| Sparse | $. _ _ _ | Sparse |
|
$.y converts a dense array to sparse, and
conversely $.^:_1 y converts a sparse array to
dense. The identities f -: f&.$. and f -: f&.($.^:_1) hold for any function f , with the possible exception of those (like overtake {.) which use the sparse element as the fill. |
0$.y applies $. or $.^:_1 as
appropriate; that is, converts a dense array to sparse and a
sparse array to dense. 1$.sh;a;e produces a sparse array. sh specifies the shape. a specifies the sparse axes; negative indexing may be used. e specifies the “zero” element, and its type determines the type of the array. The argument may also be sh;a (e is assumed to be a floating point 0) or just sh (a is assumed to be i.#sh — all axes are sparse — and e a floating point 0). 2$.y gives the sparse axes (the a part); (2;a)$.y (re-)specifies the sparse axes; (2 1;a)$.y gives the number of bytes required for (2;a)$.y ; (2 2;a)$.y gives the number of items in the i part for the specified sparse axes a (that is, #4$.(2;a)$.y ). 3$.y gives the sparse element (the e part); (3;e)$.y respecifies the sparse element. 4$.y gives the index matrix (the i part). 5$.y gives the value array (the x part). 7$.y gives the number of non-sparse entries in array y; that is, #4$.y or #5$.y. 8$.y removes any completely “zero” value cells and the corresponding rows in the index matrix. The inverse of n&$. is (-n)&$. . |
] d=: (?. 3 4$2) * ?. 3 4$100 0 55 79 0 0 39 0 57 0 0 0 0 ] s=: $. d convert d to sparse and assign to s 0 1 | 55 0 2 | 79 the display of s gives the indices of the 1 1 | 39 “non-zero” cells and the corresponding values 1 3 | 57 d -: s d and s match 1 o. s π times s 0 1 | 172.788 0 2 | 248.186 1 1 | 122.522 1 3 | 179.071 o. d π times d 0 172.788 248.186 0 0 122.522 0 179.071 0 0 0 0 (o. s) -: o. d function results independent of representation 1 0.5 + o. s 0 1 | 173.288 0 2 | 248.686 1 1 | 123.022 1 3 | 179.571 <. 0.5 + o. s 0 1 | 173 0 2 | 248 1 1 | 123 1 3 | 179 (<. 0.5 + o. s) -: <. 0.5 + o. d 1 d + s function arguments can be dense or sparse 0 1 | 110 0 2 | 158 1 1 | 78 1 3 | 114 (d + s) -: 2*s familiar algebraic properties are preserved 1 (d + s) -: 2*d 1 +/ s 1 | 94 2 | 79 3 | 57 +/"1 s 0 | 134 1 | 96 |. s reverse 1 1 | 39 1 3 | 57 2 1 | 55 2 2 | 79 |."1 s 0 1 | 79 0 2 | 55 1 0 | 57 1 2 | 39 |: s transpose 1 0 | 55 1 1 | 39 2 0 | 79 3 1 | 57 $ |: s 4 3 $.^:_1 |: s $.^:_1 converts a sparse array to dense 0 0 0 55 39 0 79 0 0 0 57 0 (|:s) -: |:d 1 , s ravel; a sparse vector 1 | 55 2 | 79 5 | 39 7 | 57 $ , s 12Representation
| sh | Shape, $y . Elements of the shape must be less than 2^31 , but the product over the shape may be larger than 2^31 . | |
| a | Axe(s), a vector of the sorted sparse (indexed) axes. | |
| e | Sparse element (“zero”). e is also used as the fill in any overtake of the array. | |
| i | Indices, an integer matrix of indices for the sparse axes. | |
