
X+l 2 3 4 5 6 7  
X * X

1 4 9 1 6 2 5 3 6 4 9 ALGEBRA
X °  . x l

1 2 3 4 5 6 7
2 4 6 8 10 12 14
3 6 9 12 15 18 21
4 8 12 16 20 24 28
5 10 15 20 25 30 35
6 12 18 24 30 36 42
7 14 21 28 35 42 49

An Algorithmic 
Treatment

Jo . - X
0
1

1
0

"2
” 1

'3
'2

"4
“ 3

“ 5
“ 4

CD LD 
1 

1 Kenneth 1E. Iverson
2 1 0 ‘ 1 "2 "3 ” 4
3 2 1 0 ” 1 2 ” 3
4 3 2 1 0 1 2 u - 3) x ( Z - 5  )
5 4 3 2 1 0 1 8 3 0 1 0 3 8
6 5 4 3 2 1 0 R + 8 7 6 5 4 3 2 1 0  1
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Preface

The present text treats the usual topics expected in a 
second course in algebra. It differs from conventional 
treatments in the following respects:

1. The notation used is simple and precise and applies 
to arrays (vectors and matrices) in a simple and uniform manner.
2. Arrays are used extensively to give a graphic view 
of functions by displaying the patterns produced by 
applying them to vectors. They are also used to clarify 
topics which use vectors directly, such as linear 
functions and polynomials.
3. The precision of the notation permits an algorithmic 
treatment of the material. In particular, every 
expression in the book can be executed directly by 
simply typing it on an appropriate computer terminal. 
Hence, if a computer is available it can be used by 
students for individual or collective exploration of 
relevant mathematical functions in the manner discussed 
in Appendix C. Even if a computer is not available, the 
algorithmic treatment presents the essentials of 
computer programming in a mathematical light, i.e., as 
the precise definition and application of functions.
4. The algorithmic approach is the same as that used in 
my Elementary Functions [3], a text which can be used as 
a continuation in topics such as the slope (derivative) 
of functions, and the circular, hyperbolic, exponential, 
and logarithmic functions.
5. The organization of topics follows a pattern 
suggested by considering algebra as a language; in 
particular, the treatment of formal identities is 
deferred until much work has been done in the reading 
and writing of algebraic sentences. These matters are 
discussed fully in Appendix A, "Algebra as a Language", 
and any teacher may be well-advised to begin by reading this appendix.

The pace of the text is perhaps best suited to a 
second course, but it can also be used in part for a first 
year course since the early chapters contain all of the



essentials such as the introduction of the negative and 
rational numbers. When used for a second course these early 
chapters can serve not only as a brief review, but also as 
an introduction to the notation used.

The text employs the APL language which is available 
on computer terminals. Although an APL computer is in no 
way essential, it can be a very useful adjunct. Moreover, 
the text can be used to provide interesting material and 
exercises for courses devoted to introducing APL itself. 
Finally, the text should be useful in a variety of algebra 
courses in both high school and colleqe, since it presents 
traditional material in a new light, combined with the 
interest of learning to program and use a computer.

This text grew out of a summer project undertaken in 
1969 in collaboration with my colleagues Adin Falkoff and 
Paul Berry of IBM, and with five high school teachers - Mr. 
John Brown, now of Dawson College, Montreal; Mr. Nathaniel 
Bates, of Belmont Hill School, Belmont, Massachusetts; Miss 
Linda Alvord, of Scotch Plains-Fanwood High School, Scotch 
Plains, New Jersey; and Sisters Helen Wilxman and Barbara 
Brennan, of Mary Immaculate School, Ossining, New York. Mr. 
Peter Manchester provided valuable assistance in preparing 
APL programs and in developing exercises. I am indebted to 
all of these people for much fruitful discussion, and 
particularly to Messrs. Falkoff and Berry for helping to set 
and maintain the direction of the project.

I have also benefitted greatly from discussions with 
Miss Nancy Boyd and Mr. Christopher Edley, students at 
Swarthmore College. These discussions arose from their work 
as tutors in summer courses using this text which were 
presented at Swarthmore College by Professor David Rosen and 
by Mr. Russell Daniel, now of Temple University. I must 
also acknowledge many helpful discussions with colleagues of 
the Philadelphia Scientific Center of IBM, particularly 
Messrs. E. E. McDonnell and P. C. Berry, as well as critical 
detailed reviews of the text by Miss Alvord and Mrs. Sandra 
Pakin. I am also grateful for the support of the IBM 
Corporation, particularly for the freedom provided by its 
Fellow program.

The manuscript was entered, revised, and printed on an 
APL text editor system. For outstanding clerical assistance 
in the use of this system I am indebted to my wife Jean, and 
to Mrs. Susan O'Connell. The artwork was done by Mr. David 
Hatcher, who also worked long hours in the production of the 
final draft. I am particularly indebted to Miss Elizabeth 
Llanso for her patient and unfailing assistance in every 
aspect of the preparation of the manuscript.
July9 1972
Philadelphia> Pennsylvania

Kenneth E. Iverson
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1

The Language 
of Mathematics

1.1 INTRODUCTION
Algebra is the language of mathematics. It is 

therefore an essential topic for anyone who wishes to 
continue the study of mathematics. Moreover, enough of the 
language of algebra has crept into the English language to 
make a knowledge of some algebra useful to most 
non-mathematicians as well. This is particularly true for 
people who do advanced work in any trade or discipline, such 
as insurance, engineering, accounting, or electrical wiring. 
For example, instructions for laying out a playing field 
might include the sentence, "To verify that the corners are 
square, note that the length of the diagonal must be equal 
to the square root of the sum of the squares of the length 
and the width of the field", or alternatively, "The length
of the diagonal must b e V ". In either case (whether 
expressed in algebraic symbols or in the corresponding 
English words), the comprehension of such a sentence depends 
on a knowledge of some algebra.

Because algebra is a language, it has many analogies 
with English. These analogies can be helpful in learning 
algebra, and they will be noted and explained as they occur. 
For instance, the integers or counting numbers 
(1, 2, 3, 4, 5, 6...) in algebra correspond to the concrete 
nouns in English, since they are the basic things we 
discuss, and perform operations upon. Furthermore, 
functions in algebra (such as + (plus), - (subtract), and 
x (times)) correspond to the verbs in English, since they do 
something to the nouns. Thus, 2+3 means "add 2 to 3 ", and 
( 2 + 3 )x4 means "add 2 to 3 and then multiply by 4 ". In fact, 
the word "function" (as defined, for example, in the 
American Heritage Dictionary), is descended from an older 
word meaning, "to execute", or "to perform".

When the language of algebra is compared to the 
language of English, it is in certain respects much simpler, 
and in other respects more difficult. Algebra is simpler in 
that the basic algebraic sentence is an instruction to do 
something, and algebraic sentences (usually called 
expressions) therefore correspond to imperative English 
sentences (such as "Close the door."). For example, 2+3



2 Introduction 1.1

means "add 2 and 3", and YEAR<-1970 means "assign to the name 
YEAR the value 19 70", and 7̂ -19 70 means "assign to the name Y 
the value 1970". Since imperative sentences form only a 
small and relatively simple part of English, the language of 
algebra is in this respect much simpler.

Algebra is also simpler in that it permits less 
freedom in the ways you can express a particular function. 
For example, "subtract 2 from 4" would normally be written 
in algebra only as 9-2, whereas in English it could be 
expressed in many ways such as "take the number 2 and 
subtract it from the number 4", or "compute the difference 
of the integers 4 and 2".

The most difficult aspect of traditional presentations 
of algebra is the early emphasis on identities, or the 
equivalence of different expressions. For example, the 
expressions (5+7 )*(5+7 ) and (5x5)+(2 x5 x7 )+(7 x7 ) are 
egyivalent in the sense that, although they involve a 
different sequence of funtions, they each yield the same 
result. English also offers equivalent expressions. For 
example, "The dog bit the man" is equivalent to "The man was 
bitten by the dog". It is not that the rules for 
determining equivalence in algebra are more difficult than 
in English; on the contrary, they are so much simpler that 
their study is more rewarding and therefore more attention 
is given to equivalences in algebra than in English.

In the present treatment this aspect of algebra (that 
is, the study of identities or equivalence of expressions), 
is delayed until the student has devoted more attention to 
the reading, writing, and evaluation of algebraic 
expressions.

This view of algebra as a language is central to the 
present treatment. It is buttressed and expanded in 
Appendix A, and this appendix should perhaps be read first 
by any teacher and by any student who has significant prior 
experience with traditional treatments of algebra.

The exercises form an important part of the 
development, and the point at which the reader should be 
prepared to attempt each group of exercises is indicated in 
the margin. For example, the first such marginal note 
appears as Ell-6 and indicates that Exercises 1 to 6 of this 
chapter may be attempted at that point.

Collections of expressions occurring in certain 
exercises are broken into groups to provide convenient 
reference in assigning and discussing exercises. These 
groups sometimes indicate substantive groupings of the 
material treated as well.



1.2 Expressions and results 3

The exposition and the exercises are organized to 
encourage experimentation and observation as an essential 
part of learning. Experimentation and discovery can be 
further encouraged to a startling degree by the use of an 
APL computer terminal if one is available. All expressions 
occurring in the text and exercises can be entered directly 
on the terminal keyboard without further knowledge of 
computers. Techniques for the use of the computer in 
teaching are discussed in Appendix C. Appendix B presents 
the computer keyboard and other details necessary to putting 
it in operation.

A student using an APL computer in exploration is 
sometimes confronted with matters not treated until a later 
point in the text. For example, a beginning student 
entering the expression

2000x3000x4000 
will receive the response
2.4F10
This result is expressed in exponential notation (meaning
2.4 times 10 to the power 10) which is not discussed until 
Section 5.17. the Index, the Summary of Notation (appearing 
inside the covers), and Appendix B can be used to resolve 
such difficulties.

1.2 EXPRESSIONS AND RESULTS
Evaluation of the expression 2+3 produces the 

result 5. Such a fact will be written in the following 
form:

2 + 3 
5
and will be read aloud as "2 plus 3 makes 5". The following 
examples would be read in a similar way:

7 + 12 
19

8x4
32
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Where there is more than one function to be executed, 
parentheses are used to indicate which is to be done first. 
Thus the expression

( 2 + 3 ) x 4

is evaluated by first performing the function within the 
parentheses (that is, 2+3), and then multiplying the result 
by 4. The final result is therefore 20, as shown below:

( 2 + 3 ) x 4
20

The foregoing is read aloud as "quantity 2 + 3, times 4". The 
word "quantity" indicates that the first expression 
following it is to be executed first. That is, you are to 
find the result of 2+3 before attempting to execute the 
function "times".

The steps in the execution of an expression may be 
displayed on successive lines, substituting at each line the 
value of part of the expression above it as illustrated 
below:

20

( 2 + 3 ) x 4 
5 x 4

The vertical line drawn to the left of the first two lines 
indicates that they are equivalent statements, either of 
which would produce the result 20 shown on the final line. 
The whole statement would be read aloud as "Quantity 2 plus 
3 times 4 is equivalent to 5 times 4 which makes 20". The 
following examples would be read in a similar way as shown 
on the right:

Quantity 2 plus 3 times quantity 5 
plus 4

is equivalent to 
5 times 9 
which makes 45
Quantity 2 times 3 plus quantity 5 

times 4, all times 2 
is equivalent to 
quantity 6 plus 20 times 2 
is equivalent to 
26 times 2 
which makes 52

( 2 + 3 ) x ( 5 + 4 )

5 x g

( ( 2x 3)  + ( 5 x 4 )  ) x2 

( 6  + 20 )x 2
26 x 2

52
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The last example illustrates the difficulty of 
expressing in English the sequence of execution that is 
expressed so simply by parentheses in algebra, that is, when 
parentheses are "nested" within other parentheses even the 
use of the word "quantity" does not suffice and one resorts 
to expressions such as "all times 2 ". The main point is 
this: in learning any new language (such as algebra) it is 
important to re-express statements in a more familiar 
language (such as English); however, certain things are so 
awkward to express in the old language that it becomes 
important to learn to "think" in the new language. @ 1 - 6

The expression 2+3 x4 , written without parentheses, 
could be taken to mean either (2+3)x4 (which makes 2 0), or 
2 +(3x4) (which makes 14). To avoid such ambiguity we make 
the following rule: when two or more functions occur in
succession with no parentheses between them, the rightmost 
function is executed first. For example:

2 + 3x4
2+ 12 

14
l + 2x 3 + 4x5

1+2x3+ 20
1 + 2 x 23

1+ 46
47

( 1  + 2x3 ) + 4 x 5 

(1+ 6 ) + 20 
7 +20

27 @7-12

1.3 NAMES

50
75

Consider the following statements:

(1 + 3 + 5 + 7 + 9)x 2 
(1 + 3 + 5 + 7 + 9 ) x 3

100
(1 + 3 + 5 + 7 + 9 ) x 4
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Since the expression 1+3+5+7+9 occurs again and again in the 
foregoing statements, it would be convenient to give some 
short name to the result produced by the expression, and 
then use that short name instead of the expression. This is 
done as follows:

50
75
100

25

IT+-1 + 3 + 5 + 7 + 9
IT* 2
IT* 3 
ITxA 

IT

The foregoing would be read aloud as follows: "The name IT 
is assigned tne value of the expression 1+3+5+7+9. IT times 
2 makes 50. IT times 3 makes 75. IT times A makes 100. IT 
makes 25".

Names can be chosen at will. For example:
LENGTH*- 5
WIDTHS
LENGTHxWIDTH

20
AREA+LENGTHxWIDTH
AREA

20
PRICE+s
QUANTITY*-A
PRICExQUANTITY

20

Mathematicians usually prefer to use short names like L or W 
or X or Y, perhaps because this brings out the underlying 
structure or similarity of expressions which may deal with 
different names. Consider, for example, the following 
sequence:

Z*-5
Y+A
XxY

20

If X is taken to mean length and Y is taken to mean 
width, the result is the area of the corresponding 
rectangle? but if X is taken to mean price and Y is taken to 
mean quantity, then the result is the total price. This 
makes clear that there is some similarity between the 
calculation of an area from length and width and the 
calculation of total price from price and quantity.
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The names used in algebra are also called Y§Yi§ki§§, 
since they may vary in the sense that the same name may 
represent different values at different times. For example:

9
X+5
X*X

25
This ability to vary distinguishes a name like x from a 
symbol like 5 which always represents the same value and is 
therefore called a constant.

It is interesting to note that the Y^Yi^kl^s in 
algebra correspond to the pronouns in English. For example, 
the sentence "close it" is meaningless until one knows to 
what "it" refers. This reference is usually made clear by a 
preceding sentence. For example, "See the door. Close it" 
is unambiguous because the first sentence makes clear that 
"it" refers to "the door". Similarly, in algebra the 
expression IT+5 cannot be evaluated unless the value to 
which IT refers is known. In algebra this reference is made 
clear in one way, by the use of the assignment represented 
by the symbol For example:

IT*- 3
IT+ 5

The same name IT can stand for different values at different 
times just as the pronoun "it" can refer to different things 
at different times. [113-18

1.4 OVER NOTATION
It is often necessary to take the sum over a whole 

list of numbers. For example, if the list consists of the 
numbers 1 3 5 7 9 11, then their sum could be written as

1+3+5+7+9+11
36
It is more convenient to use the following notation:

+/1 3 5 7 9 11
36
The foregoing is read aloud as "Sum over 1 3 5 7 9 11" or as 
"Plus over 1 3 5 7 9 1 1 " .
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The over notation can be used for other functions as 
well as for addition. For example:

x/i 2 3
6

X / I  2 3 4
24

READ AS
Times over 1 2 3  
makes 6
Times over 1 2 3 4  
makes 24

10
+ /1 2 3 4 Plus over 1 2 3 4  

makes 10
( + /1 2 3 4 )x 6

60
6 x + /1 2 3 4

60
N+1 2 3 4  
+ /N

10

x/N
19-21® 24

Quantity plus over 1 2 3 4  
times 6 

makes 60
6 times plus over 1 2 3 4  
makes 6 0
N assigned 1 2 3 4  
Plus over N 
makes 10
Times over N 
makes 24

1.5 THE POSITIVE INTEGERS
The natural numbers 1 2 3 4 5 .  . . are also called

the positive integers. They may be produced as follows:

i 3
1 2  3

\ 5
1 2 3 4 5 

i 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N+6 
i N

1 2 3 4 5 6
The symbol \ is the Greek letter iota which corresponds to 
the English letter i. The expression \N is read aloud as 
"the integers to N". Thus:

READ AS

15
+ / i 5 Plus over the integers to 5 

makes 15

22-251 120
*/i5 Times over the integers to 5 

makes 120
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1.6 VECTORS
A list of numbers such as 3 5 7 11 is called a vector.

The numbers in the list are called the elements of the
vector. Thus the first element of the vector 3 5 7 11 is 
the number 3, the second element is 5, the third element is 
7 , and tne fourth is 11. The number of elements in the
vector is called the size of the vector. Thus the size of
the vector 3 5 7 11 is 4. Any single quantity (such as 17) 
will now be referred to as a scalar to distinguish it from a 
vector.

