

50 Shades of J
Based on J-ottings Vector arti-

cles
1993—2017

by

Norman Thomson

  

�1

Contents

Preamble 4 ...
1. every, each, and a little bit of rank 8 ..
2. A Composition on Composition 15 ..
3. My J-oinery Workshop 25 ...
4. Parallel Joins 30 ...
5. Conjugacy and Rank 37 ..
6. Punctuation and Rank 44 ..
7. One Foot in the Grade 52 ..
8. Transpositions, Perms and Combs 58 ..
9. Power Steering extra 63 ...
10. Bonding is Power – how Interesting 69 ..
11. Time for amendment of data 73 ...
12. Obverse to Adverse :.:: a trip along the Brailleway 78
13. If you think J is complex try j 85 ..
14. j is complex? You bet! 97 ..
15. Cancel, cancel little fraction 107 ...
16. Thinking by numbers 111 ..
17. Jaesthetics 119 ...
18. The problem with J is… 126 ..
19. Symphony in J minor, op.31 131 ...
20. How to Do Things with Words 136 ...
21. Are you thinking what I’m thinking? 142 ...
22. Index Lists, Grade Lists, and some simple joins 147
23. Some Numerical Problems Analysed in J 153 ..
24. Here we go round… and round and round… 159
25. Two for the Price of One 164 ...
26. Working in Groups 168 ..
27. All but one 175 ..
28. Have you a weight on your mind? 182 ...
29. Just say it in J - ANOVA 186 ...
30. Just what do they sell at C&A? 193 ..
31. A rippling good yarn 198 ..
32. So Easy a Child of 10… 202 ...
33. Perming and Combing 210 ...
34. Combination Lists 219 ...
35. How many Obtuse angled triangles are there? 227
36. …the stylish part of Vector 232 ...
37. Greed : patterns for the collapse of Western capitalism 238
38. Shortest Paths 245 ...
39. The I-spy book of J 254 ..
40. The I-spy book of J part 2 260 ...

�2

41. Suffer the little children… to bring along their equations 264
42. Fifty ways to tell a fib 273 ..
43. Seeds, Cones and Sunflowers 278 ..
44. Catalan Numbers 287 ...
45. A partial solution to a partial problem 293 ...
46. Tables and Geometry 301 ...
47. Musical J-ers 305 ...
48. Heavens above! 318 ..
49. Financial Maths and J – part 1, IRR and APR 329
50. Financial Maths and J – part 2; Growth Rates 336...............................

�3

Preamble
Read this First!!

“Fifty Shades of J” is a collection of 50 essays which have ap-
peared over a period of years as the J-ottings column in Vector.
They have been updated and standardised so that all the code
quoted runs on J602. Although many of the essays are about basic
features of J, it should not be regarded as a language primer, but
rather as providing some thoughts, insights and worked examples
for the user who has already cleared the first hurdles of learning J.
A ‘Principal Topics’ lists heads each essay, and most have a con-
cluding Code Summary, which should prove helpful in giving a
rapid view of the ground covered. The essays are not printed in
their order of appearance in Vector, but rather have been arranged
and in some cases merged, so that the first sixteen each emphasise
a single primitive or feature, the next five are about the underlying
philosophy of J, and the remainder have some specific problem or
problems as a starting point, and show how readily J can be used
to address it. In some cases the original titles and emphasis have
been changed, although I have resisted too much over-polishing in
the belief that is might be better to retain something of the original
spirit of discovery. Many of the essays have a mathematical slant
which reflects that one of the originals objectives of J, like APL be-
fore it, was to iron out some of the ambiguities and anomalies of
conventional mathematical notation by creating an immediately
executable bridge between mathematical theory and practice.

APL and its descendants have always been regarded as array pro-
cessing languages. However, I consider that it is more helpful to
view J as primarily a list processing language for reasons which
will become clearer as the reader proceeds through the essays.
These are numbered as e.g. E #42 (i.e Essay no. 42), for cross-refer-
ence, and also for the purpose of indexing. It is hoped that the
index will help make the book a useful collection of phrases for
the reader who is maturing into J. J has a formal vocabulary of
English words which describe its symbol vocabulary. Where Eng-
lish words are used in this way they appear in italics thus : signum.
The J symbol vocabulary can be divided into sets, first those sym-
bols with which most users are very familiar either because of
their general usage in life, e.g. the symbols of basic arithmetic, or
because they arise so frequently in using J. Those in the former
set do not generally appear in the Principal Topics sections at the
head of each essay, unless there are some special aspects of them

�4

which are illustrated in that particular essay. Typical members of
this set are the arithmetic and logical verbs

 + - * % ^ ! (factorial)

 = < > >: and <: (dyadic) ~: (not equal)

The only unfamiliar form is monadic * meaning signum. The sym-
bols derived from the above for double, halve, square and square
root, together with increment and decrement also fall into this cate-
gory viz.

 +: -: *: %: <: >:

as do the di-grams +/ and */ for sum and product of lists (>: and
π in mathematics terms). The second set comprises the more spe-
cialised symbols which are often harder to pick out in the strings
of characters which make up typical J expressions.

Series, that is lists, are an essential part of the discourse of mathe-
matics, and it is assumed that the reader has grasped the impor-
tant distinction between the joining verbs ravel (,) and link (;). tally
(#) and reverse (|.) are also necessary elements of any program-
ming language which admits strings. head/behead and tail/curtail
are desirable additions to the basic set, although a degree of mem-
orisation is required before it becomes ingrained that in J { means
“take just one”, } means “take all but one”, dot means “from the
left” and colon means “from the right”.

Intelligent reading of J requires an appreciation of verb composi-
tion which can be implicit, that is hook and fork, or explicit as in the
various forms of @ and & t, that is the conjunctions at, atop, bond,
compose, under, appose. These are of such wide occurrence that they
are dealt with in E #2 (“A Composition on Composition”) and
thereafter do not appear in the Principal Topics lists. Linked with
these is the ~ (passive conjunction) which is often manifest in what
I term the ‘bridge hook’ u~v. These symbols do not feature in
Principal Topics, instead they are comprehensively described in E
#2.

The items in lists may be numbers, of which there are six converti-
ble representations (see E #14 “j is complex? You Bet!”), characters
as given by a. (alphabet), or lists. Whenever lists consist of lists, it
becomes essential to be aware of rank (see E #5 “Conjugancy and
Rank” and E #6 “Punctuation and Rank”), that is for the user to be

�5

consciously aware of depth within a hierarchy of lists. Rank is a
consideration for all but the simplest operations, from which it
follows that fluency in using the rank conjunction (“) is assumed.
This is used in some way in almost half of the essays, for which
reason it does not always appear in Principal Topics lists.

There are two defined adverbs which are used repeatedly and are
part of the J standard vocabulary, namely

 every=.&>

and

 each=.&.>

whose definitions are not repeated in individual essays. Also the
power conjunction pervades many essays – roughly speaking it
provides in a single digraph a style of looping activity which is
characteristic of most computing languages.

By contrast with “At Play with J” where Gene McDonnell typical-
ly took a substantial problem, and solved it, sometimes at some
length, my aim has been, particularly in the first set of essays, to
work outwards from what is already an algorithmically rich base,
and by looking at primitives in detail, show ways of making them
even more useful and interesting. Gene and I frequently ex-
changed transatlantic e-mails, and I like to think that his top-down
approach is complemented by my more bottom-up one of broad-
ening the possibilities available through J’s basic elements.

When J first appeared, its aficianados were carried away to some
extent by enthusiasm for tacit programming, just as APL users
were entranced by the ability to write one-liners. Tacit program-
ming used uncritically can lead to long and incomprehensible
lines which defeat Ken Iverson’s initial objective of a computing
language which reflected the styles and usage of natural lan-
guages, thereby making their meaning that much clearer than the
statements of more conventional computing languages. As a
broad rule, once ‘pure’ lines exceed around seven or eight charac-
ters, it is usually better to consider defining a new named verb or
adverb, if necessary building up a chain of mixed new names and
J primitives to achieve a final overall objective. Also even working
within the ‘seven or eight’ line rule, over-enthusiasm for tacit pro-
gramming can sometimes be less clear than explicit definition us-

�6

ing x and y as left and right arguments. In the ensuing pages, I
have tried to use whichever seemed to me the clearer style in each
individual circumstance, so that as well as code quoted being exe-
cutable by copying, it should also be self-describing.

For this purpose the Code Summaries contain the main verbs, ad-
verbs and nouns in a hierarchical order indicated by indentation.
This is in contrast to the ‘bottom-up’ fashion in which they have
generally been developed in the text of their essay. Broadly speak-
ing ‘Principal Topics’ describe what the essay sets out to do and
the J features which required to help get there, the essay body de-
cribes the process of getting there, and the Code Summary consol-
idates the final point of arrival. For sufficiently fluent J readers the
last is all the information they need! (see E #21 “Are you thinking
what I’m thinking?”). There is also a Topics Index and a Vocabu-
lary Index which reference essay numbers rather than page num-
bers. Broadly speaking the former lists topic areas which have
seemed to me to be amenable to J treatment, while the latter cov-
ers applications suggested by the J primitives themselves.

Many of the essays were triggered by other articles in Vector. All
such references to these are embodied within the text. Words
which would be emphasised in speech are underlined, an bold
type is used occasionally where this helps definitions and spe-
cialised terms stand out.

�7

1. every, each, and a little bit of rank

Principal topics : & (compose) &. (under) @ (atop). ” (rank conjunction) , fill char-
acters, ragged arrays, heterogenous arrays, inner product.

In APL2 there was just one primitive symbol (double dot) for ‘each’ –
the ‘pepper’ effect is well imprinted on those with long memories,
although that is not what APL looks like these days. In spite of J be-
ing considerably richer in primitives than APL, it does not include
‘each’ as a primitive. Instead J recognizes that there are two types of
‘each’, both defined as adverbs in the standard vocabulary and both
using open

 every=.&> NB. uses compose
 each=.&.> NB. uses under

The definitions of the conjunctions u&v and u&.v in mathematical
terms as (uv) and (v-1uv) show that the rule

 (f every) -: (>f each)

is completely general, and so only one of ‘each’ and ‘every’ is ever
logically necessary. ‘each’ has the general merit of greater compact-
ness through generating what APL2 users would recognise as ragged
arrays. On the other hand ‘every’ has the merit of avoiding, or at least
reducing, boxing on display, but often at the expense of requiring
greater numbers of fill characters to achieve global homogeneity. In
writing J it can be handy to have a ‘rule of thumb’ appreciation of
how ‘each’ and ‘every’ work without having to consider the semantic
details of box and open at every point of use. Thinking in terms of lists
is helpful in using ‘each’ and ‘every’ effectively, as is sensitivity to the
ways in which argument rank works. J has a wealth of algorithms
pre-implemented for its users within its interpreters. Effective use of
these requires an acknowledgemnt that Data = Content + Structure,
and through ‘each’ and ‘every’ it makes demands on the accurate
pinpointing of where algithms at structural levels of Data. For ex-
ample, given

 h=.i.2 3 NB. two 3-lists, rank = 2

compare the following

�8

 h,every 6 7 NB. one 2-list, items=3 2-lists, rank=3
0 6
1 6
2 6

3 7
4 7
5 7

 h,each 6 7 NB. 2 3-lists, items=2-lists, rank=2
┌───┬───┬───┐
│0 6│1 6│2 6│
├───┼───┼───┤
│3 7│4 7│5 7│
└───┴───┴───┘

Applying the general rule above h,every 6 7 is identical to >h,each 6
7, or to put it in another way, the two displays above show the same
six 2-lists, in one case individually boxed, in the other integrated into
a structure of higher rank.

Using either ‘each’ or ‘every’ with a dyadic verb often requires the
user to box one of the arguments to achieve a desired result through
bringing about correct argument matching. Often this consists of a
simple boxing of one of the arguments as in

 x=.6 7;8;9 10 11 12
 (<h),each x NB. left rank 0, right rank 1, result rank 1
┌─────┬─────┬──────────┐
│0 1 2│0 1 2│0 1 2 0│
│3 4 5│3 4 5│3 4 5 0│
│6 7 0│8 8 8│9 10 11 12│
└─────┴─────┴──────────┘

The result is a 3-list of scalars (and so of rank 1) each made from the
same scalar (<h) joined to each item of a 3-list, with everything opened
and boxed following the (v-1uv) rule which defines &. (under). There is
a local fill character in the first box, a local scalar expansion in the sec-
ond, and the third containing two fill characters in the final column
has a different shape ($) from the other two. Compare this with

 (<h),every x NB. left rank 0, right rank 1, result rank 3
0 1 2 0
3 4 5 0
6 7 0 0

0 1 2 0
3 4 5 0
8 8 8 0

0 1 2 0

�9

3 4 5 0
9 10 11 12

where there is no v-1 boxing. Again the result is a 3-list, but now not of
scalars but of three filled lists, each of which is a 4-list of scalars after
filling. APL2 talked about ‘ragged’ and ‘heterogeneous’ arrays – a
more appropriate differentiation in J is between locally- and globally-
filled lists, corresponding to each and every. Using "0 as an alterna-
tive gives a result rank between those of every and each :

 (<h),"0 x NB. left rank 0, right rank 1, result rank 2
┌─────┬──────────┐
│0 1 2│6 7 │
│3 4 5│ │
├─────┼──────────┤
│0 1 2│8 │
│3 4 5│ │
├─────┼──────────┤
│0 1 2│9 10 11 12│
│3 4 5│ │
└─────┴──────────┘

Here the scalar left argument gives rise to scalar replication, and the
result is a 3-list of non-homogeneous 2-lists without fill characters,
that is, it is only the display which is rectangular not the result object
itself, as is made explicit by

 $each (<h),"0 x
┌───┬─┐
│2 3│2│
├───┼─┤
│2 3│ │
├───┼─┤
│2 3│4│
└───┴─┘

In order to avoid monotonous repetition, subsequent examples will
use just one of ‘each’ or ‘every’, the other case being covered by the
general rule (f every) -: (>f each) .Consideration of rank is almost al-
ways a preliminary to well-considered usage of each. There are no
overall rank rules because these depend on the semantics of each in-
dividual f . In the next set of examples three figures in square brackets
in a comment give the left, right and result ranks of the verb |. or
|.each .

Consider first the basic case of the verb shift with a rank 1 argument
on the left and a rank 2 argument on the right :

 0 1|.h NB. 0-shift rows ,: 1-shift cols [1 2 2]

�10

1 2 0
4 5 3

Applying each with box on either right or left changes the ranks :

 0 1 |.each <h NB. 0-shift on h ; 1-shift on h [1 0 1]
┌─────┬─────┐
│0 1 2│3 4 5│
│3 4 5│0 1 2│
└─────┴─────┘
 (<0 1)|.each h NB. (<0 1)-shift on items of h [0 2 2]
┌─┬─┬─┐
│0│1│2│
├─┼─┼─┤
│3│4│5│
└─┴─┴─┘

Between these extremes is the possibly more useful case of ‘left rank 1,
right rank 1’:

 0 1|.each<"1 h NB. 0-shift 1st row;1-shift 2nd [1 1 1]
┌─────┬─────┐
│0 1 2│4 5 3│
└─────┴─────┘

Next, given the laminated rank 3 object :

 hlam=.(i.2 3),:10+i.2 3
 hlam
 0 1 2
 3 4 5

10 11 12
13 14 15

here are the effects of four rather similar expressions, along with an-
notated descriptions which attempt to explain the differences between
them. What is the best medium for such descriptions? Why J, of
course, hence the comments which follow each of the four executable
lines supply matching equivalent statements

 (<0 1)|.each <"2 hlam NB. (0 1|.h);(0 1|.h+10) [0 1 1]
┌─────┬────────┐
│1 2 0│11 12 10│
│4 5 3│14 15 13│
└─────┴────────┘
 0 1|. each <"2 hlam NB. (0|.h);(1|.h+10) [1 1
1]
┌─────┬────────┐

�11

│0 1 2│13 14 15│
│3 4 5│10 11 12│
└─────┴────────┘

 0 1|. each <"1 hlam NB. (0|. each H<"1 h),:(1|. each <"1
h+10)
┌────────┬────────┐
│0 1 2 │3 4 5 │
├────────┼────────┤
│11 12 10│14 15 13│
└────────┴────────┘

This example is also equivalent to 2 2$0 0 1 1|. each H,<"1 hlam ,
since ,<"1 hlam is a 4-list whose items are 3-lists such as 0 1 2. The
next example illustrates how "0 means apply a shift at the scalar level
which is necessarily a ‘do nothing’ operation.

 (0 1)|."0<"2 hlam NB. equivalent to <"2 hlam [1 1 1]
┌─────┬────────┐
│0 1 2│10 11 12│
│3 4 5│13 14 15│
└─────┴────────┘

A further set of examples illustrates what happens with characters. g
is a pair of 2-lists and thus has the same shape as h, only its items are
characters lists rather numbers.

]g=.2 3$'ant';'bee';'cat';'dog';'elk';'frog'
┌───┬───┬────┐
│ant│bee│cat │
├───┼───┼────┤
│dog│elk│frog│
└───┴───┴────┘

Where items are characters lists, there are necessarily possible ambi-
guities between genuine space characters and space fill characters,
something which is clarified in

 1 |. each g NB. 1-shift items ranks=[0 2 2]
┌───┬───┬────┐
│nta│eeb│atc │
├───┼───┼────┤
│ogd│lke│rogf│
└───┴───┴────┘

The next example shows simultaneous opening of both arguments
followed by v-1 boxing :

 (<0 1)|. each <g NB. <0 1|.g, ranks=[0 0 0]
┌──────────────┐
│┌───┬────┬───┐│

�12

││bee│cat │ant││
│├───┼────┼───┤│
││elk│frog│dog││
│└───┴────┴───┘│
└──────────────┘

The next example is one in which the result rank is less than an argu-
ment rank :

 0 1|. each <g NB. (<0|.g),(<1|.g),ranks=[1 0 0]
┌──────────────┬──────────────┐
│┌───┬───┬────┐│┌───┬───┬────┐│
││ant│bee│cat │││dog│elk│frog││
│├───┼───┼────┤│├───┼───┼────┤│
││dog│elk│frog│││ant│bee│cat ││
│└───┴───┴────┘│└───┴───┴────┘│
└──────────────┴──────────────┘

the final example in this set the shapes of the items within the two
outer boxes are not identical, thus resolving an ambiguity between fill
and genuine space characters which each would not have shown :

 0 1|. each <"1 g NB.(<0|.0{g),(<1|.1{g),ranks=[1 1
1]
┌─────────────┬──────────────┐
│┌───┬───┬───┐│┌───┬────┬───┐│
││ant│bee│cat│││elk│frog│dog││
│└───┴───┴───┘│└───┴────┴───┘│
└─────────────┴──────────────┘

However, given that each by definition reduces one level of boxing in
every case, it often gives less fussy looking results than each where
character lists are involved.

The examples so far have been chosen to illustrate the principles of
each and every. An example of a practical problem involving each is
that of evaluating linear expressions such as x + 2y - z over separate
ranges of values of their variables. The results in this simple example
are easy to check.

 t3=.1 2;3 4 5;6 NB. x={1,2} y={3 4 5} z={6}
 {t3 NB. catalog gives all combinations
┌─────┬─────┬─────┐
│1 3 6│1 4 6│1 5 6│
├─────┼─────┼─────┤
│2 3 6│2 4 6│2 5 6│
└─────┴─────┴─────┘
 ip=.+/ .* every NB. 6 inner products with 1 2 _1
 ({t3)ip <1 2 _1
┌─┬─┬─┐
│1│3│5│

�13

├─┼─┼─┤
│2│4│6│
└─┴─┴─┘

The advent of ‘each’ and ragged arrays in APL2 breathed new life into
that language. J deals with such matters more subtly by forcing
choices between the two possibilities ‘each’ or ‘every’. Inm broad
terms ‘each’ allows raggedness and reduces homogeneity to a local
level, ‘every’ reduces boxing at the cost of imposing greater homo-
geneity through globally applied fill characters.

Code Summary
 every=.&>
 each =.&.>
 ip=.+/ .*

�14

2. A Composition on Composition
Principal Topics : @ (atop) @: (at) & (bond/compose) &. (under) &: (appose) -:
(match) ^. (log) -. (less) [(left)] (right) %. (matrix inverse/divide)
~ (passive conjunction), b. (basic characteristics) hook, fork, conjunctions, bridge
hook, rank, rank inheritance, mean, geometric mean, harmonic mean, moments,
normalization, transformations, valence.

Composition lies at the heart of the J language, and is based on the
use of conjunctions, understanding which involves appreciation of the
concept of rank. ‘Compose’ in a general sense means “make a com-
posite verb from two others”, but ‘composition’ also extends to the
broader range of forming composite objects using explicit conjunc-
tions, and also implicit ones as in the case of hook and fork.

Joining nouns and verbs

The simplest use of conjunctions is to join a noun to a verb in either
order to form a new verb, something which is a familiar part of the
fabric of natural language. For example, ‘daydream’ is a verb whose
meaning cannot be fully conveyed by using ‘day’ or ‘dream’ separate-
ly, and the same applies to compound verbs such as ‘headhunt’,
‘facelift’, ‘datestamp’, etc.

 (-&2)6 7
4 5
 (2&-)6 7
_4 _5

where the composite verbs in parentheses could be thought of as
‘take-two-from’ and ‘take-from-two’.

Compositions of two verbs are possible as in ‘sleepwalk’, ‘tumbledry’,
‘stirfry’, and again in each case the composition has an extra layer of
meaning which exceeds the sum of its two constituents. For example
the familiar technique of multiplying numbers by adding their loga-
rithms, and then using anti-logarithms to obtain the final result. The
monadic verb ^ means “raise e to the power”, and its inverse ^.
means “get the natural logarithm” . (Powers and logarithms to other
bases are obtained by applying these verbs in their dyadic forms with
the base as left argument) To compose (&) logs with addition gives the
logarithm of a product, for example

 2+&^.3
1.79176

�15

gives the sum of the natural logarithms of 2 and 3 to give the loga-
rithm of 6, and the multiplication process can be completed by using
under (&.) :

 2+&.^.3
6

Both ‘verb-noun’ and ‘noun-verb’ cases are examples of bonding. In
Function terms under gives g-1 f grather than just f g . Thus (<:&*:
)n means n2 -1 whereas (<:&.%:)n means √(n2-1). If the verbs
are switched (*:&<:)n means (n-1)2 while (*:&.<:)n means
(n-1)2 +1 .

The atop conjunction

Sometimes in programming it is useful to start a sequence of counting
integers at 1 rather than 0 - this is a basic application of @

 int=.>:@i. NB. integers from 1 to y
 int 4
1 2 3 4
 int 2 3
1 2 3
4 5 6

If the constituent verbs are reversed, incrementing comes first and the
effect is to change the argument of i. and hence the shape of the re-
sult:

 (i.@>:)4
0 1 2 3 4
 (i.@>:)2 3
0 1 2 3
4 5 6 7
8 9 10 11

Atop and hook

The primitive verb | returns the absolute value or values of the items
in a numeric list. Thus >./@| returns the maximum absolute value in
the list.

 maxabs=.>./ @: |
 maxabs 2 7 _11 9
11

�16

Now use this composed verb as the right argument of a hook, which is
itself a form of composition without an explicit symbol. %maxabs di-
vides all the list items by the maximum absolute value, so that

 normallise=.%maxabs

scales a list so that the largest absolute value is 1.

 normalise 2 7 _11 9
0.181818 0.636364 _1 0.818182

Atop and at

The essence of atop and at is sequencing, in the sense in which lines
are sequenced in conventional programming languages. Indeed the
presenc of many @s and @:s in a J expression is often an indication
that the purpose would be more clearly achieved by rewriting the line
in a simpler explicit multi-line style. Sequencing can take place in
possible ways. Returning to the analogy of ‘stirfry’, two interpreta-
tions of this composition are possible; either every morsel is fried and
immediately stirred, that is the verbs ‘stir’ and ‘fry’ are fused, or al-
ternatively the frying is applied to everything, and the result is passed
to the stirring process. Such distinctions necessarily involve the con-
cept of verb rank.

Some verbs always enforce processing at the level of atomic elements
(scalars), even if their arguments are of higher rank, in which case the
result is obtained by an appropriate extension from the simple scalar
case. The commonest verbs of this kind are the dyadic arithmetic and
logic verbs + - * % ^ >. <. +. and *. . Such verbs are called rank-
zero verbs. Verb rank may differ in monadic and dyadic cases, for
example monadic + is not a rank-zero verb since with a numerical ar-
gument +n is just n and there is no requirement for atomic level pro-
cessing. In general a verb possesses three verb ranks, one associated
with the monadic case, and the other two with the left and right ar-
guments of the dyadic case. Verb rank often underlines an aspect of a
verb which is already part of its semantic description. For example
the monadic verb $ (shape of) always returns a shape list, that is a rank
1 object, and so the dyadic form (reshape) is constrained to have a
shape list as its left argument. The left verb rank is thus 1, the maxi-
mum permitted value. A similar condition applies for the dyadic
verb |. (shift). %. (matrix inverse) has a verb rank of 2. The three ranks
of a verb are obtained as

 % b.0
0 0 0

�17

 %. b.0
2 _ 2

The left rank of %. is infinite because matrix division places no rank
restriction on its numerator, Apart from verbs such as plus=.+ which
are mere transliterations of primitive verbs, most defined verbs have
infinite rank because it would require a dynamic algorithm to work
out true verb rank on each application, and infinite verb rank is al-
ways a ‘safe’ assumption. The principal distinction in the present dis-
cussion is between rank-zero verbs and non-rank-zero verbs because
this leads to an important variant form of composition.

In the phrase

 1 2 3(+/@-)2
_1 0 1

the leftmost of the two composed verbs plus insert is constained to op-
erate at the same rank level as that of minus. Informally +/ fuses into -
, which has verb rank zero, and since the +/ of a scalar is simply the
scalar itself. The manner in which u binds closely with or ‘tracks’ v
in u@v is called rank inheritance.

However with at (@:), in which the verb u does not inherit the rank of
v. With +/@:- , the linkage between u and v is thus less tight, allow-
ing the +/ to operate at a level which is dictated by the result rank of
v rather than by its own verb rank, so that 1 2 3(+/@:-)2 results in
-1 + 0 + 1= 0. More generally rank inheritance applies for @, but not
for @:.

Rank inheritance distinctions are important in cases such as the hook
+/@-mean where mean=.+/%# which is a fork. Compositions are re-
solved as soon as a verb is found to the right of the conjunction on a
left-to-right scan, and so the above phrase is equivalent to (+/
@-)mean, that is add the mean to eaxh item seperately. For the rea-
sons just given +/ operates at rank zero, and so +/ does nothing. On
the other hand the phrase +/@(-mean) has –mean as its rightmost verb
which is of infinite rank, so that +/ is free to operate at its natural
rank of 1, returning a scalar sum which, in the case of the sum of
mean deviations, has the value 0 for all numeric lists. For the com-
posed verb +/@:(-mean) the parentheses make no difference to the
result, because @:: inhibits rank inheritance. The following sequence
sums this up :

 (+/@-mean)i.5

�18

_2 _1 0 1 2
 (+/@(-mean))i.5
0
 (+/@:-mean)i.5
0
 (+/@:(-mean))i.5
0

Left and right verbs

Two superficially trivial, but nevertheless important verbs are [(left)
and] (right). The fork is another form of composition without explicit
symbols. [,] transforms a pair of arguments into a two-item list, and
the fork],[transforms them into the same list in reverse order.
These verbs often have to be used in conjunction with @ (atop) when,
for example, one of the transformations in a dyadic fork uses only one
of the two arguments. For example, suppose that the xth. moment
about the mean of a numeric list y is required, that is the average of
the values of mean-adjusted y raised to the power x :

 moment=.mean@:((mdev@])^[)
 2 moment t=.4 5 2 1
2.5
 3 moment t
0

In such cases the passive conjunction which switches arguments gives
a neater solution :

 mdev=.-mean
 moment=.mean@:^~mdev
 2 moment t=.4 5 2 1
2.5

In the verb -.&i. incorporating -. (less) is used to remove the items of
i.x from i.y .

 12(-.&i.)3 NB. integers from 3 to 11
3 4 5 6 7 8 9 10 11

In making this into a defined verb :

 to=.-.&i.~,]
 3 to 12
3 4 5 6 7 8 9 10 11 12

the passive conjunction (~) again switches arguments and] makes the
right argument inclusive. Applications of ~ often involve what I
choose to call the ‘bridge hook’ of which an example is $~$. The ex-

�19

pression 0($$)a returns a 0-list whatever the value of a whereas 0($~
$)a switches the 0 to be right argument and thus returns an array of
0s in the shape of a, a much more useful idiom!

The appose conjunction

The appose conjunction (&:) provides for & and &. the same release
from rank inheritance as @: does for @ . Compare

 mean&% 1 2 3 4 NB. mean inherits rank 0
1 0.5 0.333333 0.25
 mean&.% 1 2 3 4 NB. divn followed by inverse, ri =0
1 2 3 4
 mean&:%1 2 3 4 NB. no rank inheritance
0.520833

Using &: the harmonic mean (that is the reciprocal of the mean of reci-
procals) and geometric mean are given by

 %mean&:% 1 2 3 4
1.92
 ^mean&:^. 1 2 3 4
2.21336

Here is another example of presence/absence of rank inheritance

]a=.2$<i.2 3 NB. a is a 2-list
┌─────┬─────┐
│0 1 2│1 2 3│
│3 4 5│4 5 6│
└─────┴─────┘
 ,&>a
0 1 2 3 4 5
0 1 2 3 4 5
 ,&:>a
0 1 2 3 4 5 0 1 2 3 4 5

When dyadic verbs are concerned, define

]b=.2$<10+i.2 3 NB. b is another 2-list
┌────────┬────────┐
│10 11 12│10 11 12│
│13 14 15│13 14 15│
└────────┴────────┘

a,&> b is a,every b, that is join item by item and then open the result.
However (a ,&:> b) means open both items and then join, that is
(a ,&:> b)-:(>a),(>b) :

�20

 (a,&>b);(a,&:>b)
┌────────┬────────┐
│ 0 1 2│ 0 1 2│
│ 3 4 5│ 3 4 5│
│10 11 12│ │
│13 14 15│ 0 1 2│
│ │ 3 4 5│
│ 0 1 2│ │
│ 3 4 5│10 11 12│
│10 11 12│13 14 15│
│13 14 15│ │
│ │10 11 12│
│ │13 14 15│
└────────┴────────┘

Conjunctions compared

The conjunction bond joins a noun and a verb (or a verb and a noun)
as in -&2

 (-&2)4 5 6

2 3 4

In the above example the bonded verb is monadic. However bonded
verbs can also be dyadic in which case the following rule applies :

 x m&n y ↔ m&v*:x y

 - see E #10 (“Bonding is Power – how interesting”) for details.

Five explicit verb-verb compositions have been discussed so far. In
each case the leftmost verb u can be thought of as the prime verb, and
v as a transformation. The primary decision is whether the required
composition is, in mathematical terms, of the form u(v y), in which
case use at or atop, or if it is of the form (v x)u(v y) use compose or ap-
pose, with the additional possibility of under to incorporate an inverse
transformation. Be careful to distinctions between valences, that is
monadicity or dyadicity, since the valences of the component verbs
are a separate issue from that of their compounds.

at and appose are the most fundamental of the composition verbs and
follow the rules

Compound = Monadic Compound = Dyadic

 at (u@:v)y performs u(v y) x(u@:v)y performs u(x v y)
 appose (u&:v)y performs u(v y) x(u&:v)y performs (v x)u(v y)

�21

atop and compose obey the rules as at and appose but invoke rank inher-
itance. This is discussed in more detail in E #9 (“Pulling Rank”)

atop (u@v)y is (u@:v)”(m v)y x(u@v)y is (u@:v)”(lr v)y
compose (u&v)y is (u&:v)”(m v)y x(u&v)y is x(u@:v)”(mm v)y

where m is the monadic rank of v, lr is a list consisting of its left and
right rank vectors, and mm is the list m,m.

 under requires that v is monadic

 (u&.v)y is v-1(u v y) x(u&.v)y is v-1(u v y)

@ and & enforce rank inheritance, @: and &: do not. For monadic
composed verbs the pairs of conjunctions (@,&) and (@:,&:) are inter-
changeable. The monadic composed verbs u@v and u&v are thus
equivalent, and their effect is also the same as that of issuing u and v
directly on a command line, for example

 (!i.2 2) ; ((!@i.)2 2) ; ((!&i.)2 2)

┌───┬───┬───┐
│1 1│1 1│1 1│
│2 6│2 6│2 6│
└───┴───┴───┘

In terms of transformations :

 u@v Transformation v uses x and y, then u is applied to the result
with rank inherited from v.

 u@:v Transformation v uses x and y, then monadic u is applied to
the result without rank inheritance.

 u&v u is applied at the same rank level as v following a transforma-
tion v of all arguments.

 u&.v monadic u is applied after a transformation v of all arguments,
and then the inverse transformation of v is applied.

 u&:v u is applied without rank inheritance following a transforma-
tion v involving all arguments.

A hook is also a composition of two verbs, for which the two possible
results are:
 x u (v y) and
 y u (v y), so that v is always applied monadically.

�22

Because an absent left argument is given the default value y, the com-
posed verb arising from a hook is always inherently dyadic.

A fork is a composition of three verbs, for which the two possible re-
sults are:

 (x u y) w (x v y) and (u y) w (v y)

For monadic arguments the composed verbs resulting from atop and
compose are identical. The dyadic cases can be thought of as

 @ u is applied to a transformation v which uses both arguments;
 & u is applied after a transformation v has been made to both

arguments separately;
 hook u is applied following a transformation v to the right argu-

ment only.

Subtle Differences

Varying or omitting conjunctions can give rise to substantial differ-
ences between superficially similar phrases. This is demonstrated by
the following table of algebraic equivalents obtained by applying the
above rules:

 Monadic Dyadic
 %^(hook } means y exp(-y) xexp(-y)
 %@^ and %@:^ mean exp(-y) x-y

 %&^ and %&:^ mean exp(-y) exp(x-y)
 %&.^ means -y x-y

Final Summary

atop, at and compose, under, appose along with ‘space dot’ (inner product
– see E #9 “Power Steering extra” for examples) are the most common
conjunctions in J, whose rules, along with those of hook, fork and cap
can be summarized (r.i. = rank inheritance, sp = space which must
precede dot) :

 Monadic Dyadic
u&v : u (v y) (v x) u (v y) (v monadic) with r.i.
u&.v : v-1 u (v y) v-1 (v x) u (v y) (v monadic)
u&:v : u (v y) (v x) u (v y) (v monadic) without r.i.
u@v : u (v y) u (x v y) (u monadic) with r.i.
u@:v : u (v y) u (x v y) (u monadic) without r.i.

�23

hook : y u (v y) x u (v y) (v monadic)
fork : (u y)w(v y) (x u y)w(x v y) (w dyadic)
sp dot : u y u (x v y) (u monadic) without r.i.
[: u v : u (v y) u (x v y) (u monadic) without r.i.

When cap is used to make a hook into a pseudo-fork , [: g f is
equivalent to g@:f rather than g@f.

Code Summary
 int=.>:@i. NB. integers from 1 to y
 maxabs=.>./ @: | NB. maximum absolute value
 normalise=.%maxabs NB. max abs value in list = 1
 mean=.+/%#. NB. mean of a list
 mdev=.-mean NB. mean deviation
 moment=.mean@:^~mdev NB. xth moment of a list

�24

3. My J-oinery Workshop

Principal Topics : , (ravel/append) ,.(ravel item , stitch) ,: (laminate) -. (less), ” (rank
conjunction), autostereograms

It is a happy accident that ‘join’ is not the name of a primitive verb in J
because this makes it appropriate to use the word as a generic name
for the three primitive verbs append, stitch and laminate. Some analo-
gies with what goes on in the wood-yard seem appropriate.

Suppose I have a pile of planks and I want to stack a second pile
alongside. My appender (,) takes good care of me so that I do not have
to worry about imbalance due to non-matching widths, although it
does keep appropriate space clear in order to keep everything in tidy
overall order.

]App=.(2 3$'abc'),(3 4$'defg')
abc
abc
defg
defg
defg

Next I use my stitcher (,.) when I want to stack two planks side by
side, and then join plank to plank in matching pairs. Naturally the
stitcher only works when the number of planks in the two piles are
equal.

]St=.(2 3$'abc'),.(2 4$'defg')
abcdefg
abcdefg

Next my laminator (,:) starts a new pile from two existing piles. Like
the appender I do not have to worry about imbalance due to non-
matching widths.

]Lam=.(2 3$'abc'),:(3 4$'defg')
abc
abc

defg
defg
defg

The shaper ($) starts its work as a laminator and continues as an ap-
pender. In this sense the laminator is one of the lowest level (most

�25

primitive) operators in the overall J tool kit, and thus one of the most
pervasive verbs even although its explicit usage is relatively small.

Another valuable little tool is my gouge (-.) which helps me dig out
unwanted bits like knots

 'abcdef'-.'bd'
acef

When it comes to finding and rearranging things in the workshop, I
reach for one of what I call my monadics. First the raveller (,) which
lays everything out in a line, using my gouge to close up the spaces
which may have been put in for overall tidiness :

 Ravel=.-.&' '@,
 (Ravel App);(Ravel St);(Ravel Lam)
┌──────────────────┬──────────────┬──────────────────┐
│abcabcdefgdefgdefg│abcdefgabcdefg│abcabcdefgdefgdefg│
└──────────────────┴──────────────┴──────────────────┘

Next my spacesaver tool which I affectionately call my ‘ri’ (short for
Ravel Items). This comes into play in two circumstances, one when I
want to stack a plank vertically instead of horizontally

 ,.'abcd'
a
b
c
d

and the other when I want to put my two laminated stacks one on top
of the other which I can do in either of two ways

 (,.Lam);(,/Lam)
┌────────────┬────┐
│abc abc │abc │
│defgdefgdefg│abc │
│ │ │
│ │defg│
│ │defg│
│ │defg│
└────────────┴────┘

each of which has the effect of reducing the number of piles (rank in J
terminology).

 ($Lam);($,.Lam);($,/Lam)
┌─────┬────┬───┐
│2 3 4│2 12│6 4│
└─────┴────┴───┘

�26

My accountant tells me that ,. (ravel items) is also very handy for mak-
ing lists into columns (easier to tot up, I suppose)

 ,.i.5
0
1
2
3
4

To complete the picture, my itemizer puts a band around all of my
timber arrangements. You won’t see any visible difference but the
shaper shows it clearly :

 ($App);($St);($Lam)
┌───┬───┬─────┐
│5 4│2 7│2 3 4│
└───┴───┴─────┘

 ($,:App);($,:St);($,:Lam)
┌─────┬─────┬───────┐
│1 5 4│1 2 7│1 2 3 4│
└─────┴─────┴───────┘

What I haven’t told you about is my packing machine known as the
‘boxer’ which opens up many possibilities for joining at the package
level which will be exploited elsewhere.

 <"1 App
┌────┬────┬────┬────┬────┐
│abc │abc │defg│defg│defg│
└────┴────┴────┴────┴────┘
 <"1 St
┌───────┬───────┐
│abcdefg│abcdefg│
└───────┴───────┘
 <"1 Lam
┌────┬────┬────┐
│abc │abc │ │
├────┼────┼────┤
│defg│defg│defg│
└────┴────┴────┘
 <"2 Lam
┌────┬────┐
│abc │defg│
│abc │defg│
│ │defg│
└────┴────┘

�27

The last step is a demonstration of the tools in use. The editor was not
sympathetic to my idea of distributing a set of planks with Vector, and
so I have to fall back on a diagram from the book “How the Mind
Works” by the American psychologist Stephen Pinker, He uses this
diagram to explain how autostereograms are constructed. The basis
of the diagram is that in the short lines two 4s have been removed; in
the long lines two Xs havd been inserted between 3 and 4. The dia-
gram is itself an autostereogram - look at these two areas and use
stereogram viewing techniques and you should seeve a raised and a
recessed rectangular block respectively.

123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
1234567890123456789012356789012356789012345678901234567890
1234567890123456789012356789012356789012345678901234567890
1234567890123456789012356789012356789012345678901234567890
1234567890123456789012356789012356789012345678901234567890
1234567890123456789012356789012356789012345678901234567890
1234567890123456789012356789012356789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
12345678901234567890123567890123567890123512345678901234567890
12345678901234567890678901235678901235678912345678901234567890
12345678901234567890012356789012356789012312345678901234567890
12345678901234567890567890123567890123567812345678901234567890
12345678901234567890901235678901235678901212345678901234567890
12345678901234567890356789012356789012356712345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890

 A blueprint for the diagram is

Here is how the appender, stitcher and gouge realise this blueprint

 t=.'123X4567890'
 u=.t-.'X'
 v=.u-.'4'
 a=.21 20$u

�28

 b=.3 40$u
 c=.(6 18$v),.6 20$u
 d=.(6 22$v),.6 20$u

 a,.b,c,b,d,b

Another possibility is to use ‘joinunequal’ with the following blue-
print

‘joinunequal’ laminates and then undoes the extra dimension, and
follows with the addition of a routine to remove blank rows :

 A=.3 70$u
 B=.(6 30$u),.6 38$u-.'4'
 C=.(6 30$u),.6 42$t

 rbr=.#~ -.@:(*./"1@:=&' ')
 juneq=.rbr@,/@,: NB. join unequal

The Pinker diagram is then obtained by

 A juneq B juneq A juneq C juneq A

Ah well, time to close up the workshop for another day.

Code Summary
juneq=.rbr@,/@,: NB.join char matrices of diff
shapes
 rbr=.#~ -.@:(*./"1@:=&' ') NB.remove blank rows

�29

mailto:juneq=.rbr@,/@
mailto:juneq=.rbr@,/@

4. Parallel Joins
Principal Topics : , (ravel/append) ,.(stitch) ,: (laminate) ” (rank comjunction), ` (tie)
@. (agenda) ;(raze) scalarisation, rectangularity, fill characters, bit to integer con-
version, gerund.

By ’programming for parallelism’ I mean the process of, having
worked something out for simple data, contriving that the relevant
verbs also work on data with more complicated list structures, and
thus carry out their actions on different sets of data in parallel. In the
case of scalar verbs there is often nothing to do, thus 1 2 3 + 4 5 6 car-
ries out additions in parallel, and 2 + 3 4 5 extends 2 to 2 2 2 prior to
doing the parallel additions. It is often desirable to upgrade more
complicated verbs so that they behave like scalar verbs. There are
several mechanisms available for achieving parallelism in J, and it
helps to have clearly in mind the various levers which are available to
be pulled. Some readers may relate to the experience of ‘going paral-
lel’ by pulling hopefully at some of these levers, until eventually the
desired result emerges (or in some cases, not!) If you have never had
this heuristic experience, and always do the right thing first time, then
stop reading at this point - J-ottings can be regarded as a confessional
for imperfect J programmers!

The first mechanism for parallelism is rank control, one of the out-
standing features of J. As an example, start with append which oper-
ates at a minimum rank of 1 :

 1 2,3 4 5
1 2 3 4 5

Provided that the appending is to take place at equal levels of the ar-
guments, it does not matter what argument is given to the rank con-
junction provided that it is a strictly positive integer :

 1 2,"(17)3 4 5
1 2 3 4 5

Rank control is about operating at different levels of the left and right
arguments, for example ‘scalar to list’ or ‘scalar to list of lists’ :

 1 2,"(0 1)3 4 5 NB. join scalars to list
1 3 4 5
2 3 4 5
 1 2,"(1 0)3 4 5 NB. join list to scalars
1 2 3
1 2 4
1 2 5

�30

Sometimes an operation cannot be performed without length equali-
sation using a fill character as in

 4 5 6 7,"(1 2)i.2 2 NB. join list to list of lists
4 5 6 7
0 1 0 0
2 3 0 0

Length equalisation and fill characters are provisions rather than con-
trols, and are present because the language designers wisely judged
that they are often greatly preferable to length errors.

Parallelism for append means creating an upgraded verb which

(a) joins several lists to the same list of scalars;
(b) joins the same list to several lists of scalars; and
(c) join matched pairs of lists and scalar lists.

This requires scalarisation, which is the second major control. It is
tempting to equate scalarisation with box, but this is not quite accurate
since link (;) also performs scalarisation. The results of scalarisation
are non-simple scalars, which in general can only take part in struc-
tural operations such as appending, shifting, rotating and transpos-
ing, which do not involve looking at their content. Any operations on
contents require an open, and, in the words of the help file, “opened
atoms are brought to a common shape”. To put this in another way,
open always forces rectangularity which is sometimes what is want-
ed, at other times not.

To return to the requirements for extended append, consider require-
ment (a). 1 2; 1 3 is a list of two boxed scalars which must be
opened before the concatenation of each to a simple list such as 7 8 9 .
Following the remarks in the previous paragraph, no concatenation
can take place until the two boxed lists are opened, whereupon the
result is ‘list joined to list’, that is append at rank 1 :

 (>1 2;1 3),"(1)7 8 9
1 2 7 8 9
1 3 7 8 9

There is a snag, though, namely that if the two lists on the left are of
unequal length the rectangularity rules will enforce an unwanted fill
character between the first pair of joined lists :

 (>1 2;4 5 6),"(1)7 8 9

�31

1 2 0 7 8 9
4 5 6 7 8 9

The following workaround

 (1 2;4 5 6),every<7 8 9
1 2 7 8 9 0
4 5 6 7 8 9

still forces a fill character, and demonstrates further that explicit opens
always expose the user to this possibility. If this is not acceptable
then lists must be boxed by using under(&.) rather than compose :

 (1 2;4 5 6),each<7 8 9
┌─────────┬───────────┐
│1 2 7 8 9│4 5 6 7 8 9│
└─────────┴───────────┘

This example underlines the fact that u&.v is more subtle than ‘do v,
apply u, undo v’ (in this instance ‘open, append, box’), because if this
were so, there would be an embedded fill character present in the re-
sult.

For requirement (b), suppose the list 1 2 has to be joined to the sepa-
rate lists 4 5 and 7 8 9. The foregoing discussion suggests

 (<1 2),each 4 5;7 8 9
┌───────┬─────────┐
│1 2 4 5│1 2 7 8 9│
└───────┴─────────┘

Finally requirement (c), which, perhaps surprisingly, turns out to be
the simplest of the three because there is no need for scalar expansion
to be invoked by an explicit box :

 (1 2;2 4 6),each 4 5;7 8 9
┌───────┬───────────┐
│1 2 4 5│2 4 6 7 8 9│
└───────┴───────────┘

Using the verb je=.,each standing for ‘join each’ the three require-
ments (a), (b) and (c) are dealt with by

 (1 2;4 5 6) je< 7 8 9
 (<1 2) je 4 5;7 8 9
 (1 2;2 4 6) je 4 5;7 8 9

�32

respectively, and the basic case, that is using je to join two un-
scalarised lists, is :

 1 2 (je&<) 3 4 5
┌─────────┐
│1 2 3 4 5│
└─────────┘

Thus je can deal with all possible cases, but only if responsibility for
boxing unboxed arguments falls on the user. It would be nice if this
decision could be automated. The first of the verbs below tests
whether an item is boxed, and the second uses a gerund to box it if it is
unboxed, otherwise leaves it alone :

 unboxed=.-:> NB. 0=boxed, 1=unboxed
 box=.]`< @.unboxed NB. box if unboxed, else do nothing

so, given that all result lists are required to be boxed, the verb

 JE=.(,each)&box NB. je having boxed any unboxed arguments

addresses the simple case and cases (a) to (c) :

 1 2 JE 3 4 5 NB. equivalent to append then
box
 (1 2;4 5 6) JE 7 8 9 NB. cf. 1 2 + 3
 1 2 JE 4 5;7 8 9 NB. cf. 1 + 2 3
 (1 2;2 4 6) JE 4 5;7 8 9 NB. cf. 1 2 + 3 4

Other possible requirements can be addressed by combining JE with
rank control. For example to join each scalar element in the right ar-
gument to a list as left argument

 1 2 3 JE"(1 0) 4 5
┌───────┬───────┐
│1 2 3 4│1 2 3 5│
└───────┴───────┘

boxes individual scalars in the right argument so that they behave as
two one-item lists, which also happens in the case of multiple lists :

 1 2 JE"(0 1) 3;4 5 6;7 8
┌───┬───────┬─────┐
│1 3│1 4 5 6│1 7 8│
├───┼───────┼─────┤
│2 3│2 4 5 6│2 7 8│
└───┴───────┴─────┘

�33

In the next two cases using ravel on the left gives lists of all possible
joins, only in a different order..

 ,(1 2;2 4 6)JE"(1 0) 4 5;7 8 9
┌───────┬─────────┬─────────┬───────────┐
│1 2 4 5│2 4 6 4 5│1 2 7 8 9│2 4 6 7 8 9│
└───────┴─────────┴─────────┴───────────┘
 ,(1 2;2 4 6)JE"(0 1) 4 5;7 8 9
┌───────┬─────────┬─────────┬───────────┐
│1 2 4 5│1 2 7 8 9│2 4 6 4 5│2 4 6 7 8 9│
└───────┴─────────┴─────────┴───────────┘

The same principle can be applied to a verb such as btoi :

 btoi=.# i.@# NB. converts bits to integer list
 btoi&> 0 1;1 0 0 1 0 NB. accept fill characters
1 0
0 3
 btoi each 0 1;1 0 0 1 0 NB. returns boxed lists
┌─┬───┐
│1│0 3│
└─┴───┘

With character strings it is natural to think in terms of suffixing and
prefixing in the obvious literary sense. It is instructive to see why
some plausible ideas for adding different inflections to the same verb
root fail. First

 (<'post') ,.'s';'ing';'ed'
┌────┬───┐
│post│s │
├────┼───┤
│post│ing│
├────┼───┤
│post│ed │
└────┴───┘

This goes part of the way but there appear to be fill characters present
even in the absence of an explicit open. However, the ravel of the
above expression

 ,(<'post') ,.'s';'ing';'ed'
┌────┬─┬────┬───┬────┬──┐
│post│s│post│ing│post│ed│
└────┴─┴────┴───┴────┴──┘

shows that the fill characters are purely for the necessities of display,
but loses the division into three separate words. Replacing ravel with
raze is even worse :

 ;(<'post'),.'s';'ing';'ed'

�34

postspostingposted

An attempt to remove boxes preserves the words as entities but at the
expense of introducing fill characters :

 ;"1(<'post') ,"1 0 's';'ing';'ed'
posts
posting
posted

But do not worry – help is at hand through JE :

 'post' JE 'ing'
┌───────┐
│posting│
└───────┘
 'post' JE 's';'ing';'ed'
┌─────┬───────┬──────┐
│posts│posting│posted│
└─────┴───────┴──────┘
 ('post';'bow')JE 'ing'
┌───────┬──────┐
│posting│bowing│
└───────┴──────┘
 ('post';'bow')JE 's';'ing'
┌─────┬──────┐
│posts│bowing│
└─────┴──────┘

The third mechanism for parallelism is the join alternatives, namely
stitch and laminate. stitch (which used to have the more descriptive
name of ‘append items’) provides an alternative for rank control, but
has more restrictions than with append due to the constraints of
length compatability.

 1 2,"(0)3 4 1 2,.3 4
1 3 1 3
2 4 2 4

laminate does its join by introducing a new 2-list which means that it is
less easy to find simple direct alternatives to append. Also, unlike
stitch, length equalisation and fill characters can be tolerated. Both of
these points are illustrated in the example below :

 >1 2 ,&box 3 4 5 1 2 ,: 3 4 5
1 2 0 1 2 0
3 4 5 3 4 5

The verbs JES and JEL are identical to JE except that append has been
replaced by stitch and laminate respectively. It is helpful to see the dif-
ferences by comparing results side by side. Two informal observa-

�35

tions are first, that the boxes now contain lists of lists rather than lists.
In loose terminology, stitch adds things on the right, laminate adds
them on the bottom.

 JES=.,.each&box JEL=.,:each&box

 1 2 JES 3 4 1 2 JEL 3 4
┌───┐ ┌───┐
│1 3│ │1 2│
│2 4│ │3 4│
└───┘ └───┘

 1 2 JES 3 4;5 6 1 2 JEL 3 4;5 6
┌───┬───┐ ┌───┬───┐
│1 3│1 5│ │1 2│1 2│
│2 4│2 6│ │3 4│5 6│
└───┴───┘ └───┴───┘

 (1 2;3 4)JES 5 6 (1 2;3 4)JEL 5 6
┌───┬───┐ ┌───┬───┐
│1 5│3 5│ │1 2│3 4│
│2 6│4 6│ │5 6│5 6│
└───┴───┘ └───┴───┘

 (1 2;3 4)JES 5 6;7 8 (1 2;3 4)JEL 5 6;7 8
┌───┬───┐ ┌───┬───┐
│1 5│3 7│ │1 2│3 4│
│2 6│4 8│ │5 6│7 8│
└───┴───┘ └───┴───┘

In summary, JE uses scalarisation via box and open to achieve funda-
mental parallelism such as available in primitive scalar verbs. By
adding rank control and introducing the variants JES and JEL an even
greater variety of parallelism opportunities is possible.

Code Summary
je=.,each NB. join each
JE=.(,each)&box NB. append each
JES=.,.each&box NB. stitch each
JEL=.,:each&box NB. laminate each
btoi=.# i.@# NB. converts bits to integer list
unboxed=.-:> NB. 0=boxed, 1=unboxed
box=.]`< @.unboxed NB. box if unboxed, else do nothing

�36

5. Conjugacy and Rank
Principal Topics : b. (basic characteristics), verb ranks, conjugations

Rank is of enormous importance in J. There are two types of rank,
noun rank and verb rank. The former can be applied to any object in
the J universe, and is the ’tally-of-the-shape’, or in J :

 nrank=.#@$

Verb rank is somewhat more subtle, and is of even greater importance
in understanding J language constructs. Henry Rich put things with
admirable conciseness in ‘J for C Programmers’:

“If you don’t know the rank of a verb, you don’t know the verb!”

It is not just primitive verbs which possess rank, user defined verbs
also possess it, and so do compound verbs, that is verbs formed by
combining or adapting primitive verbs using appropriate conjunc-
tions and adverbs. Moreover, there is no excuse for J programmers not
knowing any relevant verb ranks, since these are immediately obtain-
able for any verb by using the b. adverb with right argument 0 :

 %. b. 0 NB. primitive
2 _ 2
 +/ b. 0 NB. compound (adverbial)
_ _ _
 +.@*: b. 0 NB. compound (using conjunction)
0 0 0
 mean=.+/ % #
 mean b. 0 NB. user defined

_ _ _

Within the J literature I am not aware of any explicit categorisation of
verbs by rank, which is why much of this article consists of an ap-
pendix which does just this. I hope that some readers may find this
appendix helpful, perhaps long after this preamble has been forgot-
ten.

As postings on the J conference testify, the distinction between @ and
@: is a stumbling block in the path of almost every new learner; what I
hope to show here is how this block can be rapidly and effectively
smoothed by a conscious endeavour to understand verb rank.
In general verbs have three unforced ranks, which are, in the order
given in the dictionary definitions:

�37

mailto:nrank=.%2523@$

monadic rank, left rank, right rank

The word ‘unforced’ acknowledges that verbs can have their basic
ranks changed to an explicit value by using the rank conjunction " .
Classification by rank has some affinity with verb conjugations in the
classical languages, and although this analogy should not be pushed
too far, it seems reasonable to think of verbs as being grouped by con-
jugations along lines such as the following :

1. Pure scalar verbs, all three rank vector items = 0
2. Monadic list verbs, all rank vector items = 1
3. ‘Irregular’ verbs with hybrid ranks, mostly specialised
4. Pure structural plus’ verbs, ranks are _ 1 _
5. Verbs with all ranks infinite.

A verb rank of, say, 1 should not be read as meaning that only objects
of noun rank 1 are acceptable as arguments, but rather that all argu-
ments will be processed as assemblages of rank 1 objects. There is an
analogy with the operation of a clinic which has a large and motley
assembly in the waiting room, from which patients may either be
called one by one (processing at rank 0), or by families (that is lists,
rank = 1) or the whole lot may be taken together as a single block of
humanity (rank infinite). The analogy goes further than this, because
the method of calling is independent of what happens once the
surgery is entered, in other words, rank comes first, semantics later.
Immediately following the above quotation in Henry’s book is an ex-
planation in detail of how rank is applied in particular cases, that is
how rank and semantics are married together in terms of cell and
frame selection. However, focussing on ranks shows that, apart from
the ‘special algorithm’ verbs, J verbs can be grouped into quite a small
number of categories.

A general problem in categorising verbs by rank is that of deciding
when the monadic and dyadic forms are sufficiently related to each
other to justify retaining this association even if they possess different
rank vectors. At one extreme monadic > (open) and dyadic > (greater
than) are completely unrelated in meaning, even although all their
rank vector items are zero. On the other hand verbs such as monadic
#: (antibase2) and dyadic #: (antibase) have a strong semantic associa-
tion although formally they belong to different conjugations.

Scalar verbs which form the first conjugation all have rank 0 and are
the ‘most penetrating’, meaning that unless otherwise modified by the
rank conjunction they operate at the lowest cell levels. The ordinary

�38

arithmetic verbs are thus all of rank 0. Second conjugation verbs are
all monadic and operate at the level of lists, such as i. (integers) and
#: (base 2). The conjugations range from the most penetrating in the
first conjugation through to those of the 4th and 5th conjugations
which handle objects at a macro level. In between at the third conju-
gation are a set of verbs which are the counterpart of irregular verbs
in natural language grammars

Conjugation 2 contains monadic verbs only which make no sense oth-
er than when applied to lists, for example integers i. (integers) and ;:
(word formation).

Conjugation 3 contains irregular verbs some of which are verbs such
as %. (matrix inverse / divide), which are of great value to a minority of
J users, and of little or no interest to the rest.

Conjugation 4 consists of the structural verbs, all of whose right ranks
are infinite, meaning that their arguments are processed in their en-
tirety as single objects.

Conjugation 5 consists of verbs whose ranks are all infinite.

Compound Verbs and Rank

Compound verbs formed with conjunctions and adverbs possess rank
vectors in the same way as primitive verbs, and Henry’s maxim ap-
plies as much to compound verbs as to primitives. The rules which
govern the rank vectors of compound verbs are somewhat complex,
and it is generally best from a pragmatic point of view to use the b.0
test to confirm them. It is worth noting though that compounds aris-
ing from atop, appose and bond have rank vectors _ _ _ which is a
consequence of their not forcing rank inheritance (see E #2 “A Com-
position on Composition”) in which the following table appears).

at and appose are the most basic composition verbs and follow the
rules

 Compound Monadic Compound Dyadic

at u@:v)y means u(v y) x(u@:v)y means u(x v y)
appose (u&:v)y means u(v y) x(u&:v)y means (v x)u(v y)

atop and compose invoke rank inheritance and obey the rules

�39

 atop (u@v)y is (u@:v)”(m v)y x(u@v)y is (u@:v)”(lr v)y
 compose (u&v)y is (u&:v)”(m v)y x(u&v)y is x(u@:v)”(mm v)y

where m is the monadic rank of v, lr is a list of the left and right rank
vectors, and mm is the list m,m.

 under requires that v is monadic

 (u&.v)y is v-1(u v y) x(u&.v)y is v-1((v x)u(v y))

Compare

 2 3(+/@%)4 5 NB. (+/@%)b.0 is 0 0 0
0.5 0.6
 2 3(+/@:%)4 5 NB. (+/@:%)b.0 is _ _ _
1.1

Using the clinic analogy, in the first case the ‘patients’ are called in
matched pairs, and each is divided to give result 0.5 0.6. the patients
are called in two blocks (left and right), which are divided as blocks to
give 0.5 0.6, and then plus-insert is applied to this single block to give
1.1. Informally the difference between atop and at is that u and v are
more closely bound in the former. The name atop is apt as it gives a
picture of two creatures, one piggy-backing on the other, and thereby
fusing to make a tight compound before any considerations of data
come into play. at conveys less well the way in which infinite rank
produces verb sequencing, that is “u following v”, is a perhaps a more
pictorial way of thinking about it.

Another example is

 2 (#.@^.)2 5 6 NB. (#.@^.)b.0 = 0 0 0
1 2.32193 2.58496
 2^.2 5 6
1 2.32193 2.58496

that is the #. has no effect. However

 2 (#.@:^.)2 5 6 NB. (#.@:^.)b.0 = _ _ _
11.2288
 2 #.1 2.32193 2.58496
11.2288

that is the left argument applies to both u and v

Here are yet more examples illustrating atop and at :

�40

mailto:%2523.@%255E.)b.0
mailto:%2523.@:%255E.)b.0

Compare ({:@*:)i.2 3 and ({:@:*:)i.2 3 . As above, the only rank
which matters in the first case is that of *: (square) which is 0. The se-
mantic rule which extends tail when applied to scalars (i.e. at rank 0)
is ‘no change’ and so the final result in the first case is

0 1 4
9 16 25

In the second case, tail with infinite rank means the tail of the list of
lists arising from squaring, which gives the result list 9 16 25.

Next compare

 ({:@#.)2 3$1 0 1 1 1 0 and ({:@:#.)2 3$1 0 1 1 1 0

Here the rank of the rightmost verb is 1, and so in the first case tail is
applied to each of the antibase2s of the two three-lists which make up
the right argument, giving a final result 5 6. In the second case, tail
applies to the entire result of #. which is a two-list, so that the final
result is 6.

Compare 2 3 4(+/@%.)m=.?2 3 3$10 and 2 3 4(+/@:%.)m
This is a dyadic example, in which the rank of the rightmost verb is 2.
m represents two sets of 3 by 3 linear equations with the same right
hand side 2 3 4. In the first case the result is the sums of each of the
three solution sets (x1+ y1+ z1, x2+ y2+ z2) . In the second case sum-
mation applies to the two-list of solution values, so that the final re-
sult is (x1+ x2, y1+ y2, z1+z2) .

... and so I could continue.

Adverbs
Again, pragmatically it is best to use the b.0 test. J adverbs are rela-
tively few in number and are all monadic in the sense that each quali-
fies a single verb, although the compounds arising may be either
monadic or dyadic. The following is a table of them :

 Monadic Dyadic
/ Insert Table
/. Oblique Key
\ Prefix Infix
\. Suffix Outfix
~ Reflexive Passive
{. Item Amend Amend

�41

b. Basic Characteristics Boolean

Regardless of the verb which they qualify infixed and suffixed verbs
always have left rank 0 reflecting the fact that the semantics require an
integer as left argument for the compound verb. On the other hand
the rank of reflexive is infinite because rank depends on arguments for
the compound the ranks of passive depend on those of the qualifying
verb as in

 (+~) b.0
_ 0 0
 (#.~) b.0
_ 1 1
 (%.~) b.0
_ 2 _
 (i.~) b.0
_ _ _

Appendix : Verb Ranks

1st Conjugation, rank vector = 0 0 0
Logicals : (monadic) -. (not)
 (dyadic) = ~: (not equals) < <: (less than or equals)

 > >: (greater than or equals) +: (not or) *: (not and)
Arithmetics : (monadic) -. (1 minus)

 (monadic and dyadic) + - * % ^ (power) ^. (logarithm)
 <. (floor/lesser of) >. (ceiling/greater of)
| (modulus/residue) ! (factorial/out of)
 %: (square root/root)
+. (real/imaginary /GCD) *. (length/angle /LCM)

Algorithmics : (monadic) p: (ith. prime)
 (dyadic) ? (roll/deal) j. (imaginary/complex)
o. (pi times/circle function) r. (angle/polar)
q: (prime factors/prime exponents)

2nd Conjugation, monadic, list oriented
 i. (integers) { (catalog) ;: (words)

#. (base 2) ". (do) #: (anti-base 2)
p. (roots) A. (Anagram Index) C. (Cycle-Direct)

3rd Conjugation, irregular (with ranks)
(monadic) %.(matrix inverse : 2)
(dyadic) #: (antibase : 1 0) p. (polynomial : 1 0)

{ (from : 0 _) A.(Anagram : 0 _) %. (matrix divide : _ 2)

�42

 C. (permute : 1 _)

4th Conjugation, dyadics with left rank=1, right rank=infinite
 $ (reshape) |. (shift) |: (transpose) # (copy)

{. (take) }. (drop) ": (format) {:: (fetch)

5th Conjugation, all ranks infinite
(monadic) = < (box) ~. (nub) ~: (nub sieve)

{: (tail) }: (curtail) #: (base) $ (shape)
|. (rotate) |: (transpose) # (tally)
{. (head) }. (behead) ": (default format) L. (level of)

(dyadic) -. (less) -: (match) i. (index of)
". (numbers) E. (member of interval)

(monadic and dyadic) , (ravel, append) ,. (ravel items/stitch)
,: (itemize/laminate) /: (grade up/sort) \: (grade down/sort)

 ; (raze/link) e. (raze in/member in)
$. (sparse) $: (self-reference) [(same/left)] (same/right)

 s: (symbol) u: (unicode) x: (extended precision)
 constant functions, that is _9:, _8:,..., 0:, 1:, 2:, ... 9:, also _: (infinity)

�43

6. Punctuation and Rank
Principal Topics : |. (shift) /: (grade up) [(left)] (right) ” (rank conjunction) ,
(append) ; (link) ,. (stitch) [: (cap) rank inheritance, statement separator, mood,
transitivity, commutativity, trains, binding

In Vector Vol. 24 nos. 2 &3 pp. 114-121, Neville Holmes gives useful
tables which categorise the structural primitive verbs of J according to
their function – ‘what they do’ as opposed to the ‘how they do it’. Ac-
curate use of such verbs requires strict adherence to rules regarding
two intimately related quantities, namely punctuation and rank,
which leads to a further categorisation of a different kind given here
as Appendix 1. What follows in this article is the rationale underlying
this classification.

Punctuation

Lynne Trusse created a best-selling book on the art of punctuation,
famously drawing its title from the story of the panda which, after
visiting a restaurant "eats shoots, and leaves", a plausible option al-
lowing for a touch of anthropomorphism, and one which might not
cause too great a disturbance to other diners. If on the other hand the
panda "eats, shoots, and leaves" the effect is likely to be very differ-
ent. Much has been made of the manner in which the constructs of J
were inspired by and derived from the parts of speech of ordinary
language grammar, nouns, verbs and so on, despite which little refer-
ence is made to punctuation. While analogies should not be pushed
too far – e.g. unlike ‘shoots’, there can never be any verb/noun ambi-
guity for primitive J objects – the explicit consideration of punctuation
by parentheses and space, as well as implicitly through hook and fork,
can be helpful in writing and understanding expressions. Compare :

 ((i.#)t);(i.@#)t=.'abcde'
┌─┬─────────┐
│5│0 1 2 3 4│
└─┴─────────┘

can be tempting to think of conjunctions such as @ (atop) as punctua-
tors. However the role of @ in the above is that of a neologiser, that is,
it constructs a new compound verb, call it ‘index-tally’ (or perhaps
even ‘indally’), operating in scalar fashion on the items of the object to
its right. The operational details of such verbs leads naturally to con-
sideration of one of the most subtle of all J concepts, namely rank.

