importance of the A. primitive discussed
in my last column.

The problem was told to me many years ago by Ken Iverson, who
had heard it from Adin Falkoff, who in turn had heard it from
Stephen Bauer-Mengelberg, a conductor / programmer who was
a colleague of Ken and Adin’s at IBM’s Systems Research Institute
at UN Plaza in New York City in the early 1960s. [Picturesque but
irrelevant detail: Adin tells of asking Bauer Mengelberg how one
of the pieces he conducted at a concert the night before had gone.
The answer was “The first movement went only so-so, but with
the second movement I floated off the podium.”]

The problem deals with the twelve-tone music associated with the
composer Arnold Schoenberg. I am not a musician, so I shall only
briefly describe it musically, and then convert it into a problem in
combinatorial mathematics.

The problem is to describe all the ways in which the twelve
semitones of the octave can be written so that each is used exactly
once, and so that each interval possible within the octave occurs
exactly once. The Penguin book A Dictionary of Music, by Robert
Illing (1950) gives an example of such a piece in figure (f) on page
297.

The notes begin with A natural, and then alternately rise and fall,
in the sequence B flat, G sharp, B natural, G natural, C natural, F
sharp, C sharp, F natural, D natural, E natural, and D sharp. I find
it convenient to number these notes according to their signed
distances from A natural, which I number as 0. The twelve notes
are then seen as

 0 1 _1 2 _2 3 _3 4 _4 5 _5 6

At Play With J

50

And it simplifies things if we take these mod 12, giving
 0 1 11 2 10 3 9 4 8 5 7 6 [A]

I have found it helpful visually to write these numbers as the
hours on a clock face (using 0 in place of 12), and to connect the
hours by lines in the order given, that is, draw a line connecting 0
to 1, 1 to 11, 11 to 2, and so on, ending with a line drawn from 7
to 6.

This clock figure makes more apparent various symmetries that
reduce the number of permutations that need to be considered.

If we take the first difference of [A], we get the following:
 1 10 _9 8 _7 6 _5 4 _3 2 _1

and if we take this mod 12, we get
 1 10 3 8 5 6 7 4 9 2 11 [B]

and it is easy to see that the list [A] is a 0-origin permutation
having a first difference, mod 12 [B] which is a 1-origin
permutation. Thus we have transformed the musical problem,
having to do with twelve-tone rows, into the combinatorial
problem of determining all the permutations of i. 12 having a
first difference which is a permutation of >: i. 11. That is, we
want to know how many such permutations there are, and what
they are. To make it easier to discuss “a permutation having a first
difference mod permutation length also a permutation”. I’ll call
such an object a ‘dil’ (from Distinct Interval List).

There are 479,001,600 permutations of i.12, so it is a large
problem to sift through these permutations looking for dils. For
example, to load the table of all permutations of order 12 would
take 4*12*!12, or 22,992,076,800 bytes. I believe that this would

The Bauer-Mengelberg Problem

51

be impossible to load in real memory on the largest contemporary
machine. This paper explores ways to cut it down to a more
manageable size.

I heard the problem in the early 1960s when Iverson notation was
available only on the printed page, and worked at it by hand for
several months without making much progress. Recently I
decided to tackle it once more, beginning by studying the
permutations of smaller order. I found that dils occur only among
even length permutations. The order two permutations are easy:
both are dils: 0 1 and 1 0, having an interval of 1. These can be
done mentally, but it quickly becomes necessary to develop
programming tools to aid in the exploration:

 pt=.i.@! A. i. NB. permutation table
 mfd=.# | }. - }: NB. modular first difference
 mn=. -: y. NB. distinct items?
 dil=.mn@mfd"1 NB. a dil?
 dils=. dil #] NB. all dils
 pt 3
 0 1 2
 0 2 1
 1 0 2
 1 2 0
 2 0 1
 2 1 0
 mfd 0 1 5 2 4 3
 1 4 3 2 5
 mn mfd 0 1 5 2 4 3
 1
 dil 0 1 5 2 4 3
 1

Studying the dils of order 4 give us some insight into the problem:
 dils pt 4 NB. dils of length 4
 0 1 3 2
 0 3 1 2
 1 0 2 3
 1 2 0 3
 2 1 3 0
 2 3 1 0
 3 0 2 1
 3 2 0 1

At Play With J

52

Some symmetries are present that will let us cut the problem
down in size. Only permutations beginning with 0 need be
considered, since the others can be obtained by clock face
rotations:

 ro=. #@] | + NB. rotate y by x
 1 ro 0 1 3 2
 1 2 0 3
 2 ro 0 1 3 2
 2 3 1 0

and similarly for the others. I call the dils beginning with zeros
‘basic dils’, since all the others can be obtained from them by
rotation, or, in musical terms, by transposing. By looking for dils
only among permutations beginning with 0, our order !12 prob-
lem has been reduced reduced to an order !11 problem, or
39,916,800. Here are the basic dils of orders 4, 6, and 8:

 a4=.dils(i.!3)A. i.4
 a6=.dils(i.!5)A. i.6
 a8=.dils(i.!7)A. i.8
 a4 a6 a8
 0 1 3 2 0 1 5 2 4 3 0 1 3 6 2 7 5 4
 0 3 1 2 0 2 1 4 5 3 0 1 6 5 3 7 2 4
 0 4 5 2 1 3 0 1 7 2 6 3 5 4
 0 5 1 4 2 3 0 1 7 3 6 5 2 4
 0 2 1 5 3 6 7 4
 0 2 3 6 5 1 7 4
 0 2 5 1 7 6 3 4
 0 2 7 6 1 5 3 4
 0 3 1 2 6 5 7 4
 0 3 2 7 1 5 6 4
 0 3 5 1 2 7 6 4
 0 3 5 6 2 1 7 4
 0 5 3 2 6 7 1 4
 0 5 3 7 6 1 2 4
 0 5 6 1 7 3 2 4
 0 5 7 6 2 3 1 4
 0 6 1 2 7 3 5 4
 0 6 3 7 1 2 5 4
 0 6 5 2 3 7 1 4
 0 6 7 3 5 2 1 4
 0 7 1 5 2 3 6 4
 0 7 1 6 2 5 3 4
 0 7 2 3 5 1 6 4
 0 7 5 2 6 1 3 4

The Bauer-Mengelberg Problem

53

Further efficiencies are possible. Notice that all of these dils not
only begin with the constant 0, but end with a constant that is half
of the order: 2, 3, and 4 for orders 4, 6, and 8, respectively. This
means that in searching for dils we only have to look at those
permutations beginning with 0 and ending with a constant, with
some permutation between them.

The desired inner permutation is given by:
 si=. i. -. 0: , -:
NB. integers thro n-1, less 0 and -:n
 si 2
 si 4
 1 3
 si 6
 1 2 4 5
 si 8
 1 2 3 5 6 7
 si 10
 1 2 3 4 6 7 8 9
 si 12
 1 2 3 4 5 7 8 9 10 11

By having to consider only inner permutations of order n-2, we
have now reduced our problem to one of order !10, or 3,628,800.
Furthermore, looking carefully again at the tables a4, a6, and a8
above, we see that only the first half of the basic dils need to be
tested, since the rest can be found by clock face reflections in the
y-axis. That is, any one of the rows in the lower half of any of
these tables is obtainable from one of the rows in the upper half.
The verb ry reflects a dil about the y-axis:

 ry=. # | # -]
 ry 0 1 3 2
 0 3 1 2

This means that to find the dils of order 12, we have to test only
-:!10, or 1,814,400 permutations. This is a reduction from !12 by
a factor of 264.

Since we can always retrieve a dil if we know its atomic number
and its length, we don’t need to exhibit the complete row. It
suffices to obtain only its atomic number. For example, the dils of
order 4 can be obtained using only 8 integers, rather than the 32

At Play With J

54

required by the display of the four atoms of each permutation
form of the dil.

We can define a verb dan to give us the dils in atomic number
form:

 dan=. (dil # A.) NB. dil atomic number
 dan pt 4 NB. atomic numbers of dils
of order 4
 1 4 6 8 15 17 19 22

There are two additional clock face reflective symmetries in these
dils. In addition to the y-axis symmetry mentioned above, there
are reflections possible in the x-axis, and in both the x and y axes.
For example, the dil:

 r=. 0 1 3 2 7 10 8 4 11 5 9 6

can be reflected in the x-axis by:
 rx=. [: |. # | -:@# -]
 rx r
 0 9 1 7 2 10 8 11 4 3 5 6

and in the x-y axes by:
 rxy=.[: |. # | -:@# +]
 rxy r
 0 3 11 5 10 2 4 1 8 9 7 6

I haven’t found a way to use these further symmetries to reduce
the work necessary to solve the dil problem. The program I use to
find the primitive dils of order n is:

 pdon=. 3 : 0
 NB. argument is 4-item list, e.g. pdon 12 5040 0 1814400
 'nibm'=.y.
 NB. n is length of permutation
 NB. i is size of batch (depends on memory size and n)
 NB. b is base index (usually 0 initially)
 NB. m is maximum item number (usually -:!n-2)
 NB. z is result, list of indices of primitive dils of order n
 z=.''
 s=.si n NB. for example, si 8 is 1 2 3 5 6 7
 h=.-:n NB. for n=8, h is 4
 while. b<m do.
 t=.0,.((b+i.i)A. s),.h NB. provide another batch
 z=.z,dan t NB. append primitive dil atomic #s to z
 b=.b+x NB. step base by batch size
 end.
 z
)

The line assigning t shows the utility of being able to specify the
right argument to the A. primitive. On my computer, it took about

The Bauer-Mengelberg Problem

55

10 minutes to compute the dils of order 10. I don’t know how long
it took to do those of order 12. I started it going just before I went
to bed, and it was ready in the morning.

For the record, the number of dils of orders 2 through 12 are:
 order primitive dils basic dils all dils
 2 1 1 2
 4 1 2 8
 6 2 4 24
 8 12 24 192
 10 144 288 2880
 12 1928 3856 46272

Here are a few nicely symmetrical dils of order 12:
 pty12s=.646517 3154657 4275293 5762095 7289175
9306655
 pty12s=. pty12s, 11633649 12187013 13754599
14826363 16823821

 pty12s A. i.12
 0 1 3 10 2 5 11 8 4 9 7 6
 0 1 10 8 3 11 5 9 2 4 7 6
 0 2 3 10 1 5 11 7 4 9 8 6
 0 2 7 10 11 3 9 5 4 1 8 6
 0 3 1 2 10 5 11 4 8 7 9 6
 0 3 7 8 10 5 11 4 2 1 9 6
 0 4 3 1 8 5 11 2 7 9 10 6
 0 4 5 8 3 1 7 9 2 11 10 6
 0 4 9 11 2 1 7 8 5 3 10 6
 0 5 1 10 8 9 3 2 4 7 11 6
 0 5 8 4 3 1 7 9 10 2 11 6

If you’re a musician you might try playing these. They also make
interesting clock face patterns. If you have a current version of J
on your computer you can see them drawn using the graphics
facilities available. The functions sogwin and sline are available
if you have profile.js in the command line as advised in installing
the system. Additional information about using the J graphics
facilities are described in the book Fractals Visualization and J by
Clifford Reiter, available from Iverson Software, Inc.

At Play With J

56

Here is the beginning of a sample session of visualizing dils on a
clock face to help you get started:

]r12=: 12 %: _1 NB. 12th root of negative 1.
 0.965926j0.258819
 all=. r12x2*i.12 NB. first 12 powers of this root
]coords=. +.all NB. real & imaginary parts
 1 0
 0.866025 0.5
 0.5 0.866025
 6.12574e_17 1
 _0.5 0.866025
 _0.866025 0.5
 _1 1.22515e_16
 _0.866025 _0.5
 _0.5 _0.866025
 _1.83772e_16 _1
 0.5 _0.866025
 0.866025 _0.5

 scaled=. 500*1+coords NB. scale to screen
coordinates
 1000 500
 933.013 750
 750 933.013
 500 1000
 250 933.013
 66.9873 750
 0 500
 66.9873 250
 250 66.9873
 500 0
 750 66.9873
 933.013 250

With these defined you can create a graphics window with:
 sogwin 'scaled'
 0 sline scaled

And display the lines for a given permutation on the clock face
with:

 perm=. 12 | 3+ry 0 1 11 2 10 3 9 4 8 5 7 6
 p=. perm{scaled
 0 sline p

The Bauer-Mengelberg Problem

57

The definitions of some of the graphics verbs needed are given
below:

 sogwin =. 3 : 0
 3 3 500 500 sogwin y. :
 x=.<.x.%2.5
 z=.'pc ',y.,';xywh ',(": x),';cc g isigraph;pas
',":2{.x
 wd z,';pcenter;pscale;pcloseok;pshow sw_showna;'
)

 sline =. 3 : 0"1 2
0 0 0 sline y.
 :
 wd 'grgb ',(":x.),'; gpen 1 ps_solid;'
 wd 'gmove ',(":{.y.),';'
 wd z=:,'gline ',"1 (":}.y.),"1 ';'
 wd 'gshow;'
)

 spoly =. 3 : 0"1 2
 wd 'gpolygon ',(,' ',.":y.),';gshow;'
 :
 sfill x.
 spoly y.
)

9 Heron’s Rule and Integer-Area Triangles
First published in Vector, 12, 3, (January 1996), 133-142.

Preliminaries
This note makes use of several less-well-known parts of J: the fix (f.)
and Taylor series coefficient (t.) adverbs and the polynomial
rootfinder verb (p.).

 To make the following accessible to all readers, the following verbs
are defined:

C =. @ NB. compose f C g x <-> f g x
D =. % NB. divide 18 D 3 <-> 6
H =. -: NB. halve H 12 <-> 6
I =.] NB. identity I 6 <-> 6
P =. */ NB. product P 1 2 3 <-> 6
R =. %: NB. square root R 36 <-> 6
S =. +/ NB. sum S 1 2 3 <-> 6
Z =. 0: NB. zero Z 1 2 3 <-> 0

The following convention applies to verbs f, g, and h:
 (f g h) y <-> (f y) g (h y) NB. (%: , *:) 16 <-> 4 256

Heron’s Rule
Heron’s rule for the area A of a triangle with sides a, b, and c is
usually written in two steps. First the semi-perimeter s is computed:

 s =. (a + b + c) D 2

For example:
 (13 + 14 + 15) D 2
 42 D 2
21

And then the following expression for the area is computed:
 A =. R (s * (s - a) * (s - b) * (s - c))

Continuing the example:
 R (21 * (21 - 13) * (21 - 14) * (21 - 15))
 R (21 * 8 * 7 * 6)
 R 7056
84

At Play With J

60

Heron’s is a scalar-oriented formula, with the lengths of the three
sides and the semi-perimeter playing separate roles in the
formulation. We make a first approach to an array formulation by
considering the triangle to be defined by a 3-item list of side lengths.
We then determine the semi-perimeter by a verb SP:

 SP =. H C S

The next step is to replace the three explicit subtractions by
appending a zero to the list and subtracting the resulting four values
from the semi-perimeter, then taking the product over this result, and
finally the square root of the product.

 Heron =. R C (P C (SP - (Z , I)))

This is a slightly more efficient form than APL expression 318 in the
FinnAPL Idiom Library.

 Heron 13 14 15
84

Fixing the definition of Heron, and giving this fixed version the name
Hrn, by using the fix adverb (f.) yields a form in which the names of
defined items are replaced by their values. Doing this insures that
changes in the items defined do not alter the definition of the item in
which they are used. As a side effect, a fixed verb is generally faster
than an unfixed equivalent.

 Hrn =. Heron f.
 Hrn
%:@(*/@(-:@(+/) - 0: ,]))
 Hrn 13 14 15
84

Integer Heron
In preparing examples for Heron’s formula, I thought it would make
the examples clearer if I could find triangles having integer sides that
also had integer areas. I explored consecutive triplets of integers
among the first 200 sets of triplets.

The first step was to build the table of triplets (the table has 200 rows):
 T =. 3]\ i. 202
 $ T
200 3

Heron’s Rule and Integer-Area Triangles

61

Its first and last four rows are:
 4 _4 {."0 _ T
 0 1 2
 1 2 3
 2 3 4
 3 4 5
196 197 198
197 198 199
198 199 200
199 200 201

Applying Hrn to the rows of this table gives a list of areas.
 Areas =. Hrn"1 T

We determine which of the areas are integral (those equal to their
own floor):

 Mask =. (= <.) Areas

And use the mask so found to give us the winning rows of T:
 Winners =. Mask # T
 Winners
 1 2 3
 3 4 5
 13 14 15
 51 52 53
193 194 195

The areas corresponding to these are:
 Hrn"1 Winners
0 6 84 1170 16296

The triangle 1 2 3 is degenerate (ugh!).

A Recursive Formula
I looked at Winners for some clue as to how the series could be
prolonged, but without success. Then I thought of N. J. A. Sloane’s
book A Handbook of Integer Sequences. I looked in it for the series 1 3 13
51 193 without avail. Then, knowing that each series in the book
began with 1, which was sometimes prefixed to a series which began
naturally with some other integer, I looked for 1 2 4 14 52 194 and 1 3
5 15 53 195, but again to no avail. Finally, I divided the even column 2

At Play With J

62

4 14 52 194 by 2, looked for 1 2 7 26 97, and this time struck pay dirt. It
was Sloane’s sequence 700.

Sloane’s entry for series 700 not only gave a number of additional
values but, more importantly, it gave a doubly recursive formula for
finding the values, in common mathematical notation:

 A(n) = 4A(n - 1) - A(n - 2)

So now I was able to extend the series as far as I wanted. I wrote a J
version of A:

 A=. ((4:*A@<:)-(A@<:@<:))`>:@.(<&2)

which, as you can see, is doubly recursive in A. It tests whether the
argument is less than 2 (<&2), giving one plus the argument (>:) as
result in these cases, and otherwise yields the difference between A of
n-1 (<:) and A of n-2 (<:<:).

I calculated additional results of A, for arguments 6 through 14,
derived triplets from the results, and applied Hrn to the triplets, and
in each case found an integer area. But was I satisfied? No.

Generating Functions
O them doddhunters and allanights, aabs and baas for agnomes, yees
and zees for incognits, bate him up jerrybly! James Joyce, Finnegans
Wake, p. 283.

The reason the story carries on is that I was unhappy with the long
execution times required by the deeply rooted calling trees of the
double recursion. I had to terminate the execution of A 30 after five
hours with no result. My mind turned to the subject of generating
functions, something I had often heard about and often, with little or
no success, had tried to master. I was stimulated to do this because of
three books. These were K. E. Iverson’s new book Concrete Math
Companion; the Ronald Graham, Donald E. Knuth, and Oren
Patashnik book Concrete Mathematics, which I shall refer to as GKP;
and most of all, the H. S. Hall and S. R. Knight book Higher Algebra,
first edition 1887, and usually referred to as Hall & Knight, worthy
successor to Todhunter’s Algebra for Schools and Colleges.

Both of these books are celebrated by James Joyce in the mathematics
chapter of his Finnegans Wake. Iverson’s new book and GKP focus

Heron’s Rule and Integer-Area Triangles

63

sharply on generating functions. From GKP I learned a four-step
process that promised to allow me to have my will with arbitrary
generating functions. I plodded through their examples, and tried to
duplicate their results on my problem. No luck. I turned to Iverson’s
book, and found out one important thing that GKP had neglected to
tell me, that is, that the key to generating functions was the ability to
generate the coefficients of Taylor series, something that J is well
suited for, since it contains a primitive (t.) to do just that. However,
that is about all I was able to learn there. Lastly, I got out my rusty
red copy of Hall & Knight, and it came through. The examples they
gave were of the same kind as mine, that is, they dealt primarily with
doubly recursive functions, where the nth term is some linear
combination of the two preceding terms. Their explanations were
carefully laid out in great detail.

Here is how they go about it.

Given a sequence with a sufficient number of terms, it is possible to
describe how to extend the sequence arbitrarily. The first thing to do
is to get rid of the notion that we are dealing with a mere list of
numbers. Instead we think of the list as being the coefficients in a
polynomial with a never-ending set of terms, that is, an infinite series.
Thus the list:

 1 2 7 26 97 ...

in fact defines the first several coefficients of the infinite series:
 (1*yx0) + (2*yx1) + (7*yx2) + (26*yx3) + (97*yx4) + ...

This is where Hall and Knight lost me. They say, from out of the blue,
that each term after the second is equal to the sum of the two preced-
ing terms multiplied respectively by the constants _1 and 4. Thus:

 7 = (_1*1) + (4*2)

or
 7 = _1 4 +/ . * 1 2

This implies that if we take any three consecutive terms r, s, t, they are
related by:

 t = (_1 * r) + (4 * s)

which can be rewritten as:
 0 = (1 * r) + (_4 * s) + (1 * t)

At Play With J

64

In this equation the coefficients
 1 _4 1

of r, s, and t form the scale of relation of the infinite series. They are
the coefficients of a quadratic polynomial written in ascending order:

 (1*yx0) + (_4*yx1) + (1*yx2)

Now this is all stated baldly in Hall & Knight, and I was thoroughly
lost. How does one find the scale of relation, and what was the point
of it? Luckily, the authors soon give the game away, noting that if a
sufficient number of the terms of a series be given, the scale of
relation may be found, and proceed to show how to do just that.

Suppose the first four terms of the series are, in order, a, b, c, and d.
Assume then that the general term is arrived at by multiplying the
two preceding terms by p and q, and adding. We are able to write the
following pair of equations:

 c = (p*a) + (q*b)
 d = (p*b) + (q*c)

and then it is a simple matter to solve this linear system for p and q by
writing

 'pq'=. (c,d) %. (a,b),:(b,c)

For example, if a, b, c, and d are 1 2 7 26 we write
]'pq'=. 7 26 %. 1 2,:2 7
_1 4

and we can form the scale of relation by appending a 1 to the negative
of these:

]s=. 1 ,y - 7 26 %. 1 2 ,: 2 7
1 _4 1

A pretty way to write this in J is to form a table t as follows:
 t =. 2]\ y =. 1 2 7 26
 t
1 2
2 7
7 26

and then we can write
 ({: %. }:)t
_1 4

Heron’s Rule and Integer-Area Triangles

65

So that we can form the scale of relation using the function scr:
 scr=. 1: ,y [: - [: ({: %. }:) 2:]\]

And use it to get our scale of relation:
 scr y
1 _4 1

What can we do with a scale of relation? Suppose we take the vector
product of the scale of relation and any three successive terms of the
infinite series, say 7 26 97

 a=. 1 _4 1 * 7 26 97
 a
7 _104 97
 +/ a
0

This sum will always be zero as a consequence of the way the infinite
series and the scale of relation are interrelated. Consequently, if we
do the polynomial multiplication of the scale of relation with the
infinite series beginning with 1 2 7 26, we find that all the terms
after the first two are zero:

 1 2 7 26 97 362 ...
 1 _4 1
 ____________________________ ...
 1 2 7 26 97 362 ...
 _4 _8 _28 _104 _388 ...
 1 2 7 26 ...

 1 _2 0 0 0 0 ...

Since all the terms of this product after the first two are zero, and
since we can ignore trailing zeros in a list of polynomial coefficients,
we find that the infinite product of the scale of relation and the
infinite series reduces to the linear polynomial:

 (1 * y x 0) + (_2 * y x 1)

In practice it is difficult to represent or work with infinite series, so
we enable the process by using only the first two terms of the series.
We can then do the polynomial multiplication of these two terms
with the scale of relation, and take only the first two terms of the
resulting product. Ordinary polynomial multiplication is given by:

 pm =. +//. @ (*/)

At Play With J

66

and our special infinite series multiplication by this scale of relation
polynomial is given by:

 spm =. 2: {. pm
 1 _4 1 spm 1 2 7 26
1 _2

The next thought to convey to you is the most important one in the
whole paper, so PAY ATTENTION!

Let me write the situation schematically:

 Infinite series Scale of Relation
Scale of Relation

Infinite series×
↔

That is, if I multiply and divide the infinite series by the scale of
relation, I end up with the infinite series. But I know the numerator is
simply a linear polynomial. So I can substitute the linear polynomial
for the numerator and write:

 Linear
Infinite series

Polynomial
Scale of Relation

↔

 This suggests that an infinite series of the kind we are describing can
be represented as a rational polynomial whose numerator is the linear
polynomial found as the product of the infinite series with its scale of
relation, and its denominator is the scale of relation, and that this
rational polynomial is fully equivalent to the infinite series. By this
chicanery I have managed to encapsulate the whole infinite series in a
rational polynomial. In J we represent a polynomial by a list of
coefficients c bonded to the polynomial primitive p., that is,

 c & p.

is a polynomial with coefficients c.

We can thus represent an infinite series by the rational polynomial
function gf, using its product with the scale of relation as the
numerator, and the scale of relation as the denominator.

 gf =. 1 _2&p. % 1 _4 1&p.

There isn’t much we can do directly with gf, since the only
meaningful arguments for it are those which make the infinite series
converge, so we are restricted, if that is what we want to do, to
arguments less than one in magnitude. But that isn’t what we want to
do. We are only interested in the coefficients of the terms in the series,

Heron’s Rule and Integer-Area Triangles

67

and J provides us with the tool needed to find these, and that is the
Taylor coefficient adverb (t.). Thus if we apply t. to gf, and apply
this derived function to any non-negative integer argument, the result
will be the corresponding coefficient:

 gf t. i. 12
1 2 7 26 97 362 1351 5042 18817 70226 262087 978122

Compared to the doubly recursive verb A, the time required by gf t.
is significantly less and its advantage in speed increases rapidly with
the size of the argument.

I estimate A 30 would have taken 15 hours to complete on my
computer, versus the 1.2 seconds taken by gf t. 30.

Partial Fractions
Hall & Knight discuss the relevance of partial fractions in handling
recurrences, and work through some examples. This leads to the
ability to derive an even simpler expression for the general term of
the series. The method works as follows: separate the generating
function into a sum of partial fractions with constant numerators and
linear denominators. That is, find constants a, b, A, and B such that:

 gf A
ax

B
bx

↔
−

+
−1 1

 (1)

The constants a and b are the roots of the scale of relation quadratic
polynomial. These can be obtained using the polynomial rootfinder
primitive, which is the monad of the verb p., by

]'ab' =. , > }. p. 1 _4 1
3.73205 0.267949

You might recognize these roots as
 2 + %: 3 and 2 - %: 3

In (1) the denominators can be removed by multiplying each term by
the scale of relation, giving:

 1 _2&p. <-> (A * (1 , -b)&p.) + (B * (1 , -
a)&p.)

This linear system can be solved for A and B by writing
]'AB'=.1 _2 %. 1 1 ,: -(b,a)
0.5 0.5

At Play With J

68

and now we can write a function gt:
 gt=. (A"_ * a"_x]) + (B"_ * b"_x])
 gt i. 10
1 2 7 26 97 362 1351 5042 18817 70226

The function gt is 5 times faster than gf t.

But wait! Since B and b are each less than one, the right hand
expression is always less than one and isn’t really needed—we can
replace it by a ceiling (>.). And since A is 0.5, we can replace it by
halving (-:) giving us an even simpler expression:

 gtt =. >. @ -: @ (a & x)
 gtt i.10
1 2 7 26 97 362 1351 5042 18817 70226

The function gtt is twice as fast as gt.

10 Year’s Digits for 1996
First published in Vector, 12, 4, (April 1996), 123-126.

This problem is a variation of an old one that originated as a Fortran
puzzle in the MIT alumni magazine, adapted for use with J. Here it is:

Create a character table T, having 101 rows, each row representing a J
expression, according to the following rules:

(a) The result of executing row i must be the atom i, and

(b) The characters ‘1’, ‘9’, ‘9’, and ‘6’ must appear in that order in
each row, and no other digits may be present. (In the Fortran
puzzle, the digits could appear in any order.)

Expressed in J,
(a) each row r =. i { T must satisfy the requirement that i -:

". r for i an item of i.101 (and thus an atom), and

(b) '1996' -: r -. a. -. '0123456789'

There are two additional requirements, suggested by Roger Hui:
(c) Character constants are not permitted. If they were then all

solutions would need no more than two tokens. For example 7
could be represented by #'1 9 9 6'.

(d) J allows ‘b’ form constants, in which a decimal integer base
appears to the left of ‘b’ and the digits to the right of ‘b’ may
include not only the digits 0 through 9 but also the letters
a through z, representing digits 10 through 35.
For example, the octal representation of 63 is 8b77 and the
hexadecimal representation of 255 is 16bff and the decimal
number 100 can be written as 1buzz. The ‘b’ form of constants is
allowed, but the digits a through z are excluded, as well as 0 2 3 4
5 7 8. If a through z were not excluded almost all solutions would
be one token long.

Here are some examples of invalid rows. The reason each example is
unacceptable is given directly after it.

 19+6+9 The digits are not in the prescribed order.

 1+96+1 The digits are not 1996.

 3*19[96 It contains a '3'.

 1{.99 6 It yields a list result, not an atom.

At Play With J

70

 #' 1996' It uses a character constant.

 1bzp996 It uses the digits z and p.

As a valid example, row 19 might be
 +/1 9 9[6

and this satisfies the test 19 -: ". '+/1 9 9[6'.

The objective of the problem is to use the minimum number of tokens
in each row, as measured by the J ‘Word Formation’ primitive (;:).
The foregoing list for row 19 has 5 tokens, and it is thus superior to:

 1+9+9[6

which uses 7 tokens, but it is inferior to
 19<.96

which uses only 3 tokens.

Entries will be judged in the following way: if L is the list of the
number of tokens in each row of a given entry, and M is the list of the
minimum number of tokens in all entries submitted, then the entry
which minimizes +/L-M is the winning entry.

To ease your minds, I should say that yes, a complete set of solutions
is always possible, and this has been demonstrated mathematically by
Donald Knuth and Roger Hui, among others. Since *1996 is 1 then
x.*1996 is a solution for 0; and since x.o.1 is between 1 and 2, then
applying floor or ceiling gives solutions for 1 and 2. Using more
instances of o. provides solutions for larger numbers, ad infinitum.
Clearly, this shows that a solution is always feasible. Most derived
using this method are not, however, very short. Coming up with a
short solution for each integer is your problem.

To help you get started, let me suggest that you use a strategy like
that employed by Roger Hui. He used a J session in the following
way to develop his table:

He worked with two windows present on his screen: an executable
window, and a script window called 1996.js which contained one
solution per line.

Initially, each row is set with the row number, a comma, some spaces,
and a 0. For example, row 25 would look like this:

Year’s Digits for 1996

71

25, 0

You can write potential solutions in the script window, and have
them executed in the execution window to see if they are correct:

25, 1+9+9+6

Roger provided himself with a suite of utility functions:
 mat=: (5&}.);._2 @(1!:1) @((<'1996.js')"_)
 len=: /:y@(({.,#)/.y)@:(#@;:)
 check=: *./@(0&= +. (=i.@#))@:".
 pfx =: [: ": #@;: ,. i.@#
 tab =: [: \:y pfx ,.]

mat reads the script file and constructs a matrix from it. As it stands, it
is suitable for use with IBM-compatible PCs. To change it for use on
Unix or Macintosh systems, you should replace the text ‘(5&}.@}:)’
with ‘5&}.’.

check checks that each row is either zero (unsolved) or has the correct
number. len makes a two-column table with the first column giving a
length and the second column giving the number of solutions with
that length (unsolved numbers have a length of 0). tab makes a table
of the solutions sorted in decreasing length, and thus is handy for
attacking the really bad solutions.

I wrote the following, to check that only the digits ‘1996’ appear, in
that order, in the solution:

d1996=.*./@([:('1996'"_ -:] -. a."_ -.
'0123456789'"_)"1])

To see what these utilities can do for you, after you’ve created your
1996.js file and filled in a few entries, experiment with expressions
like:

 $mat 0
 check mat 0
 len mat 0
 +/*/"1 len mat 0 NB. total number of tokens
 tab mat 0

And after you’ve filled in all the entries,
 d1996 mat 0

This problem should help familiarize you with some lesser-known
parts of J, like b-form constants, the new p: and q: primitives, and

At Play With J

72

the monadic, or base-2 form of the base primitive (#.). For example,
the following five-token expression:

 #.p:q:|_19b96
91

creates the number _19b96, which has the decimal value _165 (in
base _19 the values 9 and 6 evaluate to _171 and 6, with sum _165);
takes the magnitude of this number, yielding 165; finds its prime
factorization with q:, yielding 3 5 11; uses p: to find the third, fifth
and eleventh primes in the 0-origin series 2 3 5 7 11 13 17 ... ,
yielding 7 13 37; and applies the primitive #. to evaluate this list in
base-2, yielding 91 (+/4 2 1*7 13 37). Another five-token
expression for the same value is:

 >:1#.q:996
91

There is a solution to 91 which is shorter than this, by the way.*

* The solution is left to the reader. (In his original paper, Eugene invited
readers to send solutions to him, but this is no longer appropriate (Ed).)

11 Riding a Unicycle
First published in Vector, 13, 1, (July 1996), 154-158.

This article deals with two topics dealing with permutations
having a single cycle, which can be called unicycles. The first
arises from a recent Internet inquiry, and the second resuscitates
an obscure mathematician from two centuries ago to give him
credit for having invented list processing.

We might ask how many unicycles there are for permutations of a
given length. This number can be found by the use of Stirling
numbers of the first kind, which came about precisely from a need
to count the number of ways to arrange n objects into k cycles. In
their APL95 paper, Representations of Recursion, Roger Hui and
Ken Iverson give an efficient way to generate the table of values
for these Stirling numbers for cycles:

 S1v=. 1:`([S1r $:@<:) @. * " 0

 S1r=. (0:,]) + <:@[*],0:

 S1v 4
0 6 11 6 1

 S1v i.10

 1 0 0 0 0 0 0 0 0 0
 0 1 0 0 0 0 0 0 0 0
 0 1 1 0 0 0 0 0 0 0
 0 2 3 1 0 0 0 0 0 0
 0 6 11 6 1 0 0 0 0 0
 0 24 50 35 10 1 0 0 0 0
 0 120 274 225 85 15 1 0 0 0
 0 720 1764 1624 735 175 21 1 0 0
 0 5040 13068 13132 6769 1960 322 28 1 0
 0 40320 109584 118124 67284 22449 4536 546 36 1

As you can see, the number of ways that n objects can be arranged
in a unicycle is !n-1.

I. The Bernecky Problem
Bob Bernecky, of Snake Island Research, in Toronto, sent a
message on the Internet recently asking for help in deriving from
the sequence of link fields in a linked list of records the permutat-

At Play With J

74

ion which would put the records into order. That is, suppose the
records looked like this:

 No. Name Link
 0 Bee 6
 1 Zee 0
 2 Que 8
 3 Gee 5
 4 Pea 2 (A)
 5 Jay 9
 6 Dee 3
 7 Vee 1
 8 Tea 7
 9 Key 4

The first record in the list is assumed to be in the leading position,
but the locations of the other records is arbitrary. The ‘Link’ field
in (A) gives the number of the successor record, and is 0 if it is the
last record. In (A), the record following the first is number 6, and
this is followed by number 3, which is followed by number 5, and
so forth. It should be evident that the list of links is a permutation
in (non-standard) cycles form, in other words, a unicycle.

What was desired was to have the records arranged as follows:
 No. Name Link
 0 Bee 6
 6 Dee 3
 3 Gee 5
 5 Jay 9
 9 Key 4 (B)
 4 Pea 2
 2 Que 8
 8 Tea 7
 7 Vee 1
 1 Zee 0

The desired permutation is given by the ‘No.’ field in display (B),
that is, 0 6 3 5 9 4 2 8 7 1. My usual way of exploring such prob-
lems is to head in the general direction where I imagine a solution
may be found, with no maps or guides or bearers, and just beat
my way unaided through the jungle with a machete. To my
satisfaction I found that I could obtain the solution by applying
raze (;) to the cycles-direct (C.) of the link list, and rotating this

Riding A Unicycle

75

result so that it begins with 0:
 y=.6 0 8 5 2 9 3 1 7 4
 (i.&0 |.]) ; C. y
0 6 3 5 9 4 2 8 7 1

This is somewhat mysterious to me, since C. applied to an open
list is supposed to convert from the direct form of a permutation
to the cycles form, and here it looks as if the reverse is happening.
(See the J Introduction and Dictionary for a description of the cycles
and direct forms of a permutation.) Roger Hui provided me with
the following explanation:

rot=: i.&0 |.]

g0 =: 3 : '{&y.x:(i.#y.) 0'
f0 =: g0 {]

fs =: {."1 @ ({/\) @ (i.@# , <:@# # ,:)
g1 =: rot@fs
f1 =: g1 {]

g2 =: rot@;@C.
f2 =: g2 {]

The g’s (and therefore the f’s) are equivalent on the vector x:
 x=: 6 0 8 5 2 9 3 1 7 4
 (g0 -: g1) x
1
 (g0 -: g2) x
1

But they are not equivalent on arbitrary x:
 g0 12?.12
0 10 3 4 6 1 2 5 7 9 8 0
 g1 12?.12
0 10 3 4 6 1 2 5 7 9 8 0
 g2 12?.12
0 11 10 3 4 6 1 2 5 7 9 8

In fact, the functions are equivalent exactly on those arguments
that are a single cycle (1: = #@C.), and the explanation you seek
lies in why g2=:rot@;@C. “works” on a single cycle.

At Play With J

76

The so-called “link list” representation of x:
 0 1 2 3 4 5 6 7 8 9
x 6 0 8 5 2 9 3 1 7 4

specifies that 0 goes to 6, 6 to 3, 3 to 5, 5 to 9, etc., and that is what
C. does in obtaining the cycle representation from the direct
representation. If there is more than one cycle (if there is stuff left
over from this process), C. then does it again on the remaining
elements to get the next cycle.

Since the argument is a single cycle, the raze of what results
simply removes the boxing, and the rotation converts from the J
convention of starting a cycle by its maximal element to the
alternative convention of starting a cycle from 0.

II. Crelle’s Device
Histories of computing generally date the beginning of list-
processing techniques to 1963 or so, with some possible
smatterings of these techniques dating back to the days of Von
Neumann, circa 1947. Imagine my surprise, then, to find that the
date is off by over a hundred years.

The German engineer and mathematician August Leopold Crelle
lived from 1780 to 1855. He made many minor contributions to
mathematics, but is generally much better known as the founder
and editor of the mathematical periodical Crelle’s Journal. His
foreshadowing of list processing is described in L. E. Dickson’s
monumental History of the Theory of Numbers (Vol. I, chap. VII,
p. 185). First some discussion of primitive roots is necessary.

If we consider the powers of the positive numbers less than a
given prime p, mod p, we note that some of these powers contain
distinct elements, while others have repetitions. For example,
when p=7 we get:

 f=.] | [: x/y i.&.<:
 f 7
1 1 1 1 1 1
2 4 1 2 4 1
3 2 6 4 5 1 (C)
4 2 1 4 2 1
5 4 6 2 3 1
6 1 6 1 6 1

Riding A Unicycle

77

and we see that the numbers 1 2 4 6 give rise to rows with
repetitions, but rows 3 and 5 contain distinct elements. This
property of 3 and 5 is what characterizes them as primitive roots
of 7. Dickson wrote (in 1918):

A. L. Crelle[’s] ... device for finding the residues modulo p of the
powers of a will be clear from the example p = 7, a = 3. Write under
the natural numbers <7 the residues of the successive multiples of 3
formed by successive additions of 3; we get

1 2 3 4 5 6
3 6 2 5 1 4

Then the residues 3, 2, 6, of 3, 32, 33,... modulo 7 are found as follows:
after 3 comes the number 2 below 3 in the table; after 2 comes the
number 6 below 2 in the table; etc.

In other words, Crelle’s device uses a linked list to convert from a
list of multiples to a list of powers, mod some prime p. From the
list

3 6 2 5 1 4

he produces
3 2 6 4 5 1

and this corresponds to the row beginning with 3 of table (C).

Crelle’s list is clearly a single cycle, and thus a unicycle. His
device works for each primitive root of a given prime. It is a way
for converting from addition to multiplication, and is thus
analogous to logarithms.

All hail Crelle, father of list processing!

12 Volutes
First published in Vector, 13, 2, (October 1996), 144-153.

This article describes an amazing algorithm that I learned from Joey
Tuttle. It produces an integer volute. I call it amazing on good
evidence, because I was amazed when he first showed it to me. I had
written a function to produce such volutes many years ago [1], and
thought I had done a fairly efficient job, but Tuttle’s analysis was far
superior.

An integer volute can be drawn in a variety of ways. All of the cases
we’ll consider place the integers in the cells of a rectangular, and
usually square, table. Two kinds of volutes can be drawn in this
manner: an involute and an evolute. In an involute the smallest
integer appears in a corner of the table, and the integers increase as
they get closer to the centre. In an evolute the largest number appears
in a corner of the table, and the integers decrease as they get closer to
the centre of the table.

 0 1 2 3 4 24 23 22 21 20
 15 16 17 18 5 9 8 7 6 19
 14 23 24 19 6 10 1 0 5 18
 13 22 21 20 7 11 2 3 4 17
 12 11 10 9 8 12 13 14 15 16
 involute evolute

In the involute above the numbers increase in a clockwise rotation.
They could just as easily have increased in a counter-clockwise
rotation. The number 0 appears in the top left corner of the table, but
it could just as well have appeared in any of the other three corners.
There are then eight possible ways of drawing the involute: with 0
appearing in any of four corners, and the numbers increasing in a
clockwise or counter-clockwise rotation. Similar remarks apply to the
evolute, mutatis mutandis. Furthermore, either form can be derived
from the other by applying the verb 24&- to it. The least number is 0
in these volutes. A volute having 1 as the least number can be
obtained from one of these by adding 1 to it.

Our verbs will take as argument the length of the side of the square
table. For example, if e is our evolute verb,

 e 3
8 7 6
1 0 5
2 3 4

At Play With J

80

I’ll give six solutions to the problem, each one increasing in speed.
The best is a variation of the marvellous technique shown me by
Tuttle.

In the book Concrete Mathematics by Graham, Knuth, and Patashnik,
Exercise 3.40 takes a scalar approach to the problem of constructing
an evolute.

It assumes an x,y coordinate system, with 0 at coordinates (0,0). It
gives two ways of arriving at a solution, problems a and b. Both
solutions produce a bottom right clockwise volute.

In problem a, it squares (*:) its argument, then produces the list of
that many consecutive integers, beginning with 0. It finds the x and y
coordinates of each number (GKPax,.GKPay), upgrades the resulting
two-column table (/:), then reshapes ($) this upgrade list into a
square (,y) table. For example, for a square of side 3, problem a takes
n=.i.*:3 and yields x and y, upgrades this, and reshapes the
upgrade:

]n=.i.*:3
0 1 2 3 4 5 6 7 8
]xy=.(GKPax,.GKPay) n
 0 0
 0 1
_1 1
_1 0
_1 _1
 0 _1
 1 _1
 1 0
 1 1
]w=./:xy
4 3 2 5 0 1 6 7 8
 (,y3)$w
4 3 2
5 0 1
6 7 8

In problem a the placement of each integer requires the evaluation of
two functions, GKPax to give the x-coordinate, and GKPay to give the
y-coordinate. A function evGKPa to give a square evolute of a given
order is:

 GKPae =. 0:=2&| NB. GKPae y=1 if y is even
 GKPao =. 1:=2&| NB. GKPao y=1 if y is odd
 GKPaq =. <.@+:@%: NB. floor double sqrt

Volutes

81

 GKPam =. <.@%: NB. m is floor sqrt
 GKPal =. >.@-:@GKPam NB. ceiling half m
 GKPar =. _1:xGKPam NB. parity (1 or _1)
 GKPat =. (*>:)@GKPam NB. m*(1+m)
 GKPax =. GKPar*((]-GKPat)*GKPae@GKPaq)+GKPal
 GKPay =. GKPar*((]-GKPat)*GKPao@GKPaq)-GKPal
 evGKPa =. ,y $ /:@(GKPax ,. GKPay)@i.@*:

In problem b the table of x-y indices is used to produce the integers,
one at a time.

 GKPb0 =. +:@(>./"1)@|
 GKPb1 =. >@,@{@(;y)@(>.@-:@- + i.)
 GKPb2 =. _1: x </"1
 GKPb3 =. *:@[+ GKPb2@] * [+ +/"1@]
 GKPb4 =. (GKPb0 GKPb3])@GKPb1
 evGKPb =. ,y$GKPb4

GKPb1 produces the 2-column table of x, y coordinates. GKPb0 gives a
list of the doubles (+:) of the maximum over (>./) the rows ("1) of
the magnitudes (|) of the items in the table. GKPb2 produces a list
where the items are _1 where in the corresponding row x is less than
y, and 1 otherwise. GKPb3 squares its left argument, and adds this to
the product of the _1 1 list with the sum of the left argument and the
sum of the rows of the right argument. GKPb4 supplies the
appropriate left and right arguments to GKPb3. The verb evGKPb
reshapes this list, giving the same result as evGKPa.

For example:
]xy=.GKPb1 3
_1 _1
_1 0
_1 1
 0 _1
 0 0
 0 1
 1 _1
 1 0
 1 1
]ns=.(GKPb0 GKPb3]) xy
4 3 2 5 0 1 6 7 8
 (,y3) $ ns
4 3 2
5 0 1
6 7 8

At Play With J

82

In Vector 11 4, Keith Smillie [2] gives a suite of functions to produce
a square evolute. (I’ve replaced his ‘rows’ function by #, made it 0-
origin, and abbreviated his names QtrTurn and Wind and Spiral). It
produces its result by successive windings of new layers onto the
beginning empty table.

The function Wd is, you will note, recursive:
 QT=. [,"2 |.@|:@]
 Wd=. [`(((#@[{.]) QT [) Wd #@[}.])@.(0:<#@])
 Sp=. (i. @ ((-/ @]) , 0:)) W i.@(*/)@]
 evKS=. (i.@(0:,0:)) Wd i.@*:@]

Smillie’s volute is top right clockwise and has the advantage of not
being limited to square results. You can find the details of the
algorithm in his Vector article.

In my 1977 article I give a function like Smillie’s in achieving its result
by winding, but iterative (x:) rather than recursive. The function
evEEM0 below reverses and transposes (|:@|.) its argument (thus
giving it a clockwise quarter turn), then appends as a new bottom
row a vector of integers (i.) as long as the number of rows in the
argument (#), with its first item the number of items in the argument
(*/@$). This is initiated with an empty table (i.0 0), and is repeated
double (+:) the argument times. It is bottom right counter-clockwise.

 evEEM0=.|:@|. , */@$ + i.@#
 evEEM1=.[:i.0 0"_[] NB. constant empty table
 evEEM=.evEEM0x:(+:`evEEM1)

I sent an early draft of this paper to Roger Hui for comments, and he
replied:

Motivated by your comment on +/\x:_1, I arrived at the following
solution after studying the results of

 f=: +/\x:_1@evJKT

It is more direct but less concise than your solution; it takes less space,
and is faster for n greater than about 200.

Here is the kind of thing Roger saw:
 f 5
 24 23 22 21 20
_15 _15 _15 _15 _1
 1 _7 _7 _1 _1
 1 1 3 _1 _1
 1 11 11 11 _1

Volutes

83

 f 7
 48 47 46 45 44 43 42
_23 _23 _23 _23 _23 _23 _1
 1 _15 _15 _15 _15 _1 _1
 1 1 _7 _7 _1 _1 _1
 1 1 1 3 _1 _1 _1
 1 1 11 11 11 _1 _1
 1 19 19 19 19 19 _1
 f 9
 80 79 78 77 76 75 74 73 72
_31 _31 _31 _31 _31 _31 _31 _31 _1
 1 _23 _23 _23 _23 _23 _23 _1 _1
 1 1 _15 _15 _15 _15 _1 _1 _1
 1 1 1 _7 _7 _1 _1 _1 _1
 1 1 1 1 3 _1 _1 _1 _1
 1 1 1 11 11 11 _1 _1 _1
 1 1 19 19 19 19 19 _1 _1
 1 27 27 27 27 27 27 27 _1

And here is his version:
 even =: 0: = 2&|
 odd =: 1: = 2&|
 line0 =: *:@(-even) - odd + i.
 c3 =: 1: ,.] ,. _1:
 top =: odd}."1((|.,.+:,.|.)
 #"1 c3@(1&+)@(_8&*))@>:@i.@-:@(-y >:@even)
 bot =: -@even }."1 ((|.,.<:@+:,.|.)
 #"1 c3@(_5&+)@(8&*))@>:@i.@-:@(-odd)

 evHUI=: [: +/\ line0 , top , bot
 evHUIf=: evHUI f.

Hui’s volute is top left counter-clockwise. If you look at the timings in
the table below you will see that by size 89 Hui’s version is as fast as
Tuttle’s (the unrounded ratio of Hui’s to Tuttle’s for case 89 was
1.4:1).