Vectors can be added and multiplied as shown in the 
following examples:

3 5 7+1 2
4 7 10

1 2 3+3 2
4 4 4

1 2 3x3 2
3 4 3

READ AS
3 Vector 3 5 7  

makes 4 7 10
1 Vector 1 2 3  

makes 4 4 4
1 Vector 1 2 3  

makes 3 4 3

plus vector 1 2 3  

plus vector 3 2 1  

times 3 2 1

From this it snould be clear that when two vectors are added 
the first element is added to the first element, the second 
element is added to the second, and so on. Multiplication
is performed similarly.

Like any other result, a vector can be assigned a 
name. For example:

5 5 5 

4 5 6 

1 4  9

READ AS

V<-1 2 3 4 The name V is assigned vector 1

W+ 4 3 2 1 The name W is assigned vector 4

V+W V plus W
5 makes 5 5 5 5

v*w V times W
4 makes 4 6 6 4

V*V V times V
16 makes 1 4 9 16

2

3
3 4 
2 1
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The following examples may be read similarly:
READ AS

N+\ 5 N is assigned integers to 5
N

1 2  3 4 5
N
makes 1 2 3 4 5

N*N
1 4 9 16 25

N times N
makes 1 4 9 16 25

( i 6)x x 6 Quantity integers to 6 times 
quantity integers to 6

1 4 9 16 25 36 makes 1 4 9  16 25 36
Since the addition of two vectors V and W means that 

the first element of V is to be added to the first element 
of W, the second element of V is to be added to the second 
element of w, and so on, then an expression such as

1 3 5+6 8 1 4 3
cannot be executed because the vectors are not of the same
size. However, 
executed:

expressions of the following form can be 
READ AS

3+1 3 5 7  
4 6 8 10

3 plus vector 1 3 5 7  
makes 4 6 8 10

1 2 3 4  5+6 Vector 1 2 3 4 5  plus 6 
7 8 9 10 11 makes 7 8 9 10 11
In other words, if one of the quantities to be added is a 
single number (i.e., a scalar), it is added to each element
of the vector, 
follows:

► The same holds for multiplication as 

READ AS
3x1 3 5 7  

3 9 15 21
3 times vector 1 3 5 7  
makes 3 9 15 21

3 x i 5
3 6 9 12 15

3 times integers to 5 
makes 3 6 9 12 15

2 + 3 x i 5 
5 8 11 14 17

2 plus 3 times integers to 5 
makes 5 8 11 14 17

1 + 2 x i 6
3 5 7 9 11 13

1 plus 2 times integers to 6 
makes 3 5 7 9 1 1 1 3
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+ / l  + 2x i 6
48

1 + + / l  + 2x i 6

49

1.7 REPETITIONS
Consider the following statements and their

verbalization:
READ AS

3 p 2 3 repetitions of 2
2 2 2 makes 2 2 2

2 p 3 2 repetitions of 3
3 3 makes 3 3

5 p 7 5 repetitions of 7
7 7 7 7 7 makes 7 7 7 7 7

The symbol p is the Greek letter rho which corresponds to
the English r.

The following two columns of statements show some 
interesting properties of repetitions, including the 
relation between multiplication and a sum of repetitions:

+ / 3p 2 2x3
6 6

+ /4p2 2x4
8 8

+ / 5 p 7 7x5
35 35

+ / 1 5 p 2 0 20x15
300 300

x /2p2 x / 2 p 3
4 9

x / 3 p 2 x / 3 p 3
8 27

x / M-p 2 x / 4p 3
16 81

plus over 1 plus 2 times integers to 6 
makes 48
1 plus plus over 1 plus 2 times 

integers to 6
makes 49 [126-28

32
x / 5 p 2

243
x /5p 3 [129-31
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1.8 SUMMARY
This chapter has been concerned primarily with the 

language or notation of algebra, and the uses of the 
notation have been kept simple. Now that the language has 
been mastered, succeeding chapters can turn to more 
interesting uses of it. This does not imply that all the 
notation of algebra has now been covered, but rather that 
the main ideas have been introduced and that any further 
additions will be easy to grasp. The situation may be 
compared to the learning of a natural language such as 
French. Once the main ideas of the language have been 
learned (in months or years of study), the new French words 
needed for some particular purpose can be picked up more 
easily.

For example, the next chapter treats the maximum
the larger of its two arguments

READ AS

3
21" 3 2 maximum 3 

makes 3

4
2[ 4 2 maximum 4 

makes 4

5
2T 5 2 maximum 5 

makes 5

5
5T 2 5 maximum 2 

makes 5
The important point is that

2[1 2 3 4
2 2 3 4

3 r 1 5
3 3 3 4 5

T/8 1 7 10 3 10
10

1 2 3 4 5 F 5 4 3 2 1  
5 4 3 4 5
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The main points of the notation introduced in this 
chapter will now be summarized in a few examples which 
should be useful for reference purposes:
EXAMPLE READ AS COMMENTS

(2 + 3 )x4

20

Quantity 2 plus 3 
times 4 

makes 20

Function in paren­
theses is executed 
first

2 + 3x4

14

N+ 3

2 plus quantity 
3 times 4 

makes 14

N is assigned 3

Rightmost function 
is executed first 
if there are no 
intervening 
parentheses

Name N is assigned 
the value of the 
expression to 
the right of

12
Nx 4 N times 4 

makes 12

+ / 3 5 7

15

Plus over vector
3 5 7 

makes 15

x/2 3 5 2

60

Times over vector
2 3 5 2 

makes 6 0
1 2 3X3 2 1

3 4 3

3x1 2 3

3 6 9

i 5
1 2 3 4 5 

5 p 4
4 4 4 4 4

Vector 1 2 3  times 
vector 3 2 1  

makes 3 4 3
3 times vector

1 2  3
makes 3 6 9
Integers to 5 
makes 1 2 3 4 5
5 repetitions of 4 
makes 4 4 4 4 4

Element-by-element 
multiplication

Single number multi­
plies each element

H32



2
Function Tables 
and Maps

2.1 INTRODUCTION

In Chapter 1, addition was spoken of as a "function" 
because it "does something" to the numbers it is applied to 
and produces some result. Multiplication was also referred 
to as a function, but the notion of function is actually 
much broader than these two examples alone might suggest. 
For example, the average or normal weight of a woman depends 
on her height and is therefore a function of her height. In 
fact, if one were told that the normal weight for a height 
of 57 inches is 113 pounds, the normal weight for a height 
of 58 inches is 115 pounds, and so on, then one could 
evaluate the function "normal weight" for any given height 
by simply consulting the list of corresponding heights and 
weights.

It is usually most convenient to present the necessary 
information about a function such as "normal weight" not by

itence as ]begun above,
Figure 2.1 •

H 57 113 W
E 58 115 E
I 59 117 I
G 60 120 G
H 61 123 H
T 62 126 T

63 130
I 64 134 I
N 65 137 N

66 141
I 67 145 P
N 68 149 0
C 69 153 U
H 70 157 N
E 71 161 D
S 72 16 5 S

Table of Normal Weights
Versus Heights

Figure 2.1
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The quantity (or quantities) to which a function is 
applied is (are) called the argument (or arguments) of the 
function. For example, in the expression 3*4 the number 3 
is the left (or first) argument of the function x and 4 is 
the right (or second) argument. Evaluation of the "normal 
weight" function (represented by Table 2.1) for a given 
argument (say 68 inches) is performed by finding the 
argument 6 8 in the first column and reading the weight (1 g9 
pounds) which occurs in the same row.

The domain of a function is the collection of all 
arguments for which it is defined. Addition is, of course, 
defined for any pair of numbers, but the function "normal 
weight" is certainly not defined for heights such as 2 
inches or 200 inches. For practical purposes, the domain of 
a function such as "normal weight" is simply the collection 
of arguments in the table we happen to possess, even though 
information for other arguments might be available 
elsewhere. For example, the domain of the function of Table
2.1 is the set of integers from 57 to 7 2 , that is, the set 
of integers 56 + 1 I6 .

The range of a function is the collection of all the 
results of the function. For example, the range of the 
function of Figure 2.1 is the set of integers 113, 115, 117
120, etc., occurring in the second column. @1-2

A table of normal weights often shows several columns 
of weights, one for small framed people, one for mediumn, 
and one for large. Such a table appears in Figure 2.2. In 
such a case the weight is a function of two arguments, the 
height and the "frame-class"; the first argument determines 
the row and the second argument determines the column in 
which the result appears. Thus the normal weight of a 
small-boned, 66-inch woman is 133 pounds. @3-4

An arithmetic function can also be represented by a 
table, as is illustrated by Figure 2.3 for the case of 
multiplication. Since the domain of multiplication includes 
all numbers, no table can represent the entire
multiplication function; Figure 2.3, for example, applies 
only to the domain of the first few integers. The 
multiplication sign in the upper left corner is included 
simply to indicate the arithmetic function which the table 
represents.