| x | Values, a (dense) array of usually non-zero cells for the non-sparse axes corresponding to the index matrix i . |
] d=: (?. 3 4$2) * ?. 3 4$100
0 55 79 0
0 39 0 57
0 0 0 0
] s=: $. d
0 1 | 55
0 2 | 79
1 1 | 39
1 3 | 57
The shape is 3 4 ;
the sparse axes are 0 1 ;
the sparse element is 0;
the indices are the first two columns of numbers
in the display of s ; and the values are
the last column.| imax =: _1+2^IF64{31 63 | the largest internal integer |
| rank =: #@$ | rank |
| type =: 3!:0 | internal type |
| 1 = rank sh | vector |
| sh -: <. sh | integral |
| imax >: #sh | at most imax elements |
| (0<:sh) *. (sh<:imax) | bounded by 0 and imax |
| 1 = rank a | vector |
| a e. i.#sh | bounded by 0 and rank-1 |
| a -: ~. a | elements are unique |
| a -: /:~ a | sorted |
| 0 = rank e | atomic |
| (type e) = type x | has the same internal type as x |
| 2 = rank i | matrix |
| 4 = type i | integral |
| (#i) = #x | as many rows as the number of items in x |
| ({:$i) = #a | as many columns as there are sparse axes |
| (#i) <: */a{sh | # rows bounded by product over sparse axes lengths |
| imax >: */$i | # elements is bounded by imax |
| (0<:i) *. (i <"1 a{sh) | i bounded by 0 and the lengths of the sparse axes |
| i -: ~.i | rows are unique |
| i -: /:~ i | rows are sorted |
| (rank x) = 1+(#sh)-#a | rank equals 1 plus the number of dense axes |
| imax >: */$x | # elements is bounded by imax |
| (}.$x)-:((i.#sh)-.a){s | item shape are elements of the shape corresponding to the dense axes |
| (type x) e. 1 2 4 8 16 32 | internal type is boolean, character, integer, real, complex, or boxed |
] d=: (0=?. 2 3 4$3) * ?. 2 3 4$100
46 0 0 0
0 39 0 0
0 0 46 0
0 0 0 0
0 60 0 62
0 0 60 64
] s=: $. d convert d to sparse and assign to s
0 0 0 | 46
0 1 1 | 39
0 2 2 | 46
1 1 1 | 60
1 1 3 | 62
1 2 2 | 60
1 2 3 | 64
d -: s match is independent of representation
1
2 $. s sparse axes
0 1 2
3 $. s sparse element
0
4 $. s index matrix; columns correspond to the sparse axes
0 0 0
0 1 1
0 2 2
1 1 1
1 1 3
1 2 2
1 2 3
5 $. s corresponding values
46 39 46 60 62 60 64
] u=: (2;2)$.s make 2 be the sparse axis
0 | 46 0 0
| 0 0 0
|
1 | 0 39 0
| 0 60 0
|
2 | 0 0 46
| 0 0 60
|
3 | 0 0 0
| 0 62 64
4 $. u index matrix
0
1
2
3
5 $. u corresponding values
46 0 0
0 0 0
0 39 0
0 60 0
0 0 46
0 0 60
0 0 0
0 62 64
] t=: (2;0 1)$.s make 0 1 be the sparse axes
0 0 | 46 0 0 0
0 1 | 0 39 0 0
0 2 | 0 0 46 0
1 1 | 0 60 0 62
1 2 | 0 0 60 64
7 {. t take
0 0 | 46 0 0 0
0 1 | 0 39 0 0
0 2 | 0 0 46 0
1 1 | 0 60 0 62
1 2 | 0 0 60 64
$ 7 {. t
7 3 4
7{."1 t take with rank
0 0 | 46 0 0 0 0 0 0
0 1 | 0 39 0 0 0 0 0
0 2 | 0 0 46 0 0 0 0
1 1 | 0 60 0 62 0 0 0
1 2 | 0 0 60 64 0 0 0
0 = t
0 0 | 0 1 1 1
0 1 | 1 0 1 1
0 2 | 1 1 0 1
1 1 | 1 0 1 0
1 2 | 1 1 0 0
3 $. 0 = t the sparse element of 0=t is 1
1
+/ , 0 = t
17
+/ , 0 = d answers are independent of representation
17
0 { t from
0 | 46 0 0 0