Consider three compound verbs which differ only in punctuation,
that is the placing of the parentheses :

�44

v1=.>:@i.@#
 v2=.>:@(i.@#)
 v3=.(>:@i.)@#

The effect of all three verbs is the same, that is they are semantically
equivalent as demonstrated by

 (v1 t);(v2 t);(v3 t=.'abcde')
┌─────────┬─────────┬─────────┐
│1 2 3 4 5│1 2 3 4 5│1 2 3 4 5│
└─────────┴─────────┴─────────┘

This raises general questions such as : (1) for any verbs a b c to which
(if either) of the two forms a@(b@c)and (a@b)@c is a@b@c necessarily
equivalent, and (2) is a@(b@c) equivalent to (a@b)@c, - in mathemati-
cal terms, is the conjunction @ associative. Intuitively it should not
be, for the same sort of reason that "eats, shoots and leaves" has a dif-
ferent meaning from "eats shoots, and leaves". The scope rule for con-
junctions is that they bind closely on the right, which means that it is
(a@b)@c which is equivalent to a@b@c, which is of course is guaran-
teed by the J interpreter. Using conjunctions is analogous to coining
new verb-names in English, so that the meaning of v2 is ‘increment-
(index-tally)’ as opposed to v3 which is ‘(increment-index)-
tally’ (‘incrindally’ as opposed to ‘increxally’!).

In learning J it takes a degree of mental adaptation to grasp the idea of
a compound verb such as ‘index-tally’ let alone triple compounds like
v2 and v3, and also to appreciate that the meaning of ‘index-tally’ is
not “index then tally”. This difference is demonstrated by :

 (|.@*:)t=.1 2 2 3 NB. rotate-square
1 4 4 9

 (|.@:*:)t NB. rotate-following-square
9 4 4 1

which suggests that the J terminologies “a atop b” and “a at b” are
rendered more comprehensibly in pseudo-English as ‘a-b’ and ‘a-fol-
lowing-b’. The compound verb ‘rotate-square’ (‘roquare’?) has rank
zero because it takes on the rank of its rightmost component, a prop-
erty which, for obvious reasons, is called rank inheritance (see E #2 “A
Composition on Composition”). However, in ‘rotate-following-
square’ the colon in @: can be thought of as signalling a pause in
which rank is readjusted before the left hand verb is executed.

�45

The nature of the arguments which can be presented to a conjunction-
ally compounded verb depend on the arguments presented to its
rightmost verb, and so returning to v1, v2 and v3, all of these require
an argument acceptable to tally. This can be any J object since all J ob-
jects are fundamentally lists and so can be tallied at their topmost lev-
el. Also since the three verbs are to be executed in right to left succes-
sion it would seem, superficially at least, to make no difference how
they are parenthesised as the transformed data is ‘passed down the
line’ from right to left. However, as ‘rotate-square’ shows, rank inher-
itance has to be taken into account in the general case.

Rank Lists

Verbs can be categorised according to their rank properties in a man-
ner comparable to conjugation in classical language grammar (see
Appendix to E #5 “Conjugacy and Rank”). Every verb has a rank list,
viz.

 monadic rank left rank right rank

which can always be explicitly obtained by applying the basic charac-
teristics adverb b. and using 0 as right argument of the resulting verb.
Rank can be infinite, and most verbs of infinite rank are structural,
meaning that, like box, they are designed to operate on their argument
or arguments as a whole, that is, they do not ‘penetrate’ the outer
shells of objects. Grade-up is a useful illustration of the notion of infi-
nite rank because however large the rank of its argument, it orders
objects at the next lowest rank level, thus

 /:i.2 10 20 30 40 NB. grade up two 4 dimnl ob-
jects
0 1
 /:i.5 10 20 30 40 NB. grade up five 4 dimnl objects
0 1 2 3 4

Infinite is the default verb rank, which is also the rank of all but the
simplest user-defined verbs, since the interpreter could potentially be
forced to perform exhaustive and unproductive effort to work out the
de facto rank, and so it makes the ‘safe’ assumption of infinite. How-
ever this can be over-ridden by explicit use of the rank conjunction as
in

 mean=.+/ % #
 mean0=.(+/%#)"0 NB. scalarised mean
 (mean i.5);(mean0 i.5)
┌─┬─────────┐

�46

│2│0 1 2 3 4│
└─┴─────────┘
 (mean b.0);(mean0 b.0)
┌─────┬─────┐
│_ _ _│0 0 0│
└─────┴─────┘

Rank Inheritance

Returning to ‘rotate-square’ whose rank list is 0 0 0, although rotate is
a rank 1 verb, rank inheritance forces rotation at rank 0 (that is, equiv-
alent to an explicit ”0) and so it inherits a list of rank 0 objects (scalars)
each of which has to be treated as a list, with the result that is does
nothing. However, if rank is not inherited as with |.@:*: , then rota-
tion applies to the list of squares as a single entity of rank 1.

The equivalence of a@(b@c)and (a@b)@c (i.e. associativity) depends
on the rank of the inheriting verb being no greater than that of the
giving verb, something which will certainly take place if a, b and c
are all rank 0 verbs, but which has to be examined in terms of verb
rank properties when this is not the case. Rank inheritance from
higher to equal or lower creates no problems as in

 (>:@i.)6 NB. rank 0 inherits rank 1
1 2 3 4 5 6

However, compare

 (/:@>:)7 3 5 NB. rank infinite inherits rank 0
0
0
0

in which each of the three incremented values is upgraded separately,
with

 (>:@/:)7 3 5 NB. rank 0 inherits rank infinite
2 3 1
 (/:@|:)i.2 3 NB. both ranks infinite ..
0 1 2
 (|:@/:)i.2 3 NB. .. but the result is different
0 1

The next two examples involve verbs of equal ranks, again there is no
inheritance issue, although changing the order of the verbs gives a
different result because the grade up of a transposed matrix is not the
same as the transpose of a grade up of the original matrix.

 (/:@|:)i.2 3 NB. both ranks infinite ..

�47

0 1 2
 (|:@/:)i.2 3 NB. .. but the result is different
0 1

Mood, Transitivity and Commutativity

J verbs are restricted to the imperative mood apart from the verb ‘to
be’ (copula). Mood is independent of transitivity, meaning that a
verb is either monadic (intransitive) or dyadic (transitive). For transi-
tive verbs the arithmetic commutativity of say + means that 2 + 3 is in
every respect equal to 3 + 2. However when a computer does addi-
tion it is impossible for both arguments to be fetched simultaneously,
and so, analogously with transitive verbs in English for which the
subject is in some sense ‘stronger’ than the object, the left argument of
dyadic verbs binds more strongly than the right. This becomes ap-
parent when repetition is invoked by the power conjunction. Thus
2+^:(2)3 means add 2 twice to 3 (answer 7), as opposed to add 3 twice
to 2 (answer 8).

Pseudo-punctuation

Returning to punctuation, there are three verbs, all of infinite rank,
which can be thought of as providing a ‘pseudo-punctuator’ role for
verbs. These are , (append) ; (link) and ,. (stitch) In each example be-
low the pseudo-punctuator is the middle tine of a fork, and the sum
and difference of a list can be ‘pseudo-punctuated’ in the following
ways :

 5 4(+,-)2 0 NB. sums joined to differences
7 4 3 4

 5 4(+;-)2 0 NB. boxed sums, boxed differences
┌───┬───┐
│7 4│3 4│
└───┴───┘
 5 4 (+,.-)2 0 NB. sums, diffs as lists of lists
7 3
4 4

The verb [(left), also of infinite rank, provides pseudo-punctuation in
the form of a statement separator :

 a=.2 [b=.3
 a,c
2 3

which works because the above line is essentially

�48

 a=.2[3
7

with the assignment to b taking place ‘in passing’.

Square brackets can sometimes give rise to what looks orthographical-
ly as ‘verb parentheses’ when a transformation has to be applied to
one argument only :

 2(*:@[+])3
7
 2([+*:@])3
11

Arguably these phrases would have been written more clearly as

 2((*:@[) +])3 and 2([+ (*:@]))3

Redundant punctuation

As the above example shows, redundant parentheses can be invalu-
able in clarifying the meanings of tacit definitions, although, like all
good things, it can be overdone, and too many parentheses can some-
times be just as confusing as too few. Once a string of J symbols ex-
ceeds about seven characters even an expert reader's eyes begin to
glaze over, as with for example :

 lengths=.<"1 @:,.3&":@:i.&' '"1

An example of using lengths might help to clear the fog :

 lengths >'Florida';'California';'Alaska'
┌─────────────┬─────────────┬─────────────┐
│Florida 7│California 10│Alaska 6│
└─────────────┴─────────────┴─────────────┘

Things become a little clearer if lengths is rewritten with some paren-
theses and an explicit space within the hook:

 lengths1=.<"1 @: (,. ((3&":)@:(i.&' ')"1))

But following the seven character rule it would have been even better
to articulate some of the bits by giving meaningful names to verbs
along the following lines :

 boxrows=.<"1
 format=.3&": NB. width = 3 characters
 length=.(i.&' ')”1 NB. gives length of string
 lengths2=.boxrows@(,.(format@length))

�49

Interestingly, although the above four lines appear at first sight to
have only a few primitive symbols, all such symbols in lengths are
faithfully reproduced. Arguably it would have been better to write
lengths this way in the first place as this helps to contrast the @:s
which define compound verbs, with the implicit punctuation in the
hook ,.(format@length).

Thoughtful punctuation can often help documentation. As a further
example, most readers would find that on first sight the following
verb definition conveys little of its purpose:

 verb=.(+/@:*:@:-+/%#)%<:@#

With some redundant parenthesising and renaming, and use of space
to emphasise the fork, things become a little clearer :

 sdest=.(+/@:(*:@:(-+/%#))) % (<:@#)

and with a little more renaming of the parts

 sum=.+/
 mean=.+/%#
 mdev=.-mean NB. mean deviation
 nminus1=.<:@# NB. n minus 1
 sdest1=.sum@:(*:@mdev)%nminus1

the objective of providing the usual form of standard deviation esti-
mate from a sample should become reasonably apparent.

Cap

When cap ([:) was introduced it was argued that it allowed indefinite-
ly long trains of verbs to be written without parentheses, thereby im-
plying that parentheses were inherently undesirable. The analogy in
English is to favour long strings of words without punctuation, which
may not be to everyone’s reading taste. Forks and hooks work well
enough because the human mind assimilates readily twosomes and
threesomes, but thereafter the reverse is true, that is a b c d e wrong-
ly suggests "a then b then c then ..." whereas a b(c d e) gives a natural
visual picture of the correct meaning. Continuing in the vein of the
previous example *:-+/%# does not at first sight reveal its meaning
whereas *:-(+/%#) says with reasonable clarity "subtract the mean
from the squares".

Space

�50

A first step in the parser of most compilers and interpreters is to re-
move redundant spaces which are often highly desirable at the ortho-
graphic level, for example to underline the fact that three primitive
verbs form a fork. Successive digraphs can lead the reader through an
unnecessary initial step of disentanglement as, for example, in verb
above which, even without the suggested parenthesising and break-
ing down into smaller verbs, would be easier to interpret if written

 verb=.(+/@:*: @: - +/%#) % <:@#

that is, (add-following-square)-following-(mean-adjust) divide by
decrement-tally. On the other hand spaces are probably best omitted
between verbs and their objects, e.g. i. 5 is probably less clear than
i.5, although it is best not to be too dogmatic.

Code Summary
 mean=.+/ % #
 mean0=.(+/%#)"0 NB. scalarised mean
 verb=.(+/@:*:@:-+/%#)%<:@#
 sdest=.(+/@:(*:@:(-+/%#))) % (<:@#)
 sum=.+/
 mdev=.-mean NB. mean deviation
 nminus1=.<:@# NB. n minus 1
 sdest1=.sum@:(*:@mdev)%nminus1
 lengths=.<"1 @:,.3&":@:i.&' '"1
 lengths2=.boxrows@(,.(format@length))
 boxrows=.<"1
 format=.3&": NB. width = 3 characters
 length=.(i.&' ')”1 NB. gives length of string

�51

mailto:lengths2=.boxrows@(,.(format@length))

7. One Foot in the Grade
Principal Topics : /: (grade up) \: (grade down) |: (transpose) a. (alphabet) ?
(deal), “ (rank conjunction) sorting, ranking, collating sequence, tied ranks,
schoolmasters rank, reflections, rotations, mean, median

A Vector obituary preview column? Well not quite, or maybe the an-
swer should be, of a sort, since that is what grade (used generically to
refer to both the grade up and grade down verbs) is all about. Sorting a
list (the equivalent of APL V[ΔV]) has a direct J equivalent in the
following bridge hook:

 ({~/:)4 2 7 1
1 2 4 7

The algorithm applies equally to character lists:

 ({~/:)>'Fred';'Joe';'Egbert'
Egbert
Fred
Joe

For convenience give names to the verbs which sort lists up and
down:

 sortu=:{~/:
 sortd=:{~\:
 sortd>'Fred';'Joe';'Egbert'
Joe
Fred
Egbert

Sort by rows and sort within rows are differentiated by using the rank
conjunction:

]u=.?3 4$10
4 0 1 2
7 9 3 2
1 2 9 5
 (sortu u);sortu"1 u
┌───────┬───────┐
│1 2 9 5│0 1 2 4│
│4 0 1 2│2 3 7 9│
│7 9 3 2│1 2 5 9│
└───────┴───────┘

For sort by columns do a row sort under (&.) the transformation |:
(transpose):

 sortu&.|: u

�52

0 4 5 6
9 2 7 7
7 6 0 3

Flexibility in the choice of collating sequence (say all the odd numbers
are to be prior to any of the evens) is achieved by using dyadic i. :

 oe=.1 3 5 7 0 2 4 6 8
 (/:oe i.v){v=.4 2 7 1
1 7 2 4

Consolidate this in a verb :

 csortu=./:@i.{] NB. x is collating seq.
 oe csortu 4 2 7 1
1 7 2 4

Here is a collating sequence which blurs the distinction between up-
per and lower case characters :

]cs=.(,|:65 97+every <i.26){a.
AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz

 m=.>'bless';'This ';'house'
 (];sortu;cs&csortu)m
┌─────┬─────┬─────┐
│bless│This │bless│
│This │bless│house│
│house│house│This │
└─────┴─────┴─────┘

Dyadic Grade

Whereas dyadic grade in APL provides a means of changing the col-
lating sequence, this is not the case in J where the following rule for
dyadic grade up applies :

 x/:y is equivalent to (/:y){x

so that x must be at least as long as y . A special case satisfying this
constraint is when x and y are equal, in which case y/:y (or equiva-
lently /:~y) is simply another definition of sortu. The definitions of
sortu and sortd can therefore be shortened by one character to

 sortu=:/:~
 sortd=:\:~

�53

Sorting by columns of a matrix other than the first requires dyadic
grade. The following display demonstrates sorting on the 2nd and
4th columns.

 colsort=.] /: {"1
 (];1&colsort;3&colsort)u
┌───────┬───────┬───────┐
│4 0 1 2│4 0 1 2│4 0 1 2│
│7 9 3 2│1 2 9 5│7 9 3 2│
│1 2 9 5│7 9 3 2│1 2 9 5│
└───────┴───────┴───────┘

It is worth while pausing to consider how this fork works. The verb
from ({) at rank 1 on the right of the fork selects the chosen column as
y,] selects the entire table as x . Now apply the dyadic grade rule
above. The indices for ordering the chosen column are obtained
as /:y and are used to select from all the columns in the table.

When items within matrices have complex structures as in data base
tables the principle remains unchanged but some minor variations
may be necessary involving the use of open (>) and @: to take care of
rank inheritance :

 selectc=:>@{"1 NB. select xth column of y
 sortc=:/:@:selectc {] NB. order y by column x

 dbase=.'York';'England';100000
 dbase=.|:('Edinburgh';'Scotland';500000),.dbase
 dbase=.('Aberdeen';'Scotland';200000),dbase
]dbase=.('Bristol';'England';400000),dbase
┌─────────┬────────┬──────┐
│Bristol │England │400000│
├─────────┼────────┼──────┤
│Aberdeen │Scotland│200000│
├─────────┼────────┼──────┤
│Edinburgh│Scotland│500000│
├─────────┼────────┼──────┤
│York │England │100000│
└─────────┴────────┴──────┘

 1&sortc dbase NB. sort by country
┌─────────┬────────┬──────┐
│Bristol │England │400000│
├─────────┼────────┼──────┤
│York │England │100000│
├─────────┼────────┼──────┤
│Aberdeen │Scotland│200000│
├─────────┼────────┼──────┤
│Edinburgh│Scotland│500000│
└─────────┴────────┴──────┘

 2&sortc dbase NB. sort by population
┌─────────┬────────┬──────┐

�54

│York │England │100000│
├─────────┼────────┼──────┤
│Aberdeen │Scotland│200000│
├─────────┼────────┼──────┤
│Bristol │England │400000│
├─────────┼────────┼──────┤
│Edinburgh│Scotland│500000│
└─────────┴────────┴──────┘

Ranking

The potential confusion between rank in the J sense (as in rank con-
junction) and rank in the sense of collating sequence ordering can be
avoided by referring to the latter as ranking.

It might be expected that, by analogy with APL, /:/:v delivers the
upward ranking of the elements of v.

 /:/:4 2 7 1
7 2 1 4

Why does APL intuition fail? The reason is that /:/: is a hook. The
rightmost /: obtains the upward ordering index vector of v which is 3
1 0 2, which, in the absence of an explicit left argument is both left and
right argument to the leftmost dyadic /: . Following the rule above, a
second grade up is performed resulting in the intermediate generation
of the rank list 2 1 3 0 which is then applied as a selection list (from)
on the original right argument leading to the result 7 2 1 4. To block
this last step it is necessary to use a different composition mechanism
for the two /:’s, viz.

 (rku=:/:@/:)4 2 7 1
2 1 3 0

Downward ranking uses both grade up and grade down :

 (rkd=:/:@\:)4 2 7 1
1 2 0 3

Upward and downward tied ranks require slightly unwieldy verb
combinations :

 rktu=.-:@(rku + \:@/:@|.)
 rktd=.-:@(rkd + \:@\:@|.)
 rktu v1=.5 3 3 5 2 5 8
4 1.5 1.5 4 0 4 6
 rktd v1
2 4.5 4.5 2 6 2 0

�55

A variation of rktd is schoolmaster’s rank in which students with
equal scores are each rated as highly as possible, a property inherent
in dyadic i.. The work for the schoolmaster’s ranking verb has largely
been done and it can be achieved by a single fork :

 sch=.i.~{rkd
 >:sch v1
2 5 5 2 7 2 1

The grade verbs have applications outside the realm of strict sorting.
In E #30 (“Just what do they sell at C. and A.?”) grade up is used to
perform inverse permutations, that to reverse the effects of a shuffle.
In technical terms, when the argument y is a permutation, that is an
arrangement of all the items in i.n where n is a positive integer,
then /: is a self-inverse verb, and so in these circumstances /:/:y is
identical to y .

Then in E #26 (“Working in Groups”) it transpires that the application
of grade verbs to permutations matched exactly the transformations
of rotations and reflections about axes in the plane applied to matrices
which provide alternative representations of the permutation in the
sense that, for example, 1 0 2 3 is represented by

 . 1 . .
 1 . . .
 . . 1 .
 . . . 1

Specifically /: is a reflection in the line x+y=0 but \: is a clockwise ro-
tation through 90 degrees. The reflection/rotation distinction under-
lines the non-symmetrical behaviour of /: and \: in the ranking algo-
rithms given above. /:@\: and /:@\: represent reflections in the x
and y-axes, \:@\:@\: represents an anti-clockwise rotation through 90
degrees and \:@\: represents a half-turn. Finally /:@\:@\: represents
a reflection in the line x=y.

Order statistics, such as median, require the use of grade. A median
algorithm can be built up using three auxiliary verbs:

 mindex=.-:@<:@# NB. 0.5*(n-1), n=length of vector y
 minmax=:<. , >. NB. floor,ceiling of real number y
 mean=.+/%# NB. arithmetic mean
 median=:mean @ ((minmax@mindex) { sortu)
 median 4 2 7 1 NB.mean of two middle values
3

�56

Now introduce sortu as the right prong of a fork, and use mean to
average the values of the two (possibly identical) middle values :

 median=:mean @ ((minmax@mindex) { sortu)
 median 4 2 7 1 NB.mean of two middle values
3

Verbs defining other partition values, e.g. percentiles, use the same
principle, although inevitably are more complex in detail.

In short grade is a very versatile verb for which you should rightly
have grade expectations. Have a grade day!

Code Summary
 sortu=:/:~ NB. sort upwards
 sortd=:\:~ NB. sort downwards
 cs=.(,|:65 97+every <i.26){a. NB. alphabet AaBbCc…
 colsort=.] /: {"1 NB. sort matrix by col-
umns
 selectc=:>@{"1 NB. select xth column of y
 sortc=:/:@:selectc {] NB. order y by column x
 rku=:/:@/: NB. upward ranking
 rkd=:/:@\:) NB. downward ranking
 rktu=.-:@(rku + \:@/:@|.) NB. upward ranking with ties
 rktd=.-:@(rkd + \:@\:@|.) NB. downward ranking with ties
 sch=.i.~{rkd NB. schoolmater’s ranking
 mindex=.-:@<:@# NB. 0.5*(n-1) where n is
length of vector y
 minmax=:<. , >. NB. floor,ceiling of real num-
ber y
 mean=.+/%# NB. arithmetic mean
 median=.mean @ ((minmax@mindex) { sortu)

�57

8. Transpositions, Perms and Combs

Principal Topics : |: (transpose) “(rank conjunction), #(tally) SQL, diagonals of
arrays, mappings, transformations, merged axes, symmetry test, inverse permu-
tations.

Those with a mathematical training will naturally association the verb
transpose (|:) with matrices and ‘row and column switches’. This is
perfectly natural, but I would suggest that, as with many aspects of J,
it is insightful to think also in terms of lists, which also helps to bring
thinking closer to what is going on behind the scenes. Consider

 i.3 4
0 1 2 3
4 5 6 7
8 9 10 11

This is a 3-list of lists, each of which is 4-list. Where secondary lists are
of equal length (or equivlently the data is rectangular) a second list of
lists automatically exists, viz. a 4-list of 3-lists, these being obtained by
making a list of all the first items, then another of all the second items
and so on (in simple terms, working down columns!). If the list hier-
archy of i.3 4 is say 0 1, then the effect of transposition is that of
turning the secondary list into the primary one, so that the hierarchy
becomes 1 0. With every further imbedding of equal-length lists such
as i.2 3 4 (a 2-list of 3-lists of 4-lists), there comes a new layer in
the list hierarchy, and with it new possibilities for reordering that hi-
erarchy. For example with i.2 3 4 and a hiererchy 0 1 2, promot-
ing 2 to the top level is equivalent to starting with all the first items in
the 4-lists. These form a 2-list of 3-lists and lead to another choice, 0 1
or 1 0. Following this argument the number of possible transpositions
is equal to the number of permutations amongst these hierarchies. It
is very reasonable then that the left argument of |: should be a per-
mutation of the tally (#) of the rank of the right argument. The man-
ner in which such permutations is defined is that the hierarchly levels
denoted by the left argument are pushed to the right leaving the re-
maining levels unchanged, whereas without any argument at all, that
is the monadic case, the hierarchy is completely reversed :

 $0 2|:i.2 3 4
3 2 4
 $|:i.2 3 4
4 3 2

�58

Matrices can be modelled as lists, and higher order rectangular arrays
as multi-dimensional cuboids, so that in geometrical terms, transposi-
tion is the process of switching the order of axes. Arrays can also be
described algebraically in terms of coordinates, and the result of
transposition is a mapping (that is, transformation) of an array a onto
itself in which each item such as a[i;j;k;l] has an image with the same
coordinates in a different order as determined by the permutation list
which is the left argument. Here are a few cases in which a=.i.2 3 4 5
:

 left
 argument new $a image of a[i;j;k;l]
 0 1 4 5 2 3 a[k;l;i;j]
 0 2 3 3 2 4 5 a[j;i;k;l]
 3 1 0 4 5 3 2 a[k;l;j;i]
 2 3 1 0 4 5 3 2 a[k;l;j;i]

With a rank 4 array such as a there are 43 = 64 possible non-empty left
arguments (4 with a single integer, 12 with two integers, and 24 with
three and four integers in each case). Some of the corresponding
transpositions must overlap since there are only 24 distinct permuta-
tions of $a. Consider the arguments in the last two rows in the table
above. These are necessarily identical since pushing 3 1 0 to the right
is equivalent to placing the remaining index first. Similarly a left ar-
gument 2 3 0 1 produces the same result as 0 1. A singleton left argu-
ment demotes that axis to the lowest hierarchy level. The opportuni-
ties afforded by arguments of less than full length therefore intro-
duces redundancy. Further redundancy arises from applying
monadic transpose at different levels of rank using the rank conjunc-
tion. Specifically for a rank 4 object the following monadic transposi-
tions and dyadic transpositions are equivalent:

 |:”1 |:"2 |:"3 |:"4
 0 1 2 3&|: 0 1 3 2&|: 0 3 2 1&|: 3 2 1 0&|:

Boxed arguments

Boxed arguments allow the possibility of restructuring by merging
axes. If the argument is boxed, the indices contained in the box are
merged, and the corresponding axis-length in the box is the minimum
of these axis-lengths. Since this results in general in the non-selection
of some items, the overall effect is that of reducing the overall bulk of
data. In the shape vector of the result array, the unmerged axes all
appear before the merged one. In terms of mappings, transpose effects

�59

a many-to-one mapping, for which the image of each point in the re-
sult array r is given in the final column below. The co-ordinate names
in this column match the values in column two, and can be used to
establish systematically from source the value of any item in the re-
sult.

 condition on index for an
argument new $a item of a to be selected image of a[i;j;k;l]
<0 1 4 5 2 i=j r[k;l;i]
<0 2 3 5 2 i=k r[j;l;i]
<1 2 2 5 3 0 j=k r[i;l;j]
<0 1 3 4 2 i=j=l r[k;i]

Two properties of the above table deserve emphasis:
 1. unlike the non-boxed case, the order of items in the boxed argu-
ment is immaterial, that is the contents of a box is a combination of m
items from n rather than a permutation;
 2. the third column echoes the first column with i,j,k,l replacing
0,1,2,3, and =s inserted, and the fourth column echoes the second col-
umn as explained above.

There is a parallel between the third column above and the SQL
(Structured Query Language) command

 SELECT ... WHERE ...

It may help to think of boxed arguments in these terms, subject to the
qualification that it is indices which are selected and not values as
would be the case with SQL.

Consider another specific example, say (<0 2)|:a . There are two steps
in evaluating this. The first and most straightforward step is to identi-
fy the new $a . (<0 2) means that it is axes 0 and 2 which are to be
merged. The length of the merged axis-length is 2<.4, that is, 2. The
remaining axis lengths are 3 5, and so $a is 3 5 2, which means that the
result is a 3-list, each list of which is a 5-list, each item within which is
a 2-list. Using the SQL analogy (<0 2)|:a can be read as

 SELECT a[i;j;k;l] WHERE i=k

The next step is to identify the original index of the data which occu-
pies each cell in the transposed form. This is where the third column
comes in. The constraint i=k means that the only items which are to
be selected are those whose indices are of the form 0 x 0 y and 1 x 1 y

�60

where x is chosen from i.3 and y is chosen independently from i.5.
Specifically the indices of the items in the first 3-list are :

 0 0 0 0 1 0 1 0
 0 0 0 1 1 0 1 1
 0 0 0 2 1 0 1 2
 0 0 0 3 1 0 1 3
 0 0 0 4 1 0 1 4

and those of the remaining two 3-lists are obtained by replacing the 0s
in the second column in turn with 1s and 2s. The order of the most
rapidly changing indices is l, j, k=i .

To transform a 3-list of 5-lists of 2-lists into a 5-list of 3-lists of 2-lists
apply the non-boxed transposition 1 0 2|:(<0 2)|:a . The pattern of
indices for the first list is now

 0 0 0 0 1 0 1 0
 0 1 0 0 1 1 1 0
 0 2 0 0 1 2 1 0

and the order of the most rapidly changing indices is now j, k=i, l .

Geometrically speaking, the result of a merge transpose is a diagonal
cross-section of rectangular data whose rank is determined by the
number of axes merged. If the length of the boxed left argument is n
then the rank of the result is less than the rank of the original by n-1 .

One of the most frequently occurring practical applications of trans-
pose, which also demonstrates a noun-verb bond, is

 diag=.(<0 1)&|: NB. leading diagonal of matrix

Its meaning should be readily apparent, as should that of

 ndiag=.diag@:(|.”1) NB. non-leading diagonal

The following hook provides a symmetry test :

 sym=.-:|:
 (sym i.3 3),sym 3 3$1 NB. 1 if symmetrical
0 1

Transpose can be used as a transformation when either an operational
verb is most readily coded for a different arrangement of data axes, or

�61

reuse of an existing verb is easier than writing a new one to accom-
modate a different axis ordering. This principle can be simply illus-
trated using a rank three object d=.i.2 3 4 thought of as a struc-
ture of planes, rows and columns.

1 2+d adds 1 to the first plane and 2 to the second. Corresponding
additions to rows are achieved by applying the rank conjunction, 1 2 3
+"2 d, and to columns by 1 2 3 4+"1 d. The rank conjunction can be
circumvented by promoting say columns to become the major dimen-
sion using transpose, adding, and then using the inverse transposition
to restore the original shape.

 1 2 0 |: 1 2 3 4 + 2 0 1 |:d

or, to put it more succinctly

 (1 2 3 4&+&.(2 0 1&|:))d

An inverse transposition is obtained by using the corresponding in-
verse permutation. Inverse permutations are obtained directly by
grade up provided that the permutation is spelt out in its full form. In
the above example 1 2 0 and 2 0 1 are inverse permutations, that is 1 2
0 -:/: 2 0 1 so that a -: 1 2 0|:2 0 1|:a for any rank three object a.

The single item permutation cases are sometimes useful. For a rank
three object, 1|: exchanges rows and columns within planes. For an
object of any rank 0|: promotes the second dimension to become the
major dimension, and (n-1)|: swaps the two lowest-order dimensions.

It is worth observing that data content has taken little or no part in
this discussion, that is transposition is all about changing the shape of
data in the unboxed case, and in determining how to make selections
from it in the boxed case.

Code Summary
 diag=.(<0 1)&|: NB. leading diagonal of matrix
 ndiag=.diag@:(|.”1) NB. non-leading diagonal of matrix
 sym=.-:|: NB. symmetry test

�62

9. Power Steering extra

Principal Topics ^: (power conjunction) _ (infinity) = (self-classify) matrix prod-
uct, eigenanalysis, infinity, left binding, normalisation, convergence, transition
matrices, population forecasts.

The power conjunction is one of the most versatile computational tools
in J. At the same time there are traps for the unwary which must be
avoided. Consider the following statement :

 2*^:(4)1 and 1*^:(4)2 mean “multiply 1 by 2 four times” and
“multiply 2 by 1 four times” respectively, which are the same
thing because multiplication is commutative, that is, 1 times 2 is
the same as 2 times 1.

Obviously true? No – the answer is that the left operand is glued
more closely to the ‘times’ so that the first of these expressions is
properly interpreted as ‘multiply-by-2’ applied four times to 1 giving
16, and the second is ‘multiply-by-1’ applied four times to 2 which
gives 2. J is in this sense ‘left-handed’, or, as the more technically
aware would say, left binding is stronger than right.

Next, here is the standard matrix product verb to allow some work
with matrices:

 mp=.+/ .* NB. matrix product

To self-test your understanding of the power conjunction, cover up all
but the next two or three lines and answer the questions : what do the
following do to a matrix

(a) mp~^:2 and (b) mp~^:3 ?

If your answer was that it raises it to the fourth and eighth powers
respectively – well done! In general mp~^:n raises a matrix to the
power 2n on account of the way in which each result is ‘fed back’ to
the next exponentiation step.

Suppose you didn’t want to go up in quite such big leaps, how about

 (a) m&mp^:2 m and (b) m&mp^:3 m ?

�63

This time the answers are the third and fourth powers of m. In gener-
al m&mp^:n raises m to the power n+1, which is irritatingly ‘one out’
if you are looking for a tidy verb for mn .

To find such a verb, go back to the scalar case 2*^:(4)1 which raised 2
to the power 4. The key ingredient is the 1, that is the identity of mul-
tiplication. A verb which gives the identity matrix of the same shape
as any square matrix is id=.=@i.@# , following which a verb which
raises a matrix x to the power y is

 power=.dyad def 'x mp^:y id x'

in which y may be a list, so that several powers of a matrix can be ob-
tained simultaneously. For example

]m2=.2 2$4 1 _2 1
 4 1
_2 1
 m2 power 10 9
 117074 58025
_116050 _57001

 38854 19171
 _38342 _18659

Now compute the ratios of two successive powers:

 ratio=.%/@power
 m2 ratio 10 9
3.01318 3.02671
3.02671 3.05488

This demonstrates that the items in the above matrix all tend to a val-
ue which is in fact the value of the largest eigenvalue of the matrix,
which for m2 happens to be 3. Eigenanalysis at this early stage? -
heady stuff! Press on and use this value 3 to obtain a value for the
smallest eigenvalue :

 3+(m2-3*id m2)ratio 20 19
2 2
2 2

You don’t have to be exact with the multiplier 3, but the closer you are
to the true eigenvalue the faster is the convergence:

 5+(m2-5*id m2)ratio 20 19
1.9994 1.9997
1.9997 1.99985

�64

As an aside – in the verb definition id=.=@i.@# you might think that
the = is equals, but bearing in mind that the left conjunct of @ must be
monadic, = in this definition is self-classify, which returns an equals
table for the nub of a list y versus itself.

The above experiments need not be confined to two by two matrices,
for example :

]m3=.3 3$1 1 1 1 2 1 1 1 3
1 1 1
1 2 1
1 1 3
 m3 ratio 10 9
4.21425 4.21415 4.21442
4.21415 4.21392 4.21456
4.21442 4.21456 4.21418
 4+(m3-4*id m3)ratio 20 19
0.3249388 0.3244097 0.3258422
0.3244097 0.3278868 0.3184167
0.3258422 0.3184167 0.3383134

showing that the largest and smallest eigenvalues of m3 are about
4.214 and 0.325. Given that the sum of eigenvalues is the sum of the
leading diagonal, the third eigenvalue is readily calculated as 1.461.
As for the eigenvectors, it is convenient first to define a verb based on
the hook %>./ which normalises a list so that its largest item is 1, or in
the case of a matrix, it does this for each row separately, hence the
transpose and the rank conjunction :

 norm=.(%>./)"1%|:
 norm m3
 1 1 1
 0.5 1 0.5
0.3333333 0.3333333 1

Now observe the behaviour of the successive (normalised) powers of
m3 as they converge :

 norm m3 power 10
0.5254314 0.6889001 1
0.5254368 0.6889113 1
0.5254221 0.6888809 1

Each row when fully converged is simply an eigenvector correspond-
ing to the largest eigenvalue, and repeating the previous ‘smallest ei-
genvalue’ wrinkle :

 norm 4+(m3-4*id m3) power 20
_2.07862 1 0.4032745
 1 _0.4818991 _0.193451

�65

 1 _0.4797006 _0.1949656

results in rows each of which converge to the eigenvector correspond-
ing to the smallest eigenvalue.

It is not of course suggested that this is the basis of a systematic way
of calculating eigenvalues and eigenvectors – for one thing there are
numerous special cases which have to be looked out for, and the
choice of adjustment factor for the smallest eigenvector must in gen-
eral be made with some care.

The value of the power conjunction for obtaining, say, quick popula-
tion estimates is readily apparent. Suppose that transm is a transi-
tion matrix giving the proportions of juveniles, workers and elderly
who change from one status to the next within any one year, so that,
for example, 94.71% of juveniles remains so at the end of the year, the
birth rate for the workers group is 5.52% and the death rate within the
elderly group is 5.7%.

]transm=.3 3$0.9471 0.0552 0 0.0379 0.9682 0 0 0.0207 0.943
0.9471 0.0552 0
0.0379 0.9682 0
 0 0.0207 0.943

If the current population (in millions) is 11 38 and 9 for the three sec-
tors, the predicted values in 20 years time are

 trans mp^:20 11 38 9
26.7554 31.9539 11.1334

As before the ratio between successive powers shows convergence to
the largest eigenvalue :

 transm ratio 100 99
1.00458 1.0046 0
 1.0046 1.00459 0
 1.0049 1.00457 0.943

This is approximately 1.005, which is the instantaneous overall rate of
population increase.

For a matrix which has a column with only non-one zero item, that
item is necessarily one of the eigenvalues, and the others are the ei-
genvalues of the matrix obtained by removing its row and column.
Thus 0.943 is an eigenvalue of transm and the remaining eigenvalue is
the smallest eigenvalue of

�66

0.9471 0.0552
0.0379 0.9682

Power and Infinity

Returning to the power conjunction, there is another smart feature of J,
namely ‘function raised to the power infinity’. As observed earlier,
the function values are repeatedly fed back as input, and if this
process ultimately leads to convergence, then ^:_ will deliver it. For
example given

 cos=.2&o.

successive values of cos y, cos(cos y), cos(cos(cos y))... starting from an
initial value of 0 are given by

 cos^:(i.6)0
0 1 0.5403023 0.8575532 0.6542898 0.7934804

and where these converge, as they do for cos, the converged value is
the solution of the equation cos(y)=y :

 cos^:_(0)
0.7390851

This feature is useful in the sort of population study which concerns,
for example, the spread of AIDS within a third world population.
Suppose that the current population is 60 million and an 8% birth rate
is assumed, a percentage which is subject to a downward adjustment
of 10-7 per unit of population to account for pressures of space, food
shortage and so on. Assume also that there is a net annual emigration
of 10,000. Forecasting future population levels is a matter of repeated
exercising a polynomial defined by

 p=.#.&_0.000000001 1.08 _10000

so that the projected population in 20 years time is :

 p^:20(60000000)
7.50634e7

The infinity option gives the ultimate equilibrium population when
the forces of environmental pressure and migration exactly balance
the birth rate :

�67

 p^:_ (60000000)
7.98748e7

that is equilibrium is attained at about 80 million.

Clearly there’s a lot of power in J!

Code Summary
 power=.dyad : 'x mp^:y id x' NB. matrix x to power y
 mp=.+/ .* NB. matrix product
 id=.=@i.@# NB. identity matrix
 ratio=.%/@power NB. ratio of successive powers
 norm=.(%>./)"1%|: NB. normalises each row of a matrix

�68

10. Bonding is Power – how Interesting

Principal Topics : |. (shift) ^: (power conjunction) currying, compound interest,
savings schemes, annuities, net present value.

“All verbs are monadic” may sound a heretical statement, after all
what about 2+3? At the surface level the left and arguments have
equal force, but delve a little more deeply, and at interpretation time
in the computer one argument must be fetched before the other, in
which sense argument marshalling is not symmetric, that is 2+3 is not
the same as 3+2. In the case of 2+3 an intermediate unarticulated
verb, either 2&+ or +&3 is created to which the other argument is pre-
sented monadically. The power conjunction helps to determine which,
that is does 2+^:(4)3 mean 2 added 4 times to 3, or 3 added 4 times to
2? - the answer is determined by

 ((2&+)^:4)3
11
 ((+&3)^:4)2
14

that is it is the left argument which is more strongly bound. More
generally in computer science the idea of argument bonding is known
as currying after the American logician H. Curry, and the J documen-
tation explicitly offers ‘curry’ as alternative name for bond (&).

Already the link between bond and the power conjunction is becoming
clear, and this is made explicit in the J help file by the formal defini-
tion of bond

x m&n y ↔ m&v*:x y

To see how this works with lists look at the following line in which 4
and 40 are added progressively to start values 100 and 1000 several
times :

 1 2 3(+&4 40)100 1000
104 1040
108 1080
112 1120

The above describes the process of accumulating simple interest at
4%. The difference with compound interest is that it is a process of
progressive multiplication

 1 2 3(*&1.04 1.05)100 1000 NB. compound interest

�69

 104 1050
 108.16 1102.5
112.486 1157.63

Replace multiplication with division, and the result is net present val-
ues

 1 2 3(%&1.04 1.05)100 1000 NB. net present value
96.1538 952.381
92.4556 907.029
88.8996 863.838

which can also be obtained by using negative power values with mul-
tiplication

 _1 _2 _3(*&1.04 1.05)100 1000
96.1538 952.381
92.4556 907.029
88.8996 863.838

Savings schemes

A scheme whereby regular sums are added periodically to a capital
sum which attracts compound interest is a mixture of both these pro-
cesses, and the verb base can be brought into the picture. 100 #.1.05 4
equals 109 and so

 1 2 3 4 5(#.&1.05 4)100
109 118.45 128.373 138.791 149.731

 shows the progress of such a scheme. With a little help from the rank
conjunction the calculation can be replicated for several initial capi-
tals:

 1 2 3 4 5(#.&1.05 4)"(1)0,.,100 1000 2000 10000
 109 118.45 128.373 138.791 149.731
 1054 1110.7 1170.24 1232.75 1298.38
 2104 2213.2 2327.86 2448.25 2574.67
10504 11033.2 11588.9 12172.3 12784.9

An annuity is just a savings scheme with a negative addition in each
period and thus in general a reducing value:

 1 2 3 4 5(#.&1.05 _6)100
99 97.95 96.8475 95.6899 94.4744

2&v and v&2 are different for non-commutative verbs. The difference
is most readily seen by comparing the boxes

 (1 2 3 4 5(%&2 3)6);1 2 3 4 5(2 3&%)6

�70

┌────────────────┬────────────┐
│ 3 2│0.333333 0.5│
│ 1.5 0.666667│ 6 6│
│ 0.75 0.222222│0.333333 0.5│
│ 0.375 0.0740741│ 6 6│
│0.1875 0.0246914│0.333333 0.5│
└────────────────┴────────────┘

In the left hand box, 2 and 3 are progressively divided by 6; in the
right hand box 6 is progressively divided by 2 and 3, and dividing by
the previous quotient is a null operation.

Progressive series

The straightforward evaluation of a series such as 3n+2 would rou-
tinely be carried out by say

 (3*i.10)+2
2 5 8 11 14 17 20 23 26 29

“Progressive evaluation” means feeding back each evaluation as the
next n. The result of the first five values of such a procedure for 3n+2
is

 1 2 3 4 ((3&+)&2)1
5 17 53 161

the last of which values could more mundanely be obtained as

 (3*(3*(3*((3*1)+2))+2)+2)+2
161

The simple evaluation of the series 3n+2 is obtained with a left argu-
ment of 1 :

 1 ((3&+)&2)i.10
2 5 8 11 14 17 20 23 26 29

Adding &(^&2) squares the left argument :

 2 (((3&+)&2)&(^&2)) 1
161

and adding square to the left gives progressive values of (3n+2)2

 2 3 ((*:@(3&+)&2)) 0
196 348100

which are the squares of 14 and 590 respectively.

�71

Non-numeric applications

Progessive left shifts of a list :

 0 1 2(1&|.)'conundrum'
conundrum
onundrumc
nundrumco

 0 1 2(3&|.)'conundrum'
conundrum
undrumcon
rumconund

an effect which could also be achieved using the rank conjunction

 0 3 6 |."0 1 'conundrum'
conundrum
undrumcon
rumconund

Progressive reduction of a list :

 0 1 2(2&}.)'conundrum'
conundrum
nundrum
ndrum

Progressive repetition of a list :

 1 2 3 ('abc'&,)''
abc
abcabc
abcabcabc

as opposed to repetitions of every item separately :

 1 2 3 #every <'abc'
abc
aabbcc
aaabbbccc

Together the bond conjunction and the power conjunction are enor-
mously versatile weapons in the J armoury.

�72

11. Time for amendment of data

Principal Topics : } (amend, item amend), ? (deal), “ (rank conjunction) gerund,
‘cleaning’ small numbers to zero, multiple choice tests.

Updating - the amend adverb

Updating part of a list disguises the fact that there are really two pro-
cesses present which are telescoped into one. The first process in-
volves a data transformation which selects those parts which are to be
changed, while the second process does the actual replacement with a
second set of data. Syntactically amend (}) is an adverb qualifying a
selector (noun) to its left to produce a verb whose left and right argu-
ments are the new and old data respectively, so ‘new selector } old'
should be read as ‘new (selector}) old’ .

 a=.i.2 3 4
 ((9) 1}a);((9) 1}"1 a);(9) 1}"2 a
┌─────────┬──────────┬───────────┐
│0 1 2 3│ 0 9 2 3│ 0 1 2 3│
│4 5 6 7│ 4 9 6 7│ 9 9 9 9│
│8 9 10 11│ 8 9 10 11│ 8 9 10 11│
│ │ │ │
│9 9 9 9│12 9 14 15│12 13 14 15│
│9 9 9 9│16 9 18 19│ 9 9 9 9│
│9 9 9 9│20 9 22 23│20 21 22 23│
└─────────┴──────────┴───────────┘

The phrase (9) 1} a demonstrates that an adverb, unlike an adverb in
ordinary grammar, may qualify either a noun or a verb. By default,
selection takes place at the level of items within lists, in this case at
rank 3, but the rank conjunction allows indexing to apply at lower
levels. In particular (9)0}"0 a replaces all atoms with 9.

} also provides a quick way of generating coarse plots of data present-
ed in the form of co-ordinate pairs which act as scatter index coordi-
nates, e.g. :

 z=.0 0;1 1;2 4;3 10
 '*' z}4 11$' '
*
 *
 *
 *

�73

An updating problem : a choice of methods

One way to change the initial letter of a set of words is

 words=.'blood';'blight';'bear'
 words
┌─────┬──────┬────┐
│blood│blight│bear│
└─────┴──────┴────┘
 (<'B'),each }.each words
┌─────┬──────┬────┐
│Blood│Blight│Bear│
└─────┴──────┴────┘

which involves two essential operations, drop and append. Amend al-
lows these to be telescoped into one :

 'B' 0}each words
┌─────┬──────┬────┐
│Blood│Blight│Bear│
└─────┴──────┴────┘

Selectors do not have to be explicit, they can be returned by verbs as
in the next example. If open (>) is applied to words the result is a set
of homogenous (equal length) lists, and so in order to change the last
characters, it is necessary to compute the ‘coordinates’ of the final
non-blank characters :

Changing last characters

Suppose you want to replace the last characters in each of the list of
words :

 llc=.<:@i.&' ' NB. locate last character
 ilc=.<"1@(i.@# ,. llc"1) NB. indexes of last characters
 ilc >words
┌───┬───┬───┐
│0 4│1 5│2 3│
└───┴───┴───┘
 'xsk' (ilc words)}>words
bloox
blighs
beak

Repeating the data-name words in the above phrase is not inherently
pleasing. However, the specification of amend allows this to be tidied
up by using a gerund, which at the same time allows the replacement
characters to appear as the left argument :

 replasts=.[`(ilc@])`]}
 'xsk'replasts >words

�74

bloox
blighs
beak

Without the gerund option, it is hard to accommodate amend in ex-
plicit definitions. A nontrivial transformation of the old data might be
to convert lowercase characters to upper case :

 lctouc=.monad :'(t-32*96<t=.a.i.y){a.'
 lctouc EVERY words
┌─────┬──────┬────┐
│BLOOD│BLIGHT│BEAR│
└─────┴──────┴────┘

Using a boxed list presents a difficulty because of the need for an open
between successive indexing activities. To get round this an amend
based verb can be defined to work at the item level and applied to
each of the items in the object :

 RepLASTS=.[`(<:@#@])`] }
 'xsk'RepLASTS each words
bloox
blighs
beak

Item amend

So far, the adverbially qualified verb ‘selector}’ has been used dyadi-
cally. It can also be monadic in which case } is called item amend. The
result has the structure of a single item of the right argument y, and its
value is determined by selecting indices for y's of those items which
are to be amended. Take for example a simulation of answers to a
multiple choice test. The data is five items, each comprising twenty
repetitions of the same character; the result of each execution is a fur-
ther item, each of whose items comes from just one of the original
five.

]mch=.|:20 5$'ABCDE' NB. Construct char matrix mch
AAAAAAAAAAAAAAAAAAAA
BBBBBBBBBBBBBBBBBBBB
CCCCCCCCCCCCCCCCCCCC
DDDDDDDDDDDDDDDDDDDD
EEEEEEEEEEEEEEEEEEEE

The following is a random selection of responses :

 (?20$5) } mch NB. (?20$5)} is a noun
ADDEBCAAECDABACDCEEC NB. result may be different!

�75

... or if the responses are required in strict sequence :

 rint=.({. | i.@{:)@$ NB. Repeat row indices to length of
 rint mch NB. number of columns
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
 rint} mch
ABCDEABCDEABCDEABCDE

Selection by criterion

Amend along with a selector generating verb allows updating using
arbitrary indexes, and hence updating by criterion. For example,
suppose an array contains some 0s

]p=.3 5$i.3
0 1 2 0 1
2 0 1 2 0
1 2 0 1 2

The 0s can be identified by

 (=&0)p
1 0 0 1 0
0 1 0 0 1
0 0 1 0 0

This criterion can be transformed into an array of indices satisfying
the criterion by

 (i.$p)*(=&0)p
0 0 0 3 0
0 6 0 0 9
0 0 12 0 0

To change all the 0s into 99s say

 99((i.@$*=&0)@])}p
99 1 2 99 1
 2 99 1 2 99
 1 2 99 1 2

This amendment has been applied for one specific criterion, namely
‘equals zero’, whereas the technique is clearly generalisable, suggest-
ing an adverb which transforms a criterion verb into the verb which
gives the matching indices in y :

 ind=.adverb : '(i.@$*x)@]'
 99(=&0 ind)}p
99 1 2 99 1
 2 99 1 2 99

�76

 1 2 99 1 2

A good use of this technique is to ‘clean’ numeric arrays of very small
near-zero numbers which typically arise from floating point calcula-
tions

 clean=.0&((<&1e_6@| ind)})
 clean %1000000*_5+i.10
0 0 0 0 _1e_6 _ 1e_6 0 0 0

To round numbers which are very close to integers use swingu :

 cleani=.]`swingu@.(<&1e_6@(|@- swingu))
 swingu=.<.@+&0.5 NB. move to nearest integer
 >cleani each 5.9999999 5.999999 6.000001 6.0000009
6 5.99999 6 6.00001

Code Summary
 ilc=.<"1@(i.@# ,. llc"1) NB. indexes of last chars
 llc=.<:@i.&' ' NB. locate last char
 lctouc=.monad :'(t-32*96<t=.a.i.y){a.' NB. change l/c to u/c
 replasts=.[`(ilc@])`]} NB. replace last chars
 RepLASTS=.[`(<:@#@])`] } NB. ditto for boxed
lists
 rint=.({. | i.@{:)@$ NB. Repeat row indices
 ind=.adverb : '(i.@$*x)@]'
 clean=.0&((<&1e_6@| ind)}) NB. clean small values to o
 cleani=.]`swingu@.(<&1e_6@(|@- swingu))

NB. clean to integer
 swingu=.<.@+&0.5 NB. move to nearest integer

�77

12. Obverse to Adverse :.:: a trip along the
Brailleway

Principal Topics : :. (obverse) :: (adverse) /. (key) ^: (power conjunction) b. (basic
characteristics), inverse, compound interest, frequency tables, currying, scans,
alternative verbs, error control

Welcome to the Vector Value excursion from Obverse Central to Ad-
verse! Don’t forget you need an inverse for the return journey – per-
sonalised if you like – and note that the inverse is also mandatory (a)
when the train gets under (&.) way and (b) when it powers (^:) up with
a negative argument. For many primitive monadic verbs and a few
dyadic ones an inverse function is well defined, and there’s a list of
these on a billboard further down the line. For example logarithm (^.)
and power (^) are inverse operations, and this underlies the use of &.
and ^: in the following examples :

 log=.^.
 2+&.log 3 NB. e to the power ln2 + ln 3
6
 2 ^.^:(_1)3 NB. 2 inverse-log (that is, to the power)
3
8
 2 ^.^:(_2)3 NB. 2 inv-log inv-log 3
256

 The first of these examples performs a transformation, ‘log to base e’,
on both arguments prior to the primary operation plus, then performs
the ‘inverse log’ transformation on the result. In the second and third
examples parentheses are necessary to separate the arguments of the
adverb ^: and the adverbially modified verb ^. .

Suppose that through some perversity you decided to conclude the
log operation by squaring rather than taking anti-logs :

 log=.^. :. *: NB. log with "square" as obverse
 2 +&.log 3 NB. square of (ln 2 + ln 3)
3.2104

It is hard to see the circumstances in which this would be a sensible
thing to do; however when you define your own verbs, J may not be
able to define an inverse, and so you are given the opportunity to de-
fine your own through obverse. The obverse does not need to have a
direct connection with the primary verb, nor does it affect its opera-
tion, other than in the contexts of under and negative power. Here is

�78

another example with an obverse in which a primary operation joins
names which are to have trailing blanks deleted prior to the join, with
a final comma to be added after the append :

 dtb=:({.~i.&' ') :. (,&',') NB. delete trailing blanks
 (dtb 'mickey '),'*' NB. obverse does not affect
mickey* NB. normal opeartion
 'mickey ' ,&.dtb 'rooney '
mickeyrooney,

In ordinary usage the obverse side of a coin means the side commonly
turned towards you, which in turn usually means ‘heads’ as opposed
to ‘tails’. This reflects quite well the idea of obverse in J, because it
emphasises (a) that when you use it you are thinking of a verb as a
two-sided object, and (b) as with a coin there is no reason why the de-
signs on the two sides should be directly related, although often the
relationship is inverse in nature. Another example involves a fre-
quency table verb frtab :

 x=.0 0 1 1 2 2 3
 frtab=.+/"1@=
 frtab x
2 2 2 1

A natural inverse operation would be to ‘unwrap’ the frequencies
back to the original data which is what the verb convert=.# i.@#
does. So redefine

 frtab=.+/"1@= :.convert
 frtab ^:_1 frtab x
0 0 1 1 2 2 3

The conductor will now give a further demonstration of obverse by
converting between percentages and multiples as in, e.g. handling
compound interest calculations. Suppose the percentage growth rates
of an investment are known for a number of years, and it is desired to
compute the average overall growth rate throughout the entire peri-
od. The following two verbs convert percentages to and from multi-
ples:

 ptok=:>:@(*&0.01) NB. %age to multiple, 5 -> 1.05
 ktop=:%&0.01@<: NB. multiple to %age, 1.05 -> 5
 */ptok 5 6 13 _12 0
1.10677

Now suppose that this result should be given as percentage :

 ptok=.>:@(*&0.01) :. ktop NB. ptok with obverse

�79

 */&.ptok 5 6 13 _12 0
10.6767

To compute the average, as opposed to total, growth over the period
introduce under :

 gm=.(+/%#)&.^.”_ NB. geom mean(=arith mean under log)
 gm&.ptok 5 6 13 _12 0
2.04959

(The rightmost two characters of gm are necessary to make it into a
scalar verb.) It is reasonable to retain the name ptok for the obverse-
enriched verb since adding the ‘flip side’ verb ktop does not affect its
previous function; it is only in the presence of under and negative
power that the enrichment occurs. In this case the obverse is just the
inverse, which J is smart enough to figure out for itself, since it has a
rule that the inverse of a verb u@v is (v^:_1)@(u^:_1), assuming of
course that u and v are among the list of primitive verbs for which
inverses can reasonably be computed, as is the case with ptok. So
why bother to write an obverse when all those bright J folks have al-
ready given you what you probably wanted anyway, and moreover
have provided a conjunction b. which by joining a verb to _1 returns
its obverse :

 ptok=:>:@(*&0.01) NB. back to the original ptok
 ptok b. _1 NB. compute the obverse ..
%&0.01@<: NB. .. which is identical to ktop.

Well, let’s suppose that on the flip side (converting multiples back to
percentages) you decide to display an explicit percent sign. Easy, just
do

 mut=.,&'%'@(":@ktop) NB. enrich ktop with %
 mut 1.05
5%
 ptok=.>:@(*&0.01) :.mut NB. redefine obverse of ptok
 gm&.ptok 5 6 13 _12 0
2.04959%

The verb ptok provides a salutary lesson in the power of parentheses.
The verb

 pet=.>:@*&0.01

means (>:@*)&0.01 and is indistinguishable from ptok when used
directly. However in inverse mode, and bearing in mind that conjunc-
tions have long left scope, the rule for the inverse of ptok is

�80

 (*&0.01 ^:_1)@(>: ^:_1)

that is (%&0.01 ^:_1)@(<:) , or in plain English subtract one and
multiply by 100 (that is, divide by 0.01), which is exactly what ktop
does. The computed obverse of pet, however, is a somewhat compli-
cated verb, which in the case of a scalar argument reduces to division
by 1.01. The programming lesson is that whereas parentheses may be
redundant in the normal operation of a verb, they can sometimes have
a profound effect on its obverse.

Kirk Iverson provided a dazzling example of the use of obverse. The
problem is to segregate a list of integers, say 4 2 2 4 1 4 8, into boxes
with empty boxes for those integers in sequence not present. Boxing
like items is achieved by using the vector itself as a key (/.)

 k=.4 2 2 4 1 4 8
 k</.k
┌─────┬───┬─┬─┐
│4 4 4│2 2│1│8│
└─────┴───┴─┴─┘

Now augment the vector with say i.10 :

 aug=.(i.10)&,
 aug k
0 1 2 3 4 5 6 7 8 9 4 2 2 4 1 4 8

and finally add an obverse which beheads under box so that the artifi-
cially added i.10 is wiped out item by item each from its own box:

 aug=.(i.10)&, :. (}.&.>)

Finally do the initial box by key under aug which achieves both nu-
merical ordering and also empty boxes where appropriate :

 </.~&.aug k
┌┬─┬───┬┬─────┬┬┬┬─┬┐
││1│2 2││4 4 4││││8││
└┴─┴───┴┴─────┴┴┴┴─┴┘

Previous paragraphs raise the question of which verbs have ‘reason-
able’ inverses, to which the answer is - quite a lot. First there are self-
inverse monadic verbs for which an even number of applications
amounts to ‘do nothing’. These are

 arithmetic + - -. (not) % %. (matrix divide)
 structural |.(reverse) |:(transpose) /:(grade up) [(left)]
(right) and C. (cycle-direct) (see E #30)

�81

Next here is a set of monadic verbs which have inverse partners, that
is for each of these verbs v^:_1 is equivalent to its partner :

 arithmetic <: and >: (increment /decrement)
 +: or +~ and -: (double/halve)
 *: or *~ and %: (square/square root)
 ^ and ^. (power/logarithm)
 #. and #: (base/anti-base = decode/encode in APL)
 o. and %&(o.1) (multiply by π/ divide by π)
 j. and %&0j1 (multiply by srqt(-1)/divide by sqrt(-1))
 +. and j./ (vector from/to complex no.)

structural < (box) and > (open)
 ;~ (reflex-raze) and >@{. (open following head)
 \: and /:@|. (grade down and grade up following reverse)
 ,: (itemise) and {. (head)
 ". (do) and ": (format)

There are also families of monadic verb pairs formed by ‘currying’
dyadic verbs with a noun:

+&n and -&n (add/subtract constant)
*&n and %&n (multiply by/divide by constant)
n&^ and n&^. (power of n/log to base n)
n&o. and _n&o. (for appropriate n, e.g. sin and arcsin)
n&|. and _n&|. (shift n left/ shift n right)
p&|: and (ip&|:)

 (ip= inverse permutation applied to transpose)

The generic property of the inverse i of a monadic verb v is that (i@v)
is equivalent to] .

The ‘scans’ of five arithmetic verbs, namely + * % = and ~: can be re-
versed by ^:_1, that is each of these verbs has the property that v/
\^:_1 is equivalent to] .

Dyadic verbs have potentially two kinds of inverse, left and right. For
example the dyadic + has a right inverse function - because a+b-b = a,
that is subtraction on the right ‘cancels out’ addition. However
dyadic + has no left inverse because there is no function i for which a i
a+b = b for all a and b. By the same reasoning minus has a left inverse
minus and a right inverse plus. Inverses for dyadic verbs are rarer
than for monadics. The following is a list of them :

�82

 + - * % ^ ^. = ~:
 Left inverse - % ^. ^ = ~:
 Right inverse - * = ~:

A left inverse i is characterised by the fact that the fork [iv is equiva-
lent to] and a right inverse by iv] being equivalent to [.

Adverse, like obverse, is used to define a two-sided verb, but now it
provides an alternative verb, the one you use ‘in adversity’ when the
first one fails. It is unlikely to be an inverse, (although in principle it
could be!) If the first verb fails, then the adverse takes over. Here, for
example, is a protection device against ‘index error’

 3 4{'ABCDE'
DE
 3 5{'ABCDE'
index error
 From=.{ ::]
 3 5 From 'ABCDE'
ABCDE

One obvious circumstance in which you might think this could be ap-
plied is

 div=.% :: 1:

to prevent attempted division by zero but this doesn't work because
division by 0 is not an error in J - the result is infinity (_). The only
circumstance in which 0 would be delivered is on an attempt to divide
characters, or two vectors of unequal lengths, both greater than 1.

Since they connect verbs, obverse and adverse are conjunctions, but un-
like the more commonly used conjunctions they define ‘flip-sides’
rather than creating fundamentally new composite verbs. To sum-
marise, an obverse is a user-defined inverse, adverse is the emergency
exit to forestall error conditions.

Code Summary
 dtb=:({.~i.&' ') :. (,&',') NB. delete trailing blanks
 frtab=.+/"1@= NB. frequency list
 convert=.# i.@# NB. inverse of frtab
 ptok=:>:@(*&0.01) NB. e.g. 5% to 1.05
 mut=.,&'%'@(":@ktop) NB. enrich ktop with %
 ktop=:%&0.01@<: NB. inverse of ptok

�83

mailto:i.@%2523

 gm=.(+/%#)&.^.”_ NB. geometric mean
 From=.{ ::] NB. from with error trapping
 aug=.(i.10)&, :. (}.&.>) NB. boxed integers with blanks

�84

13. If you think J is complex try j

Principal Topics : j. (imaginary/complex) r. (angle/polar) o. (pi times/circu-
lar function), +. (GCD/real+imaginery), *. (LCM/length+angle), Cartesian
and polar coordinates, complex conjugates, groups, reflections, rotations, de
Moivre’s theorem. complex powers and logarithms, determinants, inner product,
matrix multiplication, quaternions, hypercomplex numbers.

This article is about the facilities available in J for handling complex
numbers, something which is greatly helped by a few simple dia-
grams. When ‘talking maths’, the representation i will be used to de-
note the square root of -1 , which translates into 0j1 in J.

1. The two complex number constructors

Although complex numbers are readily input using numeric con-
stants, e.g. 12.5j_7.9 , in meaningful applications the components
are more likely to be expressions from which complex numbers are
constructed. J has two tools for constructing complex numbers,
namely j. and r. These correspond to their two possible represen-
tations, namely as 2-lists of Cartesian (that is x-y) coordinates, and as
2-lists of polar coordinates (that is {length, angle}). The way in which
j. and r. work is illustrated by

 (2 j.1),(2 r.1) NB. the two complex no. constructors
2j1 1.0806j1.68294

The second of these results shows that 2 times the coordinates of the
end point of a radius of the unit circle at an angle of 1 radian are ap-
proximately (1.08,1.68). For primary input in the form of 2-lists use
insert:

 (j./2 1),(r./2 1)
2j1 1.0806j1.68294

Informally j. compresses x-y coordinates into complex numbers,
and r. converts polar representation to complex number form.
Monadic j. is dyadic j. with a default left argument of 0, while
monadic r. is dyadic r. with a default left argument of 1. It is not a
coincidence that these defaults are the identity elements of addition
and multiplication. r.k where k is real returns the Cartesian coor-
dinates of the point on the unit circle whose polar coordinates are
(1,k), for example

 r.1 NB. coords of radius at 1 radian

�85

0.540302j0.841471

r.k is represented by eik in maths and thus by ^j.k in J, an opera-
tion also available through the circle verb as _12 o.k. The fact that
r. and ^j. are synonyms links the two complex number construc-
tors. More generally the circle functions with arguments in the ranges
{9,..12} and {_9,.._12} are directly relevant to complex number con-
struction, and they too have synonyms which will emerge as the dis-
cussion continues. The equivalence of r. and ^j. will come to the
fore later when discussing complex powers and logarithms.

2. The complex number deconstructors

The construction process is reversed (that is complex numbers are
converted back to 2-lists) by +. for Cartesian coordinates and *. for
polar coordinates :

 +.2j1 1.0806j1.682941 NB. +. reverses j./
 2 1
 1.0806 1.68294
 *.2j1 1.0806j1.682941 NB. *. reverses r./
2.23607 0.463648
 2 1

The circle verb provides the opportunity to obtain the components of
+. and *. one by one:

 9 11 o.2j1 NB. 9 o. is x , 11 o. is y
2 1
 10 12 o.2j1 NB. 10 o. is length, 12 o. is
angle
2.23607 0.463648

The following is a ‘rule of thumb’ table which summarises the mean-
ings of the circle verbs and incorporates the above ideas :

n o. n o.
 _9 identity
_10 conjugate

construct deconstruct
_11 j. +. 9,11
_12 r. (^j.) *. 10,12

�86

3. Monadic operations with complex numbers

J provides alternative routes for several common complex numbers
operations. In the diagram below a complex number z is represented
by the arrowed line, and other points represent represent the results
of the fundamental monadic arithmetic operations of addition, sub-
traction, multiplication and division, separately and in combination
with j. as well as those of the circle functions which are synonyms.

 ±z z
 _9 o.z
 length = |z = 10 o. z
 _11 o.z *z
 j.z ±j.z

 unit circle

 +j.z -j.z

 y=x
 %z
 -z +z
 _10 o.z

The symbol ± is used to denote either of the equivalent verbs +@-@j.
or -@+@j. . The points z ±z -z +z represent a rectangle formed by
reflections in the x and y axes with vertices visited anti-clockwise,
while the points j.z ±j.z -j.z +j.z represent a rectangle formed by
reflections in the diagonal axes with vertices visited clockwise. In ad-
dition to the three circle function synonyms shown for circle func-
tions, _12 o. is a synonym for r. .as noted earlier.