In any table, the first column represents the domain 
of the first argument and the first row represents the 
domain of the second argument; the rest is called the body 
of the table. For example, in Figure 2.3, the body of the 
table is that part bordered on the left and top by the solid 
lines.
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Frame
Small Medium Large

H 57 105 113 121 w
E 58 107 115 123 E
I 59 109 117 125 I
G 60 112 120 128 G
H 61 115 123 131 H
T 62 118 126 135 T

63 122 130 139
I 64 126 134 143 I
N 65 129 137 147 N

66 133 141 151
I 67 137 145 155 P
N 68 141 149 158 0
C 69 145 153 162 u
H 70 149 157 165 N
E 71 153 161 169 D
S 72 157 165 173 S

Normal Weight as a Function 
of Two Arguments

Figure 2.2

Function Right Domain
Name X 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30

Left 4 4 8 12 16 20 24 28 32 36 40
Domain 5 5 10 15 20 25 30 35 40 45 50

6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80

Multiplication Table
Figure 2.3

In any table representing a function of two arguments, 
any one column of the body (taken together with the column 
of arguments not in the body) represents a function of one 
argument. For example, if one takes the second column of 
the body of Figure 2.2, it represents the same function of 
one argument as does Figure 2.1.

Thus any function of two arguments can be thought of 
as a collection of functions of one argument. For example, 
the second column of the body of Figure 2.3 represents the 
"times two" function, the third column represents the "times 
three" function, etc.
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Similarly, one row of the body of a function table 
represents a function of one argument. For example, the 
fifth row of the body of Figure 2.2 gives weights as a 
function of "frame" for 61 inch women. H5-10

2.2 READING FUNCTION TABLES

The basic rule for reading a function table is very 
simple: to evaluate a function, find the row in which the 
value of the first argument occurs (in the first column, not 
in the body of the table) and find the column in which the 
second argument occurs (in the first row) and select the 
element at the intersection of the selected row and the 
selected column. However, just as there is more to reading 
an English sentence than pronouncing the individual words, 
so a table can be "read" so as to yield useful information 
about a function beyond that obtained by simply evaluating 
it for a few cases.

For example, the table of Figure 2.2 can be "read" so 
as to answer the following questions:
1. Can two women of different heights have the same normal 

weight?

2. For a given frame type, does normal weight always
increase with increasing height?

3. For a given height, does normal weight increase with 
frame type?

4. How many inches of height produce (about) the same
change in weight as the change from small to large 
frame? Does this change remain about the same
throughout the table?
Arithmetic functions are more orderly than a function 

such as that represented by Figure 2.2, and the patterns 
that can be detected in reading their function tables are 
more striking and interesting. Consider, for example, an 
attempt to read Figure 2.3 to answer the following
questions:
5. The second column of the body (which was previously

remarked to represent the "times two" function) contains 
the numbers 2 4 6 ,  etc., which are encountered in
"counting by twos". Can a similar statement be made 
about the other columns?

6. Is there any relation between corresponding rows and 
columns of the body, e.g., between the third row and the 
third column?
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7. Can every result in the body be obtained in at least two 
different ways? Are there any results which can be 
obtained in only two ways?

Similarly, one can construct a function table for 
addition and read it to determine answers to the following 
questions:
8. In how many different ways can the result 6 be obtained 

by addition? Does the result 6 occur in the table in 
some pattern and if so does a similar pattern apply to 
other results such as 7, 8, etc.?

9. What is the relation between two successive rows of the 
table?

Because of the patterns they exhibit, function tables 
can be very helpful in gaining an understanding of 
unfamiliar mathematical functions. For this reason they 

11@ will be used extensively in succeeding chapters.

2.3 EXPRESSIONS FOR PRODUCING FUNCTION TABLES

If A+l 2 3 4 5 6 7 8
B+1 2 3 4 5 6 7 8 9  10

then the expression A°.*B yields the body of the function 
table of Figure 2.3 as follows:

A o . x£
1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80

Similarly, the body of an addition table for the same 
set of arguments can be produced as follows:

2 3
A ° . +B 

4 5 6 7 8 9 10 11
3 4 5 6 7 8 9 10 11 12
4 5 6 7 8 9 10 11 12 13
5 6 7 8 9 10 11 12 13 14
6 7 8 9 10 11 12 13 14 15
7 8 9 10 11 12 13 14 15 16
8 9 10 11 12 13 14 15 16 17
9 10 11 12 13 14 15 16 17 18



2.3 Expressions for producing function tables 19

The general rule is that the symbol o (called null) 
followed by a period followed by the symbol for a function 
produces the appropriate function table when applied to any 
arguments A and B. The expression 'Mo,+ 5" may be read as 
"the addition table for A and B" or as "A addition table B", 
or even as "A null dot plus b ”. Similarly, "Ao .x b”, may be 
read as "A times table B", etc.

It is important to note that the expression A°.+B 
produces only the body of the addition table to which one 
may add a first column consisting of A and a first row 
consisting of B if this is found to make the table easier to read.

It is also important to note the difference between 
the expression A o .x b, which yields the multiplication 
table, and the expression A*B, which yields the 
element-by-element product of A and B . For example:

A + l 3 5 
B+- 2 4 6
A*B

2 12 30
A o . xB

2 4 6
6 12 18

10 20 30 112-13
The body of a table alone does not define a function.

For example, the following tables define two distinct 
functions although the bodies of the tables are identical:

+
2
3
4
5

2
4"
5
6 
7

3
5
6
7
8

4 5
6 7
7 8
8 9
9 10

3 5 7
5 6 7
6 7 8
7 8 9
8 9 10

The name of the function represented by the first 
table is + (as shown in the upper left corner), and the 
table can be used to evaluate expressions as shown on the 
left below:

5 + 3 is 8 
4 + 5 is 9 
3 + 3 i 3 6

5 F 3 is 6 
4 F 5 is 8 
3 F 3 is 8

The function represented by the second table is called 
F (as indicated in the upper left corner) and the 
expressions on the right above show the evaluation of the 
function F for the same arguments used on the left. Since 
the results differ, the two tables represent diff^r^nt functions.
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The complete specification of a function table 
therefore requires the specification of four items:

1. The left domain (i.e., the domain of the left 
argument).

2. The right domain.
3. The body of the table.
4. The name of the function.
From these four items the table can be constructed and 

used as illustrated below:
Left domain : 3 4 5 6
Right domain: 11 9 7 5 3 1
Body: 5 + ( 3 xi 4 ) o .
Name: G

G 11 9 7 5 3 1
3 10 12 14 16 18 20
4 13 15 17 19 21 23
5 16 18 20 22 24 26
6 19 21 23 25 27 29

4 G 5 is 19
6 G 9 is 21

2 x6 G 9 is 42

2.4 THE FUNCTIONS DENOTED BY f AND L
The advantages of the function table can perhaps be 

better appreciated by applying it to some unfamiliar 
functions than by applying it to functions such as addition 
and multiplication which are probably already well 
understood by the reader. For this purpose we will now 
introduce several simple new functions which will also be 
found to be very useful in later work.

It is sometimes instructive to introduce a new 
function as a puzzle - the reader must determine the general 
rule for evaluating the function by examining the results 
obtained when it is applied to certain chosen arguments. 
For example, the function L can be applied to certain 
arguments with the results shown below:

3 L 8 
3
32

47|_ 32
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If one performs enough such experiments it should be 
possible to guess the general rule for the function. In 
attempting such a guess it is helpful to organize the 
experiments in some systematic way, and the body of the 
function table provides precisely the sort of organization 
needed. For example:

J<-1 2 3 4 5 6 7 8
Jo .II

1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2
1 2 3 3 3 3 3 3
1 2 3 4 4 4 4 4
1 2 3 4 5 5 5 5
1 2 3 4 5 6 6 6
1 2 3 4 5 6 7 7
1 2 3 4 5 6 7 8

From the foregoing the reader should be able to state 
the definition of the function and from that statement be 
able to apply it correctly to any pair of arguments.