1 | 0 39 0 0
2 | 0 0 46 0
_2 (<1 2 3)}t amend
0 0 | 46 0 0 0
0 1 | 0 39 0 0
0 2 | 0 0 46 0
1 1 | 0 60 0 62
1 2 | 0 0 60 _2
s=: 1 $. 20 50 1000 75 366
$ s 20 countries, 50 regions, 1000 salespersons,
20 50 1000 75 366 75 products, 366 days in a year
*/ $ s the product over the shape can be greater than 2^31
2.745e10
r=: ?. 1e5 $ 1e6 revenues
i=: ?. 1e5 5 $ $ s corresponding locations
s=: r (<"1 i)} s assign revenues to corresponding locations
7 {. ": s the first 7 rows in the display of s
0 0 20 48 150 | 395543 the first row says that for country 0, region 0,
0 0 39 40 67 | 316198 salesperson 20, product 48, day 150,
0 0 47 37 172 | 650782 the revenue was 395543
0 0 52 32 358 | 789844
0 0 54 62 82 | 923413
0 0 67 17 103 | 567367
0 0 91 13 295 | 470919
+/ , s total revenue
|limit error the expression failed on ,s because it would
| +/ ,s have required a vector of length 2.745e10
+/@, s total revenue
4.98338e10 f/@, is supported by special code
+/+/+/+/+/ s total revenue
4.98338e10
+/^:5 s
4.98338e10
+/^:_ s
4.98338e10
+/ r
4.98338e10
+/"1^:4 s total revenue by country
0 | 2.49298e9
1 | 2.35118e9
2 | 2.49324e9
3 | 2.44974e9
4 | 2.45138e9
5 | 2.47689e9
6 | 2.55936e9
7 | 2.47153e9
8 | 2.45907e9
9 | 2.50249e9
10 | 2.52785e9
11 | 2.49482e9
12 | 2.57532e9
13 | 2.46509e9
14 | 2.54962e9
15 | 2.48942e9
16 | 2.50503e9
17 | 2.52147e9
18 | 2.50127e9
19 | 2.49603e9
t=: +/^:2 +/"1^:2 s total revenue by salesperson
$t
1000
7{.t
0 | 5.08254e7
1 | 5.61577e7
2 | 4.19914e7
3 | 5.90514e7
4 | 6.08208e7
5 | 4.10632e7
6 | 4.36616e7
Sparse Linear Algebraf=: }. @ }: @ (,/) @ (,."_1 +/&_1 0 1) @ i. f 5 indices for a 5 by 5 tri-diagonal matrix 0 0 0 1 1 0 1 1 1 2 2 1 2 2 2 3 3 2 3 3 3 4 4 3 4 4 s=: (?. 13$100) (<"1 f 5)} 1 $. 5 5;0 1 $s 5 5The phrase 1$.5 5;0 1 makes a sparse array with shape 5 5 and sparse axes 0 1 ; <"1 f 5 makes boxed indices; and x (<"1 f 5)}y amends by x the locations in y indicated by the indices (scattered amendment).
s 0 0 | 46 0 1 | 55 1 0 | 79 1 1 | 52 1 2 | 54 2 1 | 39 2 2 | 60 2 3 | 57 3 2 | 60 3 3 | 94 3 4 | 46 4 3 | 78 4 4 | 13 ] d=: $.^:_1 s the dense representation of s 46 55 0 0 0 79 52 54 0 0 0 39 60 57 0 0 0 60 94 46 0 0 0 78 13 ] y=: ?. 5$80 66 75 79 52 54 y %. s 0.352267 0.905377 0.00169115 0.764716 _0.434452 y %. d answers are independent of representation 0.352267 0.905377 0.00169115 0.764716 _0.434452 s=: (?. (_2+3*1e5)$1000) (<"1 f 1e5)} 1 $. 1e5 1e5;0 1 $ s s is a 1e5 by 1e5 matrix 100000 100000 y=: ?. 1e5$1000 ts=: 6!:2 , 7!:2@] time and space for execution ts 'y %. s' 0.0550291 5.24358e6 0.056 seconds; 5.2 megabytes (Pentium III 500 Mhz)Implementation Status
= =. =:
< d <. <:
> >. >:
_ _. _:
+ +. +:
* *. *:
- -. -:
% %. d %:
^ ^.
$ $. $:
~ ~. ~:
| |. |:
.. .:
: :. ::
, ,. ,:
;.
#
! !. !:
/ m /. d /: m
\ m \. m \: m
[ [:
]
{ d {. {:
} d }. }:
" ". ": m
` `:
@ @. @:
& &. &:
e. d
i.
i:
j.
o.
r.
_9: to 9:
3!:0
3!:1
3!:2
3!:3
4!:55
Notes: