Differences between revisions 82 and 83
 ⇤ ← Revision 82 as of 2007-07-20 02:51:58 → Size: 17614 Editor: TomAllen Comment: use regular array of coordinates rather than random ← Revision 83 as of 2008-12-08 10:45:41 → ⇥ Size: 17618 Editor: anonymous Comment: converted to 1.6 markup Deletions are marked like this. Additions are marked like this. Line 104: Line 104: || attachment:sphericalCoords.jpeg || || {{attachment:sphericalCoords.jpeg}} || Line 954: Line 954: [[BR]] <
> Line 956: Line 956: Next Page: ["Essays/Christoffel/Christoffel02"][[BR]]Prev Page: ["Essays/Christoffel"] Next Page: [[Essays/Christoffel/Christoffel02]]<
>Prev Page: [[Essays/Christoffel]] Line 961: Line 961: [[BR]] <
>

### 1 Reference

'Tensor Analysis' by I. S. Sokolnikoff (Second Edition, 1964).

### 2 Software

NB. ... execute (ijx) ...

9!:14 ''
j601/2006-11-17/17:05

### 3 Continuous Functions

There is a footnote on page 1 of the book 'Riemannian Geometry' by Luther Pfahler Eisenhart.

'When we consider any function, it is understood that it is real and continuous, as well as its derivatives of such order as appear in the discussion, in the domain of the variables considered, unless stated otherwise.'

### 4 Verbs

NB. ... script (ijs) ...

NB. ... identify coordinates ...
y1=:0{]
y2=:1{]
y3=:2{]
x1=:0{]
x2=:1{]
x3=:2{]

NB. ... open boxed elements ...
b0=:>@(0{])
b1=:>@(1{])
b2=:>@(2{])
b3=:>@(3{])

NB. ... tolerant 'set zero' (see 'Essays/Tolerant Comparison') ...
tsz=:$@]$[0:(I.@([>!.0|@]))]},@]
ts0=:(2^_44)&tsz
tz =:ts0@:

NB. ... tolerant 'equal'    (see 'Essays/Tolerant Comparison') ...
teq=:*./@,@((b0|@:-b1)<:!.0[*b0>.&:|b1)

NB. ... verbs useful for tolerant comparison ...
nzmin  =:<./@:|@((0<!.0|)#])@,
nzmax  =:>./@:|@((0<!.0|)#])@,
nzcount=:+/@(0<!.0|)@,

NB. ... trig verbs ...
sin   =:1&o.
cos   =:2&o.
arctan=:_3&o.

NB. ... axes sum ...
axs=:ts0@((b0|:b1)+/@(*"1)"1 _ b2|:b3)

### 5 Transformation of Coordinates (ISS Section 19)

##### 5.2 Example

I.S.S. Figure 13 on page 114 shows the transformation from Cartesian coordinates (y) to Spherical coordinates (x) in Euclidean space.

 Figure 1: Spherical coordinates

NB. ... script (ijs) ...

NB. ... equations to transform from Cartesian coordinates to Spherical coordinates ...
cx1=:%:@(*:@y1+*:@y2+*:@y3)"1
cx2=:arctan@(%:@(*:@y1+*:@y2)%y3)"1
cx3=:arctan@(y2%y1)"1
cxx=:(cx1,cx2,cx3)"1             NB. convert y coordinates to x coordinates

NB. ... equations to transform from Spherical coordinates to Cartesian coordinates ...
cy1=:(x1*sin@x2*cos@x3)"1
cy2=:(x1*sin@x2*sin@x3)"1
cy3=:(x1*cos@x2)"1
cyy=:(cy1,cy2,cy3)"1             NB. convert x coordinates to y coordinates

NB. ... from 'numeric' ...
steps=:{.+(1&{-{.)*(i.@>:%])@{:

NB. ... verbs to generate coordinates ...
s1=:steps@(0.5,10,19"_)
s2=:steps@((0.5p1%10),(0.5p1-0.5p1%10),19"_)
s3=:steps@((0.5p1%10),(0.5p1-0.5p1%10),19"_)

NB. ... generate coordinates ...
xpgen=:>@,@:(<"1)@(s1,"0 1/s2,"0/s3)
ypgen=:cyy@xpgen