The function L is called the minimum function because 
it yields the smaller of its two arguments. The maximum 
function is denoted by r and is defined analogously. The 
body of its function table appears below:

Jo . r J
2 3 4 5 6 7 8
2 3 4 5 6 7 8
3 3 4 5 6 7 8
4 4 4 5 6 7 8
5 5 5 5 6 7 8
6 6 6 6 6 7 8
7 7 7 7 7 7 8
8 8 8 8 8 8 8

2.5 THE POWER FUNCTION

B17-18

Another very useful function is called the power 
function and is denoted by *. The body of its function 
table is shown below:

1 +1 2 3 4 5 6 7 
I o . *J

1 1 1 1 1 1 1
2 4 8 16 32 64 128
3 9 27 81 243 729 2187
4 16 64 256 1024 4096 16 384
5 25 125 625 3125 15625 78125
6 36 216 1296 7776 46656 279936
7 49 343 2401 16807 117649 823543
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The power function is defined in terms of 
multiplication in much the same way as multiplication is 
defined in terms of addition. To appreciate how 
multiplication is defined as "repeated additions", consider 
the following expressions:

2p2
2 2

+ / 2p 2 2x2
4

3 p 2
4

2 2 2
+ / 3 p 2 2x3

6
4p2

6
2 2 2 2

+ /4p 2 2x4
8

+ / 5 p 2
8

2x5
10

+ /6p2
10

2x6
12

+ / 8 p 3
12

3x8
24 24

Comparing the results of +/2p2 and 2x2 and the results 
of +/3 p 2 and 2x3, etc., it should be clear that M*N is 
equivalent to adding N quantities each having the value Af.

The corresponding definition of the power function * 
can be obtained by replacing each occurrence of + in the 
foregoing expressions by x and each occurrence of x by *:

2 p 2
2 2

x / 2 p 2
4

3p 2
4

2 2 2
x / 3 p 2

8
4p 2

8
2 2 2 2 

xMp2
16

x / 5 p 2
16

32
x / 6 p 2

32
64

x / 8 p 3
64

6561 6 561
In general, M to

obtained by multiplying 19-22(1 value m .

2*2

2*3

2*4
2*5
2*6

3*8

the power N (that is, M*N) 
together N factors each having

is
the
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2.6 MAPS

Figure 2.4 shows a map which represents the "times 
two" function. The rule for evaluating a function 
represented by a map is very simple: locate the specified 
argument in the top row, then follow the arrow from that 
argument to the result at the head of the arrow in the 
bottom row; e.g., the result for the argument 3 is 6.

Map of "Times Two" Function 
Figure 2.4

The rules for constructing a map are also simple. 
First consider all of the values in the domain of the 
function together with all of the results, and choose the 
smallest number and the largest number from among them. 
Write a row of numbers beginning with the smallest and 
continuing through each of the integers in order up to the 
largest. Repeat the same numbers in a row directly below 
the first row. For each argument in the top row now draw an 
arrow to the corresponding result in the bottom row.

Just as it is often helpful to read tables, so is it 
helpful to read such maps. Consider the four maps shown in 
Figure 2.5. From the first it is clear that in the map of 
addition of 2, the arrows are all parallel. From the map 
below this it is clear that the same is true for addition of 
3, and that the slope of the arrows depends on the amount 
added. The maps on the right show multiplication; here the 
arrows are not parallel, and the distance between suc­
cessive arrowheads is seen to be equal to the multiplier.

Maps for Addition and Multiplication 
Figure 2.5
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It is sometimes useful to show the maps of a sequence 
of functions such as the following:

1>1 2 3 4 5 6
2 x J

2 4 6 8 10 12
8+ ( 2x 1 )

10 12 14 16 18 20
The appropriate maps are shown in Figure 2.6. The 

broken lines show the map of the overall result produced, 
that is, the map of the function 8+(2 xj).
1 2 3 4 ^ 5 ^  6.7 9 10 11 12 13 14 15 16 17 18 19 20

1 2.__3 4__5 ̂ 6_^7 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8  ^ 1 0  11 12 13^14 15 16 17 18 19^2 0

Maps of a Sequence of Functions 
Figure 2.6

Maps will be used in the next chapter to introduce the 
function subtraction and the new negative numbers which this 

23-24®- function produces.



The Negative 
Numbers

3.1 SUBTRACTION
The aufcLtt&G.tiQn function is denoted by the minus sign 

(-). For example:
READ AS

8-3
5

(5+3)-3 
5

(5-3)+3 
5

8 minus 3 
makes 5
Quantity 5+3 minus 3 
makes 5
Quantity 5-3 plus 3 
makes 5

The following examples illustrate the relation between 
addition and subtraction:

5 + 3
8

6 + 3
9

7+3
10

5 + 4
9

6 + 4
10

7 + 4
11

1 2  3 4 5 + 3
4 5 6 7 8

1 2  3 4 5 + 4
5 6 7 8 9

5
6 
7
5
6 
7

1
1

8- 3
9- 3
10- 3
9- 4
10- 4
11- 4

4 5 6 7  8-3 
2 3 4 5

5 6 7 8  9-4 
2 3 4 5

From these examples it appears that subtraction will undo 
the work of addition. That is, if 3 is added to 5 to 
produce 8, and 3 is then subtracted from 8 the final result 
is the original value 5. This is true in general, and 
subtraction is therefore said to be the inverse of addition. 
Thus for any number X and any number A, the expression 
(X+A)-A will yield X.
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The converse is also true; that is, addition will undo 
the work of subtraction, and addition is therefore the 
inverse of subtraction. For example:

5 6 7 8 9 10
5 6 7 8 9  10+3 

8 9 10 11 12 13
In other words, (X-A)+A will also yield X.

In summary then:

(X+A)-A makes X
(X-A)+A makes X

For example:
(8 9 10 11 12 13 + 3 ) - 3 

8 9 10 11 12 13
(8 9 10 11 12 13 - 3 ) + 3 

1-3® 8 9 10 11 12 13
This inverse relation between addition and subtraction 

can also be exhibited in terms of maps as follows:

8-3
5

5 + 3
8

8 9 10 11 12 13-3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 y  1U II 1'Z I'd 1+ lb lb 17

1 2 3 4 5 6 7 8 y  ID 11 1'Z 13 14 lb lb 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4  56 78  910 11 12 13 14 15 16 17

4® 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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3.2 NEGATIVE INTEGERS

Consider a map for the case (3 4 5 6 7 8 9-5)+5 which 
should yield 3 4 5 6 7 8 9  as a final result:

1 2 3 4 5 6 7 8 9  10
-5

9 10
+ 5

9 10
A problem arises in some of the subtractions, since 3-5 and 
4-5 and 5-5 do not yield positive integers. However, the 
map shows that if we keep track of the unnamed positions to 
the left of the first positive integer, the overall mapping 
for adding 5 and then subtracting 5 yields the correct final 
result.

The problem is resolved by assigning names to each of 
the new positions as follows:

The first number to the left of 1 is named 0. This is read 
aloud as "zero", and means "nothing” or "none". The other 
new numbers, ~l and ~2, are called negative integers, and
are read as "negative 1" and "negative 2". Of course, the 
negative integers continue as far to the left as desired, 
just as the positive integers continue as far to the right 
as desired. The whole pattern including the negative 
integers, zero, and the positive integers, will be called 
the integers.

The effect of all this is to introduce new integers so 
that every subtraction has a proper result. Addition and 
subtraction are still defined as before by moving the proper 
number of places to the right or left in the pattern of the 
integers, but the pattern has now been expanded to include 
the negative integers and zero. !5-6
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3.3 ADDITION AND SUBTRACTION
The expression 7+~3 can be considered either as adding 

7 to “3 as follows:
"4 “3 ”2 “l 0 1 2 3 4 5 6 7 8

+ 7
"4 "3 “2 "1 0 1 2 3^4 5 6 7 8

or as adding “3 to 7 as follows:
“4 "3 “2 “1 0 1 2 3 4 5 6 7 8

4 3 2 1 0  1 2
3

3 4 5 6 7 8
From the above it is clear that adding a negative number is 
equivalent to subtracting the corresponding positive number;
that is, 7 + ~"3 yields the same result as 7-3. The following
examples each show an expression on the left and the
corresponding map on the right for a variety of additions
and subtractions involving both positive and negative
integers:

S+- 2 1 0  1 2
"5 "4 "3 ~ 2 "1 0 1 2 

V  \  N
3 4 5

5+3 5 \ +3
5 4 3 2 1 0\ \ N1 2v -

“5 “4 "3 "2 "1 0 1 2. 3 4 5
5-3 -3

- ✓'I /I5 4 3 2 1 0 1 2 3 4 5

“5 "4 "3 "2 "1 0 
s' S' /

1 2 3 4 5

CO1+ + "3
— Ŝ ~ y'5 4 3 2 1 0 1 2 3 4 5

"5 “4 "3 “2 '1 0V. \  N 1 2 3 4 5
5- 3 . - ~ 3

N
“5 "4 "3 "2 “1 0 V i -> ^ 5



3.4 Expressions for producing the integers 29

The first and last examples illustrate that subtraction of a 
negative number (“3 in the example) is equivalent to adding 
the corresponding positive number (3 in the example). This 
follows from the fact that subtraction of ” 3 is inverse to 
addition of ” 3 which is equivalent to subtraction of 3. 
Hence subtraction of ~3 is inverse to subtraction of 3 and 
is therefore equivalent to the addition of 3. HI7—9

3.4 EXPRESSIONS FOR PRODUCING THE INTEGERS
The function i introduced in Chapter 1 produces the 

positive integers as illustrated below:
i 5

1 2 3 4 5 
i 7

1 2 3 4 5 6 7

The same function can be used to generate both 
positive and negative integers as follows:

( i 9 ) - 5
1 2_3  4 5 6 7 8  9 - 5  

" 4  " 3  “ 2 " 1  0 1 2 3 4 
" 5 + 1  9

" 4  “ 3 "2  " 1  0 1 2 3 4

The non-negative integers (that is the positive 
integers and zero), can be generated as follows:

( 1 6  ) - l
0 1 2 3 4 5 

“l+i 6 
0 1 2 3 4 5

Non-positive integers can be generated as follows:
" 8 + i  8

"7  " 6  " 5  " 4  " 3  " 2  "1  0

The following examples illustrate some functions applied to 
a vector S of integers:

5«- 5+19
5 5 + 5 _

8 " 6  " 4  ~2 0 2 4 6 8
2X5 _

8 " 6  4 2 0 2 4 6 8
5 + 5 + 5

12 " 9  " 6 " 3  0 3 6 9 12
3x5

12 " 9 “ 6 " 3  0 3 6 9 12

4 3 2 1 0 1 2 3 4
1+5

3 " 2 ^ 1 0 1 2 3 4 5  
" 2 + 5

6 " 5  ” 4 " 3  " 2  " 1  0 1 2
5 - 5

0 0 0 0 0 0 0 0 0 iio



4
Function Tables 
with Negative Integers

4.1 INTRODUCTION
Function tables were used in Chapter 2 to explore the 

behavior of the functions plus and times. We can now apply 
them in the same manner to explore the new function 
subtraction introduced in Chapter 3. Moreover, they will be 
useful in re-examining the behavior of plus and times when 
applied to the new negative numbers also defined in Chapter

4.2 SUBTRACTION
If I<-\9, then the body of a subtraction table for the 

arguments 1 to 9 is given by the expression jo.-j as 
follows:

1
I+-1 9 
I

2 3 4 5 6 7 8 9  
S+I°.-I 
S

0 1 2 3 4 5 6 7 8
1 0 1 2 "3 4 5 6 7
2 1 0 1 2 “3 4 5 6
3 2 1 0 1 2 3 4 5
4 3 2 1 0 "1 2 “3 4
5 4 3 2 1 0 1 2 “3
6 5 4 3 2 1 0 1 2
7 6 5 4 3 2 1 0 ~1
8 7 6 5 4 3 2 1 0

The subtraction table S has a number of interesting 
properties. For example, the zeros down the main diagonal 
of the table show that any number subtracted from itself 
yields o. Moreover, each diagonal parallel to the main 
diagonal contains the same number repeated. For example, 
the diagonal two places below the main diagonal consists entirely of 2's.
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Consider the arguments 5 and 3 in the expression 5 - 3 .  
The result 2 is found in the circled position in the 
following subtraction table:

- 1 2 3 4 5 5 7 8 9
1 0 ” 1 " 2 ” 3 ” 4 "5 "6 7 8
2 1 0 “ 1 " 2 " 3 4 "5 "6 7
3 2 1 0 1 2 3 4 "5 "6
4 3 © 1 0 1 2 " 3 4 5
5 4 3 m 1 0 1 “ 2 " 3 4
5 5 4 3 2 1 0 1 2 3
7 6 5 4 3 2 1 0 1 2
8 7 6 5 4 3 2 1 0 “ 1
9 8 7 6 5 4 3 2 1 0

If each argument is increased by 1, the result is 
found in the next row and next column; in other words, one 
place down the diagonal as shown by the square in the above 
table. Since every entry in this diagonal is the same, we 
conclude that (5+1) - (3+1) yields the same result as 5-3. 
More generally, if we increase each argument by any number 
N, the result is found by moving N places down the diagonal. 
Hence we can conclude that (5+N) - (3+7/) yields the same 
result as 5-3. This conclusion for the arguments 5 and 3 
applies to arguments having any values whatever. Hence we 
conclude that (X+N) - (Y+N) yields the same result as X-Y.

The subtraction table S has another interesting 
property. If we choose the element in the third row and 
seventh column (which represents the result 3 - 7 ) ,  we find 
that it is the negative of the result in the seventh row and 
third column (which represents 7 - 3 ) .  Hence the result of
3 -7  is the negative of the result of 7 - 3 .  If any other pair 
of numbers is substituted for 7 and 3, the same relation 
will be observed in the table. We can therefore conclude 
that for any numbers X and Y, the result of X-Y is the 
negative of the result of Y-X.

From the above we may conclude the following: if we 
take the subtraction table S and form a new table T each of 
whose columns is equal to the corresponding row of S, then 
each element of T will be the negative of the corresponding 
element of Si

S T
0 1 2 3 4 5 5 7 8 0 1 2 3 4 5 6 7 8
1 0 1 2 " 3 4 5 "6 7 “ 1 0 1 2 3 4 5 6 7
2 1 0 1 2 ~ 3 4 5 6 “ 2 ” 1 0 1 2 3 4 5 5
3 2 1 0 1 2 " 3 “ 4 “ 5 " 3 “ 2 " 1 0 1 2 3 4 5
4 3 2 1 0 ” 1 2 ' 3 “ 4 “ 4 “ 3 2 “ 1 0 1 2 3 4
5 4 3 2 1 0 1 2 “ 3 “ 5 4 3 2 1 0 1 2 3
5 5 4 3 2 1 0 1 2 6 5 4 3 2 1 0 1 2
7 6 5 4 3 2 1 0 1 7 6 5 4 3 2 1 0 1
8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0
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The sum of 4 and 4 is zero, and in general the sum of 
any number and its negative is zero. Hence we can state the 
foregoing result in another way; the sum of the tables S and 
T must be a table of all zeros:

S+T
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

E ll o 0 0 0 0 0 0 0 0

4.3 FLIPPING TABLES

In the previous section the table T was obtained from 
the table S by interchanging rows and columns. This
interchange can be stated in a simple graphic way; flip the 
table over about the axis formed by the main diagonal:
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In examining the patterns exhibited by tables, it is 
also convenient to flip them in a similar way about a 
vertical axis and about a horizontal axis as follows:

S
0 1 2 3 il 5 6 7 8 0 1 2 3 4 5 6 7 8
1 0 “1 2 5 4 "5 6 "7 1 0 1 '2 "3 "4 5 6 7
2 1 0 1 ! 3 4 5 6 2 1 0 ‘1 2 3 4 5 6
3 2 1 0 2 "3 "4 '5 3 2 1 0 1 2 3 4 5
4 3 2 1 (l "1 2 ~ 3 4 -4--3--2--■4-— 0-^4--4-- 3-
5 4 3 2 . 0 1 2 "3 5 4 3 2 1 0 1 2 3 ^
6 5 4 3 ! 1 0 1 “2 6 5 4 3 2 1 0 "1 2
7 6 5 4 1 2 1 0 “1 7 6 5 4 3 2 1 0 1
8 7 6 5 *

\

I- 3
f

2 1 0 8 7 6 5 4
V■

3 2 1 0

8 7 6 5
1f
I- 3 2 1 0 8 7 6 5 4 3 2 1 0

7 6 5 4 5 2 “1 0 1 7 6 5 4 3 2 1 0 "1
6 5 4 "3 > 1 0 1 2 6 5 4 3 2 1 0 "1 2
5 4 ”3 2 . 0 1 2 3 5 4 3 2 1 0 1 2 3
4 “3 2 1 C) 1 2 3 4 4 3 2 1 0 “1 2 3 4

“3 2 1 0 3 2 3 4 5 3 2 1 0 "1 "2 3 4 "5
2 1 0 1 2! 3 4 5 6 2 1 0 1 2 3 4 5 6

“1 0 1 2 ) 4 5 6 7 1 0 1 2 3 4 5 6 7
0 1 2 3 (• 5 6 7 8 0 1 "2 3 4 ~ 5 "6 "7 ~8

Each of these three methods of flipping a table is a
function which takes a table as argument and produces
another table as a result. The symbols for each of these
functions is al circle with a line through it which indicatesthe axis about which the table is flipped, thus: $ , and
©. For example:

4>S
0 1 2 3 4■ 5 6 7 8 8 7 6 5 4 3 2 1 0l 0 1 2 3i 4 5 6 7 7 6 5 4 "3 2 1 0 12 1 0 1 2 3 4 5 6 6 5 4 “3 2 1 0 1 2
3 "2 1 0 1 2 3 4 5 “5 4 "3 2 1 0 1 2 34 3 2 "1 0 1 2 3 4 4 3 2 1 0 1 2 3 4
5 4 3 2 1 0 1 2 3 3 2 1 0 1 2 3 4 56 5 4 3 2 1 0 1 2 2 1 0 1 2 3 4 5 67 6 “5 4 3 2 "1 0 1 1 0 1 2 3 4 5 6 78 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8

©5 ©4>58 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 87 6 5 4 3 2 1 0 1 1 0 1 2 3 4 5 6 76 5 4 3 2 1 0 "1 2 2 1 0 1 2 3 4 5 65 4 3 2 1 0 "1 2 3 3 2 1 0 1 2 3 4 54 3 2 1 0 1 2 3 4 4 3 2 1 0 1 2 3 43 2 1 0 1 2 3 4 5 "5 4 3 2 1 0 1 2 32 1 0 “1 ~ 2 3 4 "5 6 6 “5 4 “3 2 “l 0 1 21 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0 10 1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1 0
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The last of these four examples illustrates how the flipping 
functions can be applied in succession.