Now we come to Joey Tuttle’s masterpiece. I asked him recently how
he had arrived at it, but he no longer remembered. He had only a dim
recollection that it arose in connection with one of Martin Gardner’s
Scientific American columns. I conjecture that it may have been Gard-
ner’s column on Stanislas Ulam’s spiral of primes (see Smillie’s Vector
article). So I don’t know how it came to Joey, but I do know that until
I went at the problem backwards from the conclusion, I had no idea
how the function worked, so that’s how I’ll describe it to you.

At Play With J

84

I should say that Joey’s function produced an involute, that is, he
gave the result:

 0 1 2 3 4
15 16 17 18 5
14 23 24 19 6
13 22 21 20 7
12 11 10 9 8

Now, we could get the result we desire by subtracting this from 24,
but that would spoil my fun, so bear with me.

Let’s begin with an evolute, and see if we can trace it back (we’re
reverse engineering) so that we can produce the function ourselves.
In the course of doing this, we’ll find it convenient to use J’s ability to
provide inverses for many primitive and derived verbs, using the
power conjunction to the minus-1 power (x:_1):

 evJKT 5
24 23 22 21 20
 9 8 7 6 19
10 1 0 5 18
11 2 3 4 17
12 13 14 15 16

It seems to me that Joey must have had a series of insights. I assume
that his first insight was to ravel this:

]q=.,evJKT 5
24 23 22 21 20 9 8 7 6 19 10 1 0 5 18 11 2 3 4 17
12 13 14 15 16

I think he then had the tremendous insight that this list came about as
the result of an upgrade. We’ll get p, the permutation inverse to q,
easily:

]p=./:x:_1 q
12 11 16 17 18 13 8 7 6 5 10 15 20 21 22 23 24 19
14 9 4 3 2 1 0

(Since upgrade is self inverse, we could have got p from q even more
easily by writing p=./:q – but we’re not assuming that all readers
will know this fact about upgrade.)

Now the final stupendous insight was to assume that p was produced
by a sum scan of some list d, that is

 p=. +/\ d

Volutes

85

We can determine what the d was that gave us p by applying the
inverse of sum scan:

]d=.+/\x:_1 p
12 _1 5 1 1 _5 _5 _1 _1 _1 5 5 5 1 1 1 1 _5 _5 _5
_5 _1 _1 _1 _1

This is beginning to look promising. At this point we can write the
overall function evJKT:

 evJKT =. ,y $ /: @ (+/\) @ evJKT2

This sumscans (+/\) the result of evJKT2, upgrades (/:) it, and
reshapes ($) the upgrade into a square (,y) table.

All this is great art – the rest is carpentry. Forget the leading 12 for the
moment. If we do, we see that the other items all have the magnitude
1 or 5, and alternate in sign: first _1 and 5, then 1 and _5, and so on
in alternation. There are nine groups of _1 5 1 _5, used cyclically.
We note also that the groups increase in count: one each of _1 and 5,
two each of 1 _5, three each of _1 and 5, then four each of 1 _5,
and lastly an anomalous four of _1. We can generate the list of one
each of the nine values easily:

 evJKT1=.<:@+: $ _1: ,] , 1: , -

The phrase _1: ,] , 1: , - when applied to its argument gives
us the right argument to the reshape verb:

 (_1: ,] , 1: , -) 5
_1 5 1 _5

and the phrase <:@+: gives us the left argument:
 (<:@+:) 5
9

so that the whole phrase gives us the list of values to be replicated:
 (<:@+: $ _1: ,] , 1: , -) 5
_1 5 1 _5 _1 5 1 _5 _1

Now we need to specify how many times each of these is to be
replicated:

 evJKT0=.}:@(2: # >:@i.)

This verb begins by giving us a list of integers:
 i. 5
0 1 2 3 4

At Play With J

86

adds one to this:
 >:i.5
1 2 3 4 5

gives us two of each:
 2 # 1 2 3 4 5
1 1 2 2 3 3 4 4 5 5

and curtails (}:) this list:
 }: 2 # 1 2 3 4 5
1 1 2 2 3 3 4 4 5

The last item should be a 4, not a 5, but as you shall see, we’ll find it
useful to produce an extra item.

The verb evJKT0 encapsulates the whole:
 evJKT0 5
1 1 2 2 3 3 4 4 5

Now we can write evJKT2:
 evJKT2=._1&|.@(evJKT0 # evJKT1)

The expression in parenthesis does the main job:
 (evJKT0 # evJKT1) 5
_1 5 1 1 _5 _5 _1 _1 _1 5 5 5 1 1 1 1 _5 _5 _5 _5
_1 _1 _1 _1 _1

There is an extra _1 at the end, but the next expression rotates this list
one to the right, moving the extra _1 to the beginning of the list:

 _1&|. (evJKT0 # evJKT1) 5
_1 _1 5 1 1 _5 _5 _1 _1 _1 5 5 5 1 1 1 1 _5 _5 _5
_5 _1 _1 _1 _1

Why is the last _1 rotated to become the leading item? A little thought
will convince you that the value of the first item doesn’t have to be
12; in fact its value is irrelevant – it could be any number at all! It
serves only to act as a base for the ensuing sumscan, which, in turn,
serves as the argument to upgrade. The upgrade will give the same
result no matter what the value of the first item is; only the relative
values of the items are important. And, since we are going to discard
the last item of the list and then prefix the list with an arbitrary value,
it suffices to combine these operations by performing the _1 (right)
rotate of the list.

Volutes

87

The verb evJKT provides the finishing touches to the result of evJKT2:
 evJKT=. (,y $ /: @ (+/\) @ evJKT2)

It uses evJKT2 to produce the list which it then sumscans:
 +/\ evJKT2 5
_1 _2 3 4 5 0 _5 _6 _7 _8 _3 2 7 8 9 10 11 6 1 _4
_9 _10 _11 _12 _13

Notice that the items of this list are distinct and include all 25 integers
from _13 through 11.

The upgrade of this list is obtained:
 (/:@(+/\)@evJKT2) 5
24 23 22 21 20 9 8 7 6 19 10 1 0 5 18 11 2 3 4 17
12 13 14 15 16

and, at last, this list is reshaped ($) into the desired square integer
evolute:

 (,y $ /: @ (+/\) @ evJKT2) 5
24 23 22 21 20
 9 8 7 6 19
10 1 0 5 18
11 2 3 4 17
12 13 14 15 16

 evJKT 5
24 23 22 21 20
 9 8 7 6 19
10 1 0 5 18
11 2 3 4 17
12 13 14 15 16

The relative timings of the GKPa, GKPb, KS, EEM, HUI, and JKT
verbs are of interest. The column headings give the size of table
generated and the row stubs indicate the verb used. The timings are
relative to those of JKT set to 1.

 verb\size 5 8 13 21 34 55 89

 GKPa 12 23 85 110 200 224 244
 GKPb 5 10 37 47 83 94 106
 KS 6 8 20 23 33 167 _
 EEM 2 4 10 9 12 13 16
 HUI 3 3 5 3 3 2 1
 JKT 1 1 1 1 1 1 1

At Play With J

88

The infinite (_) entry for row KS in the column headed 89 indicates
that there wasn't enough memory to complete execution. This was
probably due to the many levels of recursion required.

The timings show the superiority of array strategies (KS, EEM, HUI,
and JKT) over scalar strategies (GKPa and GKPb), and the superiority of
iteration (EEM) over recursion (KS) and the superiority of a strategy
minimizing data movement (HUI and JKT) over strategies involving a
great deal of data movement (KS and EEM).

I haven’t discussed how the Tuttle algorithm can be modified to yield
the other volute types. If you look back at the verb evJKT1, you’ll see
that the expression to the right of the reshape sign ($) is

 _1: ,] , 1: , -

so that, given the argument 5, it yields
 _1 5 1 _5

The key is that this consists of _1 5 followed by its negative, 1 _5. A
little experimentation will convince you that the eight possible
changes of sign and order of the list _1 5 will give you all eight types
of evolute:

 1 5 top right clockwise
 1 _5 bottom right counter-clockwise
 _1 5 top left counter-clockwise
 _1 _5 bottom left clockwise
 5 1 bottom left counter-clockwise
 5 _1 bottom right clockwise
 _5 1 top left clockwise
 _5 _1 top right counter-clockwise

So that to obtain a top left clockwise volute, one would use:
 _5 1 5 _1

instead of _1 5 1 _5.

Volutes

89

A verb to yield involutes is somewhat simpler than the verb yielding
evolutes. The greater simplicity arises because no attention has to be
paid to the first and last items: as they are generated so they are
usable:
 ivJKT0 5 NB. just the reverse of evJKT0 5
5 4 4 3 3 2 2 1 1
 ivJKT1 5 NB. essentially unchanged
1 5 _1 _5 1 5 _1 _5 1
 ivJKT2 5 NB. different
1 1 1 1 1 5 5 5 5 _1 _1 _1 _1 _5 _5 _5 1 1 1 5 5 _1 _1 _5 1
 +/\ivJKT2 5 NB. same sumscan
1 2 3 4 5 10 15 20 25 24 23 22 21 16 11 6 7 8 9 14 19 18 17 12 13
 /:+/\ivJKT2 5 NB. same upgrade
0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8
 5 5$/:+/\ivJKT2 5 NB. same reshape
 0 1 2 3 4
15 16 17 18 5
14 23 24 19 6
13 22 21 20 7
12 11 10 9 8

References
[1] McDonnell, E. E., Spirals & Time. APL Quote Quad 7, 4, (Winter

1977), 20-22.

[2] Smillie, K., Primes, Spirals and Coffee Tables. Vector, 11, 4, (1995),
104-107.

13 Extended Integers
First published in Vector, 13, 3, (January 1997), 127-135.

Extended Integers
J has recently had added to it a new class of number, called
extended integer. An extended integer can be produced by
applying the extend verb x: to an ordinary integer. An extended
integer is displayed as an ordinary integer terminated with an x,
like this:

 x: 1234
1234x

An extended integer may also be written directly by putting an x
at the end of an ordinary integer:

 1234x
1234x

If one or more of the integers in a list is extended, they are all
extended:

 1 2x 3
1x 2x 3x

Various primitives produce extended integer results if the
argument is extended. For example, very large exact factorials are
possible:

 ! 30x
265252859812191058636308480000000x
 */ x: >: i. 30
265252859812191058636308480000000x

Some verbs f signal domain errors on some extended arguments
because the result is not integral; however, <.@f and >.@f will
work on extended arguments. I think you’ll get the idea from a
few examples:

 1234 % 5x
|domain error
| 1234 %5x
 1234 <.@% 5x
246x
 1234 % 2x
617x
 1234 <.@% 2x
617x

At Play With J

92

] r =. <.@%: 2*10x38x
14142135623730950488x
 *: r + ,. _1 0 1
199999999999999999971238085416445537169x
199999999999999999999522356663907438144x
200000000000000000027806627911369339121x

What if you want to turn an extended integer into an ordinary
integer? Those of you conversant with J will guess that the way to
do this is to apply the inverse of x:, like this:

 x:x:_1 [1234x
1234

The Application
I was excited when I heard about extended integers, because I had
an immediate use for them. Jeffrey Shallit gave a paper at APL83
[3] in which he discussed the problem of determining how many
times the random number generator had been used, given a value
of the random link. In order to give an APL solution he had to
include in the paper a portion of an extended arithmetic package.
This was because the numbers needed to solve the problem were
very large integers. Stating the problem as simply as possible,
given the equation:

 y = M|gxx NB. (A)

the problem is to find x, where y, M, and g are known. This is the
basis of the random number generator we shall be discussing. The
value g is also known as the generator, and this can lead to
confusion when we talk about the generator of the generator. I
offer my apology in advance. The problem is sometimes known as
the logarithm problem, since (forgetting the M-residue for a
moment), if we have:

 y = g x x

and know y and g, we can find x by taking the base-g logarithm
of y:

 x = g x. y

In solving (A) for the particular problem of APL\360 and its
descendants (including J), x can be as large as 2,147,483,646. For
this value of x, gxx has over 9,000,000,000 decimal digits, and
would take several hundred large volumes to print out. There are
tactics one can employ to cut the size of the problem down, but

Extended Integers

93

extended-precision arithmetic will still be required. In J’s
implementation, the phrase M&|@x is recognized and can be
computed efficiently both in time and space.

The technique discussed by Shallit to solve the problem is due to
Pohlig and Hellman [2]. You’ll have to look up the references if
you are interested in the mathematical background, since I shall
focus on the problem’s algorithmic aspects.

The Gory Details
Several global constants are needed. The modulus used in random
number generators of the APL\360 kind must be a prime. The
largest prime that can be stored as a 4-byte integer is in fact also
the largest integer that can be stored, that is, one less than 2x31.
This prime was discovered by Euler and for over a hundred years
was the largest prime known. It is the Mersenne prime M31, too,
for those of you interested in the Euclidian perfect numbers.

 M =. x: <: 2x31

It is convenient to have the value of the integer one less than M
handy:

 L =. <: M

For the random number generator to have maximum period, the
generator g must be a primitive root of the modulus. A primitive
root of a prime has the property that its powers, mod the prime,
are distinct. For example, the prime 7 has 3 and 5 as primitive
roots, because their powers, mod 7, are distinct:

 7|3 5x/>:i.6
3 2 6 4 5 1
5 4 6 2 3 1

but the other positive integers less than 7 have repeated elements:
 7|1 2 4 6x/>:i.6
1 1 1 1 1 1
2 4 1 2 4 1
4 2 1 4 2 1
6 1 6 1 6 1

Dr. Bryant Tuckerman, of the IBM Watson Research Laboratory in
Yorktown Heights, New York, gave the APL\360 implementors
the primitive root 7x5, or 16807. A decade or so later people

At Play With J

94

began exploring random number generators extensively, and
were surprised to find that there was no better generator than this
for the modulus M:

 g =. x: 7x5

A prime-power factor is an integer all of whose factors are the
same. For example, 32, 9, 125, 49, and 11 are all prime-power
factors. The prime-power factors of L play a key role in the
algorithm. The primitive q: in J yields the prime factors of a
number, but these may be repeated. For example, q: 12 is 2 2 3.
The algorithm requires that repeated primes be replaced by their
product. The verb h, to be defined later, factors numbers and
replaces repeated items by their product:

 f =. h L NB. f is 2 9 7 11 31 151 331

Certain powers of the generator g are needed. Those needed are
the quotients of dividing L by f, and multiplying this quotient by
the integers less than the items of f. For example, for the factor 7
we get:

 ,.B =. (L%7)*i.7
 0x
 306783378x
 613566756x
 920350134x
1227133512x
1533916890x
1840700268x

and similarly for the other factors.

The verb p, to be defined later, raises the generator g to to any
integer power, mod M. We use it to raise the generator to the
powers B:

 ,.C =. p (L%7) * i.7
 1x
1600955193x
 894255406x
1205362885x
1752599774x
1537170743x
1599590586x

Such a list is made for each prime-power factor. These are boxed
and joined together, forming q, a list of lists, containing 542 num-

Extended Integers

95

bers altogether (+/2 9 7 11 31 151 331), and too large to
display here.

 q =. <@p@j"0 f

You should be warned that the formation of q takes a minute or so
to execute, depending on the speed of your computer. I find it
convenient to comment out this line in the script, and insert the
value of q directly.

We need the quotient of L with its factors as a separate global
noun:

 ,. e =. L % f
1073741823x
 238609294x
 306783378x
 195225786x
 69273666x
 14221746x
 6487866x

Those are all of the global nouns. Now we have to deploy a
number of utility verbs. The verb w:

 w =. y. x #/.

raises each item of its argument’s nub to its tally:
 w 2 2 2 3 3 5 7
8 9 5 7

The verb h:
 h =.w @ q:

factors its argument and produces the prime power factors from
it:

 h L
2 9 7 11 31 151 331

The verb s:
 s =. M&|@x

raises its left argument x to the power of its right argument,
mod M:

 3 s 2
9x
 16807 s 2000
75099568x

At Play With J

96

The verb p:
 p =. g&s

raises g to the power of its argument:
 p 2000
75099568x

The verb j:
 j =. L&% * i.

divides its argument into L, and multiplies this quotient by the
non-negative integers less than it.

 ,. j 7
 0x
 306783378x
 613566756x
 920350134x
1227133512x
1533916890x
1840700268x

The Main Problem
With all this behind us, we’re ready to discuss the main problem.
Suppose we find that the value of y, the random link, is
1209311799:

 y =. 1209311799

We define a verb t:
 t =. f"_ ,. q"_ i.&>] s e"_

The phrase
] s e"_

can be replaced by
 ,.D =. y s e NB. let this be (D)
2147483646x
 473297587x
1537170743x
 353622995x
 4096x
 709324280x
 667991092x

The heart of the matter is that each distinct value that y may take
yields a different list D. We look for the index of each item of D in
q, finding:

Extended Integers

97

] E=. q i.&> D
1 1 5 4 23 142 268

These values are the residues we seek. We form a table F by
stitching f and E:

] F =. f ., E
 2 1
 9 1
 7 5
 11 4
 31 23
151 142
331 268

and this is also the result of applying verb t to y:
 t y
 2 1
 9 1
 7 5
 11 4
 31 23
151 142
331 268

If you refer to Hui’s article, you’ll see that F is similar to the table
shown on page 64, beneath the expression c mr q. That is, F is a
table of moduli and residues. For example, the items in list D corr-
espond to the factors in f. In particular, the value 1537170743x
corresponds to the factor 7. We gave all the possible values that
may be taken on in this position in list C back a bit. In C we find
that the value 1537170743x is in position 5, and so in F we find
the value 5 next to the 7 in the first column. It is a remarkable fact
that the expression y s e produces values which must occur also
in the corresponding item of q, and that its index in the list in q is
the residue we want for the next step. The verb r:

 r =. {: @ (cr1/ @ t)

inserts Hui’s verb cr1 between each of the items of its argument,
and yields a two-item list, with the first item necessarily equal to
L, and the second item the power of g yielding y, mod M.

 x:z =. cr1/F
2147483646x 1234567x
 L
2147483646x

At Play With J

98

We take the tail of z as our desired x:
] x =. {: z
1234567x

We can verify that x is indeed the desired value by applying p to
it:

 p x
1209311799x
 y
1209311799x

Are we happy? We shouldn’t be yet, because this wasn’t precisely
the problem we wanted to solve, which was, how many times had
the random number generator been used to arrive at the given
random link. This part is easy, because we know that the initial
value of the random link is 16807, which corresponds to exponent
1. All we have to do to get the value we want is to decrease x by 1.
This gives us at last the verb ner:

 ner =. <:@r NB. number of executions of roll

 x:ner y
1234566x

References
[1] Hui, R. K. W., The Ball Clock Problem, Vector 12, 2, (1995), 55-66.

[2] Pohlig, S. C., Hellman, M. E., An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance. IEEE
Trans. Info. Theory IT-24 (1978) 106-110.

[3] Shallit, J. O., Merrily We Roll Along: some aspects of ?. APL83 Conf.
Proc., reprinted in: APL Quote-Quad 13, 3, (1983-03), 243-248.

Extended Integers

99

Appendix

NB. Script for finding x in y=m|gxx, knowing
NB. y, M, and g, particularized for use in
NB. analyzing the behavior of the linear
NB. congruential random number generator found
NB. in APL\360 and its descendants.
NB. GLOBAL NOUNS
 M =. x: <: 2x31
 L =. <: M
 g =. x: 7x5
 f =. h L NB. f is 2 9 7 11 31 151 331
 q =. <@p@j"0 f NB. comment this line out
 NB. replace line above by value of q directly
 e =. L % f
NB. UTILITY VERBS
 w =. y. x #/.
 h =.w@q:
 s=. M&|@x
 p =. g&s
 j =. L&% * i.
NB. HUI's CHINESE REMAINDER VERBS FROM
NB. VECTOR 12 2, P 66
NB. INCLUDING GCD AS A LINEAR COMBINATION
NB. Chinese Remainder
 ab =. |.@(gcd/ * [% +./)@(,&{.)
 cr1 =. [: |/\ *.&{. , ,&{: +/ .* ab
 chkc =. [: assert ,&{: -: ,&{. | {:@cr1
 cr =. cr1 [chkc
NB. GCD as a Linear Combination
 g0 =. , ,. =@i.@2:
 it =. {: ,: {. - {: * <.@%&{./
 gcd =. (}.@{.)@(itx:(*@{.@{:)x:_)@g0
 assert=. 13!:8@(12"_)x:-.
NB. MAIN VERBS
 t =. f"_ ,. q"_ i.&>] s e"_
 r =. {: @ (cr1/ @ t)
 ner =. <:@r NB. number of executions of roll.

14 Stumping the Rocket Scientist
First published in Vector, 13, 4, (April 1997), 123-129.

The Abstract Problem
This column concerns a statistical application, having to do with a
rating problem involving five integer variables, related as follows:

 a >: 0
 c <: a
 d < 100 * c
 t <: c
 i <: a - c

My interest in this application arose because the rating process is
usually stated in quite a pedestrian way, yet has the reputation of
being arcane and involved in the extreme. I’ll give the pedestrian
statement first, then an analysis of the statistical boundaries of the
problem, next a J program following the statement as closely as
possible, and lastly a J verb which is more concise and more
efficient. In the second section I’ll describe the physical situation
giving rise to the statistical application.

To obtain the rating of a given system of these five variables proceed as
follows:

Step 1: c divided by a. Subtract 0.3, then divide by 0.2.

Step 2: d divided by a. Subtract 3, then divide by 4.

Step 3: t divided by a, then divide by 0.5.

Step 4: Start with 0.095, and subtract i divided by a. Divide the product
by 0.04.

The sum of each step cannot be greater than 2.375 or less than zero. Add
the sum of steps 1 through 4, multiply by 100 and divide by 6. This is
the rating.

We form the argument to the program as a five-item list:
 a, c, d, t, i

I’ll write the program in J, Release 3.03, January 1997. The first line
shows the change this release brings in the way of doing indirect
assignment; one letter names are now treated in the same way as
multiple letter names, that is, with a space separating names.

At Play With J

102

Rating =: verb define
 'a c d t i' =. y.
 step1 =. ((c % a) - 0.3) % 0.2
 step2 =. ((d % a) - 3) % 4
 step3 =. (t % a) % 0.05
 step4 =. (0.095 - i % a) % 0.04
 (100*+/2.375<.0>.step1,step2,step3,step4)%6
)

The number of tokens in this program is easily found:
 #;:5!:5<'Rating'
79

The time required by Rating is 0.024. The four steps are roughly,
but not exactly, the same. My impulse is to see whether I can
make them exactly similar, for if we can we can take advantage of
the array processing abilities of J. I take Step1 as the pattern. It has
the form:

 ((v % a) - w) % z

Step2 follows the pattern exactly. Step 3 lacks the - w part, but
that is easily fixed using the identity:

 x - 0
 x

Using this, we’ll rewrite Step3 as:
 step3 =. ((t % a - 0) % 0.05

Step4 is only slightly more complicated. It reverses the minuend
and subtrahend.

 step4 =. (0.095 - i % a) % 0.04

We can switch the two around by using the identity:
 (s - t) % u
 (t - s) % - u

To give us: step4 =. ((i % a) - 0.095) % _0.04

What I had in mind by putting them in the same form was to be
able to take advantage of J’s array processing abilities to get rid of
the four local variables by writing something like:

 x =. (c, d, t, i) % a

or,
 x =. (}. % {.) y. NB. behead divided by head

Stumping The Rocket Scientist

103

If we now form two lists, one of minuends and another of
divisors, we can replace the four Step statements by:

 m =. 0.3 3 0 0.095
 n =. 0.2 4 0.05 0.04
 (x - m) % n

Next, reciprocate n to replace division by multiplication:
] b =. % n
5 0.25 20 25
 b * (x - m)

If now we distribute the multiplication within the parentheses we
get:

 (b * x) - (b * m)

And, since the right limb is the product of constants, we can
replace it by its product:

] q =. b * m
1.5 0.75 0 2.375
 (b * x) - q

I’m trying to arrive at an expression involving a linear
polynomial, and am almost there. I have in mind using J’s
polynomial primitive (p.). For that I’ll have to form a as the
negate of q and reverse the order of the terms:

 a =. - q
_1.5 _0.75 0 _2.375
 a + (b * x)

Whew! We’ve got our linear polynomial (actually, four of them).
This has been tedious, although eventually interesting. We now
can replace all of the steps of Rating by:

 (100 * +/ 2.375 <. 0 >. a + (b * x)) % 6

or, using the polynomial primitive,
 (100 * +/ 2.375 <. 0 >. (a , b) p. x) % 6

Looking at this, we get irritated by that 100 * and that % 6. We
can use two identities:

 u * +/ v
 +/ u * v

 (+/ v) % w
 +/ v % w

At Play With J

104

And arrive, after a bit of algebra, at:
] e =. 100r6 * a
_25 _25r2 0 475r12
] f =. 100r6 * b
250r3 25r6 1000r3 _1250r3
] g =. e ,. f
 _25 83.3333
 _12.5 4.16667
 0 333.333
39.5833 _416.667
] h =. 100r6 * 2.375 NB. 39.5833 is 475r12
39.5833

Table g lists in its leading column the constant coefficients, and in
the last column the linear coefficients for each of the four linear
polynomials.

 Rtg=. [: +/ 0: >. h"_ <. g"_ p. }. % {.

In this verb, the trailing four items are divided by the leading
item, and used as the right argument to the polynomial primitive,
with the left argument table g. The four evaluations are
constrained to lie in the interval from 0 to 475r12, inclusive, and
the constrained values are summed to give the rating.

The verb Rtg has 20 tokens and takes 0.007 units of time: about a
quarter of the size, and less than one-third the time of the
program Rating.

Having the four linear polynomial coefficients allows us to
determine the meaningful boundaries of all systems.

 Table A
 event min max
 c % a 0.3 0.775
 d % a 3 12.5
 t % a 0 0.11875
 i % a 0.095 0

Here’s how to read this table: If, for example, the result of c%a is
0.3 or less, the rating will be 0 for the c%a event. If it is 0.775 or
greater, the rating will be 475r12. Similarly for the next two rows.
For the last row, a result for i%a of 0.095 or greater will give a
rating of 0 for that event. A result of 0 (it can’t be less) will give a
rating of 475r12 for that event. Here are some numerical
examples: The maximum rating can be obtained by the system of
values:

Stumping The Rocket Scientist

105

 mxr =. 800 620 10000 95 0
 Rtg mxr
158.333

Recall that the ratings depend on the ratio of the trailing values to
the leading value. When the leading value is 800, the list mxr
produces the maximum rating of 158.333, since

 620 10000 95 0 % 800
0.775 12.5 0.11875 0

give the values in the column headed max in Table A. Changing
the system to give the maximum values possible given the
constraints listed at the beginning of this section does not give a
greater result:

 Rtg 800 800 80000 800 0
158.333

Conversely, the minimum rating (zero) is obtained with the
system:

 Rtg 800 240 2400 0 76 NB. result really 0
1e_5

And similarly, we can say that changing the system to:

 Rtg 800 0 0 0 800
0

will produce the same zero rating.

The Physical Problem
Now I have to apologize to readers outside of the United States of
America for imposing on your good nature for so long, when
what I was describing derives from the parochial form of football
popular in the the USA but (I believe) not well-known outside
that country. In that game there is a preeminent hero called the
quarterback. He stands behind a line of seven myrmidons, the
central one of which (called the center), hands the ball between
his legs to the quarterback while in a crouching stance and facing
away from the quarterback.

The quarterback can hand the ball in turn to one of the three other
people behind the line like himself, or can run with the ball, or he

At Play With J

106

can throw it forward, aiming it in the direction of one of his
running teammates. This is called a forward pass, and it is his
ability to deliver forward passes so that they are caught by a
teammate before hitting the ground that is measured by the rating
system described so laboriously above. The five variables so
artfully abbreviated above are now made plain to you:

a is the number of forward passes attempted.

c is the number of passes caught by an eligible teammate.

d is the distance traversed from the line to the point of completion of
the play, for all pass plays.

t is the number of completed passes which result in a goal, or
touchdown.

i is the number of attempted passes which are ingloriously caught
by a member of the opposing team—an interception.

As a sample piece of data I’ll use the lifetime data of the
quarterback George Blanda, who played professional football in
the USA for a number of teams from 1949 through 1975. Before
showing you this data, I’ll interject some personal history. George
Blanda and I were in the graduating class of 1949 at the University
of Kentucky. George had been the successful quarterback of the
college football team. He became a professional player
immediately, and played for many years. When my job moved
my family and me to Palo Alto, California, in the fall of 1974, I
became aware that my old classmate George was still playing
football for a living, and not only that, but he was a stellar
performer. Week after week it was he who saved the day in the
last minute for his team, the Oakland Raiders. Oakland is a large
city across the bay from San Francisco, and about thirty-five miles
north of Palo Alto. I was 48, but felt a resurgence of youth in
seeing what my coeval Blanda was still doing on the football field.
He played through the seasons of 1974 and 1975 before finally
retiring (actually he was forced out by his management, who
wanted to bring in younger players). George holds the career
record for the total number of points scored by a football player,
2,002. The nearest player to him has scored 1,699 points.

Stumping The Rocket Scientist

107

Let us see then what George Blanda’s lifetime statistics are:
attempts: 4007
completions: 1911
yards: 26920
touchdowns: 236
interceptions: 277

Applying our Rtg program gives us his career rating:
 Rtg gb =. 4007 1911 26920 236 277
60.6475

Blanda doesn’t have a particularly good rating largely because of
the great number of interceptions he threw. Quarterbacks with
high ratings usually have many more touchdown passes than
interceptions. The quarterback Joe Montana, for example, while
playing for the San Francisco football team compiled a record of:

 jm =. 4600 2929 35124 244 123
 Rtg jm
93.4999

This was the highest career rating for any quarterback to have
played the professional game. Ratings are also compiled during
the football season, as well as for entire careers. Has anyone ever
achieved the maximum rating? No one has ever done it for a
career, or even for a season, but for a single game it has been
done. The player John Taylor of the San Francisco team was called
on in one game to throw the ball (he had never done this in a
game before). It went for twenty yards, was completed, and
scored a touchdown. So Taylor’s rating for that game was:

 rtg 1 1 20 1 0
158.333

I got the title for this column from the fact that American
sportswriters and broadcasters are confident that the formula is so
arcane it baffles even rocket scientists. We know better, of course.
It really only baffles sportswriters and broadcasters.

15 Oh, No, Not Eigenvalues Again!
First published in Vector, 14, 1, (July 1997), 135-139.

I can’t explain why it is that I keep running into problems assoc-
iated with eigenvalues. I don’t seek them out, and have no interest
in them, but there it is—they keep cropping up before me and I
have somehow to find a way to drive a stake through their hearts
before I can go on to something else.

When the eigenvalue problem last loomed before me, I found that
I had to go back to basics in order to come to terms with it. In the
course of doing so, I happened upon a technique in J for finding
eigenvalues which is eminently satisfying pedagogically, since it
can be used for small matrices to show all the theory of
eigenvalues, even though it is staggeringly inefficient, becoming
dreadfully slow for matrices of size 5 or 6 or larger. It is its
pedagogical merit that I commend to you.

The basics are simple. If A is a square numeric matrix, we replace
each diagonal atom aii with the two-atom list aii _1. What we are
doing is replacing the problem of evaluating the determinant of a
numeric matrix with that of evaluating the determinant of a
matrix of polynomials. Of course, the non-diagonal terms are the
simplest of polynomials, that is, constants, but the diagonal terms
are all linear polynomials. Our problem is to evaluate the
determinant of this polynomial matrix. In J we evaluate the
determinant of a numeric matrix with the monad of the dot
conjunction:

 det =: -/ . * NB. (1)

For example,
 m=:2 3,:5 8
 m
2 3
5 8
 det m
1

The verb det is not directly suited to our purpose, but with a few
manoeuvres we’ll get where we want to go. First, let’s take a
suitable matrix for our example (the example and much of the

At Play With J

110

approach I have borrowed from Cornelius Lanczos’s book, Applied
Analysis, Prentice-Hall, 1956, chapter II):

]A =: 33 16 72 , _24 _10 _57 .: _8 _4 _17
 33 16 72
_24 _10 _57
 _8 _4 _17

We can obtain the diagonal atoms of A using the monad d [JP
3.B.m4, meaning phrase m4 from section B of chapter 3 of the
book J Phrases].

]a0 =: d A
33 _10 _17

We append _1 to each of these using J’s stitch (,.):
]a1 =: a0 ,. _1
 33 _1
_10 _1
_17 _1

In order to be able to work with a matrix in which a single
number is replaced by a list of two numbers, it will be necessary
to box the rows of the 2-column matrix above, using monad B1 [JP
1.C.m12]

]a2 =: B1 a1
+-----+------+------+
|33 _1|_10 _1|_17 _1|
+-----+------+------+

In order to amend the diagonal atoms of A, we’ll box the atoms of
matrix A first, using monad B0 [JP 1.C.m11]:

]a3 =: B0 A
+---+---+---+
|33 |16 |72 |
+---+---+---+
|_24|_10|_57|
+---+---+---+
|_8 |_4 |_17|
+---+---+---+

The amend adverb in J needs the indices of the places to be
amended. We obtain these using the monad d again, modified by
the adverb IR [JP 3.B.a3].

]a4 =: (d IR) A
0 4 8

Oh, No, Not Eigenvalues Again!

111

We can use amend now to obtain the matrix we want:
]a5 =: a2 a4 } a3
+-----+------+------+
|33 _1|16 |72 |
+-----+------+------+
|_24 |_10 _1|_57 |
+-----+------+------+
|_8 |_4 |_17 _1|
+-----+------+------+

For use later, we’ll collect the steps taken so far to form the verb
db:

 db =: B1@(d ,. _1:) d IR } B0

Now we are in position to evaluate the determinant of this matrix.
We can’t use the det verb from above, since it can only deal with
matrices whose atoms are simple numbers. My first thought was
to use the definition of the Determinant conjunction u . v from
the J Introduction and Dictionary:

 u=: -/ [. v=: *
 DET=: v/@,`({."1 u .v$:@minors)@.(1&<@{:@$)"2
 minors=: }."1@(1&([\.))

replacing the definitions of u and v by polynomial difference and
polynomial product, dyads dif and ppr [JP 9.C.d1 and 9.C.d2].
However, I hadn’t proceeded far when I suddenly realized that,
since DET was the definition of the monadic form of the dot
conjunction, I ought to be able to use dot itself directly, and not
mess with its sybilline definition. The first thing I did was to
provide myself with modified forms of dif and ppr, ones which
operated on boxed atoms:

 difb =: dif&.>
 pprb =: ppr&.>

Taking this tack, I could now write, in direct analogy with (1),
 detp =: difb/ . pprb

and then apply this to matrix a5:
 detp a5
+----------+
|6 _11 6 _1|
+----------+

At Play With J

112

I wanted an open, not a boxed result, so modified the definition of
detp:

 detp=:>@(difb/ . pprb)
]a6 =: detp a5
6 _11 6 _1

This looked promising, but was it indeed the characteristic
polynomial of my matrix? One way to find out was to use the
Cayley-Hamilton theorem, which says that a matrix satisfies its
own characteristic equation. To see whether this was so, I found
the first four powers of A, using the monad I [JP 9.A.m0] to form
the 0th power of the matrix, that is, the identity matrix:

]a7=:A&ipx:(i.@>:@#`]) I A
 1 0 0
 0 1 0
 0 0 1

 33 16 72
 _24 _10 _57
 _8 _4 _17

 129 80 240
 _96 _56 _189
 _32 _20 _59

 417 304 648
_312 _220 _507
_104 _76 _161

then multiplied these by the supposed coefficients of the
characteristic equation:

]a8 =: a6 * a7
 6 0 0
 0 6 0
 0 0 6

_363 _176 _792
 264 110 627
 88 44 187

 774 480 1440
_576 _336 _1134
_192 _120 _354

_417 _304 _648
 312 220 507
 104 76 161

Oh, No, Not Eigenvalues Again!

113

and lastly, summed a8, trusting that the result would be the zero
matrix:

 +/a8
0 0 0
0 0 0
0 0 0

From here it was a short step to the eigenvalues: they are the roots
of this polynomial, so I could use J’s polynomial primitive (p.):

 p. detp a6
+--+-----+
|_1|3 2 1|
+--+-----+

The result I wanted was the open (>) of the tail ({:) of this one, so
I made another modification:

 a9 =: >@{:@p.@detp a6
3 2 1

The parts can now be assembled to give the eigenvalue finder cm:
 cm =: > @ {: @ p. @ detp @ db
 cm A
3 2 1

If these are the eigenvalues, their product should be equal to the
determinant of the matrix.

 */ cm A
6
 det A
6

So far, so good. Furthermore, if these are the eigenvalues, if any
one of them is subtracted from the diagonals of A, the determinant
of the result should be zero. Is this the case?

 det A - 3 * I A
0
 det A - 2 * I A
0
 det A - 1 * I A
0

Yes it is.

The verb cm is a model of the monad of the c. primitive described
in the J Introduction and Dictionary. It differs in that the roots are

At Play With J

114

given in order of descending magnitude, which is how the poly-
nomial (p.) primitive provides them, rather than the ascending
order prescribed in the Dictionary. Since c. has not yet been impl-
emented, it’s anyone’s guess how p. and c. will be reconciled.
I’ve brought this matter to the attention of the proper authorities,
so they do at least know that the problem exists.

16 A Newer Random Link Generator
First published in Vector, 14, 4, (April 1998), 122-127.

The random link generator used in many J\APL systems is an
example of the linear congruential kind introduced in 1948 by the
mathematician D. H. Lehmer, of the University of California in
Berkeley, California. It depends on two numbers, 16,807 and
2,147,483,647. The first is 7x5, a primitive root of the second,
which is Euler’s prime, <:2x31. The basis of the algorithms for
the roll and deal primitives is the expression for computing the
next link rl in the chain of random links:

rl =: 2147483647 | 16807 * rl

The chain is 2,147,483,646 links long, and contains all of the
integers between 1 and 2147483646, but not in any easily
discernible order. The first link in the chain is 16807, and the next
few links are

282475249 1622650073 984943658 1144108930 470211272

The values seem to be suitably random. What’s more, they satisfy
many of the tests mathematicians and computer scientists have
devised for judging randomness.

This column discusses a generator of a very different kind, that
has its roots in a method devised in 1958 by G. J. Mitchell and D.
P. Moore. Donald Knuth’s book Seminumerical Algorithms had its
first edition in 1969 (the year I bought my copy) and discusses
random numbers extensively, but doesn’t mention this method. It
appears in the book’s second edition (1981), but is treated warily.
Knuth writes, “The only reason it is difficult to recommend [it]
wholeheartedly is that there is still very little theory to prove that
it does or does not have desirable randomness properties”. By the
time of the third edition (1998) it is obvious that a great deal of
effort has been expended on it, and it is almost part of the canon. I
first saw the technique described in Knuth’s book, The Stanford
Graph Base, Addison Wesley, Reading, Massachusetts, 1993. He
describes it in the section called GB_FLIP, the name of the
program used to generate random links for the other programs
described in the book. The generator described here comes from
this book.

At Play With J

116

The basis of the generator is a bit of mathematics the gist of which
Knuth gives as follows:

The subtractive method. If m is any even number and if the numbers
a0, a1, ... , a54 are not all even, then the numbers generated by the
recurrence

an = (an-24 − an-55) mod m (1)

have a period of at least 25 5 − 1, because the residues an mod 2 have a
period of this length. Furthermore, the numbers 24 and 55 in this
recurrence are sufficiently large that deficiencies in randomness due
to the simplicity of the recurrence are negligible in most applications.

If something has a period of n, it means that it can’t be made up as
an integral number of repetitions of a smaller sequence. Knuth
says that 25 5 − 1 is the smallest the period can be, but it is
plausible that it is 28 5 − 230. Furthermore, the low-order bits of the
generated numbers are just as random as the high-order bits.
These are both very large numbers.

 <:2x55x
 36028797018963967
 (2x85x)-2x30x
 38685626227668132516855808

There is a usage problem in giving a name to them. In the UK the
names of numbers go up in powers of a million. Thus billion,
trillion, and quadrillion are a million to the second, third, and
fourth power. In the US they go up in powers of a thousand, so
million, billion, trillion, quadrillion are a thousand to the second,
third, fourth, and fifth powers. The names are more appropriate
in the UK usage, but the size of the denominating numbers are
smaller and usually more convenient in the US usage. The first
large number would be about 36029 billion in UK usage, and 36
quadrillion in US usage.

36028,797018,963967 (UK)
36,028,797,018,963,967 (US)

The larger number would be about 39 quadrillion in the UK and
39 septillion in the US. Whichever way you call it, it’s big.

38,685626,227668,132516,855808 (UK)
38,685,626,227,668,132,516,855,808 (US)

A Newer Random Link Generator

117

Since there are only <:2x31, or 2,147,483,646 positive integers, it is
clear that each integer will appear many times in the chain, but
the period of the chain is indeed enormously long.

Here’s how the generator works: if a random link is needed, select
the one indexed by gb_fptr, from a list A of 55 random numbers,
and subtract one from gb_fptr. Thus getting a random link
requires trivial computation, an indexing and a subtract, simply

 gb_fptr { A
 gb_fptr =: <: gb_fptr

There must be more to it than that, you say, and you are right. The
tricky problems are how to get more random links when we’ve
used all that are in the list, and, ultimately, where did the initial
list come from? The processes involve a fair amount of crabwise
sidling and snakewise slithering. I’ll make it as clear as I can.

What does one do when all 55 links in the list have been selected?
A program gb_flip_cycle is used to provide a new list of 55
links, guided by recurrence (1). Knuth’s C program uses two
successive for loops; the first subtracts in sequence the last 24
items of A from the first 24; the second subtracts the last 31 from
the first 31 in sequence, depending on the explicit sequencing in
the for loop specification to make sure that the overlap of 7 items
in the middle of the two has the proper values each time it is
traversed. We could do that, too, using the shiny new control
words available in J, but prefer instead to emphasize the potential
for parallelization by using the following scheme: subtract the last
24 from the first 24, then the new first 24 from the second 24, and
lastly the new 7 following the first 24 from the last 7.

All these subtractions are mod m, and this is easily computed at
the machine level by anding the result of subtraction with
16b7fffffff. In the function below it is shown at the J language
level by taking the residue mod 16b80000000, yielding the same
result.

The function gb_flip_cycle takes as argument a list of 55
random numbers, and yields a new such list. In terms of recursion
(1) its first use replaces a0 through a54 by a55 through a109. Each of a,
b, and c is a two-row matrix of indices to the list.

At Play With J

118

For example, c is the matrix
48 49 50 51 52 53 54
24 25 26 27 28 29 30

The first row gives the indices of the minuend, which are also the
indices of the result. The second row gives the indices of the
subtrahend. For example, the amend c g } subtracts a79 through
a85 from a48 through a54, yielding a103 through a109, and these
replace a48 through a54.

 gb_flip_cycle=: monad define
a=. 0 31 +/ i. 24 NB. 1st 24 get (1st 24) -
(last 24)
b=. 24 0 +/ i. 24 NB. 2nd 24 get (2nd 24) -
(new 1st 24)
c=. 48 24 +/ i. 7 NB. last 7 get (last 7) - (7
after 1st 24)
NB. v0 is difference mod m of selected parts of
argument
v0=: 16b80000000"_ | [: -/ {
NB. v1 is top row of 2-row left argument -- result
address
v1=: [: {. [
NB. v2 is right argument: a 55 item list
v2=:]
g=. v0`v1`v2 NB. gerund for amend
c g } b g } a g } y. NB. amend in three
overlapping steps
)

If you look closely at the numbers, you’ll notice that recurrence (1)
isn’t faithfully followed. Instead we have

an = (an-55 − an-24) mod m (2)

Knuth claims that this doesn’t make the results any less random.

You are probably asking, “Yes, but where did you get the original
list of random links?” This is the part that happens only once, and
that’s good, because it is the most complicated and time-
consuming part of the whole method.

In outline, a next random link is formed from three values: the
current value next, the previous value prev, and the seed. The
current value is subtracted from the previous value, and the
modified seed is subtracted from this, mod m.

A Newer Random Link Generator

119

The random links are stored as they are developed in list A, but
not sequentially. The first one is stored in the 21st position, index
20. The next number found will be stored 21 to the right, in
position 41. And the next one 21 further to the right, in position
62. Oops. That addition is made mod 55, so it will actually be
stored in position 7. And so on. There’s a trifle of Fibonacci magic
here: there are 34 positions to the right of the first one, and 55 in
all, and the numbers 21, 34, and 55 are consecutive Fibonacci
numbers. Also, 21 is relatively prime to 55, which means that the
index will take on all values from 0 to 54, inclusive, once each.
Knuth comments that the successive values are thus stored as far
as possible from each other, and that the initializing would be
rather poor if this dispersal were not done.

The value of seed is not constant; it can be any one of 31 possible
values. For each of the initial list of random links, a new value of
seed is obtained by rotating its 31 rightmost bits one position to the
right.

 bwr=: [: #. _1: |. (31$2)?_ #:] NB. rotate
bits 1-31 to the right
 seed=: bwr seed

and then performing
 temp=: next
 next=. m | prev - next + seed
 prev=: temp

The seed used by Knuth is _314159 mod m, or 2147169489. This is
also the initial value of prev. The initial value of next is 1, chosen
because the method requires that there be at least one odd
number in the first set of links.

 gb_init_randx=: monad define NB. initial list
 of random numbers
A=. 55 # 0
m=: 2x31
seed=. m | y.
next=. 1
prev=. seed
x=. 20

At Play With J

120

whilst. i y: 20 do.
 A=. next x } A
 seed=. bwr seed
 temp=. next
 next=. m | prev - next + seed
 prev=. temp
 x=. 55 | i=. i + 21
end.
A
)

To verify that A has been properly formed, you can look at the
first few links formed. These should be:

 A=: gb_init_randx _314159
 20 41 7 28 { A
1 2147326568 1073977445 536517481

Knuth explains that the first set isn’t random enough to be used.
Once the sequence gets far enough from its beginning, however,
the initial transients become less perceptible. Thus after the initial
A is formed, in order to ensure the necessary degree of
randomness, a new list is formed from it by using gb_flip_cycle
five times.

When this is done, the list is ready to be used. The complete
initializing procedure is thus

 gb_init_rand=:monad define
gb_fptr =: _2
A =: gb_flip_cyclex:5 gb_init_randx y.
)

The initial value of A is obtained by
 A=: gb_init_rand _314159

A link in the random link chain is obtained using the
gb_next_rand function.

 gb_next_rand=: dyad define
if. gb_fptr > _56 do.
 z=: gb_fptr { A
 gb_fptr =: <: gb_fptr
else.
 A =: gb_flip_cycle A
 z =: _1 { A
 gb_fptr =: _2 end.
z
)

A Newer Random Link Generator

121

The links are accessed using the index value gb_fptr, and in
reverse order. This doesn’t affect the randomness of the links.
Thus the first link taken would be the one at index position 54,
which may be accessed (using contracurrent indexing) with
gb_fptr set to _1, and then subtracting 1 from gb_fptr. The
links are taken from the current list of links in the if clause until
gb_fptr reaches _56, at which time the else clause is used to
form a new list of links. Item _1 of this new list is returned, and
gb_fptr is set to _2.

To verify that initializing has been done correctly, check the result
of gb_next_rand:

 x: gb_next_rand ''
119318998

Unlike the linear congruential generators, subtractive generators
are much less choosy about the seed value used. I believe that any
value with a generous balance of 1s and 0s will do. Thus this one
method gives rise to an enormous number of random link chains,
each enormously long, obtainable simply by varying the seed.

17 To Summarise
First published in Vector, 15, 1, (August 1998), 132-137.

The key adverb in J, represented by slashdot (/.) is defined in the
J Introduction and Dictionary as:

x u/.y is (=x) u@# y

that is, items of x specify keys for corresponding items of y and u
is applied to each collection of y having identical keys. For
example:

 1 2 3 1 3 2 1 </. 'abcdefg'
+---+--+--+
|adg|bf|ce|
+---+--+--+

This may be clearer if we look at the separate parts.
 =x
1 0 0 1 0 0 1
0 1 0 0 0 1 0
0 0 1 0 1 0 0

The first row of this has 1s in the first, fourth, and seventh
positions, so when used as the left argument to copy (the dyad of
#), and applied to y, yields its first, fourth, and seventh items, or
'adg'; similarly the second row yields ’bf’ and the third row
yields 'ce'. Each of these is then boxed and the three are
catenated together, yielding

+---+--+--+
|adg|bf|ce|
+---+--+--+

The basic idea remains the same when u changes from box to a
different monad. For example, if we replace box by tally (the
monad of #) we get:

 x #/. y
3 2 2

The same three groupings are selected, but instead of being boxed
they are tallied, or counted, yielding the count of each group;
three in the first, and two in the second and third.