The symmetries of rectangles can be represented by groups of verbs of
order 4 in which I is the identity verb :

Rotations {I - j. -j.} j. -j. = anticlock/clockwise
 rotations of π/4
Reflections {I - + ±} + ± = reflections in main axes,
 {I - ±@j. +@j.} ±@j. +@j. = reflections in diago-
nal axes

�87

From these as starting points the full order 8 group table for the sym-
metries of the square can easily be obtained (see E #26 “Working in
Groups”).

4. Basic dyadic operations

The basic operations + - * % behave as expected and rules such as
the following are obeyed :

 |5j2*3j4 NB. modulus of a product is ..
26.9258
 (|5j2)*(|3j4) NB. .. the product of moduli
26.9258

 12 o. 5j2*3j4 NB. the angle of a product ..
1.3078
 +/12 o. 5j2 3j4 NB. .. is the sum of the angles
1.3078

Also

 +/5j2*3j4
7j26

is equivalent numerically to and

 showing that multiplication of complex numbers
is equivalent to the inner product +/ .* for matrices of the form

 . When multiplication takes the angle outside the range [-
π,π], *. and 12 o. automatically make a wraparound to bring the
angle back into range, for example

 wrap=.monad :0
t=.(o.2)|y
if.t>o.1 do.t=.t-o.2 end.
)
 +/12 o._5j2 _3j4 NB. sum of angles exceeds pi
4.97538
 12 o._5j2*_3j4
_1.3078
 wrap 4.97538 NB. 4.975.. + 1.307.. = 2pi
_1.30781

Complex numbers raised to real powers are the subject of de Moivre’s
theorem. This depends on the fundamental relation

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

26
7

4
3

52
25

()267
34
43

2
5

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

ab
ba

�88

 which in J expresses the equivalence of the verbs
^@j. and j./@(2 1&o.) . De Moivre’s theorem says that

 so to raise complex z to the
power n its modulus should be raised to the power n and its angle
multiplied by n. To see this in action raise 2j1 to the powers 1, 2 and
8 in first cartesian and then polar form :

 +.2j1^1 2 8
 2 1 NB. modulus = sqrt(5)
 3 4 NB. modulus = 5
_527 _336 NB. modulus = 625 = 5^4

 *.2j1^1 2 8
2.23607 0.463648 NB. (length,angle) for 2j1
 5 0.927295 NB. (length,angle) for 2j1 ^2
 625 _2.574 NB. (length,angle) for 2j1 ^8

The angle in the last line above can be confirmed by

 wrap 8*0.463648
_2.574

It may be tempting to use the circle function _3 o. (arctan) to obtain
angles, but this only works in simple cases because the range of arctan
is [-π/2,π/2]. The range for complex numbers is double this because
arctan makes no distinction between (-x)/y and x/(-y), whereas the
difference between second and fourth quadrants is significant in deal-
ing with complex numbers.

θθθ sincos iei +=

}sin{cos)(θθθθ ninrerre ninnni +==

�89

5. The enhanced arithmetic operations

The second diagram illustrates the actions of the J verbs which are ob-
tained from the basic arithmetic operations by adding ‘colon’ to make
a di-gram :

 *:z (squared length, double angle)

 +:z (double length)

 z
 -:z (half length)

 %:z (sq. root length, half angle)

Only one of these four forms, namely %: extends to the dyadic case,
for example 4%:z means (4th root of length, 1/4 angle).

In the case of di-grams formed by adding full stop 1-.z is the same
as with real numbers and %. and % are exactly equivalent. If either
*. or +. are applied to real scalar numbers the results are 2-lists
made by joining zeros. This can be used as a method of stitching 0s as
in

 +.3 4
3 0
4 0

With real numbers dyadic *. and +. are LCM and GCD respectively,
but these should not be used with complex arguments in the expecta-
tion of obtaining the separate GCDs and LCMs of their components.
For example

 (5j6 +. 10j3),(5j6 *. 10j3)
0j1 75j_32

�90

Complex powers and logarithms

To understand complex powers start with the synonym relationship
between r. and ^j. (or _12 o.) which at first sight should lead
to j. and ^.r. also being synonyms. This is indeed true in some
cases :

 (j.2j1),(^.r.2j1)
_1j2 _1j2

but not always :

 (j.12j10),(^.r.12j10)
_10j12 _10j_0.566371

This is because, unlike in real arithmetic, the logarithm of a complex
number is not a single valued function. In Cartesian coordinates x
and y values stretch out indefinitely in both directions, but in polar
coordinates angles wrap around in cycles of 2π in the manner defined
by the verb wrap above. In mathematical notation

 ln(z) = ln(rexp(iπθ)) = ln(r) + i(θ + 2kπ) where k is an integer.

As a matter of arbitrary (but natural!) choice J returns the unique an-
gle which lies in the range [-π,π]. The same wrapping process applies
when real numbers are raised to complex powers :

 *.2^4j4.5 4j4.6
16 3.11916 NB. unwrapped
16 _3.09471 NB. wrapped

More specifically, if k is real and z=x+iy, then kz is illustrated by

 kz

 kx

 y*ln k

 *.2^2j1 3j2
4 0.693147 NB. k to power x, y times ln(k)
8 1.38629 NB. with angle doubled

�91

The cases ‘complex raised to real’ (de Moivre's theorem) and ‘real
raised to complex’ have now been covered leaving only the case
‘complex raised to complex’ to be dealt with. An interesting starting
point is the number ii which at first sight should be about as complex
as it gets :

 0j1^0j1 NB. i to the power i
0.20788

Not so! To explain this result, considering first ln(ii) = i times ln(i).
Using the formula ln(rexp(iπθ)) = ln(r) + i(θ + 2kπ), and choosing k=0
(as J does) to make the logarithm single-valued, gives ln i = 0 + iπ/2
which when multipled by i gives -π/2. ii must therefore be e-π/2
which has the value 0.20788 to 5 decimal places. This sequence of cal-
culations is confirmed by

 ^-o.0.5
0.20788

The verb ln fulfils the familiar ‘reduce multiplication to addition’
property of logarithms of real numbers, that is log(ab) = loga + logb,
for example :

 ln 1j2*3j4 NB. ln ab
2.41416 2.03444
 +/ln 1j2 3j4 NB. ln a + ln b
2.41416 2.03444

For powers where both w and z are fully complex (that is, have non-
zero imaginary parts) the following sequence of equivalences wz =
(eln w)z = (ez)ln w = ezln w leads to, for example

 2j1^1j3 NB. 2j1 to the power 1j3
_0.537177j0.145082

 ^1j3*j./ln 2j1 NB. e to the power ln w
_0.537177j0.145082

It is not easy to visualise the relationship of wz to w and z diagram-
matically, that is the link of _0.537177j0.145082 with 2j1 and
1j3 is a numerical rather than a graphical one. The same is true for
other functions which can accept complex arguments, for examples
trig ratios and their inverses. Also the logarithms concerned must be
to the base e. e is one of the five most fundamental numbers in the
universe, namely 0, 1, e, π and i, which are connected by the equation
1 + exp(πi) = 0. It is reasonable to suppose that advanced intelligent
communicators from outer space (if such there be) would certainly try

�92

to convey this set of numbers to us an immediate ‘lingua franca’.
This equation can be expressed in J in the following three equivalent
ways :

 (1+^o.j.1), (1+_12 o.o.1), (1+r.o.1)
0 0 0

The equation 1 + exp(πi) = 0 can be rewritten ln(-1)= πi which, since
ln(-r) = ln(r)+ln(-1), means that the natural logarithms of negative
real numbers are obtained by appending ‘jπ’ to the logarithm of the
corresponding positive number. For example :

 ^.5.2 _5.2 NB. (ln r), (ln -r)
1.64866 1.64866j3.14159

Extension to Quaternions

Given a matrix of the form where a and b are real num-
bers, e.g.

 M=.2 2$2 _3 3 2

and an inner product of M with a 2-list such as

 M +/ .* 2 _1
7 4

the same information could be obtained by multiplying two complex
scalars :

 2j3*2j_1
7j4

Similarly finding the determinant of M is equivalent to a couple of op-
erations on a complex scalar :

 (det=.-/ .*)M NB. determinant of M
13
 *:10 o.2j3 NB. sum of squares of 2 and 3
13

Thus complex numbers can be used as a means of reducing the rank
level of some operations. An obvious question is then : if complex
data can reduce rank 2 operations to rank 1 can it correspondingly
reduce rank 3 operations to rank 2? This speculation is not unique to
J, in fact the question was answered in the mid-19th century by Sir

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

ab
ba

M

�93

William Hamilton who discovered that this progression is multiplica-
tive rather than additive, that is that the next step up is not from 2 to 3
but from 2 to 4.

First define a verb which transfoms a 2-list of real scalars into a matrix
of the above form (call this a quaternion form) :

 r2ltom=.,._1 1&*@|. NB. matrix from real 2-list
 r2ltom 2 3
2 _3
3 2

Next observe that is possible to have a matrix with complex coeffi-
cients which nevertheless has a real determinant, for example :

 C=.2 2$4j3 6j_2 _6j2 4j3
 det C
39

The matrix C has the form which is the form
extended to complex elements. Straightforward arithmetic shows
that the determinant of a matrix of the above from has a real part (P2 –
Q2 + R2 – S2) and an imaginary part 2(PQ+RS)) and so if PQ = –RS as
is the case with C,the determinant is real, otherwise not. In 'all real'
case Q = S = 0 and det(M)=P2 –R2 . If the form is now changed to

 , that is where the overbars denote complex
conjugates, then the determinant is arithmetically guaranteed to be
real for all values of P, Q, R and S. If this is now taken as a standard
form then four fundamental matrices obtainable by setting each of P,
Q, R and S to 1 and the other three to zero correspond to unit points
on the axes of a four dimensional geometrical space as denoted by
(1,0), (0,1), (i,0) and (0,i). A verb analogous to r2ltom which con-
structs the above matrix from a 2-list of complex scalars is

 c2ltom=.,.+@|.@(*&1 _1) NB. matrix from complex 2-list
 c2ltom 2j3 4j5
2j3 _4j5
4j5 2j_3

Define variables to correspond to (1,0), (0,1), (i,0) and (0,i) :

]'I i j k'=.c2ltom &.> 1 0 ;0 1;0j1 0;0 0j1
┌───┬────┬────────┬───────┐

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

PjQRjS
SRjPjQ __

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

ab
ba

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

QPjRjS
RjSPjQ
_

_
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

ab
ba

�94

│1 0│0 _1│0j1 0│ 0 0j1│
│0 1│1 0│ 0 0j_1│0j1 0│
└───┴────┴────────┴───────┘

and self-multiply each of these matrices :

 times=.+/ .* each NB. matrix multiply
 times~ i;j;k NB. squares of i,j and k
┌─────┬─────┬─────┐
│_1 0│_1 0│_1 0│
│ 0 _1│ 0 _1│ 0 _1│
└─────┴─────┴─────┘
 times~^:2 i;j;k NB. 4th powers of i,j and k
┌───┬───┬───┐
│1 0│1 0│1 0│
│0 1│0 1│0 1│
└───┴───┴───┘

which shows that i2 = j2= k2= –I and i4 = j4= k4= I where I is the identity
matrix. Now multiply i,j and k by each other :

 (i;j;k)times(j;k;i) NB. result is k;i;j
┌───────┬────┬────────┐
│ 0 0j1│0 _1│0j1 0│
│0j1 0│1 0│ 0 0j_1│
└───────┴────┴────────┘

 (j;k;i)times(i;j;k) NB. result is (-k);(-i);(-j)
┌─────────┬────┬────────┐
│ 0 0j_1│ 0 1│0j_1 0│
│0j_1 0│_1 0│ 0 0j1│
└─────────┴────┴────────┘

 det&> i;j;k NB. determinants equal 1
1 1 1

If i,j and k are raised to third powers a further three matrices not
previously encountered arise :

]'ci cj ck'=.(i;j;k)times(i;j;k)times i;j;k
┌────┬────────┬─────────┐
│ 0 1│0j_1 0│ 0 0j_1│
│_1 0│ 0 0j1│0j_1 0│
└────┴────────┴─────────┘

but now, however much the set of eight matrices

 I,-I,i,j,k,cj,ck,ci

are intermultiplied, the result is always another member of the set, for
example :

�95

 (i;j;k)times cj;ck;ci NB. result is ck;ci;cj
┌─────────┬────┬────────┐
│ 0 0j_1│ 0 1│0j_1 0│
│0j_1 0│_1 0│ 0 0j1│
└─────────┴────┴────────┘

The set of eight matrices possesses the properties of a group, more
specifically the quaternion group. Although there are eight elements
in the group these are all related to each other, and the whole set of
seven excluding the identity matrix can be generated from any two.
For example if i and j are chosen as generators k is ij, ci and cj
are defined as powers of i and j , and ck is cj multiplied by ci
The seventh matrix is the common value of i2 and j2.

If, analogous to j, J were to contain two further independent number
constructors k and m such that 2j3k4m5 was a scalar, and the same
rules i2 = j2= k2= –I and i4 = j4= k4= I applied where I= l,
i=0j1k0m0, j=0j0k1m0, k=0j0k0m1 then these scalars would be
recognised mathematically as hypercomplex numbers. The four ba-
sic hypercomplex numbers for which the real elements are (1 0 0 0), (0
1 0 0), (0 0 1 0) and (0 0 0 1) would follow the same multiplication
structure as the set of eight matrices, and form a group isomorphic
with the quaternion group.

A scalar such as 0j3k4m5 whose first element is zero corresponds to
a pure quaternion and so pure quaternions exactly match points in
three dimensional space, or quantities such as E, B, H which define
electro-magnetic fields as three dimensional entities. Such equiva-
lences are of course only useful if the operations employed on them
are guaranteed to produce further pure quaternions.

Code Summary
 det=.-/ .* NB. determinant
 r2ltom=.,._1 1&*@|. NB. quaternion matrix from real 2-
list
 c2ltom=.,.+@|.@(*&1 _1) NB. quat matrix from complex 2-list
 times=.+/ .* each NB. matrix multiply

�96

14. j is complex? You bet!
Principal Topics : ? (roll) \: (grade down), j. (complex), E. (member of interval) I.
(interval index). simulation, odds, bookmaker’s odds, true odds, overround, nor-
malisation, fantasy betting, betting methods, betting systems, d’Alembert’s sys-
tem, Martingales, negative exponential, weighted random numbers, random
races and race cards.

j doesn’t necessarily mean complex!

Although j in J usually means ‘complex’, numbers of the form 7j2 can
model other forms of duple, for example the left argument of format
(":) where the elements denote field width and number of decimal
places. Another possibility is odd ratios, for example 7j2 can model
odds of 7 to 2 (that is 7 to 2 against), from which fractional odds (fro)
are obtained as

 fro=.({: % +/)@:+."0 NB. +. transforms ajb to a b
 fro 3j1
0.25

%fro then gives what is returned (winnings and stake) after a suc-
cessful unit bet. The accumulated fractional odds of a field of three in
which the odds offered by a bookmaker are evens, 3-1 and 7-2 is

 (+/@:fro)1j1 3j1 7j2
0.9722

Of course (pun intended!) bookmakers and betting shops see to it that
such a sum is never less than 1, the excess over 1 being what the
bookmaker creams off as markup or overround. In practice, real
probabilties, that is the absolute probabilties of the various horses
winning, vary dynamically right up to the final minutes before a race.
Real probabilties reflect the many technicalities of racing as a sport
such as the assessment of horses, jockeys, trainers, weather, racetrack
condition, even insider trading and corruption, all of which lends a
certain naivety to the fact that some of the observations on which this
article is based are derived from the single sets of static odds quoted
in the racing pages of daily newspapers. However, broad conclusions
can be drawn, for example that in UK horse racing overround seems
to average between 25% to 40%. (It goes without saying that should
any reader discover a race card for which the +/@:fro is less than 1,
he or she should immediately raise every possible penny to place bets
on all horses in multiples of fro , and even more importantly should
as a matter of duty contact me urgently!)

�97

 Add a couple of horses to the above field to make matters more real-
istic :

 (+/&:fro) fld=.1j1 3j1 7j2 5j1 8j1
1.25

giving an overround is 25%. Thus if bets are placed in the proportions
fro fld then the cost of betting on all horses will be 1.25 for an as-
sured return of 1 and an assured gain to the bookmaker of 0.25.

Assuming that the bookmaker’s quoted odds reflect his view of the
relative probabilities of the horses winning the race, the underlying
true odds are :

 to=.(%+/)&:fro NB. true odds
 to fld
0.4 0.2 0.1778 0.1333 0.08889

(Technical note : the hook %+/ normalises a list so that the total of its
elements is 1.)

to also demonstrates the extent to which the bookmaker downgrades
odds in order to achieve overround, e.g. the horse quoted at evens has
in fact a probability of 0.4 of winning the race. Also the returns (that
is, including the original stake) multiplied by the true odds remain the
same whichever horse wins the race :

 (to * %@fro)fld
0.8 0.8 0.8 0.8 0.8

namely the reciprocal of the overround. The bookmaker accepts bets
to create a book, on which he reckons to make the overround as profit
whatever the outcome of the race.

Random real probabilities totalling 1 are generated by

 rnd=.?@#&0 NB. random uniforms in {0,1}
 rrp=.(%+/)@:rnd NB. random real probabilities
 rrp 5
0.176 0.28 0.047 0.232 0.265

Using these and a book based on fld, the bookmaker’s long term in-
come and outgoings based on horses winning with random probabili-
ties are given by

 book=.40 20 18 13 9
 (+/book),+/book*(rrp 5)*%fro fld
100 79.85

�98

Significant risk to the bookmaker arises only if both his book and the
real probabilities change. Bookmaker’s arithmetic is a continuous
process with input parameters : current book, real probabilities, cur-
rent actual odds in which he strives to adjust his quoted odds in order
to keep the book in balance, and thereby his profits secure. Incomings
and outgoings can be formalised in a verb whose left argument is
book;real probabilities, and whose right argument is current actual
odds. A balanced book would be simply a multiple of the real proba-
bilities. The example below shows how real probabilities make little
difference to the bookmaker’s expectations even if public assessment
of the race shifts dramatically in favour of the outsider :

 inout=.dyad : '(+/>{.x),+/*/(>x),%fro y'
 book_rp=.40 20 18 13 9;0.2 0.1 0.1 0.1 0.5
 book_rp inout fld
100 80.4

However, suppose that the outsider attracts a large number of bets :

 book_rp=.40 22 18 13 50;0.2 0.1 0.1 0.1 0.5
 book_rp inout fld
143 265.7

This gives the bookmaker a projected loss of 123. His options are (1)
to sustain his previous belief in the relative propabilities but reduce
exposure to the new favourite by reducing its quoted odds, in the
hope that future bets on the other horses may help to recoup his losses
:

 book_rp=.40 22 18 13 0;0.2 0.1 0.1 0.1 0.5
 book_rp inout 1j1 3j1 7j2 5j1 1j2
93 40.7

or (2) to accept the new real probabilities and requote all his odds
based on these. The primitive verb j. transforms a b to ajb, that
is fractions back to odds :

 (j./@:(%/,-.))0.78
0.78j0.22

(The hook ,-. returns a fraction joined to its 1s complement)

However, it is more satisfactory to have odds in the form 1jx or xj1
so define

 odds=.monad :0

�99

t=.%/y,1-y
if.t>1 do.r=.>.1,t
else. r=.<.(%t),1 end.
r=.j./r
)
 odds"(0)0.5 0.25
1j1 3j1

(Note : Any rounding favours the bookmaker which seems quite rea-
sonable given that odds can never be a scientifically precise measure.)

The bookmaker might choose to revise his true odds and apply an
overround of about 25% to give

 odds"(0) 0.2 0.1 0.1 0.1 0.5*1.25
3j1 7j1 7j1 7j1 1j2

It is not suggested that bookmakers carry out any such arithmetic
formally, although the above presumably models roughly the nimble
calculations which they instinctively perform.

Beating the Bookie

Given the inherent bias in favour of the bookmaker, are there any
ways by which the better can possibly turn the situation to his advan-
tage? First assume that he has some technical knowledge of which he
feels reasonably assured and believes to be superior to that of the
bookmaker.

Since %fro fld gives the returns for a unit bet the returns for any
list of bets are

 rets =.[*%@:fro@] NB. left argument = bets
 1 1 1 1 1 rets fld
2 4 4.5 6 9

Suppose now that as a matter of judgement the better believes that the
race will certainly be won by one of the two favourites with probabili-
ties in proportion 3:2. His expected returns for a bet which reflects
this are

 6 4 0 0 0 rets fld
12 16 0 0 0

that is, for a total outlay of 10 he will achieve a return of either 12 or
16 or 0. His expectation, using true odds, is (0.4× 6) + (0.2× 12) = 4.8
which would give the bookmaker an expected gain of 5.2. However
the expectation based on his own judgement is (0.6×12) + (0.4×16) =

�100

13.6, and so if he has complete confidence in his judgement and be-
haves rationally, it would be senseless for him not to bet, nor indeed
would he be unhappy if one of the unbacked horses won, since he
would still have achieved value for his money in the same sense that
an insurance policy on which no claim is made has nevertheless pro-
vided valuable cover.

Alternatively the better might choose to use the judgement of others,
e.g. newspaper tipsters. What are the net gains or losses resulting
from a unit bet on every tipster recommendation for a given day? On
a day in which 20 races were run and four winners were tipped at 4-1,
11-4, 7-2 and 4-1, the net gain achieved for unit bets placed by follow-
ing a tipster was given by :

 tips=.-~+/@:(1&rets)@]
 20 tips 4j1 11j4 7j2 4j1
_1.75

that is an overall loss of -1.75. Empirical evidence using the racing
correspondents of the Times and the Daily Telegraph shows that follow-
ing tipsters’ advice consistently is very rarely profitable, and even
then only when a winner happens to be picked at unusually long
odds.

Turn now to manipulating probabilities, are there any techniques
based on probability alone which can swing the bias away from the
bookmaker towards the better? Such a possibility is demonstrated
by the so-called Martingale in which a stake is progressively doubled
for a losing bet and betting stops on a winning one. In a fair game at
evens, e.g. coin tossing with bets on a tail, a tail is bound to occur
eventually, at which point there is a net gain of one original betting
unit. The problem is that the certainty of winning requires unbound-
ed available capital.

Fantasy betting

The safest way for the novice to take his first steps into the world of
betting is to use his computer to estimate and simulate the forces he
will encounter in the real world in which real money changes hands.
First generate random uniform integers using Interval Index I. to
transform each of the numbers in rnd into a serial number of one of
the intervals defined by the left argument.

 wrnd=.(+/\)@[I. rnd@] NB. weightd random integers
 >:(to fld)wrnd 10
1 3 3 3 1 4 1 1 2 3

�101

thus in 10 reruns the first and third horses each won 4 times, the sec-
ond and fourth horses won once and the fifth horse not at all. To
count frequencies arising in such runs say

 +/"1 (i.#fld) =/ (to fld)wrnd 10
2 3 4 0 1

which can be consolidated in a verb where the right argument is the
number of reruns :

 rerun=.dyad :'+/"1 (i.#x) =/ (to x)wrnd y'
 fld rerun 20
10 5 2 2 1

that is the favourite won exactly half of the time in the above simulat-
ed sequence.

A simulated race with between 5 and 17 runners each of which con-
sists of drawings from a negative exponential distribution with mean
1.25 is given by

 sortd=.{~\:
 rne=.[* ^.@%@rnd@] NB. random negative exponential
 odds"(0)0.0475>.sortd (%+/)1.25 rne 10
5j1 5j1 6j1 8j1 9j1 10j1 12j1 12j1 14j1 20j1

(Note : There is no special reason for using the negative exponential
distribution other than that it appears empirically to give lists of odds
which look tolerably similar to those actually printed daily in the
sporting pages. 0.0475> is to ensure that no odds are greater than
20j1)

 It is convenient to head each list with the sequence number of the
randomly drawn winner (favourite = 1, etc.).

 rrace=.monad :0 NB. random race
r=.odds"(0)t=.0.0475>.sortd (%+/)1.25 rne 5+?13
r=.(>:(+/\ (%+/)t) I. rnd 1),r NB. join random winner
)
 rrace 10
2 1j1 3j1 12j1 13j1 17j1 18j1 20j1 20j1 20j1 20j1 20j1 20j1

A random race card with 3 races is then given by

 rrcard=.monad : '>rrace every 5+?y#13'
 rrcard 3
3 2j1 2j1 6j1 6j1 7j1 19j1 0 0 0 0 0 0
1 2j1 3j1 9j1 11j1 14j1 15j1 16j1 17j1 19j1 19j1 19j1 19j1

�102

1 1j1 5j1 5j1 7j1 10j1 18j1 19j1 19j1 19j1 19j1 0 0

Betting Methods

Various methods can be employed when a bet on a single race is
placed, for example the favourite can be backed, or a pin stuck in the
race card, or a horse chosen at random but with weights applied
based on the quoted odds. These three possibilities are described re-
spectively in

 method=.dyad :0
r=.i.0 [i=.0
while.i<#x do. t=.i{x NB. loop through races

select. y
 case. 1 do. b=.1 NB. bet on favourite
 case. 2 do. b=.>:?<:#t NB. stick a pin in race
card
 case. 3 do. b=.>:(fro }.t)wrnd 1 NB. random, wts=odds
end.
if.(b={.t)do. r=.r,(<:{.t){%fro }.t NB. win
else. r=.r,0 end. NB. lose
i=.i+1 end. r
)

The experiments which follow are based on a hypothetical race meet-
ing where between 5 and 17 horses ran in each of 1,000 races, with a
simulated 25% overround.

 rc=.rrcard 1000
 +/"1>(<rc)method every 1 2 3
752.8 503.3 772

gives the total winnings on a unit stake in each race. Thus for each
method 1,000 units of were staked, and apart from method 2, the to-
tals in the above run converge towards a value of 800. Repeated re-
runs with further race cards show consistency in the case of methods
1 and 3 but considerable variability with method 2, which rarely
comes even close to 800 – in other words, random selection is likely to
be a worst case strategy in the long run! That said, the methods were
applied to three real race meetings at Ripon, Carlisle and Newton Ab-
bot with 7, 7 and 6 races respectively with results :

 Ripon : 9 0 0
 Carlisle : 7.375 16 0
 Newton Abbot 11.1 0 3.75

showing that even pin-stickers can have their lucky day!

�103

Betting systems

Simulated race cards provide the opportunity for testing out betting
systems, that is betting sequences in which stakes change dynamically
according to previous results. One such system is due to the 18th. cen-
tury mathematician d’Alembert. Applying this system the size of the
stake is increased by 1 in the case of a losing bet and decreased by 1 in
the event of a winning bet. A zero stake is replaced by the original
stake. For example, with an initial bet of 5 and a sole win of 5 on the
fourth race out of six, the succession of bets was 5 6 7 8 7 8, a total of
41 for a return of 8×5=40 and an overall loss of 1. The following verb
simulates the sequence of stakes :

 dalem=.dyad :0 NB. x is stake, y is returns list
r=.x [i=.1
while.i<#y do. NB. loop through returns
if.(0={:r)do.r=.(}:r),x NB. if 0 restore initial stake
else.r=.r,({:r)+_1++:0=(<:i){y end. NB. raise or lower
i=.i+1 end.r
)
 5 dalem 0 0 0 5 0 0
5 6 7 8 7 8

Long runs of losers lead to increasingly large stakes developing. Us-
ing the ‘back the favourite’ method on the simulated 1000-race card
rc, the total returned is

 t1=.rc method 1
 +/(*5&dalem) t1
198252.2

for total stakes of

 +/5 dalem t1
256230

198,252/256,230 = 77.4% which is little different from straightforward
constant bets. The corresponding figures for methods 2 and 3 are
211,035/445410 = 47.4% and 267065/331,278 = 80.6%, indicating again
the weakness of ‘selecting by pin’. In all cases the figures show how
the better runs the risk of a heavy absolute loss using this system
when wins are relatively infrequent.

Other systems could be based on patterns of wins and losses for
which the primitive verb Member of Interval E. is helpful. For exam-
ple if a constant bet of 5 is made only after observing a ‘win-lose’ se-
quence, define

�104

 wl=.3 :'0 0,_2}.1 0 E.y~:0'
 wl 1 0 0 0 1 1
0 0 1 0 0 0

In this case bets would in the long run be placed only part of the time:

 +/wl 0~:t1=.rc method 1
185
 +/(wl t~:0)#t1
131.33

131.3/185 = 71.0% and the corresponding percentages for methods 2
and 3 were 55.5% and 90.0% respectively. The practical message is
that neither of the above systems offers the better much hope of ad-
vantage in the long run. However, having so much experimental
possibility available at home makes things significantly easier to or-
ganise than a day at Aintree or Goodwood, and a good deal cheaper
too – have a great day in!

Code Summary

 ajb is interpreted as ‘odds of a to b against’.

fro=.({: % +/)@:+."0 NB. fractional odds from ajb
to=.(%+/)&:fro NB. true odds (dec) from e.g. fld
 fld=.1j1 3j1 7j2 5j1 8j1

 odds=.monad :0 NB. converts fractnl odds to ajb
t=.%/y,1-y
if.t>1 do.r=.>.1,t
else. r=.<.(%t),1 end.
r=.j./r
)

Simulated Racing
rnd=.?@#&0 NB. random uniform (0,1]
rne=.[*^.@ %@ rnd@] NB. random negative exonential
wrnd=.(+/\)@[I. rnd@] NB. weighted random ints
rerun=.dyad :'+/"1 (i.#x) =/ (to x)wrnd y'

 rrace=.monad :0 NB. random race
r=.odds"(0)t=.0.0475>.sortd (%+/)1.25 rne 5+?13
r=.(>:(+/\ (%+/)t) I. rnd 1),r NB. append random winner
)
rrcard=.monad : '>rrace every 5+?y#13' NB. rand race card

Betting Methods
 method=.dyad : 0 NB. betting methods, x=race card
r=.i.0 [i=.0
while.i<#x do. t=.i{x
select. y
 case. 1 do. b=.1 NB. bet on favourite
 case. 2 do. b=.>:?<:#t NB. stick a pin in race card

�105

 case. 3 do. b=.>:(fro }.t)wrnd 1 NB. random, wts=odds
end.
if.(b={.t)do. r=.r,(<:{.t){%fro }.t NB. win
else. r=.r,0 end. NB. lose
i=.i+1 end. r
)

Betting Systems
 dalem=.dyad :0 NB. x is stake, y is returns list
r=.x [i=.1 NB. initialisations
while.i<#y do. NB. loop through returns
if.(0={:r)do.r=.(}:r),x NB. if 0 restore initial stake
else.r=.r,({:r)+_1++:0=(<:i){y end. NB. raise or lower
i=.i+1 end.r
)

�106

15. Cancel, cancel little fraction
Principal Topics : x: (extended precision) , numerical data types, conversion rules,
rational approximations.

There are various forms of number representation in J, as well as rules
and conditions for converting between them. To start with, in com-
plex arithmetic +. transforms a complex number in to a list of its
components

 +.2j3
2 3

An analogous problem is that of transforming a rational number into
a list {numerator,denominator} following any possible cancellation.
This is provided by the primitive verb x: with left argument 2 :

 2 x: 3r5 6r10 14r7
3 5
3 5
2 1

but notice

 %/2 x:8r6
4r3

does not convert 4%3 into decimal format as you might expect. In-
stead say either of the following :

 _1 x:8r6
1.33333

 x:^:_1 (8r6)
1.33333

There are conversion rules which apply in calculations in which the
six different data types (Boolean, Integer, Extended Integer, Rational,
Floating Point and Complex) are mixed. It is not usually necessary to
be explicitly aware of the thirty possible conversions - the main ones
are

(1) the presence of just one decimal notated number in a calculation is
enough to force decimal notation for the result :

 1r1 2r1 3r1 + 3r5 3r5 14r7
8r5 13r5 5
 1r1 2r1 3r1 + 3r5 0.6 14r7

�107

1.6 2.6 5

(2) mixing j and r results in conversion to floating point

 1r9j2r3 NB. (1/9) + (2/3)i
0.111111j0.666667

Also rational notation cannot be used to perform rational complex
division

 1j9r2j3 NB. not (1+9i) ¥ (2+3i)
|ill-formed number

(3) where present, floating point and complex are dominant. Ratio-
nal is also “strong” except as under (1),
Boolean and integer are “weak”.

 2+3j2+7r2
8.5j2

The full conversion table is

 Bool Integer ExPrecRatnl Float Cplex

Bool Bool Integer Exprec Ratnl Float Cplex
Integer Integer Integer Exprec Ratnl Float Cplex
Exprec Exprec Exprec Exprec Ratnl Float Cplex
Ratnl Ratnl Ratnl Ratnl Ratnl Float Cplex
Float Float Float Float Float Float Cplex
Cplex Cplex Cplex Cplex CplexCplex Cplex

Pure rational calculations perform cancellation automatically

]t=.+/\1r3 1r4 1r5
1r3 7r12 47r60

 t*/t
 1r9 7r36 47r180
 7r36 49r144 329r720
47r180 329r720 2209r3600

 t +/ .*t
213r200
 1r9 + 49r144 + 2209r3600
213r200

�108

Interestingly cancellation can also be done using +. in its dyadic role
of greatest common denominator.

 dac=.%@(1&+.)

gives the denominator after cancelling, and multiplying this by the number
itself gives the numerator, so ((*dac), dac) does the job!

 ((*dac), dac)8r6
4 3

Again subsequent calculations do not convert to decimal format un-
less such a number appears.

 %/((*dac), dac)8r6
4r3
 1.6* %/((*dac), dac)8r6
2.13333

To extend to objects with rank, say

 ((*dac),"0 dac)8r6 12r2 34r51
4 3
6 1
2 3

Some ingenious alternatives have been discussed of which (,&1)%
(+.&1) proposed by Roger Hui avoids the double calculation of dac
and has a certain appealing symmetry, extending to ,"0&1 % +.&1
to deal with general rank:

 2 x:2 3$8r6 12r2 34r51
4 3
6 1
2 3

4 3
6 1
2 3

To obtain close rational approximations to irrational numbers such as
π and e , say

 x: o.1
1285290289249r409120605684 NB. 1,285,290,289,249 /
409,120,605,684
 _1 x: x: o.1
3.14159
 _1 x: x: ^1

�109

2.71828

Code Summary
 dac=.%@(1&+.)

�110

16. Thinking by numbers

Principal Topics : #: (anti-base) b. (Boolean), |: (transpose), syllogism, predicate,
Boolean verbs, tautology, contradiction.

Two over-riding goals of scientific method are to seek truth and to ex-
pand knowledge – this article shows how do both, admittedly in the
restricted context of propositions and binary relations.

Propositions and definitions

First consider propositions such as

 No Vector reader eats haggis.
 All Americans are Vector readers.
 No American ever rejects haggis.

Each of these has the form of a subject and a predicate connected by a
copula (‘is’), for example the subject of the first is a Vector reader and
the predicate is a haggis eater. Such propositions include an implicit
quantifier (“For all ..”) or (“There exists ...”), and are assertions of
which a clear binary judgement can be made, true or false. If three
such propositions are such that the third (called the conclusion) is
logically deducible from the first two (called the premisses), the re-
sulting set is called a syllogism.
In the English language the word ‘predicate’ has two meanings. Ex-
amples of the second meaning are

 A: He is a Vector reader
 B: He is an American
 C: He eats haggis

In this sense a predicate is an assertion containing a variable (in these
examples ‘he’) and thus true/false judgements are variable depen-
dent. A list of columns representing as binary digits the numbers
from 0 .. 2y is given by :

 binlist=.monad : '|:#:i.2^y'
 t3=.binlist 3
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

The columns of t3 collectively represent all possible selections of 3
binary digits with repetition allowed. In another view t3 is a list of

�111

lists, each of which contains 2y binary digits in equal proportions of 0s
and 1s. Use these lists to model predicates and define verbs which
select from the top level 3-list :

 A=.0&{
 B=.1&{
 C=.2&{
 A t3
0 0 0 0 1 1 1 1

The Boolean Verbs

b.is an unusual quantity. It is not an adverb but behaves somewhat
like one, only its argument is an integer (noun) rather than a verb.
b. is the common basis of a set of strongly related verbs which per-
form binary calculations. b. with no argument means 0 b. , so
for practical purposes a numeric argument must be present as in

 and=.1 b.
 or=.7 b.
 (1 and 0);(1 or 0)
┌─┬─┐
│0│1│
└─┴─┘

Each binary verb such as and and or has a 2 by 2 truth table with four
entries, e.g.

 0 1 and/0 1
0 0
0 1

so that there are a total of 24=16 distinct truth tables whose ravels cor-
respond to the binary representations of 0 .. 2y and provide the num-
bering scheme for the arguments of b..

 binlist 4
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

A list of the regularly used binary verbs is

 and=.1 b.
 or=.7 b.
 imp=.13 b. NB. implies
 eq=.9 b. NB. equals
 xor=.6 b. NB. exclusive or (same as not equal)
 nand=.14 b. NB. not and
 nor=.8 b. NB. not or

�112

to which add the verbs

 true=.15 b. NB. all 1s regardless
 false=.0 b. NB. all 0s regardless
 left=.3 b. NB. ignore right argument
 right=.5 b. NB. ignore left argument

Combining these with the selection verbs above gives, e.g.

 (A and B)t3
0 0 0 0 0 0 1 1

which is a ravelled (that is flattened) 3-dimensional truth table for A,B
and C.

The Special Case of ‘not’
‘not’ is dealt with separately because unlike the other binary verbs it
is monadic. A compound verb such as not A is a hook in which the
result of the selection verb must be processed by monadic -. (not)
and not by dyadic -. (less). Imposing such a constraint is one of the
main uses of [: (cap):

 not=.[:-.]
 (not A)t3
1 1 1 1 0 0 0 0

(note : without cap the meaning of not A is all but the list A

 (-. A)t3
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1).

It is now possible to compose logical expressions such as

 (B imp(not C))t3
1 1 1 0 1 1 1 0

and to define a complex predicate involving three basic predicates as
a verb to be applied to t3 :

 P1=.(A imp(not B))and(B imp A)and(B imp C)
 P1 t3
1 1 0 0 1 1 0 0

Truth and Falsity Adverbs

�113

It is useful to be able to obtain the columns of t3 which correspond to
1 (truth) and 0 (falsity) through

 T=.adverb : '#"1~x' NB. truth adverb
 F=.adverb : '#"1~(not x)' NB. falsity adverb
 (P1 T t3);P1 F t3
┌───────┬───────┐
│0 0 1 1│0 0 1 1│
│0 0 0 0│1 1 1 1│
│0 1 0 1│0 1 0 1│
└───────┴───────┘

where the first box defines the A, B and C attributes of individuals for
whom the three propositions which began this article are consistent,
and similarly the second box gives the attributes of those for whom
the joint propositions are false.

Sorites
A sorites is a series of propositions in which the predicate of one is the
subject of the next, and the final proposition (conclusion) can be in-
ferred from the rest. Lewis Carrol delighted in constructing nonsense
sequences of this sort such as

 No ducks waltz.
 All my poultry are ducks.
 None of my poultry waltz.

As before construct predicates such as

 A: It is a duck.
 B: It waltzes.
 C: It is one of my poultry.

To confirm that this is a syllogism and thus a sorites, define

 P2p=.(A imp(not B))and(C imp A) NB. p=premisses
 P2c=.C imp (not B) NB. c=conclusion

Then apply P2c to those elements of t3 for which P2p is true :

 P2c P2p T t3
1 1 1 1

which establishes that the set is indeed a syllogism. However same
test applied to the earlier set of propositions at the head of this article

 P1p=.(A imp (not C)) and (B imp A)

�114

 P1c=.B imp C
 P1c P1p T t3
1 1 1 0

fails, and the individual which causes failure of the syllogism test is
identified by

 P1p T t3
0 0 1 1
0 0 0 1
0 1 0 0

that is a Vector-reading American who does not eat haggis.

Some Technicalities

The list above covers eleven binary verbs. The remaining five in the
set are less immediately interesting :

 not_left=.12 b. NB. ignore right argument
 not_right=.10 b. NB. ignore left argument
 not_imp=.2 b. NB. not of (x implies y)
 imp_not=.11 b. NB. (not x) implies (not y)
 not_imp_not=.4 b. NB. not of imp_not

There are 16 fundamental arguments 0 .. 15 for b. . To these 16 may
be added or subtracted without affecting the result so that the permis-
sible argument range covers _16 to 31. 32, 33 and 34 are also valid
but relate specifically to bit/byte arithmetic (that is modulo two
arithmetic discarding remainders), namely 32 (=rotate), 33 (shift) and
34 (signed shift).

Advancing Knowledge

The discussions so far have been analytic, that is they have consisted
in testing combinations for consistency, which does not in itself in-
crease knowledge. However synthetic information concerning rela-
tionships which are not directly connected in a single proposition
amounts to advancing knowledge from what is already known, and
can be obtained by defining

 AB=.0 1&{
 AC=.0 2&{
 BC=.1 2&{ etc., and

]t2=.binlist 2
0 0 1 1
0 1 0 1

�115

whose columns (as rows) correspond in order to the marginal value
combinations in the ‘flat’ representation of any of the 16 two by two
truth tables. t2 is used to establish the presence (or absence) of its
columns in pairs of rows of a larger truth table, thereby obtaining rela-
tionships between the corresponding propositions :

 whatrel=.monad : '2 #.t2 e.&|:y'
 P3p=.(A eq B) and (B eq (not C))
 whatrel AC P3p T t3
6

6 is the b. number for not equal and so the required relation is A eq
(not C)as is reasonably obvious anyway. For the first set of proposi-
tions the B/C relation is given by

 whatrel BC P1p T t3
14

that is by B nand C , or equivalently

 CB=.2 0&{
 whatrel CB P1p T t3
13

that is C imp B .

Tautology and contradiction

These are demonstrated by

 P4p=.(A eq B)or (B eq (not A))
 whatrel AB P4p T t2
15
 P5p=.(A eq B)and (A xor B) NB.xor=synonym for
not equals
 whatrel AB P5p T t2
0

Further possibilities

Applying the syllogism test to

All men are good.
 All men are loyal.
 All women are bad.

using

�116

 A: It is a man.
 B: It is good.

C: It is loyal.

gives

 P6p=.(A imp B) and (A imp C)
 P6c=.(not A) imp (not B)
 P6c P6p T t3 NB. syllogism test
1 1 0 0 1

which fails for the reasonably obvious reason that the premisses say
nothing about women (i.e.not-men). Also there is no explicit connec-
tion between goodness and loyalty.

 whatrel BC P6p T t3
15

that is, goodness and loyalty are synonymous for men (tautology).
However

 P6=.(A imp B) and (A imp C) and ((not A)imp(not B))
 whatrel BC P6 T t3
13 NB. says goodness implies loyalty
 whatrel CB P6 T t3
11 NB. says disloyalty implies badness

These last two results do not rule out the possibility of badness and
loyalty occurring together (in a woman) as is made explicit by

 P6x T t3
0 0 0 0 1
0 0 1 1 1
0 1 0 1 1

Makes you think ... !!

Code Summary
 binlist=.monad : '|:#:i.2^y' NB. bin nos to 2^y in cols
 A=.0&{ NB. select first
 B=.1&{
 C=.2&{
 and=.1 b.
 or=.7 b.
 imp=.13 b. NB. implies
 eq=.9 b. NB. equals
 xor=.6 b. NB. exclusive or
 nand=.14 b. NB. not and
 nor=.8 b. NB. not or
 true=.15 b. NB. all 1s regardless

�117

 false=.0 b. NB. all 0s regardless
 left=.3 b. NB. ignore right argument
 not_left=.12 b. NB. ignore right argument
 not_right=.10 b. NB. ignore left argument
 not_imp=.2 b. NB. not of (x implies y)
 imp_not=.11 b. NB. (not x) implies (not y)
 not_imp_not=.4 b. NB. not of imp_not
 right=.5 b. NB. ignore left argument
 T=.adverb : '#"1~x' NB. truth adverb
 F=.adverb : '#"1~(not x)' NB. falsity adverb
 AB=.0 1&{ NB. select first two
 AC=.0 2&{
 BC=.1 2&{
 whatrel=.monad : '2 #.t2 e.&|:y' NB.what relation no?
 t2=.binlist 2

�118

17. Jaesthetics

Principal Topics : /: (grade up) = (self-classify) /. (key) ~. (nub) ~ (reflex) ; (raze)
occurrence numbers

I argue in this article that there are matters of taste involved in writing
J, and that J programmers inevitably make choices between pieces of
code which are identical as far as effects on data are concerned.

A contributor to the J forum recently made the point that for J afi-
cionados, J phrases can become a more natural medium for expressing
ideas that any natural language equivalent. Jim Lucas stated that he
didn’t care for expressions with lots of @s in them, because @ is a fun-
damentally ugly symbol. I also have some reservations about @, but
for a different reason, namely that @ and @: imply sequence, and
pieces of code strung together with @s look much like the kind of line-
by-line code observed in more mundane computer languages.

Two examples illustrate both of these points. The first is =@i.@#
which gives an identity matrix of the same shape as a square matrix.
This phrase has a feeling of symmetry on account of the two @s. It is
analogous to a word such as ‘fever’ in which consonants and vowels
alternate, only now read verbs and conjunctions. As for its meaning,
the @s say that there are three things which have to be done in se-
quence, first a tally, then an integers of that tally, and finally a self-clas-
sify of the result of integers. If I were to assign and name this verb for
repeat use I would probably call it something like MIM or MIdMat,
standing for Matching Identity Matrix. In this case I am not sure
which of the character strings MIdMat or =@i.@# conveys more on
later recall.

Now consider the somewhat similar phrase #i.@# :

 (#i.@#)0 1 0 1 1
1 3 4

which converts a bit string into the indices of the 1s. Again the phrase
has an overall shape and feel, in this case that of a word like ‘trot’. A
name for assignment purposes might be something BtoInd which has
a much lower mnemonic value than MIdMat, and in this case I am
confident that my preference for recall purposes is #i.@# .

�119

Another recent exchange on the forum offered two approaches to the
problem of obtaining a list of occurrence numbers. The problem is
that of taking a sequence such as

 m=.'mississippi'

and obtaining the list 0 0 0 1 1 2 3 2 0 1 3 in which each item of m is
replaced by its occurrence number. Chris Burke and Cliff Reiter of-
fered two different stylistic approaches. Here is Chris’s:

 ocb=.[:((]-{)/:@/:)i.~

and here is Cliff’s:

 ocr=.;@(<@i.@#/.~)/:[:/:~.i.]

If I were completely fluent in J, I would be able to understand and
compare the two on sight without recourse to English to define inter-
mediate verbs. Although there is a temptation to break these down
into smaller verbs, I ask you, the reader, to make the experiment of
pretending at this point that J is the only computer language you
‘speak’, and to make sense of these expressions on that basis alone.

Looking at ocb first, I have to say that I am not a fan of cap ([:)
which I usually like to replace with an equivalent @, yielding in this
case

 ocb1=.((]-{)(/:@/:))@ i.~

The case made for cap when it was first introduced into J was that it
enabled trains of indefinite length to be constructed without paren-
theses. In reading J phrases I find that ‘breathers’ in the form of
parentheses and @s are positively welcome, and the cap argument
seems a bit like the case for removing gaps between movements of
symphonies on the grounds that it gets you to the end sooner.

An obvious first step in solving the occurrence number problem is to
translate the list into an ‘order of first appearance’ integer list, that is
every ‘i’ in “mississippi” maps into the index of the leftmost ‘i’ which
is 1, and similarly for the other characters. This is just what i.~m
does:

]t=.i.~m
0 1 2 2 1 2 2 1 8 8 1

t{m is just m, since it makes no difference whether a selecting index is
that of the first or any later occurrence. I can see therefore the role of

�120

the rightmost verb in ocb, and also note that, without loss of generali-
ty, the rest of this discussion can be restricted to lists of this sort – this
is the force of the rightmost @ in this case, and is incidentally a gener-
al useful property of @. What remains is clearly a hook, whose right
verb is easily recognised as the upward ranking verb /:@/:. A signif-
icant problem in discussing the grade verbs is the promiscuity of the
word ‘rank’, which means one thing in the context of J and another in
the context of arithmetic generally. I think it best to use the word
‘ranking’ to describe the latter sense and follow J practice of counting
from index origin 0, so that the score of the best golfer has upward
ranking 0, that of the fifth best golfer upward ranking 4 and so on.
The upward ranking of a list is the list of the upward ranks of its
items in their original order. The left verb of the hook

 (]-{) (/:@/:)

in ocb is a fork in which the effect of right is to make the right argu-
ment t the left argument of minus, the right argument of which is
t{gt where gt is the upward ranking list of t.
Now pause awhile and consider what happens when a list of indexes
of first appearances (call this an ifo list for short, and define ifo
=.i.~) selects from its own upward ranking list. Ranking in J is a pro-
gressive operation in the sense that if a list contains more than one 0,
the second 0 from the left is ranked 1, the third is ranked 2 and so on.
However, in selection using an ifo list, duplicate items in t repeated-
ly select the upward ranking of first occurrence making the process
non-progressive. This is easier to observe by tracing than to describe
in words

 t
0 1 2 2 1 2 2 1 8 8 1
 /:/:t NB. upward ranking of t
0 1 5 6 2 7 8 3 9 10 4
 t{/:/:t NB. t indexing its own ranking
0 1 5 5 1 5 5 1 9 9 1

Subtracting the last two lists in the above sequence gives the occur-
rence number list.

 ocb m
0 0 0 1 1 2 3 2 0 1 3

All of this can be summarised by saying occurrence number is ‘up-
ward ranking’ minus ‘index of first appearance’. I could express this
in mathematical symbols, but I doubt whether this would achieve
anything like the clarity of the previous sentence. It is precisely this

�121

derived consequence of the semantics of grade-up and index which
Chris has exploited delightfully in ocb.

The fork in ocb1 raises a stylistic consideration. The purpose of] is to
achieve the argument reversal needed to obtain

 (/:/:t) - t{(/:/:t)

I have reservations about using [and] similar to those I expressed
concerning @, namely that [and] are a thinly disguised way of refer-
ring directly to the data arguments, and thereby causing reversion to
traditional programming language style rather than that of tacit pro-
gramming.

If up is defined as

 up=./:@/:

then the fork in ocb1 can be written as

 up -({up)

and ocb1 can be written

 ocb2=.(up-({up))@ifo

Of course I am now taking refuge in words, or at least verb-names as
pseudo-words, no doubt thereby laying bare my shortcomings in J
fluency. As far as recall is concerned, while ifo is quite memorable
(although no shorter than i.~), the name up is uselessly general. I
could of course follow the practice of C++ programmers and similar
infidels, and call it something like upward_ranking but this would
be self-defeating, since /:@/: is much shorter and infinitely more
expressive.

As a spin-off, the hook {up delivers the non-progressive upward
ranking in which all equal values have the same ranking. For exam-
ple

 ({up) 0 1 2 0 2 5 0
0 3 4 0 4 6 0

Next consider Cliff’s verb:

 ocr=.;@(<@i.@#/.~)/:[:/:~.i.]

�122

The first thing to observe is the presence of the key adverb (/.) which
is what I imagine many J users, myself included, would latch on to as
the germ from which to develop a solution to this problem. Again
pretend that J is the only available vehicle for communication. The
presence of several @s indicates that Cliff has taken an essentially se-
quencing approach, particularly as cap can, as before, be exchanged
for @ to give

 ocr1=.;@(<@i.@#/.~) /: /:@(~. i.])

This reveals that the main structure is a fork with the leftmost /: as
its central prong. As far as the right prong is concerned, two things
happen in sequence. First the phrase within the parentheses is index
by nub, for example

 (~.i.])m
0 1 2 2 1 2 2 1 3 3 1

which I recognise as another way of describing ifo, and incidentally
conveniently deals with my distaste for] !

Then this is graded upwards

 /:ifo m
0 1 4 7 10 2 3 5 6 8 9

to give the positions of the 0s, followed by the positions of the 1s, fol-
lowed by the positions of the 2s and so on, in other words it is the list
of positions required to grade up dyadically the sequence of all occur-
rence numbers ordered by item.

key seems a natural way of obtaining this sequence. We have already
seen how i.@# works

 (i.@#)m
0 1 2 3 4 5 6 7 8 9 10

Applying key using the items of m as keys gives

 m(i.@#/.)m
0 0 0 0
0 1 2 3
0 1 2 3
0 1 0 0

which is then boxed followed by raze - a standard device to remove
unwanted fill characters. Putting all of this together and including a
reflex to keep things monadic, the left prong may be summarised as

�123

 ocnobykey=.;@(<@i.@#/.~)

and the left prong by

 posbykey=./:@ifo

leading to a further redefinition of ocr as

 ocr2=. ocnobykey /: posbykey

An objection to this use of pseudo-English is that revisiting sort-
bykey and posbykey again poses as great a problem in remember-
ing exactly what was meant by these rather vague verb names as that
of interpreting directly the unambiguous J strings. The only signifi-
cant arguments for decomposition of long verbs into shorter verbs is
the ‘breather’ effect on the one hand and clarification of top-down
structure on the other.

In summary, three separate dimensions of stylistic choice have
evolved in the above discussion which have to be made in J pro-
gramming. First there is the balance between English and J, (with
100% of the latter not ruled out), then secondly the different problem
solving approaches of “derive a new property from old” versus
“program using existing resources” (ocb style versus ocr style),
and thirdly, choices between J equivalences such as cap versus atop, as
well as avoidance techniques for [and]. Of course none of this takes
account of the hugely important dimensions associated with imple-
mentation – often a longer piece of code will be appreciably more effi-
cient than a more elegant alternative. At this point art and science
come to a divide where things begin to get severely practical – most
certainly relevant, but not the province of Jaesthetics!

Code Summary

The following verbs all deliver the indexes of successive occurrences
of items in a list.

 ocb=.[:((]-{)/:@/:)i.~
 ocr=.;@(<@i.@#/.~)/:[:/:~.i.]
 ocb1=.((]-{)(/:@/:))@ i.~
 ocb2=.(up-({up))@ifo
 ifo=.i.~ NB. index of first appearance
 up=./:@/: NB. upward ranking
 ocr1=.;@(<@i.@#/.~) /: /:@(~. i.])
 ocr2=. ocnobykey /: posbykey
 posbykey=./:@ifo

�124

 ocnobykey=.;@(<@i.@#/.~)

�125

18. The problem with J is…

Principal Topics :] (right) /. (infix) \. (suffix) /: (grade up) ` (gerund) list con-
structor, statement separator, zigzag matrix.

… identifying instantly the various parts of speech. Even in the sec-
ond or so it took you to read this sentence you subconsciously identi-
fied its form and shape because you recognised ‘problem’, ‘part’,
‘speech’ as nouns, ‘is’ as a verb, ‘instantly’ as an adverb and so on. In
linguistic terms you sorted out the syntax with scarcely a thought, de-
ferring for the moment whether or not you were going to bother
working out the semantics.

By contrast, in J the parts of speech to which the various symbols be-
long are not immediately obvious. Take for example a discussion on
the J programming forum concerning how to rearrange the square
matrix i.n n in zig-zag format, so

 zigzag=.($ /:@:;@:(|.&.>`]/.)@:(</.)@:i.)@:(2&#)
 zigzag 4
0 1 5 6
2 4 7 12
3 8 11 13
9 10 14 15

The above one-line solution submitted by Henry Rich states the solu-
tion admirably, but its structure and meaning is clear only to the su-
per-expert.

J is best understood in terms of processing lists, which is what goes on
behind the scenes anyway. Verbs like transpose which operate at the
surface level on objects of higher dimensions than lists are more accu-
rately conceived as list constructors, in other words the verb transpose
is not so much ‘switch matrix rows and columns’ as ‘construct a new
list of lists from a given list of equal length lists’. There is no problem
in extending this idea to dyadic transpose, that is to lists of lists of lists
… ad infinitum.

Adverbs such as / and /. make ‘straightforward’ verbs like < and +/
into list constructors. For example

 </.i.4 4
┌─┬───┬─────┬────────┬───────┬─────┬──┐
│0│1 4│2 5 8│3 6 9 12│7 10 13│11 14│15│
└─┴───┴─────┴────────┴───────┴─────┴──┘

�126

constructs a 7-list systematically from the elements of four 4-lists,
sometimes with dimensionality (rank) bein reduced in the process

 +//.i.4 4 NB. one 7-list from four 4-
lists
0 5 15 30 30 25 15
 (<0 1)|:i.4 4 NB. one 4-list from four 4-
lists
0 5 10 15

An interesting verb which can bring about list construction is] (right)
which it is easy to dismiss trivially as a ‘do-nothing’ sort of verb, or at
least ‘deliver the right argument and do nothing with it’.

 2]i.3 3
0 1 2
3 4 5
6 7 8

However, if qualified with the prefix adverb

]\i.3
0 0 0
0 1 0
0 1 2

it gives successive sublists (with fill) constructed either forwards from
a simple numeric, or backwards :

 (]\.)i.3
0 1 2
1 2 0
2 0 0

or as boxed lists suppressing the fill items :

 (<@:]\)i.3
┌─┬───┬─────┐
│0│0 1│0 1 2│
└─┴───┴─────┘

The same effects could be achieved by replacing] with > or + or many
other verbs.

�127

Ken Iverson used J to suggest that the numeracy functions of the brain
are more closely allied to the literacy ones than is popularly believed,
the first step being to overcome the syntax barrier. Part of the prob-
lem is that whereas statement separators tend to stand out in other
languages, @: meaning ‘after’ acts in J like a statement separator as in
this@:that@:thenext, but is often harder to pick out in a blitz of
non=alphabetic characters. In the light of this look again at

 zigzag=.($ /:@:;@:(|.&.>`]/.)@:(</.)@:i.)@:(2&#)

in which it is difficult at a glance to pick out the all-important @: sym-
bols. As a first step in understanding construct lists of the leading di-
agonals of i.n n and consolidate the procedure as

 diagilist=.monad : '</.i.y,y'
 diagilist 4
┌─┬───┬─────┬────────┬───────┬─────┬──┐
│0│1 4│2 5 8│3 6 9 12│7 10 13│11 14│15│
└─┴───┴─────┴────────┴───────┴─────┴──┘

Another important indicator which is easy not to spot is the gerund
marker, that is the dash in the middle. The adverb /. activates the
gerund as in

 (+`-/.)4 5 6 7
 4
_5
 6
_7

and so a fuller parenthesising is ((|.&.>)`(])/.), that is the two
parts of the gerund are |.&. and] and not |.&. and]/. , so de-
fine

 reversealt=.|.each`]
 zz=.(reversealt/.)@:diagilist
 ,zz 4
┌─┬───┬─────┬────────┬───────┬─────┬──┐
│0│1 4│8 5 2│3 6 9 12│13 10 7│11 14│15│
└─┴───┴─────┴────────┴───────┴─────┴──┘

or, removing the boxes

 ;zz 4
0 1 4 8 5 2 3 6 9 12 13 10 7 11 14 15

�128

Alternate diagonals have been reversed, and the problem now is to
reverse the diagonalisation. Here is where an ingenious and insight-
ful verb comes in. For any permutation p of i.n the following ap-
plies :

 p=.16?16
 (/:p){p
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

that is grade-up restores i.n from any of its permutations. Now ;zz
4 as shown above is a permutation of i.16 whose grade-up, just like
any other permutation, puts the numbers of i.16 back into natural
order, which is exactly what is required in order to display the zigzag
matrix in its conventional 4 by 4 format. Thus define a verb

 gradeupraze=./:@;
 zz=.gradeupraze@:(reversealt/.)@:diagilist
 zz 4
0 1 5 6 2 4 7 12 3 8 11 13 9 10 14 15

and finally reshape this as n by n :

 zigzag=.(2&#)$gradeupraze@:(reversealt/.)@:diag-
ilist
 zigzag 4
0 1 5 6
2 4 7 12
3 8 11 13
9 10 14 15

The sophistication of the J involved cannot be disguised, but using
pseudo-English to break up the primitive symbols greatly helps com-
prehensibility. It also helps distinguish the more subtle thinking
about permutations and grade-up from the otherwise relatively mun-
dane data structuring operations.

Solving programming exercises of this sort often lead to further gen-
eralisations. For example consider how restructuring of the 4 by 4
matrix might be achieved :

0 7 8 15
1 6 9 14
2 5 10 13
3 4 11 12

�129

udilist standing for ‘up and down integer-list’ is a list constructor
analogous to diagilist.

 udilist=.monad : '<"1 |:i.y,y'
 udilist 4
┌────────┬────────┬─────────┬─────────┐
│0 4 8 12│1 5 9 13│2 6 10 14│3 7 11 15│
└────────┴────────┴─────────┴─────────┘

Now instead of the first, third, and so on list being reversed it is now
the second, fourth …, so define the gerund

 revalt=.]`(|.each)

and finally retread the ground of zigzag :

 updown=.(2&#)$gradeupraze@:(revalt/.)@udilist
 updown 4
0 7 8 15
1 6 9 14
2 5 10 13
3 4 11 12

If the start point is required to be in the south-west corner, replace
revalt with reversealt.

Code Summary
 diagilist=.monad : '</.i.y,y'
 reversealt=.|.each`]
 gradupraze=./:@;
 zigzag=.(2&#)$gradupraze@:(reversealt/.)@:diag-
ilist
 udilist=.monad : '<"1 |:i.y,y'
 revalt=.]`(|.each)
 updown=.(2&#)$gradupraze@:(revalt/.)@udilist

�130

19. Symphony in J minor, op.31

Principal Topics : |: (transpose), \. (suffix) /. (oblique), minors (of a matrix)

Composer’s programme note : In response to a question on the forum “is J
beautiful?”, Roger Hui answered as follows :

 minors =. 1&(|:\.)"2^:2

If you know mathematics, you already knew what minors are. If you
know J but didn’t know mathematics, you will also now know what
minors are, even if you didn’t before! For the benefit of listeners who
fall between these two categories, any matrix with m rows and n col-
umns can be transformed into a set of mn matrices each of size (m-1)
by (n-1) by omitting the row and column of every element in the orig-
inal matrix in turn. That much is a statement in English of the phrase
above. The phrase itself forms the symphony’s motif, whose meaning
unfolds movement by movement as the work progresses.

First movement : Introduction and andante syntactico. The end of
the motif, has a repeat sign ^:2 indicating that the theme is to be
played twice. The theme itself, to be found within the parentheses, is
|:\. , that is a melody |: played with orchestration \. . Next the
opening bar of the motif shows that there are two staves, in which &
braces the melody to a pedal bass 1. The coda "2 adds dynamics to
the main theme, indicating the level at which it is to be played. The
structure of the motif should now be apparent, and the remaining
movements bring into increasingly sharp focus how the four repeated
musical elements |: \. & " combine to make a single coherent
form. As these component ideas emerge and crystallise, the work
itself surges forward with a compelling, indeed inevitable momen-
tum.

Second movement : Pastorale The movement opens with the folk
melody |: which with its easy turn of phrase is often to be heard be-
ing hummed and whistled in its native matrix environment. \. ,
called suffix, is perhaps not quite so well known. As the name sug-
gests, it is associated with Suffolk, the most easterly of England’s
counties, which slopes gently downwards from west to east until it
disappears below the surface of the ever encroaching and unforgiving
sea which is portrayed by the dot. The following illustration shows
how it works, as first one part and then another withdraws from the
melodic strand, in the style of the Farewell Symphony:

�131

]m=.>'life';'ebbs';'away'NB. 3 strands each played to
life NB. completion before the other be-
gins
ebbs
away

 ,m
lifeebbsaway NB. .. then played altogether as one

 ,\.m
lifeebbsaway NB. .. now first three,
ebbsaway NB. .. then two,
away NB. .. then one

Gentle suffix is quite unlike the rocky coastal cliff scenery of Cornwall
on the other side of the country where her cousin oblique evokes the
music of the waves as they surge and then fall away in natures’s verti-
cal polyphony :

 ,/. m NB. flow at first ……..
l NB. the three melodies enter
ie NB. one after the other
fba NB. in downward progression
ebw
sa NB. .. then ebb
y

The music of the integers, if not the spheres, can be heard in the same
fashion :

 +/. 1+i.4 4
 1 0 0 0 NB. strata of sequences increasing by 3
 2 5 0 0 NB. padded with fill items
 3 6 9 0 NB. rising in length ..
 4 7 10 13
 8 11 14 0 NB. .. and then falling
12 15 0 0
16 0 0 0

Third movement : Presto semantico Now the number 1 is heard
knocking at the door like Fate in Beethoven’s fifth. No longer is \. a
gentle ebb and flow, now decline (suffix) has become a relentless for-
ward march to the rhythm of out,fix,out,fix,out,fix,out.., as first one and
then another of the underpinning strands is left out :

 1 ,\. m
ebbsaway NB. strands are now played in all
lifeaway NB. possible combinations, leaving out
lifeebbs NB. one at a time

�132

Leave them out two at time, and there are just single strands left, not
three as might be expected, but only two, since those left out must be
in succession :

 2 ,\. m
away NB. leave out strands 1 and 2
life NB. leave out strands 2 and 3

(Note : the bass line may be played with either positive or negative
vibrato, that is it makes no difference if 1 is replaced by _1 or 2 by _2.)

A percussion line can be added to each strand to make , into a two-
stave melody :

 (,&'!')\.m
life
ebbs
away
!!!!

ebbs
away
!!!!

away
!!!!