The function $ is called iransposition (because it 
transposes rows and columns), the function <|> is called row 
reversal (because it reverses each row vector in the table), 
and © is called column reversal.

A vector can be thought of much as a one-row table, 
and reversal can therefore be applied to it. For example:

I <-1 9 
I

1 2 3 4 5 6 7 8 9
4>I

9 8 7 6 5 4 3 2 1

The relation between the subtraction table S and its 
transpose T which was noted at the end of the preceding 
section can now be stated as follows:

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

2 - 3 ® 0 0 0 0 0 0 0 0 0

4.4 INDEXING TABLES
In discussing a table it is often necessary to refer 

to a particular row of the table (e.g., the fourth row), or 
to a particular column, or to a particular element. Such a 
reference will be called indexing the table, and the row and 
column numbers which refer to a given element are called its 
indices.

Indexing is denoted by brackets in 
indicated by the following examples:

M<- ( 1 6 )° . - i 6
M

0 1 2 3 4 ~~ 5
1 0 "1 2 "3 "4
2 1 0 1 "2 3
3 2 1 0 1 2
4 3 2 1 0 “ 1
5 4 3 2 1 0

the manner
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M l 3;4]
1

M[4;3]
1

M[31]2 1 0  1 2  3
_ M l ; 3]

2 1 0  1 2  3
From the first two examples it should be clear that 

the row index appears first. From the third it appears that 
a row index alone selects the entire vector in that row. 
From the fourth it appears that a column index alone selects 
the entire column. However, the column is displayed
horizontally, not as a column. This emphasizes the fact
that any single column or row selected from a table is 
simply a vector and is displayed as such.

Indexing can also be used to select an element from a 
vector, but in this case a single index only is required:

7
3
3

P+2 3 5 7 11 
P[4]
PC 2]
2 3 5 7 11 [ 2 ]

Moreover, a vector of indices can be used to select a 
vector of elements as follows:

P[1 3 5]
2 5 11

P[ l4]
2 3 5 7

P[ 5 4 3
11 7 5 3 2

Finally, vectors can be used for both row and column 
indices to a table as follows:

M il 2 ; 2 4 6]
1 3 5
0 2 4

1-1 \-± GO ]
0 1 2 3
2 1 0 1 "2

i—
i

ro -P 6]
1 "3 5
0 "2 Li­
1 1 ' S
2 0 2
3 1 1
4 2 0 m
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4.5 ADDITION
Consider the addition table A defined as follows:

I«-i 7 
A+Io.+J 
A

2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 5 7 8 9 10 11
6 7 8 9 10 11 12
7 8 9 10 11 12 13
8 9 10 11 12 . 13 14

It is clear that the transpose of the table A (that 
is, M ) is equal to A . From this we may conclude that for 
any numbers X and Y , the sum X+Y is equal to the sum Y+X. 
The diagonals and counter-diagonals (running from upper 
right to lower left) of the addition table also show 
interesting patterns whose meanings can be examined in the 
manner illustrated in the discussion of the subtraction 
table in Section 4.2.

It is also interesting to examine an addition table 
made for negative as well as positive arguments as follows:

J<-( \ 15 )-8 
J

7 '6 5 4 CN100 1 0 1 2 3 4 5 6 7

"14
B <-J °
B
"13

.+J 
12 "11 "10 9 "8 "7 "6 "5 "4 "3 2 ”1 0

13 12 11 10 9 8 7 6 5 4 "3 "2 1 0 1
12 "11 10 9 8 7 "6 5 4 "3 "2 "1 0 1 2
11 10 9 8 7 6 5 4 3 2 1 0 1 2 3
10 "9 8 "7 "6 5 "4 "3 2 1 0 1 2 3 4
"9 "8 7 6 5 4 "3 2 1 0 1 2 3 4 5
8 7 6 5 4 3 2 1 0 1 2 3 4 5 6
7 "5 5 4 "3 2 "1 0 1 2 3 4 5 6 7

"6 "5 4 "3 2 "1 0 1 2 3 4 5 6 7 8
5 4 3 2 1 0 1 2 3 4 5 6 7 8 9
4 3 2 1 0 1 2 3 4 5 6 7 8 9 10

“3 2 1 0 1 2 3 4 5 6 7 8 9 10 11
2 1 0 1 2 3 4 5 6 7 8 9 10 11 12
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

One interesting point is that the main diagonal
(consisting of all zeros) divides the positive numbers from 
the negative numbers. Other patterns noted in Table A can 

5fE also be found in the extended Table B .
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4.6 MULTIPLICATION
Again it will be convenient to consider two tables, a 

multiplication table M for positive arguments only, and a 
multiplication table N for negative arguments as well:

1+11
M+I°.xj
M

1 2 3 4 5 6 7
2 4 6 8 10 12 14
3 6 9 12 15 18 21
4 8 12 16 20 24 28
5 10 15 20 25 30 35
6 12 18 24 30 36 42
7 14 21 28 35 42 49

\15 )-8
J

”7 6 5 4 "3 ”2 1 0 1 2 3 4 5 6 7
N<-J o.xj
N

49 42 35 28 21 14 7 0 "7 "14 21 28 "35 42 49
42 36 30 24 28 12 6 0 6 12 18 24 30 36 42
35 30 25 20 15 10 5 0 5 10 15 20 25 30 35
28 24 20 16 12 8 4 0 4 8 12 16 20 24 28
21 18 15 12 9 6 3 0 3 6 “9 12 15 "18 21
14 12 10 8 6 4 2 0 2 4 6 8 10 12 14
7 6 5 4 3 2 1 0 "1 "2 3 4 5 6 7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 6 5 "4 3 "2 1 0 1 2 3 4 5 6 7

"14 12 10 "8 6 "4 2 0 2 4 6 8 10 12 14
"21 18 15 12 9 "6 “3 0 3 6 9 12 15 18 21
28 24 20 16 12 8 4 0 4 8 12 16 20 24 28
35 30 25 20 "15 10 “5 0 5 10 15 20 25 30 35
42 36 30 "24 18 "12 6 0 6 12 18 24 30 36 42
49 42 35 28 21 14 7 0 7 14 21 28 35 42 49

The zeros in N canl  be seen. to divide thes table into
four quadrants, <one in the upper right corner one in the
upper left, one in the lower left, and one in the lower
right. For convenience in referring to them we will call 
these quadrant 1, quadrant 2, quadrant 3, and quadrant 4, 
assigning the numbers in a counter-clockwise order beginning 
with the upper right-hand corner as follows:

quadrant 2 quadrant 1

quadrant 3 quadrant 4
Each quadrant of N contains only positive numbers or 

only negative numbers, and the signs reverse as we proceed 
counter-clockwise through quadrants 1, 2, 3, and 4. It is
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also interesting to consider this change of sign by
examining some row of the table.

First consider the fourth row of table M, which 
represents the "four times" function for positive arguments:

M[4;]
4 8 12 16 20 24 28

Reading this row from left to right is clearly 
"counting by 4*s"; in other words, each entry is obtained 
from the one before it by adding 4. Similarly, reading 
backward is equivalent to "counting down by 4*3", and each 
entry is obtained from the one to the right of it by
subtracting 4.

Now consider the row of table N which represents the 
same "four times" function, that is, row 12:

JI7C12;]
28 24 20 16 12 8 4 0 4 8 12 16 20 24 28

Reading from right to left is again "counting down by
fours" and so the entry 4 is preceded by 0 which is in turn
preceded by “4, and so on. Hence the zero entry separates 
the positive and negative entries in this row. The same 
conclusion applies to any row, and a similar conclusion 
applies to any column. Hence the quadrants must alternate 

6- 7® in sign, as already observed.