### 6 First Derivatives of Transformation Equations

##### 6.2 Example

NB. ... script (ijs) ...

dxdy0=:(sin@x2*cos@x3),(sin@x2*sin@x3),cos@x2
dxdy1=:((cos@x2*cos@x3)%x1),((cos@x2*sin@x3)%x1),-@(sin@x2%x1)
dxdy2=:-@(sin@x3%x1*sin@x2),(cos@x3%x1*sin@x2),0:
dxdy =:(3 3$dxdy0,dxdy1,dxdy2)"1 dydx0=:(sin@x2*cos@x3),(x1*cos@x2*cos@x3),-@(x1*sin@x2*sin@x3) dydx1=:(sin@x2*sin@x3),(x1*cos@x2*sin@x3),x1*sin@x2*cos@x3 dydx2=:cos@x2,-@(x1*sin@x2),0: dydx =:(3 3$dydx0,dydx1,dydx2)"1

### 7 Second Derivatives of Transformation Equations

##### 7.2 Example

NB. ... script (ijs) ...

d2xdydx00=:0,(cos@x2*cos@x3),-@(sin@x2*sin@x3)
d2xdydx01=:0,(cos@x2*sin@x3),sin@x2*cos@x3
d2xdydx02=:0,-@(sin@x2),0:
d2xdydx10=:(-@((cos@x2*cos@x3)%*:@x1)),(-@((sin@x2*cos@x3)%x1)),-@((cos@x2*sin@x3)%x1)
d2xdydx11=:(-@((cos@x2*sin@x3)%*:@x1)),(-@((sin@x2*sin@x3)%x1)),(cos@x2*cos@x3)%x1
d2xdydx12=:(sin@x2%*:@x1),-@(cos@x2%x1),0:
d2xdydx20=:(sin@x3%(*:@x1)*sin@x2),((sin@x3*cos@x2)%x1**:@(sin@x2)),-@(cos@x3%x1*sin@x2)
d2xdydx21=:(-@(cos@x3%(*:@x1)*sin@x2)),(-@((cos@x3*cos@x2)%x1**:@(sin@x2))),(-@(sin@x3%x1*sin@x2))
d2xdydx22=:0,0,0:
d2xdydx0 =:d2xdydx00,d2xdydx01,d2xdydx02
d2xdydx1 =:d2xdydx10,d2xdydx11,d2xdydx12
d2xdydx2 =:d2xdydx20,d2xdydx21,d2xdydx22
d2xdydx  =:(3 3 3$d2xdydx0,d2xdydx1,d2xdydx2)"1 NB. ... script (ijs) ... d2ydxdx00=:0,(cos@x2*cos@x3),-@(sin@x2*sin@x3) d2ydxdx01=:(cos@x2*cos@x3),-@(x1*sin@x2*cos@x3),-@(x1*cos@x2*sin@x3) d2ydxdx02=:(-@(sin@x2*sin@x3)),(-@(x1*cos@x2*sin@x3)),-@(x1*sin@x2*cos@x3) d2ydxdx10=:0,(cos@x2*sin@x3),sin@x2*cos@x3 d2ydxdx11=:(cos@x2*sin@x3),-@(x1*sin@x2*sin@x3),x1*cos@x2*cos@x3 d2ydxdx12=:(sin@x2*cos@x3),(x1*cos@x2*cos@x3),-@(x1*sin@x2*sin@x3) d2ydxdx20=:0,-@(sin@x2),0: d2ydxdx21=:-@(sin@x2),-@(x1*cos@x2),0: d2ydxdx22=:0,0,0: d2ydxdx0 =:d2ydxdx00,d2ydxdx01,d2ydxdx02 d2ydxdx1 =:d2ydxdx10,d2ydxdx11,d2ydxdx12 d2ydxdx2 =:d2ydxdx20,d2ydxdx21,d2ydxdx22 d2ydxdx =:(3 3 3$d2ydxdx0,d2ydxdx1,d2ydxdx2)"1

Next Page: Essays/Christoffel/Christoffel02
Prev Page: Essays/Christoffel

Contributed by TomAllen

Essays/Christoffel/Christoffel01 (last edited 2008-12-08 10:45:41 by anonymous)