This illustration can be played more elegantly on the box piano <"2

 <"2 (,&'!')\.m
┌────┬────┬────┐
│life│ebbs│away│
│ebbs│away│!!!!│
│away│!!!!│ │
│!!!!│ │ │
└────┴────┴────┘

Adding a second stave to oblique transforms polyphony into modula-
tion through a variety of keys, so in the next example theme A is in one
key and themes B and C in another :

 1 2 2 ,/.m
life
ebbsaway

Fourth movement : Finale grandioso In the final movement, the in-
fluence of Eastern music becomes apparent, since the performer is free
to choose an initial foundational thread to start off each individual
performance. Following this the various musical elements of the pre-
ceding movements are brought together to form a grand climax of re-

�133

sounding symbols. Rank 2 is the natural medium for the foundation
thread, which might, for example, be

 i.3 2
0 1
2 3
4 5

but it could equally well be a matrix of any size, rank or type (charac-
ter or numeric). For a rank 2 foundation thread the explicit dynamic
<"2 is not strictly necessary for the first statement of the melody in
which the full force of the orchestra is unleashed, slicing and trans-
posing the rows in a crescendo which finishes at rank 3 level

 (1&(|:\.)) i.3 2
2 4
3 5

0 4
1 5

0 2
1 3

In the repeat section, each of the inner level (<"2) matrices is sliced
and transposed, the latter ensuring that the original tonality of rows
and columns is reinstated :

 t=. (1&(|:\.)) i.3 2
 <"2 (1&(|:\.))"2 t
┌─┬─┐
│3│2│
│5│4│
├─┼─┤
│1│0│
│5│4│
├─┼─┤
│1│0│
│3│2│
└─┴─┘

In the most popular performances, the foundation thread is rank 2,
numeric and square :

 <"2 minors i.3 3
┌───┬───┬───┐
│4 5│3 5│3 4│
│7 8│6 8│6 7│
├───┼───┼───┤
│1 2│0 2│0 1│
│7 8│6 8│6 7│
├───┼───┼───┤

�134

│1 2│0 2│0 1│
│4 5│3 5│3 4│
└───┴───┴───┘

This has led to repeated demands for the work to be performed glob-
ally wherever a popular audience for linear algebra is to be found.
However, it has also been played with acclaim to audiences of a more
literary inclination:

 <"2 minors 2 4$'lasttime'
┌───┬───┬───┬───┐
│ime│tme│tie│tim│
├───┼───┼───┼───┤
│ast│lst│lat│las│
└───┴───┴───┴───┘

New arrangements for different combinations of instruments and
platforms are constantly in demand.

Encore ?? …

Code Summary
 minors =. 1&(|:\.)"2^:2

�135

20. How to Do Things with Words

Principal Topics : < (box) “ (rank conjunction) noun rank, verb rank, cell, matrix
inverse, tables

David Ness recently drew my attention to a fascinating little book
called “How to Do Things with Words”. This is an edited version of
lectures given in 1955 at Harvard by an Oxford philosopher called
John Austin, but the title is equally appropriate as a succinct answer
to an enquirer seeking to discover what J is all about. The gist of the
book is that there are some things in life which can only be done by
making utterances, “I name this ship ..”, “I baptise this baby …” and
so on. The pursuit of analogies with the grammars of natural lan-
guages has always been one of the driving forces of J, and it is not ac-
cidental that what in other languages are called ‘functions’ are called
‘verbs’ in J, while ‘constants’ and ‘variables’ are called ‘nouns’.

A J interpreter provides answers to questions about what happens
when words are put together in combinations which its creator could
not possibly have ever conceived. In its rigorous judgements of J
competence, a J interpreter contrasts with the manner in which ‘per-
fect’ English is not an absolute standard but an inherently unattain-
able ideal. When my German born travel agent answers my question
“Is that Brigette?” with the response “This is she”, by every formal
rule of English grammar this has to be judged totally correct, but not
many native English speakers would instinctively consider it so. On
the other hand a J nterpreter answers all possible questions of gram-
mar and syntax (including millions which have not yet been asked)
with total certainty and clarity. It is in effect a super-intelligence to
which even the most accomplished J ‘speakers’ must submit an im-
plicit validity test with every J phrase which they utter or compose.
Such speakers rarely react to an error report or unexpected result by
presuming a bug is present, but rather accept that their instinctive and
developing notions of the language do not yet quite measure up to the
performance ideals of the unforgiving language examiner!

Much was made of APL as a notation for thought, and of the idea that,
to quote A.N.Whitehead, “by relieving the brain of unnecessary work
a good notation sets its users free to concentrate on more advanced
problems thereby increasing the powers of the race”. It might be sup-
posed that this notion carried over into J, but this is not entirely cor-
rect. APL is first and foremost a shorthand, J only incidentally so. At
an early age we develop fluency in the language we hear all around

�136

us, and we rapidly achieve speech as opposed to language skills. For
example the child who says “throw Daddy” has acquired a language
skill in combining words in a fashion which mimics the rhythm of the
social interactions he hears in the adult speech surrounding him. The
speech skill by which this utterance develops into “throw it to Dad-
dy” comes at a later stage. Combining words in J and submitting
them to an interpreter is like submitting “throw Daddy” to the full
glare of perfect adult intelligence, leading to a possible unwanted re-
sponse where a physically strong and highly spirited Mummy hap-
pens to be present!

This analogy must resonate clearly with anyone who has crafted and
executed a J verb with a clear expectation of what it will perform.
Surprise is frequently conveyed not by an error report, but by the de-
livery of some result, which, if carefully observed, can advance a gen-
eral background goal of bringing the user’s fluency in J closer to the
perfection which only the super-intelligence can attain. In other
words, reflective consideration of faulty utterances is the prime route
towards the attainment of language mastery. It is all too easy to set
such explorations aside without fulfilling good intentions to return
and learn from the experience. Thus many J speakers never progress
much beyond the “throw Daddy” stage, or at best graduate only as
far as the language equivalent of infanthood!

I said above that J, at least in the perceptions of some of us, is about
doing things with words, and I return now to that theme in the con-
text of the two types of rank which seem to be one of the principal
stumbling blocks for initial language learners. The two types of rank
are noun rank and verb rank. The former is a relatively simple idea to
grasp, namely the result of applying #$ to an object to give the tally of
its shape, or, in a single word, its dimensionality. Shape itself has
geometrical connotations, so that a scalar has rank 0, akin to a point in
space, a list has rank 1 like a line, a matrix has rank 2 analogous to
points in a plane, and so on.

Verb rank is somewhat more subtle, but has more than a passing asso-
ciation with the grammatical idea of ‘number’, that is singular or
plural. It is also helpful to consider rank alongside the concepts of box
and cell, both of which are means of ‘singularising’ things, the former
in a much stronger way by disguising the nature of the contents from
external agents such as verbs. The Object Oriented concept of encap-
sulation is highly relevant here, so that a box is a scalar whereas a cell
is not, the key difference being the property of penetrability.

�137

The majority of J verbs have rank of either zero or infinity (see E #5
“Conjugacy and Rank” and E #6 “Punctuation and Rank”). It is only
for verbs which have special semantic requirements such as shape and
matrix inverse that any other rank is associated with the verb. Basical-
ly, the ‘safe’ assumption about the rank of an unknown verb is that it
is infinite, which is why all but the most trivial user-defined verbs, are
assigned infinite rank. (There are occasions where, with analysis, a
‘true’ rank could in principle be worked out, but such computing ef-
fort would not only overload the interpreter for little practical gain,
but would also cost greatly in performance).

Simple addition at different rank levels involves thinking about cells
with possibly complex list structures. Addition without explicit rank
can penetrate list structures by operating at rank 0 :

 x=.i.2 3 NB. a list of two 3-lists
 y=:>:x NB. another list of two 3-lists
 x;y;x+y
┌─────┬─────┬──────┐
│0 1 2│1 2 3│1 3 5│
│3 4 5│4 5 6│7 9 11│
└─────┴─────┴──────┘

However, adding objects with different structures may result in shape
incompatibility, for example in the following case

]z=.10*i.2 2 3 NB. two 2-lists of 3-lists
 0 10 20
30 40 50

60 70 80
90 100 110
 x+ z NB. two 2-lists plus two 3-lists
|length error
| x +z

you cannot meaningfully add 3-lists to 2-lists! However, addition at
rank 1 is valid

 x +"1 z NB. add two lists to two lists of lists
 0 11 22 NB. this is 0 1 2 + plane 0 of z ..
 30 41 52 NB. ..with list 0 1 2 replicated.

 63 74 85 NB. and this is 3 4 5 + plane 1 of z ..
 93 104 115 NB. ..with list 3 4 5 replicated.

because it is an addition of two compatible 2-lists. Each of x’s two
lists is a 3-list, whereas for z, both its lists are 2-lists, each item of

�138

which is a 3-list, and it is at the level of the 3-lists that the actual addi-
tion takes place. Addition at rank 2 is also valid:

 x+"2 z NB. add one list to two lists
 0 11 22 NB. this is x + plane 0 of z ..
33 44 55

60 71 82 NB. .. and this is x + plane 1 of z
93 104 115

In this case, a single 2-cell is added to a list of 2-cells, and so in this
case the left argument x is replicated in its entirety.

+ is one of a subset of verbs, mainly arithmetic, which ‘penetrate’ in-
definite layers of structure to operate at atomic (that is numeric or
character) level, as in the case of x+y above. In APL these are called
scalar verbs, and their counterparts in J are said to possess rank 0.
Where scalar verbs operate on conformable arguments as with x+y,
increasing verb rank has no effect on the result. This is because, for
example, x+"1 y is the addition of two pairs of 1-cells and x+"2 y
is the addition of a single pair of 2-cells, and in each case penetration
takes place down to atomic level. In J terms

 (x+"1 y)-:x+y NB. rank 1 add matches rank 0 add”
1
 (x+"2 y)-:x+y NB. rank 2 add matches rank 0 add
1

Returning to box, whereas rank 0 verbs penetrate list structures, they
do not penetrate boxed structures:

 (<x)+<z
|domain error
| (<x) +<z

In general, the permitted operations on boxed scalars are restricted to
shaping and joining, since encapsulation means that the nature of
their contents is not available to verbs. To repeat the warning given
earlier, do not confuse cells and boxed scalars!

Applying adverbs to verbs with rank continues the same rigorous log-
ic. For example applying table :

 $x+/z NB. All possible atomic pairs are added
2 3 2 2 3
 $x+"1/z NB. A 2 by 2 table (items=3-lists)
2 2 2 3
 $x+"2/z NB. 1x2 table(items=2-lists of 3-lists)
2 2 3

�139

In the first case the shape of the result is the catenation of shapes. If
this were not so it would be impossible to accommodate all possible
number pairs. However, when two lists are added, addition takes
place only between matching items, which means that in forming the
second table the two 3s at the lowest shape level in each argument are
merged. Similarly, in the last case it is the two 2 3s which are merged
by addition to give a 2-list, each item of which has shape 2 3. If you
want to confirm your understanding of all this, try to predict the re-
sults of x+/"1 z and x+/"2 z. It helps to appreciate that ‘table ad-
dition’ is not a scalar verb, that is, it has infinite rank. You can use
verb rank to specify the level at which tables are to be formed so that,
for example, x+/"0 y is identical to x+y. However, no penetration
takes place below the level specified by an explicit rank. Thus :

 $x+/"1 z NB. A 2 by 2 table of 3 by 3 tables
2 2 3 3
 $x+/"2 z NB. A 1 by 2 table of 2 by 3 tables
2 2 3 2 3

In the first case above the verb +/operates item by item on two pairs
of lists to produce a 2 by 2 structure of 3 by 3 matrices.

Now return to natural language. Verbs like ‘quit’ and ‘bid’ make no
number distinction – “he quit, they quit” and so on – as opposed to
verbs like ‘spell’ – “he spells”, “they spell” - which do. The concept of
plurality with respect to verbs is a little more subtle than it might at
first appear. For example if I say (talking about a group of people)
“they sang”, it could be taken to mean that each individual in the
group sang, that is, the singing was performed at rank 0. On the other
hand, the statement “they sang” could equally be applied to, say, a
crowd at a football match where it was almost certainly not the case
that every single individual sang. On the other hand “they multi-
plied” (in the reproductive sense!) could not have been done by indi-
viduals, and so we have here a verb which whose rank is certainly
greater than zero! Similarly, if an utterance like “they quit” meant
that all of them did as a body, then we have an instance of infinite
rank. At best English verbs allow the distinction between one and
many, that is between singular and plural. Explicit verb rank in J al-
lows all possible gradations in between, 0, 1, 2 and so on up to infini-
ty, and further, it allows ranks to be specified separately for subject
and objects, much as if English were to provide separate inflections
for “he hitss her, “he hits them”, “they hit them” and “they hitt him”.
With a commutative verb like + there is no difference in result be-

�140

tween x+"0 1 y and x+"1 0 y. However, the distinction is imme-
diately apparent with a non-commutative verb :

 x-"0 1 y NB. atoms of x minus rows of y
_1 _2 _3 NB. 0 minus 1 2 3
 0 _1 _2 NB. 1 –minus 1 2 3
 1 0 _1 NB. 2 –minus 1 2 3

_1 _2 _3 NB. 3 –minus 4 5 6
 0 _1 _2 NB. 4 –minus 4 5 6
 1 0 _1 NB. 5 –minus 4 5 6
 x-"1 0 y NB. rows of x minus atoms of y
_1 0 1 NB. 0 1 2 minus 1
_2 _1 0 NB. 0 1 2 minus 2
_3 _2 _1 NB. 0 1 2 minus 3

_1 0 1 NB. 3 4 5 minus 4
_2 _1 0 NB. 3 4 5 minus 5
_3 _2 _1 NB. 3 4 5 minus 6

In English we tolerate the absence of such inherent number precision,
which makes explicitly ranked J verbs harder to grasp than English
ones - but on the other hand what interesting and varied things one
can do with them!

�141

21. Are you thinking what I’m thinking?
Principal Topics : = (self classify), Sapir-Whorf Hypothesis

“APL as a Tool of Thought” was the title of a long-running series of
seminars held in New York, which, by a tiny change could be made
into the claim “APL is a Tool of Thought”. Generalise this into the
statement "Some language is necessary as a Tool of Thought" and the
resulting statement is what is known to linguists as the Sapir-Whorf
Hypothesis (SWH). In short, you cannot think unless you have a lan-
guage.

Whether this is true or not is open to question. Is it possible for an
individual to think thoughts which are totally beyond his or her pow-
ers of articulation? Could there have been a caveman possessing all
the scientific and cosmological vision of an Einstein or a Feynman, but
who, having no language, was never able to communicate the fact?
Proponents of SWH say no.

“APL is a tool of thought” can be paraphrased “APL is a labour-sav-
ing device for thinkers” in the same way that a Dyson is a labour-sav-
ing device for cleaners. Given that serious thinking is a hard, brain-
taxing activity, “APL is a labour-saving device for thinkers” is proba-
bly not in dispute, and indeed the same could be said of any comput-
er language. So what about the proposition “J is a better labour-sav-
ing device for thinkers”, or more controversially still “APL (and J) en-
able people to think thoughts which were previously unattainable to
them”.

Computer languages in general differ from natural languages in the
privacy of dialogue. Spoken human language competence is tested
by a continual stream of reactions from receivers; if the latter respond
in a puzzled or incomprehensible fashion, the speaker can often re-
peatedly retry, thereby learning by failure and feedback, one of the
richest means of increasing language competence. By contrast, the
response to failure with computer languages is normally an error
message, impassive, and emotionally neutral.

One of the ways in which J is sharply differentiated from other com-
puter languages, even APL, is in the relative infrequency of show-
stopping error messages. Whereas erroneous input in other lan-
guages is likely to cause suspension of execution, as often as not J con-
tinues, but delivers an output which is often quite different from that
expected. Put in another way, whereas a faulty expression in other

�142

languages leads to non-understanding, in J it is just as likely to lead to
misunderstanding. A possible response to an unexpected J output
might be to shift a parenthesis a place or two, or to switch the odd
conjunction, perhaps with the dialogue and resubmissions becoming
more rapid as wishful optimism begins to overtake well-considered
thought.

Any faulty input which did not deliver an error message is neverthe-
less the expression of a valid thought, failure to explore which is to
forego a valuable opportunity for learning. Thus as well as working
towards a correct expression, there is at least as much learning value
in ascertaining what thought or intention would have resulted in the
faulty input, which is after all the thought which would have been
communicated to a more linguistically competent J receiver.

To be specific, consider a J dialogue in which I attempted to find all
the combinations of x integers from i.y. My strategy, at first vague-
ly conceived in natural language, was first to obtain bit string patterns
of all the natural numbers from 0 to 2y-1, and then select those which
contain exactly x bits, with the final step being to convert these bit
strings into indices.

The first step is provided by a single J symbol. For the sake of defi-
niteness, think in terms of combinations of 2 items out of 3.

]t=.#:i.8 NB. 8 is 2^3
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

or more generally

 b=.#:@i.@(2&^) NB. 0,.._1+2^y as binary numbers
 t=.b 3 NB. same t as before

There is no problem in calculating the number of bits in each of the 2y

lists

 (+/"1)t NB. sum all the lists in t
0 1 1 2 1 2 2 3

My next thought was to select those lists whose bit-sum equals 2 :

�143

 ((2&=)@+/"1)t NB. mark lists whose sum is 2
0 0 0 0 0 0 0 1

Something wrong! – what I should have thought was

 (2&=@(+/"1))t NB. right this time?
0 0 0 1 0 1 1 0

Following a well-established route for selection using #~ , the above
thinking leads to

 (#~2&=@(+/"1))t NB. (#~f)y means f(y) # y
0 1 1
1 0 1
1 1 0

From there the route to the summit is clear, but before proceeding,
what about the wrong thought? Following the advice given earlier, I
should, as a conscientious J learner, ask what it was which I conveyed
to the hypothetical perfect J speaker/reader when I said ((2&=)@
+/"1)t ? In the first place such a reader would have mentally in-
serted a right parenthesis following the first verb after @ so that what
was inserted in the J sense was the verb v=.(2&=)@+ . What does
this convey? Any verb to the left of @ must be monadic; the fact that
the adverb insert follows v means that the + in v must be dyadic, and
so v is ‘compare-with-2 addition’. Next since the insert verb is defined
as operating on lists ("1), the insertions are between individual items.
Given that each list is a bit-list, the only possible results of adding
neighbours are 0, 1 and 2. The last occurs only when both inputs are
1, or equivalently compare with 2 is true, and so in the present context
v is equivalent to * with bits, that is *. (logical and). Here is confir-
mation :

 v/"1 t
0 0 0 0 0 0 0 1

As an aside (and asides can be very valuable in language learning)
suppose now that a second thought was to change v=.2&=@+ to
w=.2&(=@+). Only monadic verbs may appear to the left of @, and
so = must now be self-classify, which returns the value 1 for all scalars.
The next question is what does 2& mean? The definition of bond with
a noun is

 x m&v y ↔ m&v^:x y

�144

so x 2&(=@+)y means 2&(=@+)^:x(y) in the present case. In
words, the left argument is a repeat factor, so in the case of bits the
verb =@+ is repeated either 0 or 1 times. If it is 0 the result is simply
the right argument, if it is 1, the result is 1 by virtue of self-classify. The
2 in the bond is irrelevant, and could have been any number, real or
complex. Put all this together and dyadic w is equivalent to ‘or’ :

 0 w 1
1

Or is it? There is a snag, namely that the rank of the result of self-clas-
sify is a table comparing an object with its nub, and so has rank at least
2, so unlike v/"1 t, w/"1 t is not a list of simple binary scalars :

 (0 w 0),(0 w 1),(1 w 0),(1 w 1)
0
1
1
1
 $w/"1 t
8 1 1 1 1

The 8 above is easy to explain, but why four 1s when each item of t is
a 3-list? The answer is that each insertion (two in the case of t) gen-
erates a 1 by 1 table, as is confirmed by

 $w/"1 b 4
16 1 1 1 1 1 1

To return to the correct route, or call it perhaps the clear-thinking
path, the experience of the exploration of wrong avenues suggests
separating out the list summation process

 s=.= +/"1 NB. 1 if x = list sums of y, else 0
 3 s i.2 3 NB. sum two lists, return 1 if eq to 3
1 0

The right argument in the context of combinations is b y and so the
list which identifies the relevant binary lists is the hook (s b)y .

Hence

 d=.(s b) # b@] NB. binary representation of x-combs

delivers the bit strings which corresponds to the required combina-
tions :

 2 d 3

�145

0 1 1
1 0 1
1 1 0

and a final tally using bits selects the relevant lists of indices

 2 c 3
1 2
0 2
0 1

Here is the final (and correct!) stream of thought which led to this ap-
proach to the problem :

 b=.#:@i.@(2&^) NB. i.2^y as binary numbers
 s=.= +/"1 NB. 1 if x=list sums of y, else 0
 d=.(s b) # b@] NB. binary representation of x-combs
 c=.d # i.@] NB. convert binary to indices

But to return to the beginning, the primary object of this article was
not the final algorithm itself, but rather reflection on the journey to get
there, and on the value of following up wrong paths taken on the way.
If you have read this article, you will almost assent to the propositions
that APL and J are labour-saving devices for thinkers. But more sub-
tly :

(a) are there people for whom both APL and J allow the expression
of thoughts which they were previously able to think but not ex-
press?; and.
(b) are there people for whom both APL and J allow the thinking of
thoughts which they were previously unable to think?

Code Summary
 c=.d # i.@] NB. all x-combinations from i.y
 d=.(s b) # b@] NB. binary representation of
x-combs
 b=.#:@i.@(2&^) NB. i.2^y as binary numbers
 s=.= +/"1 NB. 1 if x=list sums of y, else 0

�146

22. Index Lists, Grade Lists, and some simple
joins

Principal Topics : { (from) {. (take) , (append) ,. (stitch) ,: (laminate) ; (link) /: (grade
up) # (tally, copy) >: (increment) “: (rank conjunction) “: (format) >. (larger of)
merging lists, row and column headings, row and column proportions

Every time a list is created, several other lists are automatically creat-
ed whether the user realises it or not. The most obvious is the index-
list i.@# . Next are the grade up and grade down lists which are per-
mutations of the index-list which give the indices necessary to arrange
the original list in either ascending or descending order. Go one step
further and obtain the index-list of the result of appending two lists,
and you have the basis for merging lists as the next section shows.

Merging lists with alternate items

1 2 3 4 merged with 5 6 is to become 1 5 2 6 3 4. This illustrates well
the concept of fork.

 malt=.mselect { ,

that is start by joining the two lists as they stand (1 2 3 4 5 6), and then
find the right selection list in order to put the items of the joined list in
the required order. A moment’s thought shows that the required se-
lection list is going to be 0 0 1 1 2 2 …

Every list has an index list given by

 ilist=.i.@#
 ilist 'abcde'
0 1 2 3 4

Joining the index lists of the lists to be merged is a first step along the
road

 ijoin=.,& ilist
 1 2 3 ijoin 4 5
0 1 2 0 1

The positions of the items in this list in ascending order are provided
by grade up, so

 mselect=./:@ijoin
 1 2 3 mselect 4 5
0 3 1 4 2

�147

and so finally

 1 2 3 4 malt 5 6
1 5 2 6 3 4

Other merge patterns are now easy to improvise, for example if two
from the left are to be taken for every one from the right adjust two of
the verbs

 ijoin21=.dyad : '(2#ilist x),(ilist y)'
 mselect21=./:@ijoin21
 malt21=.dyad : '(x mselect21 y){ (2#x),y'

 1 2 3 malt21 7 8
1 1 7 2 2 8 3 3

The remaining sections deal with joining lists to tables.

Row and Column Headings

Readers will be familiar with automatically adjusted headings gener-
ated in Excel and other spreadsheets. The algorithms for doing this
can be conveniently analysed in J, and illustrate when it is appropriate
to join and when to stitch when working with lists of lists. Start with
some random data, a list or row headings and a list of column head-
ings

]a=.?3 4$100
90 47 58 29
22 32 55 5
55 73 58 50
 rh=.'London';'Paris';'Dublin'
 ch=.'North';'South';'East';'West'

The items in a can be boxed in a neat turn of phrase :

 <&>a NB. otherwise <each a
┌──┬──┬──┬──┐
│90│47│58│29│
├──┼──┼──┼──┤
│22│32│55│5 │
├──┼──┼──┼──┤
│55│73│58│50│
└──┴──┴──┴──┘

However to merge column headings with the data it is necessary to
do some counting of character spaces as well as determining how
many decimal places are to be displayed in the data. Assume a field

�148

width of 6 and 1 decimal place, and column headers can be dealt with
by

]b=.<every 6j1":each a
┌──────┬──────┬──────┬──────┐
│ 90.0│ 47.0│ 58.0│ 29.0│
├──────┼──────┼──────┼──────┤
│ 22.0│ 32.0│ 55.0│ 5.0│
├──────┼──────┼──────┼──────┤
│ 55.0│ 73.0│ 58.0│ 50.0│
└──────┴──────┴──────┴──────┘

 Ch=._6{.each ch
 Ch,b NB. Column headers are merged
┌──────┬──────┬──────┬──────┐
│ North│ South│ East│ West│
├──────┼──────┼──────┼──────┤
│ 90.0│ 47.0│ 58.0│ 29.0│
├──────┼──────┼──────┼──────┤
│ 22.0│ 32.0│ 55.0│ 5.0│
├──────┼──────┼──────┼──────┤
│ 55.0│ 73.0│ 58.0│ 50.0│
└──────┴──────┴──────┴──────┘

The row headers also require some enhancement to deal with the
space in the North-west corner :

 Rh=.' ';rh
 Rh,.Ch,b NB. Row headers are stitched (,.)
┌──────┬──────┬──────┬──────┬──────┐
│ │ North│ South│ East│ West│
├──────┼──────┼──────┼──────┼──────┤
│London│ 90.0│ 47.0│ 58.0│ 29.0│
├──────┼──────┼──────┼──────┼──────┤
│Paris │ 22.0│ 32.0│ 55.0│ 5.0│
├──────┼──────┼──────┼──────┼──────┤
│Dublin│ 55.0│ 73.0│ 58.0│ 50.0│
└──────┴──────┴──────┴──────┴──────┘

Mission accomplished! A generalization of this process is to compute
the maximum width required for a single column header (assuming
that this will be no greater than the required header width),
allowing for a space (>:), and use this to determine the file width in
the data,

 eqlise=.monad : '->:>./>#every y'
 Ch=.(eqlise ch){.every ch
 b=.<&>((-eqlise ch)j.1)":each a

Rh,.Ch,b then gives the same result as above.

�149

Some variations might be to eliminate the vertical grid lines within
the data :

 Rh,.<"1(,>Ch),6j1":a
┌──────┬────────────────────────┐
│ │ North South East West│
├──────┼────────────────────────┤
│London│ 90.0 47.0 58.0 29.0│
├──────┼────────────────────────┤
│Paris │ 22.0 32.0 55.0 5.0│
├──────┼────────────────────────┤
│Dublin│ 55.0 73.0 58.0 50.0│
└──────┴────────────────────────┘

Alternatively for a display without grid lines

 (>Rh),.(,>Ch),6j1":a
 North South East West
London 90.0 47.0 58.0 29.0
Paris 22.0 32.0 55.0 5.0
Dublin 55.0 73.0 58.0 50.0

In summary to decorate a basic table a with grids and row and col-
umn headers requires equalisation for the column headers and aug-
mentation for the row headers leading to a description is Rh,.Ch,b .

Row and Column Totals

Appending row and column totals to a table :

 a=.2 3$1 7 5 5 2 0
 colsum=., +/
 rowsum=.,. +/"1
 colsum a
1 7 4
5 2 0
6 9 4
 rowsum a
1 7 4 12
5 2 0 7
 totsum a
1 7 4 12
5 2 0 7
6 9 4 19

To dress this with nice grid lines, proceed as follows :

 f=.5j1&": NB. decide width and dec pl
 Rs=.f,.+/"1 a NB. formatted rows
 Cs=.f+/a NB. formatted columns
 Ts=.f+/,a NB. formatted total
 ((<f a),.<Rs),:<every Cs;Ts
┌───────────────┬─────┐

�150

│ 1.0 7.0 5.0│ 13.0│
│ 5.0 2.0 0.0│ 7.0│
├───────────────┼─────┤
│ 6.0 9.0 5.0│ 20.0│
└───────────────┴─────┘

all of which can be brought together in a user-defined verb :

 ttable=.dyad :0
f=.x&": NB. x is (width)j(dec places)
Rs=.f,.+/"1 y NB. formatted rows
Cs=.f+/y NB. formatted columns
Ts=.f+/,y NB. formatted total
((<f y),.<Rs),:<every Cs;Ts
)
 5j1 ttable a
┌───────────────┬─────┐
│ 1.0 7.0 5.0│ 13.0│
│ 5.0 2.0 0.0│ 7.0│
├───────────────┼─────┤
│ 6.0 9.0 5.0│ 20.0│
└───────────────┴─────┘

If row and column proportions are wanted :

 colpro=.%"1 +/
 rowpro=.% +/"1
 colpro a
0.166667 0.777778 1
0.833333 0.222222 0
 rowpro a

0.0833333 0.583333 0.333333
 0.714286 0.285714 0

which might be clearer in rational (that is arb) notation :

 fr=.'r1' ,~ ": NB. convert to arb notation
 b=.".fr each a
 colpro b
1r6 7r9 1
5r6 2r9 0
 rowpro b
1r12 7r12 1r3
 5r7 2r7 0

Code Summary
 malt=.mselect { , NB. merge
alternate
 mselect=./:@ijoin
 ijoin=.,& ilist
 ilist=.i.@#
 malt21=.dyad : '(x mselect21 y){ (2#x),y' NB. 2/1 merge
 mselect21=./:@ijoin21

�151

 ijoin21=.dyad : '(2#ilist x),(ilist y)'
 Adding row and column headings
 Data:
 a=.?3 4$100 NB. table of random values
 rh=.'London';'Paris';'Dublin' NB. row headings
 ch=.'North';'South';'East';'West' NB. column headings
Adjustments to data
 eqlise=.monad : '->:>./>#every y' NB. equalise column widths
 Ch=.(eqlise ch){.each ch
 b=.<&>((-eqlise ch)j.1)":each a NB. generalised b
 Rh=.' ';rh NB. modified row headers
 Rh,.Ch,b NB. row & col headers added to a

Alternative forms of display
 Rh,.<"1(,>Ch),6j1":a NB. no vertical grid lines
 (>Rh),.(,>Ch),6j1":a NB. no grid lines
Adding row and column totals
 ttable=.dyad :0 NB.table with row & col totals
f=.x&": NB. x is (width)j(dec places)
Rs=.f,.+/"1 y NB. formatted rows
Cs=.f+/y NB. formatted columns
Ts=.f+/,y NB. formatted total
((<f y),.<Rs),:<every Cs;Ts
)
Row and column proportions
 colpro=.%"1 +/ NB. column proportions
 rowpro=.% +/"1 NB. row proportions
 fr=.'r1' ,~ ": NB. convert to arb notation

�152

23. Some Numerical Problems Analysed in J
Principal Topics: | (magnitude, residue) |. (reverse, rotate) D. (derivative) }.
(head,take)] (right) ^: (power conjunction) _ (infinity) { (from) {: (tail) }. (be-
head) -: (halve) #. (base) >: (increment) inner product, recursion

In this article it is assumed that the reader has at least a basic interest
in or knowledge of elementary numerical analysis, and in particular
of the three requirements of linear interpolation, root-finding and
numerical integration.

Linear Interpolation
Suppose that a curve is known to go through the points (x0, y0) and
(x1, y1). The point in which the straight line connecting these points
cuts the x-axis is (k, 0) where
k=(x0y1 – x1y0)/ (y1 – y0). This technique is the basis of the simplest
for of root-finding. In the verb lint the left argument is x0,x1 ; right
argument is y0,y1
 y

 3
 (3,2)

 (k,0)
 0 x
 3
 -1 (1,-1)

 lint=. dyad : '((|.x)-/ .*y)%-/y'
 1 3 lint _1 2
1.66667

The two points involved do not necessarily have to be on the same
side of the x axis for linear interpolation, but this is a necessary re-
quirement for root finding.

Root-finding : Newton’s Method
Three functions will be used as as test cases throughout the rest of this
article. These are

 f1=.#.&1 _1 _2 NB. polynomial x2-x-1
 f2=.2&o.-(*^) NB. cos x – xex
 f3=.2&(-^&3) NB. 2 – x3

�153

Sometimes they will appear as an left argument, in other cases they
will be pre-assigned to the variable fn . First Newton’s iterative
formula = for which the right argument is the initial guess.

Newton is an adverb qualifying the function whose root is to be found:

 Newton=.adverb : ']-x%x D.1'(^:_)("0)
 f1 Newton 1
2
 f2 Newton 1
0.517757
 f3 Newton 1
1.25992

Root-finding : Secant Method

This requires two initial guesses between which the root is to be
found. The result is the two most recent approximations. Like New-
ton, it is an adverb qualifying a function. Since two points are needed
to define a secant as opposed to one for a tangent, the secant adverb
requires two start values, and at every step delivers a further two val-
ues to kick off the next approximation. This means that the infinity
option with the power conjunction is not available, instead the number
of iterations is given explicitly as a left argument.

 sec=.adverb : '}.@],] lint (x every@])' (^:[)
 7 f1 sec 0.5 1
1.99963 2
 4 f2 sec 0.5 1
0.517767 0.517757
 6 f3 sec 0.5 1
1.25991 1.25992

To clear up the untidiness of receiving two result values when only
one is really wanted, here is a short iteration verb which stops when
things get sufficiently close :

 sec1=.adverb : '}.@],] lint fn every@]'
 secant=.dyad : 0
t=.fn sec1 y
while.(x<|t-r=.fn sec1 t)do.
 t=.r end. {.r
)
 fn=.f1
 0.00001 secant 0.5 1
2
 fn=.f3
 0.00001 secant 0.5 1
1.25992

�154

Root-finding : Regula Falsi Method

This is a variation of the secant method, sometimes called the Method
of False Position, in which the end points at each step are reordered to
ensure that the function values at the next iteration are of opposite
sign. The left argument is the precision at which iteration is to stop.

 regf=.dyad :0
yi=.fn i=.y lint z=.fn every y
if. +./x>|i-y do.r=.i return. end.
if. yi=&*1{z do.r=.x regf(0{y),i
else.r=.x regf i,1{y end.
)
 fn=.f1
 0.00001 regf 0.5 1
1.99999
 fn=.f2
 0.00001 regf 0.5 1
0.517755
 fn=.f3
 0.00001 regf 0.5 1
1.25992

Root-finding : Illinois Method

This is a variation adaptation of the previous method which was de-
scribed in Vector 12.2 pp. 87-94 and Vector 12.4 pp. 98-106. It compen-
sates for a curve turning more steeply on one side of an interval by
halving the relevant ordinate. A second iteration step is inserted into
regf :

 illi=.dyad :0
yi=.fn i=.y lint z=.fn every y
if. +./x>|i-y do.r=.i return. end.
if. yi=&*0{z do.
 yi=.fn i=.y lint z=.1 0.5*z
else.yi=.fn i=.y lint z=.0.5 1*z end.
if. yi=&*1{z do.r=.x illi(0{y),i
else.r=.x illi i,1{y end.
)
 fn=.f1
 0.00001 illi 0.5 1
_0.999971
 fn=.f2
 0.00001 illi 0.5 1
0.517755
 fn=.f3
 0.00001 illi 0.5 1
1.25988

There is no particular magic about the 0.5, and other fractions could
be experimented with. The broad objective of such variations of the
Secant Method is either to improve convergence for ‘difficult’ func-

�155

tions, or sometimes to achieve a result where simpler methods fail.
There is no universal best root finding function, and the choice of
method in any particular case belongs to the realm of the Numerical
Analyst’s art.

Integration : Simpson’s Method

The following methods require the function to be assigned to fn in
advance of the call to the verb. The right argument is the range of in-
tegration. Simpson’s method is the basic way of doing numerical in-
tegration when analytic methods fail. The left argument is the num-
ber of intervals into which the range must be divided, and must be an
even number. The greater the number the greater is the accuracy of
the approximation to the integral.

 Simpson=.dyad :0
h=.-y-/ .*%x
(h*+/(1,((x-1)$4 2),1)*fn each({.y)+h*i.x+1)%3
)
 fn=.f2
 2 Simpson 0 0.5
0.303737
 4 Simpson 0 0.5
0.303783
 fn=.f1
 4 Simpson 0 0.5
_1.08333
 fn=.f3
 4 Simpson 0 0.5
0.984375

Integration : Adaptive Method

This is a development of the Simpson method which subdivides the
range of integration in two at each step, and carries on applying
Simpson integration recursively in each half until the required level of
approximation specified in the left argument is attained.

 adapt=.dyad :0
r=.4 Simpson y
if.x>|r- 2 Simpson y do. return.
else.m=.0 1|.each y,each-:+/y
r=.+/(x adapt {.&>m), x adapt {:&>m end.
)
 fn=.f3
 0.00001 adapt 0 0.5
0.984375
 fn=.f1
 0.00001 adapt 0 0.5
_1.08333
 fn=.f2

�156

 0.00001 adapt 0 0.5
0.303786

Integration : Romberg’s Method

The next variation is the Romberg method which uses series expan-
sions for the error terms in Simpson approximation and applies cor-
rections to progressively more refined Simpson estimates. The
process is too complicated to describe in succinct comments, but can
be found in most elementary texts on Numerical Analysis.

 romb=.dyad :0
r=.>(2^1+i.x)Simpson every<y
while.1<#r do.
 r=.}.r+(_1+2^4*2+x-#r)%~r-_1|.r end.
)
 Romberg=.dyad :0
t=.(i=.1)romb y
while.(x<|t-r=.(i=.>:i)romb y) do.t=.r end.
)
 fn=.f2
 0.00001 Romberg 0 0.5
0.303783
 fn=.f1
 0.00001 Romberg 0 0.5
_1.08333
 fn=.f3
 0.00001 Romberg 0 0.5
0.984375

These few verbs and adverbs make root-finding and integration both
practical and self-describing, and thereby give some insight into the
routines offered within the more sophisticated mathematical pack-
ages.

Code Summary

Linear Interpolation
 lint=. dyad : '((|.x)-/ .*y)%-/y'

The remaining verbs require fn to be redefined as functions such
as
 f1=.#.&1 _1 _2 NB. polynomial x2-x-1 NB. test case 1
 f2=.2&o.-(*^) NB. cos x – xex NB. test case 2
 f3=.2&(-^&3) NB. 2 – x3 NB. test case 3

Root-finding
 Newton=.adverb : ']-x%x D.1'(^:_)("0)

 secant=.dyad :0 NB. secant method

�157

t=.fn sec1 y
while.(x<|t-r=.fn sec1 t)do.
 t=.r end. {.r
)
 sec1=.adverb : '}.@],] lint fn every@]'

 regf=.dyad :0 NB. regula falsi
yi=.fn i=.y lint z=.fn every y
if. +./x>|i-y do.r=.i return. end.
if. yi=&*1{z do.r=.x regf(0{y),i
else.r=.x regf i,1{y end.
)
 illi=.dyad :0 NB. Illinois method
yi=.fn i=.y lint z=.fn every y
if. +./x>|i-y do.r=.i return. end.
if. yi=&*0{z do.
 yi=.fn i=.y lint z=.1 0.5*z
else.yi=.fn i=.y lint z=.0.5 1*z end.
if. yi=&*1{z do.r=.x illi(0{y),i
else.r=.x illi i,1{y end.
)

Integration
 Simpson=.dyad :0
h=.-y-/ .*%x
(h*+/(1,((x-1)$4 2),1)*fn every({.y)+h*i.x+1)%3
)
 adapt=.dyad :0
r=.4 Simpson y
if.x>|r- 2 Simpson y do. return.
else.m=.0 1|.each y,each-:+/y
r=.+/(x adapt {.&>m), x adapt {:&>m end.
)
 Romberg=.dyad :0 NB. Romberg method
t=.(i=.1)romb y
while.(x<|t-r=.(i=.>:i)romb y) do.t=.r end.
)
 romb=.dyad :0
r=.>(2^1+i.x)Simpson every<y
while.1<#r do.
 r=.}.r+(_1+2^4*2+x-#r)%~r-_1|.r end.
)

�158

24. Here we go round… and round and
round…

Principal Topics : gerund, Balanced rounding

Do you feel mildly irritated when a report says something like “the
figures may not add up to exactly 100 because of rounding”? I do.
For one thing it would probably be just as easy to make the figures
add up as to make the excuse, and in any case surely the whole es-
sence of rounding is to make figures tally. You have probably guessed
the next bit is going to be “it’s easy in J”, and yes, you are right -
moreover it provides a nice illustration of the development of a sim-
ple, but not trivially simple, J verb. So let’s begin by breaking down
the process of rounding.

Consider the problem of rounding a value to a given number, say n, of
decimal places. The simplest approach involves a three stage process.
In the first stage the number is raised by moving the decimal point n
positions to the right, the second stage consists of swinging the result-
ing up or down to the nearest integer according to whether the frac-
tional part of the resulting number is above or below 0.5, and the third
stage reverses the first stage, that is it lowers the numbers by moving
them n positions to the left. “Moving the decimal point” is in turn a
process which, in more exact terms, consists of multiplying by 10 to
the power n, with positive n meaning move to the right and negative
n meaning move to the left. These decimal point movements can be
summarised as

 pow=.10&^ NB. 10 to the power
 raise=.(*pow)~ NB. 1 raise 2.57 is 25.7
 lower=.(%pow)~ NB. 1 lower 25.7 is 2.57

Next let’s sharpen the swinging process. Again this is a sequence of
two simpler processes, the first consisting of adding 0.5, and the sec-
ond taking the floor:

 swingu=.<.@+&0.5 NB. move to nearest integer
 swingu 4.4 5.6 2.5
4 6 3

Notice that 2.5 goes up to 3 - more of that later. At first sight the
symmetry of the three stage process - raise, swing, lower - might
suggest that these three verbs composed as a fork would be appropri-
ate. However maturer consideration shows that this is not the case,
since the essential operation of a fork can be summarised informally

�159

as : first execute the left and right prongs concurrently, then execute
the middle prong on the transformed data, whereas in this case the
lowering can only take place after the other two processes have com-
pleted, and so raise and lower are not concurrent.

There is in fact a fork present in the rounding process, but it the lower
sub-process which forms its central prong, the other prongs consisting
of (1) the raising and swinging sub-process in sequence, and (2) the re-
extraction of n, the number of decimal places which was “consumed”
in the raising sub-process.

This analysis leads to the following development of a rounding algo-
rithm :

 rnd=.[lower swingu@raise NB. syntax is 1 rnd 2.57

The reason for the ‘u’ in swingu is that swinging possesses a degree
of asymmetry in that a number with a fractional part which is exactly
equal to 0.5 is rounded up. The ‘mirror image’ verb

 swingd=.<.@+&0.5 NB. move to nearest integer, 0.5
goes down
 swingd 4.4 5.6 2.5
4 6 2

has the opposite effect. For most practical purposes the two can be
used interchangeably, that is rnd is equivalent to

 rndd=.[lower swingd@raise NB. syntax is 1 rndd 2.57

In the days before computers, the practice was sometimes followed of
rounding exact halves to the nearest even integer in the hope that any
errors so arising might roughly balance out. A ‘neutral’ swing verb
rndn incorporating this can be constructed using a gerund which is
J’s mechanism for the case statement.

 isodd=.2&| NB. 1 for an odd integer, 0 for even
 getfrac=.1&| NB. Get the fractional part of a
number
 swing=.swingd`swingu @.(isodd&(-getfrac))

If swing is used the (isodd&(-getfrac)) decision has to be made
separately for each value in a vector and so the rndn must be written

 rndn=.[lower swing every@raise NB. syntax is 1
rndn 2.57

�160

Now think about how to extend this basic rounding algorithm to do
balanced rounding, that is the process of making the rounded values
of a vector tally exactly to their rounded total. This problem happens
typically with percentages, for example the three values in

 a=.36.24 29.73 34.03
 +/a
100

total exactly 100, but the individual values round to 36.2 29.7 and 34.0
which total 99.9 .

 1 rnd a
36.2 29.7 34

Begin by considering what adjustment might sensibly be made in the
absence of a calculating device. This would probably be something
like: following basic rounding, look for the value whose fractional
part after raising comes closest to 0.5 (that is the 36.24) and round
that one up. If the deficit between the rounded total and 100 had been
0.2 say, the two values nearest to 0.5 would be rounded up, and so on.
Since this procedure happens strictly in the swinging stage, the struc-
ture of an algorithm for balanced rounding is going to differ only in
one of the verbs already developed for rounding, so write it as

 brnd=.[lower balance@raise NB. Balanced round

The problem is then reduced to that of sharpening what is meant by
the verb ‘balance’. Take swingu as a starting point. Instead of
adding 0.5 indiscriminately to all the floors in preparation for lower-
ing, it would be better if all raised values were initially truncated (that
is floored), and then a value of 1 added to as many as are necessary to
fill the gap between the sum of the raised values (1000) and the sum
of their floors (999). Call this gap the rounding gap which, translating
the previous sentence into J, is (+/) - +/@<.

Clearly the order of candidature for adding a 1 is that of the size of the
fractional part and so a verb must be constructed which determines
the ranking of the fractional parts.

Define

 getfrac=.1&| NB. get fractional part
 rkd=:/:@\: NB. rank a vector downwards
 rkd 4 2 7 1 NB. eg. 7=max and so has rank 0
1 2 0 3

�161

and compose these two verbs, which is incidentally a nice little illus-
tration of the use of the conjunction bond (&)

 (rkd&frac)1 raise a
1 0 2

This says that, in the present example, the biggest fractional part is
associated with the first term. Since the rounding gap is 1, this is the
only item to which 1 will be added at the swing stage, and so the re-
sult of the comparison rkd&getfrac < calcrgap will supply
exactly the right mix of 1s and 0s to add prior to lowering.

For a the rounded total is an integer and so too is the rounding gap.
When this is not the case as with

 b
1.631 0.478 1.939 4.236
 2 raise b
163.1 47.8 193.9 423.6
 +/2 raise b
828.4
 +/<.2 raise b
826

where the rounding gap is 2.4, only two of the items require 1 to be
added, whereas if the rounding gap had been 2.6 then the round of
the sum would be 8.29 and three of the items would require 1. Thus
the rounding gap itself should be swung in order that the balance
property be fulfilled that the sum of the rounded values should exact-
ly equal the round of the sum of the original values. This leads to the
definition of the verb

 calcrgap=.swingu@(+/) - +/@<. NB. Calculate rounding gap

and the verb balance completes the operation of adding 1 to qualifying items be-
fore lowering

 balance=:(rkd&getfrac < calcrgap) + <. NB. adjusted floor

All the elements of brnd are now in place and so its definition is
complete.

 2 brnd b
1.63 0.48 1.94 4.23
 (+/b),(+/2 rnd b),+/2 brnd b
8.284 8.29 8.28

Finally here is everything brought together to bring this well-rounded
article (pun intended!) to a close :

�162

Code Summary
rnd=.[lower swingu@raise NB. y to x dec.pl, 0.5
rnds up
 raise=.(*pow)~ NB. multiply y by 10^x
 pow=.10&^ NB. 10 to the power y
 swingu=.<.@+&0.5 NB. adjust y to nrst integer
 lower=.(%pow)~ NB. divide y by 10^x

rndd=.[lower swingd@raise NB. y to x dpl., 0.5 rnds down
 swingd=.>.@-&0.5 NB. move to nearest integer

rndn=.[lower swing every@raise NB. 0.5 rnds to nearest even
 swing=.swingd`swingu @.(isodd&(-getfrac)) NB. gerund
 isodd=.2&| NB. 1 for an odd integer, 0
for even

brnd=.[lower balance@raise NB. balanced rounding, OK
 balance=.(rkd&getfrac<calcrgap)+<. NB. y to nrst integer
 calcrgap=.swingu@((+/)- +/@<.) NB. calculate rounding gap
 getfrac=.1&| NB. get fractional part of y
 rkd=./:@\: NB. rank y downwards

�163

25. Two for the Price of One
Principal Topics : ^: (power conjunction) \ (infix adverb) {: (take) upper triangu-
lar matrices, Stern-Brocot trees, Farey series, closest rational approximations

J has two ways of representing pairs of numbers as a single atomic
entity, viz. ajb and arb. It is customary to associate ajb with
complex numbers, and indeed E #13 (“If you think J is complex try j”)
deals with the associated arithmetic in some detail. However there
are other situations where it is convenient to deal with number pairs
as single entities; E #14 “j complex? you bet!”) illustrated how the
ajb representation could be used in the context of betting and odds.
Representing all rational numbers systematically is another such con-
text in which, rather surprisingly, the ajb representation is more
helpful than the arb one. The starting point is the so-called Stern-
Brocot tree which is described below in a combination of words and J,
with emphasis on those J features which are particularly useful. On
first sight this may seem a rather ‘pure’ mathematical concept, but as
the article goes on to show it has a practical usefulness in finding ra-
tional approximations to irrational numbers.

The Stern-Brocot Tree

The totality of rational fractions can be systematically generated by a
binary tree named after the two mathematicians (German and French
respectively) who first proposed it. Starting with the fractions 0j1
and 1j0, at every step a new fraction is inserted between every pair
of fractions currently in the list, the new fraction consisting of the
sums of the neighbouring numerators and denominators.

 x=.0j1 1j0
 step=.dyad : 'x,(x+y)'

Since items are to be processed in overlapping pairs, use the dyadic
infix adverb (\) with step/ as its verb. The final take ({:) is because
the last item in the argument must be carried forward :

 SB=.monad : '(;2 step/\y),{:y'
 SB x
0j1 1j1 1

The power conjunction (^:) is used to generate increasingly long
Stern-Brocot tree lists :

 SB^:4 x

�164

0j1 1j4 1j3 2j5 1j2 3j5 2j3 3j4 1j1 4j3 3j2 5j3 2j1 5j2 3j1 4j1
1

To see the sense in which this is a binary tree display the successive
powers of SB adding explicitly the branches which connect upwards
from the final line :

 0j1 1j0

 1j1

 1j2 2j1

 1j3 2j3 3j2 3j1
3j1

 1j4 2j5 3j5 3j4 4j3 5j3 5j2 4j1

Farey Series

The Farey series is a way of systematically representing all fractions.
These appear as the left hand half of Stern-Brocot trees. Use the auxil-
iary verb ut (upper triangular)

 ut=.<:/~@i.
 ut 5
1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

 t=.1 2 3 4 5
 f=.t,each/t NB. square of all possible pairs

j./ converts each 2-list into the corresponding ajb form. ut con-
fines items to regular fractions :

 |:(ut 5)*each j./each f
┌───┬───┬───┬───┬───┐
│1j1│0 │0 │0 │0 │
├───┼───┼───┼───┼───┤
│1j2│2j2│0 │0 │0 │
├───┼───┼───┼───┼───┤
│1j3│2j3│3j3│0 │0 │
├───┼───┼───┼───┼───┤
│1j4│2j4│3j4│4j4│0 │
├───┼───┼───┼───┼───┤
│1j5│2j5│3j5│4j5│5j5│

�165

└───┴───┴───┴───┴───┘

This representation is not a tree form on account of the multiple rep-
resentations of e.g. 1j2 as 2j4, 3j6, etc. Another way of presenting
the Farey series uses the arb representation, but this time cancella-
tion to lowest rational form occurs :

 |:(ut 5)*x:t%/t=.>:i.5
 1 0 0 0 0
1r2 1 0 0 0
1r3 2r3 1 0 0
1r4 1r2 3r4 1 0
1r5 2r5 3r5 4r5 1

Finding closest approximations

A practical use of Stern-Brocot trees is to find close rational approxi-
mations to irrational numbers. First the value of a fraction ajb is giv-
en by

 value=.(%/ @ +.)every
 value 2j3
0.666667

using the fact that +. transforms ajb into the 2-list a b. The values in
an Stern-Brocot tree list which bound a given value x below and
above are then

 clappd=.dyad :'(_1 0++/x>y){y=.value y'
 z=.SB^:(4)0j1 1j0
 0.35 clapp z
0.3333 0.4

It is not necessary to use 0j1 and 1j0 as start values. For example
pi is approximated using the power 10 list by

 z=.SB^:(10)3j1 22j7
 (o.1) clapp z
3.140625 3.141667

A small modification gives the bounding values in fraction form :

 clappf=.dyad :'(_1 0++/x>value y){y'
 z=.SB^:(16)3j1 22j7
 (o.1) clappf z
333j106 355j113

If there is a requirement is for a rational approximation correct within
a given tolerance, construct an iterative verb such as

�166

 approx=.dyad : 0
r=.y NB. initial upper and lower bounds
while.({:x)<<./t=.|({.x)-({.x) clapp r do.
r=.SB r end. NB. do further Stern-Brocot step
(t=<./t)#({.x)clappf r NB. choose closest value of two
)
 (pi,0.00001) approx 3j1 22j7
355j113

Here are rational approximations to e :

 z=.SB^:(16)27j10 28j10
 (^1) clappf z
2528j930 7285j2680

Code Summary
 SB=.monad : '(;2 step/\y),{:y' NB. Stern-Brocot list
 step=.dyad : 'x,(x+y)'
 x=.0j1 1 NB. argument for SB
 f=.t,each/t=.>:i.5
 |:(ut 5)*each j./each f NB. Farey series
 ut=.<:/~@i. NB. upper triangular matrix

The verbs clapp and clappf return closest Stern-Brocot approximation
intervals in decimal and fractional form respectively.

 clapp=.dyad :'(_1 0++/x>y){y=.value y'
 value=.(%/@+.)every
 clappf=.dyad :'(_1 0++/x>value y){y'

 approx=.dyad :0
r=.y NB. initial upper and lower bounds
while.({:x)<<./t=.|({.x)-({.x) clapp r do.
r=.SB r end. NB. do further Stern-Brocot step
(t=<./t)#({.x)clappf r NB. choose closest value of two
)

�167

26. Working in Groups
Principal Topics : “ (rank conjunction) |. (shift), /: (grade up) \: (grade down) |:
(transpose) ` (gerund) ~ (reflex) subgroups, identity, inverse, cyclic groups, anti-
cyclic groups, dihedral group.

Groups in mathematics are a reflection of patterns observed in what
seem to be totally disparate contexts. Given that some of J’s founding
concepts are based in mathematical ideas, it is not too surprising that
the primitive verbs exhibit their own form of group behaviour. To
start with, here is some simple geometry -

Plane transformations

Suppose the character ‘J’ is fitted into a four by four character frame
thus

]J=.4 4 $' * ** * **'
 *
 *
* *
 **

To turn it about its horizontal middle line do

 (X=.|.)J
 **
* *
 *
 *

To turn J about a north-west/south-east axis :

 (Q=.|:)J
 *
 *
 *

The effects of X then Q, and of Q then J are

┌────┬────┐
│ * │*** │
│* │ *│
│* │ *│
│ ***│ * │
└────┴────┘

Use a gerund to generate two more verbs P and Y :

 ((Y=.X&.Q)`(P=.Q&.X))/. J

�168

*
*
* *
 **

*
*
 *

Two things are needed to complete the repertoire needed to form a
group. First a half turn, for which either R or S could be applied twice
(e.g.H=.R^:2), or X and Q can be continued with as atomic items :

 (H=.X&.Q&X)J
 **
* *
*
*
... and secondly a ‘do nothing’ operation I=.[or equivalently I=.] .

There are many alternative ways of defining these eight verbs. For
example, using the rank conjunction, reverse ‘at rank 1’ means ‘at list
level’ so that each member of the stack of four lists is separately re-
versed instead of the stack as a whole, which results in a Y reflection.
The full set of eight transformations are given in the table below with
some of the many possible variants which are increased on account of
the equivalence of & and @ in this context .

 alternative
 form meaning algebra
 I=. [NB.] identity
 H=. X&.Q&X NB. X"1@X half-turn H=YX=XY
 X=. |. NB. refln in Ox X=QS=YH
 Y=. X&.Q NB. X"1 refln in Oy Y=QR=XH
 S=. Q&X NB. X"1@Q rotn π/2 clockwise S=QX=YQ
 R=. X&Q NB. Q@X"1 rotn π/2 a-clockwise R=XQ=QY
 P=. Q&.X NB. X&R rotn in x=y P=XS=YR
 Q=. |: NB. rotn in x=-y Q=YS=XR

The column headed ‘algebra’ contains some equivalences in which the
conjunction & has been elided. A full composition table for the con-
junction & applied to the eight verbs is

�169

 I R H S X P Y Q

I I R H S X P Y Q
R R H S I P Y Q X
H H S I R Y Q X P
S S I R H Q X P Y
X X Q Y P I S H R
P P X Q Y R I S H
Y Y P X Q H R I S
Q Q Y P X S H R I

This is an example of a mathematical group, or more fully a group of
order eight since the body of the table contains nothing other than the
basic eight distinct elements (this property is called closure).

Properties of groups

A group is characterised by the following properties:
 (a) the underlying binary operation is associative, that is a(bc)
= (ab)c where a,b, and c are any elements of the group;
 (b) there is a single identity element, in this case, I, with the
property that Ia = aI=a for all elements a belonging to the group; and
 (c) every element e has a left and right inverse, that is there
are elements e' and e'' with the properties that ee'=e''e=I. If left and
right inverses are equal for all a the group is symmetric and is known
as an Abelian group.
 The body of the operation table given above contains no elements
outside the group, which is often expressed by saying that the group
is ‘closed under the operation’. Specifically the eight transformations
of the plane which transform a square into its own outline are closed
under the operation ‘perform in sequence’, which in J is rendered by
the conjunction atop (@). Also because there are eight elements the
group is said to be of order 8.

Groups and subgroups

Now look for structures in the ways in which group operations com-
bine. To start with, the first four rows and columns in the above table
themselves form a group of order four, which is structurally identical
(isomorphic) to the addition table for addition in arithmetic modulo 4
(that is clock arithmetic applied to a clock with just four numbers).
This table is :

 cyc=.| +/~@i. NB. cyclic group of order y.
 cyc 4
0 1 2 3
1 2 3 0

�170

2 3 0 1
3 0 1 2

which can be transcribed into subsets of the 8 by 8 table by

 (cyc 4)&{ each 'IRHS';'XPYQ'
┌────┬────┐
│IRHS│XPYQ│
│RHSI│PYQX│
│HSIR│YQXP│
│SIRH│QXPY│
└────┴────┘

The first of these is a subgroup of the full table but the second is not a
subgroup because it has no identity element (that is an element with
the property that Ia = aI=a for all elements of the subgroup). The two
bottom quadrants have row shifts which go in the opposite direction
to cyc 4 . A general algorithm for this uses the minus table for i.n in
modulo n arithmetic together with two hooks :

 ac=.|(+-/~@i.) NB. anti-cyclic table of order y
 ac 4
0 3 2 1
1 0 3 2
2 1 0 3
3 2 1 0

(ac 4){'XPYQ' and (ac 4){'IRHS' give the bottom left-hand
and right-hand quadrants respectively of the full table. These two
expressions can be merged as (4+ac 4){'IRHSXPYQ' , and the in-
dices in the string 'IRHSXPYQ' of the cells in the four quadrants are,
in clockwise order, given by(cyc 4), (4+cyc 4), (ac 4)and
(4+cyc 4). These define the non-symmetric group which is known
as the dihedral group of order 4. An adverb based on a hook which
adds the tally of a matrix to itself (recall that tally for a matrix is sim-
ply the number of rows) leads to the following general definition of
dihedral groups :

 a2n=.(+#)@ NB. adverb : adding 2 to the power n
 di=.(cyc,.cyc a2n),((ac a2n),.ac)NB. Dihedral group order n
 di 4
0 1 2 3 4 5 6 7
1 2 3 0 5 6 7 4
2 3 0 1 6 7 4 5
3 0 1 2 7 4 5 6
4 7 6 5 0 3 2 1
5 4 7 6 1 0 3 2
6 5 4 7 2 1 0 3
7 6 5 4 3 2 1 0

and

�171

 (di 4){'IRHSXPYQ'

generates the 8 by 8 composition table given above.

The table of I, H, X and Y rotations only is simply the dihedral
group of order 2 (D2).

 (di 2);(di 2){'IHXY'
┌───────┬────┐
│0 1 2 3│IHXY│
│1 0 3 2│HIYX│
│2 3 0 1│XYIH│
│3 2 1 0│YXHI│
└───────┴────┘

and the set of all possible subgroups is exhibited in the following lat-
tice diagram in which a connecting line indicates that the lower node
is a subgroup of the higher one.

 {I,R,H,S,X,P,Y,Q}
 |

 {I,H,X,Y} {I,R,H,S} {I,H,P,Q}
 | |

 {I,Y} {I,X} {I,H} {I,P} {I,Q}

 |
 {I}

On a two-dimensional plane there are eight shape-preserving trans-
formations of the square, namely four rotations about the centre
through 0,1, 2 and 3 right angles, together with four reflections, two in
the axes joining midpoints of opposite sides, and two in the diagonals.
These geometrical transformations can be demonstrated by perform-
ing J transformations on the matrix i.4 4, for example reflections
about the x axis and about the diagonal x=-y are described by

 (|.m);|:m=.i.4 4
┌───────────┬─────────┐
│12 13 14 15│0 4 8 12│
│ 8 9 10 11│1 5 9 13│
│ 4 5 6 7│2 6 10 14│
│ 0 1 2 3│3 7 11 15│
└───────────┴─────────┘

The full set of eight transformations are given in the table below, in
which the final column gives an algebraic shorthand in which, for ex-

�172

ample, R=QX means the rotation R is equivalent to a reflection X fol-
lowed by a reflection Q.

 alternative meaning algebra
 I NB. identity
 H=. |.@|"1 NB. |."1@|. half-turn H=YX=XY
 X=. |. NB. refl in Ox X=QR=YH
 Y=. |."1 NB. refl in Oy Y=QS=XH
 R=. |:@|. NB. |."1@|: rotn pi%2 clockwise R=QX=YQ
 S=. |.@|: NB. |:@|."1 rotn pi%2 a-clockwise S=XQ=QY
 P=. |.@R NB. |:"1@S rotn in x=y P=XR=YS
 Q=. |: rotn in x=-y Q=YR=XS

general the dihedral group Dn describes the symmetries of an n-sided
regular polygon. For example

 di 3
0 1 2 3 4 5
1 2 0 5 3 4
2 0 1 4 5 3
3 4 5 0 1 2
4 5 3 2 0 1
5 3 4 1 2 0

gives the non-symmetrical group of symmetries of the equilateral tri-
angle. 0 1 and 2 correspond to rotations by 0, π/3 and 2π/3, and 3, 4
and 5 to reflections in the three perpendicular bisectors of the sides.

Groups and grade

Group relationships exists between the grade operations, /: and \: ,
applied to permutation vectors and the symmetries of the square. To
demonstrate here are two verbs with obvious similarities, which con-
vert permutation vectors to matrices and vice versa :

 pm=.=/~ i.@# NB. transforms permn vector to matrix
 pm 1 3 2 0
0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

 pv=.+/ .*~i.@# NB. transforms perm matrix to vector
 pv pm 1 3 2 0
1 3 2 0

The compositions of grade verbs which match the analogous trans-
formations of the permutation matrix can be added to the previous
table in the following way:

�173

 grade verb
 composition alternative
 I NB.
 H=. |.@|"1 NB. \:@\: |.@X
 X=. |. NB. /:@\: |.@H
 Y=. |."1 NB. \:@/: |.
 R=. |:@|. NB. \:@\:@\: /:@|.
 S=. |.@|: NB. \: |.@Q
 P=. |.@R NB. /:@\:@\: \:@|.
 Q=. |: NB. /: |.@S

The binary operation ‘perform in sequence’ is again modelled by the
conjunction atop . Since the grade operations are dyadic, @ may not
be elided, that is if u and v are any of the eight permutation opera-
tions, u@v (= u v y) is not in general equivalent to the hook uv which
equals y u v y .

Code Summary
 cyc=.| +/~@i. NB. cyclic group of order y
 ac=.|(+-/~@i.) NB. anti-cyclic table of order y
 a2n=.(+#)@ NB. adverb : add 2 to the power n
 di=.(cyc,.cyc a2n),((ac a2n),.ac) NB. Dihedral grp order n
 pm=.=/~ i.@# NB. Transforms permn vector to matrix
 pv=.+/ .*~i.@# NB. Transforms perm matrix to vector

�174

27. All but one

Principal Topics : “ (rank conjunction) \. (suffix), |: (transpose), ~ (passive) de-
terminants, minors, cofactors, subtotallng.

A frequent requirement in applied mathematics and statistics is to
evaluate sums and products omitting just one variable or dimension.
The notion of ‘all but one’ can be interpreted in two ways, depending
whether the ‘one’ is to be systematically omitted, or obtained by a
merge with an existing dimension, that is by reduction.

Retaining all but one

As an example of the first case, adding or multiplying ‘all but one’
items in a list progressively can be done by using the hook f-1~f/
which means {f/x}f-1 x, for example :

 i.5
0 1 2 3 4
 (-~+/)i.5 NB. sum 5 items omitting one at a time
10 9 8 7 6
 (%~*/)1+i.5 NB. multiply 5 items omitting one at a time
120 60 40 30 24

This extends readily to objects of higher rank :

]b=.i.3 4
0 1 2 3
4 5 6 7
8 9 10 11
 (-"1~+/)b NB. sums of all rows but one
12 14 16 18
 8 10 12 14
 4 6 8 10
 (-"2~+/"1)b NB. sums of all columns but one
 6 5 4 3
18 17 16 15
30 29 28 27

The rule is that the rank operand for the left verb should be one
greater than that of the right verb.

Generalising ‘retaining all but one’

Another tool which deals with ‘retaining all but one’ is the suffix ad-
verb which eliminates n items from a list in all possible ways :

�175

 (1+\.i.5);(2+\.i.5);(3+\.i.5)
┌───────┬─────┬───┐
│1 2 3 4│2 3 4│3 4│
│0 2 3 4│0 3 4│0 4│
│0 1 3 4│0 1 4│0 1│
│0 1 2 4│0 1 2│ │
│0 1 2 3│ │ │
└───────┴─────┴───┘

In the J line above + is monadic, which for real numbers is a ‘do noth-
ing’ verb, that is the left arguments 1, 2 and 3 are not added to ele-
ments of i.5 but are arguments of the derived verb +\. which indi-
cate how many items are to be dropped progressively working from
the left. The first case with 1 as left argument is thus the ‘all but one’
case.

An application of this is the calculation of minors of a determinant.
Consider the rank 2 object z :

 z
3 6 7
9 3 2
9 7 7
 (1&(+\.))"2 z NB. select ‘all but’ one rows
9 3 2
9 7 7

3 6 7
9 7 7

3 6 7
9 3 2

Now combine the structural verb transpose with the adverb suffix to
switch rows and columns for all but one row at a time :

 transuff=.1&(|:\.)"2
 <"2 transuff z
┌───┬───┬───┐
│9 9│3 9│3 9│
│3 7│6 7│6 3│
│2 7│7 7│7 2│
└───┴───┴───┘

and the result is a list of the transposed planes of (1&(+\.))"2 z.

Do this twice using the power conjunction to generate three boxes
within each of the above boxes; the row/column switch is fortuitously
reversed and the minors of z obtained :

 <"2 transuff^:2 z

�176

┌───┬───┬───┐
│3 2│9 2│9 3│
│7 7│9 7│9 7│
├───┼───┼───┤
│6 7│3 7│3 6│
│7 7│9 7│9 7│
├───┼───┼───┤
│6 7│3 7│3 6│
│3 2│9 2│9 3│
└───┴───┴───┘

Define

 minors=.transuff^:2 NB. minors unboxed
 det=.-/ .* NB. determinant

The determinants of the minors are given by

]dz=.det every <"2 minors z
 7 45 36
_7 _42 _33
_9 _57 _45

This is verified by using the verb det dyadically :

 (det z);dz det |:z
┌─┬──────┐
│3│3 0 0│
│ │0 _3 0│
│ │0 0 3│
└─┴──────┘

It is often convenient to use cofactors, that is the signed determinants
of minors. This requires multiplication by a matching matrix whose
diagonals are alternately +1 and -1. One way of obtaining this matrix
is :

 signs=.monad : '-_1+2*2|+/~i.#y

so that

 cof=.signs * det every @<"2@minors
 cof z
 7 _45 36
 7 _42 33
_9 57 _45

To summarise this section :

 transuff=.1&(|:\.)"2 NB. transpose with suf-
fix

�177

 minors=.transuff^:2 NB. minors unboxed
 det=.-/ .* NB. determinant
 signs=.monad :'-_1+2*2|+/~i.#y.' NB. alternate 1,_1
 cof=.signs * det every@<"2@minors NB. cofactors

Reducing all but one

Rank again is at the heart of the matter, especially as typical experi-
mental data is structured so that dimensions correspond to variables.
However, J inherently structures higher rank data as lists, then lists of
lists, lists of lists of lists and so on, which implies a nesting within di-
mensions which is not usually reflected in the ‘real world’ variables to
which the dimensions correspond. For definiteness use q to demon-
strate :

]q=.i.2 3 4
 0 1 2 3
 4 5 6 7
 8 9 10 11

12 13 14 15
16 17 18 19
20 21 22 23

The standard definition of rank is:

 rk=.#@$ NB. rank

+/ inserts +'s between the list at the topmost level, thereby reducing
rank by one, that is merging planes :

 +/q NB. equivalent to +/””””n q for n>2
12 14 16 18
20 22 24 26
28 30 32 34

Explicit rank conjunctions allows such reduction to take place at any
level in the rank hierarchy :

 (+/"1 q);(+/"2 q) NB. merge cols ; merge rows
┌────────┬───────────┐
│ 6 22 38│12 15 18 21│
│54 70 86│48 51 54 57│
└────────┴───────────┘

�178

Progressive reduction to the level of a rank 1 object is obtained using a
recursive verb :

 sum=.sum@(+/)`] @.(=&1@rk) NB. sum down to rank 1
 sum q
60 66 72 78

The above values are readily verifiable as the column sums of q . To
find other such sums, say row sums, transpose the data so as to bring
the corresponding dimension to the top level. This suggests a gen-
eral verb which takes the list i.n and performs the a set of n possi-
ble shifts necessary to bring each item in turn into the leading position
:

 shifts=.|.each< NB. all distinct shifts of a list
 shifts i.rk q
┌─────┬─────┬─────┐
│0 1 2│1 2 0│2 0 1│
└─────┴─────┴─────┘

If the argument to shifts is a list generated by i., the result is left
arguments to transpose which provide all the restructured forms of q
to which sum can be applied. This in turn is determined by the rank
of the data matrix so define

 targs=.shifts@(i.@rk) NB. arguments for |:
 targs q
┌─────┬─────┬─────┐
│0 1 2│1 2 0│2 0 1│
└─────┴─────┴─────┘

The full set of transpositions to supply all possible sums by dimension
is then

 transposes=.targs |:each < NB. reqd. transposes
 transposes q
┌───────────┬─────┬────────┐
│ 0 1 2 3│ 0 12│ 0 4 8│
│ 4 5 6 7│ 1 13│12 16 20│
│ 8 9 10 11│ 2 14│ │
│ │ 3 15│ 1 5 9│
│12 13 14 15│ │13 17 21│
│16 17 18 19│ 4 16│ │
│20 21 22 23│ 5 17│ 2 6 10│
│ │ 6 18│14 18 22│
│ │ 7 19│ │
│ │ │ 3 7 11│
│ │ 8 20│15 19 23│
│ │ 9 21│ │
│ │10 22│ │

�179

│ │11 23│ │
└───────────┴─────┴────────┘

These values are readily verifiable by summing the columns in the
boxes above :

 sum each@transposes q
┌───────────┬──────┬─────────┐
│60 66 72 78│66 210│60 92 124│
└───────────┴──────┴─────────┘

To give these sums in dimension order, that is so that the $each of
the result matches the shape of q, write

 allsums=.1&|.@(sum each@transposes)
 allsums q
┌──────┬─────────┬───────────┐
│66 210│60 92 124│60 66 72 78│
└──────┴─────────┴───────────┘

To summarise this section :

 rk=.#@$ NB. rank
 shifts=.|.each < NB. all shifts of i.n
 targs=.shifts@(i.@rk) NB. arguments for |:
 transposes=.targs |:each < NB. reqd. transpositions
 allsums=.1&|.@(sum each@transposes)

For comparison, here is a one-liner picked from the J Software forum
some years ago which performs the same function by using the power
conjunction ^: to apply +/ the requisite number of times with trans-
positions required between steps as in the version above :

 mt=.(<@(+/^:(<:@rk)@:|:)"0 _~i.@rk)
 mt q
┌──────┬─────────┬───────────┐
│66 210│60 92 124│60 66 72 78│
└──────┴─────────┴───────────┘

Subtotaling

It can be useful to be able to append such reductions to the original
data as in :

 total=.,+/ NB. append totals for leading dimension
 sub=.3 :0
i=.0 [r=.total y
while.(i<<:rk y)do.r=.total"i r [i=.i+1 end.
)

 sub q

�180

mailto:_~i.@rk

 0 1 2 3 6
 4 5 6 7 22
 8 9 10 11 38
12 15 18 21 66

12 13 14 15 54
16 17 18 19 70
20 21 22 23 86
48 51 54 57 210

12 14 16 18 60
20 22 24 26 92
28 30 32 34 124
60 66 72 78 276

Multi-statement lines using [as a separator as in sub allow some-
thing approaching the succinctness of tacit definition. However the
individual statements are executed from the right since [itself is just
another verb. It is easy to remember that it is [rather than] which is
the separator, since, for example, it is 0 to the left which is assigned to
i in the first line of sub. As far as the J interpreter is concerned it is
really only one line which is executed; multiple lines are essentially
just an orthographic device.

Code Summary
 minors=.transuff^:2 NB. minors unboxed
 transuff=.1&(|:\.)"2 NB. transpose with suffix
 det=.-/ .* NB. determinant
 cof=.signs * det every@<"2@minors NB. cofactors
 signs=.monad :'-_1+2*2|+/~i.#y.' NB. alternate 1,_1

 transposes=.targs |:each < NB. reqd. transpositions
 targs=.shifts@(i.@rk) NB. arguments for |:
 shifts=.|.each < NB. all shifts of i.n
 rk=.#@$ NB. rank

 allsums=.1&|.@(sum each@transposes)
 sum=.sum@(+/)`] @.(=&1@rk) NB. sum down to rank 1

 total=.,+/ NB. append totals for leading dimension
 sub=.3 :0
i=.0 [r=.total y
while.(i<<:rk y)do.r=.total"i r [i=.i+1 end.
)

�181

28. Have you a weight on your mind?
Principal Topics : ? (deal) {: (take) # (copy) I. (interval index) #. (base) random
exponential, random Normal, Box-Muller formula, boundary values, grouping,
rounding, frequency distributions.

Uniform Random numbers

A standard procedure for generate n random numbers in the range
(0,1) with all numbers in that range being equi-probable is

 rnd=.?@#&0
 rnd 5
0.5377 0.06353 0.7059 0.5188 0.8832

Convert a list such as the above to random values in the range [a,b] is
a matter of scaling, conveniently supplied by the base verb #. This
transforms [a,b] into the list [(b-a),a] by

 relist=.(-/,{:)@|. NB. [a,b] -> [(b-a),a]
 run=.dyad : '>(rnd y)#.each<relist x'
 NB. x=range [a,b], y=n
 5 11 run 5
5.544 10.69 5.442 8.004 7.305

Converting a rnd n sequence to a series of uniform random integers
from 1 to 20 say is a simple exercise in multiplying and rounding
down, for example :

 <.20*rnd 5
14 15 14 1 16

Weighted Random numbers

If the uniform, that is equi-probable, requirement is abandoned in
favour of making some integers more probable than others then
weights must applied. These can be specified by a list of values, for
example by specifying m numbers (not necessarily integers) which
define the relative frequencies of the integers in i.m . Weights are
more tractable when they are expressed cumulatively and normalised
to 1, hence

 cumwts=.+/\ % +/ NB. cumulative weights
 cumwts 1 4 3 2
0.1 0.5 0.8 1

The primitive I. (interval index) identifies the appropriate cell into
which each item should be placed :

�182

 rndw=.cumwts@[I. rnd@] NB. weighted random in-
tegers
 1 4 3 2 rndw 10
1 1 2 2 0 3 1 1 3 2

As an aside, the syntactic structure of rndw is a fork with separate
transformations applied to the left and right tines.

Interestingly, reversing the arguments of rndw is equivalent to trans-
posing the above binary table, and the result is the cumulative fre-
quency distribution of the set of random drawings :

 cdrndw=.rnd@] I. cumwts@[NB. cumulative distn of above
 1 4 3 2 cdrndw 10
1 5 8 10

which happens in the above drawing to match exactly the pattern of
cumulated weights. A more general drawing might be

 1 4 3 2 cdrndw 100
10 52 84 100

still visibly confirming that the weights have been correctly applied.

Random Exponential values

Drawings from a random exponential distribution with a given mean
are a simple extension of rnd :

 rne=.-@* ^.@rnd NB. rand neg exp. x=mean, y=n
 5 rne 8
0.9258 16.82 14.64 3.177 1.994 24.33 4.793 13.53
 (mean=.+/%#)5 rne 10
5.985

Such values are commonly used in simulations where, if the probabili-
ty of an arrival in a time interval is proportional to the length of the
interval and successive arrivals are independent of each other, then
statistically the negative exponential distribution is that followed by
the gaps between successive arrivals.

Random Normal values

�183

Now that rne and rno are available, random values from the stan-
dard Normal distribution are obtainable using a pseudo-random
technique known as the Box-Muller formula. This involves two sep-
arate drawings of random numbers using rnd, one to furnish rne
and the other used directly in the right hand multiplicand :

 rno=.3 : '(%:2 rne y)*2 o.(rnd y)*o.2'
NB. random Normal(0,1)
 rno 8
_0.6224 0.0922 0.9571 _0.3281 0.02999 1.28 _0.1247 0.02563

As an aside, 1 o. (sin) replacing 2 o. (cos) in the right hand multi-
plicand also delivers random Normal values.

A random drawing from a Normal distribution with a given mean
and standard deviation is

 rnorm=.4 : '(rno y)#.every<|.x'
 NB. rand Normal, x=mean,sd, y=n
 10 3 rnorm 8
11.18 10.37 10.55 12.97 7.146 11.75 10.61 11.83

Grouping and Rounding

When continuous variables are involved, it is often useful to group
values by rounding :

 R=.<.@(0.5&+) NB. round y to nearest integer
 round=.4 : 'R&.(%&x)y' NB. round y to nearest x

 0.2 round 5 rne 10
7.2 0.2 0.8 6 2.2 5.2 1.4 0 1 2.6

 5 round 100 15 rnorm 10
110 70 30 145 115 105 105 75 100 115

Frequency distributions of random samples

Interval Index(I.) provides a means of obtaining indexes of items in
intervals defined by the left argument which defines boundaries in
ascending order, Items below the lowest boundary have index 0, and
#x for those which exceed the highest boundary. Boundary items are
assigned to the lower interval.

 sortu=.{~ /: NB. sort upwards
 fr=.dyad : '+/(=/~.)sortu x I.y' NB. frequency distribu-
tion
 y
2.7 1.8 0.5 3.3 1.4 3.2 3.1 0
 1 1.5 2 2.5 3 fr y

�184

2 1 1 1 3

The plausibility of the rnorm routine can be checked by, for example

 (67.5+5*i.14) fr 5 round 100 15 rnorm 100
3 1 2 9 7 10 10 14 14 13 5 4 4 3 1

This illustration confirms the general bell shape with values more than two
standard deviations away from the mean accounting for about 5% of the to-
tal.

Code Summary
 rnd=.?@#&0 NB. random uniform(0,1)
 run=.dyad : '(rnd y)#.each<relist x' NB. rand uniform
 relist=.(-/,{:)@|.
 cumwts=.+/\ % +/ NB. cumulative weights
 rndw=.cumwts@[I. rnd@] NB. weighted random integers
 cdrndw=.rnd@] I. cumwts@[NB. cumulative distn of
rndw

 rne=.-@* ^.@rnd NB. rand neg exp. x=mean, y=n
 rno=.monad : '(%:2 rne y)* 2 o.(rnd y)*o.2' NB. Box-Muller
formula
 rnorm=.4 : '(rno y)#.every<|.x' NB. rand Normal, x=mean,sd,
y=n
 wrnd=.cumwts@[I. rnd@] NB. weighted random integers
 cumwrnd=.rnd@] Slt cumwts@[NB. cumulative distn of above
 round=.4 : 'R&.(%&x)y' NB. round y to nearest x
 R=.<.@(0.5&+) NB. round y to nearest integer
 fr=.dyad : '+/(=/~.)sortu x I.y' NB. frequency distribution
 sortu=.{~ /: NB. sort upwards

�185

29. Just say it in J - ANOVA

Principal Topics : # (copy) /. (key) ; (raze) ANOVA, between/within groups sums
of squares, main effects, treatment/residual sums of squares, Latin square, or-
thogonality, interactions.

An early claim for APL was that the exactness demanded by express-
ing mathematics in an executable language could lead to significantly
greater understanding of underlying algebra and algorithms than was
achievable by conventional mathematical notation. Subsequent expe-
rience diluted this claim somewhat since the obscurity which even a
few lines of code could generate outweighed the inherent discipline of
using a programming language as a learning tool. Nevertheless there
are some topics in which the expository power of APL, and now even
more strongly J, trounces traditional methods. One of the most con-
spicuous examples of this is the manner in which sums of squares are
partitioned as the first stage of the statistical technique known as
Analysis of Variance.

The acronym ANOVA, which is at least as well known by its abbrevia-
tion as in its full form, is one of the curiosities of statistical terminolo-
gy, since it is not a single technique, it is not primarily about variance,
and it cannot properly be said to be a process of analysis. I surmise
that many generations of students have tackled ANOVA as an arcane
piece of algebra involving mysterious ‘correction factors’, seemingly
arbitrary rules concerning denominators, and mantras about ‘degrees
of freedom’, ‘interactions’ and ‘error sums of squares’. Yet if ANOVA
is seen as systematic set of transformations of data which all con-
cerned portioning of sums of squares, then its rationale and the alge-
bra itself become plain. I am not trying to underestimate the vast
scope of the intellectually demanding science of Design of Experi-
ments which ANOVA leads up to, but rather to suggest that its foun-
dations might be more clearly introduced through the medium of J.

The insight to be obtained from using J assume competence in that
language, so that as a starting point the followisng basic verbs can be
taken for granted :

 mean=.+/ % # NB. Mean of a list
 mdev=.-mean NB. Deviations from mean
 ssq=.+/@:*: NB. Sum of squares of a list
 ssqm=.ssq@mdev NB. Sum of squares about the mean

One-way Analysis of Variance

�186

One-way ANOVA is relevant where there are groups of numbers, not
necessarily of equal size, but of sufficient general similarity for it to be
interesting to speculate on whether the groups are distinguishably
different, or whether any variability present is scattered across all the
groups. In order to allow the calculations to be checked by mental
arithmetic the values used in the following examples are integers. A
set of groups of numbers is modelled by a list of lists such as

 data1=.1 2 3 6 8;4 8 3;3 4 9 5
 mean every data1

4 5 5.25

A common sense way of assessing whether this result shows real dif-
ferences between groups is to hypothesise no variability within each
group, and smooth out any such variability by replacing every value
by its group mean. J obliges with the primitive verb copy which, op-
erating as the centre tine of a fork, makes as many copies of the num-
bers as are necessary:

 ((#every) # (mean every))data1
4 4 4 4 4 5 5 5 5.25 5.25 5.25 5.25

(There are redundant parentheses in the above expression in order to
make the fork structure stand out.) The sum of squares of these val-
ues about the overall mean is totally free of any within-group varia-
tion and so, rationally, is a sound measure of the between-group vari-
ation:

 bss=.ssqm@(#every # mean every) NB. between group sum of sqq
 bss data1
3.91667

For variability within groups, the procedure is to sum the individual
sums of squares about the mean within each group:

 wss=.+/@:(ssqm every) NB. within group sum of sqq
 wss data1
68.75

Given the above results, any subsequent analysis of this particular
data is clear cut, viz. the within group variability overwhelms the be-
tween group variability. As a happy consequence of algebra, which
can be investigated separately, it happens that the sum of bss and wss
necessarily equals the sum of squares about the mean which would
have arisen with the same set of numbers if there had been no group
divisions in the first place. Using raze, this is:

�187

 tss=.ssqm@; NB. Total sum of squares
 tss data1
72.6667

Hence

 aov1=.bss , wss , tss NB. One-way ANOVA
 aov1 data1
3.91667 68.75 72.6667

Here is a consolidation of the verbs which describe this first stage in
understanding ANOVA :

 bss=.ssqm@(#every # mean every)NB. Between sum of sqq
 wss=.+/@:(ssqm every) NB. Within sum of sqq
 tss=.ssqm@; NB. Total sum of sqq
 aov1=.bss,wss,tss NB. One-way ANOVA

Two-way Analysis of Variance

When data is classified in more than one way, e.g. by the rows and
columns of a rectangular matrix, the rows can be boxed separately to
give the between rows sums of squares of the rows, and the same
process for the transposed matrix gives the between column sums of
squares.

 data2
6 2 3
2 8 5
5 6 8
 rowssq=.bss@:(<"1) NB. row sums of squares
 (rowssq data2),(rowssq |:data2)
10.6667 2

Now successively subtract row and column means from the matrix and sum
the squares of the result :

 rowdevs=.mdev every@(<"1)
 ssq ,rowdevs |:rowdevs data2
29.3333

This value is the sum of the squares after any row and column effects have
been removed. If an interaction effect between rows and columns is present,
that is the occurrence in a particular cell of one of the experimental units is
also dependent on its row and column combination, then 29.3333 is the sum
of squares attributable to this factor. If an interaction assumption is not rea-
sonable, 29.3333 must be accounted for as random variation and is called the
residual sum of squares. Since the interaction assumption is stronger define

�188

mailto:rowssq=.bss@:(%253C%255C

 iss=.monad : 'ssq,rowdevs |:rowdevs y'
 aov2=.(rowssq every @; |:) , iss , tss
 aov2 data2
10.6667 2 29.3333 42

As a check the first three items in the above must be equal to the last.

For square matrices it is possible to superimpose a further classifica-
tion, oftene called treatments based on a so-called Latin square design
such as

0 1 2
2 0 1
1 2 0

Using the ravel of this matrix as the basis of box key to obtain a between-treatments
sum of squares :

 x=.0 1 2 2 0 1 1 2 0
 x </. ,data2
┌─────┬─────┬─────┐
│6 8 8│2 5 5│3 2 6│
└─────┴─────┴─────┘
 bss x </. ,data2
24.6667

which accounts for a further 24.6667 of the previous 29.3333 sum of
squares, assuming these were considered as residual.

The property that the sums of row, column and treatment sums of
squares is the total sum of squares depends on orthogonality in the
design. For example an arbitrary arrangement of three 0s, three 1s,
and three 2s such as

 x1=.1 0 2 2 0 1 0 1 2

does not possess this property.

Three-way Analysis of Variance

�189

Where a 2-way experiment is replicated either by simple repetition, or
by applying different treatments to each replicate, the data is best
presented as a 3-dimensional matrix, for example data3 which has 4
rows and 5 columns, and within each of the resulting 20 cells each of
two treatments are applied :

 data3
130 34 20
150 136 25
138 174 96

155 40 70
188 122 70
110 120 104

 74 80 82
159 106 58
168 150 82

180 75 58
126 115 45
160 139 60

Consolidate the data by +/data3, apply aov2 and divide by 4 to take
account of the fact that each new cell is a sum of 4 original ones. The
resulting sum of squares is less than that in the full data because +/ has
eliminated the variation due purely to repetition. A full ANOVA for
data3 is thus given by aov2 adapted to aov2r (standing for ANOVA
with repetition)

 aov2r=.monad :0
u=.}:(aov2 +/y)%{.$y
u,(t-+/,u),t=.tss y
)
 aov2r data3
10683.7 39118.7 9613.78 18230.8 77647

The five values in this list therefore stand for sums of squares for
rows, columns, interaction, residual and total, and as before the sum
of the first four must equal the fifth.

Now suppose that the several vales in each row/cell result from four
different treatments, so that there are now three main effects (rows,
columns and treatments) with the possibility of three interactions (RC,
RT and CT). Averaging out the reduced effect is accomplished by +/

�190

qualified by the three possible ranks, and divided by the appropriate
shape element

 (aov2 +/data3)%4
10683.7 39118.7 9613.78 59416.2
 (aov2 +/"1 data3)%3
354.972 10683.7 5358.94 16397.6
 (aov2 +/"2 data3)%3
354.972 39118.7 3678.61 43152.3

All the values required are present but clearly there is some redun-
dancy. The last but one values in the above lists represent the sums of
squares due to interactions, the main effects appear twice over, and
the residual sum of squares (or equivalently the 3-way interaction ef-
fect) is most easily found by subtracting all the main and 2-way inter-
actions from the total sum of squares. All of this is sorted out in

 aov3=.monad :0
t=.}:"1(aov2 every (+/y);(+/"2 y);+/"1 y)%$y
t=.(0 1 3{,t),{:"1 t
t,(u-+/t),u=.tss,y
)
 aov3 data3
10683.7 39118.7 354.972 9613.78 3678.61 5358.94 8838.22 77647

which give in order row, column, treatment main effects, RC, CT and
RT interactions, residual and total sums of squares. If required the
residual sum of squares could be broken down further into three-way
interactions by extending the existing technique, although from a sub-
stantive point of view such interactions are usually difficult to con-
ceive.

The above development shows how the main J primitives match op-
erations which are logically necessary steps for understanding the
process of calculating values infor ANOVA tables. Each of the values
in an ANOVA list bar the last provides a means of estimating the
overall variance present in the data assuming that none of the effects
are significant. If these estimates vary by too much (where ‘too much’
is determined by the so-called F-statistic) then the corresponding ef-
fect is deemed to be significant. This is the point at which raw calcu-
lation stops and statistical reasoning takes over.

�191

Code Summary
Basic Statistical verbs
 mean=.+/ % # NB. Mean of list
 mdev=.-mean NB. Deviations from mean
 ssq=.+/@:*: NB. Sum of squares of a list
 ssqm=.ssq@mdev NB. Sum of squares about the mean

One-way Analysis of Variance (data is list of lists)
 aov1=.bss;wss;tss NB. one-way ANOVA
 bss=.ssqm@(#every # mean every) NB. between sum of sqq
 wss=.+/@:(ssqm every) NB. within sum of sqq
 tss=.ssqm@; NB. total sum of sqq

Two-way Analysis of Variance (data is a numerical matrix)
 aov2=.monad : 0 NB. two-way ANOVA
u=.,rowssq every y;|:y
r=.u,(t-+/,u),t=.tss y
)
 rowssq=.bss@:(<"1) NB. row sums of squares
 rowdevs=.mdev every@(<"1) NB. remove row&col means

Three-way Analysis of Variance (data is a 3-D numeric array)
 aov3=.monad :0
t=.}:"1(aov2 every (+/y);(+/"2 y);+/"1 y)%$y
t=.(0 1 3{,t),{:"1 t
t,(u-+/t),u=.tss,y
)

�192

mailto:ssm=.ssq@m
mailto:rowssq=.bss@:(%253C%255C

30. Just what do they sell at C&A?

Principal Topics : A. (anagram index / anagram) C. (cycle direct / permute) i. (index
of) a. (alphabet) ! (factorial), permutations, derangements, dihedral group, alter-
nating group, parity.

A permutation shuffles items within a list. It can be described in two
ways, either (1) by what is done in the course of the shuffle, or (2) as a
display of its end result. Monadic C. transforms either of these de-
scriptions into the other. Type (1) is always boxed so <7 3 6 4 is inter-
preted as “item 7 is replaced by item 3 which is replaced by item 4
which is replaced by item 7”. The occurrence of ‘item 7’ at both the
beginning and end of that description show that it is a cycle, and a
general permutation is made up of several cycles which do not over-
lap. The result of carrying out such a series of actions is the image of
the permutation, which unfortunately is also popularly referred to as
a permutation. Denote by n the number of items available to be per-
muted (this is called the order of the permutation). If n=3, then <2 1 0
(type (1) definition) is a permutation whose image is 2 0 1 (type (2)
definition). If n=4 the image of the same type (1) permutation is 2 0 1
3, that is the image depends on the order of a permutation. Images
can be used as indexes to permute general objects using from ({), for
example

 2 0 1{‘ABC’
CAB

Permutations are in general products of disjoint cycles, and, as stated
above monadic C. acts as a toggle between the two types of descrip-
tion.

 C.2 0;1 3
2 3 0 1
 C.2 3 0 1
┌───┬───┐
│2 0│3 1│
└───┴───┘

The one-to-one correspondence between cycles and images is guaran-
teed by making the highest index leftmost within each cycle and or-
dering the cycles in increasing value of leftmost elements. Thus the
permutation 1 3;2 0 is identical to 2 0;3 1, although the latter is the pre-
ferred choice of representation.

The dyadic form of C. is called permute, and is very useful in shuffling
items within lists as in

�193

]ten=.(65+i.10){a.
ABCDEFGHIJ
 (4 3;7 1)C. ten
AHCEDFGBIJ

When C. is used monadically it is assumed that the order of the per-
mutation is the maximum integer which appears explicitly in the ar-
gument

 C.4 3;7 1
0 7 2 4 3 5 6 1
 (C.4 3;7 1){ten
AHCEDFGB

Now consider the dyadic form of the verb A. which is called anagram.
It allows all the permutation images of i.3 can be listed in increas-
ing order by

 (i.!3)A.i.3
0 1 2
0 2 1
1 0 2
1 2 0
2 0 1
2 1 0

Replacing each image by its ordinal number reduces it to an integer
from the set i.!3 – think of this as an atom. If the order of n is large
this can be a useful shorthand, so that for example A.3 2 1 0 (the
final permutation of order 4 in numerical sequence) is 23. Image
numbering depends on the order n, so that the reverse process, that is
moving from atimic number to image provides an obvious niche for
dyadic A. :

 23 A.i.4
3 2 1 0

A more general way of looking at the dyadic form of A . is to view its
left argument as an atomic number identifying a permutation to be
applied to the smallest applicable sub-list at the right hand end of the
right argument. For example 1 A.y shuffles the last two items in a
list, arguments 2 thru’ 5 shuffle the final three items of permutations
6 thru’ 23 shuffle the final four items and so on.

Permutations can be combined in the sense that 1 2 0 (A. number 3)
applied to 1 0 2 (A.number 2) yields 0 2 1 (A. number 1).

 (3 A.t){2 A.t=.i.3

�194

0 2 1
 A.(3 A.t){2 A.t=.i.3
1

Generalising this into a function and table :

 perm3=.dyad : 'A.(x A.t){y A.t=.i.3'
 3 perm3 2
1
 >perm3&>/~ i.6
0 1 2 3 4 5
1 0 3 2 5 4
2 4 0 5 1 3
3 5 1 4 0 2
4 2 5 0 3 1
5 3 4 1 2 0

This has the structure of a group table known as the dihedral group
D3 (see E #26 “Working in Groups”) which is most commonaly ob-
served in the symmetries of the equilateral triangle. 0, 3 and 4 corre-
spond to rotations of 0, π/3 and 2π/3, and 1 2 and 5 to reflections in
the perpendicular bisectors of the sides. Within D3 the subgroup
formed by 0, 3 and 4 is the cyclic group C3.

A more general verb for combining permutations is

 perms=.dyad : 'A.(({.x) A.t){,(}.x)A.t=.i.y'
 11 5 perms 4
21

that is for permutations of order 4, the effect of permutation A.11 fol-
lowing permutation A.5 is permutation A.21 (1 3 2 0 applied to 0 3 2
1 is 3 1 2 0 – see the table below.)

Inverses : getting back to where you started

The image permutation whose operation restores the natural numeri-
cal ordering of an image permutation p is given by /:p . So if the
characters in ten appear in the order ICEDHFBAJG the instructions to
restore them to natural order is

 C. /: ten i.'ICEDHFBAJG'
┌─┬─┬───────────────┐
│3│5│9 8 0 7 4 2 1 6│
└─┴─┴───────────────┘

This operational permutation says : keep the fourth and sixth charac-
ters (i.e. D and F with indices 3 and 5) in place, the character in the

�195

ninth position moves to the tenth, the character in the eighth position
moves to the first and so on.

 C.C. /: ten i.t=.'ICEDHFBAJG'
7 6 1 3 2 5 9 4 0 8
 (C.C. /: ten i.t){t
ABCDEFGHIJ

A permutation consisting only of 2-cycles is self-inverse. For n=4
there are 10 of these, one containing no 2-cycles, 6 containing a single
2-cycle corresponding to the 6 ways in which a pair of items can be
chosen from 4, and 3 containing two pairs of 2-cycles, viz. 3 2;1 0 , 3
1;2 0 and 3 0;2 1. There are 8 permutations with 3-cycles which form
4 mutually inverse pairs such as <3 0 2 and <3 2 0, and finally the
number of 4-ccycles is 6, since a 4-cycle must have 3 as its first item
and there are 6 ways in which the remaining 3 items can be permuted.

Permutations possess parity, that is they can be classified as odd or
even according to whether they are obtainable as the result of an odd
or an even number of successive two-item swaps from i.n. For exam-
ple 0 1 2 3 -> 0 1 3 2 -> 3 1 0 2, so 3 0 1 2 is the image of an even per-
mutation.

The table below classifies the permutations of order 4. In the proper-
ties column, O means Odd, S means self-inverse, and D indicates a
derangement, that is a permutation in which every item has moved
from its home position. The first 6 permutations have 0 in their first
position, the next 6 have 1, and so on. However, apart from this label-
ing by A., number ordering does not reflect group structure. Sub-
groups of order 2 can be formed by combining 0 with any of the 9
non-identity self-inverse permutations. The following form sub-
groups of orders of orders 4, 8 and 12 :

 {0,7,16,23} {0,2,21,23} (0,1,6,7} {0,5,14,16}
 {0,7,16,23,6,1,17,22} {0,7,16,23,14,9,5,18]
 {0,3,4,7,8,11,16,12,15,23,19,20}

of which the last is the set of even permutations, called the alternating
group.

A .no Image Permutation Properties Inverse

 0 0 1 2 3 S
 1 0 1 3 2 <3 2 O S
 2 0 2 1 3 <2 1 O S
 3 0 2 3 1 <3 1 2 4

�196

 4 0 3 1 2 <3 2 1 3
 5 0 3 2 1 <3 1 O S
 6 1 0 2 3 <1 0 O S
 7 1 0 3 2 3 2;1 0 S D
 8 1 2 0 3 <2 0 1 12
 9 1 2 3 0 <3 0 1 2 O D 18
10 1 3 0 2 <3 2 0 1 O D 13
11 1 3 2 0 <3 0 1 19
12 2 0 1 3 <2 1 0 8
13 2 0 3 1 <3 1 0 2 O D 10
14 2 1 0 3 <2 0 O S
15 2 1 3 0 <3 0 2 20
16 2 3 0 1 3 1;2 0 S D
17 2 3 1 0 <3 0 2 1 O D 22
18 3 0 1 2 <3 2 1 0 O D 9
19 3 0 2 1 <3 1 0 11
20 3 1 0 2 <3 2 0 15
21 3 1 2 0 <3 0 O S
22 3 2 0 1 <3 1 2 0 O D 17
23 3 2 1 0 3 0;2 1 S D

Code Summary

For permutations described by their anagram numbers

perm3=.dyad : 'A.(x A.t){y A.t=.i.3'
 NB. application of 3-perms x then y
perms=.dyad : 'A.(({.x) A.t){,(}.x)A.t=.i.y'
 NB. application of y-perms 0{x then 1{x

�197

31. A rippling good yarn
Principal Topics : /: (grade up) ^: (power conjunction) ripple shuffles

A ‘ripple shuffle’ of a deck of cards consists of dividing it into two
halves (or as nearly as possible if there is an odd number). How
many shuffles will it take for a deck of, say, 52 cards to return to its
original state?

Suppose the cards are numbered consecutively from 0, and that there
is an even number of cards. Then if all the even-numbered cards are
placed in order on top of all the odd-numbered ones, a ripple shuffle
would restore the original order. To put this in another way, a ripple
shuffle is the inverse of ‘all evens first’ sort. Dyadic grade up performs
by sorting its left argument to an order specified by its right argu-
ment, so if the latter is a list of alternating 0s and 1s of the same length
as the former the effect is to obtain all the items of one parity followed
by all the items of the other.

 irs=./: 0 1&($~)@#
 irs 'abcdef'
acebd

Use the power conjunction to do this repeatedly

 irs^:(i.7)i.10 NB. 7 inverse shuffles
0 1 2 3 4 5 6 7 8 9
0 2 4 6 8 1 3 5 7 9
0 4 8 3 7 2 6 1 5 9
0 8 7 6 5 4 3 2 1 9
0 7 5 3 1 8 6 4 2 9
0 5 1 6 2 7 3 8 4 9
0 1 2 3 4 5 6 7 8 9

Once the original order is restored, a succession of ripple shuffles is
obtained by reading the rows of the above table from bottom to top.
To count the number of shuffles required to restore the original order,
the direction in which the table is read is immaterial, so define :

 countrs=.monad :0
r=.y [i=.1
while. -.y-:irs r do.
 r=.irs r [i=.>:i end. i
)
 countrs i.10
6

�198

For a deck of 52 cards the number of ripple shuffles required to restore
the original order is

 countrs i.52
8

A range of even card numbers can be explored some of whose results
may be a little surprising at first sight :

 w,:>countrs each i. each w=.2+2*i.20
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
1 2 4 3 6 10 12 4 8 18 6 11 20 18 28 5 10 12 36 12
 w,:>countrs each i. each w=.22+2*i.20
22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60
 6 11 20 18 28 5 10 12 36 12 20 14 12 23 21 8 52 20 18 58
 w,:>countrs each i. each w=.64+4*i.15
64 68 72 76 80 84 88 92 96 100 104 108 112 116 120
 6 66 35 20 39 82 28 12 36 30 51 106 36 44 24
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
1 2 4 3 6 10 12 4 8 18 6 11 20 18 28 5 10 12 36 12

Intuitively it might be expected that numbers which are relatively rich
in factors would have relatively short run lengths, however this is not
in general the case. For example compare 60 with 92,

A variation on the ripple shuffle is to do a final exchange of the two
half-decks by changing 0 1 to 1 0 in the verb irs and changing irs
correspondingly in countrs. The results for the first few values are

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
2 4 3 6 10 12 4 8 18 6 11 20 18 28 5 10 12 36 12 20

The row above is the same as that of the corresponding row in the
previous table, only shifted one place to the left. Thus if rs(n) is the
run length for a pack of n cards without final half-deck exchange, and
rss(n) is the run length with exchange, then rss(n)=rs(n+ 2).

Apart from the powers of two for which rs(n) is simply log2n, the pat-
tern of rs(n) is an irregular one with some abrupt changes. In general
low values of rs(n) and rss(n) go together, although this is not always
the case, e.g. rs(54)=rss(52)=52, that is the effect of the seemingly final
switch of the two half-decks for a 52-card deck is that 52 runs rather
than 8 are required for restoration.

Another way to address the problem of order-restoring shuffle run
lengths is to observe the position of, say, the number 1 in successive
shuffles in the table above, remembering to read it upwards!. Its suc-
cessive positions are 1, 2, 4, 8, then it wraps round to position 7 which

�199

= 16 in modulo 9 arithmetic. Then look at the progress of the number
2, which moves to position 4, 8, 7, 5, or 4,8,16,32 in modulo 9 arith-
metic. Thus the numbers 1 and 2 will be restored in the same number
of shuffles, and similarly for all the other numbers.

The problem of counting the number of shuffles needed to restore the
original order is thus equivalent to that of obtaining a second 1 in the
sequence 2^i.10 in modulo 9 arithmetic, thus

 9|2^i.13
1 2 4 8 7 5 1 2 4 8 7 5 1

shows the 6-cycle already observed with 10 cards. Since the number
of shuffles to restore in general cannot exceed the number of cards,
the number of shuffles comes from observing 1s in
(n-1)|2&^@>:@i.(n+1), leading to

 (<:|2&^@>:@i.)10
2 4 8 7 5 1 2 4 8 7

following which the number of shuffles for various cases is given by

 v=.2&^@>:@i.
 count=.>:@i.&1@(<:|v)
 count 10
6
 w,:>count each w=.12+2*i.15
12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
10 12 4 8 18 6 11 20 18 28 5 10 12 36 12
 w,:>count each w=.44+4*i.15
44 48 52 56 60 64 68 72 76 80 84 88 92 96 100
14 23 8 20 61 6 69 35 20 39 85 28 12 36 30

A few of these values such as that for 60 are inconsistent with the pre-
vious table. This is because 260 is rather a large number which re-
quires extended precision for exact integer comparison. Thus in the
event of discrepancy it is counts which delivers the correct values

To deal with the variation in which the two half-decks are exchanged
at the end of the shuffle, simply replace the <: in the middle with >:

 counts=.>:@i.&1@(>:|v)
 counts 10
10

Here is a graph of rs(n) from n=2 to n=120

�200

As noted earlier, the powers of 2 are easy to deal with, they are simply
log2n. But why do 22, 52, 74 an 92 have short cycles whereas 20,30,50
and 60 have long ones? And why are there regions of relatively short
run lengths such as between 86 and 100? Any suggestions?

Code Summary
 irs=./: 0 1&($~)@# NB.sorts list, odd-indexed items,
then even

 countrs=.monad :0 NB.exact count of sorts to restoration
r=.y [i=.1
while. -.y-:irs r do.
 r=.irs r [i=.>:i end. i
)
count=.>:@i.&1@(<:|v) NB. count to restoration for n<60
 v=.2&^@>:@i. NB. powers of 2 from 1 to y
counts=.>:@i.&1@(>:|v) NB. ditto with half-list switching

�201

mailto:v=.2&%255E@%253E:@i

32. So Easy a Child of 10…
Principal Topics : +. (GCD) /: (grade up) e. (membership) ^: (power conjunction) , -.
(not= 1-) *. (LCM) ~. (nub) q: (prime factors) C. (cycle-direct) ` (gerund), @. (agen-
da) ripple shuffle, clock (finite) arithmetic, totient, Euler’s phi, tau, sigma, Fer-
mat’s little theorem, primeness factorisation, primitive roots.

Perfect shuffles just won’t go away! Following E #31 (“A Rippling
Good Yarn”) on this subject, Gene MacDonnell, Roger Hui and Jeff
Shallit made insightful comments which help cast the problem in a
broader context. I shall endeavour to summarise their thoughts here,
sauced with generous helpings of J!

To recap, a perfect or ripple shuffle of a deck of cards consists of di-
viding it into two halves (or as nearly as possible if there is an odd
number of cards) and taking one card in turn from each half. A single
shuffle of a given number of cards is given by
 sh=./:@$&0 1 NB. ripple shuffle of i.y

or for repeated shuffling, make the argument into a list (not necessari-
ly numeric)
 rs=./:0 1&($~)@# NB. ripple shuffle of y

Assume in what follows that both the word ‘number’and the letters
m, n and k denote ‘a positive integer’, while the letter p means ‘a
prime number’ (including 1). A result called Fermat’s Little Theorem,
first formally proved by Euler in 1736, states that if (n,p) are relatively
prime, then np-1=1 in modulo p arithmetic. Relatively prime says in
words what GCD(m,n)=1 says in maths, or 1=m+.n says in J, as in the
verb:
 rps=.i.#~(e.&1(+.i.)) NB. relative primes of y
 rps 15
1 2 4 7 8 11 13 14

Modulo n arithmetic is what primary school children are familiar with
as clock arithmetic, that is the arithmetic of a finite set of numbers
i.n equally spaced around the rim of a clock. A J session can be set
up to perform modulo n arithmetic by setting the modulus and defin-
ing an adverb such as mod :
 n=.7
 mod=.adverb : 'n&|@x'
 (6+mod 3),(*:mod 9) NB. (9 mod 7),(9^2 mod 7)
2 4

Advancing a little (but only a little!) beyond primary school, every
number possesses a totient, where tot(n) is the number of relatively
prime numbers which are less than n. Thus tot(2) is 1, tot(3) and tot(4)
are both 2 (the relatively prime number lists being 1,2 and 1,3 respec-
tively), tot(5)=4 (all lower numbers) and so on. tot(n) is often written

�202

φ(n), and called Euler’s phi, or in J, #@rps. Were this mathematical
function just a little more useful, it might well have found a place on
calculator keyboards, or indeed as a J primitive, along with factorial,
log, sin, etc., and the like.

However, it is not necessary to enumerate relatively prime numbers to
find tot(n) since it is given by the closed formula

φ(n) = n(1-1/p1)… (1-1/pn)

where the p’s are the unique prime factors of n

Totient can thus be regarded as an extension of q: which gives the
prime factorisation of n:
 tot=.*/@,(-.@%)@(~.@q:) NB. totient (Euler's phi)
 (tot 10),(tot 51)
4 32

Neither set of parentheses is necessary in the above definition of tot,
but they help to clarify how it works. (-.@%)n is 1 - 1/n,
(~.&.q:) is the prime factor nub, and the comma makes the hook
which multiplies in the factor n.

Euler generalised Fermat’s Little Theorem to non-primes by proving
that, provided m and n are relatively prime, mtot(n) = 1 (mod n). For
primes, all preceding numbers are relatively prime, so tot(p) = p-1 and
Euler’s and Fermat’s theorems are equivalent in this case. Some other
properties of the totient are simple to prove, viz.

tot(n) is even for all n>2 (this follows from the closed formula)  
tot(2k) = 2k-1 (because every odd number less than 2k is relatively prime)  
tot(mn) = tot(m).tot(n) if m,n are relatively prime; and  
 = n.tot(m) when the prime factors of n are a subset of those of m.

In particular tot(n2) = n.tot(n). The third of the above properties can be
described by saying that tot is a multiplicative function. Generalising
the result to prime factor products, if n=(p1k1)(p2k2)…(pvkv) then
tot (n) = */ tot (p1k1), tot (p2k2), ... ,tot (pvkv)

As an aside, the functions tau(n) and sigma(n) as defined below are
also multiplicative functions.
 seldivs=.0&=@|~i. NB. select divisors of y
 divs=.seldivs~#i. NB. divisors of y excl y
 divs 12
1 2 3 4 6
 tau=.#@,divs NB. tau=no. of divisors incl y
 sigma=.+/@,divs NB. sigma=sum of divisors incl y
 (tau every 12 13 156);(sigma every 12 13 156)
┌──────┬─────────┐
│6 2 12│28 14 392│
└──────┴─────────┘

�203

To illustrate the sort of possible uses for tot(n) and modulo n arith-
metic, suppose that the last two digits of 3256 (which incidentally has
123 digits altogether) are required. tot(100) = 40 so the problem re-
duces to that of finding the last two digits of 316 by e.g.

 (316)= (81)4 = (-19)4 = (361)2 = 612 = 3721 = 21

As a further aside, it is not hard to prove that tot(2n) = tot(n) if n is
odd and equals 2.tot(n) if n is even, a result which it is pleasing to
have J confirm by comparing matching columns in
 (5 6$tot every >:i.30);5 6$tot every 2*>:i.30
┌────────────────┬─────────────────┐
│ 1 1 2 2 4 2│ 1 2 2 4 4 4│
│ 6 4 6 4 10 4│ 6 8 6 8 10 8│
│12 6 8 8 16 6│12 12 8 16 16 12│
│18 8 12 10 22 8│18 16 12 20 22 16│
│20 12 18 12 28 8│20 24 18 24 28 16│
└────────────────┴─────────────────┘

As well as confirming results, J can also suggest results ahead of
proof. For example, the result that tot(3n) = 3tot(n) for multiples of 3,
and equals 2tot(n) otherwise is forecast with clarity by

 (5 6$tot every >:i.30);5 6$tot every 3*>:i.30
┌────────────────┬─────────────────┐
│ 1 1 2 2 4 2│ 2 2 6 4 8 6│
│ 6 4 6 4 10 4│12 8 18 8 20 12│
│12 6 8 8 16 6│24 12 24 16 32 18│
│18 8 12 10 22 8│36 16 36 20 44 24│
│20 12 18 12 28 8│40 24 54 24 56 24│
└────────────────┴─────────────────┘

Returning to the ripple shuffle problem, the number of shuffles re-
quired to restore an even numbered deck of n cards to its original or-
der is the number of times 2 must be multiplied in modulo n-1 arith-
metic in order to obtain 1. To obtain such a value, one way is simply
to carry on multiplying and reducing modulo (n-1) until 1 is reached,
an event which Euler’s theorem guarantees is bound to happen.
However there may be an earlier arrival at the target than that pre-
dicted by Euler’s Theorem. For example tot(51) = 32, so that 32 shuf-
fles will restore 52 cards to their original order.

However, if 2 is doubled repeatedly (note a good excuse for a
gerund!) :
 n=.51 NB. set modulus
 p2=.,$:@(+:mod@{:)`}.@.(1&e.) NB. powers of 2
 p2 2
2 4 8 16 32 13 26 1

�204

It transpires that a mere 8 steps are sufficient. 8 is called the multi-
plicative order of 2 (mo2 for short) in modulo 51 arithmetic, and
Euler’s theorem guarantees that mo2(n) is a divisor of tot(n), which is
helpful in manual searches. mo2 is of course just #p2 . As an alterna-
tive to redefining p2 every time the modulus is reset, write
 mo2=.monad :0 NB. mult order of 2 for odd modulus y
r=.2
while.(1~:y.|r)do.r=.x:2*r end. [2^.r
)
 (mo2 13),(mo2 51)
12 8

Now revisit the ripple shuffle with an even number of cards, for ex-
ample
 sh 10
0 2 4 6 8 1 3 5 7 9

It takes only a moment to see that 0 and 9 will remain in place in re-
peated shuffles, and that the second position will be occupied by suc-
cessive powers of 2 in modulo 9 arithmetic. The number of shuffles to
restore a pack with an even number of cards n is thus mo2(n-1).

Gene pointed out that another way to regard a shuffle such as sh 10
is as a permutation of i.10, which can be expressed using C. as a
combination of cycles:
 C. sh 10
┌─┬───┬───────────┬─┐
│0│6 3│8 7 5 1 2 4│9│
└─┴───┴───────────┴─┘

and if shuffling is continued until the original order is restored, the
cycles emerge in the columns of these lists read as a matrix :
 rs^:(i.6)i.10 NB. all distinct shuffles of 10
0 1 2 3 4 5 6 7 8 9
0 2 4 6 8 1 3 5 7 9
0 4 8 3 7 2 6 1 5 9
0 8 7 6 5 4 3 2 1 9
0 7 5 3 1 8 6 4 2 9
0 5 1 6 2 7 3 8 4 9

This demonstrates clearly that if 1 is restored to its original position all
the other numbers will obediently follow suit. Since all the cycles
must return to the start point, the LCM of the lengths of the individ-
ual cycles determines the number of perfect shuffles to restore a deck
of n cards :
 cyclecnt=.(#every)@(C.@sh)
 cyclecnt 10
1 2 6 1
 ns=.*./@:cyclecnt NB. no. of restoring shuffles
 ns 52
8

�205

If n is odd, C.sh n is the same as C.sh n+1 only without the final
one-element box:
 C. sh 9
┌─┬───┬───────────┐
│0│6 3│8 7 5 1 2 4│
└─┴───┴───────────┘

Thus ns(n) and ns(n-1) are identical in value to mo2(n-1) so that ns(n)
is defined for all integers. The LCM of the cyclecnt of a product mn
is the LCM of the cyclecnts of m and n separately, subject to
GCD(m,n)=1. For example:
 cyclecnt EVERY 11 13 143
┌────┬────┬─────────────┐
│1 10│1 12│1 10 12 60 60│
└────┴────┴─────────────┘
 ns every 11 13 143 NB. LCM(10,12)=60
10 12 60

Generalising the LCM property
 mo2(n) = *./ mo2(p1k1),mo2(p2k2), ... ,mo2(pvkv)

is identical in form to the analogous expression for tot above, only
with *. (that is LCM) replacing * (multiply). The relationship be-
tween the notions of multiply and LCM is emphasised by the close-
ness of the notation in J. mo2 of course is not a multiplicative function
– perhaps it should be called an LCM-ic function!

Multiplicative order is a property of all relatively prime numbers less
than the modulus. mo10(n), where mo10 is defined analogously to
mo2, gives the period length of the recurrence in the decimal represen-
tation of %n, for example :
 (mo10 13),%13
6 0.076923076923

For shuffles where every third card is picked ns3 counts the number
of shuffles to restore:
 sh3=./:@$&0 1 2 NB. shuffle with every 3rd card
 sh3 10
0 3 6 9 1 4 7 2 5 8
 C.sh3 10
┌─┬─────┬───────────┐
│0│7 2 6│9 8 5 4 1 3│
└─┴─────┴───────────┘

 cc3=.(#every)@C.@sh3
 ns3=.*./@:cc3 NB. #shuffles to restore
 ns3 every 10 11 12 NB. .. with 10,11 & 12 cards
6 5 5

Analogously with ns, ns3(3n) is identical in value to ns3(3n-1), as
shown by :

�206

 C.sh3 12
┌─┬─────────┬──────────┬──┐
│0│9 5 4 1 3│10 8 2 6 7│11│
└─┴─────────┴──────────┴──┘
 C.sh3 11
┌─┬─────────┬──────────┐
│0│9 5 4 1 3│10 8 2 6 7│
└─┴─────────┴──────────┘

although unlike ns, values of ns3(n) no longer coincide with those of
mo3(n).

The above procedure can be extended to shuffles with picking at any
regular interval, and all the previous discussion on shuffles can be
condensed into
 shn=./:@$ i. NB.pick each yth out of x
 nsn=.*./@:(#each)@C.@shn NB. #shuffles to restore
 (51 nsn 2),(10 nsn 3)
8 6

Multiplicative orders are a more general property than shuffle
counts. Here is a table of totients and the first three multiplicative or-
ders of the first few integers:
 n: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tot: 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8

mo2 2 _ 4 _ 3 _ 6 _ 10 _ 12 _ 4 _
mo3 2 4 _ 6 2 _ 4 5 _ 3 6 _ 4
mo5 _ 2 6 2 6 _ 5 2 4 6 _ 4

tot2 1 1 1 2 1 2 2* 2 2 4 2* 4 2 4* 4*

 n: 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

tot 16 6 18 8 12 10 22 8 20 12 18 12 28 8 30 16

mo2 8 _ 18 _ 6 _ 11 _ 20 _ 18 _ 28 _ 5 _
mo3 16 _ 18 4 _ 5 11 _ 20 3 _ 6 28 _ 30 8
mo5 16 6 9 _ 6 5 22 2 _ 4 18 6 14 _ 3 8

tot2 8 2 6 4* 4* 4 10 4* 8 4 6 4* 12 4* 8 8*

If mo2(n) is equal in value to tot(n) it is called a primitive root of n.
Roughly speaking, powers of primitive roots exhaust the full gamut
of modulo n integers before repeating. Looking at the second and
third rows in the table, 2 is a primitive root of some numbers such as 9
and 13, but not of others such as 7 and 17. The table also shows that 3
and 5 are primitive roots of 7. The final row is the totient of the totient
which in the case of primes, is also the number of primitive roots. This
is also the case for those non-primes such as 9 which possess primi-

�207

tive roots, other non-primes such as 15 have no primitive roots, and
are marked with an asterisk in the final row. There is no general for-
mula for primitive roots, but for small numbers such as those given in
the table, they are not hard to find, particularly if a computer with J is
at hand. For example, 2 is a primitive root of 13 from the table, and
the other three are to be found to be 6, 7 and 11 by observing that
 6^mod divs tot n=.13 NB. powers of 6 modulo 13
6 10 8 9 12

does not contain 1, and similarly for 7 and 11. Alternatively use lists to
test all the candidate numbers simultaneously:
 (<>:i.12)^mod every >divs tot n=.13
 NB. primitive roots of 13
1 2 3 4 5 6 7 8 9 10 11 12
1 4 9 3 12 10 10 12 3 9 4 1
1 8 1 12 8 8 5 5 1 12 5 12
1 3 3 9 1 9 9 1 9 3 3 1
1 12 1 1 12 12 12 12 1 1 12 1

With a little more code all the primitive roots of primes can be extract-
ed in one go:

 n=.13
 t#~-.1 e."1 |:(<t=.rps n)^mod every divs tot n
2 6 7 11
 n=.15
 t#~-.1 e."1 |:(<t=.rps n)^mod every divs tot n
(null list)

Although this discussion has led into the beginnings of number theo-
ry on the one hand and combinatoric analysis on the other, neverthe-
less a primary school child with outstanding numerical gifts could
well appreciate all the notions in this article, if not perhaps the nota-
tions, and could, with at most the aid of a hand calculator, compute
the above table of totients and multiplicative orders. Perhaps it is not
a coincidence that the abbreviated form is tot(n)!

Code Summary
 mod=.adverb : 'n&|@x'
 sh=./:@$&0 1 NB. ripple shuffle of i.y
 rs=./:0 1&($~)@# NB. ripple shuffle of y
 rps=.i.#~(e.&1(+.i.)) NB. relative primes of y
 tot=.*/@,(-.@%)@(~.@q:) NB. totient (Euler's phi)
 tau=.#@,divs NB. tau=no. of divisors incl y
 sigma=.+/@,divs NB. sigma=sum of divisors incl y
 divs=.seldivs~#i. NB. divisors of y excl y
 seldivs=.0&=@|~i. NB. select divisors of y

 p2=.,$:@(+:mod@{:)`}.@.(1&e.) NB. powers of 2

 mo2=.monad :0 NB. mult order of 2 for odd modulus y
r=.2

�208

while.(1~:y|r)do.r=.x:2*r end. [2^.r
)
 ns=.*./@:cyclecnt NB. no. of restoring shuffles
 cyclecnt=.(#every)@(C.@sh)
 ns3=.*./@:cc3 NB. #shuffles to restore
 cc3=.(#&>)@C.@sh3
 sh3=./:@$&0 1 2 NB. shuffle with every 3rd card
 nsn=.*./@:(#every)@C.@shn NB. #shuffles to restore

 shn=./:@$ i. NB. pick every yth out of x

�209

mailto:C.@sh
mailto:nsn=.*./@:(%2523each)@C.@shn

33. Perming and Combing
Principal Topics : /: (grade up) A. (anagram index) {. (take) }: (curtail) }. (drop) ?
(deal) |: (transpose), ` (gerund), @. (agenda) permutation, permutation list,
Lehmer’s algorithm, factorial digits, recursion, lexical ordering, Tompkins-Page
ordering, parity, Johnson ordering, combination lists.

No, not an accidentally misdirected submission to “The Hair Stylist”,
but rather an extension of one of Gene McDonnell's token reduction
examples (see Vector vol. 22 no.3) which involves generating system-
atic lists of permutations, where a permutation of order n is to be un-
derstood as a list of integers i.n in some order, for example 3 0 2
1 4 .

Permutation lists

A permutation list is a list of lists in which all of the!n possible per-
mutations occur once and once only. The most interesting lists of this
kind are those in which the ordering is in some way systematic, the
most obvious being the lexical order which Gene discusses, and
which is readily obtainable using A.(anagram index) as shown below.
This ordering is also the result of Lehmer's algorithm, so Llist can
be taken to denote either lexical or Lehmer.

 Llist=: i.@! A. i. NB. Lehmer/lexical listing

 |:Llist 4
0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
1 1 2 2 3 3 0 0 2 2 3 3 0 0 1 1 3 3 0 0 1 1 2 2
2 3 1 3 1 2 2 3 0 3 0 2 1 3 0 3 0 1 1 2 0 2 0 1
3 2 3 1 2 1 3 2 3 0 2 0 3 1 3 0 1 0 2 1 2 0 1 0

(Note : In many of the illustrations which follow, transposition ap-
pears as the leftmost verb in the J line for the purpose of compactness
of display. In these cases individual permutations should thus be read
as columns reading from top to bottom.)

Factorial Digit bases

Gene defines a factorial digit base (that is, number base in the J sense)
as :

 fdb=.}:@(>:@i.@-) NB. factorial digit base
 fdb 4
4 3 2

�210

Each digit from 0 to n-1 has a unique representation in this base, as
shown by :

 fact=.fdb#:i.@!
 |:fact 4 NB. 0 to 23 as factorial dig-
its
0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2 2
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

A permutation can be transformed to corresponding factorial digits by
taking its items from the left and, for all but the last, recording the
number of smaller digits which appear to its right:

 nld=.+/@:({. > }.) NB. number of lesser
digits
 ptof=.}.`(nld,ptof@}.)@.(1&<@#)

NB. perm -> fact digits
 ptof 3 0 2 1
3 0 1

 |:ptof every <"1 Llist 4
0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2 2
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

The inverse of ptof is also obtainable recursively, this time by joining
each factorial digit to the immediately prior permutation list, copying
any lesser digits and adding one to the others. To those who know J,
this is probably described more clearly in J than in English!

 incgte=.] + <: NB. increment if gtr or eq,
 NB. else copy
 ftop=.(, -.)`({. , {. incgte ftop@}.) @.(1&<@#)
 NB. fact digits -> perm
 |:ftop every <"1 fact 4
0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
1 1 2 2 3 3 0 0 2 2 3 3 0 0 1 1 3 3 0 0 1 1 2 2
2 3 1 3 1 2 2 3 0 3 0 2 1 3 0 3 0 1 1 2 0 2 0 1
3 2 3 1 2 1 3 2 3 0 2 0 3 1 3 0 1 0 2 1 2 0 1 0

The above array demonstrates that ordering by factorial digits is
equivalent to lexical ordering.

Factorial digits used with ftop resemble the left arguments of b. in
as much as each digit in the appropriate range represents a function.

�211

For example, a factorial digit of integers descending to 1 such as 3 2
1 represents rotate (|.), a string of all 1s represents 1-shift, a string of
2s followed by a 0 represents 2-shift, a string of 3s followed by two 0s
represents 3-shfit, and so on.

Other systematic orderings of permutations

Another systematic ordering for permutation lists involves using a
recursive method to generate what is known as the Tompkins-Paige
ordering, first published in 1960 :

 TPlist=.monad : 0
if.y>1 do.
 r=.,/(i.y)|."1 every<(TPlist<:y),.<:y
else. r=.1 $0 end.
)
 |:TPlist 4
0 1 1 0 2 2 1 0 2 2 0 1 2 2 0 1 1 0 3 3 3 3 3 3
1 0 2 2 0 1 2 2 0 1 1 0 3 3 3 3 3 3 0 1 1 0 2 2
2 2 0 1 1 0 3 3 3 3 3 3 0 1 1 0 2 2 1 0 2 2 0 1
3 3 3 3 3 3 0 1 1 0 2 2 1 0 2 2 0 1 2 2 0 1 1 0

In the above array, focussing on how the 3s are blended with repeti-
tions of the next lower order permutations list is the easiest way to see
how the Tompkins-Paige ordering is formed. In time efficiency terms
TPlist and Llist are broadly similar.

There are obvious ways in which orderings such as Llist and
TPlist can be used to generate further systematic orderings, for ex-
ample

 |:3 - TPlist 4
3 2 2 3 1 1 2 3 1 1 3 2 1 1 3 2 2 3 0 0 0 0 0 0
2 3 1 1 3 2 1 1 3 2 2 3 0 0 0 0 0 0 3 2 2 3 1 1
1 1 3 2 2 3 0 0 0 0 0 0 3 2 2 3 1 1 2 3 1 1 3 2
0 0 0 0 0 0 3 2 2 3 1 1 2 3 1 1 3 2 1 1 3 2 2 3

Another means of generating systematic orderings is to use TPlist
n as an index to any one of its component permutations, for example :

 |:(TPlist 3){1 0 2
1 0 0 1 2 2
0 1 2 2 1 0
2 2 1 0 0 1

�212

More generally, the component permutation can be randomised as in
the following tacit verb train :

 rlist=.TPlist { ?@! { Llist NB. list based on
random perm
 |:rlist 4
2 3 3 2 0 0 3 2 0 0 2 3 0 0 2 3 3 2 1 1 1 1 1 1
3 2 0 0 2 3 0 0 2 3 3 2 1 1 1 1 1 1 2 3 3 2 0 0
0 0 2 3 3 2 1 1 1 1 1 1 2 3 3 2 0 0 3 2 0 0 2 3
1 1 1 1 1 1 2 3 3 2 0 0 3 2 0 0 2 3 0 0 2 3 3 2

Parity of permutations

A basic property of permutations is that of parity, which means the
oddness or evenness of the number of switches required to bring the
permutation back to i.n . This property is related to factorial digit
representations in the following way :

 parity=.2&|@+/@ptof NB. rem((sum
of fact digs),2)
 parity every<"1 TPlist 3
0 1 0 1 0 1
 parity every<"1 TPlist 4
0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0

Parity can also be obtained by considering the cycle form of a permu-
tation as given by C. which returns a list of boxed lists (cycles) whose
lengths are given by #eachC. :

 C.t=.6 4 2 7 1 3 0 5
┌─┬───┬───┬─────┐
│2│4 1│6 0│7 5 3│
└─┴───┴───┴─────┘

A cycle of even length has odd parity and a cycle of odd length has
even parity so
ui
 #every C.t NB. cycle parities are E O O E
1 2 2 3

Parities combine according to the 'not-equals' rule, so in the above
case the overall parity is

 par=.~:/@:-.@(2&|)@(#every@C.) NB. by cycles
 par t
0

�213

Minimising switches between adjacent permutations

For rlist 3, the permutation list parity pattern is either 0 1 0 1
0 1 or 1 0 1 0 1 0 which means that parity alternates between
successive permutations. For rlist 4 the parity pattern is always
one of

0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0
or

1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1

where in both cases, there are some consecutive permutations with
the same parity. In programs which loop extensively through permu-
tations computed in advance, the efficiency gained by minimising the
changes between successive permutations can sometimes be worth
considering. In 1963 S.M. Johnson of the RAND Corporation showed
how to achieve such an ordering. A recursive technique is based on
taking a single permutation at the next lower level, and creating n+1
further permutations by inserting n into all possible gaps starting
either from the right or the left :

0 1 2 3 3 0 1 2
0 1 3 2 0 3 1 2
0 3 1 2 0 1 3 2
3 0 1 2 0 1 2 3

In array terms, the incoming value n is stitched to a skewed array of
multiple copies of each of the next lower order permutations followed
by a reverse skew which brings n onto the diagonal :

 rskew=:i.@-@# |.&> <"1 NB. right skew
 lskew=:i.@# |.&> <"1 NB. left skew
 mcopy=:$~ (,~ >:)@# NB. multiple copies
 agr=:lskew@(rskew@mcopy@[,.]) NB. start in-
serts from right
 agl=:rskew@(lskew@mcopy@[,.]) NB. start in-
serts from left

Now choose between right and left on the basis of parity :

 ag=.agr`agl@.(parity@[) NB. all gaps (right
or left)

and finally bring everything together in

�214

Jlist=:monad : 0
if.y~:2 do.
 r=.,/(<"1 Jlist <:y)ag every <:y
else. r=.0 1,:1 0 end.
)
 |:Jlist 4
0 0 0 3 3 0 0 0 2 2 2 3 3 2 2 2 1 1 1 3 3 1 1 1
1 1 3 0 0 3 2 2 0 0 3 2 2 3 1 1 2 2 3 1 1 3 0 0
2 3 1 1 2 2 3 1 1 3 0 0 1 1 3 0 0 3 2 2 0 0 3 2
3 2 2 2 1 1 1 3 3 1 1 1 0 0 0 3 3 0 0 0 2 2 2 3

This ordering not only involves just one switch between consecutive
permutations, but additionally all such switches are between immedi-
ately neighbouring elements. However, the time to compute a Jlist
is orders of magnitude greater than that required for a TPlist or an
Llist , and so as, noted above, this method only pays off when there
is a considerable amount of looping through pre-computed permuta-
tion lists.

Combinations and permutations of r from n

To find ordered permutations of the n!/(n-r)! permutations of r items
from n, make every possible selection (that is combination) of r ele-
ments from i.n , and then transform each of these into a list of its !r
possible permutations using any of the permutation list methods. Al-
ternatively use the following :

 perms=.4 :'~.x{.&.|: Llist y'
 |:2 perms 5 NB. permutations of 2
items from 5
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3

Obtaining systematic combination lists is not quite as tidy a matter as
finding permutation lists. One possible technique is to express i.n
as binary numbers and select those whose digit sum is r :

 cnos=.i.@:(2&^)@] NB. integers from 0 to
2^n -1
 bins=.#:@cnos NB. binary nos from 0 to 2^n-1
 mark=.|.@((= +/"1@bins) # cnos) { bins
 NB. marks for bins with dDig-
itsum = x
 combs=.mark #"1 i.@] NB. transform to combns
s

�215

mailto:cnos=.i.@:(2&%255E)@

 |:2 combs 4
0 0 0 1 1 2
1 2 3 2 3 3

Starting with all combinations here is yet another way of obtaining a
permutation list of r items from ::

 perm=.,/@(<@TPlist@[{every<"1@combs) NB. r
from n
 |:2 perm 4
0 1 0 2 0 3 1 2 1 3 2 3
1 0 2 0 3 0 2 1 3 1 3 2

An alternative method of obtaining combinations of r from n

The following technique is another way of obtaining the defining bi-
nary array. mk is mark with its component binary number lists in a
different order. The method is based on the fact that the combina-
tions of r from n consist of all the combinations of r from n-1, together
with n added to all the combinations of r-1 out of n-1. In binary num-
ber terms :

 r mk n is (r mk (n-1) stitched with 0) joined to ((r-1) mk (n-1)
stitched with 1) .