The key adverb was not in the initial version of J. It came in later
at the request of the J user community, notably Joey Tuttle. Joey’s
interests were not merely theoretical; he had practical ends in

At Play With J

124

view. He was in the business of analysing huge amounts of data
and summarising time and amount fields by accounts. We’ll use
an abbreviated version so we can fit the data onto a small page.
Suppose we have three accounts, 1001, 1002, and 1003, and
suppose further that we have a table whose rows give an account
number and an amount:

 acct=:1001 1002 1003
 table=:((?10#3){acct),.?10#100
 table
1001 51
1003 83
1002 3
1002 5
1001 52
1001 67
1003 0
1003 38
1003 6
1002 41

To summarise this table by account, we transpose (|:) it, so that the
accounts are in the first row, and the amounts in the second, then
insert (/) sum key (+//.) between the account row and the amount
row:

 +//./|:table
170 127 49

If you check the first amount in the sum, 170, you can verify that it
is indeed the sum of the three amounts associated with the first
occurring account, 1001, that is, it is the sum of 51, 52, and 67.
Similarly the second amount 127, is the sum of the four amounts
associated with the second occurring account, 1003, that is, it is
the sum of 83, 0, 38, and 6. Lastly, the third amount, 49, is the sum
of the three amounts associated with the third occurring account,
1002, that is, 3, 5, and 41.

This result may not be completely satisfactory, since the amounts
are not in the order of the accounts: they are in the order in which
they fortuitously occur in the table. One way to remedy this is to
place some dummy rows at the beginning of the table, one for
each account, with the accounts in the desired order, and with the

To Summarise

125

amounts set to zero (acct,.0).
 (acct,.0),table
1001 0
1002 0
1003 0
1001 51
1003 83
1002 3
1002 5
1001 52
1001 67
1003 0
1003 38
1003 6
1002 41

Now when we summarise the amounts will be in account order.
 +//./|:(acct,.0),table
170 49 127

We can produce a summary of accounts and amounts by
prefacing the above with the list of account numbers and stitching
(,.) the lists together.

 acct,.+//./|:(acct,.0),table
1001 170
1002 49
1003 127

This gives you the theory and the practice of the key adverb, so
it’s time to play, and incidentally to learn another way to use key.

How are the digits of pi distributed? If the digits were distributed
evenly, then the frequency of occurrence of all digits would be
about 10%. J enables you to compute as many digits of pi as you
have room for and time for. A convenient way to obtain n digits
of pi is to subtract 1 (<:) from n, make this an extended integer
(x:) use this as an exponent of 10 (10x), apply floor atop pi times
(<.@o.) and take the format (":) of this:
 dp=: monad def '":<.@o.10xx:<:y.' NB. digits of pi

Try this on a small integer:
 q10=:dp 10
 q10
3141592653

At Play With J

126

This is correct. Try it on a somewhat larger integer:
 q30=:dp 30
 q30
314159265358979323846264338327

Checking this against the value of pi to many places in a table
such as may be found in a volume of Knuth’s The Art of Computer
Programming shows that q30 is accurate, too.

Let’s compute some more (q3000 may take several minutes):
 q100=:dp 100
 q300=:dp 300
 g1000=:dp 1000
 q3000=:dp 3000

Now let’s see how the digits are distributed in each of these, in
order. We need a digit distribution function. This is where a new
use of key comes in. In order to make the result of the digit
distribution function be in the right order, we’ll preface the
argument with d, a list of the decimal digits in order.

 d=:'0123456789'

To get the distribution we preface the formatted digits of pi with d
(d,y.), then apply count (#) key (/.) reflexive (y) to this, giving us
the distribution of d,y. , then subtract 1 (<:) to adjust the count
for the presence of d.

 dd=: monad def '<:#/.yd,y.'

And try this out on q10, which is easy to verify by eye:
 /:yq10
1123345569
 dd q10
0 2 1 2 1 2 1 0 0 1

No zeros, two ones, one two, two threes, one four, two fives, one
six, no sevens or eights, and one nine. Now let’s see the digit dis-
tribution of each of the other lists of pi digits.

 dd q30
0 2 4 7 3 3 3 2 3 3
 dd q100
8 8 12 12 10 8 9 8 12 13
 dd q300
26 30 35 31 37 27 31 19 34 30
 dd q1000
93 116 103 103 93 97 94 95 101 105

To Summarise

127

 dd q3000
259 308 303 266 318 315 302 287 310 332

These look somewhat reasonable, but it would be better to see
how closely each gets to having 10% of each digit, using a
function pd, which takes a distribution as argument, and yields
the percentage of each value, rounded to the nearest one per cent.
Do this by dividing the values by the sum of the values (y.%+/y.),
multiply this by 100 (100*), to get percentages, and round, getting
the nearest percentage, by adding a half (0.5+) and taking the
floor (<.).

 pd=: monad def '<.0.5+100*y.%+/y.'

 pd dd q10
0 20 10 20 10 20 10 0 0 10

We can compare this to dd q10 and see that it is simply the same
values multiplied by 10 to give percentages, as desired. There are
so few digits to take into account that it is difficult to say whether
the distribution is even or not. Trying the next distribution, of
thirty values, still leaves us uncertain.

 pd dd q30
0 7 13 23 10 10 10 7 10 10

There are no zeros among the first thirty digits, and a lot of threes.
Probably still not enough digits.

 pd dd q100
8 8 12 12 10 8 9 8 12 13

Except for the large number of nines, this is beginning to look
quite even.

 pd dd q300
9 10 12 10 12 9 10 6 11 10

Here, the number of sevens seems too low. Let’s keep looking.
 pd dd q1000
9 12 10 10 9 10 9 10 10 11

Ones seem a bit high, but I’d say this distribution is even enough.
 pd dd q3000
9 10 10 9 11 11 10 10 10 11

With 3000 digits to distribute, we can say with some satisfaction
that this represents an even distribution.

At Play With J

128

Before we part, let’s look at a consecutive portion of these digits:
 (762+i.6){q1000
999999

Hmmm. Well, yes, that’s not too unusual. In fact, if such strings
didn’t occur every now and then, it would argue against random-
ness.

18 Maximum Infix Sums
First published in Vector, 15, 2, (October 1998), 100-103.

In his book Programming Pearls (Addison-Wesley 1986), Jon
Bentley collected a baker’s dozen of his columns of the same name
that had appeared in Communications of ACM. Column 7 therein is
called “Algorithm Design Techniques”, and the problem
discussed in there is the subject of this column. Here’s the
problem: Given a vector x of numbers (positive, negative, or zero),
define a function f that yields the maximum of the sums of all the
infixes. For example, if

 x
31 _41 59 26 _53 58 97 _93 _23 84

then f x is 187, the sum of 59 26 _53 58 97. If all the numbers are
positive the maximum infix is x, with sum +/x. When all inputs
are negative the maximum infix is the empty vector, with sum 0.

How many infixes are there in a vector? An infix can start at any
point and end at any point. The number of infixes starting at the
very beginning is #x, one for each possible ending point. The
number of infixes beginning at the next position is (#x)-1, at the
next is (#x)-2, and so on; the total is thus the triangular number
-:(#x)*(1+#x), or, expressed functionally, -:@(*>:), one of the
series 1 3 6 10 15... The number of infixes for #x where x is a
power of 10 are:

 #x -:@(*>:)x
 1 1
 10 55
 100 5050
 1000 500500
 10000 50005000
 100000 5000050000
1000000 500000500000

So even for a vector of length 1000, the number of infixes to
consider is greater than half a million. Bentley gives as a bad
example an algorithm (I think written in Pascal) that tests the sum
of each infix, and shows that a computer that takes an hour for

At Play With J

130

#x 1000 will take 39 days for #x 10000.
MaxSoFar := 0.0
for L := 1 to N do
 for U := L to N do
 Sum := 0.0
 for I := L to U do
 Sum := Sum + X[I]
 /* Sum now contains the sum of X[L..U] */
 MaxSoFar := max(MaxSoFar, Sum)

He goes on to discuss faster algorithms, but which still take
quadratic time. He describes then a subquadratic algorithm which
uses O(N log N) time. He tells how he and a colleague thought this
was probably the best possible. They described this at a meeting
at Carnegie Mellon University, and someone in the audience
designed a much improved linear time algorithm in less than a
minute. Several APL colleagues of mine have voiced their
suspicions that the designer knew APL.

The algorithm (again I think written in Pascal) for the linear-time
algorithm is:

MaxSoFar := 0.0
MaxEndingHere := 0.0
for I := 1 to N do
 /* Invariant: MaxEndingHere and MaxSoFar
 are accurate for X[1..I-1] */
 MaxEndingHere := max(MaxEndingHere+X[I], 0.0)
 MaxSoFar := max(MaxSoFar, MaxEndingHere)

This can be translated into a J verb:
 mis =: monad def '>./(0:>.+)/\.y.,0' NB. maximum infix sum

We append 0 to the end of the list argument (y.,0), because the
last value on the list may be negative, then do a suffix scan (/\.)
using the verb ‘the maximum of zero and the sum so far’ (0:>.+).
This produces a list of sums formed according to the rule that if a
negative sum is encountered it is replaced by zero. Finally, the
maximum of all the sums is yielded (>./). To see how this works
we use mis0, which is like mis but without the maximum over, on
a short list:

 y =: _100 2 3 4 _100 5 6 _7 8 9 _100
 mis0 y
0 9 7 4 0 21 16 10 17 9 0 0
 mis y
21

Maximum Infix Sums

131

The maximum infix is 5 6 _7 8 9, with sum 21.

The need for appending a zero may be demonstrated by using
mis1, which is like mis0 but without the appended zero:

 j1=:13 : '(0:>.+)/\.y.'
 j1 y
0 9 7 4 0 12 7 1 8 0 _100

Jon Bentley showed the advantage of linear over quadratic
algorithms by writing his slow algorithm in fine-tuned Fortran
and running it on a Cray-1 supercomputer, and the linear algo-
rithm on a Basic interpreter running on a Radio Shack TRS-80
Model III microcomputer. The runtime for an argument of length
N was 3.0N3 nanoseconds for the slow algorithm on the Cray, and
19.5N milliseconds (19,500,000N nanoseconds) for the fast algo-
rithm on the TRS-80. The linear algorithm on the slow machine
caught up with the slow algorithm on the fast machine at N=2500,
and for N = 1,000,000, the slow algorithm/fast machine took
95 years (estimated) and the fast algorithm/slow machine took
just 5.4 hours.

The moral of the story is something like, “It’s foolish to improve
performance by getting a faster machine; one’s money is better
spent on finding a faster algorithm.” This isn’t always possible, of
course. Machine designers are always finding ways to build faster
machines, but it takes a very rare skill to devise faster algorithms.

This brings me to a confession. The J version of the algorithm
wasn’t translated from Pascal (which is a language I don’t
understand), but from Arthur Whitney’s K. Many of you will
know of the existence of two different APL successors, J and K;
some of you will know of their progenitors: Ken Iverson and
Roger Hui for J, and Arthur Whitney for K. There are connections
among these three. All are from Alberta, in Canada (Roger Hui by
way of Hong Kong); all worked for I. P. Sharp Associates in
Toronto (Whitney also worked for IPSA in Australia, Hong Kong,
and Singapore), and all are good friends. I might also say that all
have first-rate brains. That they have taken divergent paths in
pushing the APL idea into the next millenium might lead you to
think that their relationship might be strained, and they do indeed
have a rivalry in that regard; but it is a friendly, though determin-

At Play With J

132

ed one. I use both J and K, and believe that each language is
excellent, but also that each has features that I wish the other had.

The K algorithm, which I learned from Arthur Whitney (we live
just a mile or so apart in Palo Alto, California) is:

 f : |/0(0|+)\

In K the vertical bar (|) signifies the dyad ‘larger’. So |/ is ‘the
largest of all, or maximum’. This is applied to a scan using the
hook 0|+, where 0| is the monad ‘larger of 0 and the argument’,
and + is the dyad ‘plus’, of course. In K the scan (like over) begins
at the left. The 0 preceding (0|+) is the initial value of the scan,
and serves the same purpose as the appended 0 at the end of the J
function j. The verb f also illustrates that K can be used as a
functional language, but unlike J, there is no stress laid on that
fact. The verb could also have been defined by:

 f : {|/0(0|+)\x}

Since I have both J and K on my machine (K can be downloaded
from the website kx.com) I was motivated to time mis and f on
similar length arguments. The results are interesting.

The arguments are named xn, where 10xn is the length of the list.
 J K
 x1 0.00017 0.000386
 x2 0.0005 0.0024
 x3 0.0077 0.0212
 x4 0.082 0.089
 x5 0.87 0.532
 x6 -- 5.091

J is faster for arguments up to 1000 items. and there is a tie for
arguments 10000 items long, but K is faster for larger arguments,
and, indeed, can handle much larger arguments than J can. I’ve
reported this difficulty with J and perhaps by the time you read
this it will have been remedied.

19 Crosswords and Life
First published in Vector, 15, 3, (January 1999), 99-106.

Making Shift
To refresh your memory about J’s shift verb, here is what the online
J Dictionary says:

The phrase x |.!.f y produces a shift: the items normally brought
around by the cyclic rotation are replaced by f unless f is empty
(0=#f), in which case they are replaced by the normal fill defined
under {. (take):

 t=: 'abcdefg'
 2 _2 |.!.'#'"0 1 t
cdefg##
##abcde

The right shift is the dyadic case of |.!.f with the left argument _1.
For example:

 |.!.'#' t
#abcdef

This article uses the shift verb in numbering the squares of crossword
puzzles and in Conway’s Game of Life. The use of the shift verb is
similar in both: it applies to tables along both the columns and the
rows. It also applies to the neighbours of an atom: those reachable by
a one-square rook move in the case of the crossword puzzle, and
those reachable by a one-square queen move in the case of Life.

All of the shifts are of amount one. A shift of one is ahead if the last
item is shifted out, and a fill item is introduced at the beginning; that
is, the direction of shift is toward the larger index. A ‘shift one ahead’
verb is thus:

 soa =: |.!.''

Notice that the fill item is empty ('') , so that soa can be used with
nouns of any type, with the default fill for that type being used. In
our cases we shall be working with numeric data, so the fill item will
be the number zero.

 L =: 2 3 4 5 6
 soa L NB. shift the last item out
0 2 3 4 5
 T =. 1 2 3 +/ L

At Play With J

134

 T
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9
 soa T NB. shift the last item out
0 0 0 0 0
3 4 5 6 7
4 5 6 7 8
 soa"1 T NB. shift the last item of each item
(row) out
0 3 4 5 6
0 4 5 6 7
0 5 6 7 8

Similarly, a shift of one is back if the first item is shifted out, and a fill
item is introduced at the end; that is, the direction of shift is toward
the smaller index. A ’shift one back’ verb is thus:

 sob =: 1&soa
 sob L NB. shift the first item out
3 4 5 6 0
 sob T NB. shift the first item out
4 5 6 7 8
5 6 7 8 9
0 0 0 0 0
 sob"1 T NB. shift the first item of each item
(row) out
4 5 6 7 0
5 6 7 8 0
6 7 8 9 0

A Crossword Problem
A crossword puzzle (the kind I am familiar with, that appear in the
newspapers in the United States) consists of two tables of numbered
clues, labelled ‘Across’ and ‘Down’, together with a usually square
diagram containing regularly spaced rows and columns which divide
it into smaller squares, some black, but most white, in a usually
symmetrical pattern. Some of the white squares contain numbers, and
these indicate the beginning of an infix of squares going across or
down, where the letters of a word are to be written, and these are
keyed to the clues. The numbers are in ravel, or row-normal order,
beginning with 1.

Crosswords And Life

135

Here is a small crossword puzzle diagram, with its clues:

1

2 3

4
5

6

7
8

9

10

11 12
13

14

Across Down

 1. Competent 1. Common abbreviation
 4. Direction 2. Helen’s mother
 5. Australian bird 3. Printer’s measure
 7. Ran away 4. Phantasmic celestials
 9. Damn euphemism 6. Tempt
 11. Bath, for instance 8. Cheese
 13. That is 10. Small thing
 14. Leave out 12. Italian river

The pattern of a crossword puzzle can be represented by a matrix in
which a white square is represented by a one, and a black square by a
zero. For example:

 M
 0 1 1 1 1 0
 1 1 0 1 1 1
 1 1 1 1 0 1
 1 0 1 1 1 1
 1 1 1 0 1 1
 0 1 1 1 1 0

A professional composer of such puzzles undoubtedly knows from
experience which squares are to contain a clue number. An inexper-

At Play With J

136

ienced computer has to be taught. We’ll show how to teach a comp-
uter to number the squares, with the help of J’s shift instruction.

In Exercise 1.3.2-23 of his book Fundamental Algorithms, Donald Knuth
gives the rule as follows:

A square is numbered if it is a white square and either (a) the square
below it is white and there is no white square immediately above, or
(b) there is no white square immediately to its left and the square to
its right is white.

Notice how Knuth carefully yet a bit awkwardly avoids saying ‘black
square above’ and ‘black square to the left’, and instead says ‘no
white square’. I think this is because of the white squares in the top
row and leftmost column. What is above or to the left of them?
Shades of Jim Brown’s empty array jokes! How can you tell whether
what is above a white square in the top row is not a white square?

The problem is solved by shifting all of the one-square rook move
squares to coincide with that square. For the border squares, this
ensures that zeros, signifying ‘black’ squares, are shifted to
coincidence. This is done in two steps, producing two matrices of the
same size as the puzzle diagram matrix.

The verbs to solve the crossword numbering problem are:
 f =: soa < sob
 X =:] *. f +. f"1

The use of f"1 produces a one for each atom in the matrix in which
the square to its left is less than the square to its right. This is true
only if the square to the left is black (0) and the square to the right is
white (1). This identifies the potential squares where an across word
can begin.

The following use of the verb f produces a one for each atom in the
matrix in which the square above it is less than the square below it.
This is true only if the square above is black and the square below is
white. This identifies the potential squares where a down word can
begin.

The verb X ors these two results, producing a matrix showing all
squares satisfying either of these tests (the same square can be 1 in
both tests). This combined square is anded with the original square,
yielding a result which has a 1 only where there is also a 1 in the orig-

Crosswords And Life

137

inal, thus definitely identifying squares to be numbered as the
beginning of either an across or a down word.

These steps are summarized as follows:
 M ; (f M) ; (f"1 M) ;(]*.f+.f"1)M
+-----------+-----------+-----------+-----------+
0 1 1 1 1 0	1 1 0 1 1 1	1 1 0 0 0 0	0 1 0 1 1 0
1 1 0 1 1 1	1 0 0 0 0 1	1 0 0 1 0 0	1 0 0 1 0 1
1 1 1 1 0 1	0 0 1 0 0 0	1 0 0 0 0 0	1 0 1 0 0 0
1 0 1 1 1 1	0 0 0 0 1 0	0 0 1 0 0 0	0 0 1 0 1 0
1 1 1 0 1 1	0 1 0 0 0 0	1 0 0 0 1 0	1 1 0 0 1 0
0 1 1 1 1 0	0 0 0 0 0 0	1 1 0 0 0 0	0 1 0 0 0 0
+-----------+-----------+-----------+-----------+

The verb X encapsulates these steps. We obtain the final result by
applying X to M:

 c =: X M
 c
0 1 0 1 1 0
1 0 0 1 0 1
1 0 1 0 0 0
0 0 1 0 1 0
1 1 0 0 1 0
0 1 0 0 0 0

Knuth’s exercise asks for a display of the puzzle using black and
white squares made of plusses, minuses, and stiles. To complete the
exercise we give with no further ado ...

 clb=: [: +/ [: *./\ ' '"_ =] NB. count leading blanks

 CWD=: monad define
NB. y. is boolean matrix giving a crossword puzzle pattern
NB. where 0 represents a black square and 1 a white square;
NB. yields crude numbered crossword puzzle diagram.
 bw =. <' +',' +',:'+++++' NB. scalar white square
 bb =. <'+++++','+++++',:'+++++' NB. scalar black square
 g =. [: , [: ,. / [: >] NB. ravel stitch insert open
 a =. , X y. NB. mark across and down squares
 b =. (clb |.])"1 ":,.>:i.+/a NB. format & left adjust numbers
 c =. <"2 b(<0;0 1)}"1 2>bw NB. insert numbers in blanks
 d =. cws0(bw;((,y.)#a);<c) NB. insert blank white squares
 e =. cws0(bb;(,y.);<d) NB. insert black squares
 f =. g"1 ($y.)$e NB. stitch open of reshape
 '+',.'+',(3 5*$y.)$,f NB. reshape and border
)

At Play With J

138

When this is applied to M we get:
 CWD M
+++++++++++++++++++++++++++++++
++++++1 + +2 +3 ++++++
++++++ + + + ++++++
+++++++++++++++++++++++++++++++
+4 + ++++++5 + +6 +
+ + ++++++ + + +
+++++++++++++++++++++++++++++++
+7 + +8 + ++++++ +
+ + + + ++++++ +
+++++++++++++++++++++++++++++++
+ ++++++9 + +10 + +
+ ++++++ + + + +
+++++++++++++++++++++++++++++++
+11 +12 + ++++++13 + +
+ + + ++++++ + +
+++++++++++++++++++++++++++++++
++++++14 + + + ++++++
++++++ + + + ++++++
+++++++++++++++++++++++++++++++

Conway’s Game of Life
In Knuth’s The Metafont Book, Addison Wesley, 1986, Exercise 13.24,
p. 121, and Answer 13.24, p. 245 are as follows:
Exercise 13.24: In John Conway’s “Game of Life” pixels are said to be
either alive or dead. Each pixel is in contact with eight neighbors. The live
pixels in the (n+1)st generation are those who were dead and had exactly
three neighbors in the nth generation, or those who were alive and had
exactly two or three live neighbors in the nth generation. Write a short
METAFONT program that displays successive generations on your
screen.

Answer 13.24: (We assume that currentpicture initially has some
configuration in which all pixel values are zero or one; one means
“alive.”)

picture v; def c = currentpicture enddef;
forever: v := c; showit;
 addto c also c shifted left + c shifted right;
 addto c also c shifted up + c shifted down;
 add to c also c - v; cull c keeping (5 , 7);
endfor.

Crosswords And Life

139

(It is wise not to waste too much computer time watching this
program.)

It is not apparent, but Knuth’s approach assumes a flat universe,
where, as is customary, if things are pushed beyond the edges, they
fall off the surface. Many APL approaches, using the rotate verb,
assume a toroidal universe, where the display is assumed to connect
both horizontally and vertically, and if things are pushed beyond the
edges, they wrap around, staying on the surface, and appearing on
the opposite edge.

Assuming that you don’t speak METAFONT, I’ll explain the logic
behind this program. It encodes the values of the pixel and its eight
neighbours to indicate a pixel which is to be alive or dead in the next
generation. The encoding gives a weight of one to the pixel and a
weight of two to each of its neighbours. If we compute the sum of the
pixel plus twice the sum of its neighbours, we can arrive at any of the
eighteen values from zero through seventeen: zero for a dead pixel or
one for a live pixel, plus 0, 2, 4, 6, 8, 10, 12, 14, or 16 for twice the sum
of its neighbours, depending on whether the number of alive
neighbours is 0, 1, 2, 3, 4, 5, 6, 7, or 8. Then “dead and exactly three
live neighbours” is (0+(2*3)), or 6, and “alive and exactly two or three
live neighbours” is (1+(2*2)), or 5, and (1+(2*3)) or 7, so we get the
next generation by replacing each sum equal to 5, 6, or 7 by one, and
all others by zero.

Knuth forms a new picture as the sum of the picture and the picture
shifted one column left and the picture shifted one column right.

He adds this new picture to the new picture shifted down one and the
new picture shifted up one, next doubles the value of each pixel, then
subtracts the original pixel, giving us the value we desire. It only
remains to see whether this is one of the life-giving values. That’s
what the cull verb does: it culls the chaff from the result, leaving only
those having the value 5 or 6 or 7.

J verbs to do what Knuth’s MetaFont program does are:
 g =:] + soa + sob
 h =:] -y [: +: [: g g"1
 L =: h e. 5 6 7"_

At Play With J

140

The verb g will be used in somewhat the same way as the verb f in
the crossword puzzle problem. It is used first (g"1) to form the sum of
each column with the columns on either side, then applies g to this,
forming the sum of each row with the rows on either side, doubles
(+:) this, then subtracts (] -y) the original picture. The verb h
encapsulates this. The verb L uses h to go through these steps, then
determines which atoms of the result are equal to either 5 or 6 or 7.

Given a picture:
 picture =: 0 0 0 0 0,0 1 1 1 0,0 0 1 0 0,0 1 1 0
0,:0 0 0 0 0

Its original value and the next 5 steps of Life are:
 q =: Lx:(i.6) picture
 <"2 q
+---------+---------+---------+---------+---------+---------+
0 0 0 0 0	0 0 1 0 0	0 1 1 1 0	0 1 0 1 0	0 0 1 0 0	0 0 0 1 0
0 1 1 1 0	0 1 1 1 0	0 1 1 1 0	0 1 0 0 1	0 0 0 1 1	0 0 0 1 0
0 0 1 0 0	0 0 0 0 0	0 0 0 1 0	0 0 0 1 0	0 0 0 0 0	0 0 0 0 0
0 1 1 0 0	0 1 1 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
+---------+---------+---------+---------+---------+---------+

20 New Model Computer
First published in Vector, 15, 4, (April 1999), 106-112.

Donald Knuth began writing his series called The Art of Computer
Programming in 1962, and devised a mythical computer called
MIX with which to illustrate computer language programs, and as
a machine to be used for exercises. Half a lifetime has gone by
since then – half a human lifetime, three or four computer
lifetimes. His MIX design is now obsolete. A new machine, called
MMIX, will replace it in subsequent revisions of his volumes. A
preliminary writeup of this new machine is given in Knuth’s web
site.

His home page address is http://sunburn.stanford.edu/~knuth

Briefly, MMIX operates on 64-bit words. It has 256 general-
purpose 64-bit registers that can hold either fixed point or floating
point numbers, or characters, or arbitrary binary data. Most
instructions have the form OP X Y Z, where OP, X, Y, and Z are
each 8-bit bytes. If OP is the ADD instruction, for example, the
meaning is “X=Y+Z”, that is, “Set register X to the contents of
register Y plus the contents of register Z.” There are 256 op codes
that fall into a dozen or so categories. The virtual memory
available to an application is 2^64 bytes. There are no input-
output instructions; files are handled as memory-mapped data.
There is no operating system at the moment for MMIX. Knuth
writes, “Whenever I have been asked if I will be writing a book
about operating systems, my reply has always been ‘Nix.’
Therefore the name of MMIX’s operating system, NNIX, should
come as no surprise.”

The purpose of this column is to discuss a few J-related aspects of
this machine. I am attempting just now to write a J model of it.
Time will tell if and how well I do this.

On this machine numbers are 64 bits long, though the design
tolerates shorter numbers. For floating point numbers it uses the
IEEE/ANSI standard 64-bit form, and accommodates the 32-bit
forms only to transform them to the 64-bit form in computations.
More interestingly, integer numbers are also 64 bits long. Thus
an unsigned integer can take on any value from zero through

At Play With J

142

18,446,744,073,709,551,615, or approximately 1.8e19. Signed
integers range between -9,223,372,036,854,775,808 and
9,223,372,036,854,775,807. One of the reasons I chose J as
simulation language is its extended integers, which allow me to
use these large numbers directly, with the least amount of fuss: an
occasional terminal ‘x’ on a number, or ‘x:’ preceding a number.

Many years ago I heard Luther Woodrum, the one who gave APL
a good grade (he designed and implemented the grade primitives
in APL\360) ask, “When will computer designers put in a
maximum instruction?” In almost all computers, finding the
maximum of two numbers involves a branch instruction.
Something like this:

condition is x is less than y
branch to Label if condition is true
maximum is x
branch to exit
Label: maximum is y
exit:

One of the great motivations of computer designers is to reduce
the number of branches required by programs executing at the
machine level. Branches really slow things down. I recently
attended, along with Larry Breed (the key designer and
implemetor of APL\360), a talk Knuth gave on MMIX. I had read
the preliminary MMIX writeup and hadn’t found a maximum
instruction, so after the lecture, in the question period, I asked
how one found a maximum on MMIX. Knuth fumbled a bit, and
gave an explanation which I didn’t hear very well. Larry, however
seemed to understand and accept it, so I didn’t pursue the issue
then, but the next day I phoned Larry and asked him for more. He
explained that there was an identity that could be used to obtain
maximum at the machine level without a branch, namely:

a max b is b + 0 max a - b

I said to Larry that that looked a bit circular, didn’t it, defining
maximum in terms of itself? Larry assured me that the circularity
is only apparent. He said also that, before retiring from IBM a few
years ago, he had been instrumental in getting the architects of an
IBM computer (I think the RS6000) to add a “difference or zero”
instruction, primarily to handle maximum, and that now Knuth
had devised a similar feature for MMIX. It’s called ‘zero or set if

New Model Computer

143

negative’, written ZSNI rX, rY, Z, which acts as follows:
If register Y is negative, register X is set to Z, otherwise nothing
happens. To see how this works in finding maximum, look at the
three cases below. The two values are in A and B and the result is
to appear in B.

 case 1 case 2 case 3
 A=8 B=3 A=3 B=8 A=3 B=3
SUB A,A,B 5 3 -5 8 0 3 A=A-B
ZSNI A,A,0 5 3 0 8 0 3 A=0 max A
ADD B,A,B 5 8 0 8 0 3 B=A+B

Somewhere below the machine instruction level there is a branch,
but the machine is happy nevertheless, because the three
instructions above execute very rapidly, and in a pipelined
machine the pipeline is undisturbed, since no instruction-level
branch is needed.

The next thing I’d like to mention is exemplified by a frustrating
aspect of IEEE floating point as implemented by two different
systems: the little-endian and the big-endian school. In the little-
endian implementations the bytes are numbered from left to right,
7 through 0, and the bytes in the big-endian school are numbered
0 through 7. This leads to strange things like, in J, looking at the
value of a floating point number on a Macintosh and on an Intel
machine gives two different pictures, one reversed from the other.
Another bit of explanation I need to give you is that Knuth uses
the prefix # in front of a number expressed in hexadecimal. One of
the ‘bit fiddling’ instructions is ‘multiple or’, denoted by MOR.
The explanation given for it is:

Suppose the 64 bits of registers Y and Z are indexed by pairs such
that the bytes are numbered from 0 to 7 and the bits within the
bytes also by 0 through 7; then the MOR operation replaces bit ij
of register X by the bit

y0jzi0 or y1jzi1 or ... or y7jz7i

Thus, for example, if register Z contains #0102040810204080, MOR
reverses the order of the bytes in register Y, converting between
little-endian and big-endian addressing.

What Knuth has designed, if the above is opaque to you, is a
special case of the good old-fashioned ‘or dot and’ inner product.

At Play With J

144

When I came to describing this instruction in my simulation, in
addition to standard housekeeping, all I had to write was

 U =. B +./ . *. A

where B and A are 8-by-8 boolean matrices representing the 64
bits in the two operands.

If I get anywhere with this simulation, I’ll probably report on it in
a future column.

21 New Big Deal
First published in Vector, 16, 1, (July 1999), 113-119.*

Chris Burke was displeased, to begin with. He had tried J’s deal
with a small left argument and a very large right argument, and
this took a perceptibly long time. He tried it with a larger
argument and was told he had run out of space. He tried it with a
still larger argument, and was told he had exceeded deal’s limits.
He wrote to Roger Hui about these distressing circumstances,
showing him several examples:

 (time=:6!:2) '1 ? 1e7' NB. this takes too long
0.93

 1 ? 1e8
|out of memory
| 1 ?100000000

 1 ? 1e9
|limit error
| 1 ?1000000000

Roger’s first thought was how to get around this limitation. He
said that if the left argument is much smaller than the right Chris
would be better off just doing ?x$y ; because deal allocates a
boolean vector of length y to compute unique answers in the
result of x?y. Thus a very large y would give the results Chris
noted. He forwarded Chris’s message to me, copying Chris, with
the message “Perhaps Eugene can comment.”

I checked the literature on my shelf but couldn’t find any
worthwhile “selection without replacement” algorithms. I then
remembered the very early days of APL\360, before deal was
made a primitive – some time in 1966, perhaps. I had written a
defined function to perform deal, using an algorithm that was
quite fast. I remembered it vaguely, and thought that with it I
might be able to do better with J. I wrote one, tried it out on a

* The original attribution read: “by Eugene McDonnell, with a major
contribution from Roger Hui.”

At Play With J

146

dozen or so cases, then communicated it to Chris and Roger:
deal =: dyad define
NB. experimental deal
NB. for small x. and very large y.
count =: 0
t =. i.0
k =. 1.1 NB. adjust as you see fit
NB. maybe make it a function of y.
u =. >. k * x.
whilst. (# t) < x. do.
t =. y. ? u # y.
count =: count + 1
end.
x. {. t
)

As you can see, I was uncertain about the factor 1.1. I had put a
counter in to see how often more than one execution of the whilst
section was needed. In the few dozen cases I tried, there were
none. Happily, the timings showed a large improvement over
current deal for Chris’s cases: the cases that were slow were much
faster, and the range of the right argument was significantly
extended. Here are the timings I experienced:

 time '1 ? 1e7'
4.07
 100 time '1 deal 1e7'
0
 1000 time '1 deal 1e7'
0.00044
 1000 time '1 deal 1e8'
0.00044
 1000 time '1 deal 1e9'
0.00044
 1000 time '100 deal 1e7'
0.00082
 count
1
 1000 time '100 deal 1e8'
0.00076
 count
1
 1000 time '100 deal 1e9'
0.00083
 count
1

New Big Deal

147

 ts=: 6!:2 , 7!:2@] NB. time and space
 100 ts '1?1e7'
0 2240
 100 ts '1?1e8'
0 2240
 100 ts '1?1e9'
0.0005 2240
 100 ts '100?1e7'
0.0005 4288
 100 ts '100?1e8'
0.0005 4288
 100 ts '100?1e9'
0.0005 4288

Roger thought this was neat. He implemented my algorithm,
invoked when x<0.01*y.

deal =: dyad define
u =: >. 1.1 * x.
while. x.># t=. y. ? u # y. do. end.
x. {. t
)

His C implementation looked like this:
static A bigdeal(m,n)I m,n;{A t,x,y;
 RZ(x=sc((I)floor(1.11*m)));
 RZ(y=sc(n));
 do{RZ(t=nub(roll(reshape(x,y))));}while(m>AN(t));
 R vec(INT,m,AV(t));
} /* E.E. McDonnell circa 1966, small m and large
n */

But he worried that this would run into the birthday problem,
which gets its name from its most celebrated instance, that the
odds are in your favour if you bet that in a group of 23 or more
people at least two of them will have the same birthday. The
greater the number of people, of course, the higher the probability
that this will occur. With more than 365 people, the probability is
certain, or 1, since the pigeonhole principle dictates that if you
have x pigeonholes and y pigeons, with x less than y, at least one
of the pigeonholes will have more than one pigeon in it. What
Roger wanted to know was, what is the value of x as a function of
y where the probability of a duplicate appearing was 0.5. If he had
this information, he could make the multiplier more accurate.
Perhaps 1.11 wasn’t good enough.

At Play With J

148

I wrote the following:
Hui_test =: dyad define
tests =: 0
successes =: 0
whilst. 1000 > tests =. >: tests do.
successes =: successes + *./y:?x.$y.
end.
<. 100 * 0.001 * successes
)

I ran this test for y in all of the hundreds, thousands, ten
thousands, hundred thousands, millions, and 10,000,000 and
20,000,000. To make it easier to digest I’ll only show the results for
y=:10x2 3 4 5 6 7. The other results are consistent with these.

 y x
 100 12
 1000 37
 10000 116
 100000 370
 1000000 1180
10000000 3740

I thought this looked roughly like a square root relationship so
tried a few manoeuvres:

 %:y
10 31.6228 100 316.228 1000 3162.28
 %:1.4*y
11.8322 37.4166 118.322 374.166 1183.22 3741.66

This was quite a good fit, and shows:
 y = (xx2) % 1.4
 x = %: 1.4 * y

to a close approximation. I communicated these results to Roger.
He studied this and was able to apply some more theory to it, and
wrote back to me: in choosing m items from a universe of n items,
the probability of all the m items distinct is (*/n-i.m) % (nxm).
The numerator is the number of ways of choosing m distinct items;
the denominator is the number of ways of choosing m items. Thus:

(*/n-i.m) % (nxm) (a)
(*/n-i.m) % (*/m$n)
*/ (n-i.m) % (m$n)
*/ (n-i.m) % n

New Big Deal

149

f=: [: */] %y i.@[-y]

 22 23 f"0] 365 NB. the classic birthday problem
0.524305 0.492703

The first m for which m f n is less than 0.5, is:
 1 + (0.5 > */\ n %y n - i.n) i. 1
 f1=: >: @ (i.&1) @ (0.5&>) @ (*/\) @ ([%y [-
i.)
 f1 365
23
 n=: , (,10x1 2 3 4 5)*/1 2 4 8
 m=: f1"0 n
 n,.m ,. %: 1.4*n
 10 5 3.74166
 20 6 5.2915
 40 8 7.48331
 80 11 10.583
 100 13 11.8322
 200 17 16.7332
 400 24 23.6643
 800 34 33.4664
 1000 38 37.4166
 2000 53 52.915
 4000 75 74.8331
 8000 106 105.83
 10000 119 118.322
 20000 167 167.332
 40000 236 236.643
 80000 334 334.664
100000 373 374.166
200000 527 529.15
400000 745 748.331
800000 1054 1058.3

For extremely large values of n, Roger saw that the function f1 is
impractical to compute, and he concluded that a method based on
root finding on the original function f, using my approximation
of m=: %: 1.4*n as an initial guess, would be more suitable.

1e7 3724
1e8 11775
1e9 37234
2e9 52656

At Play With J

150

The end result was that Roger found that the rule I had originally
suggested of switching to the “roll” algorithm for m?n when
m<0.01*n does run into the birthday problem, and he replaced it
with the more accurate rule I had found following his suggestion.
There the matter rests, with one small postscript. As I studied
Roger’s mathematics, particularly the phrase (*/n-i.m) in line (a)
above, I recalled J's “falling factorial” function. The J Dictionary
defines this as follows:

The fit conjunction applies to x to yield a stope defined as follows:
x!.k n is */x + k*i. n. In particular, x!._1 is the falling
factorial function.

Let me elaborate on this. Think of the caret (x) as being defined in
the first instance as denoting a function of three arguments: a
base, a count, and a step. Then caret (base, count, step) is the
product over base + step * integers count. For example,

'base count step' =. 3 5 7
 i. count
0 1 2 3 4
 step * i. count
0 7 14 21 28
 base + step * i. count
3 10 17 24 31
 */ base + step * i. count
379440

caret =: monad define
NB. general caret function
NB. y. is a list of three values:
NB. base
NB. count
NB. step
'base count factor' =. y.
*/ base + factor * i. step
)
 caret(3 5 7)
379440

This generality hides the fact that there are really just three
variations of significant interest, steps having values _1, 0, and 1.
These three provide falling factorials, steady factorials (powers)
and rising factorials. Each of these has to do with a product over
count number of values, beginning with base, and continuing

New Big Deal

151

with values increasing by step. See what results come with a base
of 5 and a count of 3, with each of the three significant step sizes:

 caret 5 3 _1
60
 5 * 4 * 3
60
 caret 5 3 0
125
 5 * 5 * 5
125
 5 x 3
125
 caret 5 3 1
210
 5 * 6 * 7
210

The case with step zero is the default case of caret, and is the
power function. We can use the falling and steady factorial cases
to write a more compact version of Hui’s function f:

probdupes =: dyad define
NB. Probability of duplicates when drawing with
NB. replacement from among the first count
integers
base =. x.
count =. y.
(base x!._1 count) % (base x!.0 count)
)

NB. simplified version of probdupe
pd =: x!._1 % x

NB. version exploiting family resemblances
pdx =: [: %/ x!._1 0

 365 probdupes 23
0.492703
 365 pd 23
0.492703
 365 pdx 23
0.492703

These functions fail when the values of the falling factorial get
very large, causing its value to exceed the maximum real value,
and thus to be represented by machine infinity. When this happ-

At Play With J

152

ens, the steady factorial (power) value will already be machine
infinity, and the quotient of two infinities is Not a Number, or
NaN. To get around this problem, use extended integers as
arguments, and extended precision inverse on the result. When
the result is smaller than the smallest nonzero number, a result of
zero is forced:
 365 pd 200 NB. result is NaN, from _ % _
_.
 x:x:_1 [365x pd 200x NB. result of zero is forced
0

22 We’ll Cross That Bridge When We Come
To It
First published in Vector, 16, 3, (January 2000), 126-130.

Bjorn Helgason, from Iceland, submitted this problem to the
Internet J Forum:

Four people, A, B, C, and D, come to a bridge at night, with only a
flashlight to guide them. The time each one takes to cross the
bridge is: A in 1 minute, B in 2 minutes, C in 5 minutes, and D in
10 minutes. The bridge will only support two of them at a time,
and the time to cross is, of course, that of the slower walker. The
flashlight must be carried on any crossing. They want to get
across the bridge as quickly as possible. Since they have a
palmtop computer with J installed, they write a program that tells
them what the minimum time is, and in what order they should
go forth and back over the bridge. Your problem is to write an
equivalent program. To help you get started, the program found
that the minimum time is seventeen minutes.

The first response to Bjorn’s problem said that there was no need
for a program to be written, because it could be solved in one’s
head; and complained, furthermore, that seventeen minutes was
impossible; it was demonstrable that the minimum time was
nineteen minutes: the fastest one, A, going across first with B and
the flashlight, leaving B on the other side, coming back with the
flashlight to go across with C, then coming back with the
flashlight again to go across with D: two plus one plus five plus
one plus ten, making nineteen, and that the order was
unimportant so long as A was the constant companion. It couldn’t
be done more quickly, since the fastest man was always the one to
go back. However, Helgason kept insisting that seventeen was the
minimum, and offered to send a private message to the
complainer giving such a solution.

After a fair amount of back and forth between Helgason and the
disbeliever, the issue was resolved when Kirk Iverson finally
submitted a solution from Toronto which gave the seventeen-
minute solution for the problem. He admitted that he wasn’t sure
whether the program would give the minimum answer for all

At Play With J

154

possible combinations of number of people per crossing and times
for each to cross, but it would handle many cases. [Yes, Kirk is
related to Ken; he’s a nephew.] The disbeliever was converted, of
course, and made a handsome apology.

See whether you can arrive at a solution, either to this specific
problem, or to the more general one solved by Kirk. When you’re
satisfied that you either can solve the problem, or have thrown up
your hands in frustration, or else are just too lazy to give it any
more thought, you can go on to read Kirk Iverson’s solution. From
here on, it is his text, slightly amended, with additional comments
by me shown in square brackets.

First, the “compiled” code, in case anyone wants to run this
without seeing what it does:

NB. ---- copy into ijs window and execute --------------------
".(noun define)-.LF
bridge=:(<./@(>@(2&{))({.@],(1&{@],&.><@[),(2&{@]-.&.><@[),3&}
.@],<@[)])x:(*@#@(>@(1&{)))@(((((>@{.@[-.]);>@{:@[)}.@(([-.[-.
])/))@(>@(0&{)(([<.#@]){.])"1(,:|.)@(/:y)@(>@(1&{)))([>@{y(>@(
2&{)@]<&(<./)>@{:@[)+.#@(>@{:@[)=#@(>@(1&{))@])])({.@],(1&{@]-
.&.><@[),(2&{@],&.><@[),3&}.@],<@[)])x:(*@#@(>@(1&{)))x:_&.(({
.;}.;''"_) :.((+/@:(>./@>);])@(3&}.)))@,
)
NB. --

[I speculate that Kirk first wrote a series of verbs to accomplish
the objective, then obtained this unreadable mess by applying the
fix adverb (f.) to the main verb. Doing this replaced all the sub-
ordinate verbs by their definitions, yielding the aforesaid mess.
He probably then obtained the character string corresponding to
the fixed function, using the 5!:5 form of the foreign conjunction,
and displayed this in a field 62 characters wide, giving the six
lines shown above, and copied them. The line following the first
NB. line contains three items that are defined in a script loaded
when a J session starts: the variable noun has the value 0; the
adverb define has the value : 0 (explicit definition script form) and
the variable LF is the linefeed character, defined as 0{a. .The
(noun define) in the first line after the comment line (beginning
with NB.) permits entry of multiple lines of text. Kirk pasted in
the six lines, then typed a right parenthesis on the next line, and
hit enter, thus causing entry to terminate, and the (noun define)
was replaced by the six lines shown. The -.LF removed the
linefeeds from this text, and the ". executed the line, causing a
verb named bridge to be defined.

We’ll Cross That Bridge When We Come To It

155

I copied the bridge verb, and pasted it into a J session, and it
worked as advertised.

The left argument to bridge is the maximum number of people
who can walk on the bridge at the same time; the right argument
is a list of the length of time each person needs to cross.

The result is a boxed list of total elapsed time, followed by all
moves:

 2 bridge 1 2 4
+-+---+-+---+
|7|1 2|1|4 1|
+-+---+-+---+

The result signifies 7 minutes total time; 1 and 2 cross; 1 returns; 4
and 1 cross.

[This is your last chance to try figuring out how to solve our
problem, because the solution Kirk obtained is now going to be
shown.]
NB. ---
NB. Crossing the bridge.

NB. Rules
NB. Move all people from one side of bridge to other.
NB. Each person has an individual time it takes to cross.
NB. At most MAXLOAD number of people on bridge.
NB. Torch must always be with a group on the bridge.
NB. Speed of a group is the speed of the slowest member.
NB. Strategy
NB. Overall strategy is to pick a good group to go over, and
NB. then have the fastest person to return with the torch. Wash,
NB. rinse, repeat. I call the guy to return the torch the "runner".
NB.
NB. We attempt to move the slowest people together as a group,
NB. rather than split them up to slow down all groups. We move
NB. the slowest ones over whenever there is a suitable runner
NB. to return, i.e., none of this slow group will have to return.
NB.
NB. If there is no good runner, we select the fastest to go over
NB. and act as runners. We only include enough runners which are
NB. necessary to bring in the rest of the people.
NB. Notes
NB. Iteration is done by repeatedly applying a function to
NB. the full set of data until it results in everyone moved.
NB. Data is maxload;unmoved;moved;move0;move1;move2;...
NB. Verbs to access pieces from the data

maxload=: >@(0&{) NB. maximum number of people on the bridge
unmoved=: >@(1&{) NB. people not yet moved
moved=: >@(2&{) NB. people already moved
moves=: 3&}. NB. record of all moves
more=: *@#@unmoved NB. are there more to move?

At Play With J

156

NB. move/unmove move people across bridge
NB. x. is list of people to move; y. is data
move=: {.@] ,(1&{@] less each <@[),(2&{@] , each <@[), 3&}.@] , <@[
unmove=: {.@] ,(1&{@] , each <@[),(2&{@] less each <@[), 3&}.@] , <@[
NB. Strict <less> Similar to -. but removes from x only the number
NB. of matching items found in y. All items in y are expected to be
NB. found in x, and the items in the result are in the same order as
NB. they appear in x. Universe is y.x, and is catenated in front of
NB. y, therefore count (#/.y) of each returns the counts of the
NB. respective items. The difference (incremented to compensate for
NB. the catenation of the universe onto y) is used to copy items from
NB. the universe.
 less=: universe #y [>:@-&count universe ,]
 universe=: y.@[
 count=: #/.y
NB. Pick the group to go across. Runners are the fast group to
NB. shuttle the rest over; waddlers are the slower group put together
NB. to capitalize on the slowest of the bunch.
groups=: sort@unmoved (runners ; waddlers)]
 runners=: [maxtakey required <. maxload@]
 required=: 1: >:@>. #@[<:@>.@% <:@maxload@]
 waddlers=: maxload@] maxtake |.@[

pickslow=: nogoodrunner +. lastgroup NB. 0-runners; 1-waddlers
 nogoodrunner=: moved@] <:&fastest slower
 lastgroup=: #@slower = #@unmoved@]
NB. fastest/slowest in a group
fastest=: <./
slowest=: >./
slower=: >@{:@[
maxtake=: ([<. #@]) {.] NB. take, but don't overtake

pick=: groups (pickslow >@{ [)]
NB. forward - pick group to go and move them
NB. return - pick fastest runner and move back, if more to move
forward=: pick move]
return=: (fastest@moved unmove])x:more
NB. iterate repeats the forward/return action until there are no more.
iterate=: return@forwardx:morex:_
NB. assemble the argument into the data structure; inverse
NB. computes total trip time from moves, and returns that along
NB. with the moves.
assemble=: ({. ; }. ; ''"_) :. ((+/@:(slowest@>) ;])@moves)
NB. maxload play speeds
bridge=: (iterate&.assemble)@,

NB. ---

 [And now for our problem:]
 2 bridge 1 2 5 10
+--+---+-+----+-+---+
|17|1 2|1|10 5|2|2 1|
+--+---+-+----+-+---+

The total time is 2+1+10+2+2, or 17, as was required. An
alternative would have 2 return the first time, and 1 the second
time, and this also is minimum.

We’ll Cross That Bridge When We Come To It

157

Kirk’s J implementation consists of two dozen or so verbs, all in
tacit form, so this is a functional programming solution. The
iterate verb continues until there is no more to be done, using
power to the limit, denoted by infinity (x:_).

As this article goes to press, it is recognized that Kirk’s solution is
not guaranteed to give the minimum result for all cases; for
example, it fails for 1 10 11 12; but it was the first solution that
gave the minimum result for the given case 1 2 5 10.

23 An Open and Shut Case
First published in Vector, 16, 4, (April 2000), 99-106.

My 11-year old granddaughter, Amy Powers, brought home a
problem the other day which her mathematics teacher had given
to her 6th-year class. I thought it pedagogically fruitful, and
advanced beyond any mathematics I had learned at her age. It
demonstrates how much teaching has changed for the better in
the more than sixty years since I was in the 6th year. A broader
variety of subject matter beyond the elementary algebra I was
taught and a better method of teaching mathematical topics have
made the subject more interesting and, I am convinced, easier to
learn.

Some background: in many schools in the United States, lockers
are provided in which the students may store their textbooks and
other belongings. These are usually placed in long rows, and
some inspired teacher was inspired to create the Locker Problem to
give a concrete base on which to help teach some facts about
divisors.

The Locker Problem
In a high school (years 9 to 12) there are 1,000 lockers placed next
to each other along a hall. During winter break, the custodians at
the school clean the lockers and paint fresh numbers on each
locker door. The lockers are numbered from 1 to 1,000. When the
1,000 students arrive back from their vacation, they decide to
celebrate returning to school by working off some energy. Here is
what they do: Student 1 runs down the row of lockers and inverts
every door. (To invert a door means to open it if it was closed, and
to close it if it was open.) Student 2 runs down the row of lockers
and inverts doors 2, 4, 6, 8, and so on to the end of the line. Next
student 3 inverts the doors of lockers 3, 6, 9, 12, and so on to the
end of the line. This pattern continues until each of the 1,000
students has had a turn to run down the hall.

When the students are finished, which doors are open?

At Play With J

160

Amy set about answering this question by making a table:
 1 1 1 1 1 1 1 1
 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
 1 O O O O O O O O O O O O O O O O O
 2 C C C C C C C C
 3 C O C O C
 4 O O C O
 5 C O O
 6 C O
 7 C O
 8 C C
 9 O
10 C
11 C
12 C
13 C
14 C
15 C
16 O
17 C

The first row of all Os shows that after student 1 has finished, all
the doors are open. The next row, for student 2, shows that the
even numbered doors are closed. The third row, for student 3,
shows that every third door has changed its state: if it had been
open, it is now closed, and if closed, is now open. I’ve added row
and column stubs, and have darkened the Os along the diagonal,
and the corresponding row and column numbers. Because doors
1, 4, 9, and 16 were open, Amy guessed that the doors that were
open were those of students whose numbers were squares. Was
she right?

The next step might be difficult for a sixth-grade student to have
arrived at. It is to count the number of students who inverted each
door. Each of the Os and Cs in Amy’s table is a divisor of the
number it lies beneath. For example, the Os and Cs under 12 are
inversions by the six students numbered 1, 2, 3, 4, 6, and 12; thus,
the number of divisors of 12 is six. The number of divisors of a
number varies irregularly. Counting the divisors of our seventeen
numbers gives the table:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5 2

At first glance, there doesn’t seem to be any pattern to the number
of divisors, except that there is a tendency for the number to incr-

An Open And Shut Case

161

ease; however, I’ve put in bold type those integers and their div-
isor counts where the count is odd, since only those doors will be
open that have been inverted by an odd number of students. In
Amy’s chart the doors that are open are numbers 1, 4, 9, and 16.
Her conjecture was that the doors that are open are those whose
numbers are squares. I made the further conjecture that squares
and only squares have an odd number of divisors. Both conject-
ures are true. If a number is a square, it has an odd number of div-
isors; conversely, if a number has an odd number of divisors, it is
a square. How can we show this?

Just studying the number of divisors doesn’t reveal any pattern. I
shall make a great leap here, and go immediately to a description
of the Prime Factors Exponent Numbers (PFENs). Kenneth Iver-
son’s book Algebra, an Algorithmic Treatment (Addison-Wesley,
Menlo Park, California, 1972), gives a description of this system in
section 16.2. In this number system a positive integer is represent-
ed by a list of non-negative integers, where the integer in column i
represents the exponent to which prime i is to be raised, going
from left to right. The primes corresponding to indices 0 1 2 3 4 5
are 2 3 5 7 11 13. For example, if, in the PFEN for a number, col-
umn 3 has the value 5, the third prime, 7, is to be raised to the 5th
power, and so 0 0 0 5 represents 16807; the decimal integer corres-
ponding to the PFEN is the product of the results of raising each
prime to the corresponding power. The PFEN forms for the first
17 positive integers are:

 n PFEN n
 1
 2 1
 3 0 1
 3 2
 5 0 0 1
 6 1 1
 7 0 0 0 1
 8 3
 9 0 2
10 1 0 1
11 0 0 0 0 1
12 2 1
13 0 0 0 0 0 1
14 1 0 0 1
15 0 1 1
16 4
17 0 0 0 0 0 0 1

At Play With J

162

The PFEN for 12 is 2 1, signifying that the decimal number corr-
esponding can be obtained by */2 3x2 1, that is, */4 3, or 12.
The PFEN for 1 is the empty list, since 1 has no prime
components; its value is the product over the empty list, or 1. A J
verb for producing the PFEN corresponding to a decimal number
is given by:

 pfd =: _&q: NB. PFEN from decimal
 pfd 300
2 1 2
 pfd 16807
0 0 0 5

The first example shows a number having prime factors 2, 3, and 5
with exponents 2, 1, and 2. The second example shows a number
having prime factors 2, 3, 5, and 7 with exponents 0, 0, 0, and 5.
Since any integer to the zero power is 1, any number of zero
exponents do not alter the value of the product.

I have to be reminded from time to time that J has built-in
inverses for a great many verbs; I was plodding through defining
dfp, the verb inverse to pfd, the hard way late one night, and
woke up the next morning to the realization that all I needed was
the inverse adverb (x:_1).

 dfp =: pfdx:_1 NB. decimal from PFEN
 dfp 2 1 2
300
 dfp 0 0 0 5
16807

There’s no need for the user to know how an inverse works − it is
enough merely to accept the presence of an inverse as a blessing.
If you do want to know, however, you can see what the inverse
looks like in detail by using the basic conjunction b. as follows:

 pfd b. _1
(p:@i.@# */ .x])"1 :.(_&q:)

Studying this shows that the inverse function works by taking the
inner product, with product (*/) as the left verb and power (x) as
the right verb, that is (*/ . x), applied between a list of primes
(p:@i.@#) on the left and a conforming list of exponents (])on the
right.

The PFEN numbers make the calculation of the product of two
numbers easy. To multiply two numbers, add their PFENs.

An Open And Shut Case

163

Thus:
 72 * 90
6480
 pfd 72 90
3 2 0
1 2 1
 3 2 0 + 1 2 1
4 4 1
 dfp 4 4 1
6480

A verb to multiply PFENs can be defined:
 multp=:+/@,:
 3 2 0 multp 1 2 1
4 4 1

We’re almost at the point of being able to show why squares have
an odd number of divisors. One more detail is wanting, and that
is, how to determine the number of divisors of a number. We
could count the number of integers not greater than a given
integer that have a give a residue of zero for that integer. To find
that there are four divisors of eight, for example, one could write:

 i =: >:@i.
 i 8
1 2 3 4 5 6 7 8
 (i 8)|8
0 0 2 0 3 2 1 0
 0=(i 8)|8
1 1 0 1 0 0 0 1
 +/0=(i 8)|8
4

This method becomes unwieldy for large integers. A more
compact method would be welcome.

If a number n has prime factors with exponents e, any number
which is a divisor of n will have the same prime factors, with exp-
onents which are less than or equal to e. Here I use q: with negat-
ive infinity as left argument. This gives another representation of
an integer, where only the primes which have an exponent greater
than zero are given, together with their positive exponents:

 pfd2 =: __&q:
 pfd2 666
2 3 37
1 2 1

At Play With J

164

This signifies that 666 is composed of (2x1)*(3x2)*(37x1), or
2*9*37.

The inverse is given by:
 dfp2 =: pfd2x:_1
 dfp2 pfd2 666
666

We can enumerate the divisors of 666 by taking all combinations
of 1 2 with 1 3 9 with 1 37. A divisor will thus be one of the
numbers generated as follows:

 (2xi.2)*/(3xi.3)*/(37xi.2)
 1 37
 3 111
 9 333
 2 74
 6 222
18 666

This array shows all the divisors. There are twelve altogether, and
the twelve comes from the product over one plus the exponent of
each prime: */ 1 + 1 2 1, or */2 3 2, or 12. Thus we can
compute the number of divisors of a number by taking its PFEN,
adding one to it, and taking the product:

 */ >: 1 2 1
12

All the powers that each prime in the composition of the number
can take will be given by a table such as the one below, essentially
all the numbers in the radix given by 1 + PFEN n :

 pfx =:] #: [: i. */
 pfx 1 + 1 2 1
0 0 0
0 0 1
0 1 0
0 1 1
0 2 0
0 2 1
1 0 0
1 0 1
1 1 0
1 1 1
1 2 0
1 2 1

An Open And Shut Case

165

 2 3 37 x"1 pfx 1 + 1 2 1
1 1 1
1 1 37
1 3 1
1 3 37
1 9 1
1 9 37
2 1 1
2 1 37
2 3 1
2 3 37
2 9 1
2 9 37
 */ |: 2 3 37 x"1 pfx 1 + 1 2 1
1 37 3 111 9 333 2 74 6 222 18 666

But we’ve gone a step too far; we don’t need or want the values of
the divisors, merely how many divisors there are. In reaching this
point, however, we’ve found out how to arrive at this number:
take the product over one plus the PFEN. We define the square
verb squrp2 and the number of divisors verb nd2:

 squrp2 =: 1 2 *]
 pfd2 666
2 3 37
1 2 1
 squrp2 pfd2 666
2 3 37
2 4 2
 dfp2 squrp2 pfd2 666
443556
 *: 666
443556
 nd2 =: 13 : '*/ >: {: y.'
 nd2
[: */ [: >: {:
 nd2 pfd2 666
12

We see that 666 has 12 divisors. How many does its square have?
 nd2 squrp2 pfd2 666
45

So the square of 666 (443556) has an odd number of divisors.
Perhaps now we can see why. If we take any number, having any
arbitrary PFENa, consisting of some mixture of odd and even
numbers (zero is even), and add it to itself, (thus producing a

At Play With J

166

square) we’ll obtain a PFENb in which all the numbers are even,
since even plus even is even (2n+2n is 4n, an even number), and
odd plus odd is even (2n+1 + 2n+1 is 4n+2, an even number), and
it is the square of the number given by PFENa. If we take the
PFEN of 443556, or 2 4 2, and add 1 to each exponent, giving 3 5 3,
we have a list of all odd numbers; taking the product of this, to
yield the number of divisors of the square number PFENb, gives
45, an odd result (the only way a product can be odd is if all of the
multiplicands are odd—any even multiplicand means the product
will be even), so that the square PFENb has an odd number of
divisors. This is a completely general result, and means that all
square numbers, and only square numbers, have an odd number
of divisors.

Amy only tested the first dozen or so numbers. I wrote a set of J
verbs to allow testing all thousand locker numbers:
 i =: integers =: [: >: i. NB. +ve integers thru y.
 z =: gauge =: = i NB. gauge 4 is 0 0 0 1, etc.
 c =: cycles =: $ z NB. recycle gauge y. times
 t =: table =: c"0 I NB. make square table
 tk=:table 1000
 $tk
1000 1000
 m19=: +/{.\: NB. locate 1s in Boolean list
 dc=:+/tk
 $dc
1000
 17{.dc
1 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5 2
 p1=:>: m19 2|dc NB. lockers open should all be squares
 $p1
31
 p1
1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289
324 361 400 441 484 529 576 625 676 729 784 841 900 961
 sqdc=: nd2"2 pfd2"0 p1 NB. squares divisor count;
 NB. all should be odd
 sqdc
1 3 3 5 3 9 3 7 5 9 3 15 3 9 9 9 3 15 3 15 9 9 3 21 5 9 7
15 3 27 3

An Open And Shut Case

167

Here are the rest of the questions Amy had to answer. See if you
can answer them.

A). What do you notice about the lockers that were touched by exactly
two students? (Try m19 >: 2=dc)

B). What do you notice about the lockers that were touched by exactly
three students?

C). What do you notice about the lockers that were touched by exactly
four students?

D). What was the first locker touched by both student 6 and student 8?

E). What do you notice about the student numbers of the students that
touched both locker 24 and locker 36?

F). Which students touched both locker 100 and 120? What do you notice
about their student numbers?

24 Blists in OLEIS
First published in Vector, 17, 1, (July 2000), 110-120.

This article discusses a kind of list I call a blist. The first part
defines a blist, and covers material that is well known in
combinatorial circles, and reported on by me in an earlier article
[1], and also gives an actual use of J’s Weighted Taylor Coeffic-
ients adverb t:. The second part breaks new ground, providing a
tabulation that hasn’t been seen before.

Part 1: What is a blist?
A basic list, or blist, is a list of length n with at least one of each of
the items of i. k, where 1 <: k and k <: n. For example, 0 2 1
0 is a blist, since it has at least one each of i.3, but 1 0 1 3 is
not, since it has a three but no two. There is a many-to-one
correspondence between the infinite number of arrays of n items
and the corresponding finite number of blists of length n. The
finitude of the number of blists of length n comes from the
finitude of their permitted items. Since J’s grade functions are
omnivorous, the grade of any rank array can be found, and any
array can be sorted, whether scalar or structured, boolean, integer,
real, complex, literal, or boxed, and thus the blist of any array can
be determined. The blist of an array can be determined by the
function:

 bl =:] i.y [: /:y y.

This finds the indices of the items of the array in the sorted nub of
the array. For example, given the list:

] list =: ? 10 # 15
7 12 0 0 7 10 0 5 1 6

Its nub is
 y.list
7 12 0 10 5 1 6

and its ordered nub is
 /:yy.list
0 1 5 6 7 10 12

At Play With J

170

and its indices in the ordered nub, that is, its blist, are
 list i.y /:y y. list
4 6 0 0 4 5 0 2 1 3

and this has each of the values in i.7 at least once.

A blist has the useful property that it has the same ordering
relations as infinitely many other, more complex, lists and arrays,
and thus can be substituted for those other lists and arrays in
discussions of such properties. For example, an array and its blist
have the same upgrade:

 list
7 12 0 0 7 10 0 5 1 6
 bl list
4 6 0 0 4 5 0 2 1 3
 /: list
2 3 6 8 7 9 0 4 5 1
 /: bl list
2 3 6 8 7 9 0 4 5 1

Other common properties of arrays and their blists are the same,
for example their cycle structure, the number of operations
needed to sort them, and their number of runs (up or down).

BLT is a brute-force function to give tables of all the blists of a
given length. There is only one blist of length 1, since the only
permitted item is 0.

 BLT 1
0

The blists of length two are:
 BLT 2
0 0
0 1
1 0

The blists of length three are:
 BLT 3
0 0 0
0 0 1
0 1 0
0 1 1
0 1 2
0 2 1

Blists In OLEIS

171

1 0 0
1 0 1
1 0 2
1 1 0
1 2 0
2 0 1
2 1 0

The number of blists of the first three orders can be counted
easily: 1, 3, and 13. On the other hand, the function BLT soon runs
out of space on my computer, requiring 4*n*nxn bytes to build
the table from whose rows the blists are selected, and I can’t use
BLT beyond n=7. The space in bytes required for the tables for the
first few values is given by:

 j=:13 : '4*y.*y.xy.'
 j 1 2 3 4 5 6
4 32 324 4096 62500 1119744

and for a few larger values:
 ,.j 7 8 9 10 11 12x
 23059204
 536870912
 13947137604
 400000000000
 12553713506884
427972821516288

Although it is difficult to determine the values of blists of length n
for large n, the number of such blists is much easier to find. The
answer to exercise 5.3.1-3 in Knuth’s Searching and Sorting volume
gives a variety of ways for doing this. We can write a function F to
give the number of blists of length n, based on Gross’s formula
∑k≥1k

n/21 + k, n≥1. A version of Gross’s formula in J is easy to write:

 Gross =: 13 : '+/(x.xy.)%2x>:x.'

The formula implies an infinite number of values of k are
required, but in practice I find that using the first 101 positive
integers suffices.

 k=: >:i.101
 F =: k&Gross

At Play With J

172

The number of possible blists for arrays of ranks 1 through 15 are:
n F n n F n n F n
1 1 6 4683 11 1622632573
2 3 7 47293 12 28091567595
3 13 8 545835 13 526858348381
4 75 9 7087261 14 10641342970443
5 541 10 102247563 15 230283190977853

The terminal digits of the values repeat in the pattern 1 3 3 5, so
that if 4|n is 1 2 3 0, then 10|F n is 1 3 3 5, respectively, for
positive n. This series is number A000670 in N. J. A. Sloane’s
magnificent website, On-Line Encyclopedia of Integer Sequences
(OLEIS): http://www.research.att.com/~njas/sequences/

I shall be referring to Sloane’s OLEIS numbers frequently in what
follows.

This sequence of numbers arises naturally in a variety of areas, in
addition to sorting, including trees with n+1 leaves, combination
locks, compositions of numbers, and left arguments to APL’s
transpose dyad, but it is the sorting topic that is most interesting.
It allows one to say in exactly how many ways an arbitrary list of
length n can be arranged. For example, three items A, B, and C of
any value can be arranged in thirteen ways, depending on their
size interrelationships, using the relations = and < and the
convention that A=B<C means (A=B)*.(B<C). Next to each
relation list I’ve placed the corresponding blist, to show the
kinship of the two forms.

 A=B=C 0 0 0
 A=B<C 0 0 1
 A=C<B 0 1 0
 A<B=C 0 1 1
 A<B<C 0 1 2
 A<C<B 0 2 1
 B=C<A 1 0 0
 B<A=C 1 0 1
 B<A<C 1 0 2
 C<A=B 1 1 0
 C<A<B 1 2 0
 B<C<A 2 0 1
 C<B<A 2 1 0

Gross’s formula, even after increasing the number of terms in the
left argument, begins to lose accuracy after length 14. To obtain

Blists In OLEIS

173

accurate values for Pn, the number of blists of length n, one can
use the identity: 2Pn=∑k (k!n) * Pn-k , for n> 0 .

Instead of obtaining just one value, we obtain a list of all the
values up to the one we’re seeking, given that the first value is 1,
and that all successive values can be appended to this value by a
sum of the products of the list and a conforming list of binomials.
For example, assuming we have the list 1 1 3, we can get the next
two longer lists by:

 1 1 3 , +/ 1 1 3 * ((i.3)!3)
1 1 3 13
 1 1 3 13 , +/ 1 1 3 13 * ((i.4)!4)
1 1 3 13 75

The function LPA encapsulates this strategy:
 LPA =: 13 : 'y.,+/y.*(i.!])#y.'
 LPA 1
1 1
 LPA LPA 1
1 1 3
 LPA LPA LPA 1
1 1 3 13
 LPAx:3[1
1 1 3 13

To produce the list of the first n terms, one would write LPAx:n 1.
Because the terms grow large quite rapidly, it is necessary to use
extended arguments if terms of high degree are wanted. We can
thus obtain arbitrarily large values.

 LPA =: 13 : 'y.,+/y.*(i.!])#y.'
 ,.28 29 30 31{LPAx:31[1x
 6297562064950066033518373935334635
 263478385263023690020893329044576861
 11403568794011880483742464196184901963
510008036574269388430841024075918118973

Approximate values can be obtained by the function L, built
around the powers of the logarithm of 2 (this isn’t in Knuth, I
found it accidentally by playing with the series):

 L=: 13 : '(!y.)%+:(x.2)x>:y.'
 L 8
545834.99790748546
 L 9
7087261.0016229022

At Play With J

174

Rounding to the nearest integer, this function will give accurate
results up to 13,

 <.0.5+L 13
526858348381

but is off by one for 14:
 <.0.5+L 14
10641342970444

We know this can’t be right, since if 4|14 is 2, then 10| L 14
must be 3, not 4.

Another way to get the number of blists for a given n is to use its
exponential generating function (egf). I look back wistfully on
myself at the age of 19 learning the calculus necessary to
understand exponential generating functions, but in the 55 years
since the knowledge has somehow departed from me. Now I can’t
tell you how to derive it, but will merely state it. If you have the
necessary mathematical background to understand it (which I
don’t any more), you can read the answer to exercise 7.44 in
Knuth et al’s Concrete Mathematics. In common mathematical
notation the egf for the number of blists is 1/(2-en), and the J
version can be written directly from this:

 paegf=: %@(2:-x)

The values don’t seem to have much of a pattern:
 paegf i.11
1 _1.3922 _0.18556 _0.055293 _0.019012 _0.00683
_0.0024911 _0.00091355 _0.00033569 _0.00012344
_4.5404e_5

However, if you apply J’s Weighted Taylor Coefficients adverb to
it, it becomes a marvel:

 (paegf t:) i.11
1 1 3 13 75 541 4683 47293 545835 7087261
102247563

Lastly, and something else I discovered by playing with the series,
if we divide the n-1th value by the nth, and multiply this by n, we
get a number which more and more closely approaches the natur-
al log of 2.

Blists In OLEIS

175

 qq=:LPAx:(20)1
 (1+i.20) * ,.2 %/\qq
 1
0.66666666666666663
0.69230769230769229
0.69333333333333336
0.69316081330868762
0.69314541960281872
0.69314697735394248
0.69314719649710999
0.69314718337591907
0.69314718043695578
0.69314718052316582
0.69314718056053715
0.69314718056040159
0.69314718055994917
0.69314718055993996
0.69314718055994518
 0.6931471805599454
0.69314718055994529
0.69314718055994529
0.69314718055994529

Compare this with the machine-precision value of the logarithm
of 2:

 x. 2
0.69314718055994529

Part 2: How many blists of length n begin with k?
Inspecting the tables of blists of various lengths, I began to
wonder how many of each table began with each possible
number. I wrote this function to count how many times each
leading digit appeared.

 CL =: [: #/.y [: {."1]

I began building an upper triangle matrix (analogous to the Pascal
triangle), where an entry in row i, column j gives the number of
blists of length j+1 that begin with integer i.

 CL BLT 1
1
 CL BLT 2
2 1
 CL BLT 3
6 5 2

At Play With J

176

 CL BLT 4
26 25 18 6
 CL BLT 5
150 149 134 84 24
 CL BLT 6
1082 1081 1050 870 480 120
 CL BLT 7
9366 9365 9302 8700 6600 3240 720

The last one took a looong time. With these I was able to create
table t1:

 t1
1 2 6 26 150 1082 9366
0 1 5 25 149 1081 9365
0 0 2 18 134 1050 9302
0 0 0 6 84 870 8700
0 0 0 0 24 480 6600
0 0 0 0 0 120 3240
0 0 0 0 0 0 720

Portions of this table appear in OLEIS. Its sum is A000670. The
first row is Series A000629. The second row is one less than the
first row, and is Series A002050. The third row is the first row
minus 2n, and is twice Series A002051. The lowest counterdiagon-
al is !n. The penultimate counterdiagonal is A038720. I massaged
the numbers in various ways, the fruitful one being to take its first
difference, providing a new last row of all zeros to preserve the
data:

] t2=:2-/\t1,0
1 1 1 1 1 1 1
0 1 3 7 15 31 63
0 0 2 12 50 180 602
0 0 0 6 60 390 2100
0 0 0 0 24 360 3360
0 0 0 0 0 120 2520
0 0 0 0 0 0 720

This is series A028246 from OLEIS. It looks promising, but I want
to remove the factorials from the rows:

] t3=:t2%!i.#t2
1 1 1 1 1 1 1
0 1 3 7 15 31 63
0 0 1 6 25 90 301
0 0 0 1 10 65 350
0 0 0 0 1 15 140
0 0 0 0 0 1 21
0 0 0 0 0 0 1

Blists In OLEIS

177

And this brings me to familiar territory. It is the table of the
Stirling numbers of the second kind, also called subset numbers,
and is series A008277 from OLEIS. It is usually displayed
transposed from the table above, and with an added first row and
first column.

 ((1+#t3){.1),.0,|:t3
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 1 3 1 0 0 0 0
0 1 7 6 1 0 0 0
0 1 15 25 10 1 0 0
0 1 31 90 65 15 1 0
0 1 63 301 350 140 21 1

The reason these are called subset numbers is that entry (i,j)
gives the number of ways to partition a set of i items into j
nonempty parts. Thus, the value 7 in row 4, column 2, says there
are 7 ways to put 4 items into 2 nonempty parts:

(abc,d);(abd,c);(acd,b);(bcd,a);(ab,cd);(ac,bd);(ad,bc)

 +/t3
1 2 5 15 52 203 877

These are the Bell numbers (series A000110), which give the total
number of ways of placing n distinct objects in n boxes. This is to
be expected, since the subset number in item (n;k) gives the
number of ways to partition a set of n things into k nonempty
subsets. The Bell numbers thus summarize the subset numbers.

But now I know how to create my table of numbers. I can use the
nonrecursive function s2nr from Iverson’s Concrete Math Compan-
ion to generate the subset numbers.

This may be a bit mysterious at first, so I’ll show you how its par-
enthesized central portion works.

 s2nr=:|:@(x/y %. x!._1/y)@i."0
] v0 =. i.7x
0 1 2 3 4 5 6

At Play With J

178

Form the table of powers t4
] t4 =. x/y v0
1 0 0 0 0 0 0
1 1 1 1 1 1 1
1 2 4 8 16 32 64
1 3 9 27 81 243 729
1 4 16 64 256 1024 4096
1 5 25 125 625 3125 15625
1 6 36 216 1296 7776 46656

and the table of falling factorials t5
] t5 =. x!._1/y v0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 2 2 0 0 0 0
1 3 6 6 0 0 0
1 4 12 24 24 0 0
1 5 20 60 120 120 0
1 6 30 120 360 720 720

and make these the left and right arguments to matrix divide,
yielding the table of subset numbers.

] t6=: |: t4 %. t5
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 1 3 1 0 0 0
0 1 7 6 1 0 0
0 1 15 25 10 1 0
0 1 31 90 65 15 1

I now can produce the table of leading digits versus length of
splits. The first step is to build a table of subset numbers.

] a =. s2nr 10x
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 1 3 1 0 0 0 0 0 0
0 1 7 6 1 0 0 0 0 0
0 1 15 25 10 1 0 0 0 0
0 1 31 90 65 15 1 0 0 0
0 1 63 301 350 140 21 1 0 0
0 1 127 966 1701 1050 266 28 1 0
0 1 255 3025 7770 6951 2646 462 36 1

Blists In OLEIS

179

Drop the leading row and column, then transpose.
] b =. |: 1 1 }. a
1 1 1 1 1 1 1 1 1
0 1 3 7 15 31 63 127 255
0 0 1 6 25 90 301 966 3025
0 0 0 1 10 65 350 1701 7770
0 0 0 0 1 15 140 1050 6951
0 0 0 0 0 1 21 266 2646
0 0 0 0 0 0 1 28 462
0 0 0 0 0 0 0 1 36
0 0 0 0 0 0 0 0 1

Multiply row i by factorial i.
] c =. b * ! i. # b
1 1 1 1 1 1 1 1 1
0 1 3 7 15 31 63 127 255
0 0 2 12 50 180 602 1932 6050
0 0 0 6 60 390 2100 10206 46620
0 0 0 0 24 360 3360 25200 166824
0 0 0 0 0 120 2520 31920 317520
0 0 0 0 0 0 720 20160 332640
0 0 0 0 0 0 0 5040 181440
0 0 0 0 0 0 0 0 40320

Sum from the bottom up.

] d =. +/ \. c
1 2 6 26 150 1082 9366 94586 1091670
0 1 5 25 149 1081 9365 94585 1091669
0 0 2 18 134 1050 9302 94458 1091414
0 0 0 6 84 870 8700 92526 1085364
0 0 0 0 24 480 6600 82320 1038744
0 0 0 0 0 120 3240 57120 871920
0 0 0 0 0 0 720 25200 554400
0 0 0 0 0 0 0 5040 221760
0 0 0 0 0 0 0 0 40320

And this is the table I wanted to be able to create.

I’ve told you the series numbers in OLEIS of parts of my table.
What about the table itself? I’m pleased and proud to be able to
tell you that when I emailed information about it to Neil Sloane,
proprietor of OLEIS, he agreed it was new, and assigned the
number A054255 to it, with credit to me. I feel as if I’ve gained a

At Play With J

180

speck of immortality. We now have blists in OLEIS. You can look
it up!

Reference
[1] McDonnell, E. E., How Shall I Transpose Thee? Let Me Count The

Ways. APL Quote Quad, 8, 1, (1977-09).

25 Someone Just Moved! Who Was It?
Or, Apter’s Puzzle
First published in Vector, 17, 2, (October 2000), 116-130.

The Puzzle
Stevan Apter recently proposed this puzzle to the online K group:
Given a list of distinct items, and a second list changed by moving
only one item of the original, find which item has been moved.
There was a fair amount of discussion about this, and a number of
proposed solutions, a surprising number of which were
erroneous. This paper gives a solution that I believe works
properly in all cases. The greater part of the paper, however,
discusses the reverse problem: Given a solution, find the list that
gave rise to it.

Rotated Infix Permutations
First, to solve Apter’s problem: Given the two lists A and B:

 A
3 1 4 5 9 2 6
 B
3 1 5 9 2 4 6

tell which item in A was moved in order to produce B. It couldn’t
have been the 5 or 9 or 2 because they form an infix in the order of
the original. The 4, which had preceded 5 and 9 and 2 is the one
that is out of order: it is now at their right: it has been moved from
index 2 to index 5.

The problem is simplified if the items are replaced by their
indices. Since the items are distinct, A can be replaced by the
identity permutation, and B by the indices of its items in A. For
example:

 C =: i. # A
 D =: A i. B
 C ,: D
0 1 2 3 4 5 6
0 1 3 4 5 2 6

C and D contain all the information needed to solve the original A
and B problem. In fact, D is all that is needed: the identity permut-

At Play With J

182

ation C can be understood. In what follows, I’ll assume that a
problem list is given in this D form. Thus an argument to the
solution program might be:

 D
0 1 3 4 5 2 6

Comparing D to C shows that some of the items remain in their
original positions, but others have been moved. The following
shows the items that have been moved in bold. These form a
rotated infix; because of this I’ll call D a rotated infix permutation,
which for convenience will be abbreviated to rip.

0 1 3 4 5 2 6

The nonzero items of D-C show which have been moved:
 D-C
0 0 1 1 1 _3 0

Those which have been displaced by the move produce a 1 in the
difference; the one moved produces _3. But an item can be moved
to a lower position as well as to a higher. Suppose we are given to
solve:

 E
0 1 5 2 3 4 6

The items in bold again represent a 1-rotation, but this time it is to
the right. If we subtract C from this we get:

 E-C
0 0 3 _1 _1 _1 0

Here the value corresponding to the moved item is positive value,
and the displaced items produce _1s. Considering both cases, it is
evident that the moved item is determined by finding the
maximum magnitude in the difference between the list to solve
and the identity permutation. There are two difficulties to discuss.
The first difficulty: suppose we move an item just one position to
the right or left: what results?

 F=.0 1 3 2 4 5 6
 F-C
0 0 1 _1 0 0 0

The magnitudes of F-C show two possible results. It’s unclear
whether the 3 has been moved to position 2, or the 2 has been
moved to position 3. Either one can be chosen. The rule used here
is: Among equal maxima, choose the one occurring first. This is

Someone Just Moved: Who Was It? Or: Apter’s Puzzle

183

easiest because of the way J’s Index of primitive (i.) is defined,
because it gives the index of the first occurrence of the item
sought. This primitive has right of seniority over J’s Index of Last
primitive (i:), which is a relative newcomer; Index of antedates
even APL: it is described in Iverson’s 1962 book A Programming
Language (Wiley, 1962) in section 1.16 Ranking, page 31:

The rank or index of an element cb is called the b index of c and is
defined as the smallest value of i such that c = bi .

Thus, for the rip F above, 3 will be identified as the item that has
been moved—even though it might in fact have been produced by
moving 2 to position 3.

The second difficulty arises from the possibility, not excluded in
Apter’s statement of the problem, of moving an item from its
original position to its original position. For example, the list:

 G
0 1 2 3 4 5 6

if proposed as a problem to solve, might be the result of moving
any of the seven items back to its original position. What we get if
we subtract C from G is:

 G - C
0 0 0 0 0 0 0

Again following the rule among equal maxima, choose the first I
would find 0 as the one having been moved (to 0).

Canonical Specifications
A rip such as D, E, F, or G can be represented by a list of three
integers: its length L, the initial position I of the moved item, and
its final position F. For example, the rip D is specified by 7 2 5; E
by 7 5 2; F by 7 3 3; and G by 7 0 0. I’ll call such a list the rips’s
canonical representation, or casp.

The function CfR below solves Apter’s problem, yielding the casp

At Play With J

184

from the rip:
 CfR =: monad define"1
NB. casp from rip
R=.y.
F=.(i.>./)|(-i.@#)R
L=.#R
I=.F{R
L,I,F
)

Applying it to the sample rips:
 CfR D
7 2 5
 CfR E
7 5 2
 CfR F
7 3 2
 CfR G
7 0 0

For aficionados of the one liner:
OLCfR =. # , (([, y {) y (i. >. /) @ ([: |] - [: i. #)) y

A function inverse to CfR would take a casp L,I,F and yield the
rip which gave rise to it. It can be described informally like this:

lay out a row of L numbered blocks

0 1 2 3 4 5 6

remove the Ith block (which has the number I on it) and set it aside

0 1 3 4 5 6 2

collapse the remaining blocks over the empty space

0 1 3 4 5 6 2

separate these into two parts, the first F and the rest

0 1 3 4 5 6 2

and insert the removed block in the space made (which is F)

0 1 3 4 5 2 6

Someone Just Moved: Who Was It? Or: Apter’s Puzzle

185

This function RfC which, given a casp, yields a rip, is:
 RfC =: monad define"1
'L I F'=.y.
M=.I-.yi.L
(F{.M),I,(F}.M)
)

Here are some uses of RfC:
 RfC 7 2 5
0 1 3 4 5 2 6
 RfC 7 5 2
0 1 5 2 3 4 6
 RfC 7 3 2
0 1 3 2 4 5 6
 RfC 7 0 0
0 1 2 3 4 5 6

Roughly speaking, CfR and RfC are inverses, and thus we’d like to
be able to say that:

 P -: RfC CfR P

and
 C -: CfR RfC C

The function MC below, given a positive integer argument, yields a
3-column table of all the casps for rips of that length. For a list of
length n, there are n2 rips, one for each initial position versus each
final position. A variation of the odometer function is required.
Given a length L, form i. *: L, then the (L,L) representation of
each, and finally, prefix L to each, ending with an L2 by 3 table:

 MC=:13 : 'y.,.(2#y.)#:i.*:y.'
]C3=.MC 3
3 0 0
3 0 1
3 0 2
3 1 0
3 1 1
3 1 2
3 2 0
3 2 1
3 2 2

Next, I’ll get the corresponding rips:
 R3 =. RfC C3

At Play With J

186

And finally, put C3 next to R3 so we can see the correspondences:
 2 2 2 6 2 2": C3,.R3
 3 0 0 0 1 2
 3 0 1 1 0 2
 3 0 2 1 2 0
 3 1 0 1 0 2
 3 1 1 0 1 2
 3 1 2 0 2 1
 3 2 0 2 0 1
 3 2 1 0 2 1
 3 2 2 0 1 2

The number of distinct results is not L2, but less than that. When I
and F are the same the results are the same: each of 3 0 0, 3 1 1,
and 3 2 2 yields 0 1 2. From these three solutions we get only
one casp, so we can reduce the initial 9 by 2. In general, the
diminishment coming from this case is L–1. Next, the results are
the same when I and F are adjacent numbers, as in 3 0 1 and
3 1 0, and 3 1 2 and 3 2 1. From these four casps we get only
two rips, so we can reduce the total by another 2. In general, the
diminishment coming from this case is also L–1, one for each
adjacent pair. The 9 results are thus reduced by another 2, leaving
just 5. The general formula for the number of distinct rips is
L2–2(L–1), or, simplified, L2–2L+2, which gives the J polynomial
function 2 _2 1&p. .

The function NR below, given an integer argument, yields the
number of distinct rips of that length:

 NR=.2 _2 1&p.
 (],.NR)>:i.10
 1 1
 2 2
 3 5
 4 10
 5 17
 6 26
 7 37
 8 50
 9 65
10 82

Someone Just Moved: Who Was It? Or: Apter’s Puzzle

187

The Anatomy of Rips
I’ve been in the habit of checking sequences such as the second
column above against the entries in Neil Sloane’s invaluable
collection, which appeared in print first in his A Handbook of
Integer Sequences (Academic Press, 1973). Recently the book has
been supplemented by an ever growing collection on his web site,
On-Line Encyclopedia of Integer Sequences, at:

http://www.research.att.com/~njas/sequences/

The series 1 2 5 10... is ID Number A002522, which describes it in
offset 0 as n2+1. My series is offset 1, which implies the formula
previously given, namely n2–2n+2. It also notes that this sequence
is the “Left edge of A055096” and if you refer to this sequence you
will find that it is a triangle like Pascal’s, where the entries are
sums of distinct squares:

 5
 10 13
 17 20 25
 26 29 34 41
37 40 45 52 61

The left edge is a truncated version of our series, lacking its first
two items. Pursuing this any further will take me on too wide a
detour from my main goal: the analysis of rips; but I shall be refer-
ring often to Sloane’s Encyclopedia in what follows.

I began my study of rips by finding the anagram index of a fair
number of them, using J’s A. primitive, and listing on a sheet of
paper those of length seven in order by length of rotated infix,
and within that by highest maximum I and F. Here are those with
rotated infix of length 3, and the associated anagram index (I’ve
put the disordered infix items in bold type).

 I<F
L I F rip A.
7 4 6 0 1 2 3 5 6 4 3
7 3 5 0 1 2 4 5 3 6 8
7 2 4 0 1 3 4 2 5 6 30
7 1 3 0 2 3 1 4 5 6 144
7 0 2 1 2 0 3 4 5 6 840

At Play With J

188

I>F
L I F rip A.
7 6 4 0 1 2 3 6 4 5 4
7 5 3 0 1 2 5 3 4 6 12
7 4 2 0 1 4 2 3 5 6 48
7 3 1 0 3 1 2 4 5 6 240
7 2 0 2 0 1 3 4 5 6 1440

The obvious way of entering the data thus gathered was to
identify the rows with I and the columns with F, and to put the
anagram index in item for I,F in row I, column F. This was
unsatisfactory, since the numbers were going in what seemed the
wrong direction, so instead I made tables where the rows were
numbered by how far the right edge of the infix was from the
right end of the table, and the columns were numbered by the
length of the infix. Thus the anagram index of 30 where the L I F
is 7 2 4, which has the infix 2 spaces from the right edge and has
length 3 would be entered at row 2 column 3 of the I<F table.

 I<F
 1 2 3 4 5 6 7
0 0 1 3 9 33 153 873
1 0 2 8 32 152 872
2 0 6 30 150 870
3 0 24 144 864
4 0 120 840
5 0 720
6 0
 I>F
 1 2 3 4 5 6 7
0 0 1 4 18 96 600 4320
1 0 2 12 72 480 3600
2 0 6 48 360 2880
3 0 24 240 2160
4 0 120 1440
5 0 720
6 0

Studying these tables convinced me that I could see the rule
determining the value of an entry. For the I<F table, column 1
would always be zero; an infix of length one meant that I and F
were the same, so the result would be the identity permutation,
which is permutation 0 for permutations of all lengths. Column 2
would always be !(1+row number). Column j for j>2 would be
sums of (j-1) successive items of column 2. For example, the
entries in column 3 would be 1+2, 2+6, 6+24...; in column 4 would
be 1+2+6, 2+6+24, 6+24+120,… and so forth. This can be shown

Someone Just Moved: Who Was It? Or: Apter’s Puzzle

189

using J’s Infix adverb, x u\y, where the function u (in our case +/)
is applied over successive length-x infixes of y :

]fs=.!i.10
1 1 2 6 24 120 720 5040 40320 362880
 2+/\fs
2 3 8 30 144 840 5760 45360 403200
 3+/\fs
4 9 32 150 864 5880 46080 408240
 4+/\fs
10 33 152 870 5904 46200 408960

For the I>F table, the entries in column 1 and 2 would be the same
as in the I<F table, for the same reasons. Column j for j>2 would
be (j-1)*(j-2) drop column 2. For example, the entries in
column 3 would be 2*1 drop 1 2 6 24 120...; in column 4 would
be 3*2 drop 1 2 6 24 120...; and so forth.

I was able to verify my conjectures for both tables after a few
experiments, and wrote two functions that would give me the
value for any entry in either table:

 ILF =: 13 : '+/!(x.+1)+i.y.-1'"0
 IGF =: 13 : '(y.-1)*!(y.-1)+x.'"0
 3 ILF 4
864
 3 IGF 4
2160

The by, over, and tab functions below come from J’s
Help|Phrases|2.c

d16=: by=: ' '&;@,.@[,.]
d17=: over=: ({.;}.)@":@,
a18=: tab=: 1 :'[by]over x./'
 (i.7) ILF tab 1+i.7x

+-+--+
| |1 2 3 4 5 6 7|
+-+--+
0	0 1 3 9 33 153 873
1	0 2 8 32 152 872 5912
2	0 6 30 150 870 5910 46230
3	0 24 144 864 5904 46224 409104
4	0 120 840 5880 46200 409080 4037880
5	0 720 5760 46080 408960 4037760 43954560
6	0 5040 45360 408240 4037040 43953840 522955440
+-+--+

At Play With J

190

 (i.7) IGF tab 1+i.7x
+-+--+
| |1 2 3 4 5 6 7|
+-+--+
0	0 1 4 18 96 600 4320
1	0 2 12 72 480 3600 30240
2	0 6 48 360 2880 25200 241920
3	0 24 240 2160 20160 201600 2177280
4	0 120 1440 15120 161280 1814400 21772800
5	0 720 10080 120960 1451520 18144000 239500800
6	0 5040 80640 1088640 14515200 199584000 2874009600
+-+--+

In both ILF and IGF the arguments are modified by adding or
subtracting 1. I wondered whether I could get any further
insights by writing versions of ILF and IGF in which the
arguments were not offset.

 ILFx=:13 : '+/!x.+i.y.'"0
 ILFx tabyi.7x
+-+--+
| |0 1 2 3 4 5 6|
+-+--+
|0|0 1 2 4 10 34 154|3422
|1|0 1 3 9 33 153 873|7489
|2|0 2 8 32 152 872 5912|54116
|3|0 6 30 150 870 5910 46230|54117
|4|0 24 144 864 5904 46224 409104|54118
|5|0 120 840 5880 46200 409080 4037880|
|6|0 720 5760 46080 408960 4037760 43954560|
+-+--+
 4 142 1048

 IGFx=:13 : 'y.*!y.+x.'"0
 IGFx tabyi.7x
+-+--+
| |0 1 2 3 4 5 6|
+-+--+
|0|0 1 4 18 96 600 4320|1563
|1|0 2 12 72 480 3600 30240|18931
|2|0 6 48 360 2880 25200 241920|52571
|3|0 24 240 2160 20160 201600 2177280|52520
|4|0 120 1440 15120 161280 1814400 21772800|52557
|5|0 720 10080 120960 1451520 18144000 239500800|52521
|6|0 5040 80640 1088640 14515200 199584000 2874009600|
+-+--+
 4 142 52849 52560 52578 52648

I’ve put numbers to the right of those rows and at the bottom of
those columns which correspond to entries in Sloane’s Encyclo-
pedia. The Encyclopedia doesn’t contain entries for all the rows and
columns of ILFx and IGFx, but they are easily obtained.

Someone Just Moved: Who Was It? Or: Apter’s Puzzle

191

The functions below give the first ten items of the indicated row
or column:

NB. x items of row y of ILFx
 ILFI=.13 : '+/\!y.+i.x:x.'
NB. x items of column y of ILFx
 ILFJ=:13 : 'y.+/\!i.<:y.+x:x.'
NB. x items of row y of IGFx
 IGFI=:13 : '(!y.+i.10x)*i.x:x.'
NB. x items of column y of IGFx
 IGFJ=.13 : 'y.*!y.+i.x:x.'

And here they are, applied to 10 items of row 3 and column 3 for
each table:

 10 ILFI 3
6 30 150 870 5910 46230 409110 4037910 43954710 522956310
 10 ILFJ 3
4 9 32 150 864 5880 46080 408240 4032000 43908480
 10 IGFI 3
0 24 240 2160 20160 201600 2177280 25401600 319334400 4311014400
 10 IGFJ 3
18 72 360 2160 15120 120960 1088640 10886400 119750400 1437004800

Sloane contains tables and triangles as well as linear sequences.
Table ILFx is closely related to Sloane’s sequence 54115:

 1
 1 1
 1 2 3
 1 6 8 9
 1 24 30 32 33
 1 120 144 150 152 151

The formula for this triangular array T is given as:

Triangular array generated by its row sums:
T(n,0) = 1 for n≥1,
T(n,1) = r(n-1),
T(n,k) = T(n,k-1)+r(n-k) for k=2, 3, …, n, n≥2,
r(h) = sum of the numbers in row h of T.

The rows of this triangle are derived from ILFx by reading the
counterdiagonals from left to right.

At Play With J

192

We can get the counterdiagonals in J by using J’s Box and Oblique:
,.7{.</.|:ILFx/yi.7
+-------------------------+
|0 |
+-------------------------+
|0 1 |
+-------------------------+
|0 1 2 |
+-------------------------+
|0 2 3 4 |
+-------------------------+
|0 6 8 9 10 |
+-------------------------+
|0 24 30 32 33 34 |
+-------------------------+
|0 120 144 150 152 153 154|
+-------------------------+

Here it is in triangular form:
 0
 0 1
 0 1 2
 0 2 3 4
 0 6 8 9 10
 0 24 30 32 33 34
 0 120 144 150 152 153 154

Table IGFx is closely related to Sloane’s 51683:
 1
 2 4
 6 12 18
 24 48 72 96
 120 240 360 480 600
 720 1440 2160 2880 3600 4320

The rule for this triangle is given in 1-offset as Table:
a(n,k)=n!*k; they are just integer multiples of factorials. For
example, a(5,3) = 5!*3, or 120*3 or 360.

The J Phrases book gives only a limited number of functions
concerning rips.

NB. Phrases from 7.A
NB. Rotate last three to the left
 m7 =: 3&A.
NB. Rotate last three right
 m8 =: 4&A.

Someone Just Moved: Who Was It? Or: Apter’s Puzzle

193

NB. Rotate last x to the left
 d9 =: ([: +/[:![:}.[:i.[) A.]
NB. Rotate last x to the right
 d10=: (!@[- !@<:@[) A.]

The functions given here expand the possibilities significantly.
They are of dubious practical value, because the factorials grow so
large so quickly that they really aren’t practical to generate rips of
any great length. For that, the function RfC is far more practical.

Contracurrency
All the while I was working on this material it had been bothering
me that the Anagram index grew with respect to the end of the
rip, not the beginning. For example,

 A. 1 2 0
3
 A. 0 2 3 1
3
 A. 0 1 3 4 2
3
 A. 0 1 2 4 5 3
3

The Anagram index is the same regardless of the length of the rip,
when the infix is the same distance from the right end. When the
infix is the same distance from the front end, it varies:

 A. 1 2 0
3
 A. 1 2 0 3
8
 A. 1 2 0 3 4
30
 A. 1 2 0 3 4 5
144

J supports contracurrent indexing, which is right-end oriented:
the last item has contracurrent index _1, the penultimate has _2,
and the antepenultimate has _3, regardless of the number of
items. The previous tables were labelled by length of infix and
distance from right edge, with the direction of 1-rotation used to
distinguish two separate tables, as produced by the functions ILF
and IGF. The function below produces a table labelled by
contracurrent indices:

 RfMC=: 13 : '(-y.)]\A.RfC MC y.'

At Play With J

194

This forms the table of all casps for rips of length y., then obtains
the rips, next obtains the Anagram indices, and last, reshapes this
into a square table.

] q =. |.->:i.8
_8 _7 _6 _5 _4 _3 _2 _1
 q by q over RfMC 8
+--+--+
| | _8 _7 _6 _5 _4 _3 _2 _1|
+--+--+
_8	0 5040 5760 5880 5904 5910 5912 5913
_7	5040 0 720 840 864 870 872 873
_6	10080 720 0 120 144 150 152 153
_5	15120 1440 120 0 24 30 32 33
_4	20160 2160 240 24 0 6 8 9
_3	25200 2880 360 48 6 0 2 3
_2	30240 3600 480 72 12 2 0 1
_1	35280 4320 600 96 18 4 1 0
+--+--+

Entry (i,j) in this table is the Anagram index of a rip of any length
in which item i has been moved to index j, where i and j are
contracurrent indices.

Here are functions to convert between direct casps and
contracurrent casps (ccasps):

NB. contracurrent casp from direct
 CCfD =: -y`,`:3"1
NB. direct casp from contracurrent
 DfCC =: (|@<. + 0: , ,)/"1

Here is a little experiment with the above two functions which
shows the limitations of the ccasp form:

 MC3 =. MC 3
 MCC3 =. CCfD MC3
 MC3x =. DfCC MCC3
 MCC3x =. CCfD MC3x
 format =. 2 2 2 5 3 5 2 2 5 3
 format ": MC3,.MCC3,.MC3x,.MCC3x
 3 0 0 _3 _3 3 0 0 _3 _3
 3 0 1 _3 _2 3 0 1 _3 _2
 3 0 2 _3 _1 3 0 2 _3 _1
 3 1 0 _2 _3 3 1 0 _2 _3
 3 1 1 _2 _2 2 0 0 _2 _2
 3 1 2 _2 _1 2 0 1 _2 _1
 3 2 0 _1 _3 3 2 0 _1 _3
 3 2 1 _1 _2 2 1 0 _1 _2
 3 2 2 _1 _1 1 0 0 _1 _1

Someone Just Moved: Who Was It? Or: Apter’s Puzzle

195

A ccasp needs only two items: the contracurrent indices of the
item moved and where it is moved to. This loses the information
of the length of the rip involved, and so the conversion from ccasp
back to casp is not exact: the length imputed is the magnitude of
the minimum item. For example, 3 2 1 is converted to _1 _2, but
the back conversion is 2 1 0, since the magnitude of the
minimum item _2 is 2. However, 2 1 0 is converted exactly back
to _1 _2.

26 Four Cubes Redux
First published in Vector, 17, 3, (January 2001), 113-120.

A Festschrift for Kenneth Iverson
on his 80th birthday,

2000 December 17

I recently cleaned out the chest of drawers in my bedroom, in the
course of which I got rid of many frayed and yellowed handker-
chiefs, never-worn T-shirts, paper thin undergarments, and, much
to my pleasant surprise, I excavated a set of four coloured cubes,
an inch and a quarter to the side, a modern version of a puzzle
dating back at least a century, under various names; the set I had
is marketed under the name Instant Insanity in the United States
by Parker Brothers, the purveyor of many other games, most
notably Monopoly. The cubes’ faces are coloured with one of the
four colours blue, green, red, or white, in some mixture. You are
asked to stack the cubes one above the other in such a way that
each side of the stack contains a face with each of the four colours,
in some order.

In 1981 I had written a pamphlet on the puzzle called The Four
Cube Problem[1], subtitled “a case study in Basic, APL, and
functional programming.” In the pamphlet a prize-winning Basic
solution and an APL solution written by me were compared.

The Basic program had 91 non-comment lines, and the APL had
nine; the average length of a Basic line was 31 characters; of the
APL line 21 characters; Basic used 18 variables, APL none; Basic
had 21 loops, APL none. The Basic program was written for and
executed on the Sorcerer computer, which I suspect was a fairly
early desktop computer, and so its execution time of 3 minutes
and 5 seconds can’t be fairly compared with the APL program,
which took 0.7 seconds to execute on one of the largest and fastest
commercial computers available in 1981, the Amdahl V8
computer in the I. P. Sharp machine room in Toronto.

The APL solution emphasized the functional programming
approach introduced by John Backus[2], employing the direct
definition form by K. E. Iverson as a way of facilitating the

At Play With J

198

definition of functions and their use in exposition. The solution
used one constant function, one dyad, and seven monads.

The APL solution from my 1981 pamphlet could, I believe, be
easily translated into Dyalog APL:

I:C S (BΩ[1;A])O S(BΩ[2;A])O S(BΩ[3;A])O G BΩ[4;X]
X:3 4Ρ 3 5 4 6 1 3 2 4 1 6 2 5
G:2 1 3 4Ă(1,ΡΩ)ΡΩ
B:(RΩ)ô.='BGRW'
R:(ì/<ĉΩ)x.=ĂΩ)ĈΩ
A:(Ι24)ā4ĈX,[1]āX
O:((1ĨΡΩ)ĈΑ),[2](((1ĨΡΑ),3Ρ1)×ΡΩ)ΡΩ
S:(x/x/x/Ω=<\[2]Ω)ĈΩ
C:'BGRW'[Ω+.×Ι4]

This solution took as argument a 4 by 6 character matrix
representing the cubes, with the initial letters of the face colours
given in the order top, bottom, left, right, front, and back; the
colours were blue, green, red, and white, abbreviated by ‘bgrw’.
The result yielded was a three-dimensional array of shape n, 4, 4,
where n is the number of solutions for the given set of cubes. A
belt in a cube consists of a circuit of four faces; there are three
basic belts in a cube: left, front, right, back; top, left, bottom, right;
and top, back, bottom, front. The last cube is taken as the base of
the stack, and only its three basic belts are considered, since
rotating or reversing these belts will not provide any essentially
different solutions. The face numbers of the basic belts are given
by the constant X. For the other cubes, a total of 24 belts are
considered, obtained by rotation and reversal of the basic belts in
all possible ways. These are given by the function A.

The faces are represented by a boolean vector of length four
containing a single 1 in the position corresponding to the colour:

Blue: 1 0 0 0
Green: 0 1 0 0
Red: 0 0 1 0
White: 0 0 0 1

A boolean representation was chosen in order to economize on
space. This conversion is done by B, and the inverse by C. In the
display below you can see the sizes of the intermediate arrays
formed during execution. The largest needs space for
*/720 4 4 4 or 46,080 items. That is how many bytes are needed
for a character representation. If bits are substituted, only one-

Four Cubes Redux

199

eighth, or 5,760 bytes are needed. Integers would require four
times, or 184,320 bytes: a prohibitive size for many systems of that
day.

The development of the result, and the shapes of the intermediate
arrays are shown below:

I:C S (BΩ[1;A])O S(BΩ[2;A])O S(BΩ[3;A])O G BΩ[4;X]
 Ħ2 4 4ħ Ħ2 4 4ħ Ħ2 4 4ħ Ħ3 4-ħ 1
 Ħ16 4 4-ħ Ħ24 4 4-ħ Ħ24 4 4-ħ Ħ3 4 4ħ 2
 Ħ3 1 4 4ħ 3
 Ħ-----72 2 4 4-----ħ 4
 Ħ-----28 2 4 4------ħ 5
 Ħ------------672 3 4 4---------ħ 6
 Ħ-----------45 3 4 4------------ħ 7
 Ħ-----------------720 4 4 4----------------ħ 8
 Ħ-----------------1 4 4 4--------------------ħ 9
 Ħ-----------------1 4 4------------------------ħ 10

At the right of line 1 the shape of the belts of the bottom cube is
3 4. In line 2 the boolean conversion has been made, and the
shape is 3 4 4. In line 3 the function G has added a dimension of
length 1; this is needed so that each belt from the next cube can be
stacked on each existing stack.

Function O does this stacking; function S removes stacks
containing duplicate face colours. This process continues with the
remaining cubes, and finally C converts the boolean vector forms
into colour letters.

This brief synopsis is a necessary prelude to the description of the
J solution.

The function I in APL has this equivalent in J:
i =: (0&{) (s@o) (1&{) (s@o) (2&{) (s@o x) (3&{)

J’s insert (/) adverb is defined this way in the J Dictionary on
gerund left arguments:

m/y inserts successive verbs from the gerund m between items of y,
extending m cyclically as required. Thus, +`*/i.6 is 0+1*2+3*4+5.

This suggests that i could be rewritten like this:
 g =: (s@o)`(s@o)`(s@o x)/

At Play With J

200

Whereas in both APL’s I function and J’s (irrelevant) i function it
is necessary to specify index values to select rows of the
argument, the gerund form of g, using J’s insert primitive (/)
depends on the nature of insertion to go through the rows of the
argument in the proper order, from the bottom up.

The remaining functions are detailed as follows:
 b =: 0 2 1 3 0 4 1 5 2 4 3 5
 x =: (3 1 4$ b)&{
 o =: [: ,/ ([: y. [: a [) ,"1 2/]
 a =: (i.24)"_ |."_1 [: [4: # [: (] , |."1) (3 4$b)"_ {]
 s =:] #y 2: > [: >./"1 [: ,"2 [: +/"3] =/ [: y. ,

The constant b is used here in order to keep the length of displays
within the confines of the page width. The b’s in functions x and a
should be replaced by the value of b. Thus there are actually only
five functions needed: g, x, o, a, and s, and, indeed, g could be
replaced by its body, reducing it to only four functions. The
function R of the APL version is replaced by the J primitive nub
(y.). The functions B and C of the APL solution convert between
the character and the boolean list representations used. These are
not needed in the J solution because it is designed to be generic,
permitting any form of representing the cubes. The nine APL
functions use 151 tokens. The five J functions use 106 tokens.

The function x applies to the bottom row of the argument, and
produces the three basic belts in the form of 1 by 4 tables. Because
it is used with the insert primitive, there is no need to specify the
index value 3; this comes about because of the nature of insertion.
This is the seed needed to start the building of the candidate piles.
The result of each step is a three-dimensional array of shape
m,n,4, where m is the number of successful piles so far, initially 3;
and n is the height of each pile, starting at 1, and ending at 4.

The effect of s@o is to insert the dyad o between two arrays c and
d, where c is shape k by 24, where k is at most 24, and at least 1;
and d is the result of the previous step, with shape m,n,4 as
described above. Each of the k rows of a is placed on each of the n
by 4 tables, and then these are joined to form a single table of k
times m items. As noted above, the winnowing of the 24 belts
selected by function a is accomplished by the J nub primitive (y.)
within o, ensuring that there are no duplicate solutions.

Four Cubes Redux

201

The result of o is passed on to s. I rather like s; notice the nice way
the rank operator gets used: first rank 3, then rank 2, then rank 1.
It uses the phrase] =/ [: y. , to form the outer product equal
of the argument with the nub of its ravel. This gives a four-
dimensional array of k boolean tables, with a table for each of the
rows in each solution. It sums the 3-dimensional arrays, which
effectively counts the number of appearances in each column of
each colour. The tables are raveled, and a mask is formed with a 1
for each row which contains no item greater than 1, and applied
to the argument, which gets rid of all of the candidate solutions
containing duplicate colours, leaving only those which remain as
candidates for final solutions. Here is a sample of how s works,
using t, containing two 3-high stacks:

 $t
2 3 4
 t
brwg
wwgr
rgbg

brwg
wwgr
rbbw
 $t0=: t = / y. , t
 $t0
2 2 2 4
 $t1=:+/"3 t0
2 4 4
 t1
1 1 1 0
0 1 1 1
1 0 1 1
0 1 0 2

1 1 1 0
1 1 1 0
1 0 1 1
0 1 1 1
] t2=:,"2 t1
1 1 1 0 0 1 1 1 1 0 1 1 0 1 0 2
1 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1
 $t3=:>./"1 t2
2 1
] t4=:2>t3
0 1

At Play With J

202

This solution can be improved a bit. Suppose I replace the func-
tion x with a similar function y which has the property that it is
executed only if its argument has shape ,6,. This can be done
using J’s function power primitive. Then we could do without the
gerund form altogether. Here is function y:

 y=:(3 1 4$b)&{x:((,6)"_ -: $)

Now we can solve the problem with:
 (s@o y)/

That’s all there is to it. J has helped to give a solution significantly
shorter than the APL solution.

Now that I had a generic solution, I was able to test it on four
different representations: a single character, a symbol, an integer,
and a boxed name. All of these are scalars. Here are the four
representations of the one-solution set of cubes:

 nu
3 1 0 0 2 2
3 2 2 1 3 0
3 3 1 1 2 0
3 0 1 1 3 2
 ch
wgbbrr
wrrgwb
wwggrb
wbggwr
 sy
`white `green `blue `blue `red `red
`white `red `red `green `white `blue
`white `white `green `green `red `blue
`white `blue `green `green `white `red
 bn
+-----+-----+-----+-----+-----+-----+
white	green	blue	blue	red	red
white	red	red	green	white	blue
white	white	green	green	white	blue
white	blue	green	green	white	red
+-----+-----+-----+-----+-----+-----+

And the solutions for each:
 (s@o y)/ nu
1 0 3 0
2 2 1 3
0 1 2 1
3 3 0 2

Four Cubes Redux

203

 (s@o y)/ ch
gbwb
rrgw
bgrg
wwbr
 (s@o y)/ sy
`green `blue `white `blue
`red `red `green `white
`blue `green `red `green
`white `white `blue `red
 (s@o y)/ bn
+-----+-----+-----+-----+
green	blue	white	blue
red	red	green	white
blue	green	red	green
white	white	blue	red
+-----+-----+-----+-----+

A set of cubes which gives 22 solutions is:
`white `blue `red `blue `white `green
`red `blue `red `blue `green `white
`red `blue `red `green `green `white
`green `white `white `red `blue `red

I measured the time needed to produce solutions for each of these
representations using two different cube sets, one which had only
one solution, and one which had 22 solutions.

Here is a tabulation of the times taken using each of the two test
cubes:

 one solution 23 solutions

integer 0.012 0.047

single character 0.010 0.036

symbol 0.012 0.047

boxed name 0.058 0.254

The table shows that the symbol datatype is competitive in time
with the single character and integer data types, which is what we
hoped would happen. Symbols are a much more efficient

At Play With J

204

datatype to work with than are boxed names. It also shows, which
should not be a surprise to anyone, that I have on my desk a
computer that is seventy times faster and has much larger
memory and disk storage than did the large roomful of computer
and disk packs that had seemed so very powerful twenty years
ago.

References
[1] McDonnell, E. E., The Four Cube Problem. APL Press, Palo Alto,

(1981).

[2] Backus, J., Can programming be liberated from the von Neumann
style? A Functional Style and its Algebra of Programs. Comm. ACM
21, 8, (1978-08).

27 Erdös Numbers and Pierce and Engel
Expansions
First published in Vector, 17, 4, (April 2001), 111-122.

If you wish in the world to advance,
Your merits you’re bound to enhance,

You must stir it and stump it,
And blow your own trumpet,

Or, trust me, you haven’t a chance!
 W. S. Gilbert, Ruddigore

Introduction
This paper discusses a way in which mathematicians are connect-
ed to each other, much like the six degrees of separation of the play
and film of that title by John Guare, or the Bacon numbers associat-
ed with the film actor Kevin Bacon. It then discusses a paper writ-
ten by two of these interconnected mathematicians that gives two
ways of representing a rational number that were new to me. The
paper also had some personal relevance. In discussing the subject
matter of the paper I’ll define a number of adverbs and a conjunc-
tion, the first serious use I’ve made of these J possibilities. Finally,
I’ll apply the verbs I define in connection with the almost 4000-
year old Egyptian mathematics found on the Rhind papyrus.

Erdös Numbers
I heard a talk a few years ago given by the mathematician Ronald
Graham, of the Bell Laboratories, in the course of which he dis-
cussed Erdös numbers. Graham had been a frequent collaborator
with the mathematician Paul Erdös and even had a room set aside
in his home for him. This was to facilitate visits by this eccentric
nomad, who, in his later life, drifted from one collaborator to
another, with only his suitcase and his mind, greeting his next
host with the words, “My brain is open!”[1]. The web site:

 http://www.oakland.edu/~grossman/erdoshp.html

is devoted to Erdös numbers. The next paragraph is copied from
that source:

At Play With J

206

Most practicing mathematicians are familiar with the definition of
one’s Erdös number ... Paul Erdös (1913−1996), the widely-travel-
ed and incredibly prolific Hungarian mathematician of the high-
est caliber, wrote hundreds of mathematical research papers in
many different areas, many in collaboration with others. His
Erdös number is 0. Erdös’s co-authors have Erdös number 1.
People other than Erdös who have written a joint paper with
someone with Erdös number 1 but not with Erdös have Erdös
number 2, and so on. If there is no chain of co-authorships conn-
ecting someone with Erdös, then that person’s Erdös number is
said to be infinite.

Here are some data that I gathered from this web site, giving the
number of people known to have each of the first several Erdös
numbers (the site is updated periodically so the data will change
from time to time):

Erdös number 0 1 2 3 4 5

1st kind 1 502 5713 26422 62136 66158

2nd kind 1 229 1969 8602 22668 36112

The row labelled “2nd kind” refers to a more stringent classificat-
ion, described in the web site as follows:

The entire discussion so far has been based on linking two math-
ematicians if they have written a joint paper, whether or not other
authors were involved. A purer definition of the collaboration
graph (in fact, the one that Paul Erdös himself seemed to favor)
would put an edge between two vertices if the mathematicians
have a joint paper by themselves, with no other authors ... Let
C' denote the collaboration graph under this more restrictive
definition, and let us call the associated path lengths “Erdös
numbers of the second kind” (and therefore call traditional Erdös
numbers “Erdös numbers of the first kind” when we need to
make a distinction).

Since those with Erdös number 2 got their numbers from writing
with someone with Erdös number 1, we can get the average
promiscuity number of the Erdös 1 authors by dividing their total
into the total of Erdös 2 authors. The average number of co-auth-

Erdös Numbers And Pierce And Engel Expansions

207

ors for those with Erdös number 1 of the 1st kind is 11.4 and for
those of the 2nd kind is a more selective 8.6. All sorts of people
have Erdös numbers. You may be surprised to learn that Bill
Gates has Erdös number 4, that Sir Francis Crick has Erdös
number 7 and that his double helix collaborator Jim Watson has
Erdös number 8.

This is the background you need in order to make sense of this
message I received from Roger Hui about a year ago:

Subj: Erdos Number
Date: 12/18/99 6:36:06 AM Pacific Standard Time
From: RHui@Interlog.Com (Roger Hui)
To: EEMcD@AOL.Com (E.E. McDonnell)
CC: KEI@Interlog.Com (Kenneth E. Iverson)

Apparently my Erdos number is 2, having co-authored a paper[2]
with Shlomo Moran (during my grad school days in the early 1980's),
who co-authored a paper with Erdos himself[3]... Neither you nor
Ken are in [the] list [of people with Erdös numbers 0, 1, or 2].
Therefore,... both you and Ken have a Erdos number of 3 or less,
having co-authored a paper with me.[4]

This was a surprise, since, although I have written a lot of semi-
mathematical papers, I am not really a mathematician. Since there
were three co-authors of the paper I wrote with Roger, I had an
Erdös number 3 of the first kind, but not of the second kind.
Similarly Shlomo Moran has an Erdös number 1 of the first kind,
but not of the second, since there were three co-authors of his
paper with Erdös.

Thus matters stood until a few months ago, when Roger sent me
another message on the same subject:

Subj: Erdos Number
Date: 11/15/00 9:57:21 AM Pacific Standard Time
From: rhui@ADAYTUM-CAN.COM (Roger Hui)
To: EEMcD@AOL.Com (E.E. McDonnell)

According to http://www.acs.oakland.edu/~grossman/erdoshp.html
Jeffrey Outlaw Shallit wrote a joint paper[5] with Erdos in 1991. Since
you wrote at least one paper with Shallit ("Extending APL to
Infinity")[6], that makes you an Erdos 2.

At Play With J

208

Since Erdös died in 1996, I had now reached the highest I can get
on the Erdös graph. What is more, since my paper with Shallit
had just the two of us as authors, and Shallit’s with Erdös had just
the two of them, I now had Erdös number 2 of both the 1st and
2nd kind, and Shallit’s Erdös number 1 is also of the 1st and 2nd
kind. Among my fellow number twos are such luminaries as
Albert Einstein, G. H. Hardy and Donald Knuth. As I chat with
my fellow 2’s, I appreciate the rather better class of thinkers they
are, and wonder now that I was able at all to tolerate those
arriviste 3’s with whom I rubbed shoulders. I know personally
only one other number two, and that is my friend Charles
Brenner, about whom you may have read in my letter in the
Technical Correspondence of the January 2001 Vector, vol. 17, No. 3,
p. 112. He is today best known as the forensic mathematician. See his
very interesting website at www.dna-view.com. Charles was just
sixteen in 1961 when he and his father, the mathematician Joel Lee
Brenner, collaborated on a paper[7]. In 1987 the elder Brenner
collaborated on a paper with Erdös[8], thereby promoting his son
Charles’s Erdös number from infinite to 2. This raises a question.
His father’s collaboration with Erdös involved a total of six co-
authors, so his father’s Erdös number 1 is of the first kind only.
Charles and his father were the only co-authors of their paper.
How does this rank Charles? I’d say that the sins of the fathers
should not be visited on the sons, so that Charles’s number 2 is,
like mine, of the first and second kind. The promiscuity number of
Joel Lee Brenner is 37; of Jeffrey Outlaw Shallit is 47; and of
Shlomo Moran is 54, all three of them well above average.

I got to know Jeffrey Shallit when he was a young teenager with a
gift for mathematics. He was a regular visitor to the IBM Phila-
delphia Scientific Centre when I worked there. When he went to
college at Princeton University, he wrote his bachelor’s paper on
the mathematical aspects of my design of the complex floor
function[9]. Jeff came to work for me at I. P. Sharp Associates in
Palo Alto in the summer of 1979, after graduating from Princeton
and just before beginning graduate work at the University of
California at Berkeley. It was then that he and I wrote our joint
paper on APL and the infinite. I wrote the part on infinite values,
and Jeff worked out the details of infinite-sized arrays, including a
very nice way of displaying them using a diagonal transformat-
ion. Upon getting Roger Hui’s second message I emailed Jeffrey,

Erdös Numbers And Pierce And Engel Expansions

209

who is now a full professor at Waterloo University in Ontario,
Canada, saying how grateful I was to him for making this possib-
le, but said that I didn’t feel worthy of the honour. He answered:

Subj: Re: thanks for raising my erdos number
Date: 11/19/00 5:35:42 AM Pacific Standard Time
From: shallit@graceland.uwaterloo.ca (Jeffrey Shallit)
To: Eemcd@aol.com

Au contraire, it’s I who should be grateful to you. The paper that I
wrote with Erdos was on expansions of the form
 1/a - 1/(ab) + 1/(abc) -
which I learned about from you in your APL article on “Spirals and
Time”[10]. If I hadn't had the opportunity to learn from you in Phila-
delphia and later in Palo Alto, I would never have explored this inter-
esting topic!

Best, Jeff

This, unlike the essentially shallow glamour of my Erdös number,
was something that I felt I could take legitimate pride in. The
“Spirals and Time” article was a very early one of my articles. It
gives me no little gratification when someone tells me they’ve
enjoyed one. This message gave me an exceptionally large boost
because Jeff had actually learned from it something useful to him
professionally, and may even, as he suggests, have led to his
involvement with Erdös. By the way, it had another satisfying
repercussion, which I heard about from someone in Denmark
who had shown my article to his fiancée. The article noted that
the Gregorian calendar intercalation scheme had leap years in a
4-100-400 year cycle, but could be made exactly accurate if it were
extended to a 4-100-400-3200-86400 cycle. The fiancée told Henry
that on reaching the conclusion, where I noted that 86400 was also
the number of seconds in a day, she “had an intellectual orgasm.”

Notice that successive terms in the Gregorian sequence are
multiples of the preceding term. That is, 100 is 25*4 and 400 is
4*100. In the extension suggested in my article, 3200 is 8*400
and 86400 is 27*3200. The sequence of multipliers 4 25 4 for the
Gregorian sequence and 4 25 4 8 27 can each be used to deter-
mine the average length of the year in each system. In the next
section I’ll discuss how this may be done. For now, I’ll only point

At Play With J

210

out that the current method of adding leap seconds to a year is
sufficient to make it unnecessary to do any extensions to the Greg-
orian sequence, so discussions (like this) concerning changing or
extending the current Gregorian scheme are purely academic.

Pierce and Engel Expansions
That brings us, at last, to the At Play With J part of this paper.

The expansion in Shallit’s message lies behind the design of the
Gregorian calendar.

 1/a - 1/(ab) + 1/(abc) -

In the case of the Gregorian calendar the values a, b, and c are 4,
25, and 4.

 'a b c' =: 4 25 4

The product scan (*/\) of this list gives the cumulative products,
in this case defining the intervals in years when to intercalate and
when not: every fourth year but not every hundredth year unless
it is also a four-hundredth year.

] m =: */\ a,b,c
4 100 400

We reciprocate these values:
] n =: % x: m
1r4 1r100 1r400

The alternating sum of this gives the part of a day p which, when
added to 365, gives the average length of the year in calendar
days in the Gregorian calendar.

] p =: -/ n
97r400

It also gives the number of leap years (97) in the cycle (400). One
gets 97 this way:

 400 % 4 100 400
100 4 1
 -/100 4 1
97

The number of days in 400 years gives the length of the Gregorian
cycle in days, which keeps repeating as the millennia roll on.

 400 * 365 + 97r400
146097

Erdös Numbers And Pierce And Engel Expansions

211

Shallit’s curriculum vitae lists three papers, each bearing on the
topic of Pierce expansions. These are not widely known, but they
and the companion Engel expansions are the topics of the rest of
this article. What are they? They are algorithms for converting a
rational number into a series of integers, which, much like a
continued fraction, give a way of representing a rational. The
algorithm for Pierce expansions is described by Shallit in his
paper on their metric theory as follows:

[Pierce expansion algorithm]: Given a real number x in (0, 1], this
algorithm produces the sequence of ai such that x = {a1, a2, …}.

P1. [Initialize]. Set x0 to x, set i to 1.

P2. [Iterate]. Set ai to floor (1/xi-1); set xi to 1 - aixi-1.

P3. [All done?]. If xi = 0, stop.
 Otherwise set i to i + 1 and return to P2.

Jeff points out that if x is a rational p/q, step P2 replaces p by q
mod p, that this is less than p, and so eventually x will become 0,
and the algorithm will terminate.

Several friends of mine asked if I could find out what Shallit’s
joint paper with Erdös was about. It dealt with Pierce expansions,
but also with something called Engel expansions. All I could find
out about them was that they involved sums of reciprocals, as
opposed to alternating sums, but I was unable to work out the
details on my own, so asked Jeffrey for help. His reply:

From: shallit@graceland.uwaterloo.ca (Jeffrey Shallit)
To: Eemcd@aol.com

Do you read Maple? Here is a maple program to compute the engel
expansion of x up to the first n terms:
engel := proc(x,n) local xp, z, k;
xp := x;
z := [];
k := 0;
while ((k <= n) and xp <> 0) do
k := k+1;
y := ceil(1/xp);
z := [op(z),y];
xp := y*xp - 1;
od;
z;
end;

At Play With J

212

Basically you take ceiling of 1/x, and that's the next output.
Then you multiply that by your current x and subtract 1.Then
continue.

Jeff

I’m not familiar with Maple, but I did manage to feel my way
through this code. Having digested it, I concluded that the Pierce
and Engel expansions were closely related. The Pierce list of
integers implies an alternating sum, and the Engel list of integers
implies a direct sum. This simplified my work in turning them
into J, since one pattern would do for both.

To begin with, I changed Jeff’s approach in two important ways:
first, to simplify termination control, I would work only with
rational arguments; second, instead of having essentially two
main variables, a continually modified rational and a continually
lengthening list of integers, I would combine the two, beginning
with a scalar rational, and successively modifying this in two
ways: first appending a tail, and then modifying the head. The tail
extension would be obtained by applying an integer function to
the reciprocal of the current head value, and appending this; the
floor (<.) for Pierce expansions, and the ceiling (>.) for Engel
expansions. The head modification would be obtained by apply-
ing a subtracting function to the product of the head and the tail,
and replacing the head with this; the one minus (-.) function for
Pierce expansions, and the minus one (<:) function for Engel ex-
pansions. Similarly, in computing the inverses to these functions,
obtaining the rational from a list of integers, the same pattern
would be used, with minus (-) for Pierce contractions, and plus
(+) for Engel contractions. This is summarized in the following
table:

 Pierce Engel

tail <. >.

head -. <:

inverse - +

Erdös Numbers And Pierce And Engel Expansions

213

First I defined an adverb which would serve for both tail extens-
ions:

BT =: 1 : '(, u. @ % @ {.) y.'

where u. stands for the appropriate integer function to be used in
its place, floor or ceiling. It works by applying the appropriate
integer function (u.) to the reciprocal (%) of the head ({.), then
appending it (,). Here’s how this works with each form of
expansion:

 <. BT 97r400
97r400 4
 >. BT 97r400
97r400 5

Next comes an adverb for both head modifications:
BH =: 1 : '((0 } y)u. @ ({. * {:))y.'

This replaces the head (0 } y) with the appropriate subtracting
function (u.) applied to the product of the tail and the head
({. * {:). For example:

 -. BH <. BT 97r400
3r100 4
 <: BH >. BT 97r400
17r80 5

Next, these are combined in a conjunction that will allow a step
function to be defined for both expansions:

 BS =: 2 : '(u. BH)@(v. BT)y.'

Here the u. and v. stand for the left and right function arguments
to be used. For example:

 -. BS <. 97r400
3r100 4
 <: BS >. 97r400
17r80 5

A control structure is needed to allow the steps to be applied as
often as necessary. This requires a sequence of two uses of the
power conjunction; the first to control termination, with a right
argument which gives the signum of the head (* @ {.). This will
be one for any nonzero head value (I assume the argument is
always positive), which allows the function to be applied; when
the head eventually becomes zero, as it must since it is continually

At Play With J

214

being reduced, the function will not be applied, and the result will
be the same as the argument. The second use of the function
power conjunction will cause the steps to be applied to the limit,
that is, until two successive results are equal. The convention
proposed by Iverson[11] is that positive infinity (_) be used to
describe application of a function to the limit. Nicely enough, this
proposal was seconded by Shallit and me in our paper on
infinities, and it is now part of J.

CS =: (x:(* @ {.))x: _

We can use CS with both steps:
 (-. BS <.)CS 97r400
0 4 33 100
 (<: BS >.)CS 97r400
0 5 5 16

These results show that the head is indeed zero. The zero is
extraneous, so now we define two functions that yield just the
needed Pierce and Engel expansion from a rational. We only have
to behead (}.) the results we just got:

 PR =: 3 : '}. @((-. BS <.)CS)y.'
 ER =: 3 : '}. @((<: BS >.)CS)y.'

 PR 97r400
4 33 100
 ER 97r400
5 5 16

Let’s define the functions inverse to PR and ER and check whether
each expansion contracts to 97r400. The method is essentially the
same for both, so again we define an adverb that applies the
appropriate subtraction function to insert (u. /) between the
result of reciprocating (%) and product scanning (* / \) our lists
of integers:

 RB =: 1 : 'u. / * / \ % y.'

and this makes the inverses easy to define:
 RP =: - RB
 RE =: + RB

So now we use each of them:
 RP PR 97r400
97r400
 RE ER 97r400
97r400

Erdös Numbers And Pierce And Engel Expansions

215

So the expansions contract properly. We saw above that the list
4 25 4 contracted to 97r400, and now have verified that the list
4 33 100 does as well. In other words, both intercalation schemes
will give an exact Gregorian year. The difference is that the cycle
for the present Gregorian year is 400 years; for a 4 33 100
calendar the cycle is 13,200 years. For each, the resulting average
year length is 365.2425 days.

By the way, the result 97r400 is given rather than the decimal
equivalent 0.2425 because the results of PR and ER are both
rationals, the same type as their arguments. See what happens if
one just types in the numbers:

 RP 4 33 100
0.2425
 RE 5 5 16
0.2425

The functions PR and ER will work properly only when applied to
rational arguments.

Engel Expansions and Gypsy Math
The very ancient document called the Rhind papyrus includes a
table of all fractions of the form 2/n from 2/3 through 2/101, and
for each gives a list of from two to four unit fractions that sum to
it. For example,

2r3 = 1r2 + 1r6
2r61 = 1r40 + 1r244 + 1r488 + 1r610

The Engel expansions of rationals of the form 2/p for the first four
odd primes give the same results as those listed in the Rhind
papyrus:

 BE =: [: % */\

 (BE @ ER)"0 [2r3 2r5 2r7 2r11
1r2 1r6
1r3 1r15
1r4 1r28
1r6 1r66

This is not generally true, however. For example, the Rhind values
for 2r21 are 1r14 and 1r42, whereas the rationals given by the
Engel expansion are 1r11 and 1r231. However, I am now in a

At Play With J

216

position to bring some unfinished business to a close, that I’ve left
in abeyance since June, 1981. In my last column as Recreational
APL editor for APL Quote Quad, in a section called “Gypsy Math”
I wrote:

The Rhind papyrus ... shows, for each odd integer from 3 to 101,
several integers whose reciprocals sum to 2÷Ω. For example,
(2÷17)=+/÷9 153. Write a function F such that, for odd positive
argument Ω,

(2÷Ω)=+/FΩ

2=ΡFΩ

yΩöFΩ

Thus, F 17 Ħħ 9 153.

I’m impressed by the fact that twenty years ago I knew how to
give unit fraction results for Rhind fractions such as 2r17 without
knowing anything about Engel expansions. However, the Engel
expansion is completely general, and will handle any positive
rational less than 1. Our Egyptian predecessors probably used a
simpler formula which we would write in J notation as:

 Egypt =: [: */\ (,y -:@>:)
 Egypt"0 [3 5 7 11
2 6
3 15
4 28
6 66

Postscript
Erdös, by-the-bye, has a Bacon number of 4. Schechter explains
how this came about in his book on Erdös:

A mathematician and sometime actor named Gene Patterson
appeared briefly in the 1993 documentary about Erdös, N is a
Number. Patterson also had a role in Box of Moonlight with John
Turturro, who was in The Color of Money with Tom Cruise, who
appeared in A Few Good Men with Kevin Bacon.

And Jeffrey Shallit is the proud possessor, in addition to his Erdös
number of 1, of an Elvis number of 3. If you can’t guess what this
is, you can read all about it at his web site:

http://www.math.uwaterlooo.ca/~shallit

Erdös Numbers And Pierce And Engel Expansions

217

References
[1] Schechter, Bruce, My Brain Is Open, The Mathematical Journeys Of Paul

Erdös. Simon & Schuster, New York, (1998).

[2] Ibarra, O., Moran, S., Hui, R. K. W., A Generalization of the Fast
LUP Matrix Decomposition Algorithm and Applications. Journal of
Algorithms 3, (1982), 45-56.

[3] Erdös, P., Linial, N., Moran, S., Extremal Problems on permutations
under cyclic equivalence, Discrete Math. 64, (1987), 1-11.

[4] Hui, R. K. W., Iverson, K. E., McDonnell, E. E., Whitney, A. T.,
“APL\”. APL90 Conf. Proc., 192-200.

[5] Erdös, P., Shallit, J., New bounds on the length of finite Pierce and
Engel series. Séminaire de Théorie des Nombres de Bordeaux 3, (1991),
43-53.

[6] McDonnell, E. E., Shallit, J., Extending APL to Infinity. APL80,
Noordwijkerhout, 123-132.

[7] Brenner, C. H., Brenner, J. L., The popularity of small integers as
primitive roots. Numer. Math. 4, (1962), 336-342.

[8] Brenner, J. L., Beasley, L. P., Erdös, P., Szalay, M., Williamson, A. G.,
Generation of alternating groups by pairs of conjugates. Period.
Math. Hungar. 18, (1987), 259-269.

[9] McDonnell, E. E., Complex Floor. APL Congress 73, Copenhagen.

[10] McDonnell, E. E., Spirals & Time. APL Quote Quad 7, 4, (Winter
1977), 20-22.

[11] Iverson, K. E., Operators and functions, RC 7091, IBM Corp.,
Yorktown Heights, NY, (1978).

28 Boggle
First published in Vector, 18, 1, (July 2001), 91-102.

Boggle
I suppose many of you have played as a child with a set of blocks,
wooden cubes about an inch and a half on a side, with pictures,
letters, numbers, and designs on the faces. Did you ever set the
alphabet faces in a row to spell a word? Suppose you had such a
set of blocks in which all of the faces had letters on them, and that
you had a tray divided by partitions to form rows and columns,
giving cells into which the blocks just fitted. Now if you jumble
up your blocks in a bag, then take out a block at a time and with
your eyes closed, put it securely in one of the cells at random until
they are all full, you will find when you then open your eyes that
the letters that are face up will be in all different orientations.

Now if you are given the task of finding among these as many
words of four or more letters formed among blocks that are conn-
ected either by an edge or a corner within three minutes, you will
have some idea of how to play a word game I very much like. The
game comes in two forms; the original game, the one I cut my
teeth on, is called Boggle™, and is played on a 4-by-4 tray. The
other game, which I now favour, and which appeared several
years after Boggle was introduced, is called Big Boggle™, and is
played on a 5-by-5 tray. The blocks are miniature, about five-
eighths of an inch on a side and made of plastic, as is the tray.
There is also a clear plastic dome which fits snugly over the tray,
permitting the whole to be turned upside down, shaken, and
turned upright, so that with a little jiggling each block nestles
upright in one of the cells. The game comes with a three-minute
egg-timer and a little sheet of instructions.

The letters on each of the sixteen Boggle cubes and the 25 Big Bog-
gle cubes are given by the columns of the tables below. They are
shown as lower-case here, but in the game they appear as capitals.

At Play With J

220

The letter shown as ‘q’ is actually the digraph ‘qu’, and if used in
a word counts as two letters:

aaaaacdddeeeeehh aaaaaaaabccccddddeeefgino
abcfoieeieehilil fdeaeaeajceeehhdhnmiiopoo
ebhfomilsgirormn ieeageefkeiiillhhsoiprroo
ejoktolrthntstnn rnefmegiqnlipnnnlstirrrtt
goppttrvtnsvstqr snernemrxsplsoooosttsvrut
nosswuxyywuwtyuz ynmsneuszttttrrtruttywywu

Here are the rules supplied with the game:

Object: To list, within 3 minutes, as many words of the highest
point value as you can find among the random assortment of
letters in the cube grid.

Preparation: Each player should have a pencil and a piece of
paper. Drop the letter cubes into the dome and place the grid,
open side down, over the dome. Turn the domed grid right-side
up, vigorously shake the cubes around, and maneuver the grid
until each cube falls into place. Then, as one player removes the
dome, another player starts the timer.

Playing: When the timer starts, each player searches the
assortment of letters for words of four letters or more. When you
find a word, write it down.

Words are formed from adjoining letters. Letters must join in the
proper sequence to spell a word. They may join horizontally,
vertically or diagonally to the left, right, or up-and-down. No
letter cube, however, may be used more than once within a single
word.

Type of words allowed: The only words that are allowed are
those that can be found in a standard English dictionary. You may
look for any type of word − noun, verb, adjective, adverb, etc.
Plural nouns are acceptable as are all verb tenses. Words within
words are also allowed, e.g., master: mast, aster.

Type of words not allowed: Proper nouns, abbreviations,
contractions, hyphenated words, and foreign words that are not
in an English dictionary.

Scoring and winning: When the timer runs out, everyone must
stop writing. Each player in turn then reads aloud his or her list of

Boggle

221

words. Any word that appears on more than one player’s list
must be crossed off all lists, including that of the reader. The same
word found by a player in different areas of the grid may not be
counted for multiple credit.

After all players have read their lists, each player scores his or her
remaining words, differing point values accorded to the words
according to their lengths, as follows:

no. of letters 4 5 6 7 8+

points 1 2 3 5 11

The winner is a) the player whose words have earned the most
points, or b) the first to reach 50 points, 100 points or whatever
score is considered by all to be a reasonable target.

I usually play until at least one player has reached or passed 100
points. I’ve played the game with three or four players, but prefer
the two-person game. My wife and I have established several
additional house rules. Since I frequently wrote down spurious
words, my wife insisted that there be a penalty for such. Thus,
any word may be challenged. If it is not found in the dictionary
the player is given a score of -1 for it. If it is in the dictionary, the
player gets an additional point for it. We began by using our huge
unabridged Merriam-Webster dictionary, but this, my wife
claimed, gave me an unfair advantage, since I frequently wrote
down archaic Scottish words and the like that were in this diction-
ary but not in smaller ones. We then began using the Concise Ox-
ford Dictionary (COD), but had to give up on that, too, since it
favoured English words and English spellings. My wife was tired
of me putting down words like twee and nous that are unknown
on our side of the Atlantic. We now use the American Heritage
Dictionary (AHD), Ken Iverson’s favourite. Here is a sample grid:

t i n e
n i n t
o c n a
r e t l

These letters are shown in normal position; in practice they can
have any of the four possible orientations. Try your hand at find-
ing words in this grid. Remember, you have just three minutes.

At Play With J

222

You can see the words I found, unaided by computer, at the end
of this paper.

The Problem
Twenty years ago, when I was Recreational APL editor of APL
Quote Quad, I received a letter from Robert Ashworth, of
Carbondale, Illinois, asking if I could write a column on the
Boggle game. I was agreeable to the extent of posing these
problems to my readers (this was before Big Boggle was born, so
assumes the smaller Boggle situation):

a. Find the number of paths of length 4 in the grid.

b. Find the number of paths of length 5.

c. Write a suite of functions that, given a 4-by-4 character table,
finds all words of length 4 and 5, using the rules of Boggle.
Assume the existence of two tables w4 and w5 containing all the
acceptable words of length 4 and 5, respectively.

I thought this was the most difficult problem I’d ever proposed.
Furthermore, at the time I had only vague ideas of how to go
about solving it. Recently, nagged by this unfinished business, I
revisited the problem, with a degree of success.

A Boggle path is a sequence of distinct connected cells, connected
in the Boggle sense. An interior cell is connected to the eight
surrounding cells. An edge cell, not on a corner, is connected to
the five surrounding cells. A corner cell is connected to the three
surrounding cells. It may be suitable at times of to use the cell’s
list indices:

]m=:i.4 4
 0 1 2 3
 4 5 6 7
 8 9 10 11
12 13 14 15

and at other times their row-column indices:

Boggle

223

]q=:<"1 (4 4#: m)
+---+---+---+---+
|0 0|0 1|0 2|0 3|
+---+---+---+---+
|1 0|1 1|1 2|1 3|
+---+---+---+---+
|2 0|2 1|2 2|2 3|
+---+---+---+---+
|3 0|3 1|3 2|3 3|
+---+---+---+---+

Normalizing any 3-by-3 portion of the row-column index grid by
subtracting the central item from each of the items, shows that
two cells are connected if the maximum magnitude of the
difference of their row-column indices is 1.

 (] -&.> (<1 1)"_ {])3 _3{.q
+-----+----+----+
|_1 _1|_1 0|_1 1|
+-----+----+----+
|0 _1 |0 0 |0 1 |
+-----+----+----+
|1 _1 |1 0 |1 1 |
+-----+----+----+

The only way I know to find the number of paths for different
cases is by constructing the paths. So to solve problems a and b
above implies finding the paths themselves.

An easy but expensive way is to find a superset of the paths, by
taking all the combinations of sixteen things taken four at a time,
that is, 4!16 or 1,820, then get each of the 24 permutations of
every combination, giving (!4)*(4!16) or 43,680 four-item lists,
then select from the table all rows giving Boggle-connected paths.
The verb comb is due to Roger Hui, and it and its component parts
are given at the end of this paper.

The function paths has syntax r =: n paths k and gives the
paths of length n in a k-by-k grid.

paths =: dyad define

NB. find all paths of length x. in a grid of size y. * y. .
NB. px is a table of all the permutations of length x. .
 px =. (i.!x.)A.i.x.

At Play With J

224

NB. cxn is a table of all the combinations
NB. of y. things taken x. at a time.
 cxn =. x. comb *: y.
NB. pc is a table of all the permutations
NB. of each of the combinations.
 pc =. ,/px{"2 1 cxn
NB. (i{mpc) is 1 if (i{cxn)is Boggle-connected and 0 otherwise.
 mpc =. y. okf pc
NB. cxno is all the paths of length x. in a y.*y. grid.
 cxno =. /:y mpc#pc
)

This is the okf function:
 okf=: 13 : '1=>./,|2-/\(2#x.)#:y.'"1

Given a list y., this takes the row-column representation
((2#x.)#:y.) of each item, the difference of pairs of successive
representations (2-/\), their magnitudes (|), ravels these (,),
finds their maximum (>./), compares this to 1 (1=), yielding 1 if
the list is Boggle-connected, and 0 otherwise.

For example, the number of paths of length 3 in a 4-by-4 grid is
given by:

 #3 paths 4
408

Here are four successive items from pc:
 37 38 39 40{pc
2 0 4 1
2 1 0 4
2 1 4 0
2 4 0 1

And here is the result of applying 4 okf to each of these rows:
 4 okf 37 38 39 40{pc
0 1 1 0

If you look again at m you can verify that 2 0 4 1 and 2 4 0 1
are not Boggle-connected, but 2 1 0 4 and 2 1 4 0 are:

 m
 0 1 2 3
 4 5 6 7
 8 9 10 11
12 13 14 15

Don’t bother to use this function. It takes an unbearably long time
as the path lengths get just a little larger. It is intended only to let
you know how my thinking was going.

Boggle

225

An easier way to get the paths is to build them up starting with
the n2 paths of length 1, and extending these only with promising
items. At this point I showed my astuteness by sending a message
to Roger Hui explaining what I was doing, and asking him if
anything bright in a combinatorial way occurred to him. I
received, in rapid succession, four replies, written while he was
babysitting his son Nicholas as he was in the middle of moving
from Toronto to Vancouver. I’ll pass over the first three messages
because, as usual with Roger, one idea suggested a better idea.
Here is his last effort:

rimb =: _1: ,. (_1: ,] , _1:) ,. _1:
tileb =: 3 3 &(,;._3)
nborsb=: (4 1 4#1 0 1)&#"1 @ (,/) @ tileb @ rimb @ i. @ ,y

initb =: ,. @ i. @ *:
extendb=: 8&#@] ,. [: , {:"1@] { [
testb =: *./"1@(0&<:) *. i.@{:@$ -:"1 i."1y
stepb =: (testb #])@extendb
pathb=: 4 : '(nborsb x.) stepbx:(y.-1) initb x.'

The pathb dyad has syntax z =: n pathb k, and yields a table
with k columns, with rows giving all the paths of length k to be
found in an n-by-n grid. It begins by using initb to form a seed
table having all possible starting cells of paths, namely, a single
column with values i. *: n. Each use of its step dyad,
beginning with the seed table, extends its argument, a table of
paths of length k-1, to form the table of paths of length k. The
stepb dyad requires as its left argument a table with eight
columns and as many rows as there are cells in the grid. Each row
contains a list of all the neighbours of each cell. In the case of edge
cells, which have only five neighbours, and corner cells, with only
three, the lists are filled out with _1 values. The nborsb monad
builds this table by forming an n-by-n grid with (i.@,y) and
using the rimb monad to border this with _1s. This is tesselated
into raveled 3-by-3 squares with the tileb monad. , and (,/)
makes the individual tables into one large table. To complete the
table the central column is deleted with (4 1 4#1 0 1)&#"1.

At Play With J

226

Here is what this table for the 4-by-4 case looks like:
 nborsb 4
_1 _1 _1 _1 1 _1 4 5
_1 _1 _1 0 2 4 5 6
_1 _1 _1 1 3 5 6 7
_1 _1 _1 2 _1 6 7 _1
_1 0 1 _1 5 _1 8 9
 0 1 2 4 6 8 9 10
 1 2 3 5 7 9 10 11
 2 3 _1 6 _1 10 11 _1
_1 4 5 _1 9 _1 12 13
 4 5 6 8 10 12 13 14
 5 6 7 9 11 13 14 15
 6 7 _1 10 _1 14 15 _1
_1 8 9 _1 13 _1 _1 _1
 8 9 10 12 14 _1 _1 _1
 9 10 11 13 15 _1 _1 _1
10 11 _1 14 _1 _1 _1 _1

The table for the 5-by-5 case is similar, but with 25 rows instead
of 16.

At each step, the last item of each of the current paths is used to
select the appropriate row from the neighbours table, that row is
replicated eight times, and each neighbour is appended to one of
the eight replicated rows, using the extendb dyad. The testb
monad removes illegal rows from this extended table, ensuring
that no item is duplicated, and no _1s are present in the result.
This process continues for k-1 steps, at the end of which we have
obtained the desired table.

The pathb function executes 4 pathb 4 in 0.02 seconds, and
4 pathb 5 in 0.09 seconds on my 233MHz computer. With its
help I found the answers to problems a and b:

 #4 pathb 4
1764
 #4 pathb 5
6712

The time for my path function to do 4 path 4 is 43.4 seconds. I
don’t have the patience to try cases involving longer paths.

Now it’s time to solve problem c. I have carried about with me for
about 15 years word lists from the American Heritage Dictionary.
The original data came from the publisher Houghton-Mifflin on a

Boggle

227

single file on a magnetic tape which Joey Tuttle had mounted on a
tape drive in the Toronto machine room of I. P. Sharp Associates
and read into the Amdahl V8 then in use there. He processed this
file in several ways, the one of most use to me being sorted lists of
words all of the same length, which I have named Words02
through Words26. These are now resident on a Macintosh
computer in my home. With the tools you’ve seen developed, you
could probably arrive at a solution yourself. Assume that you
have the b, the ravel of the letters in the grid, p the table of paths,
and w the list of words, all for a given length. Then

 r =: /: y y. (w e. p { b) # w

will give r, a sorted table of all the words of a given length, with
no duplicates, satisfying a legal path on the grid.

Before showing the results I obtained using the phrase above, I
give first the words I found unaided by computer in this grid:

t i n e
n i n t
o c n a
r e t l

ante
cent
coin
core
lane
late
nice
nine
rent
tine
tint

alter
inner
inter
lance
later
nance
nicer
octal
renal

cental
lancer
lancet
lanner
recoin
rennet
rental
tanner
tannin
tinner

All of these are in COD. All but “nance” and “recoin” are in AHD.

At Play With J

228

And here are those found by the computer:
anne
ante
cent
cero
coin
core
etna
icon
lane
late
neon
nero
nice
nine
nore
once
reni
rent
tate
tent
tine
tint

alter
ancon
anent
anion
conti
creon
enate
inane
inner
inter
lance
later
nicer
renal
renan
renin
rente
tater
tinct

alnico
cental
cetane
encina
encore
innate
lancer
lancet
lanner
latent
nocent
octane
octant
rectal
rennet
rennin
rental
tanner
tannic
tannin
tenant
tinner

The results of me versus the computer are: 4-letter words, 11 vs
16; 5-letter words, 9 vs 16; and 6-letter words, 10 vs 22. The second
table shows a defect of my word collection. The tape we got from
Houghton Mifflin includes biographical and geographical entries,
and these have not been removed. I’ve put in italics those words,
which, by Boggle rules, are not legal words. Also, COD has some
words not in AHD and vice-versa. For example, “cero” (a western
Atlantic fish) is in AHD, but not in COD, and “recoin” is in COD
but not AHD.

There are longer words in the list. How many of you found
“continent”? And “continental”? And the 16-letter behemoth
“intercontinental”? Of course, I contrived this case, choosing a
suitable looking word from my Word16 file, in order to fill a 4-by-
grid completely.

Here is an incomplete table of the number of paths of given
lengths in grids from size two to five:

paths =: 0 : 0

Boggle

229

The number of paths of length k connecting distinct adjacent
points in a square grid of n * n points:

k\n 2 3 4 5
1 4 9 16 25
2 12 40 84 144
3 24 160 408 768
4 24 496 1764 3768
5 1208 6712 17280
6 2240 22672 74072
7 2984 68272 296360
8 2384 183472
9 784 436984
)

I’ve been unable to find the law of this table. Row 1 are the
squares, of course. Row 2 is four times the alternate triangular
numbers (3 10 21 36). Beyond that deponent witnesseth not. The
columns headed 2 and 3 are complete, but even with Hui’s much
more efficient functions, larger cases for columns 4 and 5 are still
unattainable with my computer (and my patience).

There are two ways the task can be made more efficient: 1) instead
of using pathb, which necessitates going back to the beginning for
each case computed for a given grid size, the previous results can
be stored, allowing case k to be computed by using the stepb fun-
ction on the k-1 result; and 2) by taking advantage of the symmet-
ries of the square grid. The number of paths of a given length pro-
ceeding from any corner point are the same; similarly for symmet-
rically located edge points and interior points. The symmetries are
evident if the number of paths beginning from each grid point are
displayed. For example, here are the number of paths from each
point for a 4-by-4 case and a 5-by-5 case:

 4 4$#/.y{.|:4 pathb 5
322 435 435 322
435 486 486 435
435 486 486 435
322 435 435 322
 5 5$#/.y{.|:5 pathb 6
1874 2752 2998 2752 1874
2752 3524 3672 3524 2752
2998 3672 3784 3672 2998
2752 3524 3672 3524 2752
1874 2752 2998 2752 1874

At Play With J

230

In general, for a grid of side n, containing n2 points, there are only
g(n) distinct numbers of paths, where g is

 g=:2&!@>:@>.@-:

Here are the results of g applied to grid sizes 1 through 8:
 (,:g) 1+i.8
1 2 3 4 5 6 7 8
1 1 3 3 6 6 10 10

So that, for the 4-by-4 case, only three values have to be comput-
ed, not 16, and for the 5-by-5 case, only six, not 25. The total
number of cases for a given path length k in a grid of size n can be
obtained by an inner product:

 4 4$#/.y{.|:4 pathb 4
 75 109 109 75
109 148 148 109
109 148 148 109
 75 109 109 75
 4 8 4+/ . * 75 109 148
1764
 #4 pathb 4
1764

When the actual paths are needed, the additional cases can be
obtained from the abbreviated tables by using the appropriate
indices to select from them, the indices being the permutations
obtained from the ravels of the rotations and reversals of the table
i.(n.n).

Here is how this is done:
NB. get neighbours table
 n4=:nborsb 4
NB. form monad to step previous case by bonding
NB. stepbs left argument
 f=:n4&stepb
NB. initial case for abbreviated situation
] ip=:,.0 1 5
0
1
5
NB. Get all paths for abbreviated argument
 $p42=:f ip
16 2
NB. Only 16 cases of 84 obtained using full arg
 $4 pathb 2
84 2

Boggle

231

NB. Use phrase 7.b.d8 to obtain desired permuted
NB. lists of all cell numbers
] allpcn=:,"2 (i.8)d8"0 2 i.4 4
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
12 8 4 0 13 9 5 1 14 10 6 2 15 11 7 3
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 3 7 11 15 2 6 10 14 1 5 9 13 0 4 8 12
12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
15 11 7 3 14 10 6 2 13 9 5 1 12 8 4 0
 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
NB. Get all length-2 paths (with possible
 duplicates)
 $q42=:,/p42{"1/allpcn
128 2
NB. Get ordered set of all length-2 paths
 $s42 =: /:y y. ,/ q42
84 2
NB. compare ordered set to long-winded but
 accurate set
 (4 pathb 2) -: s42
1

Appendix
Hui’s combinations suite:
 startc =. i.@-.@-
 countc =. <:@[! <:@[+ |.@startc
 indexc =. ;@:((i.-])&.>)
 recurc =. (countc#startc) ,. (indexc@countc{comb&.<:)
 testc =. *@[*. <
 basisc =. i.@(<: , [)
 comb =. basisc`recurc @. testc

29 The Counterfeit Coin Problem
First published in Vector, 18, 3, (January 2002), 93-103.

The Counterfeit Coin Problem, unlike many mathematical
puzzles, is not a creation of ancient times nor of the 19th century,
and does not appear in the classical works of Loyd, Dudeney, Ball,
or Kraitchik. It springs from a problem posed by E. D. Schell in
the January 1945 issue of the American Mathematical Monthly:

You have eight similar coins and a beam balance. At most one coin is
counterfeit and hence underweight. How can you detect whether
there is an underweight coin, and if so, which one, using the balance
only twice?

Try solving this. I give my solution at the end of this paper.

Most of the solutions I have seen for this kind of problem give an
initial allocation of the coins to the balance’s pans, and on the
basis of the weighing give another allocation, and so on. In 1978 J.
G. Mauldon published an IBM Research Report RC 7476, in which
he gave a solution in which the weighings were predetermined,
not a result of a previous weighing, entitled “Strong Solutions for
the Counterfeit Coin Problem”. His statement of the problem is
generalized from Schell’s. I’ll call this the first problem:

Given C coins, of which it is suspected that one (at most) is counterfeit
(either underweight or overweight), it is required, in at most W
weighings on an ordinary beam balance, to identify the counterfeit (if
present) and to determine whether it is heavy or light.

He defines a strong solution to which “The choice and
distribution of coins for each weighing is to be independent of the
other weighings.” In support of his method, he proves the
theorem that “if the pair (W,C) admits a solution at all, then it
admits a strong solution.” Thus, no other solution can be better
than his strong technique. His method is array oriented, and he
gives a suite of APL direct definition functions which give a
solution to the problem, acknowledging “his indebtedness to the
encouragement and valuable advice of Dr. Kenneth Iverson.” He
also gives solutions for a second problem, where we are given that
exactly one coin is counterfeit, and we are not required to specify
whether it is heavier or lighter, but merely to identify it, and a
third problem in which in addition to the given set of coins, we

At Play With J

234

are allowed to incorporate into the weighings an arbitrary number
of coins known to be of standard weight. I’ll only discuss the first
problem. His solutions to all three problems are similar.

He defines a solution as a table of weighings showing the
allocation of coins at each weighing. In table (A) are his solutions
for all nine cases for which W is 3. These are for values of C from 4
through 12, inclusive.

 C = 4, 7, 10 C = 5, 8, 11 C = 6, 9, 12
+-------------------+---------------------+-----------------------+
0 0 1 2	1 1 0 2 2	0 1 2 0 1 2
0 2 1 0	1 2 2 1 0	0 1 2 1 2 0
1 0 0 2	2 1 2 1 0	1 2 0 0 1 2
+-------------------+---------------------+-----------------------+		
0 1 2 0 0 1 2	2 0 1 1 1 0 2 2	0 1 2 0 1 2 0 1 2
1 2 0 0 2 1 0	2 1 0 1 2 2 1 0	0 1 2 1 2 0 1 2 0
2 0 1 1 0 0 2	2 0 1 2 1 2 1 0	1 2 0 0 1 2 1 2 0
+-------------------+---------------------+-----------------------+		
0 1 2 0 1 2 0 0 1 2	0 1 2 2 0 1 1 1 0 2 2	0 1 2 0 1 2 0 1 2 0 1 2
1 2 0 1 2 0 0 2 1 0	1 2 0 2 1 0 1 2 2 1 0	0 1 2 1 2 0 1 2 0 1 2 0
1 2 0 2 0 1 1 0 0 2	2 0 1 2 0 1 2 1 2 1 0	1 2 0 0 1 2 1 2 0 2 0 1
+-------------------+---------------------+-----------------------+

Mauldon calls the solution for twelve coins maximal. A maximal
solution is one in which C is the largest number of coins admitting
a solution for a given W. Solutions for less than the maximal
number of coins he calls submaximal. He tackles maximal solutions
first, for these are used in forming submaximal solutions as well.

Each solution has three rows, one for each of the three weighings,
and four through 12 columns, one for each of the coins. Each row
gives an allocation of the coins as being either set aside, or put in
the left pan, or put in the right pan, represented by 0, 1, or 2,
respectively. Notice that in each weighing the number of coins
placed on the left pan is the same as the number placed on the
right pan, that is, the solutions are balanced. For example, in the
four-coin case the first weighing sets aside coins 0 and 1, puts coin
2 in the left pan, and coin 3 in the right pan. When 3|C is one, that
is, for C of 4, 7, and 10, the number of coins set aside is one more
than the number on each pan. When 3|C is 2, for C of 5, 8, and 11,
the number of coins set aside is one less than the number on each
pan. When 3|C is 0, as in the right column, for 6, 9, and 12, the
number of coins set aside is the same as the number on each pan.
At each weighing, the possible results are: the pans are level, or
the left pan is lower, or the right pan is lower, represented by 0, 1,
and 2, respectively. The result of all three weighings is thus a list V
of three items, chosen from 0 1 2.

The Counterfeit Coin Problem

235

For example, if there are four coins, and the counterfeit is coin 0,
and is heavier than a good coin, the result of the first weighing is
0, since coin 0 is set aside; for the same reason, the result of the
second weighing is also 0; in the third weighing coin 0 is in the
left pan, so the result is 1. The overall result V is thus 0 0 1, and
this corresponds to column 0 of the 4-coin solution. Additional
complications come about if the counterfeit is lighter, for which
table (B) is appropriate:

+-------------------+---------------------+-----------------------+
0 0 2 1	2 2 0 1 1	0 2 1 0 2 1
0 1 2 0	2 1 1 2 0	0 2 1 2 1 0
2 0 0 1	1 2 1 2 0	2 1 0 0 2 1
+-------------------+---------------------+-----------------------+		
0 2 1 0 0 2 1	1 0 2 2 2 0 1 1	0 2 1 0 2 1 0 2 1
2 1 0 0 1 2 0	1 2 0 2 1 1 2 0	0 2 1 2 1 0 2 1 0
1 0 2 2 0 0 1	1 0 2 1 2 1 2 0	2 1 0 0 2 1 2 1 0
+-------------------+---------------------+-----------------------+		
0 2 1 0 2 1 0 0 2 1	0 2 1 1 0 2 2 2 0 1 1	0 2 1 0 2 1 0 2 1 0 2 1
2 1 0 2 1 0 0 1 2 0	2 1 0 1 2 0 2 1 1 2 0	0 2 1 2 1 0 2 1 0 2 1 0
2 1 0 1 0 2 2 0 0 1	1 0 2 1 0 2 1 2 1 2 0	2 1 0 0 2 1 2 1 0 1 0 2
+-------------------+---------------------+-----------------------+

The entries in (B) are not used for allocating the coins, but rather
to determine the false coin when it is lighter than the good coins.
For example, if their are four coins, and the false coin is coin 0,
and is lighter than the others, the result would be 0 0 2,
corresponding to column 0 of the 4-coin table in (B). The tables in
(B) are the 3s complement of those in (A).

The table below gives some of the vital statistics of the problem:
+-+----+----+----+
|W| N | L | G |
+-+----+----+----+
3	9	4	12
4	27	13	39
5	81	40	120
6	243	121	363
7	729	364	1092
8	2187	1093	3279
+-+----+----+----+

Column W gives the number of weighings required, column N
gives the number of different cases that W weighings can solve,
column L gives the least number of coins for W, and column G
gives the greatest number of coins for W. For example, if W is four,
27 cases are solvable, with 13 coins the smallest case, and 39 coins
the largest. I don’t show the case for W of 2, since three is the only

At Play With J

236

meaningful case. A one-coin case admits of no comparisons, and a
2-coin case can’t discriminate between heavier and lighter coins.

Given any number of coins K between L and G inclusive, W may be
found from K by taking the ceiling of the base-3 log of 3 plus twice
K:

 WK =: >.@(3&x.)@(3&+)@(2&*)
 WK 4+i.9
3 3 3 3 3 3 3 3 3
 WK 13+i.27
4

N is a power of three, namely 3xW-1, and is included between L
and G, and is the only power of 3 included. Column L is the sum-
scan of powers of 3; the first item is 1+3, the second is 1+3+9, and
so forth. Column G is thrice column L, and is also given by

 ((3xW)-3)%2
12 39 120 363 1092 3279

Given any positive integer q greater than one, its representation in
base q has 1 as its most significant digit (msd), and is in fact 10.
For any q greater than 2, its double is represented in base q by 20.
Its square is 100 and the square’s double is 200. Its cube is 1000,
and so forth. All the numbers from q up to but not including its
double have msd of 1. All the numbers from p any power of q up
to but not including its double have msd of 1. For example, the
ternary representations 1 and 2 are 1, 2; of 3, 4, 5, 6 are 10, 11, 12,
20; of 9 through 18 are:

100 101 102 110 111 112 120 121 122 200

There are L integers less than N that have msd of 1. For example,
if W is 3, then N is 9 and there are 4 ternary integers with msd 1
less than 9; these are 1, 3, 4, and 5, which have ternary
representations of 1, 10, 11, and 12. When represented in a radix
large enough to represent N, the msd numbers have leading zeros.
For example, 9 is represented by 100, and those for 1, 3, 4, and 5
are then 001, 010, 011, and 012.

Constructing a maximal solution
We’ll use the case where W is 3 to exemplify the general case.

Start with the ternary representations of the msd numbers less
than 3xW-1. In our case these are 1 3 4 5.

The Counterfeit Coin Problem

237

First we produce the powers of 3 less than 3xW-1:
 W =: 3
 3 x i. <: W
1 3

Next we use the hook (+i.) with each of these:
 (+ i.) &.> 3 x i. <: W
+-+-----+
|1|3 4 5|
+-+-----+

Last, we raze this:
 ; (+ i.) &.> 3 x i. <: W
1 3 4 5

We convert these to ternary, getting four distinct representations:
] za =: (W # 3) #: ; (+ i.) &.> 3 x i. <: W
0 0 1
0 1 0
0 1 1
0 1 2

Each row of za is used to create two additional rows by adding 1
and 2, mod 3, to it. Adding 1, mod 3, to 0 1 2 gives 1 2 0;
adding 2 to 0 1 2 gives 2 0 1. Consequently each three-row
subtable has distinct rows. Notice that each column is also
balanced, having one each of 1 and 2.

] zb =: 3|0 1 2+/"1 za
0 0 1
1 1 2
2 2 0
0 1 0
1 2 1
2 0 2
0 1 1
1 2 2
2 0 0
0 1 2
1 2 0
2 0 1

This is turned into a single table by applying append insert (,/) to
it. Since the individual columns of the subtables were balanced
the whole column is also balanced. In this case each weighing

At Play With J

238

places four coins in each pan.
 ,/ zb
0 0 1
1 1 2
2 2 0
0 1 0
1 2 1
2 0 2
0 1 1
1 2 2
2 0 0
0 1 2
1 2 0
2 0 1

I’ll transpose this to allow you to more easily to compare with the
lower right-hand corner of table (A):

] zc =: |: , / 3 | 0 1 2 +/ "1 zb
0 1 2 0 1 2 0 1 2 0 1 2
0 1 2 1 2 0 1 2 0 1 2 0
1 2 0 0 1 2 1 2 0 2 0 1

The entire maximal solution process can be encapsulated in
monad SX, which takes the number of weighings as argument.

 SX =: 13 : ',/ 3 | 0 1 2 +/"1 (y. # 3) #: ; (+ i.) &.> 3 x i. <: y.'

 |: SX 3
0 1 2 0 1 2 0 1 2 0 1 2
0 1 2 1 2 0 1 2 0 1 2 0
1 2 0 0 1 2 1 2 0 2 0 1

Constructing a general solution
Mauldon’s method of obtaining a general solution involves a
fairly complicated way of choosing one of two tables to be
appended, in the cases where the number of coins has a 3-residue
of 1 or 2, or no appended table for the case where the 3-residue is
0. It simplifies things considerably if a third, empty table, is
provided for this last case. If we call the appended tables A0, A1
and A2, for residues of 0, 1 and 2, respectively, and form them
into a list of boxes AS. Mauldon doesn’t give the principles used in

The Counterfeit Coin Problem

239

constructing A1 and A2, he merely presents them without apology.
] AS =: A0;A1;A2
+---+-----+-----+
	0 0 1	2 2 2
	0 2 0	0 1 0
	1 1 0	1 0 1
	2 0 2	1 1 2
		1 2 1
		0 2 2
		2 1 1
		2 0 0
+---+-----+-----+

Each of these is balanced, and the last five rows of A2 are also
balanced. If K is the number of coins in C, the proper table to
append can be given by:

 > AS {y 3 | K
2 2 2
0 1 0
1 0 1
1 1 2
1 2 1
0 2 2
2 1 1
2 0 0

This isn’t all that is needed. The three columns in the tables are
suited to the least number of weighings that may be required. If
more weighings than three are needed, the first column is
replicated W-2 times. For example, if W is 5 there are five
weighings and the first column is replicated thrice:

 ((W-2)#0), 1 1#"1 A2
2 2 2 2 2
0 0 0 1 0
1 1 1 0 1
1 1 1 1 2
1 1 1 2 1
0 0 0 2 2
2 2 2 1 1
2 2 2 0 0

A dyad SA to produce a table to append having the necessary
number of columns can thus be given by:

 SA =: 13 : '(((y.-2)#0),1 2){"1>AS{y3|x.'

At Play With J

240

where x. is the number of coins and y. is the number of
weighings.

The two dyads SX and SA can be combined to give a general
solution function SG:

 SG =: 13 : '(-x.){.x.(SX,SA)y.'

where x. and y. are as in SA. The phrase (-x.){ forms the
solution by taking the last x. rows of the table formed by
appending the maximum and the appended tables.

A solution for the case of 8 coins and 3 weighings can be obtained
by:

 8 SG 3
2 2 2
0 1 0
1 0 1
1 1 2
1 2 1
0 2 2
2 1 1
2 0 0

I found it convenient to have a monad which takes a list of coins
as argument. The monad is:

 SC =:(SG WK)@#
 C =: 0 0 0 0 0 1 0 0
 SC C
2 2 2
0 1 0
1 0 1
1 1 2
1 2 1
0 2 2
2 1 1
2 0 0

Finding a false coin
We can find a solution by writing:

 S+//."1&.|:C

The dual transpose (&. |:) causes the arguments to be transposed
before being used. This has no effect on the coin list C, but is
effective on S, interchanging columns and rows. The rank one ("1)
allows the rows of transposed S to be used individually with C.

The Counterfeit Coin Problem

241

The sum by key (+//.) adds the items of C according to the keys
in the row of transposed S. The result of sum key of the first row
with C is:

 2 0 1 1 1 0 2 2 +//. 0 0 0 0 0 1 0 0
0 1 0

The result comes from summing all the items of the right
argument corresponding to 2s in the left argument (0), then those
corresponding to 0s (1) then those corresponding to 1s (0).

The same thing occurs when I use all the rows of transposed S
with C:

 S +/ /."1 &. |: C
0 1 1
1 0 0
0 0 0

This is difficult to interpret because the first column 0 1 0 is in
the order 2 0 1, the order in which they occur in the first column
of S; the second column 1 0 0 is in the order 2 1 0; the third
column is in the order 2 0 1.

In order to avoid this difficulty, I prefix the solution rows
(transposed columns) with 0 1 2 and the coin list with 0 0 0.
The prefixed zeros on the coin list can’t alter the result, but the
0 1 2 prefixed to the columns ensures that the result comes in a
way that is easy to interpret.

] zr =: }. S (0 1 2&,@[+//. 0 0 0&,@])"1&.|: C
0 0 0
0 1 1

I drop the first row of the result, which corresponds to the coins
set aside, because in the physical experiment these are not seen.
The table zr is interpreted thus: the rows correspond to left pan
and right pan, and the columns correspond to weighings. In the
first weighing the left and right pans were level. In the second and
third weighing the right pan was lower.

Now, if I take the difference of the left and right pan rows I get:
 -/}.S (0 1 2&,@[+//. 0 0 0&,@])"1&.|: C
0 _1 _1

At Play With J

242

And I need the 3s-complement of this:
 3|-/}.S (0 1 2&,@[+//. 0 0 0&,@])"1&.|: C
0 2 2

This tells me that in the first weighing the pans were level, and in
the last two the right pan was lower.

The dyad WR encapsulates the preceding steps:
 WR =: 13 : '3|-/ }. x. (0 1 2&,@[+//. 0 0
0&,@])"1&.|: y.'
] WL =: S WR C
0 2 2

The next step is to find the index of WL in either S or its
3s complement. The 3s complement is formed by taking the
3-residue of -S.This is laminated (,:) to S, forming SC:

] SC =: (,:3&|@-)S
2 2 2
0 1 0
1 0 1
1 1 2
1 2 1
0 2 2
2 1 1
2 0 0
1 1 1
0 2 0
2 0 2
2 2 1
2 1 2
0 1 1
1 2 2
1 0 0

By using rank 2 1 with the index of function. we can obtain the
indices in both planes of SC:

 SC i."2 1 WL
5 8

Since there are 8 items in each of the tables, the result 5 8 means
that the weighing list was found in item 5 of the first table, and
not at all in the second. This sequence is encapsulated in dyad WI:

 WI =: 13 : '((,:3&|@-)x.)i."2 1 y.'
 S WI WL
5 8

The Counterfeit Coin Problem

243

This has all the information needed for the answer. The index is
clearly the smaller of the two values. The heavier or lighter
indication is given by whether the index is in the first or second
table: if in the first, it is heavier; if in the second it is lighter. The
final result can thus be given by RW:

 RW =: 13 : '((<./y.),({&_1 1)</y.)'
 RW 5 8
5 1

This says that coin 5 is false, and it is heavier than a good coin.

To complete the problem, it would be necessary to provide for the
case where there isn’t a false coin. What happens then?

 S WI 0 0 0
8 8
 RW 8 8
8 _1

So the result when there is no false coin is an impossible index
and a lighter coin indication.

Solution to Schell’s Problem
Assume the eight coins are labeled A B C D E F G H. Then the
steps below show how to solve the problem with two weighings.
The first column gives the step number, and the next two columns
give the allocation of coins to pans. The three columns at the right
indicate the result of the weighing. After step 1, only one of either
step 2 or step 3 or step 4 is executed. Each of these steps has 3
possible outcomes. For example, if the result of step 1 is “right pan
high”, go to step 3, which tells us to place coin D in the left pan
and coin E in the right pan. If the left pan is now high, this means
that D is the false coin, and so forth.

step left pan right pan left pan high right pan high pans level

1 A B C D E F go to step 2 go to step 3 go to step 4

2 A B A B C

3 D E D E F

4 G H G H none

30 Second Order Josephus
First published in Vector, 18, 4, (April 2002), 132-138.

Every once in a blue moon this column is relatively easy to write.
This one almost writes itself. Just a short while ago I received an
intriguing message. It forms the bulk of this column. I’ve just had
to change a word here and there and adjust typography as
needed. Here’s how the message opens:

From bantchev@math.bas.bg Thu Jan 17 18:07:53 2002
Date: Fri, 30 Nov 2001 18:32:13 -0800 (PST)
From: Boyko Bantchev
To: forum@jsoftware.com
Subject: Second-order Josephus

In a recent posting Eugene McDonnell defined the verb S that gives
the survivor number for the Josephus problem (also in Vector 9/2
(1992)):
 S=. 1&|.&.#:
Now suppose that, for n persons, S(n) is not the survivor number,
but the one to be eliminated; i.e., every second person in a circle is
marked until only one remains—and that one is eliminated.

This leads to a “second-order survival problem”; having eliminated
S(n), start again from the beginning with the remaining n-1 people,
eliminate the one whose ordinal number in the new sequence is
S(n-1), then do the same with S(n-2) and so forth until only one is
left. What is the number S2(n) of the second-order survivor?

I must confess that my first reaction was somewhat guarded. I
wasn’t at all sure that this problem would lead to as much in the
way of theory as the original Josephus did. For example, the book
Concrete Mathematics, by Graham, Knuth, and Patashnik, devotes
a full nine pages to Josephus, and gives half a dozen Josephus
problems, in section 1.3. However, my mind was open, so I
plowed on. Bantchev’s message continues:

The verb

 E=: ((<:@[{.]),}.)yS@#
eliminates the S#y -th member from any list y, so, if:

 n=: 9
and

]y=: 1+i.n
1 2 3 4 5 6 7 8 9

At Play With J

246

 E y
1 2 4 5 6 7 8 9 NB. since 3=S 9
 Ex:2 y
2 4 5 6 7 8 9 NB. since 1=S 8
 Ex:3 y
2 4 5 6 7 8 NB. since 7=S 7
 Ex:4 y
2 4 5 6 8 NB. since 5=S 6
 Ex:5 y
2 4 6 8 NB. since 3=S 5
 Ex:6 y
4 6 8 NB. since 1=S 4
 Ex:7 y
4 6 NB. since 3=S 3
 Ex:8 y
6 NB. since 1=S 2

Therefore, 6 survives (6=S2(9)).

In general, we can set
 S2=: Ex:(<:@#)@(>:@i.)
but, in fact, it can be shown that, for any n > 1, S2(n) is
>: k+2x<:m when k<2x<:m , and 2xm otherwise, where
m =: <.2x.n (i.e.(n>:2xm) *. n<2x>:m) and k =: n-2xm.
So, S2 can be defined without resorting to E or S:
 S2 =: (>:@(1&,@({.+.}.)@}.&.#:))"0
and we can check the definition:
 S2 2+i.30
2 2 3 4 4 4 5 6 7 8 8 8 8 8 9 10 11 12 13 14 15 16
16 16 16 16 16 16 16 16

To my regret S2 is, though clearly inspired by the definition of S,
three times longer than S is, and not at all that elegant. But I did get
some fun while writing it, hence my posting it to you.
/Boyko

I studied this message for a while and was confused. Mr.
Bantchev gives a formula for S2 which seemed completely
different from the immediately preceding formulas. I couldn’t
reconcile:
 when k < 2 x <: m, S2(n) is >: k + 2 x <: m
 otherwise 2 x m
 m =: <. 2 x. n
 k =: n ¹ 2 x m
with:
 S2=: (>: @ (1 & , @ ({. +. }.) @ }. &. #:)) " 0

Second Order Josephus

247

The leap was too great. I decided to go step by step until I had a
better grasp of what was going on. I wrote this function, which
follows Boyko’s analysis faithfully:

Boyko =: monad define
n =. y.
m =. <. 2 x. n
k =. n - 2 x m
if.
 k < 2 x <: m
do.
 >: k + 2 x <: m
else.
 2 x m
end.
)

The argument to Boyko is an integer > 1. It yields the 2nd-order
Josephus survivor number of that integer:

 Boyko"0 [2+i.30
2 2 3 4 4 4 5 6 7 8 8 8 8 8 9 10 11 12 13 14 15 16
16 16 16 16 16 16 16 16 (B)

This agrees with the result of S2 in his message. The next step was
to take his S2 apart, piece by piece. I’ll repeat S2 here, so you can
follow the steps:

S2=: (>: @ (1 & , @ ({. +. }.) @ }. &. #:)) " 0

Taking 19 as argument, convert it to binary:
 #:19
1 0 0 1 1

Behead this:
 }.#:19
0 0 1 1

“Or” the head with the behead:
 ({.+.}.)}.#:19
0 1 1

Prefix a 1:
 1,({.+.}.)}.#:19
1 0 1 1

Find its base-2 value:
 #.1,({.+.}.)}.#:19
11

At Play With J

248

Add 1:
 >:#.1,({.+.}.)}.#:19
12

This validates, but doesn’t clarify, how S2 was put together. Since
we know that Mr. Bantchev was trying to arrive at a solution that
used the binary representations of numbers, I suspected that the
answer might be found by looking at the binary values of
argument and result side by side:

 q=:2+i.20
 (,.q);(#:q);(#:w);(,.w =: Boyko"0 q)
+--+---------+-------+--+
2	0 0 0 1 0	0 0 1 0	2
3	0 0 0 1 1	0 0 1 0	2
4	0 0 1 0 0	0 0 1 1	3
5	0 0 1 0 1	0 1 0 0	4
6	0 0 1 1 0	0 1 0 0	4
7	0 0 1 1 1	0 1 0 0	4
8	0 1 0 0 0	0 1 0 1	5
9	0 1 0 0 1	0 1 1 0	6
10	0 1 0 1 0	0 1 1 1	7
11	0 1 0 1 1	1 0 0 0	8
12	0 1 1 0 0	1 0 0 0	8
13	0 1 1 0 1	1 0 0 0	8
14	0 1 1 1 0	1 0 0 0	8
15	0 1 1 1 1	1 0 0 0	8
16	1 0 0 0 0	1 0 0 1	9
17	1 0 0 0 1	1 0 1 0	10
18	1 0 0 1 0	1 0 1 1	11
19	1 0 0 1 1	1 1 0 0	12
20	1 0 1 0 0	1 1 0 1	13
21	1 0 1 0 1	1 1 1 0	14
+--+---------+-------+--+

It takes a bit of study, but it should be possible eventually to
arrive at the S2 solution. Notice that the leading bit plays no role.
The significant bit is the second. When this is 1, the result will be
a power of 2, because the “or” of the second bit with the trailing
bits will produce all 1s, prefixing a 1 keeps them all ones,
converting this to integer will produce a result one less than a
power of two, and adding one to this will yield a power of two.
When the second bit is 0, the trailing bits are unaltered. When 1 is
prefixed, the result will be a power of two only when the trailing
bits are all 1, as in the case of 11. The binary form of 11 is 1 0 1 1;

Second Order Josephus

249

beheading gives 0 1 1; “or”ing 0 with 1 1 gives 1 1; prefixing 1
gives 1 1 1; converting to integer gives 7; adding one gives 8,
a power of two.

I’m guessing that Mr. Bantchev followed a process much like the
one I’ve described just above: finding the values with his algebraic
analysis, converting these to binary, and comparing them with the
binary form of the arguments. This is now enshrined in Sloane’s
On-Line Encyclopedia of Integer Sequences as sequence A066997.

I thought I had found an interesting property of (B). I noted the
indices (in 2-origin) of the first appearance of a power of two were
at indices 2, 5, 11, 23. I checked in the Online Encyclopedia of Integer
Sequences and found that it corresponded to sequence A055010.
The entry notes that these numbers, written in binary, are of the
form a(n) is 1011111−1. Furthermore, it gave the following
formula for a(n):

 a(n) = (3*2xn)-1

I sent a message to Henry Bottomley, the author of this entry, and
he in his reply alerted me to the existence of sequence A006165,
which is:

1 1 2 2 3 4 4 4 5 6 7 8 8 8 8 8 9 10 11 12 13 14
15 16 16 16 16 16 16 ...

This should be familiar, as it is the S2 sequence, with two leading
1s. I kicked myself for not having found this on my own, and
began to appreciate that Mr. Bantchev might be on to something
not completely trivial.

The entry for series A006165, gives two recursive formulas, one
for odd n, and the other for even:

a((2*n)+1) = a(n+1)+a(n) (A)
a(2*n) = 2*a(n) (B)

By a bit of finagling it’s possible to combine these two into one.
The ceiling and floor of (2*n)+1 are (n+1) and (n), as in (A)
above. The ceiling and floor of 2*n are both n, as in (B) above.
This makes it possible, for whatever integer, to get the result by
the same formula, which takes the sum of the ceiling and floor of
half the number. The explicit function A below takes as argument
the number of consecutive survivor numbers desired, and yields

At Play With J

250

that many. For an argument of 0 it yields an empty list, and for an
argument of 1 it yields a list whose item is 1.

A =: monad define
if.
 y. < 2
do.
 y. # 1
else.
 a =. 1 1
 while.
 y. > # a
 do.
 b =. (<. , >.) -: <: # a
 a =. a , + / b { a
 end.
end.
)

This duplicates A006165 faithfully. It differs from Bantchev’s
series in using offset 1. I found a much faster way to generate the
sequence. It forms two lists, first just the 1-origin integers, then
the extra powers of two needed:

 (>:i.+/2xi.y.)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 ;(#each+:)2xi.y.
2 4 4 8 8 8 8 16 16 16 16 16 16 16 16

Joins these, and sorts them:
1 2 2 3 4 4 4 5 6 7 8 8 8 8 8 9 10 11 12 13 14 15
16 16 16 16 16 16 16 16

Here is the high-speed Josephus 2 function:
 hsJ2=: 13 : '/:y(>:i.+/2xi.y.),;(#each+:)2xi.y.'

Its argument is the number of powers of 2 to use in generating the
lists, and the result is a list as long as twice the sum of those
powers of 2:

 2xi.4
1 2 4 8
 +/2xi.4
15
 +:+/2xi.4
30
 hsJ2 4
1 2 2 3 4 4 4 5 6 7 8 8 8 8 8 9 10 11 12 13 14 15 16 16
16 16 16 16 16 16
 #hsJ2 4
30

31 J be Nimble, J be Quick: Nim Addition
First published in Vector, 19, 1, (June 2002), 108-118.

Nim Addition
Nim is a simple game that someone knowledgeable playing
against someone naïve can almost always win. It was featured in
the 1960s film Last Year in Marienbad, where two men in a bar play
with a number of piles of matchsticks. The players, in turn, take
any number of matchsticks from any one of the piles. The object is
to be the player who takes the last match or matches. Its name
came perhaps from nimm, the third person singular imperative of
the German verb nehmen, meaning to take. The trick in Nim is
knowing that a position is either safe or unsafe, depending on
whether the Nim sum of the number of matches in each pile is or
is not zero. The Nim sum can be obtained by converting the
number of matchsticks in each pile to binary, and inserting not-
equals, or exclusive-or over this, then converting back to integer.
For example, if there are three piles, with three, five, and seven
matches in the piles, the Nim sum is obtained in three steps. First,
the binary forms of the numbers are taken:

 piles =: 3 5 7
 #: piles
0 1 1
1 0 1
1 1 1

The not-equal function yields the parity of its summands:
 y: / #: piles
0 0 1

This is converted to decimal:
 #. y: / #: piles
1

The function NS encapsulates this:
 NS =: y: / &. #: NB. not-equal insert dual
antibase
 NS piles
1

A safe move can be made if and only if the Nim sum of the piles is
not zero, meaning unsafe. If a position is safe, any move will
change it to unsafe. Furthermore, if the Nim sum of the piles is

At Play With J

252

nonzero, it can always be made safe by subtracting from one of
the piles. There will always be at least one such pile. For example,
given the piles 3 5 7, with Nim sum 0 0 1, we can subtract one
from any one of the piles. Thus, three different safe moves can be
made, resulting in one of 2 5 7 or 3 4 7 or 3 5 6.

 NS/"1 [2 5 7, 3 4 7,: 3 5 6
0 0 0

The choice of which pile to subtract from, when more than one is
a candidate, is arbitrary.

Now, suppose we have a Nim sum of a list of piles that is a bit
more complicated (the function h displays the binary form of the
piles and its binary sum):

 h =: ,. @ (#: ; [: y:/ #:)
 h 10 11 4
+-------+
|1 0 1 0|
|1 0 1 1|
|0 1 0 0|
+-------+
|0 1 0 1|
+-------+

The only solution for this is to subtract 3 from the last pile, which
yields 10 11 1:

 h 10 11 1
+-------+
|1 0 1 0|
|1 0 1 1|
|0 0 0 1|
+-------+
|0 0 0 0|
+-------+

There is a certain amount of art in playing a winning game of
Nim.

Nim multiplication
John H. Conway and Richard K. Guy have written The Book of
Numbers. I was encouraged to read this by Ken Iverson’s Lab
which uses J to explore many of the parts of this book. Its last
chapter is “Infinite and Transcendental Numbers”, and in it, to
my surprise, is a discussion of the game of Nim. Conway & Guy

J be Nimble, J be Quick: Nim Addition

253

coined the word nimbers for the ordinary decimal integers, in the
Nim context. I think they are confusing the numbers involved
with the functions used with them. Conway & Guy, in addition to
discussing Nim addition, also treat Nim multiplication, which
they state is valuable in studying the digital transmission of
information, in particular “the integral lexicographical code of
minimal distance 3”. They give a multiplication table for the first
sixteen nonnegative integers. They also write

And here’s all you need to know about the multiplication of nimbers:

If the ’larger’ of two different nimbers is 1 or 2 or 4 or 16 or 256 or
65536 or 4294967296 or ..., you multiply them just as you multiply the
corresponding ordinary numbers. The product of one of these special
nimbers with itself is obtained by taking 1½ times its ordinary value.

I found it impossible to use this rule for nimbers greater than 4. I
turned to Google for help, and found that Sloane’s On Line
Encyclopedia of Integer Sequences contained entries on Nim
multiplication which included a function which built a Nim
multiplication table. The problem was that the function was
written in Maple, and although I am able to read very simple
Maple, this one used built-in functions with meanings I couldn’t
grasp, even after I found a Maple manual on the Web. After
weeks of trying to come to terms with it, appealing for help to
several people I thought could help, but didn’t, I appealed for
help to the J discussion group on the Web and also wrote appeals
to Conway & Guy. Both pleas were successful; Mike Day read my
appeal to the J group, was able to decipher the Maple, and turned
it into J, and Professor Guy’s return letter gave me examples
showing more in detail how Nim multiplication was done. Here is
Mike Day’s function:
NB. Mike Day mt

nimsum =: y:/&.#:@,"0/y NB. EEmcD
sort =: /:y
nimtimes =: (< @: ,) { (mt @: >./) NB. exploit mt

NB. verb mt is a fairly close simulation of the maple
NB. source - not necessarily good J!
NB.
mt =: verb define
iN =. i. >: N =. y.
NB. ==

At Play With J

254

NB. lines 1 to 6
MT =. 0 $y 2 # N + 1 NB. initialise MT with 0 top &
left
MT =. iN 1 } MT NB. and indices in row 1
NB. MT =. iN 1 }"_1 MT NB. originally also in col 1
NB. - We can defer symmetrising and just work on diag
NB. and upper triangle
NB. ==
NB. lines 7 - 11 - should be able to cut out some loops
 NB. by eg recursion or scan
for_a. 2 }. iN do.
 for_b. iN }.y a do.
 t1 =. i. 0
 for_i. i. a do.
 for_j. i. b do.
NB. ==
 NB. lines 12-24 are preamble to line 25
 NB. references to stored AT where available
 NB. or nimsum where not avail. obscures the process -
 NB. This is ok on a fast m/c and/or for small N

 NB. line 25 (26 is a comment) ...
 NB. sort refs since using diag and upper triangle only
 refs =. sort each (i,b);(a,j);(i,j)
 t1 =. t1 , nimsum / refs { MT
NB. ==
 end. NB. line 27
 end. NB. line 28
NB. ==
 NB. line 29 - seems to require the nub
 t2 =. sort y. t1
NB. ==
 NB. lines 31 - 36 - locate first element of t2
 NB. not equal to its index
 j =. 1 i.y t2 y: i. # t2
NB. ==
 NB. line 37 only
 MT =. j (<a,b) } MT NB. don't need line 38
NB. ==
 end. NB. line 39
end. NB. line 40
NB. ==

NB. extra line to symmetrise
MT + (iN >/ iN) * |: MT
)

This function is a faithful translation of the Maple program. Day
made no pretense that this was good J. All credit is owed to him
for enabling others to contribute. Ken Iverson made some
revisions to Day’s function and I added my own changes.

J be Nimble, J be Quick: Nim Addition

255

Here is its latest manifestation:
mt=: monad define
iN=.i.N=.y.
MT=.(>.|:)iN 1}0$y,yN
for_a. 2}.iN do.for_b. a}.iN do.
 c=.a,b,|:(#:i.@*/)a,b
 r=.<"1[0 1|:(2 1,0 3,:2 3){c
 t=.y.(y:/&.#:)"1 r{"1 2 MT
 j=.(0:i.y]e.y[:i.2:+>./)t
 MT=.j((;|.)a,b)}MT
end.end.
)

The argument N=.y. is the size of the square desired. Nim
multiplication is commutative so the derivation of one
nondiagonal value allows its symmetrical twin to be created at the
same time. I use the term nonneg in order to shorten the phrase
nonnegative integer. The list iN of the first N nonnegs serves to
initialize row 1 and column 1, and is also used to determine the
values of the loop counters a and b. An NxN matrix of zeros is
created (0$y,yN) and row one is amended with iN; column 1 is set
by forming the maximum of this matrix and its transpose (>.|:).
For N=5 the result is:

 y.=:5
]iN=.i.N=.y.
0 1 2 3 4
]MT=.(>.|:)iN 1}0$y,yN
0 0 0 0 0
0 1 2 3 4
0 2 0 0 0
0 3 0 0 0
0 4 0 0 0

Having handled rows and columns 1 and 2 thus easily, the next
value we need to create is that in row 2, column 2. After that
comes the item in row 2 column 3 and row 3 column 2, and so on
until row 2 and column 2 is completed. Then comes 3 3 and 3 4
(and 4 3), and finally 4 4.

The process for 2 2 is as follows:
 a=.b=.2
 |:(#:i.@*/)a,b
0 0 1 1
0 1 0 1

At Play With J

256

This matrix gets two new rows, a row of all a’s on a row of all b’s.
The resulting four rows correspond to those labeled a, b, i and j
in the Maple function. Combinations of these rows can be
assembled so that critical values preceding the one currently
being made can be used according to a rule which I can’t explain,
since I don’t understand it.

]c=.a,b,|:(#:i.@*/)a,b
2 2 2 2
2 2 2 2
0 0 1 1
0 1 0 1

The actual selection uses items at 2 1 (i,b), 0 3 (a,j), and 2 3
(i,j).

 (2 1,0 3,:2 3){c
0 0 1 1
2 2 2 2

2 2 2 2
0 1 0 1

0 0 1 1
0 1 0 1

These are transposed by placing the first two axes at the end
(0 1|:)

 0 1|:(2 1,0 3,:2 3){c
0 2
2 0
0 0

0 2
2 1
0 1

1 2
2 0
1 0

1 2
2 1
1 1

J be Nimble, J be Quick: Nim Addition

257

In order for these to be used as indices to MT, their rows are boxed:
]r=.<"1[0 1|:(2 1,0 3,:2 3){c
+---+---+---+
|0 2|2 0|0 0|
+---+---+---+
|0 2|2 1|0 1|
+---+---+---+
|1 2|2 0|1 0|
+---+---+---+
|1 2|2 1|1 1|
+---+---+---+

The table of indices selects the needed values: (r{"1 2 MT), and
the Nim sums of the rows determined ((y:/&.#:)"1) and
duplicate sums are removed (y.)

 r{"1 2 MT
0 0 0
0 2 0
2 0 0
2 2 1
 (y:/&.#:)"1 r{"1 2 MT
0 2 2 1
 t=.y.(y:/&.#:)"1 r{"1 2 MT
 t
0 2 1

The mysterious part comes now. The value j to be stored at (a,b)
is the least nonneg not in t. Why this produces the Nim
multiplication of a and b is beyond me to explain.

The candidates for j are all in the first 2+>./t nonnegs:
 i.2+>./t
0 1 2 3

The ones already present in t are identified:
 t e.y 0 1 2 3
1 1 1 0

and j is the index of the first zero in this list:
 0 i.y1 1 1 0
3

Here’s the whole:
]j=.(0:i.y]e.y[:i.2:+>./)
3

At Play With J

258

and here is the finished 5×5 table:
 mt 5
0 0 0 0 0
0 1 2 3 4
0 2 3 1 8
0 3 1 2 12
0 4 8 12 6

We now know how to make a Nim multiplication table, and
I wanted to know how efficient this function was. I found that the
number of times t the inner j loop of Day’s program was used,
for differing sizes s of arguments, to be:

s t
2 4
3 19
4 55
5 125
6 245
7 434
8 714

The fifth difference of t is zero, so a polynomial of degree 4 can be
found:

 diff=:2: -y/\]
 t =: 4 19 55 125 245 434 714
 diff t
15 36 70 120 189 280
 diffx:2 t
21 34 50 69 91
 diffx:3 t
13 16 19 22
 diffx:4 t
3 3 3
 diffx:5 t
0 0

The polynomial is formed like this:
 x=:i.#t
 t %. xx/i.5x
4 97r12 43r8 17r12 1r8

These can be made the numerators for a rational polynomial:
]c=:24 2 3 2 3*4 97 43 17 1
96 194 129 34 3
 polyn=: c&p.%24&p.
 polyn i.7
4 19 55 125 245 434 714

J be Nimble, J be Quick: Nim Addition

259

I’ll make a slight detour here, to explore the result of polyn t
further. I found that the fourth degree polynomial for the figurate
numbers of order 5 is relevant. These numbers are those in the
fifth diagonal of the Pascal triangle. In fact, I found that a multiple
of these added to the figurate numbers of order 4 gives us our
numbers:

]p4=:3!3+i.7
1 4 10 20 35 56 84
]p5=:4!4+i.7
1 5 15 35 70 126 210
 p4+3*p5
4 19 55 125 245 434 714

The detour is over. Now I’ll use our polynomial to find how often
the inner loop is entered for a size 209 table:

 poly 209x
251673415

A quarter of a thousand million iterations seems excessive.

This makes clear how ridiculous and expensive it is to have to
make a 209×209 table in order to get the Nim product of 167 and
208! The letter I got from Professor Guy helps here. I had asked
him how to Nim multiply 8x8, and his letter showed how, and
also how to multiply 5 by 11.

Here it is. He uses the plus and times signs within circles, and I’ve
substituted + and *. I’ve also replaced his linear ordering of equal
statements with Iverson’s convention of placing them one below
the other.

Dear Eugene McDonnell,

Nim-multiplication is tricky, but you can probably catch on by
remembering to deal with the exponents in the same way that you
deal with numbers in nim-addition, namely split them into powers
of 2. Nim multiplication of powers of 2 is defined, in the first instance,
only for the ‘Fermat powers of 2’
 (2x2x0) = 2
 (2x2x1) = 4
 (2x2x2) = 16
 (2x2x3) = 256
 (2x2x4) = 65536
 ...

At Play With J

260

each, after the first, being the square of the previous one, but if
instead of ’square’ you mean ’nim-multiply by itself’, than the answer
is defined to be

 (x*x)
 (3%2)*x

(just if x is a Fermat power of 2).

To deal with other powers of 2, you work at one level higher up,
thinking of (2x13), for example, as (2x(8+4+1)) and use the
associative, commutative and distributive laws, e.g.,

 8*8
 (2x3)*(2x3)
 (2x(2+1))*((2x(2+1))
 (2x2)*(2x1)*(2x2)*(2x1)
 ((2x2)*(2x2))*((2x1)*(2x1))
 (4*4)*(2*2)
 6*3
 (4+2)*(2+1)
 (4*2)+(4*1)+(2*2)+(2*1)
 8+4+3+2
 13

To deal with numbers which are not powers of 2 leads to a
corresponding extra level of complication. E.g.,

 5*11
 (4+1)*(8+2+1)
 (4*8)+(4*2)+(4*1)+(1*8)+(1*2)+(1*1)
 (4*4*2)+8+4+8+2+1
 (6*2)+7
 ((4+2)*2)+7
 (4*2)+(2*2)+7
 8+3+7
 12

8 is the first power of 2 that is not a Fermat power, and the first place
where you run into any difficulty.

Best wishes,

Yours sincerely,

Richard K. Guy,
Faculty Professor of Mathematics
University of Calgary.

J be Nimble, J be Quick: Nim Addition

261

I end with a complete 16x16 Nim multiplication table:
+--+---+
| | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15|
+--+---+
0	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1	1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2	2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3	3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
4	4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5	5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
6	6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
7	7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
8	8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9	9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6
10	10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
11	11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
12	12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
13	13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
14	14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+---+

This is identical with Table 10.2 in the Conway & Guy book.

32 Beware Scholes
First published in Vector, 19, 3, (January 2003), 137-142.

Beware Scholes!
This article is about a J version of the Black-Scholes formulas, the
brainchild of Myron Scholes and the late Fischer Black. The docu-
ment: http://bradley.bradley.edu/~arr/bsm/pg04.html gives
a lot of information on the formula and its creators (which won the
surviving creator the Nobel Prize in economics in 1997), and if you
want to find out more about Black and Scholes or the theory behind
their formula, I recommend it.

A call is an option to buy a stipulated amount of stock at a specified
time and price, and a put is an option to sell ditto. A person might
acquire a call option who expects the price of the asset to rise. The
Black-Scholes formulas enable the seller of the option to determine
quite accurately what price to charge for such options.

Here are the formulas in conventional mathematical notation:

C = S N(d1) – X e (– r T)N(d2)

P = X e (– r T)N(–d2) – S N(–d1)

 ln(S / K) + (r + v2/ 2) T
d1 = ___________________
 v √T

d2 = d1 – (v √T)

C = Theoretical Call Premium
P = Theoretical Put Premium
r = Risk-Free Interest Rate
T = Time in years until strike date
N = Cumulative Standard Normal Distribution
ln = Natural Logarithm
S = Current Stock Price
X = Option Strike Price
v = volatility, or Standard Deviation of Asset Price.

At Play With J

264

Many different programming languages have been used to write
programs for these formulas. The document:
http://home.online.no/~espehaug/SayBlackScholes.html
contains a couple of dozen of these programs, written in these
languages:

C# O'Caml
C++ Pascal
Fortran Perl
Haskell PHP
HP48 Python
Icon Real Basic
IDL Rebol
JAVA Scheme
JavaScript S-Plus
K Squeak
Maple Transact SQL
Mathematica VBA
Matlab

The programs are in one of two forms, both adhering closely to the
original mathematical formulas shown above. Some have separate
programs for calls and puts; some exploit the family resemblance of
calls and puts and so write just one general program that requires an
additional parameter to indicate whether a solution for a call or a put
is desired. Here is a typical general program, this one written in C++:

Double BlackScholes(char CallPutFlag, double S, X,
T, r, v)
{
double d1, d2
d1=(log(S/X)+(r+v*v/2)*T)/(v*sqrt(T));
d2=d1-v*sqrt(T);
if(CallPutFlag) == 'c'
return S * CND(d1)-X * exp(-r*T)*CND(d2)
elseif(CallPutFlag == 'p')
return X * exp(-r * T) * CND(-d2) ¹ S * CND(-d1);
}

This program includes as its first argument the letter ’c’ for a call
option, and ‘p’ for a put option, and then discriminates between the
two by an if/elseif control structure. Otherwise, it follows the
Black-Scholes formulas closely. The entry includes a long separate
program for the required cumulative normal distribution function, as
do many of the other entries.

Beware Scholes

265

At present the document has no contribution written in J (or APL, for
that matter). The rest of this paper describes the evolution of J prog-
rams for the Black-Scholes formulas. Five different people made
transformations of the formulas that ended in a J version radically
different from all the others.

My attention was first called to this subject by a message from Hu
Zhe to the J Forum that uses separate functions for call and put.

load 'c:\j406\system\packages\stats\statdist.ijs'
cnd =: 3 : 'normalprob 0, 1,__,y.'
d1 =: 3 : 0
'S X T r v' =. y.
((x.S%X)+(r+-:*:v)*T)%(v*%:T)
)
d2 =: 3 : 0
'S X T r v' =. y.
((x.S%X)+(r--:*:v)*T)%(v*%:T)
)
BlackScholesCall =: 3 : 0
'S X T r v' =. y.
(S*cnd d1 y.) - (X*(x-r*T)*cnd d2 y.)
)
BlackScholesPut =: 3 : 0
'S X T r v' =. y.
(X*(x-r*T)*cnd -d2 y.) - (S*cnd -d1 y.)
)

These are reasonably concise and straightforward. They show what
was to be expected: that J, as well as any other programming
language, can translate the mathematical notation directly into
computer programs. Notice that he loads a J library function for the
cumulative normal distribution.

Shortly after this appeared, Oleg Kobchenko sent the following
version, a single function for both calls and puts, that incorporates d1
and d2:

BlackScholes=: 4 : 0
'S X T r v' =. y.
d1=. ((ln S%X)+(r+-:*:v)*T)%(v * sqrt T)
d2=. d1 - v * sqrt T
(S, X * exp-r*T) (-/ . * cnd)&(-x:x.) (d1, d2)
)

At Play With J

266

The lines forming d1 and d2 are like those in the C++ program. The
last line is an instance of array thinking. They exploit the similarity of
the call and put functions. The put option definition can be rewritten.

Here are the call and put options, with put in its new form.
c =: (s*cnd(d1))-((x*exp-r*t)*cnd(d2))
p =: -(s*cnd(-d1))-((x*exp-r*t)*cnd(-d2))

This shows that p differs from c solely in the use of negation of d1
and d2, and in negating the overall result. Kobchenko exploits this by
rearranging things so that a left argument of 0 or 1 discriminates call
and put, respectively,

More abstractly, the last line of his function can be written as:
a ((b c)&d) e
(d a)(b c)(d e)
(d a) b (c(d e))
(d a) b (c (d e))
(-x:x.)(S,X*x-r*T)(-/ . *) (cnd(-x:x.)(d1,d2))

This shows the conditional negation of the left and right hand sides,
the application of cnd to the right hand side, and the difference of the
product, so that for a call we would have:

c =: (s,x*exp-r*t) -/ . * cnd(d1,d2)

and for a put we would have:
c =: (-s,x*exp-r*t) -/ . * cnd(-d1,d2)

At the same time that Kobchenko was working on his array approach,
I had been working on the other main part of the program, the
formation of d1 and d2. I wrote down the definition of d2:

d2 =: d1 - v*%:t

Then I replaced d1 by its definition, and with a bit of algebra arrived
at:

d2 =: ((x.s%x)+(r--:*:v)*t)%(v * %:t)

and if you compare this with the definition for d1, you will find that
the only difference is that (r+-:*:v) is changed to (r--:*:v). This
being the case, it was simple to replace the two lines defining d1 and
d2 by a single line that forms a two-item list d that uses the fork
(+,-):

d =: ((x.s%x)+(r(+,-)-:*:v)*t)%v*%:t

Beware Scholes

267

This permitted the definition of BlackScholes to become:
BlackScholes =: dyad define
's x t r v' =. y.
d =: ((x.s%x)+(r(+,-)-:*:v)*t)%v*%:t
(s,x*x-r*t)(-/ .*cnd)&(-x:x.)d
)

The only thing about this that I found not to my liking was the need
to specify a left argument to indicate call or put. Happily for me, just
about this time Arthur Whitney posted a message to the K forum that
showed that v can be used to discriminate the two cases, by using it
positively for call, and negatively for put. Thus it became possible to
do without the left argument, and write:

BS =: monad define
'S X T r v' =. y.
d=.((x.S%X)+T*r(+,-)-:*:v)%v*%:T
-/(S,X*x-r*T) * cnd d
)

Notice that I have separated the parts of (-/ . *), giving, I believe, a
program easier to explain and understand.

Here are examples of call and put. The result for put is negative, and
this differs from the usual put result, which is positive. The negative
result can be useful to distinguish a call result from a put result. If a
positive put result is necessary, a magnitude sign (|) can be placed in
front of the last line of BS.

 yc=:60 65 0.25 0.08 0.3
 BS yc
2.13337
 yp=:60 65 0.25 0.08 _0.3
 BS yp
_5.84628

We haven’t ended quite yet. Perhaps you remember the article by
Ewart Shaw in Vector 18.4, in which he defined the error function erf
using J’s hypergeometric conjunction:

erf =: (*&(%:4p_1)%x@:*:)*[:1 H. 1.5*: NB. A&S
7.1.21 (right)

and then defined the cumulative distribution function of the normal
distribution by:
cnd =: [:-:1:+[:erf%&(%:2)
NB. A&S 26.2.29 (solved for P)

At Play With J

268

All of the functions written in other languages must do something
special to define cnd, either using a library function, or writing the
definition using approximation A&S 26.2.16.

I’m going to contribute BS, erf, and cnd to the Black-Scholes web site,
but in the following training-wheels versions so that the innocent
reader may come close to understanding them without having to
learn any J.

BS =: monad define
'S X T r v' =. y.
d=.((ln S dv X) + T * r (+,-) hlf sqr v) dv (v *
sqrt T)
diff (S , X * exp - r * T) * cnd d
)
erf =: monad define NB. A&S 7.1.21 (rightmost)
((2 * y.) dv (sqrt pi)) * (exp - y. x 2) * (1 H.
1.5) y. x2
)

cnd =: monad define NB. A&S 26.2.29
(solved for P)
(1 + erf y. * sqrt 0.5) dv 2
)

Where:
diff =: -/
dv =: %
exp =: x
hlf =: -:
ln =: x.
pi =: 1p1
sqr =: *:
sqrt =: %:

33 Pick A Card, Any Card
First published in Vector, 19, 4, (April 2003), 101-107.*

Introduction
The crowd sits and waits, eagerly anticipating the showman’s grand
entrance. Eventually he arrives, bringing his glamorous assistant and
a pack of cards with him. He selects a volunteer from the audience
and asks them to pick five cards out of the pack and give them to the
assistant, without of course seeing them himself. The assistant then
shows him four of the cards, and, after a suitable dramatic pause, the
showman identifies the fifth. The crowd applauds, and the magician
and his assistant leave after a few repeats to show it wasn’t a fluke.

Those of you who were at last month’s Finnish conference will
already have seen this spectacle, know that the showman in question
is actually Adrian, and moreover will know the twist, which is that
the assistant is not a 5’6” blonde but a 4” by 2” grey box which comes
with a screen and a stylus.

I’m sure that some of you asked him afterwards how he did it, and I
suspect that instead of the usual “Magic!” he said “Wait for the next
Vector”; this article shows you how the trick works and how the
digital Esmerelda is written. (Of course, the assistant is far more
important than the magician.)

The Trick
Anyone who reads New Scientist can skim-read this section, as the
trick follows the same principle as that described in one of its recent
articles. However, it is obviously vital to understand the trick before
trying to understand the implementation.

The interesting nature of this trick stems from the fact that using a
simple analysis, it would seem to be impossible. 4 cards can only
encode 4!, or 24, combinations, while there are 48 options for the fifth
card. We can narrow it down by using one of the cards to pin down
the suit of the fifth (there must be at least 2 cards which share a suit in
the five), but then we only have 3 cards, giving 3! or 6 combinations,
to account for 12 possibilities.

* The original attribution read: “by Gene McDonnell and Richard Smith”.

At Play With J

270

The secret, of course, lies in the ordering of the cards. Because the
assistant gets to choose which of the five cards is hidden, she can
choose such that the hidden card is within 6 of the visible card in that
suit. For example, if two of the cards were the 10 and 2 of spades,
hiding the 10 would not work (10 − 2 = 8, which is more than 6), but
hiding the 3 gives a difference of 5 (J-Q-K-A-2). There is always a way
to arrange two cards in a suit so this is true.

Now we can use the 6 combinations of the other three cards,
combined with a suit card, to find the missing card. We take the
relative sizes of the cards, and use their order to generate a number: 1
for small-medium-large, 2 for small-large-medium all the way up to 6
for large-medium-small. Then add this number to the number on the
exposed card of the suit to find the missing card.

There is one small complication – what if we have, say, two 3’s? We
define the suits to have an order, so that the 3 of spades is ‘higher’
than hearts, diamonds or clubs.

The Implementations
Both of us have produced an implementation of Esme; Gene’s is
written in J and Richard’s is in Dyalog APL. (Richard’s is the one you
may have seen in Finland, running under Pocket APL.) Both are very
simple and easy to follow.

Gene’s Version
suits =: '♣♦♥♠'
values=: 'A23456789TJQK'

A♣ 2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣
A♦ 2♦ 3♦ 4♦ 5♦ 6♦ 7♦ 8♦ 9♦ 10♦ J♦ Q♦ K♦
A♥ 2♥ 3♥ 4♥ 5♥ 6♥ 7♥ 8♥ 9♥ 10♥ J♥ Q♥ K♥
A♠ 2♠ 3♠ 4♠ 5♠ 6♠ 7♠ 8♠ 9♠ 10♠ J♠ Q♠ K♠

Here is a sketch showing the results of the steps in performing the
magical trick.

The argument is list of 5 distinct integers from i.52.
 y. =: 45 24 49 20 40
 vsi y.
+--+--+--+--+--+
|7S|QD|JS|8D|2S|
+--+--+--+--+--+

Pick A Card, Any Card

271

Sort the integers and append them below a 2 × 5 table of suits and
values.

 sv =. ((] , y [: |: 4 13 " _ #:]) @ /: y) y.
 sv
 1 1 3 3 3
 7 11 1 6 10
20 24 40 45 49

Get a list of sublists, each sublist giving the indices of cards having
the same suit.

 ta =. ({. < /. 0 1 2 3 4 " _) sv
 ta
+---+-----+
|0 1|2 3 4|
+---+-----+

Select the sublists having more than one card.
 tb =. (] # y 1: < [: # & >]) ta
 tb
+---+-----+
|0 1|2 3 4|
+---+-----+

Select one of these sublists at random.
 tc =. (> @ ({ y ? @ #)) tb
 tc
2 3 4

Select two of its indices at random, preserving order.
 td =. (] { y /: y @ (2 & ?) @ #) tc
 td
2 4

Move the two columns with the selected indices to the front.
 pc =. td(([:([,] -. y 0 1 2 3 4 " _)[) { " 1 [: }.])sv
 pc
 1 10 7 11 6
40 49 20 24 45

Find the commuted difference of the first two columns of the value
row. This is positive, in the range 1-12. Take top row only of result,
and append difference.

 cd =. ((([: - y / 2: {. {.) , y {:) @ }.)pc
 cd
40 49 20 24 45 9

At Play With J

272

If the tail is less than 7, delete the second item, otherwise the first.
 dc =. (([: < [: < [: < {: < 7:) {]) cd
 dc
49 20 24 45 9

If the tail is less than 7, leave it unaltered; otherwise replace it by 13 -
tail.

 ce =. ((] ` (13 & | @: -) @. (7 & <:)) {: dc)4 } dc
 ce
49 20 24 45 4

Determine which special permutation to apply, using the tail value as
determinant; drop the tail; apply the permutation.

 rs =: (((5 3 & p. - -. @ (2 & |)) {: ce) A. i. 4) { }: ce
 rs
24 45 49 20
 vsi rs
+--+--+--+--+
|QD|7S|JS|8D|
+--+--+--+--+

The magician sees that the third card is a spade, and that the other
cards are in the order 1 2 0, which is the fourth permutation of order
3. The fourth card beyond JS is 2S. QEF.

Richard’s Version
This implementation is very much in the same mould, with ĩIO set to
0 so as to match the J. Here is the code for the core algorithm, together
with the (totally minimal) user-interface to make it workable in the
field on Pocket APL:

 û Go;inp;deck
[1] ć Run ESME simulator
[2] 'Tell me the 5 cards ...'
[3] 'Suits are CDHS and cards'
[4] 'range from A,2 to 9,TJQKA'
[5] 'e.g. 5s 8d 3c 4h as'
[6] ' '
[7] Next:ĆĦ'>'
[8] inpĦ1Ā,Ć Ɗ ħ(Ρinp)ĀDone
[9] deckĦòCards2Nums inp
[10] ħ(5sΡdeck)ĨBadboy
[11] ħ(x/deck<52)ĀBadboy
[12] 'Say these 4 ...' Ɗ ' '
[13] Nums2Cards Esme deck
[14] ' ' Ɗ '(in this order!)' Ɗ ' '
[15] ħNext
[16] Badboy:'Try to fool me eh!'
[17] 'We need 5 distinct cards here ...' Ɗ ' '
[18] ħNext
[19] Done:'Easy, for a PocketAPL'
 û

Pick A Card, Any Card

273

 û nvĦCards2Nums str;lkp;vtv
[1] ć Look up names and return card index
[2] lkpĦ,Ănamesô.,suits
[3] vtvĦ1Ā¨(+\1,strö', /;')ð',',toupper str
[4] nvĦlkpΙvtv
 û

 û rĦEsme cards;sv;ta;tb;tc;td;pc;cd;diff;dc;ĩIO;ĩML
[1] ć Do the sorting. See MagicCD.doc
[2] ĩIOĦ0
[3] ĩMLĦ3 ć for partition enclose
[4] svĦ{3 5Ρ{(îΩ÷13),(13|Ω),Ω}Ω[ąΩ]}cards
[5] taĦ(1+sv[0;])ðΙ5
[6] tbĦ({1ö1<ΡΩ}¨ta)/ta
[7] tcĦ0ïtb[?Ρtb]
[8] tdĦtc[{Ω[ąΩ]}2?Ρtc]
[9] pcĦsv[1 2;td,((Ι5)ytd)]
[10] cdĦpc[1 0;] Ɗ diffĦ,--/1 2Ĩpc
[11] dcĦ((6pdiff),(6<diff),1 1 1)/cd
[12] :If 6<diff Ɗ diffĦ13-diff Ɗ :End
[13] dcĦdc[0;0,1+ądc[1;1 2 3]] ć Reorder numerically
[14] rĦdc[(diff-1)ï∆perms]
 û

 û vtvĦNums2Cards nv;lkp
[1] ć Report names
[2] lkpĦ(,Ănamesô.,suits),ð'??'
[3] vtvĦtolowerČlkp[nv]
 û
names suits
 A23456789TJQK CDHS
∆perms
 1 2 0 3 1 3 0 2 2 1 0 3 2 3 0 1 3 1 0 2 3 2 0 1
 Go
Tell me the 5 cards ...
Suits are CDHS and cards
range from A,2 to 9,TJQKA
e.g. 5s 8d 3c 4h as

>5c 9d ad th 2c
Say these 4 ...

 9d ad 2c th

(in this order!)

>
Easy, for a PocketAPL

There is still a small amount of brain-work left for the magician – in
this case the thought process would be “It’s a club. Nine,Ace,Ten is

At Play With J

274

Medium,Small,Large (Ace is low) which is 3 on our scale of 1-6
(SML→LMS) so 2+3 is the Five of Clubs.” As for the ‘inverse’
function, it could be an exercise for the reader, but it would take
longer to enter the data than it takes to do the logic in your head.
Anyway, people would suspect a WiFi network!

34 Greed
First published in Vector, 20, 1, (July 2003), 117-121.

My first experience of the British monetary system was in early 1953,
in London. As was the case with many other visiting Americans, I felt
daunted by the pound-shilling-pence currency. I had no idea what
value the coins had. At a kiosk I picked up a newspaper, and then,
expecting that a newspaper would be sold for just a few pennies,
tendered, from the handful of coins I had, a smallish one. The vendor
rapidly poured into my hand so many coins in change that I was
completely unnerved. I took on faith that this was not a mistake, but I
realized that I had better study the coins much more than I yet had.
To this day I don’t know what the coin was that produced such a
flood of change. To solve the problem, I got in the habit, when I
bought something, of just holding out a handful of coins, expecting
that sturdy British honesty would ensure that vendors would take
only the coins that would satisfy the transaction. This seemed to work
quite well.

This paper discusses the problem of making change. When change is
made in a store, we are used to seeing the clerk reach into the till and
then take coins from its separate compartments. Unless there is a
shortage of one or more coins, this is done by taking as many of the
largest coin as are needed, followed by as many of the next largest,
and so on, down to the penny. This almost instinctive method is
called the greedy algorithm by computer scientists. The design of
many, if not all, currency systems is such that the greedy algorithm
also minimizes the number of coins that make up the amount of
change.

I’ll represent a set of coins by a list of the values in descending order.
For example, the set of coins in the US* is 25 10 5 1; the coins are
called, in order, quarter, dime, nickel and cent, or penny. The list for
European coinage is 200 100 50 20 10 5 2 1. In order to be able to give
just 1 pence in change it is necessary that every coinage set have as its
least coin one that is worth just one penny. The change itself can be
represented by a corresponding list with the values showing the

* There is a 50-cent piece in the US, but it is rarely used; the half-dollar is as
rare in circulation as the two-dollar bill—which is very rare.

At Play With J

276

number of coins of each denomination used. For example, 99 pence
change in the US would be represented by 3 2 0 4; in Europe by 0 0 1 2
0 1 2 0.

Although the greedy algorithm will give the fewest coins possible for
any amount of change, it is not necessarily the case that existing
coinage systems give the fewest number of coins possible. Jeffrey
Shallit [1] recently suggested (with tongue firmly planted in cheek)
that in order to make it possible in the United States to make change
using the fewest coins, and still using just four values, the coinage
should be replaced by one having coins worth either 25 18 5 1 or 29 18
5 1 cents. He showed that with the existing coins, assuming all values
from 0 to 99 to occur equally often, which he admits may be far from
the truth, the average number of coins needed to give change is 4.7;
with either of his suggested sets only 3.89 coins would be needed. He
recommended the 25 18 5 1 set, since only the 10-cent piece would
need to be changed. To show the benefit of the proposal, note that to
give 36¢ change, the minimum number of coins with the current
system is three: 1 1 0 1; with the alternative, only two are needed: 0 2
0 0.

Shallit points out that there is a problem with his suggested change,
and it has to do with the failure of the greedy algorithm. For example,
to give 36¢ change using the set 25 18 5 1, the greedy algorithm gives
the four-coin solution 1 0 2 1, but the optimal solution, as shown
above, needs only two coins: 0 2 0 0. If a coinage system was such that
the greedy algorithm was not always optimal, it would require such
expertise in all those who make change to do so optimally that, if for
no other reason, it would simply be too impractical. In the rest of this
paper I’ll concentrate on a set of J functions for the greedy algorithm.

A Greedy J Algorithm
In looking for a solution to a programming problem, I frequently try
to picture the steps required. For the greedy algorithm, the picture
that eventually stabilized was of two linked lists: one, a list A,
beginning with a list of the number of coins needed for each coin
considered so far, initially empty, followed by the total amount of
change needed; the second list, C, was of the coins not yet considered,
initially the complete coinage set in descending order. The two lists
were linked to form the list AC. Assuming these two lists were
available, the processing required to obtain the next result was to

Greed

277

replace the last item of A by the quotient and remainder of this last
item divided by the leading coin of C, and C was then modified by
removing its leading item. For example, assuming that a function CS
was available, that performed one step of the change process, the
steps in obtaining 99 pence change in the Euro system would be:

 EU =: 200 100 50 20 10 5 2 1
 A =: (i. 0) , 99
 C =: EU
] AC =: A ; C
+--+----------------------+
|99|200 100 50 20 10 5 2 1|
+--+----------------------+
] AC =: CS AC
+----+------------------+
|0 99|100 50 20 10 5 2 1|
+----+------------------+
] AC =: CS AC
+------+--------------+
|0 0 99|50 20 10 5 2 1|
+------+--------------+
] AC =: CS AC
+--------+-----------+
|0 0 1 49|20 10 5 2 1|
+--------+-----------+
] AC =: CS AC
+---------+--------+
|0 0 1 2 9|10 5 2 1|
+---------+--------+
] AC =: CS AC
+-----------+-----+
|0 0 1 2 0 9|5 2 1|
+-----------+-----+
] AC =: CS AC
+-------------+---+
|0 0 1 2 0 1 4|2 1|
+-------------+---+
] AC =: CS AC
+---------------+-+
|0 0 1 2 0 1 2 0|1|
+---------------+-+
] AC =: CS AC
+-----------------++
|0 0 1 2 0 1 2 0 0||
+-----------------++

At Play With J

278

The process stops when there are no more coins to be used. Since the
last divisor is 1, only the quotient is germane, and after razing AC, the
spurious remainder is discarded, forming the result R. A vector
product shows that the number of coins provided does indeed give
the needed amount of change:

] R =: }: ; AC
0 0 1 2 0 1 2 0
 EU +/ . * R
99

We’ll start by building the nuts and bolts that go into making CS. This
involves developing a new A and a new C, and linking them.

 CS =: NA ; NC

The new A is formed by curtailing A and appending the result of the
quotient-remainder function QR.

 NA =: CA , QR

CA is straightforward:
 CA =: }: @ > @ {.

QR uses the quotient-remainder primitive of J: the quotient and
remainder of X divided by Y is given by (0,Y)#:X. For example, the
quotient and remainder of 99 divided by 50 is 1 49. The two-part
divisor is formed by appending the head of C, which is the largest
remaining coin, to 0. The head of C is trivial:

 HC =: {. @ > @ }.

The divisor is:
 DR =: 0: , HC

The dividend is the current tail of A:
 TA =: {: @ > @ {.

And QR is now easily formed:
 QR =: DR #: TA

The new A is the curtailed current A appended with QR.
 NA =: CA , QR

The new C is just the behead of the old C:
 NC =: }. @ > @ {:

Greed

279

CS can now be used to obtain the successive results, as shown above.
We need to find the number of times CS should be used, which is the
number of coins in the coinage system, given by NS:

 NS =: # @ > @ }.

A function which executes the change step function CS the correct
number of times is ES:

 ES =: CS x: NS

After CS has been executed the proper number of times, the result is
still two linked lists, the first list having a spurious item at the end,
and the second list empty. To get the final result, the result of ES is
razed and curtailed. The outermost function which encapsulates all
that has preceded is MC:

 MC =: }: @ ; @ ES

You’ll notice, I’m sure, that this is a great many defined functions.
Perhaps it says something about my attention span. I prefer to think
that by making every function as simple as possible, with as few steps
as are meaningful, it is easier for me to test for errors as I go along.
Since J has the fix adverb (f.), it is easy to obtain a single longish
function, which on my computer executes eleven times faster,
although when displayed it probably appears quite daunting. It’s not
necessary to look at the result of fix, any more than one would look at
the result of compiling a program written in a compiler environment.

For the diehard masochist, I offer:
] q =: 5 !: 5 < 'MCf' NB. in character form
}:@;@(((}:@>@{. , (0: , {.@>@}.) #: {:@>@{.) ;
}.@>@{:)x:(#@>@}.))

Notice that of the 45 tokens, ten are parentheses. The line above may
make more sense if I use words for most of the tokens:

curtail@raze@(((curtail@A , (0 , head@C) #:
tail@A) ; behead@C) x: (tally@C))

At Play With J

280

For convenience, here are the functions that have been defined, in
top-down order:

MC =: }: @ ; @ ES NB. make change: curtail
raze IS
ES =: CS x: NS NB. iterate change step NI
times
NS =: # @ > @ }. NB. how many iterations:
count C
CS =: NA ; NC NB. change step: new A link
new C
NC =: }. @ > @ {: NB. behead C
NA =: CA , QR NB. new head: curtail A,
 NB. append QR
CA =: }: @ > @ {. NB. curtail A
QR =: DR #: TA NB. divisor antibase tail A
TA =: {: @ > @ {. NB. tail A
DR =: 0: , HC NB. divisor: 0, head C
HC =: {. @ > @ }. NB. head C

Reference
[1] Shallit, Jeffrey, What this country needs is an 18¢ piece. Math.

Intelligencer 25, 2, (2003), 20-23. Also available at Shallit’s website:
http://www.math.uwaterloo.ca/~shallit/papers.html.
This gives pointers to the paper in two forms: PostScript and PDF.

35 The Magical Matrix
First published in Vector, 20, 2, (October 2003), 122-126.

Christ! What are patterns for?
 Amy Lowell, “Patterns”

Books on combinatorial subjects seem to believe that results are
obtained seriatim, that the problem is to find the next combination or
permutation or partition. Such is the case in the book Combinatorial
Algorithms. [1] It is also the way the latest chapters in Knuth’s Art of
Computer Programming treat these topics [2]. Roger Hui, on the other
hand, takes a more organic view, and his programs all grow an entire
table from a seed. This article discusses perm, his algorithm for
obtaining permutation tables, using a magical matrix. I call it that
because, in studying his algorithm I stumbled hard against the critical
part of his algorithm that used it, and puzzled over it for a long, long
time before I could see how it worked. When I did finally understand
it, all I could say was that it was magic.

Here are the tables of all the permutations from one to four:
+-+---+-----+-------+
0	0 1	0 1 2	0 1 2 3
	1 0	0 2 1	0 1 3 2
		1 0 2	0 2 1 3
		1 2 0	0 2 3 1
		2 0 1	0 3 1 2
		2 1 0	0 3 2 1
			1 0 2 3
			1 0 3 2
			1 2 0 3
			1 2 3 0
			1 3 0 2
			1 3 2 0
			2 0 1 3
			2 0 3 1
			2 1 0 3
			2 1 3 0
			2 3 0 1
			2 3 1 0
			3 0 1 2
			3 0 2 1
			3 1 0 2
			3 1 2 0
			3 2 0 1
			3 2 1 0
+-+---+-----+-------+

At Play With J

282

The bold portion of the 4-table is one plus the 3-table; that of the 3-
table is one plus the 2-table; and even, quite trivially, that of the 2-
table is 1 plus the 1-table. Hui’s algorithm is recursive for arguments
2 or greater. For arguments 0 and 1 it simply returns ,.y.$0, which
gives an empty table with shape 1 0 when y. is 0, and a table of shape
1 1, having the single value 0, when it is 1. The table of order 1 is the
seed used to grow all the larger tables. If we want the table of order 4
this means that we have to go back to the seed to get the table of
order 2, then the table of order 3, before we work on the one we want,
of order 4.

Assuming we have the table of order 3, we can get what we need by
adding 1 to it, then prefixing 0 to each row:

] p3=:0,.>:perm 3 NB. prefix 0 to rows after
adding 1
0 1 2 3
0 1 3 2
0 2 1 3
0 2 3 1
0 3 1 2
0 3 2 1

After studying the code that produced this, I was sure it was going to
be worked on in such a way that three more analogous tables would
be made and strung together with it to give the desired result. But as I
looked more at Hui’s function I couldn’t believe what I saw: it
appeared that it was going to be used as an index! What in the world
was happening? The thing being indexed was table mm:

] mm =: \:g1=i.4
0 1 2 3
1 0 2 3
2 0 1 3
3 0 1 2

I was sure that mm should be the index and p3 the thing indexed.
I tried various ways of doing this, ending with:

 qw=:mm{"2 1 p3
 $qw
6 4 4
 ;/qw
+-------+-------+-------+-------+-------+-------+
0 1 2 3	0 1 3 2	0 2 1 3	0 2 3 1	0 3 1 2	0 3 2 1
1 0 2 3	1 0 3 2	2 0 1 3	2 0 3 1	3 0 1 2	3 0 2 1
2 0 1 3	3 0 1 2	1 0 2 3	3 0 2 1	1 0 3 2	2 0 3 1
3 0 1 2	2 0 1 3	3 0 2 1	1 0 2 3	2 0 3 1	1 0 3 2
+-------+-------+-------+-------+-------+-------+

The Magical Matrix

283

This can’t be right, because, for example, the row 1 0 2 3 appears
three times. In order to show you how I was at last able to understand
this strange indexing, I’ll show the proper table of order 4 with its
four sections side by side:

 ;/_6]\perm 4
+-------+-------+-------+-------+
0 1 2 3	1 0 2 3	2 0 1 3	3 0 1 2
0 1 3 2	1 0 3 2	2 0 3 1	3 0 2 1
0 2 1 3	1 2 0 3	2 1 0 3	3 1 0 2
0 2 3 1	1 2 3 0	2 1 3 0	3 1 2 0
0 3 1 2	1 3 0 2	2 3 0 1	3 2 0 1
0 3 2 1	1 3 2 0	2 3 1 0	3 2 1 0
+-------+-------+-------+-------+

Studying this I at last saw the pattern that Hui was using. The actors
are typecast in the first section, with 0, 1, 2 and 3 playing themselves.
In the second, actors 0 and 1 change roles; in the third, the three
actors 0, 1 and 2 play the roles of 1, 2 and 0; in the last all four actors
are in disguise: 0 acts as 1, 1 acts as 2, 2 acts as 3, and 3 acts as 0. If you
look at the first rows of each of the four sections, you’ll see that they
are exactly the rows of mm, the magical matrix!

Now we have to study how the magical matrix was produced. The
first part gets the cast of actors:

 i.4
0 1 2 3

Classifying this gives an identity matrix:
 =i.4
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

And last, each row is replaced by its downgrade:
] mm=:\:"1=i.4
0 1 2 3
1 0 2 3
2 0 1 3
3 0 1 2

Now, if we index each row of mm with all of p3, we get an array of
four 6 by 4 tables:

At Play With J

284

 p3{"2 1 mm
0 1 2 3
0 1 3 2
0 2 1 3
0 2 3 1
0 3 1 2
0 3 2 1
1 0 2 3
1 0 3 2
1 2 0 3
1 2 3 0
1 3 0 2
1 3 2 0
2 0 1 3
2 0 3 1
2 1 0 3
2 1 3 0
2 3 0 1
2 3 1 0
3 0 1 2
3 0 2 1
3 1 0 2
3 1 2 0
3 2 0 1
3 2 1 0

Last, join the tables:
 ,/p3{"2 1 mm
0 1 2 3
0 1 3 2
0 2 1 3
0 2 3 1
0 3 1 2
0 3 2 1
1 0 2 3
1 0 3 2
1 2 0 3
1 2 3 0
1 3 0 2
1 3 2 0
2 0 1 3
2 0 3 1
2 1 0 3
2 1 3 0
2 3 0 1
2 3 1 0
3 0 1 2
3 0 2 1
3 1 0 2
3 1 2 0
3 2 0 1
3 2 1 0

The Magical Matrix

285

And this gives the desired result. The same process works for tables
of all sizes greater than one.

Here is perm in all its flabbergasting entirety:
perm=: 3 : 'if.1>:y.do.,:y.$0 else.,/(0,.perm
 &.<:y.){"2 1\:"1=i.y. end.'

Sometimes I feel that Hui has an advantage over the rest of us, even
more than is given him by his native intelligence. Since he wrote it all,
and keeps improving it, he must have an instinctive knowledge of the
performance of each of its parts, and thus can (usually) write
functions that are faster than those written by the rest of us. I suspect
that indexing is one of the fastest ways to do selecting, and thus perm
is likely to be the fastest way to build permutation tables.

References
[1] Nijenhuis, A., Wilf, H. S., Combinatorial Algorithms. Academic Press,

New York, (1978).

[2] Knuth, D., (home page):
http://www-cs-faculty.stanford.edu/~knuth/news.html

Pre-Fascicle 2a: Generating all n-tuples (version of 29 Aug 2003)

Pre-Fascicle 2b: Generating all permutations (version of 29 Aug 2003)

Pre-Fascicle 2c: Generating all combinations (version of 29 Aug 2003).

36 Giddyap
First published in Vector, 20, 3, (January 2004), 117-122.

Giddyap
The OED doesn’t have a giddyap entry; the Concise Oxford Dictionary
has a giddap entry; Webster 3 has an entry for giddap, giddyap, giddyup.
I think it must be a children’s word; I don’t think I’ve ever heard it
used by an adult.1 When I was 70 or so years younger I know that
when I pretended I was riding a horse – which was surprisingly often
– I swung my imaginary whip on my imaginary horse as I pranced
about, shouting giddyap with every stroke of the whip. I find it to be a
suitable title because the article deals with a problem concerning
horseraces, and also treats of the speeding up of programs that solved
the proposed problem. The answer to the problem turned out to be an
old friend of mine.

I don’t recall now where it was that I found the problem, but when I
ran across it, it sounded as if it might a suitable challenge for the J
Forum. In any event, on September 25 I sent this message to the J
Forum:

N horses enter a race. Given the possibility of ties, how many
different finishes to the horse race exist? Write a program that shows
all the possibilities.

By way of example: here is the solution by brute force for N=3. There
are 13 solutions. horses are named a, b and c. The expression {{b,c},a}
denotes a finish in which b and c tie for first and a comes in next.

{a, b, c}, {a, c, b}, {b, a, c}, {b, c, a}, {c, b, a}, {c, a, b}, {a,{b,c}}, {{b,c},a},
{b,{a,c}}, {{a,c},b},{{c,{a,b}},{{a,b},c},{{a,b,c}}

1 It was shortly after writing this that I attended a Choral Christmas Spectacular at
San Francisco’s Davies Symphony Hall with my granddaughter and wife, and heard
3000 adults singing the second stanza of a song called “Sleigh Ride”, which goes:

Giddyyap, giddyyap, giddyyap, let’s go. Let’s look at the show.
We’re riding in a wonderland of snow.
Giddyyap, giddyyap, giddyyap, it’s grand just holding your hand.
We’re gliding along with a song of a winter fairyland.

Notice the fourth variant in spelling of the key word.

At Play With J

288

Methods for finding how many different Finishes
There were over two dozen responses over the next two weeks. The
first response misunderstood the problem, and assumed that a race
with three horses was the only one to consider. Since I had already
given the solution of this one, it was clear that more had to be done
than to submit the number 13. The answers to the first question, the
number of solutions, were various. The brute force way is good only
for the first few number of horses – the answer for eight horses is
already 545,835. The nicest early entry used a table of Stirling subset
numbers and factorials to give the number of different finishes
effectively:

] fc=:!i.9
1 1 2 6 24 120 720 5040 40320
] s8=:subsets 8
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 1 3 1 0 0 0 0 0
0 1 7 6 1 0 0 0 0
0 1 15 25 10 1 0 0 0
0 1 31 90 65 15 1 0 0
0 1 63 301 350 140 21 1 0
0 1 127 966 1701 1050 266 28 1
 s8 +/ . * fc
1 1 3 13 75 541 4683 47293 545835

Here’s another way that uses curtailed binomial lists and the list of
terms so far found:

 1 +/ . * 1
1
 1 2 +/ . * 1 1
3
 1 3 3 +/ . * 1 1 3
13
 1 4 6 4 +/ . * 1 1 3 13
75
 1 5 10 10 5 +/ . * 1 1 3 13 75
541

Which can be done either iteratively or recursively.

Still another way to get the number of different finishes uses the
Weighted Taylor coefficient adverb t: defined in the J Dictionary as:

Giddyap

289

“The result of u t: k is (!k)*u t. k”. In other words, the coeffic-
ients produced by t: are the Taylor coefficients weighted by the fact-
orial. As a consequence, the coefficients produced by it when applied
to functions of the exponential family show simple patterns. For this
reason it is sometimes called the exponential generating function.

The exponential generating function for the our numbers is (1/(2-en))
so we can write a function fn using it, modified by the Weighted
Taylor adverb:

 fn =: (%@(2: - x)) t:
 fn 8
545835
 fn i. 9
1 1 3 13 75 541 4683 47293 545835

All of these methods are discussed in Sloane’s On-Line Encyclopedia of
Integer Sequences, sequence 670.

Methods for representing all the possible Finishes
The method I used for representing all 13 of the finishes for a three-
horse race was informal. Various methods were used in the J
solutions. This is one of the J solutions for a three-horse race:

+-----+-----+-----+-----+-----+-----+----+----+----+----+----+----+---+
|a b c|a c b|b a c|b c a|c a b|c b a|a bc|bc a|ab c|c ab|b ac|ac b|abc|
+-----+-----+-----+-----+-----+-----+----+----+----+----+----+----+---+

Results using boxed arrays, like this, were relatively slow. Faster
results were obtained using a list of post positions to show the finish,
with the finish order of the horse in post position k given as the value
of item k of the result. Here is how the finishes of a three-horse race
are displayed using this method:

0 0 0 abc
0 1 1 a bc
1 0 0 bc a
0 0 1 ab c
0 1 0 ac b
1 0 1 b ca
1 1 0 c ab
0 1 2 a b c
0 2 1 a c b
1 0 2 b a c
1 2 0 c a b
2 0 1 b c a
2 1 0 c b a

At Play With J

290

I’ve appended to the right of each finish the order of finish of three
horses a, b and c, having post positions 0, 1 and 2, respectively.
Horses tied in a finish are shown by abutting letters—for example,
a bc shows horse a in first place and horses b and c tied for second
place.

The function to produce the finishes in this order is fin3, by Roger
Hui:

rankings=: ,"1 0y@i. , /:"1@=@i.@>:
ext =: [: ,/ _1&,. {"2 1 rankings@#@y.@{.
fin3 =: ([: ; >./"1 <@ext/.])@$:@<: `
(i.@(1&,)) @. (1&>:)

Here is his explanation:

To generate the finishes for n, fin3 first partitions the finishes for n-
1 by the maximum ranks. Then for each partition with maximum
rank m and each finish v therein, (_1,v) is indexed into the matrix ,"1
0yi.1+m (tieing the new competitor with each possible rank) and into
the matrix /:"1=i.2+m (slotting the new competitor into each
possible position ("no ties")).

Therefore, if c is a vector of the number of finishes with maximum
ranks i.#c, the corresponding counts for 1+#c are: (c*1+i.#c) are the
number of finishes for ranks i.#c coming from ties, and c*2+i.#c
are the number of finishes for ranks 1+i.#c coming from non-ties.
For example, for n=2:

 each finish indexed into
 max rank finishes ties nonties
 0 0 0 0 0 1 0
 0 1
 1 0 1 0 1 0 1 2 0
 1 0 0 1 1 0 2 1
 0 1 2

There is 1 finish for max rank 0 and 2 finishes for max rank 1.

The new counts are for n=3 are:
 max ranks 0 1 2
 ties 1*1 2*2
 nonties 2*1 3*2
 total 1 6 6

Giddyap

291

And for n=4:
 max ranks 0 1 2 3
 ties 1*1 2*6 3*6
 nonties 2*1 3*6 4*6
 total 1 14 36 24

The following functions encode the algorithm:
ntie1=: 0: ,y] * 1&+@i.@#
ntie0=: 0: ,] * 2&+@i.@#
nfin2=: (ntie1 + ntie0)@$:@<: ` ((,1x)"0) @.
(1&>:)
 nfin2 1
1
 nfin2 2
1 2
 nfin2 3
1 6 6
 nfin2 4
1 14 36 24

 [end of Hui’s explanation].

In a race where there are no ties the order of finish is a permutation.
Notice that the bottom six results give the permutation table of order
3. In the rankings function you see /:1@=@i . This is the “magical
matrix” described in my last column (Vector 20.2, October 2003), and
it is used in precisely the same way: to produce a table of
permutations.

The results of the function nfin2 above give the number of finishes of
n horses having k as the maximum rank. If we form a triangle from
these results:

1
1 2
1 6 6
1 14 36 24

and ravel it,
1 1 2 1 6 6 1 14 36 24

we get a list that is sequence 19538 in
http://www.research.att.com/~njas/sequences/

At Play With J

292

It is described as “the number of ways n labelled objects can be
distributed into k nonempty parcels”. I wanted to obtain a different
triangle, one showing the number of finishes having each leading
digit. An easy way to do this is to look at the first column of the table
of order n, as found by fin3. Thus if one transposes table fin3 n,
takes its head item, applies tally modified by the key adverb and
reflexive to tally one would get the number of instances of each
leading digit, in order.

 # /. y {. |: fin3 3
6 5 2

This says that the digits 0, 1 and 2 occur 6, 5 and 2 times as leading
digits, respectively, in the table of order 3. You can verify this by
inspecting the table above. Here are the results for tables of order 1
through 7:

 1
 2 1
 6 5 2
 26 25 18 6
 150 149 134 84 24
1082 1081 1050 870 480 120
9366 9365 9302 8700 6600 3240 720

I’ve submitted this triangle to Sloane’s Online Encyclopedia.

I’ve come across the sequence given by the row sums of the triangle
above, namely

1 3 13 75 541 4683 47294

in several different contexts. In 1977 I found that it enumerates the
number of different left arguments for APL’s dyad transpose [1]. In
2000 it enumerated the number of distinct basic lists, I called Blists,
which mathematicians call preferential arrangements [2]. And now,
here they come galloping again to enumerate horserace finishes!

References
[1] McDonnell, E. E., How Shall I Transpose Thee? Let Me Count The

Ways. APL Quote Quad, 8, 1, (1977-09).

[2] McDonnell, E. E., Blists in OLEIS. Vector 17, 1, (2000-07), 110-120.

37 Jacob’s Ladder
First published in Vector, 20, 4, (April 2004), 84-97.

 And he dreamed, and behold a ladder set up on the
 earth, and the top of it reached to heaven: and behold

 the angels of God ascending and descending on it.
 Genesis 28:12

 Dedicated to my grandson Jacob (15 months old).

The Name of the Game
Lewis Carroll invented a game he called Doublets in 1879. He used
doublet to describe two words of the same length, which were to be
connected by a chain of other words, called links. Two words are
linked if they use the same letters in every position but one, like rota
and iota. As an example, he gave as a doublet the words head and tail,
and for the links the words heal, teal, tell and tall, so that the entire
chain was head, heal, teal, tell, tall and tail. The word Doublet hasn’t
stuck, however, and the game is now usually called Word Ladders.

The Word Ladder game can be played mentally, and many people
enjoy playing in their head, sometimes making it a game for two or
more people, to see who can find a ladder quickest. This article,
however, treats computer solutions to the problem, which now asks
that the chain be as short as possible. There may be more than one
shortest solution. For example,

+----+----+
head	head
heal	heal
teal	heil
taal	hail
tail	tail
+----+----+

are two solutions shorter by one link than Carroll’s. Carroll would
probably point out that taal is usually capitalized, in phrases like the
Taal; it is a name for a language, like English or Italian, and is another
name for Afrikaans, one of the official languages of South Africa; and
heil is a German interjection used infamously by the Nazis in phrases
like Heil Hitler. These words let me point out that all the words in my
word tables are in lower case, even names like Hugo and Clive; and

At Play With J

294

that they include numerous words from foreign languages that have
gained currency in English, like Russian dvor and Spanish amigo.
Different word lists will give different results.

Some doublets give rise to eight or more solutions – here are the
solutions for the doublet white and black.

+-----+-----+-----+-----+-----+-----+-----+-----+-----+
white	white	white	white	white	white	white	white	white
whine	whine	whine	whine	whine	whine	whine	whine	whine
chine	chine	chine	chine	chine	chine	chine	chine	chine
chink	chink	chink	chink	chink	cline	cline	cline	cline
chick	clink	clink	clink	clink	clink	clink	clink	clink
click	blink	clank	clank	click	blink	clank	clank	click
clack	blank	blank	clack	clack	blank	blank	clack	clack
black	black	black	black	black	black	black	black	black
+-----+-----+-----+-----+-----+-----+-----+-----+-----+

Later on I’ll bring to your attention the ladders for the doublet dvor
and lade: there are eighty solutions to it, each nine words long!

My word tables have a history. Many years ago, in our IPSA office in
Palo Alto, Joey Tuttle acquired a tape from Houghton Mifflin, the
publishers of The American Heritage Dictionary, that contained an
alphabetical listing of all the words in their dictionary. Joey extracted
a number of files, each file giving all of the words having the same
length, and mounted these on the I. P. Sharp computer in Toronto. I
found the list useful in a number of ways, and one of the things I did
was to write an APL program to form Word Ladders, of which more
later. I have these word files now on my personal computer.

Structure of the Game
Looked at from the point of view of the game, a table of words is seen
as an undirected graph, where the nodes are the words, and the edges
are the links for each word. Linkness is symmetric: if iota is a link of
rota, then vice-versa. This being the case, the graph is also symmetric,
and the counterdiagonal is all zero – a word is not a link of itself. A
word may have many links. For example, bare has 26, using my table.
They are:

+----+----+----+----+----+----+----+----+----+----+----+----+----+
|babe|bake|bale|bane|base|bate|barb|bard|bari|bark|barm|barn|bars|
+----+----+----+----+----+----+----+----+----+----+----+----+----+
|care|dare|fare|hare|mare|pare|rare|tare|vare|ware|yare|bore|byre|
+----+----+----+----+----+----+----+----+----+----+----+----+----+

A word may have no links, as well. Some four-letter hermits are agog,
ecru, idol, ugly, xmas, yeti and zarf.