For largish values the double recursion makes this method less ap-
pealing without adaptations which could obscure the fundamental
principle. The double recursion also leads to the two stopping values
embodied in the first two lines :

 mk=.dyad : 0
if. x=y do. r=.(1,y)$1 return. end.
if. x=1 do.r=.=i.y return. end.
r=.((x mk<:y),.0),((<:x)mk<:y),.1
)
 coms=.mk #"1 i.@]
 |:4 coms 6
0 0 0 0 1 0 0 0 1 0 0 1 0 1 2
1 1 1 2 2 1 1 2 2 1 2 2 3 3 3
2 2 3 3 3 2 3 3 3 4 4 4 4 4 4
3 4 4 4 4 5 5 5 5 5 5 5 5 5 5

… and finally a Bang !!

�216

Anyone who has delved into such matters must know the phrase
'combinatorial explosion' which describes how soon space and time
boundaries are exceeded for even quite modest values of the parame-
ters. This article has outlined the basic arithmetic of permutations
and combinations en masse for whose exposition J is particularly suit-
able. Skilful tinkering and use of parallel processing can extend these
boundaries, usually at an understandable loss of some clarity – that's
where programming ingenuity kicks in …

Code Summary
 Llist=: i.@! A. i. NB. Lehmer/lexical listing
 fdb=.}:@(>:@i.@-) NB. factorial digit base
 fact=.fdb#:i.@!
 ptof=.}.`(nld,ptof@}.)@.(1&<@#) NB. perm -> fact digits
 nld=.+/@:({. > }.) NB. number of lesser digits

 ftop=.(, -.)`({. , {. incgte ftop@}.) @.(1&<@#)
 NB. fact digits -> perm
 incgte=.] + <: NB. increment if gtr or eq, else
copy

 TPlist=.monad : 0 NB. Tompkins-Paige ordering of perms
if.y>1 do.
 r=.,/(i.y)|."1 every<(TPlist<:y),.<:y
else. r=.1 $0 end.
)
 rlist=.TPlist { ?@! { Llist NB. list based on random perm

 combs=.mark #"1 i.@] NB. transform to combns s
 mark=.|.@((= +/"1@bins) # cnos) { bins
 NB. marks for bins with dDigitsum =
x
 bins=.#:@cnos NB. binary nos from 0 to 2^n-1

cnos=.i.@:(2&^)@] NB. integers from 0 to 2^n -1
)
parity=.2&|@+/@ptof
par=.~:/@:-.@(2&|)@(#every@C.) NB. by cycles

Jlist=:monad : 0 NB. Johnson ordering (minimizes
switches)
if.y~:2 do.
 r=.,/(<"1 Jlist <:y)ag every <:y
else. r=.0 1,:1 0 end.
)
 ag=.agr`agl@.(parity@[) NB. all gaps (right or
left)
 agr=:lskew@(rskew@mcopy@[,.]) NB. inserts from right
 agl=:rskew@(lskew@mcopy@[,.]) NB. inserts from left
 rskew=:i.@-@# |.&> <"1 NB. right skew
 lskew=:i.@# |.&> <"1 NB. left skew
 mcopy=:$~ (,~ >:)@# NB. multiple copies

 perms=.4 :'~.x{.&.|: Llist y' NB. permuttions of r
from n

�217

 coms=.mk #"1 i.@] NB. combinations of r
from n
mk=.dyad : 0
if. x=y do. r=.(1,y)$1 return. end.
if. x=1 do.r=.=i.y return. end.
r=.((x mk<:y),.0),((<:x)mk<:y),.1

)

�218

34. Combination Lists

Principal Topics : A. (anagram index / anagram), ! [(left)] (right) \ (prefix / infix), \.
(suffix / outfix), ; (raze) ~ (reflex) !: (foreign conjunction), trace, time

Like R.E.Boss (see Vector Vol.24 Nos. 2 &3, pp. 75-88 “Generating
Combinations in J efficiently on lists of combinations”) - because, like
him, I have been fascinated both by their patterns and by algorithms
which generate them. In both APL and J systematic permutation lists
are easier to generate than those for combinations. In J the former are
available directly through the primitive A. so that

 A.1 2 0
3

says that 1 2 0 is permutation 3 (in index origin 0) of i.3 in lexical
order, a process which is reversed by dyadic A. :

 3 A. 0 1 2
1 2 0

A full list of such permutations is given by e.g.

 (i.@! A. i.)3
0 1 2
0 2 1
1 0 2
1 2 0
2 0 1
2 1 0

Analogously with monadic A. any combination of r integers from
i.n can be put into one-to-one correspondence with the counting in-
tegers by adding appropriate values of kCr ,where the k’s are the inte-
gers in the combination and r=1,2,.. , e.g. for the combination 1 3 4, 1C1

+ 3C2 + 4C3 = 8. Unlike permutations, the value of n need not appear
in a combination, and so its number is independent of n. The follow-
ing verb thus gives unique combination numbers :

 ctoi=:monad : '+/(>:i.#y)!y' NB. combination to integer
 ctoi 1 3 4
8

A challenge is to produce itoc such that 8 itoc 3 is 1 3 4 .

The emphasis in R.E.Boss’s article is on the pragmatic matter of how
to generate combinations more efficiently using lines such as [:

�219

(,.&.><@:\.)/ >:@-~ [\i.@] . On deconstruction this shows
that orderly lists of combinations are a little closer to primitives in J
than might at first sight be imagined. The key is the combination of
box and stitch, suffix, for which a preliminary note on the ‘fix’ family of
adverbs is in order, namely prefix(\ monadic), suffix (\. monadic), in-
fix(\ dyadic) and outfix (\. dyadic). These have the general effect of
making objects larger either by increasing rank as in

 (,\i.5);(,\.i.5) NB. ravel prefix;ravel suffix
┌─────────┬─────────┐
│0 0 0 0 0│0 1 2 3 4│
│0 1 0 0 0│1 2 3 4 0│
│0 1 2 0 0│2 3 4 0 0│
│0 1 2 3 0│3 4 0 0 0│
│0 1 2 3 4│4 0 0 0 0│
└─────────┴─────────┘

or by repetition :

 <\.i.5 NB. box suffix
┌─────────┬───────┬─────┬───┬─┐
│0 1 2 3 4│1 2 3 4│2 3 4│3 4│4│
└─────────┴───────┴─────┴───┴─┘

The dyadic form infix delivers overlapping x-lists and outfix delivers
the result of progressively removing them :

 (2,\i.5);(2,\.i.5)
┌───┬─────┐
│0 1│2 3 4│
│1 2│0 3 4│
│2 3│0 1 4│
│3 4│0 1 2│
└───┴─────┘

The dyadic form infix delivers overlapping x-lists and outfix delivers
the result of progressively removing them. An informal rule is that
without dots (that is prefix and infix) things proceed from the left, with
dots they do so from the right.

Combinations

A deconstruction of comb2 in [1] for the orderly listing of combina-
tions begins with

 |:3 ,\i. 6 NB. dyadic infix
0 1 2 3
1 2 3 4
2 3 4 5

�220

Apply box-ravel suffix to the final row above :

 <@,\.2 3 4 5
┌───────┬─────┬───┬─┐
│2 3 4 5│3 4 5│4 5│5│
└───────┴─────┴───┴─┘

and then stitch the numbers in the penultimate row on an item by
item basis :

 1 2 3 4 ,.each<@,\.2 3 4 5
┌───┬───┬───┬───┐
│1 2│2 3│3 4│4 5│
│1 3│2 4│3 5│ │
│1 4│2 5│ │ │
│1 5│ │ │ │
└───┴───┴───┴───┘

Call this form of stitching Stitch with an upper case S to distinguish
it from the name of the primitive stitch :

 Stitch=.,.each <@;\.

so that the preceding display is obtained as

 1 2 3 4 Stitch 2 3 4 5

By applying this successively to the columns of 3 ,\i.6 , every-
thing is in place to write a generalized verb for generating combina-
tions of x from y. (The name comb2 is chosen because this is the
technique described by that name in Boss’s article.)

 comb2=:dyad : 'z=.Stitch/|:x,\i.y'
 3 comb2 6
┌─────┬─────┬─────┬─────┐
│0 1 2│1 2 3│2 3 4│3 4 5│
│0 1 3│1 2 4│2 3 5│ │
│0 1 4│1 2 5│2 4 5│ │
│0 1 5│1 3 4│ │ │
│0 2 3│1 3 5│ │ │
│0 2 4│1 4 5│ │ │
│0 2 5│ │ │ │
│0 3 4│ │ │ │
│0 3 5│ │ │ │
│0 4 5│ │ │ │
└─────┴─────┴─────┴─────┘

�221

A final ; (raze) could be use to transform the above into normal un-
boxed lists – retaining the boxes both helps appreciation of the struc-
ture, and also reduces the number of print lines required.

The integer representations of the combination list 3 comb2 6 in
the order given above are

 ;ctoi each<"1 ;3 comb2 6
0 1 4 10 2 5 11 7 13 16 3 6 12 8 14 17 9 15 18 19

which shows that combinations generated by comb2 are not in their
‘natural’ order.

The boxed result of comb2 suggests that reduction could equally well
have been applied from the right rather than the left by repeated use
of the primitive verb reverse :.

 comb=.dyad : 'z=.|."1 each Stitch/|.|."1 |: x ,\ i. y'
 3 comb 6
┌─────┬─────┬─────┬─────┐
│3 4 5│2 3 4│1 2 3│0 1 2│
│2 4 5│1 3 4│0 2 3│ │
│1 4 5│0 3 4│0 1 3│ │
│0 4 5│1 2 4│ │ │
│2 3 5│0 2 4│ │ │
│1 3 5│0 1 4│ │ │
│0 3 5│ │ │ │
│1 2 5│ │ │ │
│0 2 5│ │ │ │
│0 1 5│ │ │ │
└─────┴─────┴─────┴─────┘

As a bonus comb delivers the combination list in reverse counting
order :

 ;ctoi each<"1 ;3 comb 6
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Relationship to the Pascal Triangle

The number of boxes in r comb n is one more than d=.n-r and
the numbers of combinations in the various boxes are directly deriv-
able from the Pascal Triangle whose first few numbers are :

�222

 !/~i.10
1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9
0 0 1 3 6 10 15 21 28 36
0 0 0 1 4 10 20 35 56 84
0 0 0 0 1 5 15 35 70 126
0 0 0 0 0 1 6 21 56 126
0 0 0 0 0 0 1 7 28 84
0 0 0 0 0 0 0 1 8 36
0 0 0 0 0 0 0 0 1 9
0 0 0 0 0 0 0 0 0 1

3 comb2 6 and 3 comb 6 both consist of 20 combinations dis-
played in 4 boxes, the numbers of combinations in which are obtained
from the right as the first four non-zero items in row 2 counting in
origin 0. More generally r comb n has d+1 boxes in which the
numbers of combinations are given by the first d+1 non-zero integers
in row r-1. For example for 6 comb 9 read a total of 84 combina-
tions from the Pascal triangle, then go one up along the diagonal and
read 1+6+21+56 along the row.

When r is large relative to n it is more efficient to use complementary
combinations as suggested by the symmetry of the Pascal triangle, for
example

 time=.6!:2
 time each '2 comb 55';'53 comb2 55'
┌───────────┬─────────┐
│0.000388038│0.0130343│
└───────────┴─────────┘
 time '(<i.55)-."1 each 2 comb 55'
0.00245115

Defining an itoc verb

�223

This challenge stated earlier requires the delivery of a unique combi-
nation, given an r and an integer i . If n is also given i must be in
the range 0 .. nCr -1. To do this, first find the largest k such that kCr
does not exceed i. Subtract kCr from i and carry on repeating this
process for (i- kCr) and (r – 1). For example to find combination
number 8 of 3 comb n, 5C3 = 10 which exceeds 8, but 4C3 = 4 does not,
so select 4 as rightmost element. 8 – 4 = 4 which exceeds 3C2, so cate-
nate 3 to the left of 4. 4 – 3 = 1 which is less than 2C1 but equals 1C1,
so that the final digit is 1 and the required combination is 1 3 4. Here
is this process expressed in J :

 lgstk=.dyad :0
i=.<:y NB. increase k up to lgst y!k <x
while. x>: y!>:i do. i=.>:i end.
)
 itoc=.dyad :0
x=.x-y!r=.x lgstk y
while. y>1 do.
 y=.<:y NB. decrement y
 r=.(x lgstk y),r NB. catenate new value to left of r
 x=.x-y!{.r end. r NB. reduce x for next iteration
)
 8 itoc 3
1 3 4

Another Iterative Algorithm

comb and comb2 are not the only methods for constructing combina-
tion lists. For example [1] starts by describing another such algo-
rithm, and without worrying too much about the J details, tracing the
iterative steps can be used to illustrate how alternative techniques
reach the same goal by different routes.

 trace=.monad : 'y(1!:2)2'
 combi=.dyad : 0 NB. d is n-r for any given nCr
k=. i.>:d=.y-x NB. k is a list of integers
z=.(d$<i.0 0),<i.1 0 NB. initially z is d+1 empty boxes
for_j. i.x do. NB. loop thru items of i.x
trace z=. k Stitch >:each z end.
)
 t=.3 combi 6
┌─┬─┬─┬─┐
│0│1│2│3│
└─┴─┴─┴─┘
┌───┬───┬───┬───┐
│0 1│1 2│2 3│3 4│
│0 2│1 3│2 4│ │
│0 3│1 4│ │ │
│0 4│ │ │ │

�224

└───┴───┴───┴───┘
┌─────┬─────┬─────┬─────┐
│0 1 2│1 2 3│2 3 4│3 4 5│
│0 1 3│1 2 4│2 3 5│ │
│0 1 4│1 2 5│2 4 5│ │
│0 1 5│1 3 4│ │ │
│0 2 3│1 3 5│ │ │
│0 2 4│1 4 5│ │ │
│0 2 5│ │ │ │
│0 3 4│ │ │ │
│0 3 5│ │ │ │
│0 4 5│ │ │ │
└─────┴─────┴─────┴─────┘

Other methods are described in E #33 (“Perming and Combing”).
The relative efficiencies of algorithms are parameter dependent. After
removing trace from combi the following cases were tested infor-
mally :

 time each '9 comb 23';'9 comb2 23';'9 combi 23'
┌────────┬────────┬────────┐
│0.251543│0.173648│0.199808│
└────────┴────────┴────────┘

(n.b. combi had the trace removed for fair comparison)

Code Summary
 ctoi=:monad : '+/(>:i.#y)!y' NB. combination to integer
 Stitch=.,.each <@;\. NB. extended stitch
 comb2=:dyad : 'z=.Stitch/|:x,\i.y' NB. list of combinations
 comb=.dyad : 'z=.|."1 each Stitch/|.|."1 |: x ,\ i. y'
 time=.6!:2 NB. timing J expressions

 itoc=.dyad :0 NB. integer to combination
x=.x-y!r=.x lgstk y
while. y>1 do.
 y=.<:y NB. decrement y
 r=.(x lgstk y),r NB. catenate new value to left of r
 x=.x-y!{.r end. r NB. reduce x for next iteration
)
 lgstk=.dyad :0
i=.<:y NB. increase k up to lgst y!k <x
while. x>: y!>:i do. i=.>:i end.
)
 trace=.monad : 'y(1!:2)2'

 combi=.dyad : 0 NB. d is n-r for any given nCr
k=. i.>:d=.y-x NB. k is a list of integers
z=.(d$<i.0 0),<i.1 0 NB. initially z is d+1 empty boxes
for_j. i.x do. NB. loop thru items of i.x
trace z=. k Stitch >:each z end.
)

�225

�226

35. How many Obtuse angled triangles are
there?

 Principal Topics : ?. (roll) o. (circle functions) \: (grade down) ~ (reflex), simula-
tion, random numbers, random angles, accept-reject technique

In the world, that is. Lots, I know, but let me ask rather what propor-
tion of all triangles in the world are obtuse-angled? Since any two of
the angles, say a and b, of a triangle can be determined independently,
the every possible triangle corresponds to a point within the large
right-angled triangle in the diagram below
 b

 180o

 90o

 a
 90o 180o

Acute-angled triangles must have a+b>90o and so their points all lie
within the inner triangle, from which it follows that 75% of all trian-
gles are obtuse-angled. Well let’s ask J and see what he/she/it says.
Assume that a point is represented by a 2-list of numbers such as 4 7.
The verb py calculates the square of the distance between two such
points

 py=.(+/@:*:@:-/)"2 NB. square of dist between 2 points
 py 4 7,:1 3 NB. (3,4,5) triangle
25

A triangle is a 3-list of 2-lists (points). To calculate the squares of the
three sides, take the points in pairs and apply py :

 sides=.(0 1;1 2;0 2)&({every)@<
]t=.3 2$_3 _2 _1 6 0 2
_3 _2
_1 6
 0 2
 <"2 sides t
┌─────┬────┬─────┐
│_3 _2│_1 6│_3 _2│
│_1 6│ 0 2│ 0 2│

�227

└─────┴────┴─────┘

A triangle is obtuse if the square of the largest side exceeds the sum of
the squares of the other two, so define ifbigone which uses reflexive
grade down to test whether the largest of a set of numbers is greater
than the sum of all the others

 ifbigone=.({.>+/@}.)@\:~ NB. 1 if biggest > +/rest
 ifbigone 49 43 100
1

This leads naturally to

 obtest=.ifbigone@:((py"2)@sides) NB. 1 if obtuse
 obtest t
1

To generate random triangles centred on the origin and in the range (-
y,+y), construct lists like t using an integer which determines coordi-
nate resolution. This should be big enough to minimise the inaccura-
cy arising from the fact that ? returns integers :

 randtri1=.-~?@>:@+:@(3 2&$)
 randtri1 100
 51 29
 36 58
_77 58

Everything is now in place to test a single random triangle with given
resolution :

 trial1=.obtest@randtri1 NB. 1 if obtuse
 trial1 100
1

so the triangle in this particular trial was obtuse-angled. Here are a
thousand trials at a higher resolution :

 +/trial1 each 1000$10000
722

... and a few more :

 +/trial1 every 1000$10000
720
 +/trial1 every 1000$10000
723
 +/trial1 every 1000$10000
748

�228

By now you should be getting a feel for where the true value lies,
somewhere between 72 and 75 per cent. Another way to conduct the
simulation is to generate random angles rather than random sides.
Start by writing a verb which generates a number of random values
(angles) between 0 and 2π :

 rnd=.(%~?)@(1e9&(#~)) NB. y rand uniform nos. in (0,1)
 pi2=.o.2 NB. pi/2=6.28319
 randang=.(*&pi2)@rnd NB. random angles in radians
 randang 3
5.66985 3.78605 2.69206

The sines and cosines of each angle generate a point within the unit
circle, and so random angles can be transformed to random points
within the unit circle by

 cs=.o.~/&2 1@randang
 cs 3
 0.930605 _0.366025
 _0.5352 _0.844725
_0.212795 0.977097

and then to random triangles in a circle with radius y by

 randtri2=.monad :'y*cs 3'
 randtri2 100
 99.0668 13.6299
_66.3328 _74.8329
_22.4049 _97.4578

All is in place for determining whether these triangles are obtuse or
not, and for doing some more experiments

 trial2=.obtest@randtri2
 +/trial2 every 1000$10000
775
 +/trial2 every 1000$10000
739
 +/trial2 every 1000$10000
744

A little bit higher than our previous estimate, but close to the theoreti-
cal 75%. Maybe sampling from a square frame includes dispropor-
tionately ‘skinny’ acute-angled triangles which have one vertex
tucked into one of the far corners. To test this conjecture, sample the
coordinates within a square, but accept only those triangles all of
whose points lie inside the largest inscribed circle. The final line of
randtri3 embodies recursively the ‘accept-reject’ technique which is
common in simulation practice.

�229

 ssq=.+/@:*: NB. sum of squares
 randtri3=.monad :0
r=.randtri1 y
while. +./(*:y)<ssq"1 r do.
 r=.randtri3 y end.
)

As before everything is in place for the next experiment :

 trial3=.obtest@randtri3
 +/trial3 every 1000$10000
733
 +/trial3 every 1000$10000
721
 +/trial3 every 1000$10000
718

Not much different from trial1 – ah well, that’s one conjecture gone
for a bang!

Another accept-reject technique for random triangles consists of gen-
erating the values of three random sides in order, and rejecting the
result if the sides fail to form a triangle because one of them is bigger
than the sum of the other two :

 randtri4=.monad : 0
r=.>:?3$y
while. ifbigone r do.
 r=.randtri4 y end.
)

Since randtri4 returns lengths of sides the obtuseness test is applied
to the squares of the sides :

 trial4=.ifbigone@:*:@randtri4
 +/trial4 every 1000$10000
561
 +/trial4 every 1000$10000
564
 +/trial4 every 1000$10000
566

Seems I’ve mislaid nearly 20% of the world’s obtuse-angled triangles
(careless of me!) Another possibility based on sides is to choose two
sides at random, say these were 6 and 10. The range of acceptable
values for a third side is then from 10-6 to 10+6, or more generally
from m-n to m+n where m and n are the lengths of the sides in de-
creasing order. The third side can then be taken as (m-n) plus a num-
ber drawn at random from 0 to 2n:

�230

 choose2=.\:~@(? , ?) NB. two sides at random
 third=.,-/+?@>:@+:@{: NB. join feasible random 3rd side
 rantri5=.third@:choose2
 trial5=.ifbigone@:*:@rantri5
 +/trial5 every 1000$10000
751
 +/trial5 every 1000$10000
746

That’s better, but let’s get back to the original question . How many
obtuse-angled triangles did I say there were? ...

Code Summary
 trial1=.obtest@randtri1 NB. first random trial
 obtest=.ifbigone@:((py"2)@sides) NB. 1 if obtuse
 ifbigone=.({.>+/@}.)@\:~ NB. 1 if biggest > +/rest
 py=.(+/@:*:@:-/)"2 NB. sq of dist between 2 pts
 sides=.(0 1;1 2;0 2)&({every)@< NB. sides from coords
 randtri1=.-~?@>:@+:@(3 2&$) NB.
 trial2=.obtest@randtri2 NB. second random trial
 randtri2=.monad :'y*cs 3'
 cs=.o.~/&2 1@randang NB. cos/sin of rand angle
 randang=.(*&pi2)@rnd NB. random angles in radians
 pi2=.o.2 NB. pi/2=6.28319
 rnd=.(%~?)@(1e9&(#~)) NB. y rand uniform (0,1)nos.
 trial3=.obtest@randtri3 NB. third random trial

 randtri3=.monad :0 NB. accept-reject technique
r=.randtri1 y
while. +./(*:y)<ssq"1 r do.
 r=.randtri3 y end.
)
 ssq=.+/@:*: NB. sum of squares
 trial4=.ifbigone@:*:@randtri4 NB. fourth random trial

 randtri4=.monad : 0 NB. accept-reject technique
r=.>:?3$y
while. ifbigone r do.
 r=.randtri4 y end.
)
 trial5=.ifbigone@:*:@rantri5 NB. fifth random trial
 rantri5=.third@:choose2
 third=.,-/+?@>:@+:@{: NB. join feasible third side
 choose2=.\:~@(? , ?) NB. two sides at random

�231

mailto:trial2=.obtest@randtri2
mailto:trial3=.obtest@randtri3
mailto:ssq=.+/@:*
mailto:trial4=.ifbigone@:*:@randtri4
mailto:trial5=.ifbigone@:*:@rantri5
mailto:rantri5=.third@:choose2

36. …the stylish part of Vector
Principal Topics : ? (roll/deal), a. (alphabet), ~(passive conjunction) E. (member of
interval) # (tally) bridge hook, simulation, random words, random sentences

Browsing through back numbers the other day, it struck me that in spite of
being in its eighteenth year, Vector has won no awards for outstanding liter-
ary merit, has received no Booker prize nominations, and features in no uni-
versity reading lists for exemplary 20th century English prose. This situation
demands remedy, and while the urge burned hot within me, I resolved to
take some immediately necessary steps. I had heard recently that if one is
allowed to oversee a couple of million monkeys equipped with an equal
number of keyboards, it’s a near cert that one of the little brutes will eventu-
ally outperform Shakespeare. So with my computer thus dedicated to mon-
key business, here is what emerged.

Start with the distinction between 7?10 and 7(?@#)10 which give 7 ran-
dom numbers from the set 0,.., 9 without and with repetition respectively. In
the former case the left argument must be no greater than the right. The lat-
ter phrase uses copy(dyadic #) to replicate the 10 seven times prior to rolling.

It is easy using indexing and tally(monadic #) to extend randomisa-
tion to lists such as

 lets=.(97+i.26){a. NB. lower case alphabetic chars.
 lets
abcdefghijklmnopqrstuvwxyz

To obtain a single random letter from lets say

 ran=.{~?@#
 ran lets
j

Suppose that you want the number of random numbers in a selection to
be random. Two applications of ? are needed :

 10(?~?)7
3 7 6 8 9

The bridge hook 10(?~?)7 means (?7)? 10 that is, the roles of
the right and left arguments have been reversed by using the passive
conjunction. Because there can be no repetitions, the right argument
should be no greater than the left, since, depending on the luck of the
draw you might hit

 7(?~?)10
|domain error: q NB. looks like this ? 10 was >7
| 7 (q~q)10

�232

If you want to exclude the possibility of an empty selection use 10(?
~q)7 where

 q=.>:@? NB. random integers from 1 to y
 6 q 7 NB. deal 6 random ints. from 1 to 7
6 2 4 7 5 1

A nice little palindromic fork #(?~?)# delivers the indices of a ran-
dom selection of letters :

 (#(?~?)#)lets
6 17 20 10 15 8 9 22 13 18 19 23 7 24

and the addition of from makes this into a random selection from the
list

 ({~#(?~?)#)lets
xprhwkf

In order to obtain the indices of, say, ten random letters with repetition
say :

 (10&(?@#)@#)lets
10 15 19 22 8 4 19 18 22 1

and to convert these to indices use from as before :

 ({~10&(?@#)@#)lets
dpaxjnighg

The problem with this as a technique for random words is that words
like this are not very beautiful and are almost certain to be unpro-
nounceable. One possible strategy to overcome this might be to use
as weights a list of rough relative frequencies of occurrence of the var-
ious letters in English :

 fr=.8 2 3 4 12 2 2 6 8 1 1 4 3 8 8 2 0 6 8 8 3 1 2 1 2 1
 #fr
26
 +/fr
106

The 16th letter ‘q’ has been given the value of 0 on account of its tire-
some requirement to be followed by a ‘u’, a matter which can com-
fortably be left to a later refinement. A weighted letter list is then

 wlets=.fr#lets NB. weighted letters
 #wlets NB. sum of weights
106

�233

 ({~10&(?@#)@#)wlets
iedorthgwh
 ({~10&(?@#)@#)wlets
doakidsoas

At least the words look vaguely like words, and some (but only some)
are just about pronounceable! Somewhat greater control of the pat-
terns, as opposed to the mere frequencies, of vowels and consonants is
desirable, so weight the vowels and the consonants separately:

 wv=.2 3 2 2 1#'aeiou'
 wc=.2 3 4 2 2 6 1 1 4 3 8 2 0 6 8 8 1 2 1 2 1#
 (lets-.'aeiou')

Next determine some vowel/consonant patterns, and randomize each
component in turn. Since a random drawing is made from each ele-
ment of the letter pattern it is expedient to define

 rand=.ran every
 wpat=.wc;wv;wc;wv;wc
 rand wpat
terel
 wpat1=.wv;wc;wc;wv;wc
 rand wpat1
ettum

The patterns can be extended using $ to allow for longer words, and
at the same time the occurrence of unpleasing single letter words can
be inhibited by using

 rint2=.>:@>:@? NB. random integers from 2 to y+1

which is used to provide a random argument for take:

 (rint2 12){.rand 12$wpat NB. word of at most 13 lets
pedetnebec

Everything is now in place to define a verb to produce random words:

 rw=.(rint2@[){.rand@$
 12 rw wpat
selimnehekja
 12 rw wpat1
apsaku
 12 rw wv;wc
eromoloner

Prefixes and suffixes help, and prototype lists of each are built into the
verbs :

 pre=.(4#<''),'ex';'un';'in';'pre'

�234

 suf=.(3#<''),'est';'ist';'s';'ed';'ism'

following which :

 rword=.dyad :'(>ran pre),(x rw y),>ran suf'
 10 rword wpat
johism
 10 rword wpat1
apmopuphed

What about random sentences? Different strategies are available. One
possibility is simply to string along a random number of random
words with as left argument the maximum word length before inflec-
tions, and the right argument the maximum sentence length :

 rsent1=.dyad :0
s=.'' [i=.0 [lim=.?y
while.i<lim do.
 s=.s,(x rword wpat),' ' [i=.i+1
end.
)
 6 rsent1 9
intoto sots labist nime prediwoft extatotced sudirts
 7 rsent1 10
undusatbo presalos

and of course the global variable wpat is also available for tweaking.
A bit short in any attributable meaning (my spellcheck also sees red!)
but the likes of Kenneth Branagh might be able to put it across for a
fee!

Another view is that a random sentence is a random drawing from an
available list of words in the same way that a random word is a ran-
dom drawing from an available random list of letters. In the case of a
sentence the list is called a vocabulary, which can be divided into sep-
arate sub-lists of, for example, nouns, verbs, and adjs. Only the
start of the definitions of these are shown, the rest should become ap-
parent as matters proceed, and no doubt will provide invaluable
physcoanalyitic evidence for future diagnosis of my various personal-
ity disorders :

 nouns=.'cats';'degree';'philosophy'; ..
 verbs=.'hopes';'keeps';'flies';'steps'; ..
 adjs=.'great';'lean';'fat';'blue'; ..

Define a sentence pattern analogous to the consonant/vowel patterns :

 spat=.(<adjs),(<nouns),(<verbs),(<adjs),(<nouns)

�235

Parts of speech patterns are analogous to the vowel/consonant pattern
for words :

 rand spat
┌────┬──────────┬─────┬───┬──────┐
│blue│philosophy│steps│fat│degree│
└────┴──────────┴─────┴───┴──────┘

Add a standard idiom for removing blanks :

 rdb=.#~-.@(' '&E.)
 rdb,(>rand spat),.' '
empty boat eats old feet

and here is the basis for some random sentences :

 rsent2=.rdb@,@:(>@(,&>&' '@:ran every))
 rsent2 spat
lean tradition treads creepy happiness

As with letter patterns, different parts of speech patterns add variety :

 spat1=.(<adjs),(<adjs),(<nouns),(<verbs),(<nouns)
 rsent2 spat1
sneaky greek catalyst steps faith
 rsent2 (<adj),(<nouns),(<verbs),(<nouns),(<verbs)
nice faith mates hope castigates

Chomsky, thou should’st be living at this hour!

Of course things are still in the early stages but there are enough con-
trols in place to make incremental refinements, and I think I can claim
to have given my monkeys a head start. Progress so far is thus
promising, and I confidently expect Vector to be awarded a Nobel
prize for Literature before too long. Perhaps our friends in the
Swedish APL Association could show the spirit of brotherliness and
pull whatever strings are necessary to accelerate this outcome.

And in case you are concerned that I may nothing left to say in future
articles, don’t worry, I have six million of them or so already written.
And what is more they are all completely fresh, not a single hint of
repetition anywhere!

Code Summary

The following are of general usefulness in creating random text
 lets=.(97+i.26){a. NB. lower case alphabetic chars.
 ran=.{~?@# NB. single random character
 rand=.ran every NB. random drawings from patterns

�236

mailto:ran=.%257B~?@%2523

Thereafter everyone so engaged will have their own style, and so the
sequences below for first random words, and then random sentences
are entirely personal!
 rword=.dyad :’(>ran pre),(x rw y),>ran suf NB. random word
 rw=.(rint2@[){.rand@$
 rint2=.>:@>:@? NB. random integers from 2 to y+1
 pre=.(4#<''),'ex';'un';'in';'pre' NB. prefix
 suf=.(3#<''),'est';'ist';'s';'ed';'ism' NB. suffix
 wpat=.wc;wv;wc;wv;wc NB. word pattern; wc=cons, wv=vowel
 wv=.2 3 2 2 1#'aeiou'
 wc=.2 3 4 2 2 6 1 1 4 3 8 2 0 6 8 8 1 2 1 2
1#(lets-.'aeiou')

 rsent1=.dyad :0 NB. random sentence style 1
s=.'' [i=.0 [lim=.?y
while.i<lim do.
 s=.s,(x rword wpat),' ' [i=.i+1
end.
)
 rsent2=.rdb@,@:(>@(,&>&' '@:rand)) NB. rand sentence style 2
 rdb=.#~-.@(' '&E.) NB. remove blanks
 spat=.(<adjs),(<nouns),(<verbs),(<adjs),(<nouns)
 nouns=.'cats';'degree';'philosophy'; ..
 verbs=.'hopes';'keeps';'flies';'steps'; ..
 adjs=.'great';'lean';'fat';'blue'; ..

�237

mailto:rint2@%255B)%257B.rand@$

37. Greed : patterns for the collapse of Western
capitalism

Principal Topics : t. (Taylor coefficients) p. (polynomial) ` (gerund), @. (agenda) {:
(tail) }: (curtail) generating functions, binomial theorem, Fibonacci numbers, par-
titioning, recursion, greedy algorithm, distance tables

In a communication following “Fifty Ways to tell a Fib”, (see E #42) Ken
Iverson pointed out that

is a generating function for the Fibonacci numbers which in J terms is

 fibfn=.0 1&p. % 1 _1 _1&p.

Rewriting the generating function as

!

the binomial theorem gives the series expansion

 ! + …

Write the coefficients of the various binomial coefficients as rows of a
table :

x x2 x3 x4 x5 x6 x7 x8 x9

1
1 1

1 2 1
 1 3 3 1
 1 4 6 4 1
 1 5 10 10 5
 ….. ..

Adding down the columns should make it clear how the Fibonacci
coefficients arise. But why do all this work when J will do it for you
using the t. adverb to give the best fitting polynomial of given degree,
say the 13th. ?:

 fibfn t. i.14
0 1 1 2 3 5 8 13 21 34 55 89 144 233

which has the same result as the expression in E #42 :

 f=.(,+/@(_2&{.))^:12(0 1)

)1(2xx
x

−−

1))1(1(−+− xxx

3322)1()1()1(1(xxxxxxx ++++++

�238

Yet another interesting Fibonacci fact is that every positive integer can
be written as the sum of a series of non-consecutive Fibonacci num-
bers, non-consecutive because every sum of a consecutive pair can
immediately be replaced by the next higher Fibonacci number – this is
the fundamental Fibonacci property. To obtain such a sum, start
with a general verb which transforms any given number k into the
‘highest value below’ in a numeric list :

 hvb=.>./ @(>:#]) NB. highest value below
 100 hvb f
89

Define

 gap=.-hvb&f
 gap 100
11

Both the 89 and the 11 are required, the first to be stored, and the sec-
ond to be processed further, so define a verb which partitions an inte-
ger in this fashion :

 Fgap=.(hvb,[-hvb)&f NB. partition into fib+gap
 Fgap 100
89 11

Using & makes f into a pseudo-constant which would be changed
only if a shorter or longer Fibonacci series was required. Also, the
double computation of the verb hvb in Fgap is inherently displeas-
ing – this can be circumvented by rewriting the slightly less transpar-
ent verb :

 Fptn=.{:@(>:#(],.-)) NB. Fibonacci partition
 100 Fptn f
89 11

following which Fsum remembers the left hand part of the list and
processes the gap on the right :

 Fsum=.}:,Fptn&f@{: NB. single step process
 Fsum 89 11
89 8 3

8 and 3 are both Fibonacci numbers, and so 100 = 89 + 8 + 3.

This process can be repeated as long as necessary using a recursive
verb

 Fsumr=.($:@Fsum)`]@.(e.&f@{:)

�239

 Fsumr 100
89 8 3

which says in effect “go on reducing the gap until you reach a Fi-
bonacci number”.

100 (= 89 + 8 + 3) can also be expressed in a binary form in which a 1 repre-
sents an integer in the reverse of the Fibonacci sequence

 Fnum=.|.@(2&}.@(f&e.)@Fsumr)
 Fnum 100
0 0 1 0 0 0 0 1 0 1 0 0

call such numbers Finary numbers, say - they will be revisited later.

A characteristic of the above algorithm is that at every step the Fi-
bonacci number giving the smallest gap was grabbed, a characteristic
of greedy behaviour as exemplified alike by small boys sharing cakes
and fat-cat directors raiding their company takings.

The term greedy algorithm is used generically to describe a range of
algorithms which share this general characteristic. It arises sufficient-
ly often to merit description as a pattern, a word which has become a
technical term in the vocabulary of Object Oriented programming to
mean any common way of doing things - more general than an idiom
or a phrase, but not large enough to be considered as a piece of soft-
ware architecture.

Patterns seems a good way of describing general techniques which
emerge intuitively in J programming through recurrent use and rein-
vention. For example, the greedy technique apparent in Fsumr
above might also have emerged in programming a distance reducing
route starting from a given town and visiting all other towns repre-
sented in a given distance table. To be specific suppose that a dis-
tance table for four towns is

 0 1 5 3
 1 0 7 6
 5 7 0 10

 3 6 10 0

The routing problem is not altered by subtracting all the non-zero en-
tries in the table from 11 and making the objective maximization
rather than minimization. So define m as

 0 10 6 8
10 0 4 5

�240

 6 4 0 1
 8 5 1 0

Starting at town 0, initial greed says find the route which gives the
highest reward from town 0. This is the route to town 1, from which
the next greedy step is to go from town 1 to town 3 since 5>4, and the
route is completed by visiting 2, thereby adding another 1 to the re-
ward, a total of 16.

To preserve indexing it is prudent not to reduce the distance table at
each recursive step but rather to reduce the reward to 0 for steps
which proceed to towns already visited. Thus if the ‘route so far’ is 0
2 1, the next town is identified by its index as the one offering the
highest reward in row 1 after avoiding revisits, which requires that
items 0 and 2 in row 1 must first be amended to 0 by 0(0 2)}1{m.
The index of the next town is generated greedily by

 imax=.i.>./ NB. index of maximum value
 nextg=.dyad :’imax 0(}:x)}({:x){y’
 NB. next town in greedy chain

 0 2 1 nextg m
3

As with f above, a distance table would be unlikely to have frequent
changes and so it makes sense to build it in as a pseudo-constant m :

 optnextg=.nextg&m NB. row index of optimum next town
 optnextg 0 2 1
3
 optnextgr=.]`($:@(],optnextg))@.(4&~:@#)
 optnextg r 0
0 1 3 2

A note should be made that a change in the distance matrix might re-
quire a change in the constant 4.

There is an important distinction between these two manifestations of
greed. In the first, the representation of a positive integer as a sum of
Fibonacci numbers can be proved to be unique, and so any algorith-
mic pattern would produce the same result. This is not true in the sec-
ond example for which the route 0 3 2 1 has the value of 17, demon-
strating that greed is not always the best policy!

It should also be stressed that it is recursion in the presence of maxi-
mum which makes these patterns greedy, not recursion alone. Simple
recursion is a generalisation of the greedy pattern. This can be illus-

�241

trated by venturing even further into Fibo-land and constructing a
Finary adder. First assume that an ordinary binary adder is available :

 badd=.+&.#. NB. binary addition
 1 0 1 badd 1 0 0
1 0 0 1

The main difference between binary and Finary numbers is that Fi-
nary numbers never contain consecutive 1s, and so if two consecutive
1s were ever to turn up in an intermediate calculation these would be
immediately resolved into a single 1 at the level of the next higher
digit. A verb to detect such a state of affairs is :

 find11=.0&,@(2&(*./\)) NB. find sublist 1 1
 b NB. representation of 148
1 0 1 0 1 1 0 1 0 1
 find11 b
0 0 0 0 0 1 0 0 0 0

Simple binary addition of these two lists makes the necessary adjust-
ment :

 rep11=.badd find11 NB. replace with 1 0 0
 rep11 b NB. representation of 148
1 0 1 1 0 0 0 1 0 1

Having made one such replacement it is possible that, as in the case
above, the new 1 produces a further pair of consecutive 1s, which in
turn may generate a ripple effect through the whole Finary number.
Adopting the recursive pattern again, define :

 rep11r=.]`($:@rep11)@.(+./@find11)
 rep11r b NB. representation of 148
1 0 0 0 0 0 0 0 1 0 1

Enough is now in place for a verb to add 1 to a given Finary number :

 Fadd1=.rep11r@(1&badd)
 Fadd1 1 0 1 0 1 NB. add 1 to Finary 12
1 0 0 0 0 0

To perform a general Finary addition, e.g. 1 0 1 0 Fplus 1 0 0 0 0 1, ob-
serve that the recursive pattern requires that the data is in the form of
a single argument. One technique in the present case is to keep on
applying Fadd1 to one of the summands until the value in a counter
matches the other, hence a suitable data format for the above sum is

 u=.0;1 0 1 0;1 0 0 0 0 1 NB. Finary 0(cntr),7,14

�242

and a single step of the addition process is :

 Fplus1=.Fadd1&.>@(2&{.),{: NB. Add 1 to each of 0,7
 Fplus1 u
┌─┬─────────┬───────────┐
│1│1 0 0 0 0│1 0 0 0 0 1│ NB. Finary 1(cntr),8,14
└─┴─────────┴───────────┘

Applying the general recursive pattern yet again leads to

 Fplus=.($:@Fplus1)`(>@(1&{))@.({.-:{:)
 Fplus u
1 0 0 0 0 0 0

The problems above may in themselves be academic, but the use of
patterns themselves is a highly practical programming matter. Using
patterns is matter of design; in the examples described above, the
generic pattern can be informally described as fnr = fnr (fn), that is, a
recursive verb defined as “itself applied to the result of a matching
single step verb”. Many, although certainly not all, programming
problems at this level are susceptible to this design pattern. To use
such a pattern, three questions must have clear answers :
 1. Can I describe a single step verb whose result is the input to the
next step?
 2. How do I know when to stop the recursion?
 3. What do I want to happen when it does?

What happens below the level of fnr = fnr (fn), for example whether
code is tacit, explicit or a mixture, is a matter of programmer choice.
For example, in the last case, an iterative design might have led to an
implementation something like

 Fplus=.dyad :0
s=.0 [r=.y
while.(-.s-:x) do.
r=.Fadd1 r [s=.Fadd1 s end.
 1 0 1 0 Fplus 1 0 0 0 0 1 NB. 7 + 14
1 0 0 0 0 0 0

Finally for those of you whose sensible habit is always to skip to the
end, thereby cutting out all the tedious stuff in the middle, this article
has been all about Fibonacci, patterns and greed, but the greatest of
these is … (reader to complete)

Code Summary
 fibfn=.0 1&p. % 1 _1 _1&p. NB. Fib nos by generating fn
 f=.(,+/@(_2&{.))^:12(0 1) NB. ditto by direct method

�243

 Fnum=.|.@(2&}.@(f&e.)@Fsumr)

Fsumr=.($:@Fsum)`]@.(e.&f@{:)
 NB. partitions integer into sum of Fibonacci numbers
 Fsum=.}:,Fptn&f@{: NB. single step process
 Fptn=.(hvb,[-hvb)&f NB. partition into fib+gap
 hvb=.>./ @(>:#]) NB. highest value below

Fplus=.($:@Fplus1)`(>@(1&{))@.({.-:{:) NB. addn of Finary nos
Fplus1=.Fadd1 each@(2&{.),{: NB. Add 1 to each
Fadd1=.rep11r@(1&badd)

 rep11r=.]`($:@rep11)@.(+./@find11)
 Fadd1=.rep11r@(1&badd)

 rep11=.badd find11
 badd=.+&.#. NB. binary addition
 find11=.0&,@(2&(*./\)) NB. find list 1 1

Greedy Algorithm applied to distance table
 optnextgr=.]`($:@(],optnextg))@.(4&~:@#)
 optnextg=.nextg&m NB. row index of optimum next town
 nextg=.dyad :’imax 0(}:x)}({:x){y’
 NB. next town in greedy chain
 imax=.i.>./ NB. index of maximum value

�244

mailto:EACH@(2&%257B.)
mailto:Fadd1=.rep11r@(1&badd)
mailto:+./@find11

38. Shortest Paths
Principal Topics: e. (member in) -: (match) ` (gerund) @. (agenda) networks,
nearest neighbour, symmetric networks, random networks, weighted graphs,
shortest path, critical path, slack, connectivity, reachability, feasibility, loops

Finding shortest paths through networks is a basic technique in graph
theory. Investigating these in J turns out to be a highly practical ap-
plication of the verb JE (standing for Join Each) described in E #4
(“Parallel joins”). JE performs scalarised joins, that it is a derivative
of append which behaves like a scalar verb with a result which is al-
ways a boxed list or a list of boxed lists.

 box=.]`<@.(-:>) NB. boxes if unboxed, else do nothing
 JE=.,each &box NB. scalarised join, results boxed

The following examples demonstrate how JE works :

 1 2 JE 3 4 5 NB. two lists, append and box
┌─────────┐
│1 2 3 4 5│
└─────────┘
 (1 2;4 5 6) JE 7 8 9 NB. cf. 1 2 + 3
┌─────────┬───────────┐
│1 2 7 8 9│4 5 6 7 8 9│
└─────────┴───────────┘
 1 2 JE 4 5;7 8 9 NB. cf. 1 + 2 3
┌───────┬─────────┐
│1 2 4 5│1 2 7 8 9│
└───────┴─────────┘
 (1 2;2 4 6) JE 4 5;7 8 9
┌───────┬───────────┐
│1 2 4 5│2 4 6 7 8 9│
└───────┴───────────┘ NB. cf. 1 2 + 3 4

To begin the search for shortest paths, it helps to be specific by using a
network in the form of a directed graph such as the following :

�245

 1 2

 0 3

 4 5

There are three reasonably obvious ways in which such a network can
be represented. First it can be represented as a list of 2-lists each of
which is a directed arc

 arcs=.0 1;0 3;0 4;1 4;2 4;3 0;3 1;3 5;4 5;5 2;5 4

or this can be compacted into a list of n ‘nearest neighbour’ lists
where n is the number of nodes :

 n1=.1 3 4;4;4;0 1 5;5;2 4

or thirdly it can be represented as a matrix in which unconnected
nodes are represented by _ :

]g1=.1(arcs)}6 6$_
_ 1 _ 1 1 _
_ _ _ _ 1 _
_ _ _ _ 1 _
1 1 _ _ _ 1
_ _ _ _ _ 1
_ _ 1 _ 1 _

If required the matrix in which unconnected nodes are represented by
0s is simply %g1.

The nearest neighbour form can be recovered from the matrix form by

 btoi=.# i.@# NB. binary to list of 1-positions
 mton=.(btoi@:%)each@<"1 NB. matrix to nst neighbour
 mton g1
┌─────┬─┬─┬─────┬─┬───┐
│1 3 4│4│4│0 1 5│5│2 4│
└─────┴─┴─┴─────┴─┴───┘

and the reverse transformation is :

 ntom=.monad :'1(;(i.n),each each y)}(n,n=.#y)$_'

�246

 NB. neighbour to matrix representation

The rationale for using _ to represent unconnected nodes is partly
visual, but more importantly, the following verb spm delivers the
shortest path matrix (that is, the matrix whose values are the lengths
of the shortest paths between all pairs of nodes) by using the ‘mini-
mum-dot-plus’ inner product applied using the power conjunction as
many times as there are nodes in the graph.

 spm=.monad : '<./y(<./ .+)^:(i.#y)y'
 spm g1
2 1 3 1 1 2
_ _ 3 _ 1 2
_ _ 3 _ 1 2
1 1 2 2 2 1
_ _ 2 _ 2 1
_ _ 1 _ 1 2

spm has the merit of working equally well for weighted graphs, that
is if the non-infinity values in the base matrix are path-lengths rather
than just ones.

 wts=.2 7 6 1 5 7 6 1 4 8 4
 h1=.wts(arcs)}6 6$0
 h1
0 9 0 7 6 0
0 0 0 0 11 0
0 0 0 0 5 0
7 6 0 0 0 1
0 0 0 0 0 4
0 0 8 0 4 0

 ind =. adverb : '(i.@$*x)@]'
 spm _(=&0 ind)}h1
14 2 15 7 3 7
 _ _ 13 _ 1 5
 _ _ 17 _ 5 9
 7 6 9 14 5 1
 _ _ 12 _ 8 4
 _ _ 8 _ 4 8

For testing purposes, a random network, y square with a density x is
obtainable by :

 randg=.dyad : '%(100*x)>?(y,y)$100'
 0.25 randg 8
_ _ _ _ _ 1 _ _
_ 1 1 _ _ 1 1 1
_ _ _ _ _ _ _ _
_ _ _ 1 1 1 _ 1
_ 1 _ _ 1 _ 1 _
_ 1 1 1 _ _ _ _
_ _ _ 1 _ 1 _ _

�247

1 _ _ _ _ _ _ 1

and a random weighted matrix with weights in the range 1 to 100 by

 randh=.dyad : '(*~:&_)(>:?(y,y)$100)(*&.%)x randg y'
 0.25 randh 8
 0 0 61 0 0 0 0 0
 0 0 0 0 0 0 0 50
65 53 0 0 96 4 0 0
60 21 0 0 0 0 0 3
 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 23
 0 0 0 0 40 0 0 0
44 0 0 0 0 0 84 0

If symmetry is a requirement a suitable random matrix is generated
by

 mksym=.(+|:) @ (*<:/~@(i.@#))
 %mksym% 0.6 randh 4
16 79 2 0
79 35 0 0
 2 0 7 14
 0 0 14 20

Before embarking on shortest path and critical paths routines, it is
sensible to test for their possible existence. The connectivity matrix (a
matrix which has a 1 for each pair of nodes for which a route exists) is
a straightforward derivative of spm.

 connected=.~:&_@spm
 connected g1
1 1 1 1 1 1
0 0 1 0 1 1
0 0 1 0 1 1
1 1 1 1 1 1
0 0 1 0 1 1
0 0 1 0 1 1

The list of lists of reachable nodes from each node in order is given by

 reachable=.btoi each@<"1@connected
]u=.reachable g1
┌───────────┬─────┬─────┬───────────┬─────┬─────┐
│0 1 2 3 4 5│2 4 5│2 4 5│0 1 2 3 4 5│2 4 5│2 4 5│
└───────────┴─────┴─────┴───────────┴─────┴─────┘

which can be expanded to a list of all possible journeys of which the
first few are demonstrated for

 feasible=.;@:((i.@#)(,each each)reachable)

�248

 12{.u=.feasible g1
┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
│0 0│0 1│0 2│0 3│0 4│0 5│1 2│1 4│1 5│2 2│2 4│2 5│
└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

ShtstPath below returns the actual shortest path between any sin-
gle pair of vertices of an unweighted graph . It begins with a line to
check that such a path exists in the first place

 ShtstPath=:dyad : 0
if._=(<y){spm x do.'no path' return.end.
r=.{.y [tgt=.{:y
while.(-.tgt e.tails r)do. r=.r extend x addnodes r end.
r=.>(tgt=tails r)#r
)
 tails=.{:every
 addnodes=.<@[rtoi each tails@]
 rtoi=.btoi@:(%@{~)
 extend=.;@:(JE"1 0 each)

 g1 ShtstPath 0 2
0 3 5 2
0 4 5 2

which can be speeded up by

 ShtstPath1=.dyad : 0
if._=(<y){spm x do.'no path' return.end.
p=.i.0 [r=.{.y ['src tgt'=.y NB. p=paths found
while.(-.tgt e.tails r)do. NB. r=paths ongoing
 r=.(r-.p)-.(tails p)e.src [p=.p,((tails r)e.tgt)#r
 r=.r extend x addnodes r end. NB. np=newpaths
r=.>(tgt=tails r)#r NB. reject incomplete paths
)
 g1 ShtstPath1 0 2
0 3 5 2
0 4 5 2

Next here is an algorithm which returns all paths between a pair of
nodes in an unweighted matrix :

 AllPaths=.dyad : 0
if._=(<y){spm x do.'no path' return.end.
p=.i.0 [r=.{.y ['src tgt'=.y NB. initialise loop
while.(0~:#r)do. NB. r = incomplete
paths
 r=.r-.p [p=.p,((tails r)e.tgt)#r NB. p = complete paths
 r=.r extend x addnodes r NB. add one node to
each r path
 r=.(#~((=&#~.)every))r NB. remove loops
end. p
)
 g1 AllPaths 0 2

�249

┌───────┬───────┬─────────┬───────────┐
│0 3 5 2│0 4 5 2│0 1 4 5 2│0 3 1 4 5 2│
└───────┴───────┴─────────┴───────────┘

In the case of a weighted matrix it may not be the case that the physi-
cally shortest path is the one with the lowest weighted value. To cal-
culate the weighted value of a path use

 steps=.<"(1)@(2&(,/\))
 values=.+/@:([{~steps@])
 h1 values 0 3 5 2
16

Then to find a critical path, all that remains is to find that minimum
value path from all paths :

 >(<h1) values each g1 AllPaths 0 2
16 18 15 26
 ((=<./)>(<h1) values each t)#t=.g1 AllPaths 0 2
┌─────────┐
│0 1 4 5 2│
└─────────┘

To build this into a critical path verb with a single argument h1, ob-
serve first that g1 is derived from h1 by

 unweight=.monad : '(%@~:&0)y'
 unweight h1
_ 1 _ 1 1 _
_ _ _ _ 1 _
_ _ _ _ 1 _
1 1 _ _ _ 1
_ _ _ _ _ 1
_ _ 1 _ 1 _

 CritPath=:dyad :0 NB. critical path
if._=(<y){spm x do.'no path' return.end.
t=.(unweight x)AllPaths y NB. all paths
v=.>(<x) values each t NB. all paths evaluated
(((=<./)v)#t),<<./v NB. minimum value path selected
)
 h1 CritPath 0 2 NB. critical path and value
┌─────────┬──┐
│0 1 4 5 2│15│
└─────────┴──┘

If there is more than one critical path, all are reported as in the follow-
ing graph together with their common value :

 h2
 0 0 0 0 0 10 0

�250

 2 0 6 0 16 12 13
 0 0 3 10 0 0 0
 0 0 1 0 0 0 0
10 0 19 0 3 5 0
14 0 0 9 0 0 1
 0 0 0 0 0 0 15
 h2 CritPath 1 6
┌───┬─────┬───────┬──┐
│1 6│1 5 6│1 0 5 6│13│
└───┴─────┴───────┴──┘

For a list of slack values associated with each path only a slight modi-
fication to CritPath is needed

 slack=.-~>./
 Slacks=.dyad :0
if._=(<y){spm x do.'no path' return.end.
t=.(unweight x)AllPaths y
>t JE each slack >(<x)values each t
)
 h1 Slacks 0 2
┌──────────┬─────────┬────────────┬─────────────┐
│0 3 5 2 10│0 4 5 2 8│0 1 4 5 2 11│0 3 1 4 5 2 0│
└──────────┴─────────┴────────────┴─────────────┘

Finally the line of AllPaths which was used to remove loops can be
adapted in a relatively unsubtle way (changes are in bold type) to de-
tect and report them :

 Loops=.dyad : 0
if._=(<y){spm x do.'no path' return.end.
l=.p=.i.0 [r=.{.y ['src tgt'=.y NB. initialise loop
while.(0~:#r)do. NB. r = incomplete
paths
 r=.r-.p [p=.p,((tails r)e.tgt)#r NB. p = complete paths
 r=.r extend x addnodes r NB. add one node to each r
path
 l=.l,(#~((~:&#~.)each))r NB. remember loops
 r=.(#~((=&#~.)each))r NB. remove loops
end. l
)
 g1 Loops 0 2
┌─────┬───────┬─────────┬─────────┬───────────┐
│0 3 0│0 4 5 4│0 1 4 5 4│0 3 5 4 5│0 3 1 4 5 4│
└─────┴───────┴─────────┴─────────┴───────────┘

Code Summary

Data representations of networks, properties and conversions
 arcs=.0 1;0 3;0 4;1 4;2 4;3 0;3 1;3 5;4 5;5 2;5 4
 nn=.1 3 4;4;4;0 1 5;5;2 4 NB. nearest neighbor

�251

 btoi=.# i.@# NB. binary list to list of 1-
positions
 mton=.(btoi@:%)each@<"1 NB. matrix to n’st neighbour
 ntom=.monad :'1(;(i.n),each each y)}(n,n=.#y)$_'
 NB. nerest neighbour to matrix
r
 g1=.1(arcs)}6 6$_ NB. 1 = connected, _ =
not
 wts=.2 7 6 1 5 7 6 1 4 8 4
 h1=.wts(arcs)}6 6$0 NB. weighted g1
 randg=.dyad : '%(100*x)>?(y,y)$100' NB. random g matrix
 randh=.dyad : '(*~:&_)(>:?(y,y)$100)(*&.%)x randg y'
 mksym=.(+|:) @ (*<:/~@(i.@#)) NB. make symmetric matrix
 spm=.monad : '<./y(<./ .+)^:(i.#y)y'

NB.shortest path between pairs of g matrix
 ind=.adverh : '(i.@$*x)@]'
 NB. spm _(=&0 ind)}h1 is shtst paths in h matrix
 connected=.~:&_@spm
 reachable=.btoi each@<"1@connected
 feasible=.;@:((i.@#)(,each each)reachable)

Algorithhms
 ShtstPath1=.dyad : 0
if._=(<y){spm x do.'no path' return.end.
p=.i.0 [r=.{.y ['src tgt'=.y NB. p=paths found
while.(-.tgt e.tails r)do. NB. r=paths ongoing
 r=.(r-.p)-.(tails p)e.src [p=.p,((tails r)e.tgt)#r
 r=.r extend x addnodes r end. NB. np=newpaths
r=.>(tgt=tails r)#r NB. reject incomplete paths
)
 tails=.{:&> NB. tails of list of lists
 extend=.;@:(JE"1 0 each NB. list to scalar joins

JE=.,each &box NB. scalarised join
 box=.]`<@.(-:>) NB. boxes if unboxed, else do nothing
 addnodes=.<@[rtoi each tails@] NB. new nodes
 rtoi=.btoi@:(%@{~) NB. btoi after _s into 0s

 AllPaths=.dyad : 0
if._=(<y){spm x do.'no path' return.end.
p=.i.0 [r=.{.y ['src tgt'=.y NB. initialise loop
while.(0~:#r)do. NB. r = incomplete paths
 r=.r-.p [p=.p,((tails r)e.tgt)#r NB. p = complete paths
 r=.r extend x addnodes r NB. add one node to each r
path
 r=.(#~((=&#~.)every))r NB. remove loops
end. p
)
 unweight=.monad : '(%@~:&0)y'
 values=.+/@:([{~steps@])
 steps=.<"(1)@(2&(,/\))

 CritPath=:dyad :0 NB. critical path
if._=(<y){spm x do.'no path' return.end.
t=.(unweight x)AllPaths y NB. all paths
v=.>(<x) values each t NB. all paths evaluated
(((=<./)v)#t),<<./v NB. minimum value path selected
)

�252

mailto:i.@%2523
mailto:i.@%2523)

 Slacks=.dyad :0
if._=(<y){spm x do.'no path' return.end.
t=.(unweight x)AllPaths y
>t JE each slack >(<x)values each t
)
 slack=.-~>./

 Loops=.dyad : 0
if._=(<y){spm x do.'no path' return.end.
l=.p=.i.0 [r=.{.y ['src tgt'=.y NB. initialise loop
while.(0~:#r)do. NB. r = incomplete paths
 r=.r-.p [p=.p,((tails r)e.tgt)#r NB. p = complete paths
 r=.r extend x addnodes r NB. add one node to each r
path
 l=.l,(#~((~:&#~.)every))r NB. remember loops
 r=.(#~((=&#~.)every))r NB. remove loops
end.
)

�253

39. The I-spy book of J
Principal Topics : [(left)] (right), ~ (reflex) ciphers, public/private keys, clock
multiplication, inverse, multiplicative inverse, exponential ciphers, RSA ciphers

Dear J-ohn and J-anet,

How would you like to be a security man or woman when you grow
up? It’s a very important job these days on account of the enormous
volumes of personal and business data which fly through cyberspace
every microsecond. If this is a career which attracts you, have you
considered telling your teacher what a very good medium J is for get-
ting started in this area?

Here are a few things you should know before we find you a uniform.
First you should appreciate that cryptographic systems divide
broadly into two categories, namely those based on transposition and
those based on substitution. (I’m afraid you will have to ask your
Mummy or Daddy to explain what these big words mean). In prac-
tice many current coding systems involve both of these techniques.
Your first lesson will concentrate on a subset of the second of these
subdivisions, that is on those in which characters are first converted to
numerals and then replaced by ciphers. The systems concerned
work to a general pattern in which there are keys of two kinds, public
and private. I make a public key freely available to anyone who
wants to send me enciphered messages. The relative security of any
cryptographic system is proportional to the time taken by the “en-
emy” (that is the hackers) to determine a private key which allows
me, and only me, to decipher messages. I am aware of course that the
enemy will analyse my messages in order to try and break the code
by discovering my private key. This is the process which is known as
cryptanalysis.

The basics of such methods are simple, and J is great for describing
them. My first illustration concerns multiplicative codes which de-
pend on the clock arithmetic which you do at school. As you know,
the world of sums contains only positive integers and small ones at
that. Should any of these accidentally get too big for their boots, they
are simply trimmed down to size by taking away the clocksize. And
should one of them stray into naughty negative regions then adding
the clocksize (cs) an appropriate number of times is all that is needed
to bring it back into the orderly region of i.cs .

�254

The essence of clock multiplication is the remainder verb | applied to
a table based on i.

 cmultab=.|*/~@i. NB. clock multiplication table

 cmultab 5
0 0 0 0 0
0 1 2 3 4
0 2 4 1 3
0 3 1 4 2
0 4 3 2 1

(If you don’t like the column and row of zeros just drop them:

 cmtab=.| */~@ }.@:i.
 cmtab 5
1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1)

The inverse of a clock number x is that value y for which xy=1 in
clock arithmetic, so that for cs=5 the tables above show that 1 and 4
are self-inverse, and that 2 and 3 are each the inverse of the other.

Now assign a different clocksize :

 cs=.26

From this you can guess that I have an alphabetic message in mind,
with letters translated into numbers in the obvious way, A=1, B=2, etc.
Encryption consists of multiplying each message number by the pub-
lic key, (that is one of the numbers between 1 and 25 which has no
common factor with 26) and then simplifying this by clock arithmetic

 enc=.cs&|@* NB. x=key, y=number
 5 enc 22 5 3 20 15 18 NB. encrypt "VECTOR"
6 25 15 22 23 12

To decipher this coded message I need to repeat this process, only
now using the inverse of 5. The restriction put on the key in paren-
theses above guarantees that such a number will exist and be unique.
To find the multiplicative inverse of a key with respect to cs, multiply
the key by all the integers in the field and perform clock arithmetic
using the key. The inverse is the index of whichever of these values is
one:

 minv=.i.&1@(]|(*i.)) NB. syntax is 'key minv field'
 5 minv 26
21

�255

Decipherment of ‘VECTOR’ as coded above is simply a further encryption
using the inverse key:

 21 enc 6 25 15 22 23 12
22 5 3 20 15 18

I make 5 known to all my correspondents as a public key, and hence
implicitly to the enemy, who is presumed to be smart enough to work
out the broad method, but needs to know cs in order to discover the
inverse key which turns code back into plain text. It would not be a
very difficult exercise to find these quantities using the parameters
above, however by using a much larger cs, and redefining the en-
crypting verb so that letters are dealt with in blocks, a modest degree
of security can be achieved:

 cs=.2752
 enc=.cs&|@*

 379 enc 2205 320 1518 NB. key=379
1839 192 154
 379 minv cs NB. multiplicative inverse of 379
1779
 1779 enc 1839 192 154 NB. decipher coded message
2205 320 1518

One step which could be made towards greater security is to use an
exponential cipher rather than a multiplicative one, that is instead of
multiplying the code by the key, it is raised to the power of the key.
Uniqueness of inverse requires that cs be a prime number. Otherwise
the only change in J terms is from * to ^ in enc :

 cs=.29
 15(cs&|@^)22 5 3 20 15 18
0 10 11 0 0 0

The zeros in the above indicate that there is a problem, namely that
numbers such as 1522 are very large and exceed the capacity of the
computer. This is easily solved since

 (i) exponentiation is just repeated multiplication, and
 (ii) multiplication in clock arithmetic follows the rules of mul-
tiplication in ordinary arithmetic, that is if a and b are the values of
A,B and C when reduced to clock integers, then ab, if necessary re-
duced to a clock integer, is equal to the clock integer reduction of AB.
(In mathematical terminology a=A(mod n) and b=B(mod n) implies
that ab=AB(mod n)). So define clock multiplication:

�256

 mul=.cs&|@*

and insert this into key replicates of the code:

 eenc=.mul/@#
 5 eenc &> 22 5 3 20 15 18 NB. encrypt “VECTOR”, key=5
13 22 11 24 10 15

The & conjunction (&> is equivalent to every) is necessary due to the
non-scalar nature of the verb mul .

For the purposes of decipherment, mathematics dictates that the in-
verse key is the multiplicative inverse of one less than cs:

 5 minv 28 NB. multiplicative inv. of 5
17
 17 eenc&> 13 22 11 24 10 15 NB. decipher message
22 5 3 20 15 18

This improves security a bit, but not by an enormous amount since an
enemy with computers at his disposal would not take long to work
out cs and hence, given that my key is public knowledge, to work out
inv cs. A cryptographer’s Holy Grail is to find a way in which to
make his key completely public so that anyone can send him mes-
sages, while at the same time making the rule for computing the de-
cipherment key so complex that the enemy has little hope of finding
it, however massive the computing power he has available. This re-
mained an open problem in the world of cryptography until 1977
when a major breakthrough was achieved through the invention by of
the so-called RSA ciphers at the Massachusetts Institute of Techno-
logy. These are named after the initials of their inventors R.L. Rivest,
A. Shamir and L. Adelman. Their idea was that cs should be the
product of two primes, say 3551=53*67, following which any public
key must then be coprime to (53-1)*(67-1)=3432, which is also the
number used to calculate the multiplicative inverse. Choosing 191 as
the key, and resetting the eenc verb gives:

 cs=.3551
 eenc=.(3551&|@*)/@#

 191 eenc every 2205 320 1518 NB. encipher “VECTOR”, key=191
489 2774 2274
 191 minv 3432 NB. multiplicative inv. of 191
575
 575 eenc every 489 2774 2274 NB. decipher message
2205 320 1518

Of course the primes used in the above illustration are very small. In
practice two very large prime numbers, say of the order of 10200,

�257

would be chosen. Factoring products of this size is a very hard prob-
lem given the present state of the mathematical and computational
arts, and so what is available to me is a public key which I can broad-
cast to everybody, but for which, provided I keep the two prime
factors a secret, I have a private key which, ensures that only I can de-
cipher my incoming messages.

Now, dear J-anet and J-ohn, just think how little programming you
have had to do to take you from the clock arithmetic which you love
to techniques which are the basis of the day-by-day encryption of mil-
lions of business and financial transmissions. Will it by any chance be
one of you who cracks the factoring algorithm? (For the answer, see
Vector volume 99 no. 4).

Code Summary

(Note : clocksize cs must be dynamically reset to an integer value).
 cmultab=.|*/~@i. NB. clock multiplication table
 cmtab=.| */~@ }.@:i. NB. ditto dropping zeros
 enc=.cs&|@* NB. x=key, y=number
 minv=.i.&1@(]|(*i.)) NB. multiplicative inverse
 mul=.cs&|@* NB. clock multiplication
 eenc=.mul/@# NB. exponential encode

�258

mailto:cmultab=.%257C*/~@i
mailto:%257D.@:i
mailto:eenc=.mul/@%2523

�259

40. The I-spy book of J part 2
 Principal Topics : |. (shift), , (append) ,. (stitch) A. (anagram index), ^: (power con-
junction), a. (alphabet) /: (grade up) encryption, decryption, keywords, Vigenère
table

Dear J-ohn and J-anet,

Now that you know a little bit about encryption and decryption, and
understand the difference between public and private keys I would
like to introduce you to an even simpler code which was invented by
a sixteenth century French diplomat called Vigenère. The idea of a
Vigenère table is that people sharing the code share a table of alpha-
betic characters, and for the purposes of this demonstration we will
use an alphabet of just 6 characters ‘ABCDES’. To make a Vigenère
table choose an anagram of these 6 characters

]tkey=.(6?6){'ABCDES'
AECSDB

(One way to create such an anagram which makes memorization easi-
er is to choose a keyword, say ‘BED’, which leads to a tkey= ‘BE-
DACS’ in which the characters not in the keyword are appended in al-
phabetical order.) However it is formed, tkey forms the row and
column headers for a table in which the first row is the tkey reversed,
and the remaining rows are shifted progressively to the left :

 makevtab=.(1&|.)~i.@#
 (' ',tkey),.'|',.tkey,makevtab |.tkey
 |AECSDB
A|BDSCEA
E|DSCEAB
C|SCEABD
S|CEABDS
D|EABDSC
B|ABDSCE

This table is used for both encryption and decryption. Entering ED
into the table as an example yields the letter B. Messages are conver-
ted into character pairs by the parties agreeing a message keyword.
This is written by expanding it as often as necessary beneath the mes-
sage, so that if the message is “Abe’s Dad’s a cad”, and the keyword is
‘SAD’ write

 ABESDADSACAD
 SADSADSADSAD

�260

mailto:~i.@%2523

Using the columns as indices to the Vigenère table gives the coded
message

 ADDEBBCABDSE

Now repeat this procedure for the coded message

 ADDEBBCABDSE
 . SADSADSADSAD

… and back comes the original message

 ABESDADSACAD

Now we will go through all this in your favourite programming lan-
guage

]vtab=.makevtab |.tkey
BDSCEA
DSCEAB
SCEABD
CEABDS
EABDSC
ABDSCE

 msg=.'ABESDADSACAD'
 msg,:'SAD'($~#)msg
ABESDADSACAD
SADSADSADSAD

 encrypt=.dyad :'(<"1 tkey i.y,.(#y)$x){vtab'
 'SAD' encrypt msg
CAABEEDCEABS

 'SAD' encrypt^:2 msg
ABESDADSACAD

For reassurance, try it with another keyword and another message :

 'BEADS' encrypt 'SEASBAD'
SSBDSAA
 'BEADS' encrypt^:2 'SEASBAD'
SEASBAD

Moving up to a full alphabet define alph, reassigning tkey and
vtab and reexecuting (but not redefining) encrypt.

 alph=.' ',(65+i.26){a.
 tkey=.(27?27){alph

�261

 vtab=.makevtab |.tkey=.525 A. alph
 encrypt=.dyad :'(<"1 tkey i.y,.(#y)$x){vtab'

 'VECTOR' encrypt 'QUICK A LAZY DOG'
NVNC HCYKEONDQHU
 'VECTOR' encrypt^:2 'QUICK A LAZY DOG'
QUICK A LAZY DOG tkey=.(6?6){'ABCDES'

A refinement which you might like if you are to use a full alphabetic
code is to have rows and columns of the Vigenère table in alphabetical
order. To illustrate how to construct such a visual table, we revert to
the 6-alphabet case

 order=.({~/:)&tkey
]tkey=.(6?6){'ABCDES'
SCADEB
 ok=.order tkey
ABCDES
 (' ',tkey),.'|',.tkey,makevtab |.tkey
 |SCADEB
S|BEDACS
C|EDACSB
A|DACSBE
D|ACSBED
E|CSBEDA
B|SBEDAC
 ' ',ok),.'|',.ok,(order&|:@order) vtab
 |ABCDES
A|CEASBD
B|ECBDAS
C|ABDCSE
D|SDCBEA
E|BASEDC
S|DSEACB

from which it is easy to confirm that these two tables are equivalent.

A Vigenère cipher can be made more secure by performing a final al-
phabetic shift using a further key called shift key. The price of this
extra security is that the encryption algorithm is no longer reciprocal.
However inverting the shift is simply a matter of applying minus to
the shift key.

 shift=.dyad : '((#alph)|x+alph i.y){alph'
 skey=.3
]x=.skey shift 'SAD' encrypt 'QUICK A LAZY DOG'
TXPGQYI MIEDJAJC
 'SAD' encrypt (-skey)shift x
QUICK A LAZY DOG

�262

Code Summary
 makevtab=.(1&|.)~i.@# NB. make Vigenere table

vtab=.makevtab |.tkey NB. vtab is a Vig.table
 alph=.' ',(65+i.26){a. NB. alphabet
 tkey=.(27?27){alph NB. anagram of alph

 encrypt=.dyad :'(<"1 tkey i.y,.(#y)$x){vtab'
 order=.({~/:)&tkey NB. rows in alpha order
 shift=.dyad : '((#alph)|x+alph i.y){alph'
 NB. for extra security

�263

mailto:~i.@%2523

41. Suffer the little children… to bring along
their equations

Principal Topics : i. (index of) +. (GCD) -: (halve) {. (head) . congruences, clock
arithmetic, inverses in finite arithmetic, GCD, simultaneous linear congruences,
Chinese remainder problem, quadratic congruences, quadratic residues, square
roots in finite arithmetic.

Early articles on APL sometimes speculated on how to do a work-
around if one of the APL function keys was broken. Analogously one
of the properties of ‘clock arithmetic’ as taught in the early stages of
primary schools is that division is a disallowed (broken key!) opera-
tion. This reflects the historical fact that the concepts of division and
fractions came relatively late in mankind's mathematical develop-
ment. Despite their arithmetical skills and geometrical sophistication,
the early Greek and Roman mathematicians had only crude notions of
division into parts, and it was not until the invention of place value in
the 11th. century that fractions in the sense we know them today be-
came part of the earliest stages of elementary arithmetic.
 
J adverbs provide a natural means for realising the concepts of finite
arithmetic, for example the derived verb +mod is addition in modulo
arithmetic :
 
 mod=.adverb :'7&|@x' NB. specify modulus, say 7

 3+mod 6 NB. add 3 and 6 (mod 7)
2
 3*mod 6 NB. multiply 3 and 6 (mod 7)
4

Graduating from clock arithmetic to ‘clock algebra’ is where some at
least of the little children might begin to suffer, since division in the
conventional sense is no longer an option for solving e.g. 2x=3. This is
known in clock arithmetic as a congruence rather an equation. In
modulo 5 arithmetic, it is not too difficult to spot that x=4 is a solu-
tion.

 mod=.1 : '17&|@x' NB. set modulus

 (17*mod i.23)i.4 NB. locate 4 in multiples of
17
7

This is readily confirmed by multiplying 17 times 7 = 119 = 4 in modu-
lo 23 arithmetic. The second line in the above J sequence suggests a

�264

general technique for solving linear equations (congruences) of the
form ax + b = 0 by first defining inverse as

 inv=.dyad : '(x|y*i.x)i.1'
 23 inv 17
19

(tacit definition enthusiasts may want to write this as

 inv=.i.&1@([|]*i.@[),

although arguably the above version is more expressive.) It is easy to
confirm that in modulo p arithmetic (p prime), all integers in 1, … p-1
have an inverse, for example :

 iota=.>:@i. NB. integers from 1 to y
 13|t*13 inv every t=.iota 12
1 1 1 1 1 1 1 1 1 1 1 1

A first try at a solution of the linear equation ax + b = 0 is then

 lsol=.dyad : 'x|(x inv {.y)*(-{:y)'
 23 lsol 17 _4
7

However, inverses exist only for numbers which are relatively prime
to the modulus. In clock arithmetic terms 17x=4 is an invitation to
find how many chunks of 17 steps are needed to arrive at 4, to which
the answer is 3. But for 2x=5 in modulo 6 arithmetic no solution exists
because 2 and 6 have a common factor, which means that only some
of the clock points are reachable. On the other hand 2x=4 has two so-
lutions, x=2, the 'obvious' one, and also x=2+3=5. To generalise this,
the number of solutions of ax=b in modulo n arithmetic is either none
if b is not a multiple of GCD(a,n), otherwise it is GCD(a,n), in which
case these solutions are found by adding {n/GCD(a,n)} successively
GCD(a,n) times to the solution of ax=b after a, b and the modulus n
have all been divided by GCD(a,n) :

 linsol=.dyad : 0 NB. linear equation solver
if.1=gcd=.x+.{.y NB. if a and n are co-prime ..
 do.x lsol y
elseif.0=gcd|{:y NB. if gcd(a,n) divides b ..
 do.(m lsol y%gcd)+(m=.x%gcd)*i.gcd
end. NB. otherwise null result
)
 21 linsol 6 _15 NB. solns of 6x=15 in mod 21 arith
6 13 20

�265

mailto:inv=.i.&1@(%255B%257C%255D*i.@%255B)

The divide symbol (%) appearing in the long line of linsol reflects the
‘cancellation’ of ax=b to its prime form, and does not conflict with the
absence of division in clock algebra. ax=b has now been solved with
complete generality.

Simultaneous Linear Congruences

Unlike ordinary simultaneous equations where, barring degeneracies,
the number of equations must exactly equal the number of variables
for there to be a unique solution, there is no limit to the number of si-
multaneous congruences for which a solution can be sought. Further,
a theorem called the Chinese Remainder Theorem (so called because
such results were known in China from about 100 A.D.) guarantees
that provided the various moduli are coprime, then a set of simulta-
neous equations such as

 x=0 (mod 2), x=1 (mod 5), x=2 (mod 7)

has a solution which is unique modulo the product of moduli.

The algorithm for obtaining such a solution consist of multiplying
three lists :

(1) a list of the b’s as in ax=b;
(2) a list of products of the a’s omitting one at a time; and
(3) the inverses of the products in (2) relative to their matching

moduli,

and then multiplying the items of the resulting list modulo the prod-
uct of moduli. This is described as readily, and certainly more unam-
biguously, in J with as input

 Left arg (x) : a list of moduli – n.b. these must be coprime;
 Right arg (y) : a matching list of pairs of coefficients as for

linsol.

 simlsol=.dyad : 0 NB. simultaneous congruences
r1=.>-@{:every y
r2=.(%~*/)x
r3=.>x linsol every <"1 r2,._1
r=.(*/x)|+/r1*r2*r3
)

The solution of the above set of congruences is :

 2 5 7 simlsol 1 0;1 _1;1 _2

�266

16

For those who like puzzles simlsol lends itself to solutions of prob-
lems such as what is the smallest integer divisible by 7 whose re-
mainders on division by 2,3,4,5 and 6 are 1,2,3,4 and 5? what is the
smallest integer divisible by 7 whose remainders on division by 2,3,4,5
and 6 are all 1?

 4 3 5 7 simlsol 1 _3;1 _2;1 _4;1 0
119
 4 3 5 7 simlsol 1 _1;1 _1;1 _1;1 0
301

Quadratic Congruences

Here the simplest case is x2=a. In ordinary arithmetic there are two
solutions, namely ± the square root of a, and it is useful to picture how
finite arithmetics converge towards normal arithmetic as the modulus
increases towards infinity. Represent say 3 up to -3 by points on
number lines corresponding to arithmetics with successively larger
moduli :

�267

mod 5 3 4 0 -4 -3

mod 7 3 4 5 6 0 -6 -5 -4 -3

mod 9 3 4 5 6 7 8 0 -8 -7 -6 -5 -4 -3

Eventually the arrow ‘goes off to infinity’ and returns ‘on the other
side of zero’ as -3 in the conventional sense :

 -3 3 4 5 6 …

Returning to the problem of solving x2=a in modulo n arithmetic,
Since only integers are admissible, there can only be solutions if a is
one of those integers in 1,..,n-1 which are squares in modulo n, and
since k2 = (-k)2 it is only necessary to consider the range 1,.. ½(n-1) in
order to establish all such squares. These are called quadratic
residues in finite arithmetics, and are obtained as :

 qres=.|*:@:(iota@(-:@<:)) NB. quadratic residues
 qres 13 NB. squares modulo 13
1 4 9 3 12 10
 qres 17 NB. squares modulo 17
1 4 9 16 8 2 15 13
 qres 29 NB. squares modulo 29
1 4 9 16 25 7 20 6 23 13 5 28 24 22

so, for example, in modulo 13 arithmetic, the pairs of square roots of
3, 12 and 10 are (4,13-4), (5,13-5) and (6,13-6), i.e. (4,9), (5,8) and (6,7)
respectively, and a must be one of the six values qres 13 if the equa-
tion x2=a is to have a solution. One such solution is then
(qres n)i.a so, for example one solution of x2=5 in modulo 29
arithmetic is

 1+(qres 29)i.5
11

and the other is 18, which is confirmed by observing that both 121 and
324 equal 5 in modulo 29 arithmetic. This leads to the following defin-

�268

ition of a verb which delivers a ‘single square root’ verb in finite
arithmetic :

 sqrt=.>:@(qres@[i.]) NB. sqrt of y in modulo x
 13 sqrt 12
5

This can readily be generalised to find any root :

 res=.[| iota@(<:@[) ^] NB.generalised residue
 13 res 3 NB.cubes in modulo 13
1 8 1 12 8 8 5 5 1 12 5 12

 iall=.>:@(= # i.@#@[) NB.iota all (origin 1)

 root=.(({.res{:)@[)iall] NB.all kth. roots, e.g. …
 13 3 root 12 NB.cube roots of 12 mod 13
4 10 12

Read the above lines as “in modulo 13 arithmetic, the 3-roots (i.e. cube
roots) of 12 are 4, 10 and 12”

The suite of verbs res, iota, iall and root makes qres and sqrt re-
dundant, and allows the solution of any equation xn=a. Where no
solution exists a null result is returned.

Now turn to the solution of the more general quadratic ax2 + bx + c =
0. In ordinary arithmetic, the solution is found by the technique of
completing the square to give the standard formula (-b±√(b2-4ac))/2a
with 2a as the denominator. With division disallowed, the trick is to
multiply the left hand side by 4a to obtain a leading term (2a)2x2 and
factorise

4a(ax2 + bx + c) as (2ax + b)2 – (b2 – 4ac).

Then write d = b2 – 4ac and y = 2ax + b, so that ax2 + bx + c = 0 be-
comes y2=d which has already been solved provided that d is one of
the quadratic residues. If not, there are no solutions. So define the
verb disc standing for ‘discriminant’ to compute b2 - 4ac in the ordi-
nary way, so that the discriminant of e.g. 5x2 – 6x + 2 is –4 :

 disc =.(*:@(1&{))-4&*@{.*{:
 disc 5 _6 2
_4

disc, like other verbs, can be modified with the adverb mod using the
current modulus n :

�269

 disc mod 5 _6 2 NB. n is currently 13
9

so that the first step in the solution is

 13 2 root disc mod 5 _6 2 NB. sq roots of 9 mod 13
3 10

All that remains is to transform these two solutions in y's back to x's,
specifically solve 10x – 6 = 3 and 10x – 6 = 10 (the latter being equiva-
lent to 10x – 6 = –3), that is the two linear equations 10x – 9 = 0 and
10x – 16 = 0 for which a technique is already available :

 13 linsol every 10 _9;10 _16
10 12

solutions which are confirmed by

 10 12 #.mod every< 5 _6 2
0 0

The technique is consolidated in the verb

 qsol=.dyad : 0 NB. quadratic solver
t=.(n,2)root disc mod y [n=:{.x
n linsol&><"1(2 1*}:y)+"1(0,&>t)
)
 13 qsol 5 _6 2
12 10

and confirmation is obtained by

 (13 qsol 5 _6 2)#.mod&>< 5 _6 2
0 0

Not all quadratics have genuine solutions, and the simplest way to
proceed is to execute qsol regardless but disregard any solutions
which fail the confirmation test above. This leads to a general qua-
dratic solver :

 quadsol=.dyad : 0 NB. general quadratic solver
t=.(n=:x)qsol y
if.0 0-:t#.mod&><y do.t
else. i.0 end.
)
 13 quadsol 5 _6 2
12 10
 13 quadsol 5 6 _2 NB. change of coefficients

(null result)

�270

the results of which can be checked by

 (13 quadsol 5 _6 2)#.mod&>< 5 _6 2
0 0
 (13 quadsol 5 6 _2)#.mod&>< 5 6 _2

(null result)

Thus a single session of algebra has provided solutions for all linear
and quadratic equations in countless algebras, and all with quite a
modest amount of suffering!

Code Summary

(Note : The modulus at any point depends dynamically on the set-
ting of the session variable n as in the definition of mod).

Finite Arithmetic
 mod=.adverb :'n&|@x' NB. specify modulus, e.g. by n=.7
 inv=.dyad : '(x|y*i.x)i.1' NB. multilipcative inverse

Linear Equation Solver
 linsol=.dyad : 0 NB. linear equation solver
if.1=gcd=.x+.{.y NB. if a and n are co-prime ..
 do.x lsol y
elseif.0=gcd|{:y NB. if gcd(a,n) divides b ..
 do.(m lsol y%gcd)+(m=.x%gcd)*i.gcd
end. NB. otherwise null result
)
 lsol=.dyad : 'x|(x inv {.y)*(-{:y)'

Simultaneous Linear Congruences
 simlsol=.dyad : 0 NB. simultaneous congruences
r1=.>-@{:every y
r2=.(%~*/)x
r3=.>x linsol every <"1 r2,._1
r=.(*/x)|+/r1*r2*r3
)

Quadratic Residues
 qres=.|*:@:(iota@(-:@<:)) NB. quadratic residues
 sqrt=.>:@(qres@[i.]) NB. sqrt of y in modulo x

Quadratic Equation Solver
iota=.>:@i.

 quadsol=.dyad : 0 NB. general quadratic
solver
t=.(n=:x)qsol y

�271

if.0 0-:t#.mod&><y do.t
else. i.0 end.
)
 qsol=.dyad : 0 NB. quadratic solver
t=.(n,2)root disc mod y [n=:{.x
n linsol&><"1(2 1*}:y)+"1(0,&>t)
)
disc =.(*:@(1&{))-4&*@{.*{:
 root=.(({.res{:)@[)iall] NB.all kth. roots
 res=.[| iota@(<:@[) ^] NB.generalised residue

iota=.>:@i. NB. integers 1 to y
iall=.>:@(= # i.@#@[) NB.iota all (origin 1)

 disc =.(*:@(1&{))-4&*@{.*{:

�272

mailto:-4&*@%257B.*

42. Fifty ways to tell a fib

Principal Topics : ^: (power conjunction), “ (rank conjunction \ (prefix / infix) /.
(oblique) ~ (passive / reflex) Fibonacci numbers, Lucas numbers, binomial coeffi-
cients, Pascal triangle, Binet formula, continued fractions.

The Fibonacci series is a bit like fly-paper or goose-grass, once it begins sticking to
you, it is terribly hard to get rid of it. I will start by defining the first 14 terms which
should be enough to observe the patterns which evolve. (Note : because I am treating
only a finite part of the series there will be end effects which could be resolved by
topping and tailing, but this usually serves only to obscure what is important, so
please just ignore end effects.)

 f=.(,+/@(_2&{.))^:12(0 1)
0 1 1 2 3 5 8 13 21 34 55 89 144 233

Incrementing the cumulative sums and differences still leaves us in Fibonacci-land :

 >:+/\f NB. 2|.f
1 2 3 5 8 13 21 34 55 89 144 233 377 610
 >:-/\f NB. alternating differences(6)
1 0 1 _1 2 _3 5 _8 13 _21 34 _55 89 _144

Here is a selector verb which takes a binary pattern as left argument and extends it as
a mask for the right argument. Its first use is to select odd and even items in f :

 sel=.($~#)#]
]od=.0 1 sel f NB. odd items in f
1 2 5 13 34 89 233
]ev=.1 0 sel f NB. even items in f
0 1 3 8 21 55 144

Cumulating either odds or evens leads to the other :

 +/\od NB. 1|.ev (4)
1 3 8 21 55 144 377
 >:+/\ev NB. 1|.od (5)
1 2 5 13 34 89 233

and the Fibonacci trade mark is still there if we do the following :

 +/*:f NB. scan the squares of f (9)
0 1 2 6 15 40 104 273 714 1870 4895 12816 33552 87841

 (*1&|.)f NB. multiply adjacent terms
0 1 2 6 15 40 104 273 714 1870 4895 12816 33552 0
 2+/\f NB. result is 2|.f
1 2 3 5 8 13 21 34 55 89 144 233 377
 2-~/\f
1 0 1 1 2 3 5 8 13 21 34 55 89
 _2+/\f NB. same as }.ev
1 3 8 21 55 144 377

�273

 2*/\f NB. products in pairs
0 1 2 6 15 40 104 273 714 1870 4895 12816 33552
 +/\2*/\f NB. cum sums of prods in pairs
0 1 3 9 24 64 168 441 1155 3025 7920 20736 54288

The product pairs of consecutive items in the Fibonacci series generate another de-
rived series with some interest in its own right :

 2*/\ f
0 1 2 6 15 40 104 273 714 1870 4895 12816 33552

Its cumulative series is :

]cpp=.+/\2*/\f NB. cum product pairs
0 1 3 9 24 64 168 441 1155 3025 7920 20736 54288

Compare :

 0 1 sel cpp NB. odd items in ccp
1 9 64 441 3025 20736
 ev^2
0 1 9 64 441 3025 20736

 1 0 sel cpp NB. even items in cpp
0 3 24 168 1155 7920 54288
 1 0 sel(*2&|.)f NB. prods of pairs but one
0 3 24 168 1155 7920 0

 2+/\2*/\f NB. add adj product pairs
1 3 8 21 55 144 377 987 2584 6765 17711 46368
 (2*/\f)+1|.2*/\f NB. 1|.ev (as above)
1 3 8 21 55 144 377 987 2584 6765 17711 46368 33552

At this point switch to a lesson in J style :

 ((+ 1&|.)@(2&(*/\)))f NB. better style for above

 pp=.2&(*/\) NB. third version
 ((+1&|.)@pp)f
1 3 8 21 55 144 377 987 2584 6765 17711 46368 33552

Add products in pairs and you get the evens

 1 |.ev
1 3 8 21 55 144 0

Subtract succesive products in pairs and you get the odds which are also the squares of f :

 2-~/\2*/\f NB. cf.0 1 sel+/\2*/\f
1 1 4 9 25 64 169 441 1156 3025 7921 20736

What about succesive sums of three or more ? :

 -:3+/\f NB. 2|.f
1 2 3 5 8 13 21 34 55 89 144 233

�274

 4+/\f
4 7 11 18 29 47 76 123 199 322 521

These numbers which arise from applying the Fibonacci rule starting with 1 3 are
known as the Lucas numbers, and are generated directly by

]f=.(,+/@(_2&{.))^:10(1 3) NB. Lucas numbers
1 3 4 7 11 18 29 47 76 123 199 322 521 843

 |>:-/\f NB. _1|f
1 0 1 1 2 3 5 8 13 21 34 55 89 144
 |2-/\f NB. _1|.f
1 0 1 1 2 3 5 8 13 21 34 55 89
 -:3-/\f NB. f
0 1 1 2 3 5 8 13 21 34 55 89

 |4-/\f NB. _1|.Lucas nos.
2 1 3 4 7 11 18 29 47 76 123

 }.*:f NB. f squared
1 1 4 9 25 64 169 441 1156 3025 7921 20736 54289
 (*2&|.)f NB. f * 2|.f
0 2 3 10 24 65 168 442 1155 3026 7920 20737 0 233

 v1=.1&|.@:*: NB. shift squares
 v1 f
1 1 4 9 25 64 169 441 1156 3025 7921 20736 54289 0
 v2=.*2&|. NB. prods next but one (hook)
 v2 f
0 2 3 10 24 65 168 442 1155 3026 7920 20737 0 233
 (v1-v2)f NB. differences
1 _1 1 _1 1 _1 1 _1 1 _1 1 _1 54289 _233

 +//.!/~i.10 NB. oblique sums of Pascal tri.
1 1 2 3 5 8 13 21 34 55 88 133 176 189 155 92 37 9 1

 +/\0 0 1 sel f NB. cum sum of 3rd 6th, 9th …
1 6 27 116
 -:<:0 1 0 sel f NB. half of u sub(3n+2) –1
0 1 6 27 116

Relationship with binomial coefficients
 +//.(!/~)i.10
1 1 2 3 5 8 13 21 34 55 88 133 176 189 155 92 37 9 1

As an aside the following gives the first four Pascal triangles as a rank 3 array :

 a=.(!/~)\i.4

 +/"2 a NB. add cols of successive Pascal tria.
1 0 0 0
1 2 0 0
1 2 4 0

�275

1 2 4 8

]gs=.(1&{::@p.)1 1 _1 NB. Binet’’s formula
1.61803 _0.618034
 */gs
_1

]c=.0 1%.1,:gs NB. solve for closed form
0.447214 _0.447214

 +/"1 c *"1(<gs)^&> i.10
1.11022e_16 1 1 2 3 5 8 13 21 34 55 89

or equivalently, because the larger root rapidly dominates :

 rnd=.<.@(0.5&+)
 rnd(({.gs)^i.15)%%:5
0 1 1 2 3 5 8 13 21 34 55 89 144 233 37

It also allows the generation of indefinitely large Fibonacci numbers :

 (9!:11)16

 c +/ .*gs^78
8944394323791464

Divisibility properties :
Demonstration that even Fibonacci numbers have indices divisible by 3, all the oth-
ers are odd :

 1 0 0 sel f
0 2 8 34 144
 0 1 1 sel f
1 1 3 5 13 21 55 89 233

This can be extended by generalising the selection verb to provide complementary
selections :

 dpsel=.(0&=;0&~:)@:i.
 dpsel 4
┌───────┬───────┐
│1 0 0 0│0 1 1 1│
└───────┴───────┘
 (dpsel 4)sel&.><f
┌──────────┬─────────────────────────┐
│0 3 21 144│1 1 2 5 8 13 34 55 89 233│
└──────────┴─────────────────────────┘
 (dpsel 5)sel&.><f
┌──────┬─────────────────────────────┐
│0 5 55│1 1 2 3 8 13 21 34 89 144 233│
└──────┴─────────────────────────────┘
 (dpsel 6)sel&.><f
┌───────┬────────────────────────────┐
│0 8 144│1 1 2 3 5 13 21 34 55 89 233│
└───────┴────────────────────────────┘

�276

 F=.(,+/@(_2&{.))^:60(0 1)
 17((=&0@:|)#])F
0 34 2584 196418 14930352 1134903170 86267571272

Continued fractions
Continued fractions are defined by

 cf=.1&+@%
 cf^:(i.11)1
1 2 1.5 1.6667 1.6 1.625 1.6154 1.619 1.6176 1.6182 1.618

The relationship to the Fibonacci numbers should be clear from

 (}.f)*cf^:(i.13)1
1 2 3 5 8 13 21 34 55 89 144 233 377

Code Summary
 f=.(,+/@(_2&{.))^:12(0 1) NB. first 12 Fib numbers
 od=.0 1 sel f NB. odd items in f
 ev=.1 0 sel f NB. even items in f
 sel=.($~#)#]
 cpp=.+/\2*/\f NB. cum product pairs
 pp=.2&(*/\) NB. product pairs
 gs=.(1&{::@p.)1 1 _1 NB. Binet’’s formula
 rnd=.<.@(0.5&+) NB. round to integer
 dpsel=.(0&=;0&~:)@:i. NB. complementary selections
 cf=.1&+@% NB. continued fractions

�277

43. Seeds, Cones and Sunflowers
Principal Topics : Fibonacci sequence, golden ratio, golden angle, spirals

It is well known that the Fibonacci sequence 0,1,1,2,3,5,8,13,21,34, ... in
which each number is the sum of its two predecessors exhibits itself in
nature in e.g. the arrangements of seeds in the head of a sunflower
and the pattern of scales on a cone. In architecture and design it is
widely claimed that the most ‘pleasing’ form of rectangle is one in
which the ratio of its side approximates to 0.61818... which is the limit-
ing value of the ratio of consecutive values of terms in the series, viz.
2/3, 3/5, 5/8, and so on. If a and b are the lengths of the shortest and
longest sides respectively, this limiting value, known as the golden ra-
tio, is that value of a/b, which is also equal to the ratio b/(a+b). An
equivalent problem is that of dividing the circumference of a circle
into two arcs a and b with a/b=a/(a+b). This is attained when the
radius to the dividing point is at an angle, analogously called the gold-
en angle, which is very close to 137.5 o degrees (more accurately
137.5078 o but for practical purposes 137.5 o is adequate.) This can
readily be checked by observing that 137.5/222.5 = 222.5/360 = 0.618 to 3
significant figure precision.

 small angle = 137.5o
 b = a=
 big arc small arc

Why is the golden angle so important in natural growth? Start by
looking from above directly down the axis of a growing shoot such as
a cone, and projecting the growth points onto a two dimensional
plane spiralling outwards, with each new scale emerging at a regular
angular displacement. Primordia is a generic noun used to cover the
growth embryos characteristic of many plants such as leaves, sepals,
florets, etc. It often happens that the angular displacement of succes-
sive primordia is the golden angle of 137.5o. Its effect is observable in
the series of spirals going in opposite directions which are striking in
both the seeds of sunflowers and the scales of cones such as the
spruce cone below in which the junction of a steep and a gentler spiral
is highlighted.
Use J to display and experiment with spirals :

�278

 evry=.4 : '(0=y|(i.@#)x)#x'

 dtor=.180%~o. NB. degrees to ra-
dians

spiral=.dyad :0
 ang=.dtor 360| y*i=.i.5*x^2 NB. primor-
dial angles in rads
 t1=.i*"(1)1 2 o.every<ang NB. converted to x-
y coords
'marker; labels 0' plot <"1 t1 evry"(1)x NB. plot
every xth.
)

 8 spiral 137.5

.

�279

What causes these spirals to be so readily observable? Consider that
every third primordium is a member of a spiral sequence, so that, sub-
tracting out multiples of 360o, the third, sixth, ninth, twelfth and fif-
teenth primordia develop at angles of

 360|137.5*(i.20)evry 3
0 52.5 105 157.5 210 262.5

degrees forming what will be called a 3-spiral. The difference of 52.5
between successive terms makes the spiral easy to spot by eye. Anal-
ogously a 5-spiral begins with the fifth, tenth and fifteenth primordi-
um. These values are

 360|137.5*(i.20)evry5
0 327.5 295 262.5

and the differences of 32.5 are again easy for the eye to spot. Since
the fifth angle in the 3-spiral and the third angle in the 5-spiral both
correspond to the 15th primordium these values necessarily coincide.

Now extend the 5-spiral to eight terms and the 8-spiral to five terms

 360|137.5*(i.45)evry 5
0 327.5 295 262.5 230 197.5 165 132.5 100

�280

 360|137.5*(i.48)evry 8
0 20 40 60 80 100

Arguing as above, these necessarily coincide in their final items which
correspond to the 40th primordium. The difference of 20 between suc-
cessive terms of the 8-spiral make it easy to pick out like the 3- and 5-
spirals.

Now use J to generate a plots of these spirals, extending spiral to
show a pair of spirals.

 spi2=.dyad :0
ang=.dtor 360| y*i=.i.2*>:*/x
x1=.(2 o.ang)*i [y1=.(1 o.ang)*i
x3=.x1 evry{:x [x2=.x1 evry{.x
y3=.y1 evry{:x [y2=.y1 evry{.x
'marker; labels 0'plot (x2,:x3);(y2,:y3)
)

 (Note: There is a temptation akin to the ‘one-liner’ APL phenomenon
to practise some rank artistry to the above, viz.

 Evry=.4 :'(+./0=y|every<(i.@#)x)#x'
spirals=.dyad :0
 ang=.dtor 360 |y*i=.i.>:*/x NB. primor-
dial angles in rads
 t1=.i*"(1)1 2 o.every<ang NB. convert to
cartesian coords
'marker; labels 0' plot <"1 t1 Evry"(1)x
)
but for me the relative clarity of the first version makes it preferable.)

The plot below shows a 5-spiral radiating out anticlockwise from the
centre and an 8-spiral radiating clockwise with the two meeting at the
40th primordium at the circled point at the top centre of the plot.

 5 8 spi2 137.5

�281

mailto:i.@

The area bounded by the two paths to the circled point is a two-di-
mensional representation of spiral patterns which stand out on the
pine cone below :

Next consider the first eight terms of the 13-spiral which are

 360|137.5*(i.105)evry 13
0 347.5 335 322.5 310 297.5 285 272.5 260

Following the reasoning above, 260 must be the value of the thirteenth
term of the 8-spiral. The small value, -12.5, of the differences in the
13-spiral, make it readily observable. Also while the differences for
the 3- and 5-spirals are positive, those for the 8- and 13-spirals are
negative. This means that when successive spirals in the 3, 5, 8, 13

�282

sequence meet at their common point, the 104th primordium, this will
be the junction of two spirals going in opposite directions.

Fibonacci numbers are instantly recognisable in the above discussion.
These Fibonacci based spirals are the only ones where the differences
are sufficiently small for the spirals to be eye-catching. For example
the differences for the 4-, 6-, 7- and 9-spirals are -170, 105, -117.5, and
157.5. In the context of the cone this would mean that after at most
two scales, the observer would have to turn the cone over repeatedly
to trace the spiral. Also with higher order Fibonacci numbers the dif-
ferences shrink towards zero, for example for the 233-spiral the differ-
ence is less than one degree. This corresponds to the manner in which
the Fibonacci sequence itself converges to the golden ratio. Of course
not many plants manage to generate 233 primordia on a single axis!
The golden angle has a a further property, namely that it is that angle
which brings about the most efficient use of the circular plane of the
flower-head, in other words which packs the seeds together as closely
as possible.

The verb floret and plot below illustrates how the seeds position
themselves given a primordial angle of 137.5o :

floret=.dyad :0
 ang=.dtor 360 | y*i=.i.10*>./x
 x1=.(2 o.ang)*i [y1=.(1 o.ang)*i
 'marker; labels 0'plot x1;y1
)
 5 floret 137.5

�283

If the primordial angle were to change to 138.5 o spaces between the
spirals begin to be apparent :

 5 floret 138.5

If nature had chosen 135 o all the seeds would eventually be laid on
the radial zero axis, leaving most of the flower-head as empty space!

�284

The above discussion demonstrates why simpler spiral sequences are
readily observable in scales, petals, flower-heads and so on, but does
not address the more fundamental question of why primordia pop out
at the golden angle with such regularity. Amazingly, although every-
thing that has gone before has been known and observed for cen-
turies, it is only within the last thirty years or so that mathematicians
have developed explanatory models which show that these patterns
are inevitable if it assumed that developing primordia compete for
space behave like identical atoms emitting mutually repelling electri-
cal charges. Each sunflower seed for exampIe behaves in its own self-
interest, and the result is an equilibrium state which requires complex
mathematics to work out from first principles. It seems a logical con-
clusion that every sunflower seed emerges as if had solved all these
equations in the moment it bursts out from the bud. Or was the for-
mula solved once and for all back in distant aeons and transmitted
through the plant’s DNA, so that each seed knows at birth exactly the
spot to go to on the flower-head? Nature constantly stretches man’s
powers of wonderment. The patterns of 3. 5, 8, 13 etc. are elementary
manifestations of much deeper matters which are only beginning to
be understood. How nature must scorn mankind’s as yet primitively
simple mind; thIs is not just intelligent design, but super-, even super-
super-intelligent design. Every glance at a sunflower, cone or floret
should thus bring out profound sense of humility in the observer!

Code Summary

 evry=.4 : '(0=y|(i.@#)x)#x'
 dtor=.180%~o. NB. degrees to ra-
dians
spiral=.dyad :0
 ang=.dtor 360| y*i=.i.5*x^2 NB. primor-
dial angles in rads
 t1=.i*"(1)1 2 o.every<ang NB. converted to x-
y coords
'marker; labels 0' plot <"1 t1 evry"(1)x NB. plot
every xth.
)
spi2=.dyad :0
 ang=.dtor 360| y*i=.i.2*>:*/x
 x1=.(2 o.ang)*i [y1=.(1 o.ang)*i
 x3=.x1 evry{:x [x2=.x1 evry{.x
 y3=.y1 evry{:x [y2=.y1 evry{.x
'marker; labels 0'plot (x2,:x3);(y2,:y3)
)
floret=.dyad :0
 ang=.dtor 360 | y*i=.i.10*>./x

�285

 x1=.(2 o.ang)*i [y1=.(1 o.ang)*i
 'marker; labels 0'plot x1;y1
)

�286

44. Catalan Numbers

Principal Topics : Catalan numbers, permutations, combinations, Manhattan
diagram, binary trees

The Catalan numbers, although not as universally well-known as the
Fibonacci sequence, arise in a surprisingly disparate number of count-
ing situations. They have nothing to do with Catalonia – they were
known to the Chinese, but first discovered in Europe by Euler, and
named after Eugène Catalan who elaborated on them in a paper in the
1830s. First here are a few problems for which they are relevant :

Some counting problems
(1) Given a polygon with n sides, into how many triangles can its
area be divided by connecting vertices with non-crossing line seg-
ments. If n=4, the answer is readily seen to be 2, if n=5, the answer is
5 obtained by drawing two internal rays from each of the vertices in
turn :

 The n=6 case is a little more complex and just three of the 14 possibili-
ties are shown.

(2) Given a list of n numbers to be totalled, how many different ways
of subtotalling are there, for example for an n-list with n=4 the possi-
bilities are :

 ((a+b)+c)+d (a+(b+c))+d (a+b)+(c+d) a+((b+c)+d) a+(b+(c
+d))

�287

(3) How many binary trees are there with n branches which do not
end in a leaf. For example for n=2 the possible trees are (n.b. leaves
when reached are not shown) :

(4) How many ways can n pairs of parentheses be written in such a
way that no right parenthesis appears before its matching left paren-
thesis, for example with n=3 pairs

 ((())) (()) () (() ()) () (()) () () ()

 (5) In an n by n ‘Manhattan diagram’ how many different progres-
sive routes are there from bottom left to top right which do not cross
the diagonal but may be on either side of it. One such route is

(6) How many different ‘mountain ranges can be formed given n
slopes, e.g. for n=6 the possibilities are

The Catalan Sequence
The Catalan numbers can be evaluated by a simple formula (2n!)/[(n
+1)! n!], and so the first twelve Catalan numbers along with their in-
dices are

 cat=.monad : '(!+:y)%(*/! every y,y+1)'
 |:(i.12),.cat every i.12
0 1 2 3 4 5 6 7 8 9 10 11
1 1 2 5 14 42 132 429 1430 4862 16796 58786

�288

The ratio of the (n+1)th number to the n th is 2(2n+1)/(n+2) which for
large values of n approaches 4.

The procedure for obtaining the next Catalan number is similar to, but
slightly more elaborate than, that for the Fibonacci sequence. Based
on the hook (,:|.) the rule is ‘take a sequence and its reverse, mul-
tiply corresponding pairs and add’ :

]u=.(,:|.)t=.cat every i.5
 1 1 2 5 14
14 5 2 1 1
 +/*/u
42

Another interesting property of Catalan sequences involves determi-
nants and is illustrated by the sequence below.

 cat every i.4
1 1 2 5

 (i.4)+every <i.4 NB. construct a matrix of indices
...
0 1 2 3
1 2 3 4
2 3 4 5
3 4 5 6

 box=.<”1
 (cat every) every box (<i.4)+every i.4
1 1 2 5
1 2 5 14
2 5 14 42
5 14 42 132

So define :

 catmat=.monad : 'cat every every box (<i.y)+every i.y
 det=.-/ .*
 det catmat 4
1

Now generalise :

 catdet=.monad : 'det catmat y'
 catdet every i.12
1 1 1 1 1 1 1 1 1 1 0.999957 0.99893

The last two items reflect the rapid growth in size of the Catalan
numbers as the sequence progresses.

�289

Relation to Permutations and Combinations
J conveniently gives a list of all permutations of a given order by

 allperms=.i.@! A. i.
 |:allperms 4
0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
1 1 2 2 3 3 0 0 2 2 3 3 0 0 1 1 3 3 0 0 1 1 2 2
2 3 1 3 1 2 2 3 0 3 0 2 1 3 0 3 0 1 1 2 0 2 0 1
3 2 3 1 2 1 3 2 3 0 2 0 3 1 3 0 1 0 2 1 2 0 1 0

(Note : the transpose |: is applied for compactness of display.)

Catalan permutations are those in which there are no sub-lists of
length 3. A first step in extracting these is

 incseq=.*./@(_1&}.)@:(< 1&|.) NB. 1 if list y
strictly increasing
 incseq every 2 3 4 5;2 5 4 3
1 0

The items which form a three-sequence in a permutation need not be
consecutive, so for any permutation, all possible 3-lists must be ob-
tained, e.g. 1 4 2 3 contains the strictly increasing sub-list 1 2 3. Test-
ing for all 3-lists within a given permutation therefore requires a verb
to give all combinations of r items out of n.

 cnos=.i.@:(2&^)@] NB. integers from 0 to 2^n
-1
 bins=.#:@cnos NB. binary nos from 0 to
2^n-1
 mark=.|.@((= +/"1@bins) # cnos) { bins NB. 1=include
in combn
 combs=.mark #"1 i.@] NB. transform to combina-
tions
 |:3 combs 4
0 0 0 1
1 1 2 2
2 3 3 3

The ‘no ascending-3-list’ is then given by

 tri=.monad : '-.+./incseq every box (box 3 combs #y)
{ every <y'
 tri every 1 4 2 3;3 4 1 2
0 1
 |:(tri every box t)#t=.allperms 3 NB. 5
columns
0 1 1 2 2

�290

mailto:cnos=.i.@:(2&%255E)@

2 0 2 0 1
1 2 0 1 0
 |:(tri every box t)#t=. allperms 4 NB. 14 columns
0 1 1 1 2 2 2 2 2 3 3 3 3 3
3 0 3 3 0 1 1 3 3 0 1 1 2 2
2 3 0 2 3 0 3 0 1 2 0 2 0 1
1 2 2 0 1 3 0 1 0 1 2 0 1 0

Returning to the six problems
The solutions are now seen to be

 (1) cat(n-2), (2) cat(n-1), (3) cat(n+1), (4) cat(n), (5) 2cat(n), (6)
cat(n/2).

The correspondences between (2) and (3), and between (4), (5) and (6)
are relatively easy to observe. In the case of (4) write L for left paren-
thesis, R for right parenthesis. The number of valid pairings is thus
the number of possible words such as LLRRLRLLLRLRRR starting
with L in which n= the equal numbers of Ls and Rs. To count these
introduce a ‘false’ L as first character to ensure validity of the bracket-
ing represented. The number of words in the enhanced set is thus the
number of ways in which n like items can be chosen from 2n+1 which
is 2n+1Cn = ((2n+1)!)/[((n+1)!)(n!)] divided by (2n+1), since the first
character is pre-determined. This simplifies to the formula 2nCn/(n
+1) as given above.

�291

Code Summary
 cat=.monad : '(!+:y)%(*/! every y,y+1)' NB. Cata-
lan numbers
 allperms=.i.@! A. i. NB. List
of all perms
 perms=.dyad :'~.x{.&.|: allperms y' NB. All
y-perms from x
 combs=.mark #"1 i.@] NB. All
y-combns from x
 mark=.|.@((= +/"1@bins) # cnos) { bins NB. 1=in-
clude in combn
 cnos=.i.@:(2&^)@] NB. integers
from 0 to 2^n -1
 bins=.#:@cnos NB. binary nos
from 0 to 2^n-1
 incseq=.*./@(_1&}.)@:(< 1&|.) NB. 1 if list
strictly increasing
 tri=.monad : '-.+./incseq every box (box 3 combs #y)
{ every <y'
 NB. Catalan
perms of order y
 box=.<"1
 catmat=.monad :'cat every every box (<i.y)+every i.y
 NB. Catalan ma-
trix ...
 catdet=.monad :'det catmat y' NB. ... and its
determinant
 det=.-/ .*

�292

mailto:cnos=.i.@:(2&%255E)@

45. A partial solution to a partial problem
Principal Topics p. (polynomial), %. (matrix inverse), /. (oblique) ~ (reflex) -. (less)
polynomial quotients, polynomial multiplication, polynomial factors, roots of
equations

A seemingly innocuous post on the J Forum asked if anyone had a
general routine for resolving partial fractions. Given that the heavy
power-horses of p. and %. are already present in J, it seemed to re-
quire just small extensions of these to solve the problem, and it may
be that this is indeed the case. Nevertheless I found this to be quite a
tricky exercise, and as the title above suggests, the path to a general
partial fraction algorithm as given here is not quite complete. How-
ever, some of the J features which turn up on the way are interesting
in their own right, notably the use of explicit rank.

First, the basic problem is relatively simple, namely that of rewriting a
quotient of polynomials such as f(x)/g(x) in which f(x) is of lower or-
der than g(x), in a form such as

 k1/(a1-x) + k2/(a2-x) + …

where a1 ,a2,.. are the roots of g(x). Initially, assume that these are dis-
tinct.

Start by defining a polynomial as a list of coefficients in ascending
power order which is the meaning implicit in the right argument of
p., so that the algebraic function f(x) = 2x2+5x – 3 is represented by
the polynomial _3 5 2.The value returned by monadic p. is

 p. _3 5 2
┌─┬──────┐
│2│_3 0.5│
└─┴──────┘

that is the roots _3 0.5 along with the highest order coefficient 2
which helps distinguish f(x) from say g(x) = 6x2+15x – 9, which has
the same roots.

To model partial fractions, an initial decision has to be made between
using boxes or lists. For example, the partial fraction (1+x)/(1+3x
+2x2) could be represented either by a list of boxes

 1 1;1 3 2

�293

or by a list of polynomials

 1 1 0
 1 3 2

My general principle is to use lists wherever possible unless data-in-
herent heterogeneity makes lists too burdensome. Since the contents
of boxes are sealed by definition, the only available operations with-
out opening are the relatively simple ones of joining and shaping.
With lists, operations specifically appropriate to the data types are ful-
ly available, subject to the constraints of structural rectangularity
which may force the insertion of fill characters. These can sometimes
be benign, as in the case of polynomials where adding a couple of ze-
ros on the right of, say, the polynomial 1 0 2 merely adds two non-
contributory terms 0x3 + 0x4 to the function 1 + 2x2.

Using this representation of polynomials, a fraction such as f(x)/g(x)
is a 2-list of polynomials, for example (4-x)/(1 + 2x2) is the 2-list

4 _1 0
1 0 2

Further, the model is readily extendible by representing a number of
such polynomial fractions as a list of 2-lists of lists, for example {2/
(4+x)} – {6/(1+5x)} is

 t0
 2 0
 4 1

_6 0
 1 5

Next, the dyadic verb pmult (polynomial multiply) multiplies two
polynomials and is often cited as an illustration of the adverb
oblique /.

 pmult=.+//.@(*/) NB. (dyad) polynomial multiplication
 4 _1 pmult 1 0 2
4 _1 8 _2

(Assume in what follows that defined verbs are monadic unless there
is a specific comment to the contrary.)

�294

A useful first step in developing a partial fraction algorithm is to de-
velop an inverse verb, that is one which combines basic (that is 2 by 2)
partial fractions into a single composite partial fraction.

 cp=.(+/@(pmult"1|.)),:pmult&(1&{) NB. combine basic
p.frac’ns
 cp/t0
_22 4 0
 4 21 5

The roots and multiplier of the denominator of a partial fraction are
obtained by

 pfd=.p.@(1&{) NB. partial fraction denominator
 of=.>@{pfd NB. (dyad) pick from p. 0=multiplier,
1=roots

Thus if u1 represents the partial fraction (11x + 8)/(3 - 2x - 8x2) :

 u1
11 8 0
 3 _2 _8
 0 of u1 NB. multiplier
_8
 1 of u1 NB. roots of denominator
_0.75 0.5

Although having p. return a multiplier (which is already part of the
input data) as well as roots adds complexity to its result, this ap-
proach is well justified by considering that the factorisation of an ex-
pression such as 3 – 5x - 2x2 is not unique – it could be the “obvious”
factorisation of (1 - 2x)(3 + x) or it could be (0.5 - x)(6 + 2x), or (2 - 4x)
(1.5 + 0.5x) and so on. Thus in factorising a polynomial into linear
factors (which is always possible because every nth. order polynomial
has exactly n roots, allowing for possible complex values), the multi-
plier delivered by p.must be applied arbitrarily to one of the factors.
The choice made here is to apply it to the first. A general verb for
multiplying the head only of a list is most clearly expressed as an ex-
plicit function :

 mhead=.dyad :'(x*{.y),}.y' NB. x*head of y,tail unchanged

following which roots are changed into factors by rtof, which re-
verses signs and catenates 1s, and adjusted by the multiplier with
facs :

 rtof=.,.&1@-@(1&of) NB. turn roots into factors ..
 facs=.(0&of)mhead rtof NB. ..and adjust for multipli-
er

�295

If there are just two roots, everything is in place to find the factors :

 facs u1 NB. factors
 _6 _8
_0.5 1

.. and then the partial fraction coefficients :

 11 8 %.|:facs u1 NB. coefficients
_1.5 _4

so that the resolution is {-4/(-6 - 8x)} – {1.5/(-0.5 + x)} or equivalently
{2/(3 + 4x)} + {3/(1 - 2x)}

More generally, the numerator coefficients are equated to the com-
bined coefficients of the denominator polynomial factors following
multiplication with one factor at a time omitted. This gives two nice
examples of the use of explicit rank, one to exclude each item in turn
in the list of factors, then pmult is used at rank 2 to multiply these fac-
tors together. For example, given the fraction

 (23 +55x+8x2)/(3+13x-18x 2-40x 3)

to resolve, define:

 u2 NB. partial fraction
23 55 8 0
 3 13 _18 _40

 facs u2 NB. basic polynomial factors of u2
 _30 _40
_0.5 1
 0.2 1

Now use less which for x-.y includes all items of x except those
which are cells of y :

 minors=.-."2 1~
 minors facs u2
_0.5 1
 0.2 1

 _30 _40
 0.2 1

 _30 _40
_0.5 1

�296

and ‘polynomial multiply’ within each pair of factors

 mat=.pmult/"2@minors@facs NB. lin eqns for pf coeffs
 mat u2
_0.1 _0.3 1
 _6 _38 _40
 15 _10 _40

At this point the power of matrix divide comes into play and is consol-
idated in a verb :

 pfc=.}:@(0&{) %.|:@mat NB. partial fraction coefficients
 pfc u2
_20 _1.5 0.8

which gives the partial fraction coefficients which correspond to facs
u2 in order.

Finally the verb form brings coefficients and factors together in the
basic partial fraction representation :

 form=.(,:~,)"1 0 NB. (dyad) merge factors and coefficients

 pf=.facs form pfc NB. partial fractions
 pf u2
 _20 0
 _30 _40

_1.5 0
_0.5 1

 0.8 0
 0.2 1

It is easy to confirm that cp/pf u2 is identical to u2 and similarly
for u1. As further confirmation using the first example pf cp/t0 is
the same as u0 within constant factors :

 pf cp/t0
 10 0
 20 5

_1.2 0
 0.2 1

The problem of distinct real denominator roots has thus been fully
dealt with, which leaves two matters outstanding, namely complex
roots, and repeated roots.

For complex roots, take as an example 1/(1+x5) represented by

�297

 u3=.2 6$1 0 0 0 0 0 1 0 0 0 0 1
 u3
1 0 0 0 0 0
1 0 0 0 0 1

pf operates as for real roots

 pf u3
_0.161803j_0.117557 0
_0.809017j_0.587785 1

 _0.161803j0.117557 0
 _0.809017j0.587785 1

 0.2 0
 1 1

0.0618034j_0.190211 0
 0.309017j_0.951057 1

 0.0618034j0.190211 0
 0.309017j0.951057 1

If the implementation dependent assumption is made that imaginary
complex pairs occur together, there is no problem in combining basic
fractions into partial fractions with real coefficients as in :

 cp/2{.pf u3 NB. a quadratic partial fraction
0.4 _0.323607 0
 1 _1.61803 1

 cp/_2{.pf u3 NB. another quadratic partial frac-
tion
0.4 0.123607 0
 1 0.618034 1

It is a straightforward matter to write a verb which post-processes the
results of pf by combining each complex fraction with its neighbour.

Next, multiple roots, say the resolution of (6+8x+3x2)/(1+x) 3 where
the appropriate partial fraction structure is k1/(1+x) 3 + k2/(1+x) 2 +
k3/(1+x). This is a relatively easy application of the binomial coeffi-
cients and matrix divide :

 bc=.!/~@i. NB. binomial coefficients
 bc 3
1 1 1
0 1 2
0 0 1

and the relevant coefficients are found by

�298

 6 8 3 %.bc 3
1 2 3

that is, (6+8x+3x2)/(1+x) 3 = 1/(1+x) 3 +2(1+x) 2 +3(1+x).

More generally the binomial coefficients for the polynomial a b are
found by

 bco=.dyad :0 NB. (dyad) coeffs. of (polynomial y.)^x.
r=.(,1),:y [i=.2
while. i<x do.
 r=.r,({:r)pmult y [i=.i+1 end.

so for a partial fraction (4 + 18x + 9x2)/(2 + 3x) 3 , the first step is the
matrix

 3 bco 2 3
1 0 0
2 3 0
4 12 9

followed by matrix divide to obtain the coefficients :

 4 18 9%.|:3 bco 2 3
_4 2 1

that is (4 + 18x + 9x2)/(2 + 3x) 3 =
{-4/(2 + 3x) 3 } + {2/(2 + 3x) 2 } + {1/(2 + 3x)}

Notice that bco depends only on pmult and not on any of the factorisa-
tion verbs. If the denominator is multiplied by a further factor, say
resolve (4 + 14x +27x2 +18x2)/(x+1)(2 + 3x) 3 into partial fractions,
each of the polynomials listed in 3 bco 2 3 must be multiplied by the
new factor (hence pmult"1), and a third order set of binomial coeffi-
cients added :

 m1=.((3 bco 2 3)pmult"1(1 1)),{:4 bco 2 3
 m1
1 1 0 0
2 5 3 0
4 16 21 9
8 36 54 27

4 14 27 18 %.|:m1
4 _2 _1 1

that is the resolution is

 {4/(2 + 3x) 3 } - {2/(2 + 3x) 2 } - {1/(2 + 3x)} + {1/(1 + x)} .

�299

At the start I said that the journey was not complete, but at least a
staging post has been reached from which it is just a matter of consci-
entious programming to achieve a general partial fraction algorithm.

Code Summary
pmult=.+//.@(*/) NB. (dyad) polynomial multiplication
cp=.(+/@(pmult"1|.)),:pmult&(1&{) NB. combine partial fractions
pfd=.p.@(1&{) NB. partial frtn denominator
rtof=.,.&1@-@(1&of) NB. convert roots to factors ..
facs=.(0&of)mhead rtof NB. .. and adjust for multiplier
 of=.>@{pfd NB. pick from denom 0=mult, 1=roots
 mhead=.dyad :'(x*{.y),}.y' NB. x*head of y,tail unchanged
minors=.-."2 1~ NB. uses dyadic -. (less)
mat=.pmult/"2@minors@facs NB. lin. eqns for pfractn. coeffs
pfc=.}:@(0&{) %.|:@mat NB. partial fraction coefficients
form=.(,:~,)"1 0 NB. merge factors and coefficients
pf=.facs form pfc NB. construct partial fraction
bc=.!/~@i. NB. binomial coefficients

 bco=.dyad :0 NB. (dyad) coeffs. of (polynomial y.)^x.
r=.(,1),:y [i=.2
while. i<x do.
r=.r,({:r)pmult y [i=.i+1 end.
)

�300

46. Tables and Geometry
Principal Topics = (self classify) ` (tie) `: (evoke gerund) ,. (stitch) “ (rank conjunc-
tion) j. (imaginary) +. (real / imaginary). tables, identity matrix, inner product,
apb notation, upper/lower triangular matrices,

The identity table of any order can be formed in many ways, of which
the simplest is as a fork i.=/i. This also spawns definitions of upper
triangular tables with or without the diagonal

 <"2 (i.=/i.)`(i.<:/i.)`(i.<:/i.)/.3 3 3
┌─────┬─────┬─────┐
│1 0 0│1 1 1│1 1 1│
│0 1 0│0 1 1│0 1 1│
│0 0 1│0 0 1│0 0 1│
└─────┴─────┴─────┘

and lower triangular tables follow in an obvious way.

Another even shorter definition for the identity table is =@i . Super-
ficially this looks like equals but in fact it is the monadic verb self-classi-
fy which is at the heart of the matter. When its argument contains no
duplicates it is just the equals table of the argument with itself.

Plane Transformations

Start with id and di

 id=.i. =/ i. NB. identity matrix
 id 3
1 0 0
0 1 0
0 0 1
 di=.<"1@(i. ,. i.) NB. coeffs of diagonal
 di 3
┌───┬───┬───┐
│0 0│1 1│2 2│
└───┴───┴───┘

so a scaling matrix for enlarging 2 units in the x direction and 3 in the
direction is

 2 3(di 2)}id 2
2 0
0 3

Define a pennant by suitable (x,y) coordinates :

]pen=. |:>0 0;5 5;4 5;4 4
0 5 4 4

�301

0 5 5 4

... and here are the coordinates of this scaling

 mp=.+/ .*
 (2 3(di 2)}id 2) mp pen
0 10 8 8
0 15 15 12

To translate pen two units to the right and three units down

 2 _3+"0 1 pen
 2 7 6 6
_3 2 2 1

The isomorphic plane transformations whose combinations cover all
possible such transformations are scaling, translating and rotating.

Rotating in 2D
 cs=.+.@^@j. NB. obtains cos y and sin y
 pi=.1p1
 cs pi%3
0.5 0.866025

Use cs to obtain the rotation matrix .

 rot2=.(cs&-)`(|.&cs)`:0 NB. evoke gerund

 rot2 pi%3
 0.5 _0.866025
0.866025 0.5

 (rot2 pi%3)+/ .*1 1
_0.366025 1.36603

Another way of performing this rotation is to use complex numbers
based on the identity eiy=cosy+isiny

 r2=.* ^@j.
 1j1 r2 pi%3
_0.366025j1.36603

Here is its rotation of the pennant through an anti-clockwise angle of
π/2

 (rot2 pi%2)+/ .*pen
0 _5 _5 _4
0 5 4 4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

yy
yy

cossin
sincos

�302

... or using the alternative method

 q=.0 5j5 4j5 4 4
 q (r2 every) pi%2
0 _5j5 _5j4 2.449e_16j4 2.449e_16j4

Scaling and translation in 3D extends naturally into three dimensions:

 2 4 3(di 3)}id 3
2 0 0
0 4 0
0 0 3
 (2 4 3(di 3)}id 3)mp 2 1 3
4 4 9

To translate four points in 3D by 2 x-units -3 y-units and 4 z-units :

 2 _3 4 +"(0 1)pen,1
 2 7 6 6
_3 2 2 1
 5 5 5 5

In 3D there are infinitely many possible axes of rotation of which the
three main ones are about axes at right angles to the Oxy, Ozx and
Oyz planes, for which purpose the result of rot2 y has to be placed
by amendment into the relevant 2 by 2 block of id 3 . For example
the relevant coordinate pairs for the Oxy rotation are

 <"(1)2 2#: i.4
┌───┬───┬───┬───┐
│0 0│0 1│1 0│1 1│
└───┴───┴───┴───┘

and those for Ozx and Oyz are obtained by doubling and increment-
ing respectively. Rather than using a 3D solid object, the illustrations
show the effect of rotating a ray joining the origin to the point with
coordinates (2,1,3).

 rxy=.monad :'(,rot2 y)(<"(1)2 2#: i.4)}id 3'

 rxy pi%3
 0.5 _0.866 0
0.866 0.5 0
 0 0 1
 (rxy pi%2) mp 2 1 3
_1 2 3

 rzx=.monad :'(,rot2 y)(<"(1)2*2 2#: i.4)}id 3'
 (rzx pi%2) mp 2 1 3
_3 1 2

�303

 ryz=.monad :'(,rot2 y)(<"(1)>:2 2#: i.4)}id 3'
 (ryz pi%2) mp 2 1 3
2 _3 1

Code Summary
id=.i. =/ i. NB. identity matrix
di=.<"1@(i. ,. i.) NB. coeffs of diagonal
mp=.+/ .* NB. matrix product
cs=.+.@^@j. NB. obtains cos y and sin y
pi=.1p1
rot2=.(cs&-)`(|.&cs)`:0 NB. 2D rotation matrix
r2=.* ^@j. NB. ditto as complex list

3D rotations about major axes
rxy=.monad :'(,rot2 y)(<"(1)2 2#: i.4)}id 3'

rzx=.monad :'(,rot2 y)(<"(1)2*2 2#: i.4)}id 3'
ryz=.monad :'(,rot2 y)(<"(1)>:2 2#: i.4)}id 3'

�304

mailto:cs=.+.@%255E@j

47. Musical J-ers

Principal Topics : \: (grade down) ~ (passive) \ (infix) tonic, dominant, octave,
intervals, clock arithmetic, ciccle of fifths, celestial harmonies, 12 note chromatic
scale, diatonic scale, Pythagorean tuning, just intonation, mean tone tempera-
ment, equal temperament, cents, Pythagorean comma, Wolf fifth. syntonic com-
ma, frequencies.

Every now and then when struggling with some abstruse aspects of a
technical subject, I get the feeling that it would have been so helpful if
the experts and specialists had told me about it in J. One such area is
that of temperament in music, and what follows is my attempt to
make that case for using J to enlighten things in this field.

To start at the beginning, Pythagoras, he of the hypotenuse, also had
strong ideas about music. He realised that a vibrating string when
suddenly stopped at its middle point produces a note melodically
identical to the original, only, in modern terminology, an octave high-
er. Call the melodic value of both these notes the tonic, so that ad-
vancing an octave allows us to ‘listen’ to the fraction 1/2. If the string
is now stopped its 2/3 point the result is another note called the dom-
inant which, when sounded at the same time as the tonic, produces a
pleasant sound combination.

Simple fractions sound nice

From this starting point two separate experiments proceed. In the
first the string is stopped at other fractional points with small integer
numerators and denominators. Since the octave represents a full
melodic circle which is repeated at 1/4 then 1/8 and so on, there is
little point in considering stops other than those which lie between
1/2 and 1. The next ‘interesting’ stop is thus at 3/4, followed by oth-
ers at 3/5, 4/5 and 5/6. At this point all fractions with components of
6 or less have been exhausted, and in all cases pleasing sound combi-
nations with the tonic are obtained. This experiment has incidentally
provided a means of ‘hearing’ the following range of fractions : 1/2
2/3 3/4 4/5 5/6 which are defined by the hook

 (%>:)1 2 3 4 5 NB. octave, 5th, 4th, 3rd, minor 3rd
0.5 0.667 0.75 0.8 0.833

annotated above with intervals names which describe distances from
the tonic. It is important to distinguish between notes and intervals,
which is akin to observing the gaps in the fence rather than the fence

�305

posts. The piano tuner tweaks strings and the organ tuner adjusts
pipes to produce notes, but what the listener hears is primarily inter-
vals.

Advancing to higher integers in the above sequence, any fraction in-
volving a 7, that is 4/7, 5/7, 6/7 and 7/8 produces distinctly unpleas-
ant sound combinations. As for 8s, there is just one ratio which has
not been investigated, namely 5/8 which also sounds nice and corre-
sponds to the interval called a minor third. All of the intervals 1/2
2/3 3/4 3/5 4/5 5/6 5/8 are "pure" in the sense that they can be
related to pleasant sounds which arise from the physical properties
embodied in a bowed string, or resonating pipe.

Calculating a circle of fifths

The second experiment involves intervals rather than notes, and con-
sists of finding where the stop should be for the dominant of the dom-
inant. The ‘obvious’ answer is 2/3 of 2/3 = 4/9, but this is outside the
range 1/2 to 1. However, the first experiment showed that doubling
the fraction lowers the note by an octave but makes no difference to
its melodic quality of the note, so make the second stop position at
8/9. Then repeat the experiment to find the dominant of the domi-
nant of the dominant at 2/3 of 8/9 = 16/27 which does not need dou-
bling since it is already in the range 1/2. To continue this process use
J to develop a compound verb "multiply-by-2/3-and-double-if-out-
side-1/2-to-1". This situation is reminiscent of clock arithmetic as
practised in the early stages of primary school. For example in arith-
metic modulo 5 adding 4 and 2 makes 1, multiplying 4 and 2 makes 3,
notions which are captured in J by

 cadd=.5&|@+ NB. clock add
 4 cadd 2
1
 cmult=.5&|@* NB. clock multiply
 4 cmult 2
3

The whole infinite gamut of integers is thereby compressed into the
set {0,1,2,3,4}. Another example of compressing an infinite into a finite
one is the expression of numbers in scientific notation. Using loga-
rithms, the fine detail of a real number is compressed into the range 1
(inclusive) to 10 (non-inclusive), while the exponent defines the
wider territory within which the number lies. Again J can explain
how to do this. If a number is expressed as v e x then

 x=.<.@(10&^.) NB. exponent

�306

 x 2675
3
 v=.%10&^@x NB. value
 v 2675
2.675

In pictorial terms v compresses numbers into the space

 100 101

Now return to the musical experiment with its ‘special’ multiplication
in which e.g. (2/3)2 = 8/9, so that the result always remains in the
range 1/2 to 1. This compression region can be drawn as

 2-1 20

– call the process "musical arithmetic" – which helps write the analo-
gous verbs

 x2=.<.@>:@(2&^.)
 x2 1r8 2r3 4r9 NB. 2-exponent
_2 0 _1
 v2=.%2&^@x2 NB. value
 v2 1r8 2r3 4r9
0.5 0.666667 0.888889

In musical arithmetic the "nice" sounds as defined above, (or as Py-
thagoras would have more grandiosely called them "celestial har-
monies") are inverses according to the following plan :

 2/3 : fifth 1/(2/3) = 3/4 fourth
 4/5 : major third 1/(4/5) = 5/8 minor sixth
 3/5 : major sixth 1/(3/5) = 5/6 minor third

So applying the power conjunction to the “musical multiplication” verb
to extend the Pythagorean progression of fifths :

 v2 2r3^>:i.12 NB. successive fifths
0.667 0.889 0.593 0.79 0.527 0.702

0.936 0.624 0.832 0.555 0.74 0.987

After twelve applications, a value 0.987, is obtained which is not too
far from 1 representing the tonic. Given that the numerators are pow-
ers of 2 and the denominators are powers of 3, there can never be any
question of solving (2/3)k = 1/2 exactly, and so it is reasonably satis-

�307

mailto:v=.%2510&%255E@x

fying to get as close as 0.987/2 in twelve steps. Musically this means
that jumping by intervals of a fifth twelve times take us through a cy-
cle of sounds which then repeats itself after an adjustment to make the
octave pure. The natural place to make this adjustment is at the final
step, but it could be made at any intermediate step or indeed spread
across several steps. The above series is related to the familiar notes
on a piano keyboard as follows

 v2 2r3^>:i.12 NB. progression of fifths
0.667 0.889 0.593 0.79 0.527
G D A E B

0.702 0.936 0.624 0.832 0.555 0.74 0.987
 F# C# G# D# A# F C

The experiment is not over yet because the next question is what
would happen if the above exercise was repeated for 3/4 rather than
2/3. The primary interval in this case is called a fourth, and the result
is

 v2 3r4^>:i.12 NB. progression of fourths
0.75 0.563 0.844 0.633 0.949 0.712 0.534 0.801 0.601 0.901
0.676 0.507
 F Bb Eb Ab Db F# B E A D G
C

that is, the same notes only in reverse order, and finishing on the low
octave, value 1/2, rather than the high octave at 1.

The twelve notes thus identified comprise the 12-note chromatic scale
which has underpinned most Western music since around 1600.
However, the first of the above lists shows that if the stop positions on
the string are obtained by successive fifths (a scheme which is called
Pythagorean tuning, although Pythagoras himself would only have
recognised the first few steps), then by the time F comes round its
value will be slightly different from the ‘pure’ value of 3/4. Likewise
the second list shows that tuning by successive fourths G will also be
a shade impure. Similar considerations apply to the other notes,
which in turn means that the intervals will differ from the intervals
identified in the first experiment. More importantly, the adjustment
noted above which is needed to make the octave pure at the twelfth
and final step is called a comma, or more specifically a Pythagorean
comma, and sometimes again the comma of Didymus.

The Problem of D

So far six of the eight notes of the diatonic scale (that is the white
notes on the piano in the scale of C) have been given places in the

�308

scheme of things, the two remaining being D and B. Since these are
symmetrically placed at either end of the octave, a discussion of one is
automatically a discussion of the other, so focus on D. D is not con-
sonant with C, so there is no physical “right” fraction for it, rather
there are two candidates. The first comes from considering the fact
that D is one whole tone removed from C, and there is already a
whole tone represented, namely F – G, whose ratio is (2/3) / (3/4) =
8/9. The second candidate arises from the fact that in order to make
D – A a pure fifth D must be set at (3/5) / (2/3) = 9/10. (A harpsi-
chord with two such D keys was in fact built in Holland in 1639, but
did not prove particularly popular for obvious reasons!) The diagram
below shows D set to 8/9, and 9/16 as the symmetrical consistent
choice for B which makes high C equal to 8/9ths. of B.

 1/2 9/16 3/5 5/8 2/3 3/4 4/5 5/6 (8/9) 1
 0.5 0.567 0.6 0.675 0.667 0.75 0.8 0.833 (0.889) 1

 C B A G# G F E Eb (D) C

The Note in the middle

A full octave in the chromatic scale (that is including two tonics) has
13 notes, and thus 12 intervals, and a middle note, namely F#. Where
does it appear in the above table? The answer is that it doesn't be-

cause ‘half-way’ on a multiplicative scale means the position, so
playing the interval C – F# on the piano is a way of hearing the square
root of 2! Moreover a glance at the progression series above shows
that under musical multiplication both (2/3)6 and (3/4)6 are approxi-

mations to , one being about 0.005 above and the other the same
amount below. On either side of the middle, interval of a fifth, C – G,
consists of seven semi-tones, whereas a fourth, C – F, consists of five
semitones in which respect fifths and fourths are mirror images of
each other, explaining incidentally why each of the two progression
series is the reverse of the other.

Adjusting the scale

The following is another copy of the 1/2 to 1 region in which the frac-
tions are labelled with interval names rather than notes (dim stands
for "diminished")

1/2 9/16 3/5 5/8 2/3 3/4 4/5 5/6 8/9 1

21

21

�309

 C B A G# G F E Eb D C
 oct 7th 6th dim 6th 5th 4th 3rd dim 3rd 2nd

Under this scheme the whole tones D – E and G – A have values
(4/5) / (8/9) and (3/5) / (2/3), both of which are equal to 9/10,
which was the alternative candidate for D. This means that there are
two types of whole tone in this scale, so that, for example, the first
three notes of “Three Blind Mice” become a melodic progression of
unequal steps. Also the ratios for the main consonant intervals, ob-
tained by dividing the value of the second note by that of the first, are

 perfect fifths major sixths major third
 F - C G - D D - A A - E F - D G - E F - A
 2/3 2/3 27/40 2/3 16/27 3/5 4/5

The values of 2/3, 4/5 and 3/5 are consistent with those for the tonic
C, but clearly compromises must be made on account of the introduc-
tion of D which would need to be 9/10 to make D - A a pure fifth.
Similarly in the key of G# the major third is G# – C, ratio 1/(5/8) =
4/5 and the fifth is G# – Eb = (5/6) / (5/8) = 2/3 both of which are
pure. However, in the key of E the major third E – G# has the ratio
(5/8)/(4/5) = 25/32 or 0.781 which is just a touch impure. And so
one could go on. Once a set of strings is tuned for pure concordances
in key C, compromises must be made, not just for melodies and har-
monies in the key of C, but also for melodies played in other keys.
How best to make such compromises has engaged the minds of musi-
cians since medieval times, and is the subject of a fascinating little
book called "Temperament - the idea that solved Music's Greatest
Riddle" by Stuart Isacoff. (The word "temperament" was first used in
this context round about 1500, and means, according to Chambers "a
system of compromise in tuning".) The history of the debates on
temperament is complex; but broadly, the D problem gave rise to two
solution streams, one called just intonation which tolerated differ-
ences in whole tone values as a price worth paying for purity of major
thirds, the other called mean tone temperament which is based on
making whole tones uniform. “Just” should be thought of as being
derived from “adjustment”, of which there has already been hints in
the preceding section. The notion of making adjustments to organ
pipes or strings on keyboards may well date as early as the late 14th.
century, and it is important to bear in mind that Renaissance instru-
ments were much less full-blooded than their modern counterparts,
so that both players and listeners would have been more sensitive to
variations in tuning than audiences are today.

�310

Equal Temperament

In the mid 16th century the concept of the equal-tempered scale
emerged in which each of the twelve semi-tone intervals are equal on
a multiplicative scale. This has the merit that music can be freely
transposed into other keys, but at a cost of losing the ‘purity’ of the
Pythagorean ratios in any key. On the other hand tuning for Py-
thagorean perfection in, say, the key of C, means that transposing
outwards to remote keys on the circle of fifths results in increasingly
unpleasant harmonies. Equal temperament tuning first found favour
among lute players for whom other forms of tuning necessitated the
undesirable feature of having frets at unequal distances for different
strings. Again, J can clarify and quantify what musicians and musical
historians mean when they talk about this topic. In an equal-tem-
pered system (and also a well-tempered system which is a subtly dif-
ferent but more sophisticated variation of it), the common ratio of the
series of semi-tone values must be the twelfth root of 2, and so the
stop ratios going up the scale are given by

]r=.2^-%12 NB. r is 1/12th root of 2
0.944
 r^i.13
1 0.944 0.891 0.841 0.794

0.749 0.707 0.667 0.63 0.595 0.561 0.53 0.5

The following series is the corresponding ordered version of the ratios
for Pythagorean tuning :

 \:~1, v2 2r3)^i.12 NB. equal-tempered stop positions
1 0.936 0.889 0.832 0.79

0.74 0.702 0.667 0.624 0.593 0.555 0.527 0.5

For the purposes of comparing tuning systems it is useful to convert
from a multiplicative scale ranging from 1 to 1/2 going up the scale to
a.n additive one from 0 to 1200 in which each semitone interval is rep-
resented by 100 in an equal-temperament system. Pictorially this
conversion is

 2-1 2-(1/2) 2-(1/12) 20

 to

 1200 600 100 0

Musicians call the unit which divides an octave into 1200 parts a cent,
and J readily provides the means of conversion

 cent=.1200&*@(2&^.)@% NB. convert stop positions to cents

�311

 cent %12 4 3 2 1.5%:2 NB. equal tempered C# Eb F F# G#
100 300 400 600 800

 cent r^i.13 NB. 12-tone equal-tempered scale
0 100 200 300 400 500 600 700 800 900 1000 1100 1200

It is informative to see how Pythagorean tuning measures up on a
cent scale. First observe the cent values of pure fifths, thirds and
sixths which are respectively :

 rnd=.<.@(0.5&+) NB. round to nearest integer
 rnd cent v2 2r3 4r5 3r5 NB. 5ths, maj 3rds. 6ths.
702 386 884

The values of the three complementary intervals in the diatonic scale
(fourths, minor sixths and minor thirds) are just 1200 minus these
values, as confirmed by

 rnd cent v2 3r4 5r8 5r6 NB. 4ths, min 3rds. 6ths.
498 814 316

Next establish the cent values of all twelve points on the Pythagorean
chromatic scale

 rnd cent \:~v2 2r3^i.13 NB. Pyth tuning to cents
23 114 204 318 408 522 612 702 816 906 1020 1110 1200
 C C# D Eb E F F# G G# A Bb B C

The initial value of 23 represents the comma, that is the extent to
which tuning by repeated fifths ‘misses"’ the octave whose purity in
any tuning system is sacrosanct. Since an octave is also the sum of
three major thirds and of four minor thirds, there are also discrepan-
cies in these of 1200 – (3x386.6) = 41 below and (4x316) - 1200 = 63
above respectively, which are also commas of a sort, although the un-
qualified use of ‘comma’ means the measure of around 23 cents. This
comma is incidentally also the interval by which the fourth C - F is
impure within a well-tempered system.

The sequence of fifths in the row above, that is C, G, D, A, E etc.,
shows a progressive overshoot of 2 cents at each step cumulating into
the comma which, if corrected at the final step, requires this step to be
curtailed to 702-23 = 679 cents. Two notes at this interval produce a
discordant sound known since mediaeval times as the wolf fifth, pre-
sumably because of its supposed likeness to the braying of a wolf.

Another way of looking at the last row of figures above is to calculate
their differences :

�312

 2-~/\0 114 204 318 408 522 612 702 816 906 1020 1110 1200
 114 90 114 90 114 90 90 114 90 114 90 90
C D E F G A B C

This shows that every semitone is worth one of two values, namely 90
cents or 114 cents. If now the two semi-tones in the diatonic scale
(that is the C scale without any black notes) are equalised at 90 by in-
terchanging the 114 and 90 between E and F#, then the five whole
tones in the diatonic scale are also equalised at 204 cents. (5x204) +
(2x90) = 1200, which confirms the purity of the octave. The difference
of 12 cents between some semitones and others is perceptible only to
the most highly trained ears.

As an aside, it might be supposed that since fourths are the mirror
images of fifths that tuning by successive fourths would be broadly
similar. Try it on the computer, but not on your piano !

 rnd cent \:~v2 3r4^i.13
90 180 294 384 498 588 678 792 882 996 1086 1177 1200

Just Intonation

Just intonation systems are based on the notion that the major third is
somehow a more "beautiful" consonance than the "fifth" (think of
songs in which soprano and alto voices proceed in a blend in parallel
thirds). Some form of this may have been in the mind of Ptolemy in
the second century A.D., hence the occasional use of the term Ptole-
maic tuning as a synonym. The starting point is that the Pythagorean
system has a major disadvantage in that the major thirds (C - E, F - A
and G - B) all have values of 408 cents whereas purity requires that
they should have a value of

 cent v2 4r5 NB. size of equal-tempered major third
386.3

One way around this is to accept D as 204 cents as above, correspond-
ing to a harmonic value of 8/9, but make the next tone D - E equal to
386 - 204 = 182 cents, a reduction of a comma. Reducing the interval
G - A by the same amount simultaneously adjusts both the F – A and
G – B thirds to the pure value of 386. This leaves the two diatonic
semitones to take up the slack of 44 so each becomes 90 + 22 = 112.
Now consider the chromatic notes. D – F# is currently 182 + 112 + 114
= 408, in excess by a comma. Switching the semi-tone values between
F and G, and changing them slightly from 114/90 to 112/92 makes D

�313

– F# pure, as are also F# - A and G# - B. This little bit of ingenuity
leads to the scheme

]just=.92 112;90 92;112;92 112;92 90;112 92;112
┌──────┬─────┬───┬──────┬─────┬──────┬───┐
│92 112│90 92│112│92 112│92 90│112 92│112│
└──────┴─────┴───┴──────┴─────┴──────┴───┘
 D E F G A B C

It is now possible to use J to observe the effects of this particular just
tuning on all the principal intervals based on different starting notes :

 2+/\13$;just NB. tones
204 202 182 204 204 204 204 182 202 204 204 204
C C# D Eb E F F# G G# A Bb B

 7+/\18$;just NB. fifths
702 702 680 702 702 702 702 702 700 702 702 702

 4+/\15$;just NB. major thirds
386 406 386 408 408 386 406 386 406 408 408 406

 9+/\20$;just NB. sixths
884 904 884 906 906 906 904 884 904 906 906 906

Other theorists had different ways of getting around the problem of
D, and because of the ad hoc nature of such systems just systems are
also referred to as irregular temperaments. It is doubtful whether
they were much applied in practice to harmonised music.

Two other systems have a place in the history of temperament, both of
which In his time only the diatonic scale in which there are just three
thirds (C – E , F – A and G – B). The F – A ratio in the Pythagorean
scheme is (3/5) / (3/4) = 4/5 which is pure, and purity for G – B
would suggest a value of (2/3)x(4/5) = 8/15 (0.533) for B which also
establishes the purity of the fifth E – B. It has already been observed
that there is flexibility when D is introduced. The major third in-

volves the note F#, and to make the minor third D - F pure means
choosing a value of 9/10 rather than 8/9 should be chosen for D. Pre-
serving the G - D fifth then requires adjusting G to 27/40 rather than
2/3 and to preserve the purity of the major third G - B, B should be set
to 27/40 = 0.54 compared with the value reached at the fifth step in
the fifths progression which is (2/3)5 = 128/243 = 0.527 Thus in this
system the purity of the thirds is therefore preserved at the expense of
impurity in the fifths.

21

�314

Mean-tone Temperaments

Mean-tone systems were specifically designed for keyboard instru-
ments. In Pythagorean terms the note E required for the interval of a
third is encountered after four steps (C – G – D – A – E), which, as-
suming that the progression is consistently upwards in pitch, repre-
sents an interval of four fifths, or equivalently two octaves and a ma-
jor third. If the latter interval is to be tuned perfectly the component
fifths must be tuned as the fourth power of 5 in the same way as semi-
tones were obtained as powers of 12 in the well-tempered system. As
already noted the pure third measures 386.3 cents, so that the two
tones which comprise it have a mean value of 193.15 cents (cf. 204 in
the just system). This mean is the size of all the whole tones in this
system, hence the name "mean-tone temperament". Carrying out the
sort of accountancy in the previous paragraph means that the values
of the semi-tones intervals must be half of 1200 - (5x193.15) = 117
cents. This in turn means that those semi-tones which are not part of
the diatonic scale must have the value 193 - 177 = 76 (cf. 92 under the
just tuning described above) leading to a cent scale

76 117 117 76 117 76 117 76 117 117 76 117
 D E F G A B C

(An astute observer will spot that the above list of numbers totals 1199
highlighting a small rounding effect).

Mean-tone systems can be thought of as ‘splitting the comma’, and
the scheme above is not the only way of doing so.

Comparison of systems described

The following table summarises in cents the values of the notes of the
chromatic scale of C in the four systems of tuning considered in
detail :

 C C# D Eb E F F# G G# A Bb B C
eq-temp: 0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Pyth : 0 114 204 318 408 522 612 702 816 906 1020 1110 1200
just : 0 92 204 294 386 498 590 702 794 884 996 1088 1200
mean : 0 76 193 310 386 503 579 696 772 889 1006 1082 1200

�315

Frequencies

In terms of frequencies, life is even simpler since for Pythagorean tun-
ing the relative frequencies of notes in the scale are now compressed
into

 20 21

 fx=.<.@(2&^.) NB. exponent
 fv=.%2&^@x NB. value

Using the verb fv of course requires some correction due to the com-
ma effect and the practical requirement that successive octaves should
have values 1 and 2

 /:~fv 1.5^i.13
1 1.014 1.068 1.125 1.201 1.266
C C' C# D Eb E
octave dim 2nd 2nd dim 3rd 3rd

1.352 1.424 1.5 1.602 1.688 1.802 1.898
 F F# G G# A Bb B
 4th dim 5th 5th dim 6th 6th dim 7th 7th

Under equal temperament the corresponding frequencies are

 1 1.059 1.122 1.189 1.26
octave dim 2nd 2nd dim 3rd 3rd

1.335 1.414 1.498 1.587 1.682 1.782 1.888
 4th dim 5th 5th dim 6th 6th dim 7th 7th

The above frequencies are relative; in terms of absolute frequencies, concert
pitch is generally taken to be 440hz for the A above middle C, so using val-
ues from the above table as divisors the frequency of middle C is somewhere
in the range 260-262hz depending on which tuning system is used, and simi-
larly for other notes.

There is nothing in the above which cannot be found in, say, Encyclo-
pedia Britannica, or Grove’s Dictionary of Music and Musicians.
However the accounts there are not particularly easy to understand,
and exposition in J would have helped me greatly. Incidentally I con-
sider that a few figures in Grove’s tables under “Mean-tine Tempera-
ment” are in error – had the description been in J it would be immedi-
ately clear who was right! Perhaps like Ken I am just temperamental-
ly inclined towards J!

�316

Code Summary
 x=.<.@(10&^.) NB. exponent
 v=.%10&^@x NB. value
 x2=.<.@>:@(2&^.) NB. 2-exponent
 v2=.%2&^@x2 NB. value
 rnd=.<.@(0.5&+) NB. round
 cent=.1200&*@(2&^.)@% NB. convert stop positions to cents
 rnd=.<.@(0.5&+) NB. round to nearest integer
 fx=.<.@(2&^.) NB. exponent
 fv=.%2&^@x NB. value

�317

mailto:v=.%2510&%255E@x

48. Heavens above!

Principal Topics : o. (circle functions) \. (outfix) spherical trigonometry, simili-
tude, rotations, enlargements, determinant, minors, cofactors, cross product,
identity matrix, direction cosines, altitude, azimuth, declination, right ascension,
celestial sphere, hour angle, celestial meridian, transit

A general objective of J-ottings has been to draw attention to the con-
siderable number of mathematical or mathematical type routines
which are built into J primitives thereby leading to significant reduc-
tions of programming effort. One such feature is the versatility of j
which although primarily a complex number constructor is adaptable
to other circumstances in which objects are defined by pairs of num-
bers, for example betting odds (see E #14).

A further example concerns transformations of a 2-dimensional plane

by means of matrices of the form where a and are b real

numbers. A transformation such as is called a similitude, that is
a transformation which results in the combination of an anti-clock-
wise rotation about the origin and an enlargement of the objects de-
scribed by the coordinates. (For a clockwise rotation exchange b and –
b). Given det=.-/ .* standing for determinant, det M is a2 + b2
and its square root is the enlargement E. The rotation component is
represented by M divided by E, resulting in a matrix of the form

 where t is the anti-clockwise angle of rotation.

Now although a similtude could be applied to a triangle whose points
are, say, (0,0), (2,1) and (0,1) by

]M=.2 2$2 _3 3 2 NB. similitude matrix
2 _3
3 2
]tri=.2 3$0 2 0 0 1 1
0 2 0
0 1 1
 M +/ .*tri
0 1 _3
0 8 2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

ab
ba

M

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

y
x

M

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

tt
tt

cossin
sincos

�318

to give the transformed triangle (0,0), (1,8), (-3,2), clearly M is defined
by the number pair (a,b) and so can be represented compactly as a j
pair, in which case enlargement E and rotation t are given by :

 10 o. 2j3
3.60555 NB. enlargement=sqrt of 2^2 +
3^2
 (%10&o.)2j3
0.5547j0.83205 NB. (cos x)j(sin x) where tan
x=3%2

Instead of using a matrix inner product to transform points, simple
multiplication is all that is required, so that the previous triangle
transformation is given by

 2j3*every 0j0 2j1 0j1 NB. triangle transforma-
tion
0 1j8 _3j2

Also since multiplication is commutative, a product such as 2j3*2j1
has two geometric interpretations, viz. the similtude 2j3 transforms
the point (2,1) to the point (1,8) and the similtude 2j1 transforms the
point (2,3) to (1,8).

For rotation without enlargement the transformed coordinates of the
point (x, y) in the new frame of reference are

 which can be confirmed by elementary
trigonometry:

 new (x,y)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

−
=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

tytx
tytx

y
x

tt
tt

cossin
sincos

cossin
sincos

�319

 y
 t

 x

The components of displacement from {x, y} are thus

or

which can be written . The object of this re-
arrangement will become apparent shortly.

Rotations in three dimensions

Here the geometry is more complicated and j no longer helps. Take
those rotations in which any line through the origin may be chosen as
axis. Define such a rotation by any point on it other than the origin,
and normalise this so that the defining point lies on the unit sphere.
The results of this normalisation are the direction cosines of the axis
of rotation, that is the cosines of the angles which this axis makes sep-
arately with each of the coordinate axes :

 dircos=.% %:@(+/@:*:) NB. direction
cosines
 dircos 3 4 5
0.424264 0.565685 0.707107

A necessary preliminary is to obtain the cross-product of the rotation
vector and a point to be rotated. To my knowledge there is no primi-
tive which delivers cross-products directly, however it is a reasonably
straightforward to write a verb xp. First stitch 3 4 5 (defining the
axis) to 1 2 3, a point to rotated, and use the ‘all but one’ technique
described in J-ottings 52 to obtain the submatrices obtained by pro-
gressively eliminating one row at a time. The determinant of each of
these 2x2 matrices is required with a suitable adjustment for alternat-
ing signs leading to :

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−+

−−

ytytx
xtytx

cossin
sincos

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−+

−−

)1(cossin
sin)1(cos
tytx
tytx

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

x
y

t
y
x

t sin)cos1(

�320

 xp=.4 : '1 _1 1*det every<"(2) 1+\.(dircos
x),.y'

One other requirement is an identity matrix of appropriate length :

 id=.=@i.@# NB. identity matrix

Now suppose the anti-clockwise angle of rotation looking outwards
from the origin is t. By a pleasing analogy with the two dimensional
case the displacement components are

 - (1 - cos t) times <a vector> - sin t times <a cross-product>

where ‘a vector’ is the result of the matrix multiplication

in which the λs are the direction cosines of the axis of rotation. The
parameters defining a rotation are thus an axis (three coordinates)
joined to the angle t, and it seems natural to take this 4-element vector
as the left argument of a rotation verb. Also many people are more
comfortable with degrees rather than radians, so define :

 dtor=.180%~o. NB. degrees to radians

rm defines the rotation matrix above and rmdata multiplies it with
the coordinates of the data point being rotated :

 rm =.(id - */~)@dircos NB. rotation matrix
 rm 3 4 5
 0.82 _0.24 _0.3
_0.24 0.68 _0.4
 _0.3 _0.4 0.5
 rmdata=.rm@dircos@(}:@[) +/ .*]
 (3 4 5,dtor 60) rmdata 1 2 3
_0.56 _0.08 0.4

(As an aside, taking the z axis as axis of rotation (0 0 1) so that = 1

and = = 0 gives

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−−−

−−−

−−−

z
y
x

2
33231

32
2
221

3121
2
1

1
1

1

λλλλλ

λλλλλ

λλλλλ

3λ

1λ 2λ

�321

 rm 0 0 1
1 0 0
0 1 0
0 0 0

which multiplies to give , while the cross-product of is

 so that this reduces to the formula given earlier for the two-di-
mensional case.)

Next define m1 and m2, bearing in mind that t has to be extracted as
the 4th element of the rotation vector :

 m1=.-.@(2&o.@({:@[)) NB. (1-cos t)
 m2=.1&o.@({:@[) NB. sin t

Finally reflect the formula for the dispacement components in

 rotate=.] - (m1 * rmdata) + m2 * }:@[xp]
 (1 0 0,dtor 90)rotate 1 2 3
1 3 _2

A couple of further checks helps confirm understanding :

(a) Rotate the point (1,2,3) through a clockwise angle of 90o about the
x-axis:

 (1 0 0,dtor _90)rotc 1 2 3
1 _3 2

(b) Undo a clockwise rotation of (1,2,3) with an anti-clockwise one :

 axis=.?3$10 NB. choose an axis at random
 (axis,dtor 60)rota (axis,dtor _60)rotc 1 2 3
1 2 3

Multiple data points are dealt with by, for example

 (<3 4 5,dtor 60)rota every 1 2 3;2 3 1;3 1 2
1.03505 2.5299 2.55505
3.03722 1.56268 1.52753
1.82258 0.31773 3.25227

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

z
y
x

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

0
y
x

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

z
y
x

1
0
0

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛−

0
x
y

�322

Plotting star movements

Every minute of every day we all perform rotations on a merry-go-
round called Earth which itself rotates continuously within an even
larger solar system which itself gyrates around another even larger
sytem and so on. This a special case of 3D rotation in which all data
points in the heavens are identified by two rather than than three pa-
rameters. Astronomers measure star positions as observed from Earth
in angular rather than Cartesian measure. Specifically the two angles
used are altitude A which corresponds to celestial latitude, and az-
imuth Z which correponds to longitude in terrestrial measurement.
The stars themselves lie on the surface of a sphere called the celestial
sphere which is continuously rotating about the extended Earth axis
and on which every star has a latitude and a longitude which are
called respectively declination d and right ascension ra. Analogous
to the Greenwich meredian on Earth the celestial sphere requires an
arbitrary zero line or celestial meridian from which right ascension is
measured. This is conventionally taken to be the first point in Aries,
which is observable as the rightmost star in the constellation Cassio-
pea. Azimuth is often measured in sidereal hours from 0 to 24 rather
than degrees; the significance of ‘sidereal’ is that a sideral year is one
day longer than a solar year, that is the fixed stars appear to rotate at a
slightly slower speed than the sun, the difference being about 4 min-
utes per day. Stars rise in the east and set in the west, and so to an
Earth-bound observer looking outwards to the Pole Star, the celestial
sphere appears to rotate in an anticlockwise direction.

To convert star positions defined by A and Z into (x,y,z) coordinates
assume the x-axis runs west to east, the y-axis north to south, and the
z-axis upward. The plane x=0 is then a meridian on a fixed celestrial
sphere from which Z is measured clockwise. (x,y,z) coordinates are
then given by

 x = cosA sin Z; y = cosA cos Z; z = sin A

Inverting these formulae to convert from (x,y,z) coordinates to (A,Z)
coordinates :

 A = sin -1z; Z = (or)
2

1

1
cos

z
y
−

−

2

1

1
sin

z

x

−

−

�323

The diagram below shows a star S in at a point in its daily circuit
around the fixed star sphere (or, as it is sometimes referred to celestial
sphere) :

 Z
 P

 xSS
 fixed celestial meridian

ZSP is a spherical triangle whose sides are all great circles of the
sphere and in which P is the pole and Z is the Zenith. The side SP of
triangle ZSP remains constant as S proceeds along the dotted line and
is equal to 90o minus the declination d. Side ZP is also contant and is
equal to 90o minus the latitude l. Quantities which change as S pro-
ceeds along its course are thus :
 Side ZS = the co-latitude, that is 90o minus the altitude A
 angle P = the celestial azimuth, known as the hour angle
 angle Z = the terrestrial azimuth

Transits

A star is said to transit or culminate when it is at its highest point in
the sky when seen by an observer on Earth. The diagram below
shows a cross-section of the celestial sphere containing a star with
declination 20o observed at point of transit from a latitude of 50 o
North which transits at (0, -cos 60o, sin 60o).

 Zenith
 Transit Pole

 Celestial Equator

 4404
 Earth's Equator

 90o-50o=40o

�324

50
20o

This diagram can be generalised to show that the altitude at transit is
(90o - l) + d provided that d<l as in the case of the star illustrated. This
star transits south, that is to the left of the zenith and dips below the
terrestrial horizon for at least part of its circuit. If d>l a star is cir-
cumpolar and transits north. Here the altitude at transit is (90o + l) –
d, or combining the two cases, the altitude of every star at transit is
90o – abs(l - d) .

Calculating star positions

The position of a star depends on time as a parameter, which can be
either local time – where was a star 6 hours ago? – or time by year –
where was it 3 months ago? The star sphere appears to us to revolve
from east to west completing a revolution in a sidereal day which is
shorter by 1/365th of a day (that is approximately 4 minutes) than the
solar day. Thus the position of a star 6 hours ago (¼ of a day) is the
same as its position 3 months ago (¼ of a year).

For example, consider the star illustrated above with declination 20o,
and ask what its position is 3 and 6 hours earlier and subsequently,
that is when the hour angles is -90o

 (0,(cos 50),(sin 50),dtor -90)rota 0,(-cos 60),sin 60
0.939693 0.219846 0.262003

This result can be confirmed by spherical trigonometry applied to the
triangle ZPS. The cos formula for a spherical triangle ABC states that
if a, b and c are sides measured in angles, and A, B and C are the an-
gles between the sides with A opposite a, etc. then

 .

so applying this twice to the diagram

and

Thus for the star with declination 20o, 6 hours earlier the hour angle is
-90o so cosH = 0 and therefore

Abacba cossinsincoscoscos −=

ZAlAld coscoscossinsinsin −=

HdldlA coscoscossinsinsin −=

�325

The values of a and its cosine are thus given by

]s=.*/sin 50 20 NB. sin a = z
0.262003
]cosa=.%:-.*:*/s NB. cosa by Pythagoras
0.965067

and the azimuth value is :

]Z=.asin(cos 20)%cosa NB. azimuth
76.8322

which enables the x and y coordinates to be found formulae given
earlier :

 cosa*(sin,cos)Z NB. x,y coords
0.939693 0.219846

The next step is to isolate the hour angle as a parameter (clockwise
90o is the same as anti-clockwise -90o):

 v=.monad :'(0,(cos 50),(sin 50),dtor y)rotc 0,(-cos 60),sin
60'

and plot values as this moves towards transit at 10o intervals :

 v every 90 80 70 60 50 40 30 20 10 0
 0.94 0.22 0.262
0.925 0.0948 0.367
0.883 _0.0264 0.469
0.814 _0.14 0.564
 0.72 _0.243 0.65
0.604 _0.332 0.725
 0.47 _0.404 0.785
0.321 _0.457 0.83
0.163 _0.489 0.857
 0 _0.5 0.866

More generally, it is useful to convert time to angular measurement
with 24 hours being equivalent to a complete rotation, which sug-
gests a few more utility verbs :

 ttor=.o.&(%&43200@(60&#.)) NB. time (hms) to radians
 ttor 12 0 0 NB. check 12 hrs=pi rads
3.14159
 dtot=.60 60 60&#:@(*&240) NB. deg to time (hms)
 dtot 180
12 0 0
 atod=.%&60@(60&#.) NB. angle(deg,min)to deg

00 20sin50sinsin =a

�326

 atod 49 15
49.25

The cooordinates of the above star 15 and a half minutes after transit,
are given by

 (0,(cos 50),(sin 50),ttor 0 15 30) rota 0,(-cos 60),sin 60
_0.0635044 _0.498354 0. 864645

that is a little bit to the west, a shade less south and a bit lower, all of
as expected.

The next illustration concerns the sun which, unlike other stars whose
declination is constant, has declination varying in the course of a year
from -23.5o to +23.5 o and back again. The sine formula in spherical
trigonometry states that for a general triangle ABC :

 .

At sunrise and sunset the sun’s altitude is zero, and so using the first
of the two cosine formulae at these times, from

which . Then using the sin formula, .
Considering London (latitude of 51o 30') on the 21st December when
the declination of the sun is -23o 30', and the altitude at noon, that is
transit, is (90o - 51o 30') - 23 o 30' = 15o00' ,

]Z=.acos(sin 23.5)% cos atod 51 30 NB. azimuth
50.17
]H=.dtot asin(sin Z)%cos 23.5 NB. time to noon
3 47 27.26

Now define cs=.(cos,sin)@atod and use the general rotation
verb rota to rotate from transit for 3 hrs 47 minutes and 27.26 sec-
onds :

 lat=.51 30
 dec=.-23 30
 tim=.3 47 27.26
 alt=.90-atod|lat-dec

 (0,(cs lat),ttor tim)rota 0,(-cos alt),sin alt
_0.7679 _0.6405 1.278e_7

and as expected the sun is south and west at altitude zero.

C
c

B
b

A
a

sin
sin

sin
sin

sin
sin

==

Zld coscossin −=

l
dZ

cos
sin

cos −=
d
ZH

cos
sin

sin =

�327

Code Summary
 xp=.cofs@:(norm@[,.]) NB. cross product
 id=.=@i.@# NB. identity matrix
 norm=.% %:@(+/@:*:) NB. normalise list
 cofs=.(* signs)@:det@submats NB. cofactors
 signs=.1 _1&($~ #) NB. successive 1 and _1
 submats=.1&(+\.) NB.successive 'all but one'
rows

 rm=.(id - >@(*every<))@norm NB. rotation matrix…

id=.=@i.@#
 rmd=.rm@norm@(}:@[) +/ .*] NB. …times data point

 m1=.-.@(2&o.@({:@[)) NB.multiplier (1-cos a)for rmd
 m2=.1&o.@({:@[) NB.multiplier sin a for xp
 rotc=.] - (m1 * rmd) - m2 * }:@[xp] NB.x.=axis,angle
 rota=.] - (m1 * rmd) + m2 * }:@[xp] NB.y.=data point

 dtor=.*&(o.%180) NB. degrees to radians
 v=.monad :'(0,(cos 50),(sin 50),dtor y)rotc 0,(-cos 60),sin
60'
 ttor=.o.&(%&43200@(60&#.)) NB. time (hms) to radians
 rtod=.*&(180%(o.1)) NB. radians to degrees
 atod=.%&60@(60&#.) NB. angle(deg,min)to deg
 sin=.1&o.@dtor NB. sine of an angle
 cos=.2&o.@dtor NB. cosine of an angle
 asin=.rtod@(_1&o.) NB. arcsine of an angle
 acos=.rtod@(_2&o.) NB. arccosine of an angle
 cs=.(cos,sin)@atod

�328

mailto:id=.=@i.@%2523
mailto:id=.=@i.@%2523
mailto:m1=.-.@(2&o.@(%257B:@%255B))

49. Financial Maths and J – part 1, IRR and
APR

Principal Topics : IRR (Internal rate of return), income stream. NPV (net present
value), APR (annualized percentage rate)

A common way of assessing the profitability or otherwise of an in-
vestment is through the rate of return. There are several ways in
which ‘rate of return’ can be calculated, one of the most common be-
ing Internal Rate of Return (IRR). Computing IRRs for different in-
come streams is a way of comparing different investment strategies,
e.g. when a company makes choices about which of a variety of po-
tential products to develop. Moreover IRR carries on increasing with
length of input stream provided inflows are positive, and so it may
make sense to abandon further product development when the IRR
begins to tail off.

Growth
The phenomenon of 5% compound interest growth can be described
equivalently by any one of four numbers namely 5, 0.05, 1.05 and
(1.05)-1. These differences are expressible in J terms as :  

 p=.percentage rate (p>_100)
 r=.fractional rate so r=.0.01*p (r>_1)
 k=.multiplication factor so k=.>:r (k>0)
 d=.discount factor so d=.%k or %>:0.01*p (d>0)

All of these forms are equivalent ways of describing the same under-
lying phenomenon, so it is immaterial which value is quoted provid-
ed that the intend form is clear. Conversions between the various
quantities are given by

 ptod=.%@>:@(0.01&*)
 dtop=.100&*@<:@%
 ktop=.*&100@<:
 ptok=.>:@*&0.01

Negative growth, that is decay, is indicated by p<0, r<0, k<1 and
d>1.

IRR
The significance of ‘internal’ is that the final worth of an income
stream after discounting IRR is equal to zero. In other words ulti-
mate worth is neither increased nor decreased so that IRR can be
viewed as the continuous money decline which would need to occur
to make the overall project do no more than break even in real terms.

�329

mailto:ktop=.*&100@%253C

If the actual rate of money decline exceeds the IRR, then it would
have been better not to have undertaken the project. IRRs should in
general be used in a relative sense to compare alternatives, rather than
as absolute measures - the higher the IRR of a project alternative, the
more flexibility there is for its success compared with other proposals.
For valid comparisons, project proposals should have approximately
the same initial outlays and the same income stream lengths. If these
conditions are not met further considerations concerning investment
of surplus and realised funds need to be taken into account.

Computing IRRs
Obtaining values for IRRs means solving polynomial equations for
which income streams provide the coefficients.

 is=._100 20 50 70 80 NB. an income stream
 p.is
┌──┬──┐
│80│_1.21963 _0.20558j1.14621 _0.20558j_1.14621 0.755789│
└──┴──┘

A d value of 0.75579 is extracted and converted to p form by

 dtop 0.75579
32.312

to obtain an IRR of 32.3%. In words IRR is calculated as ‘convert to p
form the positive real root of the income stream regarded as polyno-
mial coefficients’.

The final worth of the income stream can be obtained by using the d
value as left input to the polynomial evaluator #. Notice that the
coefficients in the argument for p. are in ascending power order,
while those for are in descending order, so that the value of 0.75579
is confirmed by

 0.75579 #.|.is
0.00046177 NB. effectively zero

It is always nice to have a simple case confirmed, so using the first
example above

 p. _100 0 0 200
┌───┬───┐
│200│0.793701 _0.39685j0.687365 _0.39685j_0.687365│
└───┴───┘

from which 0.7937 leads to a compound interest growth of 26%

�330

 dtop 0.7937
25.99
 1.26^3
2.00038

d values are obtained by opening the second box resulting from p .

 roots=.>@{:@p. NB. extract list of roots

and obtaining the single non-negative, non-complex value, the latter
property being tested for by comparison with conjugates as provided
by + applied to complex numbers. From tally it is one small step to
#~ as shorthand for 'select', which leads to two further building
blocks

 real=.#~ (= +) NB. select real values
 pos=.#~ >&0 NB. select positive values

The process of obtaining the internal rate of return then consists of
four steps in sequence :

 irr=.dtop@pos@real@roots NB. internal rate of return
for an is
 irr is
32.312

IRR calculations mirror those for fair loan repayment rates. The for-
mula (rkn)/(kn-1) gives the fraction of an amount loaned which must be
repaid in each of n periods when interest p% is paid on the declining
balance. The words ‘declining balance’ reflect the fact that IRR calcu-
lations make an implicit assumption that the inflows are reinvested at
the calculated compound interest rate, which can sometimes lead to a
rosy-eyed picture of absolute IRR values. Using the input stream is
as an illustration, if k = the IRR, the progress of each flow the residual
capital value is
-100k4 + 20k3 + 50k2 + 70k + 80.

which is evaluated as

 (|.is) p.ptok irr is
_5.684e_14

More generally the residual value of the stream following a given dis-
count rate is defined by

 resid=.dyad :'(|.y)p. ptok x'
 0 resid is NB. equivalent to +/is
120
 10 resid is NB. discounted ay 10%

�331

97.71

Define

 Repay=.dyad : '(x*(1+x)^y)%_1+(1+x)^y' NB. Repayment Amounts

so that the consequent repayment amount for a loan of 10000 are giv-
en by

 0.005 Repay 12 NB. factor for monthly rate of 0.5%
0.086066
 10000*0.086066 NB. monthly repayments
860.66

A lender sees the transaction as an income stream of _10000 followed
by 12 monthly payments of 860.66 whose IRR is therefore

 irr _10000, 12#860.66
0.49992 NB. i.e. monthly rate of 0.5%

illustrating that IRR matches the fair rate of loan interest paid by
equal installments on a declining balance. 'Thus irr and Repay are
related by the equivalence :

r -: irr _1,n#(r Repay n)

IRR is reduced if payments are deferred, whereas if a loan is paid off
early using the same proportionate repayments, the IRR increases.
These statements are confirmed by

 irr _10000, (11#860.664),0,860.664 NB. last inflow delayed
0.49378
 irr _10000,6#2*860.664 NB. inflow rate doubled
0.92988

The related term ized (Annual Percentage Rate) takes into account
that the equivalent annual rate is not 12*0.005, corresponding to 6%,
but rather this rate compounded over the 12 periods :

 1.005^12
1.06168 NB. APR is 6.17%

To describe APR, use the conversions to and from p to k :

 apr=.ktop@(ptok@irr ^ <:@#)
 apr _10000, 12#860.66
6.168

Note on computational practicalities

�332

irr may fail if the income stream is too long, or if the data generates
a pathological situation for p.'s underlying root solver. In such cir-
cumstances, alternative numerical methods must be employed such as
the Newton Raphson method (see E #23 “Numerical Problems an-
alysed in J”) , which can be expressed in the adverb

 Newton=.1 :']-x % x D.1'(^:_)("0)

Suppose that a loan of 1000 is repaid in 24 instalments of 45.27. The
APR is worked out by

 ms=.(24$45.27),_1000 NB. money stream reversed
 fn=.#.&ms NB. define a polynomial
 dtop fn Newton 0.9 NB. guess d=0.9 and apply N-R
 0.67447 NB. monthly rate of return =
0.6745%
 1.0067447^12 NB. convert to annual rate
1.084 NB. APR = 8.4%

Net Present Value and Sequential IRRs
After two periods the value of the IRR on the series is is

 irr _100 20 50
_18.5857

The interpretation of this negative IRR is that the inflows must be in-
flated by (100-18.56)% = 0.814 to achieve the final overall zero out-
come, that is

Sequential IRRs can be obtained by a verb

 irrs=.;@:(irr every)@}.@(<\) NB. successive irr's
 irrs is
_18.5857 15.6152 32.3121

When the IRR becomes positive in the third period the calculation be-
comes

 +/_100 20 50 70%1.1561^i.4
0.010231

The concept of Net Present Value is that future values are discounted
progressively by a given percentage. This is expressed in the verb

50
0814

20
0814

754 24 6 1002(.) (.)
. .+ = + =

�333

 npv=.]*(ptod@[)^(i.@#@]) NB. net present
value
 +/15.61 npv _100 20 50 70
0.010231

Assuming that the calculation is about money, and the periods are
years, the combination of factors such as price inflation, deprciation,
obsolsence, foregone returns on alternative investments, etc. are all
bracketed under the heading ‘inflation’. A decision to proceed with
investment should be based on whether inflation over the entire peri-
od of investment is expcted to be less than 32.3%.
If future returns are promised as, say, interest payments at a rate of
interest, say 10%, npv may be more appropriate than including this
factor in IRR. The effect is naturally to reduce IRR :

 irr 10 npv is
20.28
 irr 25 npv is
5.85

Next consider an income stream such as

 is1=._100 20 45 60 _10 55 70 20 10 10

where some items are negative, reflecting, for example, costs incurred
in developing a second version of a software product. Since polyno-
mials of even order must have an even number of positive roots, us-
ing p. means that spurious values of IRR will necessarily arise, as for
example in

 irr _100 20 45 60 _10
_85.04 6.67385

where the massive compound 85% decay is inadmissible. To deal
with such circumstances it makes sense to insert a filter at the d level
to exclude discount rates of greater than, say 3, or, at the other end of
the scale, than 0.5, hence

 filter=.#~ (<&3)*.(>&0.5)
 irr=.dtop@filter@:pos@real@roots
 irrs is1
0 _22.18 10.22 6.674 19.96 27.96 29.33 29.82 30.19

The initial value of _80 following the first inflow has been filtered to
0. Following the third inflow of 60 the IRR becomes positive at 10.2%,
following which there is a dip to 6.67 due to the negative inflow of 10.
Towards the end of the series subsequent increases in IRR tail off as a
result of smaller inflows.

�334

mailto:ptod@%255B)%255E(i.@%2523@%255D)

Now define another income stream is2 with the same values as is1
(total outflows = 110, total inflows =290), only in a different order with
the higher values deferred :

 is2=._100 20 45 60 _10 10 10 20 70 55
 irrs is2
0 _22.18 10.22 6.674 9.919 12.37 15.81 22.4 25.22

which shows that the slower progress of the IRR.

Code Summary
 ptod=.%@>:@(0.01&*)
 dtop=.100&*@<:@%
 ktop=.*&100@<:
 ptok=.>:@*&0.01

 irr=.dtop@filter@pos@real@roots NB. internal
rate of return
 dtop=.100&*@<:@% NB. discount factor to
%age
 filter=.#~ (<&3)*.(>&0.5)
 pos=.#~ >&0 NB. select positive
values
 real=.#~ (= +) NB. select real
values
 roots=.>@{:@p. NB. extract list
of roots
 irrs=.;@:(irr every)@}.@(<\) NB. successive irr's
 resid=.dyad :'(|.y)p. ptok x' NB. residual value

 Repay=.dyad : '(x*(1+x)^y)%_1+(1+x)^y' NB. Repayment Amounts
 npv=.]*(ptod@[)^(i.@#@]) NB. net present
value

 apr=.ktop@(ptok@irr ^ <:@#)

 Newton=.1 :']-x % x D.1'(^:_)("0)

�335

mailto:ktop=.*&100@%253C
mailto:irr=.dtop@filter@pos@real@roots
mailto:ptod@%255B)%255E(i.@%2523@%255D)

50. Financial Maths and J – part 2; Growth
Rates

Principal Topics : IRR (Internal rate of return), income stream. NPV (net present
value), NFV (net future value), cost benefit ration, average growth rate, average
compound growth, annuities

Average Growth Rates

‘Growth’ is a concept which is superficially easy but more subtle
when it comes to ways of. measuring it. The income stream is has
an overalf absolute growth of 20+50+70+80 = 220 over 4 periods
which represents is an overall growth per period of the 4th root of 2.2
= 1.2178, that is 21.78%. This is identical to th IRR if all the inflows in
is were in the last period

 4%:220%100
1.21788
 is
_100 20 50 70 80
 irr _100 0 0 0 220
21.7883

as opposed to an IRR of 32.1% (see E #49 “Financial Mathematics part
1”). IRR is not the only criterion for comparing different project pro-
posals, and it is natural to ask questions about growth, suuch as what
is the average growth. The successive period growths in is are 20 50
70 80 divided by 100 12 170 240 and so their average arithmetic aver-
age is

 gwth=.monad :'(}.y)%(}:+/\|y)'
 gwth is
0.2 0.416667 0.411765 0.333333
 mean=. +/ % #
 mean 1+gwth is
1.34044

quite close to the IRR of 32.3%. However this takes no account of dis-
counting future costs Another possibility is to adjust all inflows and
outflows to net present values by applying a discount rate p, and then
obtain the ratio of ((inflows-outflows)/outflows), that is (net
benefits)/costs. First the 5% and 10% discounted values of is are
compared in

 npv=.] *(ptod@[)^(i.@#@]) NB. net present value

�336

 5 npv is NB. is discntd at 5%
_100 19.0476 45.3515 60.4686 65.8162
 10 npv is NB. is discntd at 10%
_100 18.1818 41.3223 52.592 54.6411

 mean gwth 5 npv is
0.307983 NB. is discntd at 5%
 mean gwth 32.1 npv is
0.190569 NB. is discntd at IRR

19% growth may sound impressive but has to be set against the dis-
counted value of 220 which is +/}.32.31 npv is = 100.00, in other
words the initial investment has been returned in real terms but no
more. This is what IRR predicts. A more realistic way of computing
average growth rate is to compute the sum of the outflows :

 costs=.+/@:(0&>.@-) NB. outflows (i.e. -ve values)

and divide all items in the stream by costs to obtain (net benefits)/
costs :

 bcr=.(+/%costs)@:npv NB. net benefit cost ratio

Now compare the streams is1 and is2 each discounted by 10% :

 0 bcr is
1.2
 10 bcr is
0.667372
 32.1 bcr is
0.00429935

This gives yet another insight into IRR as that discounted value for
which the original investment is returned but with no ultimate in-
crease in wealth, although of couse in the business context the inflows
are available to spend, reinvest, pay salaries or salaries, etc. Here are
another two slightly longer income streams, both with total outflows
of 110 and inflows of 290 and differing only in the order of the inputs

 is1=._100 20 45 60 _10 55 70 20 10 10
 is2=._100 20 45 60 _10 10 10 20 70 55

 10 bcr every is1;is2
0.80926 0.67133

Converting bcr’s to an average compound growth rate (agr) means
taking the 9th root using %:

 9%:1+0.80926 0.67131
1.0681 1.0587

�337

mailto:costs=.+/@:(0&%253E.@-)

 agr=.ktop@((<:@#@])%:>:@bcr)
 10 agr every is1;is2
6.80985 5.8729

that is the agr s are roughly 7% and 6% given a discount rate of 10%.
For is

 0 agr is
21.7883

a value which how already been met as a form of the 4th root of 2.2.
For a discount rate equal to the IRR

 32.1 agr is
0.107311

that is, the original investment is returned in real terms, and an aver-
age intermediate growth rate of around 11% for redistribution has
been experienced.

If discounting is applied at around the irr value of 30.2 to is1 then
the net benefit would be more or less zero :

 30 agr is1 NB. net benefits are …
0.0527249 NB. … virtually zero

The difference between average growth rate calculations and IRRs is
that the former set a discount rate and return a rate of income irre-
spective of the ultimate effect on capital, wheras the latter calculates a
discount rate account on the assumption that capital does no more
than break even. Thus AGRs should not be directly compared with
IRRs, but should be seen as an alternative criterion. For income
streams which do not differ significantly in either length or initial
value, it usually results in the same relative ordering.

The relationship between irr and agr can be observed by moving all
inflows, 220 in total in the case of is, to the final period :

 irr _100 0 0 0 220
21.7883
 0 agr every _100 0 0 0 220;is
21.788 21.788

that is for a nil discount rate the average compound growth rate is
unaffected by when the inflows occur, whereas the earlier they occur
the greater is the irr value.

�338

In the case of personal investment, IRR can give a rough guide to the
true value of investment returns. Consider a share purchase for
£33.50 which attracts nine annual dividends of £2, £2, £2, £2.50, £3, £4,
£4.45, £5.25 and £4.50, immediately after the last of which it is sold for
£65.80.

 is3=._33.5 2 2 2 2.5 3 4 4.45 5.25 4.55 65.88
 irr is3
14.5668

This gives the investor a figure with which to compare the inflation
rate in the same period. For lower rates the sum of the discount rates
and average growth rate are roughly similar as would be expected :

 0 2.5 5 10 15 agr every <is3
11.1 8.71 6.51 2.5 _1.04

Annuities
These are a special case where the inflows are regular, and so the rele-
vant calculations have closed forms. The factor {1-(1+p)-n/p} is a mul-
tiplier which converts payments per period to present value, so an
annuity paid for 10 periods at 6% has a present worth per pound giv-
en by

 AnnFac=.-.@((ptok@[)^-@])%0.01&*@[NB. Annuity factor
 6 AnnFac 10
7.36

as confirmed by

 irr _7.36,10#1
6

Future Value Analysis and Average Compound Growth
Rate

An alternative method for evaluating investments is Future Value
Analysis (FVA) which is a form of mirror image of NPV, that is for a
given discount rate it is the value necessary in tomorrow’s money
which is equal to that in today’s whereas NPV gives the value of to-
day’s money tomorrow.

 npv=.] *(ptod@[)^(i.@#@]) NB. net present value
 nfv=.] * ptok@[^ i.@-@#@] NB. net future value

The examples below illustrate how npv ’ anchors’ values in the first
period whereas nfv anchors them in the last period.

�339

 is
_100 20 50 70 80
 10 npv is
_100 18.1818 41.3223 52.592 54.6411
 10 nfv is
_146.41 26.62 60.5 77 80
 (10 nfv is)*100%146.41
_100 18.1818 41.3223 52.592 54.6411

npv and nfv are inverse in the sense that if the nfv series is scaled
down to the initial value of the npv series, the two are identical. Also
sfince the between item ratios are unchanged there is no change to the
IRRs :

 ;irr every (10 nfv is1);10 npv is1
18.3545 18.3545

With no discounting each original unit in is has grown to 2.2. With
‘reverse discounting’ at 10% as in nfv each original 100 units have
been shown above to have grown to +/26.62+ 60.5+77 80 = 244.12
units. This is expressed in

 ret=.((+/@:}.@nfv) % -@{.@]) NB. return per unit

Here is the result of doing this for the series is3 :

 4 ret is3
3.02

meaning tthat each original unit has grown to £3.02. This is the 10th
root of 3.02 = 1.1169 which is therefore the average compound growth
rate of is3 over the period of the stream. Define

 acg=.ktop@(<:@#@] %: ret) NB. avge compound growth

 4 acg is3 NB. equivalent % comp grwth
11.7
 4 agr is3 NB. average growth rate
7.37

The interpretation of ACG is that when the final value of an income
stream is fixed, for a given inflation rate the ACG is the average rate
which must be applied to previous elements in the stream in order to
achieve the final value. This might be an appropriate analysis in e.g.
pension planning, or in determining the initial investment and return
for the reinvestment of inflows necessary to achieve a final target. In
the example above 11.7% reinvestment is required to combat an infla-
tion rate of 4%. This can be compared with an IRR of 13.5%.

Here is another comparable dividend stream :

�340

 is4=._27.9 1.5 1.5 1.6 1.7 1.8 1.8 1.95 2 57.4

which is lower on all these measures :

 (4 ret is3),(irr is3),(4 acg is3),(4 agr is3)
3.015 13.46 11.67 7.373
 (4 ret is4),(irr is4),(4 acg is4),(4 agr is4)
2.647 12.61 11.42 7.135

whereas the following stream is higher in all values :

 is5=._29.5 1.5 2 2 2.5 3 4 4.5 75.3
 (4 ret is5),(irr is5),(4 acg is5),(4 agr is5)
3.307 17.97 16.12 11.66

thus demonstrating that the various techniques lead to different values but in
general lead to the same ordering.

Code Summary
 irr=.dtop@pos@real@roots NB. internal rate of
return
 dtop=.100&*@<:@% NB. discount factor to %age
 pos=.#~ >&0 NB. select positive values
 real=.#~ (= +) NB. select real values
 roots=.>@{:@p. NB. extract list of roots
 npv=.] *(ptod@[)^(i.@#@]) NB. net present value
 ptod=.%@>:@(0.01&*)

 bcr=.(+/%costs)@:npv NB. net benefit cost ratio
 costs=.+/@:(0&>.@-) NB. outflows (i.e. -ve values)

 nfv=.] * ptok@[^ i.@-@#@] NB. net future value
 ptok=.>:@*&0.01

 acg=.ktop@(<:@#@] %: ret) NB. avge compound
growth
 agr=.ktop@((<:@#@])%:>:@bcr) NB. average growth rate
per cent

 AnnFac=.-.@((ptok@[)^-@])%0.01&*@[NB. Annuity factor

 ret=.((+/@:}.@nfv) % -@{.@]) NB. return per unit

Data Streams
 is=._100 20 50 70 80
 is1=._100 20 45 60 _10 55 70 20 10 10
 is2=._100 20 45 60 _10 10 10 20 70 55
 is3=._33.5 2 2 2 2.5 3 4 4.45 5.25 4.55 65.88
 is4=._27.9 1.5 1.5 1.6 1.7 1.8 1.8 1.95 2 57.4
 is5=._29.5 1.5 2 2 2.5 3 4 4.5 75.3

�341

mailto:irr=.dtop@pos@real@roots
mailto:costs=.+/@:(0&%253E.@-)
mailto:-@%257B.@

�342

TOPIC INDEX

A
accept-reject technique, 35
alternative verbs, 12
alternating group, 30
altitude, 46
annualized percentage rate (APR), 49
annuities, 10, 50
ANOVA, 29
anti-cyclic groups, 26
apb notation, 46
autostereograms, 3
average compound growth (ACG), 50
average growth rate (AGR), 50
azimuth, 48

B
balanced rounding, 24
benefit cost ration, 50
betting methods, 14
betting systems, 14
between groups sums of squares, 29
binding, 6
Binet formula, 42
binomial coefficients, 42
binomial therem, 37
bits to integer conversion, 4
bookmaker’s odds, 14
Boolean verbs, 16
boundary values, 28
Box-Muller formula, 28
bridge hook, 2, 36, 42

C
Cancellation, 44
Cartesian coordinates, 13
Cap, 6
Catalan numbers, 44
celestial harmonies, 47
celestial meridian, 48
celestial sphere, 48
cell, 20
cents (in music), 47
Chinese remainder problem, 41
chromatic scale. 47
circle of fifths, 47
ciphers, 39
cleaning small numbers, 11
clock arithmetic, 32, 41, 47
clock multiplication, 39

�343

cofactors, 27, 48
collating sequence, 7
combinations, 33, 34, 44
commutativity, 6
complex conjugates, 13
complex logarithms, 13
complex powers, 13
compound interest, 10, 12
cones, 43
congruences, 41
conjugations, 5
conjunctions, 2
connectivity, 38
continued fractions, 42
contradiction, 16
convergence, 9
conversion rules, 15
cost benefit ratio, 50
critical path, 38
cross product, 48
currying, 10, 12
cyclic groups, 26

D
d’Alembert’s system, 14
de Moivre’s theorem, 13
declination, 48
decryption, 40
derangements, 30
determinant, 13, 27, 48
diagonals of arrays, 8
diatonic scale, 47
dihedral groups, 26, 30
direction cosines, 48
distance tables, 37
distance, 2
dominant, 47

E
eigenanalysis, 9
encryption, 40
enlargements, 48
equal temperament, 47
error control, 12
Euler’s phi, 32
exponential ciphers, 39

F
factorial digits, 33
fantasy betting, 14
Farey series, 25
feasibility, 38

�344

Fermat’s little theorem, 32
Fibonacci numbers, 37, 42, 43
fill characters, 1, 4
finite arithmetic, 32
fork, 2
frequencies (music), 47
frequency distributions, 28

G
GCD, 41
generating functions, 37
geometric mean, 2

 gerund, 4,11, 18, 24, 26, 32, 33, 37, 38
 golden angle, 43
 golden ratio, 43

greedy algorithm, 37
grouping, 28
groups, 13, 30

H
harmonic mean, 2
heterogeneous arrays, 1
hour angle, 46
hypercomplex numbers, 13

I
identity matrix, 9, 13, 17, 46, 48
identity element, 26
income streams, 49, 50
infinity, 9, 12
inheritance, 2, 5, 6
inner product, 1, 9, 13, 23, 38, 46
interactions, 29
internal rate of return (IRR), 49, 50
intervals (music), 47
inverse permutations, 8
inverse, 12, 26, 39
inverses in finite arithmetic, 41
isomorphism, 26

J, K
Johnson ordering, 33
just intonation, 47
keywords (in encryption), 40

L
Latin square, 29
left binding, 9
Lehmer’s algorithm, 33
lexical ordering, 33
list constructor, 18
logarithms, 13

�345

loops, 38
lower triangular matrix, 46
Lucas numbers, 42

M
Manhattan diagram, 44
Martingales, 14
mappings, 8
matrix inverse, 20
matrix multiplication, 9, 13
mean tone temperament, 47
mean, 2 ,7
median, 7
merged axes, 8
merging lists, 22
minors (of a matrix), 19
minors, 27, 47
moments, 2
mood, 6
multiple choice tests, 11
multiplicative inverse, 39

N
nearest neighbour, 38
negative exponential, 14
net future value, 50
net present value, 10, 49, 50
networks, 38
normalisation, 2, 9, 14, 48
noun rank, 20
numerical data types, 15

O
occurrence numbers, 17
octave, 47
odds, 14
orthogonality, 29
overround, 14

P
parity, 30, 33
partitioning, 37
Pascal triangle, 34, 42
permutation list, 33
permutations, 30, 33
polar coordinates, 13
polynomial factors, 45
polynomial multiplication, 45
polynomial quotients, 45
population forecasts, 9
powers, 13
predicate, 16

�346

primeness, 32
private keys, 39
public keys, 39
Pythagorean comma, 45
Pythagorean tuning, 45

 Q
quadratic congruences, 41
quadratic residues, 41
quaternions, 13

R
race cards, 14
ragged arrays, 1
random angles, 35
random exponential, 28
random networks, 38
random Normal, 28
random numbers, 35
random races, 14
random sentences, 36
random words, 36
rank inheritance, 2, 6
rank, 2
ranking, 7, 17
rational approximations, 15, 25
reachability, 38
rectangularity, 4
recursion, 23, 27, 33, 37
reflections, 7, 13
residual sums of squares, 29
right ascension, 48
ripple shuffle, 31, 32
roots of equations, 45
rotations, 7, 13, 48
rounding 28
row and column headings, 22
row and column proportions, 22
RSA ciphers, 39

S
Sapir-Whorf Hypothesis, 21
savings schemes, 10
scalarisation, 4
scans, 12
schoolmasters rank, 7
SELECT (SQL), 14
shortest path, 38
sigma, 32
similitude, 46
simulation, 14, 35, 36
simultaneous linear congruences, 41

�347

slack, 38
sorting, 7
spherical trigonometry, 46
SQL, 8
square roots in finite arithmetic, 41
statement separator, 6, 18
Stern-Brocot trees, 25
subgroups, 26
subtotallng, 27
syllogism, 16
symmetric networks, 38

 symmetry test, 8

 T
 tables, 12, 20, 44

tau, 32
tautology, 16
tied ranks, 7
ties, 7
time, 34
Tompkins-Page ordering, 33
totient, 32
trace, 34
trains, 6
transformations, 2, 8
transit, 46
transition matrices, 9
transitivity, 6
transpose, 33
treatment sums of squares, 29

U, V, W, Z
upper triangular matrices, 25, 44
valence, 2
verb rank, 5, 20
Vigenère table, 40
weighted graphs, 38
weighted random numbers, 14
within groups sums of squares, 29
Wolf fifth, 47

 zigzag matrix, 18

�348

VOCABULARY INDEX

name
sym-
bol principal references

part of
speech

adverse :: 12 conjunction

agenda @. 4, 33, 37, 38 conjunction

alphabet a. 7, 30, 40 noun

amend } 11 adverb

anagram A. 30, 34, 40 verb

anagram in-
dex A. 30, 33, 34 verb

angle r. 13 verb

anti-base #: 16 verb

append , 3, 22, 40 verb

appose &: 2 conjunction

at @: 2 conjunction

atop @ 1, 2 conjunction

base #. 23, 28 verb

basic charac-
teristics b. 2, 12 adverb

behead }. 23 verb

bond & 2 conjunction

Boolean b. 16 adverb

box < 20 verb

cap [: 6 verb

circle func-
tion o. 35, 48 verb

complex j. 13, 14, 46 verb

�349

compose & 1 conjunction

copy # 22, 28, 29 verb

curtail }: 33, 37 verb

cycle direct C. 30, 32 verb

deal ? 7, 11, 28, 33, 36 verb

decrement <: 12, 34 verb

derivative D. 23 conjunction

drop }. 33 verb

evoke gerund `: 46 conjunction

extended pre-
cision x. 15 verb

factorial ! 30 verb

foreign !: 34 conjunction

format " 22 verb

from { 22, 23 verb

GCD +. 13, 32, 40 verb

gerund ` 18, 26, 32, 33, 37, 38 conjunction

grade down \: 6, 7, 14, 26, 35, 47 verb

grade up /:
6, 7, 17, 18, 22, 26, 31, 32,
40 verb

halve -: 23, 41 verb

head {. 23, 41 verb

imaginary j. 46 verb

increment >: 12, 23, 34 verb

index of i. 30, 40 verb

infinity _ 9, 23 noun

infix \ 18, 25, 34, 42, 47 adverb

interval index I. 14, 28 verb

�350

item amend {. 11 adverb

key /. 12, 17, 29 adverb

laminate ,: 3, 22 verb

LCM *. 13, 32 verb

left [2, 34, 39 verb

less -. 2, 3, 45 verb

link ; 6, 22 verb

log ^. 2 verb

magnitude | 23 verb

match -: 2, 38 verb

matrix divide %. 2 verb

matrix in-
verse %. 2, 45 verb

member in e. 32, 38 verb

member of
interval E. 14, 36 verb

not *. 32 verb

nub ~. 17, 32 verb

oblique /. 19, 42, 45 adverb

obverse :. 12 conjunction

outfix \. 34, 48 adverb

passive ~ 2, 27, 42, 47 adverb

permute C. 30 verb

pi times o. 13 verb

polar r. 13 verb

polynomial p. 37, 45 verb

power (con-
junction) ^:

9, 10, 12, 23, 25, 31, 32,
40, 42 conjunction

�351

prefix \ 34, 42 adverb

prime factors q: 32 verb

rank "
1, 4, 6, 7, 8, 11, 20, 22, 26,
27, 42, 46 conjunction

ravel , 3 verb

ravel item ,. 3 verb

raze ; 4, 17, 29, 34 verb

real/imagi-
nary +. 46 verb

reflex ~ 17, 26, 34, 35, 39, 42, 45 adverb

residue | 23 verb

reverse |. 23 verb

right] 2, 18, 34, 39 verb

roll ? 14, 35, 36 verb

rotate |. 23 verb

self-classify = 9, 17, 21, 46 verb

shift |. 6, 10, 26, 40 verb

stitch ,. 3, 22, 40, 46 verb

suffix \. 18, 19, 27, 34 adverb

tail {: 23, 37 verb

take {. 22, 23, 25, 28, 33 verb

tally # 8, 22, 36 verb

Taylor coeffi-
cients t. 37 verb

tie ` 4, 46 conjunction

transpose |: 7, 8, 16, 19, 26, 27, 33 verb

under &. 1 conjunction

�352

�353