Jacob’s Ladder

295

I’ve adopted some naming conventions. A word list – actually a
character table – is called Tn, where n is the length of the words in the
table. Thus my four-letter word table is T4. A link list, one that gives
the links for each word, is called En. Thus, the link list for four-letter
words is E4. Later on, in the discussion of J functions, I’ll introduce
some more conventions.

The Link List
There’s a story to do with the creation of link lists from a word table. I
wrote one for myself that took a Tn as argument, and produced the
corresponding En. I showed this to Roger Hui, who noted that it had
quadratic time. He thought it would be possible to make one that had
linear time. At the time of this message we were still calling link lists
neighbour lists.

 From: rhui000@shaw.ca
 Subject: Re: Word Ladders
 Date: February 14, 2004 8:10:30 AM PST
 To: eemcd@mac.com
 Reply-To: RHui@Jsoftware.Com

There is indeed a much faster, linear, method for generating
the neighbors list. The idea is this: for each word, blank
out successive letters, and use these blanked out words
to match for neighbors. e.g. if the words are abba and abbe,

 _bba _bbe
 a_ba a_be
 ab_a ab_e
 abb_ abb_

So if you have a (m,n) matrix of words, in the matching
you'd be dealing with a ((n*m),n) matrix and doing linear
operations on it, rather than the (m,m,n) outer product.

mlx =: <@I.@(<:@#@[= +/@|:@:="1)"1 2y NB. eemcd

mlx1=: [: <@I."1 <:@{:@$ = +/ @: =g1 / y NB. eemcd

At Play With J

296

mlx2=: 3 : 0 NB. hui
 'm n'=. $y. NB. # of words, # letters
 i=. n (* + i.@[*"1 -.@])=i.n NB. indices for blanking
 NB. successive positions
 t=. ,/ i{"_ 1 y.,.'_' NB. blanked words
 p=. ,/@:(([,. -.y)"0 1)y NB. verb for pairing
 j=. ; t <@p/. n#i.#y. NB. group word indices
 NB. per blanked words
 h=. ({."1 </. {:"1) j NB. unordered neighbors
 k=. y. {."1 j NB. word indices
 NB. corresponding to h
 (m{.h-.&.>k) /: k,(i.m)-.k NB. reorder
)

mlx and mlx1 give identical results. mlx2 gives neighbor
indices that are unordered, but is otherwise identical.
The improved efficiency in mlx2 is more pronounced as the
number of words gets large.

 alp=: a.{y97+i.26
 x=: y. alp {y 4000 4 ?@$ #alp NB. table of 4000 dwordse
 $x NB. 3980 after duplicates removed
3980 4

 (mlx -: /:y&.>@mlx2) x
1
 (mlx1 -: /:y&.>@mlx2) x
1

 ts=: 6!:2 , 7!:2@] NB. to find time and space used
 ts 'mlx x'
81.9158 608640
 ts 'mlx1 x'
12.1867 8.3887e7
 ts 'mlx2 x'
0.490401 1.47846e6

As you can see, for a table of 3980 words, Hui’s program is about 160
times faster. That’s a lot. It does use twice the space, but it’s worth it.
I’ve been happily using mlx2 since to form my link lists. It’s always a
joy to get instant results rather than “start the process, go out and
mow the lawn, then come back and maybe it will be done.”

Two Schools of Thought
I’ll discuss two different ways of building ladders, given a table Tn,
and a links list En. The first way is the standard approach to finding
paths in a graph: search forward from one of the words, the starting
word, and work one’s way through until the other word, the goal
word is reached, or it is found that there is no path. This is the

Jacob’s Ladder

297

approach used in Edsgar Dijkstra’s well-known algorithm. The
function that uses this forward search I call FL, for “forward ladders”.

The second way, one I used a quarter-century ago, started searching
from both ends of the problem. This can be done because of the
problem’s symmetry: if I find the shortest path from white to black,
I’ve also found the shortest path from black to white. My intuition
told me that a forward search algorithm would take significantly
more space, and possibly more time, than a two-way search.
Somewhat fortuitously, the two-way search can be identified with the
biblical ladder in Jacob’s dream, with angels going up and down.
Because of this, and in honour of my grandson Jacob, I’ll call the two-
way search the Jacob’s Ladder way, and the associated function JL, for
“Jacob’s Ladder ”.

My reasoning was this: suppose we use FL, starting with a one-by-
one matrix, and that there are three links in every item of En. After
one step, we have at most a three-by-two matrix; after two a nine-by-
three … and after eight we have at most a 6561-by-9 matrix. Suppose
that we have now found the goal. We’ve looked at 6561 nodes.

If, on the other hand, we use JL, after four iterations forward and
backward, we have at most two 81-by-5 matrices, meaning that we
have, at most, 162 nodes. In each case we’ve taken eight steps. The
backward steps begin with a node that is necessarily one of the 6561.
The next backward step continue with 3 nodes, one of which is in that
of the 2187 of the forward search. Likewise, the next backward step
finds 9 nodes, one of which is in the 729 of the forward search. Next
27, one included in the 243. By the next step, finding 81 nodes, the
forward search has also found 81, and one of the backward 81 nodes
must be among the 81 in the forward search. Thus the forward search
has worked with 40 times more nodes than the forward and
backward search. I had to conclude that it would take less time and
less space for the two-way search.

The Case of the Mysterious Test
I wrote FL and JL, tested them, and found that my reasoning was
correct, and communicated the results to Roger Hui. His response
was dumbfounding. Earlier I had sent Roger a copy of the first fifty
words in T4. He generated a two-column table called pairs giving all

At Play With J

298

1225 combinations of two out of fifty, and used this as the right
argument in a timing test. He made the left argument E using mlx2 on
the first fifty words. This is what he saw:

 $pairs=: 2 comb 50
1225 2
 ts 'E FL"1 pairs'
0.94485 1.1991e6
 ts 'E JL"1 pairs'
0.90665 1.1991e6

I tried this test on my machine and got the same kind of result: the
forward search had essentially the same speed and the same use of
space as Jacob’s Ladder. This was completely contrary to all the
earlier measurements I had made, but I couldn’t deny what my own
senses told me. For several days I was at a standstill – I had no idea
what was wrong with my earlier measurements – or, less likely,
whether there was anything wrong with Roger’s measurements that I
didn’t understand.

The Case Solved
There was to be a happy ending however. Roger had earlier told me
that he knew a way to do pathfinding that was yards better than
mine, and not only that, but would find the shortest paths for all
possible pairs. I asked him if he had experimented with this yet. Then
this message came:

A few minutes of experimentation with the 4-letter words reviews the
fallacy of my approach. The transitive closure of that neighbors list
took so long that I interrupted it after about 10 minutes. Further
investigation reveals that most words are reachable from most other
words. Starting from every way possible generates too much inform-
ation (and too much redundant information).

If I had to choose, I'd choose the your original FL approach. JL is not
sufficiently faster enough to warrant the extra complications.

This was interesting, but still left me baffled by the anomalous timing
we both had seen. But then, the same day, came a new message:

Further … The up-and-down approach is enough faster after all…
 ts 'i=: E FL 704 1407'
11.9041 3.04531e6
 ts 'i=: E FL2 704 1407'
2.27514 1.66336e6
 ts 'i=: E JL 704 1407'
0.881336 515264

Jacob’s Ladder

299

The test he now used, timing for the pair 704 1407, was one that had
eighty(!) nine-node solutions. The first test above used my original
FL; the second used FL2, his rewriting of FL; the third used my
original JL. This was very welcome news, but what about those
anomalous timings? How explain them? I looked at all aspects of the
data and I believe I can now explain it.

The anomalous results occurred because the 1st 50 words had no link
list longer than 5, and most were 3 or less; the average number of
links per node was 1.8; 18 out of the 50 link lists were empty, a very
large percentage; thus the timings reflected an atypical set, one in
which the up-and-down program couldn’t show itself better than the
forward search.

The best demonstration is to compare the results of a test using E
which has only 50 items, with tests using E4, which has 2962 items.
Here are the tests using E, showing FL and JL essentially equal in
time and space:

 ts 'E FL"1 pairs'
0.94485 1.1991e6
 ts 'E JL"1 pairs'
0.90665 1.1991e6

The only change in the next tests is using the E4 of 2962 nodes. This
averages 8.1 links per node, as many as 31; 91 are empty, only 3.2%.
The distribution of links in the first 50 items of E4 is also quite
different from that of E. There are 155 links, an average of 3.1 per
item, and one has as many as thirteen. Only seven are empty. Here
are the tests using E4:

 ts 'E4 FL"1 pairs'
674.971 6.14182e6
 ts 'E4 JL"1 pairs'
24.1225 2.28742e6

To me, this is conclusive. With this one change, JL is 28 times faster
than FL, instead of being equal. It uses less space, less than half as
much as FL.

 675%24 NB. time ratio
28.125
 6.142%2.287 NB. space ratio
2.69

At Play With J

300

Just for the purpose of this paper I’ve made some more tests, using
both E4 and E5, with right argument 100 random pairs of nodes, with
no node repeated. The results are what I have come to expect to get.

Tests of 100 random pairs from T4 and T5, no node repeated,
2004 03 05
 $E4
2962
 pr4=: 100 2$200?#E4 NB. 200 distinct numbers
 NB. from i. 2962
 f4 =: ts 'E4 FL"1 pr4'
 j4 =: ts 'E4 JL"1 pr4'
 f4,:j4
58.3915 4.19264e6 NB. FL numbers
4.08996 2.68454e6 NB. JL numbers
 f4%j4 NB. ratio of test numbers
14.2768 1.56177 NB. JL 14 times faster,
 NB. 1.5 times less space
 $E5
5604
 pr5=: 100 2$200?#E5 NB. 200 distinct numbers
 NB. from i. 5604
 f5 =: ts 'E5 FL"1 pr5'
 j5 =: ts 'E5 JL"1 pr5'
 f5,:j5
69.0011 2.84186e6 NB. FL numbers
4.43224 843456 NB. JL numbers
 f5%j5 NB. ratio of test numbers
15.568 3.3693 NB. JL 16 times faster.
 NB. 3.4 times less space

Function Syntax and Use
The versions of FL and JL I wrote were gone over and tightened up
by Roger Hui. Their syntax is:

 R =: En FL a,b
 R =: En JL a,b

Where a and b are indices of words in some Tn. The result is an
integer table, where each row is distinct, and the successive values in
a row are pairwise links, with first item a and last item b.

] R =: E4 JL 2182 861
2182 628 617 616 589 810 859 861
2182 1505 1483 1455 812 810 859 861
2182 2619 2608 2573 812 810 859 861

To obtain the desired word ladder, use this result as an index to T4:
 <"2 T4 {y R

Jacob’s Ladder

301

For example,
 <"2 T4 {y E4 JL 2182 861
+----+----+----+
rips	rips	rips
dips	lips	tips
dies	lies	ties
died	lees	tees
deed	fees	fees
feed	feed	feed
fled	fled	fled
flew	flew	flew
+----+----+----+

Forward March
The program FL is easier to explain than the more intricate JL.

FL =: 4 : 0
 's e'=. y.
 u=.d=. ,s
 c=. ,.s
 while. -. e e. d do.
 d=. ; v=. (d{x.) -. &.> < u
 if. '' -: d do. _1 return. end.
 u=. u , y. d
 c=. ((#&>v)#c) ,. d
 end.
 c #y e=d
)

The two word indices are s and e. In FL, these signify start and end,
but in JL they don’t have that mnemonic significance, since they start
separate chains. The variable x. is the links list, some En.

Variable d is an integer list, initially ,s. It is used to select boxed lists
of potential new links. The first time through it gets all the links of s.
Next time it gets all the links of those links, and so forth. Variable u
contains all of the links already seen. No link appears in u more than
once. Initially it is ,s. It is used to ensure that no later use is made of a
link that has already been used. This is because once a link is used in
any step, there is no point to using it again in a new step – any chain
with a later appearance of an earlier link must be longer than one
with an earlier appearance.

At Play With J

302

Variable c is the table of chains, initially with s as its only value.
Within the while. loop it will be extended. Each of its rows
represents a potential shortest path.

The while. loop continues until d contains e as an item; when it does,
it means that one or more shortest paths have been found.

Variable d is used to select boxed lists of links from x. . Before
further use, each box has removed from it all links that have already
been used. These cleaned-up boxes are assigned to v, the raze of
which becomes the new link selector list d.

If d is empty, there are no new links, and since e hasn’t been found,
we’ll have to admit that there are no paths between s and e. When
this happens, the scalar _1 is returned.

Variable u is updated with all the new links, by appending d to it.
Because u should never contain two appearance of the same link,
duplicates are removed from d before appending it.

Table c is updated by adding a new column, with the items of d.

When the while. loop ends, a selecting mask is formed by the
equality of scalar e and list d, and this mask is used to remove from c
all those rows not ending in e. This gives the desired result.

The Angels of God Ascending and Descending
Since JL goes forwards and backwards, there are separate variables
for the forward and backward sequences. Instead of c we have sc and
ec – two chains; instead of u and d we have su and eu, sd and ed.

The while. is different – it says, effectively, “while forever”, since the
loop continues as long as the value of the while. phrase is 1. The
exiting from the loop will take place by way of if. statements.

JL =: 4 : 0
 sc=. ,. su=.sd=. ,{.y.
 ec=. ,. eu=.ed=. ,{:y.
 while. 1 do.
 if. +./ sd e. ed do. break. end.
 if. '' -: sd=. ; v=. (sd{x.) -.&.> <su do. _1
return. end.

Jacob’s Ladder

303

 su=. y.su,sd [sc=. sd ,.y (#&>v)#sc
 if. +./ sd e. ed do. break. end.
 if. '' -: ed=. ; v=. (ed{x.) -.&.> <eu do. _1
return. end.
 eu=. y.eu,ed [ec=. ed ,. (#&>v)#ec
 end.
 sc join ec
)

The variables ending in u, d and c have the same functions as the u, d
and c variables in FL. The first and the last three statements in the
while. loop have almost identical structure. With two path tables
being built in the same loop, the test for termination is by finding that
the same item or items appear in sd and ed. The test for “no path
found” is essentially the same as in FL, but there are separate ones for
sd and ed. An important difference is that sc is built from left to
right, but ec is built from right to left. This makes joining the two
easier.

Linking the Chains
When the while. of JL terminates, the fitting together of the two path
tables requires some agility. It is complicated enough so that a special
join function has been made. It was written by Roger Hui as a
rewrite of a joinends function provided to me by R. E. Boss when I
sent a message to the J forum explaining the problem and asking for a
solution.

join=: 4 : 0
 x.=. x.#y ({:"1 x.) e. {."1 y.
 y.=. y.#y ({."1 y.) e. {:"1 x.
 (({."1 i){}:"1 x.) ,. ({:"1 i){y.
 [i=. (0,#y.)#:I.,({:"1 x.)=/{."1 y.
)

The variables x. and y. are the forward and backward chains,
respectively. We have reached this point because one or more items of
the last column of x. and the first column of y. match. We want to
keep only those rows containing these matching items. The first two
lines remove from x. and y. all the rows that don’t have matching
values in them. I’ll invent an x. and a y. and go slowly through the
steps that lead to the desired result.

At Play With J

304

Here are the two:
 x.
200 300 400
 0 1 130
 2 3 120
 4 5 130
 6 7 120
 8 9 130
500 600 700

 y.
500 600 700 800
130 2 1 0
120 5 4 3
120 8 7 6
120 11 10 9
120 14 13 12
130 17 16 15
900 1000 1100 1200

Only five rows of x. and six of y. match. First we remove the rows of
x. that don’t end in one of the matching values:

] x.=. x.#y ({:"1 x.) e. {."1 y.
0 1 130
2 3 120
4 5 130
6 7 120
8 9 130

And similarly, remove the rows of y. that don’t begin with one of the
matching values.

] y.=. y.#y ({."1 y.) e. {:"1 x.
130 2 1 0
120 5 4 3
120 8 7 6
120 11 10 9
120 14 13 12
130 17 16 15

Now we have to maneuver to get the rows of x. ending in 120 in line
with those of y. beginning with 120, and similarly for 130. First we
compare for equality the tail of each row of x. with the head of each
row of y.:

 ({:"1 x.)=/{."1 y.

Jacob’s Ladder

305

1 0 0 0 0 1
0 1 1 1 1 0
1 0 0 0 0 1
0 1 1 1 1 0
1 0 0 0 0 1

This is ravelled and the indices of 1s found:
 I.,({:"1 x.)=/{."1 y.
0 5 7 8 9 10 12 17 19 20 21 22 24 29

We convert this into their base #y. representation.
 (0,#y.)#:I.,({:"1 x.)=/{."1 y.
0 0
0 5
1 1
1 2
1 3
1 4
2 0
2 5
3 1
3 2
3 3
3 4
4 0
4 5

It’s another Magical Matrix [1]. The first column is used to select rows
from x. and the second to select rows from y. .

Use the second column to select rows from y. in the right quantity
and in the right order:

 ({:"1 i){y.
130 2 1 0
130 17 16 15
120 5 4 3
120 8 7 6
120 11 10 9
120 14 13 12
130 2 1 0
130 17 16 15
120 5 4 3
120 8 7 6
120 11 10 9
120 14 13 12
130 2 1 0
130 17 16 15

At Play With J

306

and use the first column to select rows of x., at the same time
removing the last column; it merely repeats the first column of y. .

 (({."1 i){}:"1 x.)
0 1
0 1
2 3
2 3
2 3
2 3
4 5
4 5
6 7
6 7
6 7
6 7
8 9
8 9

Lastly, stitch these together, and we have the desired result:
 (({."1 i){}:"1 x.) ,. ({:"1 i){y. [i=.
(0,#y.)#:I.,({:"1 x.)=/{."1 y.
0 1 130 2 1 0
0 1 130 17 16 15
2 3 120 5 4 3
2 3 120 8 7 6
2 3 120 11 10 9
2 3 120 14 13 12
4 5 130 2 1 0
4 5 130 17 16 15
6 7 120 5 4 3
6 7 120 8 7 6
6 7 120 11 10 9
6 7 120 14 13 12
8 9 130 2 1 0
8 9 130 17 16 15

And we’ve matched the three 130s in the last column of x. with the
two 130s in the first column of y., giving six rows; and matched the
two 120s in the last column of x. with the four 120s in the first
column of y., giving eight rows, which makes fourteen rows
altogether. This contrived example shows a solution where there are
fourteen different ladders with six links each, giving the links we can
use to select the words that make Word Ladders.

Jacob’s Ladder

307

Acknowledgements
R. E. Boss provided a workable joining function on the same day that I sent a
message to the J forum asking for one. Norman Thomson gave me many
ideas about finding paths in graphs. Roger Hui took my ugly ducklings and
turned them into beautiful swans, and, by jumping to a conclusion, made it
possible for me to understand better the structure of the problem.

Reference
[1] McDonnell, E. E., The Magical Matrix. Vector 20, 2, (2003-08),

122-126.

38 The Google Test
First published in Vector, 21, 1, (Autumn 2004), 116-122.

Highway 101 in the San Francisco bay area is a busy commuter
highway, with employees commuting to work at the headquarters of
such companies as Adobe, Apple, Applied Materials, Cisco, eBay,
Genentech, Google, Hewlett Packard, Informatics, Intuit, Oracle,
Silicon Graphics, Sun Microsystems, Yahoo, and hundreds more
high-tech companies. These commuters recently drove past a large
poster paid for by Google, reading:

{first 10-digit prime found in consecutive digits of e}.com

Google apparently trusted that some among those passing the poster
would understand it, and of these some might be intrigued enough
by it to see if they could find that prime, and perhaps some of them
might use it to go to the resulting web address. Those who did go the
whole route would then find themselves with this message:

Congratulations. You’ve made it to level 2. Go to www.linux.org
and enter Bobsyouruncle as the login and the answer to this
equation as the password.

F(1)= 7182818284
F(2)= 8182845094
F(3)= 8747135266
F(4)= 7427466391
F(5)=__________

Those who find the value of F(5), and go to the site shown, would get
this message from Google Labs:

Congratulations.

Nice work. Well done. Mazel tov. You’ve made it to Google Labs and
we’re glad you’re here.

One thing we learned while building Google is that it’s easier to find
what you’re looking for if it comes looking for you. What we’re
looking for are the best engineers in the world. And here you are.

As you can imagine, we get many, many resumes every day, so we
developed this little process to increase the signal to noise ratio. We
apologize for taking so much of your time just to ask you to consider

At Play With J

310

working with us. We hope you’ll feel it was worthwhile when you
look at some of the interesting projects we’re developing right now.
You’ll find links to more information about our efforts below, but
before you get immersed in machine learning and genetic algorithms,
please send your resume to us at problem-solver@google.com.

We’re tackling a lot of engineering challenges that may not actually be
solvable. If they are, they’ll change a lot of things. If they’re not, well,
it will be fun to try anyway. We could use your big, magnificent brain
to help us find out.

You now have all you need to know to dazzle Google with your
magnificent brain. I haven’t spoiled it for you, so you can legitimately
do it on your own. I will, however, give you a similar puzzle, in two
parts, and will solve it for you. It uses the digits of pi.

Problem 1: Finding 10-digit primes
The first problem is to find among the digits of pi a ten-digit sequence
that, when evaluated in base ten, is a prime number, and is the eighth
such. Your first problem, then, is to obtain the first few hundred or so
digits of pi. We’re in luck! The great Indian mathematician
Ramanujan used the theory of complex multiplication of elliptic
curves to give a number of beautiful formulas for pi’s digits, and a
variation of this technique was discovered by the ingenious
Chudnovsky brothers, from New York City by way of Kiev. A J
function for their method is:

Bigpi =: 3 : 0
a=. 545140134x
b=. 640320x x 3
c=. 13591409x
d=. 6541681608x
n=. i. >: x: y.
s=. (! 6 *n) * c + a * n
e=. (! 3 * n) * ((! n) x 3) * bxn
m=. {: e
f=. d * - / (s * m) % e
k=. (a * m) * <. @ %: b * 10x x 28 * y.
k <. @ % f
)

Given an integer argument n it finds 1+14*n places of pi. To solve the
problem you should use a hundred or so digits, so 15 would give
about the right number.

 q =: bigpi 15

The Google Test

311

To work with the individual digits it is convenient to work with the
character form of q.

 w =: ": q
 # w
211

Here are the first 210 digits:
 7 30 $ w
314159265358979323846264338327
950288419716939937510582097494
459230781640628620899862803482
534211706798214808651328230664
709384460955058223172535940812
848111745028410270193852110555
964462294895493038196442881097

We need these ten at a time:
 t =: 10 [\ w
 $ t
202 10
 5 {. t
3141592653
1415926535
4159265358
1592653589
5926535897

To determine which of these are prime we have to convert each row
into a number.

 p =: ". t
 $p
202
 5 {. x: p
3141592653 1415926535 4159265358 1592653589
5926535897

Some of these may have had leading zeros, so that they are effectively
9-digits long. We remove them – some of these may be prime, but
they don’t qualify as ten-digit primes.

 pa =: (p > 999999999) # p
 $ pa
183

A convenient way to determine whether a number is prime is to
count how many prime factors it has; if it has just one, the number is

At Play With J

312

prime. We can think of using J’s prime factors primitive q: to obtain
the factors of the numbers in p, but will find that this is not always
possible; many of the numbers are outside its domain.

 q: 2004
2 2 3 167
 # q: 2004
4
 q: 2003
2003
 # q: 2003
1

So 2003 is prime, and 2004 isn’t. Here is an is prime function ip:
 ip =: 13 : '1 = # q: y.'
 ip 2003
1
 ip 2004
0
 ip 2000000000
0
 ip 2100000000
0
 ip 2200000000
|domain error: ip
| ip 2.2e9
 2200000000 = * / 11 5 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2
1

At this writing, the q: function will yield a domain error for many
integers with ten or more digits, even when it is obvious the number
isn’t prime.

To circumvent this, we can use J’s adverse conjunction, defined as
“The result of u :: v is that of u, provided that u completes without
error; otherwise the result is the result of v.” We can write a special is
prime function sip to return _1 as result if otherwise a domain error
would be reported:

 sip =: ip :: _1:
 sip 2200000000
_1

We use sip on pa to let us know which are known composites (0),
which are known primes (1), and which are not determined yet (_1).

 pb =: sip " 0 pa
 y. pb
_1 0 1

The Google Test

313

 # /. y pb NB. how many of each
159 23 1

We can remove the known composites, leaving us with just the
known primes and the suspects.

 pc =: (pb y: 0) # pa
 $ pc
160

Now comes the hard part: determining which of these are prime
without the use of q: .

A number is composite if it has two or more prime factors. Twenty-
five is composite since it has the two factors 5 and 5. The larger
number 9999399973 is also composite, with the two factors 99991
and 100003.

A prime number z has only one prime factor, namely z. A composite
number w must have one or more prime factors less than its square
root r. It can only have one prime factor s larger than its square root
r. It may be that all of its prime factors are less than r. In any case, to
find whether a number is prime or not it suffices to see whether any
of the primes less than its square root divides it, that is, gives a
residue of zero with n. Thus, if we have a list pf of all of the primes
less than r we will be able to determine whether a number n is
composite by seeing if it has a residue of zero for any of pf. If it
doesn't then we know that n is a prime.

We know that the numbers we are interested in will have values from
1000000000 to 9999999999, inclusive. The square root of the largest
number we may find is thus less than 100000, so it suffices that pf
contain just the primes less than 100000.

We can find these easily by using the function inverse to p:, that is,
p: x: _1.

 p: x: _1 [100000
9592
 p: 9592
100003
 p: <: 9592
99991
 pf =: p: i. 9592
 {: pf
99991

At Play With J

314

We need a function that finds the residues of a number with respect
to each prime in pf and gives 0 if the number is composite and 1 if it
is not, that is, if it is prime.

nc =: 13 : '-. 0 e. pf | y.'"0

This reads “not 0 in pf residues of y”. We apply it to pc:
pd =: nc pc

How many 10-digit primes have we found?
 +/pd
9

More than enough to solve the puzzle. Which are they?
] pe =: I. pd
2 33 36 43 73 108 128 135 149

And what are they?
 pg =: x: pc { y pe
 ,. x: pg
5926535897
4197169399
1693993751
7510582097
4825342117
5822317253
2841027019
8521105559
8954930381

Just for fun, locate these in the digits of pi:
 7 30 $ w
314159265358979323846264338327
950288419716939937510582097494
459230781640628620899862803482
534211706798214808651328230664
709384460955058223172535940812
848111745028410270193852110555
964462294895493038196442881097

Three of them overlap. We want the eighth, 8521105559 .

The Google Test

315

Problem 2: Finding the fifth in a series
You are given five 10-digit numbers from the digits of pi, and must
find the sixth. Here are the numbers:

4338327950
2795028841
6939937510
3993751058
2110555964

Here they are, embedded in pi:
 7 30 $ w
314159265358979323846264338327
950288419716939937510582097494
459230781640628620899862803482
534211706798214808651328230664
709384460955058223172535940812
848111745028410270193852110555
964462294895493038196442881097

The first and second overlap, as do the third and fourth.

I’ll give two hints, the second vacuous:*
Hint 1: Primarily, the sixth number has three doublets and overlaps the fifth.

Hint 2: Alternately, something for nothing.

� Here the author originally invited readers to contact him if they wanted to
know the sixth number, but this is no longer appropriate. (Ed.)

39 Metlov’s Triumph
First published in Vector, 21, 4, (Autumn 2005), 25-30.

A puzzle was recently announced by Frank Buss on the Internet
that led to some interesting discoveries. The puzzle is to be found
by Googling “Frank Buss Triangle Problem” and then clicking on
“Triangles Challenge” or browsing directly to
http://www.frank-buss.de/challenge/ if you prefer. It says:

The challenge is to write a program, which counts all triangles
with area >0 in this figure:

But count only the triangles, which are bounded by lines, like (P0,
P7, P8), not all possible connections between the points, like (P7,
P8, P9). If anything is unclear, the solution is 27 and looks like
this:

At Play With J

318

Graphic output is not needed, but you can do what you want. If a
GUI or something else is included, it would be nice to write: how
long you needed for the pure algorithm and for the rest.

This is not a quantitative, but more a qualitative challenge.
Neither the number of lines nor the time (which I can’t verify
anyway) is important, but I’m interested in good solutions, which
show the advantages of the chosen language.

Every program should be documented enough to understand
how it works and it should not simply print 27, but somewhere it
should read from a file or integrate the points and geometry, so
that it is easy to change it for similar problems, for example if an-
other line is added, but it need not to be so general as to count the
number of squares.

There were 31 entries. The languages they used, the number of
entries in that language, and the average number of lines in the
programs are tabulated below:

Language Number of entries Average number of
lines

C++ 3 115

Java 4 105

Python 1 94

Haskell 1 93

Ruby 1 75

Scheme 1 66

Awk 1 59

Lisp 17 56

Kogut 1 29

J 1 1

Most of these had a generous amount of documentation along
with the actual program. I don’t know most of the languages
used, but I could come to some conclusions about them. It seems

Metlov’s Triumph

319

to me that most of the authors were more programmers than
mathematicians. Almost all of them tackled the problem as one of
establishing the proper way to represent the points, lines, and
intersections in the triangle. Most of them gave solutions which
were wired in, and their programs could not easily be extended to
variations of the problem.

Since Haskell is supposed to be a functional programming lang-
uage, I thought it might give an interesting and useful result, but
I was disappointed. It hard-coded the geometry of the problem, so
that it, like many others, couldn’t be extended.

The J solution was submitted by Dr. K. L. Metlov. Here it is:
* -: @ * +

Metlov is a physicist, with many publications in his field, and he
obviously studied the triangle puzzle as a mathematical one. In
his notes, one sees that he experiments with variations of the
problem, and in a relatively short time had concluded that a
simple expression could be formed that would apply to a triangle
with any number of lines.

This is a fork, and a dyad, and it is better understood by
emphasizing its forkiness.

 * +
 \ /
 |
 *
 |
 -:

The arguments are multiplied and added, this product and sum
are multiplied, and the product is halved.

I give Metlov’s Documentation over the next three pages:
“When both sides of the triangle are divided into an
equal number of steps (let’s call this number – n), the
number of triangles is n^3 (n to the third power). For
the example Frank Buss gives n=3 and the answer is
3^3 = 27.

At Play With J

320

When sides are subdivided into a different number of
subdivisions, say, n and m, the number of triangles is
equal to

½m × n(m + n)

which is integer for any integer m and n.

In J language (see http://www.jsoftware.com/ for
description and download) the first formula is coded
and invoked as
 nt =: x&3
 nt 3
27

The second formula is coded and invoked as
 nt =: * -: @ * +
 3 nt 3
27
 2 nt 5
35

The first variant of the program is three characters, the
second is 6 characters.

It took me 15-20 minutes of drawing rectangles to
derive the formula. J is an array-oriented language,
descendent of APL. Therefore, the above programs
(without change) can indeed be used to process
millions of rectangles very fast. In order to achieve
this the arguments must be arrays (of equal length in
the second case). For example:
 (3 2) nt (3 5)
27 35

How the formula was developed:

Here is the link to the page of notes I made when
thinking about the problem.

http://www.livejournal.com/users/dr_klm/
51584.html?thread=435072#t435072

and [overleaf] is a copy of the page.

Metlov’s Triumph

321

The direct link is here:
 http://galaxy.fzu.cz/~metlov/Triangles_Deriv.gif

At Play With J

322

I do not know if that will be enough to communicate
the basic idea used for deriving the formula. On the
other hand I do not have time to explain it in full
detail.

The interesting part occupies the lower left quarter of
the page. Triangles are counted separately for two
lower corners of the big triangle (left and right) and
then the result is multiplied by 2 (if n=m), or added up
with exchanging n<->m (if n!=m). To count triangles
for one corner I sum up the triangles, occupying all
single sub-sectors, the triangles, occupying all pairs of
two consecutive sub-sectors, ... three sub-sectors...
etc... In this sum, the triangles, which include both left
and right corners of the big triangle are counted with
weight ½ (to note that they will be counted again, in
the sum for the other corner).

I ran this procedure for n=3, m=3 approximately in
the middle of the page. Then, by induction, wrote a
general formula with the sum. The sum is nothing else
but an arithmetic progression, which is immediately
summed up. Then, with very basic algebra, the final
formulas are obtained.”

Comment from Frank Buss:
This is a nice solution and the language looks interesting. It is the same
concept as the Scheme solution, which uses a formula instead of
counting the triangles, but this formula is much easier than the one used
in the Scheme solution.

40 Belgian Numbers
First published in Vector, 22, 1, (November 2005), 96-101.

Belgian numbers were recently introduced by Eric Angelini. For N
to be a Belgian number, it is necessary that it appear in the sum
scan of lots of replications of N’s digits. For example, try the digits
of 16:

 +/\8 $ 1 6
1 7 8 14 15 21 22 28

So 16 isn’t Belgian. What about 17?
 +/\8$ 1 7
1 8 9 16 17 24 25 32

So 17 is Belgian.

My first concern on hearing of them was to find out how one
could tell whether a number was Belgian or not. Assume that N is
176; how many copies of 1 7 6 would be needed to reach 176 or
thereabouts? This can be found by taking the ceiling of N divided
by the sum of its digits S. Like this:

 N =: 176
] D =: 10&#.x:_1 N
 1 7 6
] S =: + / D
14
] C =: >. N % S
13

Then multiplying this by its number of digits, in this case, 3, and
sum scanning:

] R =: + / \ (C * 3) $ 1 7 6
1 8 14 15 22 28 29 36 42 43 50 56 57 64 70 71 78
84 85 92 98 99 106 112
113 120 126 127 134 140 141 148 154 155 162 168
169 176 182

and, sure enough, we find that 176 is a Belgian number. This was,
for the moment, an easy way to determine which numbers were
Belgian—if they were not too big. I thought it might be possible to
use it for numbers up to about ten million—but thereafter it gets
ridiculous.

At Play With J

324

For example, suppose that one wants to see whether 1234567898765
is Belgian:

 N =: 1234567898765x
] D =: 10 &. #. x_1 N
 #D
13
] N=:+/D
71
 >. B % S
17388280265
 13 * >. B % S
226047643445

Ouch. A fifth or so of a trillion (US style) digits. I concluded that
this was impractical.

There had to be a better way. Eventually I thought I saw that in
the case of 176 there was a threeness lurking. I decided to form
them into a table of three-item rows, together with the first
difference of the rows, and the 14-residues of the whole table:

 qn =: 13 3 $ + / \ 39 $ 1 7 6
 qn ;(2-y/\qn);14|qn
+-----------+--------+-----+
1 8 14	14 14 14	1 8 0
15 22 28	14 14 14	1 8 0
29 36 42	14 14 14	1 8 0
43 50 56	14 14 14	1 8 0
57 64 70	14 14 14	1 8 0
71 78 84	14 14 14	1 8 0
85 92 98	14 14 14	1 8 0
99 106 112	14 14 14	1 8 0
113 120 126	14 14 14	1 8 0
127 134 140	14 14 14	1 8 0
141 148 154	14 14 14	1 8 0
155 162 168	14 14 14	1 8 0
169 176 182		1 8 0
+-----------+--------+-----+

The first row of the first table shows that the sum of the integers is
14; the second table shows that each row differs from the previous
row by 14, the third table shows that the 14-residue of each row is
1 8 0.

The point made by the second table is that each row after the first
is formed by adding 14 to the preceding row. This means that

Belgian Numbers

325

I could create qn exactly by adding multiples of 14 to the starting
row:

 (14 * i. 13) + / 1 8 14
 1 8 14
 15 22 28
 29 36 42
 43 50 56
 57 64 70
 71 78 84
 85 92 98
 99 106 112
113 120 126
127 134 140
141 148 154
155 162 168
169 176 182

The point made by the third table is that any concern about
residues after the first row is irrelevant.

With this information at hand, we’re almost there. The number
176 is 8 beyond 168, which is 14 * 12. The 14 * 12 is irrelevant;
the 8 is significant. It means that 8, which is 14|176, is of great
importance. It is one of the numbers in the first row of the table,
and after being added to by multiple 14s, must arrive at 176, and
so, is Belgian! This is a perfectly general observation, and allows
any integer to be tested for Belgianity. Here is an outline of the
steps to take to see if N is Belgian:

Let D be the digits of N.
Let S be the sum-scan of the digits of N.
Let T be the sum of D (which is also the last item of S).
Let R be the T-residue of N.
Then N is Belgian if R is in S.

For the case of N = 176, we have:
D is 1 7 6
S is 1 8 14
T is 14
R is the T-residue of N, or 8.

We ask: is R in S? The answer is Yes!

At Play With J

326

The general case is that N is Belgian if:
 (M | N) e. S
is 1.

Now it’s clear that 176 is Belgian if any of these residues is the
same as 14 | 176:

 14| 176
8

It is certain that if one adds the proper multiple of 14 to 8, the
result must be 176. It isn’t necessary to find what this multiple is.
It is sufficient that there is an 8 in the sum scan of 1 7 6.

Now we can write an expression to let us determine whether 176
is Belgian:

 (14 | 176) e. + / \ 1 7 6
1

Another way of doing this is: since 8 is the 14 residue of 176, it is
sufficient to see whether there is a zero in the 14 residue of
176 - + / \ 1 7 6

 14 | 176 - 1 8 14
7 0 8

So we may write:
 0 e. 14 | 176 - + / \ 1 7 6
1

to determine that 176 is Belgian.

We can now work with large numbers with some confidence.
First, we’ll need a way of getting the integer components of N. The
function dig works very well:

 dig =: 1j1 & # &. ": @ x:

We’ll use this on 1234567898765:
 dig 1234567898765
1 2 3 4 5 6 7 8 9 8 7 6 5
 + / \ dig 1234567898765
1 3 6 10 15 21 28 36 45 53 60 66 71
 +/1 2 3 4 5 6 7 8 9 8 7 6 5
71
 71 | 1234567898765 - + / \ dig 1234567898765
20 18 15 11 6 0 64 56 47 39 32 26 21

Belgian Numbers

327

There is a zero in this list, indicating that N is Belgian. We can
verify this.

 N =: 1234567898765x
 S =: + / \ dig N
 M =: {: s
 S
1 3 6 10 15 21 28 36 45 53 60 66 71
 M
71
 Q =: <. N % M
 Q
17388280264
 P =: Q * M
 P
1234567898744
 R =: S + P
 R
1234567898745 1234567898747 1234567898750
1234567898754
1234567898759 1234567898765 1234567898772
1234567898780
1234567898789 1234567898797 1234567898804
1234567898810
1234567898815
 N e. R
1

So 1234567898765 is Belgian.

Here is a function that will determine whether or not a number is
Belgian:

 BN =: 3 : 0 " 0
 N =. x: x: (y. >: 2147483648) y.
 'S M' =. (] ; {:) + / \ (1j1 & # &. ":) N
 (M | N) e. S
)

The first line makes the argument an extended integer N if it is
larger than the largest positive 32-bit integer, and otherwise
leaves it alone. M and S are modulus and digits sum, as discussed
above.

See if BN agrees that N is Belgian:
 BN 1234567898765
1

At Play With J

328

Why Belgian?
Why Belgian, indeed. Well, there are Roman numbers, Arabic
numbers, even Catalan numbers. It’s about time Belgium was
recognized. I could pretend that Eric Angelini (the creator of these
numbers) knew that my wife Jeanne was a Fulbright Scholar at
the University of Brussels for the 1952-1953 year – and named
them Belgian in her honour. But I have to admit that this is quite
far-fetched. The truth undoubtedly is – because Angelini is
Belgian.

41 Token Counting: APL versus J
First published in Vector, 22, 3, (August 2006), 49-54.

One measure of the difference between APL\360 and J is the number
of tokens needed in a function to do the same work. I’ll discuss two
examples, comparing well-written, but rather old, APL solutions, to
well-written J solutions.

Direct from Atomic
The first APL example is a marvellous function written by Luther
Woodrum, that appears on page B.11 of the APL\360 User’s Manual
of 1968. Luther is best known to me by his design and implementa-
tion of the original upgrade and downgrade. His function PERM,
below, is given a left argument A, the length of the permutation to be
constructed, and a right argument B, the anagram index of the
permutation to be constructed. It uses an algorithm first discussed, I
believe, by D. H. Lehmer of the University of California in Berkeley.
Here it is:

 û ZĦA PERM B;I;Y
 [1] IĦΡZĦ1+(āΙA)üB-1
 [2] ħ0×Ι0=IĦI-1
 [3] Z[Y]ĦZ[Y]+Z[I]nZ[YĦI+ΙA-1]n
 [4] ħ2
 û

Disregarding the header, footer and line numbers, this has 55
tokens. What does it do? Let’s suppose that A is 9 and N is 288918.
Then the result Z is

 7 1 3 2 6 4 0 5 8

and this is the 288918th permutation of order 9.

Here I should tell you that much of the material that follows is
taken from my At Play With J article in Vector 12.1 (July 1995). This
is not surprising, since it deals with the subject of Luther’s func-
tion.

The first step is to make a function that gives the factorial digits of
permutations of length A. Luther’s function uses origin 1, and that
obfuscates things, so I’ll use the more suitable 0-origin indigenous
to J. To give you some idea of what the factorial digits number

At Play With J

330

system is like, here are the six factorial digits in the system for
three:

 fdb =: >: @ i. @ -

 (fdb 3) #: i. ! 3
 0 0 0
 0 1 0
 1 0 0
 1 1 0
 2 0 0
 2 1 0

You can see the regularity in the rows. Notice also that every row
ends in zero. This is true for all factorial digits systems.

In PERM, line 1 gives Z the factorial digits value for B.
 NB. fdb n yields the radix digits of order 9
 fdb 9
 9 8 7 6 5 4 3 2 1
 (fdb 9) #: 288918
 7 1 2 1 3 1 0 0 0

Lines 2 and 4 control the executions of line 3, so that line 3 is
executed only as long as I is positive. Line 3 can be defined as
function g :

g =: [,] +] <: [
NB. left , right + right >: left

Here I’ll have to pause, and to point out that what I’m doing with
g is taking the clutter out of PERM line 3. What we’ve done so far
reduces line 3 from 26 tokens to 7, yet it does precisely what line 3
does. Perhaps if I show the successive uses of g you’ll get the idea:

 0
 0 1
 0 1 2
 1 0 2 3
 3 1 0 2 4
 1 4 2 0 3 5
 2 1 5 3 0 4 6
 1 3 2 6 4 0 5 7
 7 1 3 2 6 4 0 5 8

Successive lines are formed this way: for example, given line
1 4 2 0 3 5

Token Counting: APL versus J

331

the next line is formed by beginning with the corresponding
factorial digit, in this case 2, and following with the previous line
in which each item greater than or equal to 2 has 1 added to it.

2 1 5 3 0 4 6

Notice that each line is a permutation.

The function g is made of three forks:
 g
 +-+-+--------------+
[,	+-+-+--------+								
]	+	+-+--+-+					
]	>:	[
					+-+--+-+					
		+-+-+--------+								
 +-+-+--------------+

The three forks are:
 fz =:] >: [
 fy =:] + fz
 fx =: [, fy

Here’s a J function, a functional duplicate of PERM:
 sr NB. standard form from reduced
 /:@/:@,/
 ra NB. reduced form from atomic
 ([: fdb [) #:]
 sra =: sr@ra f. NB. standard from atomic
 sra
 /:@/:@,/@(([: >:@i.@- [) #:])
 ;: sra NB. tokens of sra
 +--+-+--+-+-+-+-+-+-+--+--+-+--+-+-+-+-+--+-+-+
 |/:|@|/:|@|,|/|@|(|(|[:|>:|@|i.|@|-|[|)|#:|]|)|
 +--+-+--+-+-+-+-+-+-+--+--+-+--+-+-+-+-+--+-+-+
 # ;: 5!:5 <'sra' NB. count of tokens in sra
 20

The function sr uses an identity I found March 9, 1970, when I
was looking at Luther’s PERM once more:

 N =: 7
 P =: 1 3 2 6 4 0 5 7
 (/:/:N,P) -: (N,P+N<:P)
 1
 NB. double upgrade matches addition.
 N,P+N<:P
 7 1 3 2 6 4 0 5 8

At Play With J

332

 /:/:N,P
 7 1 3 2 6 4 0 5 8

So double-upgrade can take the place of Luther’s line 3, and sra
squeezes PERM down from 55 to 20 tokens.

Pyramigram
In APL Quote Quad 11.1, September, 1980, I asked for solutions to a
problem posed by Linda Alvord, of Scotch Plains Fanwood High
School in Scotch Plains, New Jersey. Here it is:

Write an APL function PG that takes a scalar integer argument
from 1 to 26 and produces a rectangular character matrix
containing a pattern like this:

 PG 5
 Q
 W Q
 Q E W
 R Q W E
 Q E R T W

In each row r there are r randomly selected and randomly
ordered letters, separated by single spaces, arranged to form an
equilateral triangle. The (n-1) letters in row n-1 are selected from
the n letters in row n.

This was one of the most popular problems I’d ever given, and
there were a wide variety of solutions, including ones by some
fairly gifted programmers, but one stood out from the rest, from
Roger Hui. It took me several hundred words to describe what his
function did. Roger recently told me that he had written his
function without having access to an APL implementation. His
function PG was not written in the conventional way that a
function was defined in APL\360. Instead, it uses the alpha-
omega form introduced by Ken Iverson, in which the left and
right arguments are denoted by Α and Ω. Here is a J function
which uses the same algorithm as his from 1980:
PG =: ([:i.[:-])(|."0 1)1j1"_ #"0 1(([:/:(([:-/\]-
y[:|.[:i.[:+:])#([:i.[:+:])
[::])+[:?y[:*:]){[:,(],]){.(('ABCDEFGHIJKLMNOPQRSTUVWXYZ'"_{y]?26"_
) {.y[:-.[:+:])$y],[:+:])$y],]

I won’t dwell on this version other than to say that (1) it has 103
tokens and (2) it is in tacit form. The details are discussed in the

Token Counting: APL versus J

333

cited issue of APL Quote Quad. It is a truth universally acknow-
ledged that a good programming language, worked over and
pondered over for a sufficiently long time by the same people
who had produced the original, may very well show advantages
over the original. Thus I sent an email to the J Forum list, and
messages to key people in the APL community, for new solutions
to the problem. I made it clear that the degree of improvement in
expressiveness, as measured by token count, would be the criter-
ion used. I received new solutions from the J and the APL comm-
unities. The shortest token count among the numerous APL
solutions was 30, and there were several that used up to 60
tokens. The shortest J solution, by Roger Hui, was 20 tokens long,
so I’ll discuss that one only. This is it:

 h =: /: # ? #
 pyr =: i. &. - @ # |. " _1 [: 1j1 & # @ h \ h

His h has 4 tokens, and pyr has 16, totalling 20.

The subfunction h is a hook. It randomizes its argument. Its first
function is /: and its second function is the fork # ? # .

 h 'qwert'
 ertqw

The function pyr’s structure may best be seen using box display:
 +---------------+---------+--------------------------+
+---------+-+-+	+--+-+--+	+--+-------------------+-+															
	+--+--+-+	@	#				.	"	_1			[:	+---------------+-+	h			
		i.	&.	-					+--+-+--+				+---------+-+-+	\|			
	+--+--+-+									+---+-+-+	@	h					
+---------+-+-+							1j1	&	#								
						+---+-+-+											
					+---------+-+-+												
				+---------------+-+													
		+--+-------------------+-+															
 +---------------+---------+--------------------------+
 A B C

The three outer boxes, A, B, and C, tell us that we have a fork. Box
C yields the object to be rotated, and is the most interesting part. It
produces a right-triangle version of the equilateral result required.

Its copy function # is a dyad. By bonding (&) it on the left with
1j1 we create a monad that makes one copy of its argument item
and follows this with one fill item. A further function is made by
using atop (@) between the aforesaid monad and h. One further

At Play With J

334

step is to apply the prefix adverb (\) to this combined function to
yield 1j1 & # @ h \ . One last step supplies cap ([:) to the left
of this and h to the right, and we have a function that randomizes
the argument 'qwert', then randomizes each prefix, and provid-
es a space after each item of the prefix, like this:

 ([: 1j1 & # @ h \ h) 'qwert'
r
r t
t q r
e r t q
w q e r t

Rotation (box B) uses reversal, item rank (|." _1) so that scalar
items from the left argument (box A) rotate list arguments from
the right argument (box C).

Box A creates the left argument. It makes good use of negative
arguments to i. and of dual. Ordinarily i. ¹ y yields a descend-
ing list of positive integers, but we want to do right rotations,
which require a negative value. That’s the reason for using dual
minus. (&. -).

 i. _5
4 3 2 1 0
 (i. &. -) 5
_4 _3 _2 _1 0

Thus, the whole result is given by 20 tokens:
 (i. &. - @ # |. " _1 [: 1j1 & # @ h \ h)'qwert'
 e
 r e
 r e t
 e q r t
r w q t e

From 103 tokens in 1980 to 20 in 2005, and by the same author, is a
huge reduction.