4.7 MAXIMUM AND MINIMUM
Consider the following set of positive and negative 

numbers:

I«-( 113 )-7
J

6 5 4 “3 “2 “1 0 1 2 3 4 5 6
For any pair of positive numbers such as 3 and 5, the 

value of their maximum 3f5 is the value of that one of the 
pair which lies farthest to the right in the vector 7. The 
same rule applies to both positive and negative numbers. 
For example:

5
3
3 3
3

3T 5
3 r “ 5 

3 r j
3 3 
3[J 

3 3
3 3 3
3 2

3 3
1 0

3 4
1 2

5 6
3 4 5 6
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Therefore, the maximum table appears as follows:
MAX+Io.[I 
MAX

6 5 '4 3 2 *1 0 1 2 3 4 5 6
5 "5 "4 3 "2 “1 0 1 2 3 4 5 6
4 4 “4 3 2 1 0 1 2 3 4 5 6
3 "3 3 3 2 1 0 1 2 3 4 5 6
2 "2 "2 2 ~ 2 "1 0 1 2 3 4 5 6
1 1 1 1 1 1 0 1 2 3 4 5 6
0 0 0 0 0 0 0 1 2 3 4 5 6
1 1 1 1 1 1 1 1 2 3 4 5 6
2 2 2 2 2 2 2 2 2 3 4 5 6
3 3 3 3 3 3 3 3 3 3 4 5 6
4 4 4 4 4 4 4 4 4 4 4 5 6
5 5 5 5 5 5 5 5 5 5 5 5 6
6 6 6 6 6 6 6 6 6 6 6 6 6

The corresponding rule for the minimum function is 
obvious, and the minimum table appears as follows:

MIN+Io.11 
MIR

6 6 6 6 6 6 6 6 6 6 6 6 6
6 5 5 5 5 5 5 5 5 5 5 5 5
6 5 4 4 4 4 4 4 4 4 4 4 4
6 5 4 3 3 3 3 3 3 3 3 3 3
6 5 4 3 2 2 2 2 2 2 2 2 2

1 "1 1 
0 0 0 
1 1 1  
2 2 2
3 3 3
4 4 4
4 5 5
4 5 6 (E8-11

4.8 RELATIONS
In the work thus far we have observed a number of 

relations among expressions. For example, 3+8 is equal to 
8+3, and in general X+Y is equal to 7+Z. Such relations 
have also been observed between whole tables. For example, 
if M is any multiplication table it is equal to its 
transpose dM.



40 Relations 4.8

The symbol = is used to denote equality, and it will 
be used as a function which yields a l if the arguments are 
equal, and a o if they are not. For example:

00It00

0

3 = 3
1

" 3  = 3
0

1 +  \ 5 

I

1 2 3 4 5

5 4 3 2 

I  = 4 > I

1

0 0 1 0 0

S + I o . - I M^- Jo . x j

s M

0 1  2 3 " 4 1 2 3 4 5
1 0 1 2 ” 3 2 4 6 8 10
2 1 0 " 1 2 3 6 9 12 15
3 2 1 0 1 4 8 12 16 2 0
4 3 2 1 0 5 10 15 20 2 5

0 1 2 3 4 1 2 3 4 5
“ 1 0 1 2 3 2 4 6 8 10

2 1 0 1 2 3 6 9 12 15
3 2 1 0 1 4 8 12 16 2 0
4 3 2 1 0 5 10 15 20 2 5

S  = $ £ M = m

1 0 0 0 0 1 1  1 1 1
0 1 0 0 0 1 1  1 1 1
0 0 1 0  0 1 1 1 1 1
0 0 0 1 0 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1

s+§s Af--  w

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

o = s + b s 0 =M-$M
1 1 1 1 1 1 1 1 1  1

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
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The symbol * is used to denote the not-egual function.
For example:

3*8
1

3*3
0

S*§S
0 1 1 1 1  
1 0  1 1 1  
1 1 0  1 1  
1 1 1 0  1 
1 1 1 1 0

From the foregoing it should be clear that a result of 
1 implies that the indicated relation holds (that is, it is 
true), whereas a result of o implies that the relation does 
not hold (that is, it is false). 1112

There are other useful relations besides equal and 
not-equal; the symbol < denotes the function less-than:

3 < 5 
5 < 3 
3 < 3

i9)-5
N
3 "2 1
<$>N

3 2 1 0
N<$N

1 1 1 0
(<$N)<N

0 0 0 0

0 1 2  3
”1 "2 “3
0 0 0 0 

1 1 1 1
It should be clear that one integer is less than 

another if it precedes it in a list of integers (such as n ) 
arranged in the usual ascending order.

The symbol > denotes the function greater-than. For 
example:

N>$N
0 0 0 0 0 1 1 1 1

(<$N)>N
1 1 1 1 0 0 0 0 0

To remember which of the symbols < and > denotes 
less-than and which denotes greater-than, it may be helpful 
to note that the large end of the symbol points to that 
argument which must be larger if the relation is to be true 
(that is, have the result 1).
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Two further relations will also be employed: the less 
than or equal to (denoted by <) and the greater than or 
equal to (denoted by >). Their definitions should be clear 
from their names and from the following examples:

13-14S

! < - (  i7) 
I

-4

3 2 1 0 1 2 3

R
3 2 1 0 

I <R
“ 1 2 "3

1 1 1 1 
I < R

0 0 0

1 1

N
 i

—1
 

n

o 0 0 0

0 0 0 1 0 0 0

0 0
I >R 
0 1 1 1 1

0 0
I >R 
0 0 1 1 1

0 0
I -R 
0 1 0 0 0

4.9 LOGICAL VALUES
From all of the examples in the preceding section it 

can be seen that every result of a relation function is 
either a l or a o, or a vector or table of l's and 0's. It 
will be convenient to use the term logical result or logical 
vector or logical table to refer to such results which 
consist of only o*s and l's. The term "logical" arises 
from the fact that a 1 can be thought of as representing 
"true" and a o as representing "false".

The functions T and L (maximum and minimum) have 
interesting properties when applied to logical results. The 
maximum table restricted to such arguments appears as 
follows:

o M- O O r 0 1
0 1 0 0 1
1 1 1 1 1

From this it appears that the result of L \ K  (when L 
and K are both logical scalars) is l if either one of the 
arguments (or both) is 1. In other words, L[K is true if 
either L is true or K is true. Hence the maximum function 
applied to logical results can be said to be the function 
or.

The following examples may clarify the matter:
X<-1 2 3 4 5 
7^5 4 3 2 1  
7<7

1 1 0  0 0 
7 = 7
1 0  00 0
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(X<Y)[(X=Y)
1 1 1 0  0 

x<y
1 1 1 0  0

For these values of X and Y it can be seen that the 
expression (X<Y) T ( X=Y)  has the same result as X<Y. The
expression X<Y) (" (X=Y) may be read as "x is less than Y or 
X equals 1" and therefore the conclusion can be phrased as 
follows: "The expression X is less than Y or X equals Y has
the same result as X<Y" .

In a similar manner it can be shown that the minimum 
function applied to logical results is equivalent to and:

o O O L 0 1
0 0 0 0 0
0 1 1 0 1

In other words, the result L l K is true only if L is 
true and K is true. For example, ( X<Y)  L ( X>Y)  is
equivalent to X = Y.  These logical functions are discussed
further in Section 14.1.

The function L / V  (minimum over v) applied to any 
vector V yields the value of the smallest element in v.  
Hence if V is a logical vector, the expression L / V  yields a 
0 if there is any zero in V,  and the expression L / V  
therefore is true (i.e., l) only if all elements of V are 
true. Therefore L / V  can be thought of as "all of 7".
Similarly f/ V is true if at least one element of V is true.
For example:

6
1<W

l 1 1 1
L/KV

l r n < w

l 3 < W

l 10 0
1 /3 < W0 r /3<v1
8 <W0 0 0 0
L/8<W0

o
r/8 <w 115
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4.10 THE OVER FUNCTION ON TABLES
The over function has been frequently used on vectors 

in earlier chapters. For example:
+ /2 4 3

9
x /2 4 3 

24
T/2 4 3 

4
L/2 4 3

2

It is also useful to apply the over function to tables, and 
the method of doing this will now be defined.

A few examples will be given first:
T+-1 2 3 4° . -1 2 3 
T _

0 1 _2 
1 0 “1 
2 1 0  
3 2 1

+ /17
3 0 3 6

x/T
0 0 0 6 

T/T
0 1 2  3

l/T
2 1 0  1

The rule should be clear from the foregoing examples: 
apply the indicated function over each of the vectors formed 
by the rows of the table.

Sometimes one would like to apply a function over each 
of the vectors formed by the columns of a table. This can 
be done by first transposing the table. For example:

§T
_0 1 2 3
_1 _0 1 2 
2 1 0  1 

+ /$T 
6 2 2

x /§T 
0 0 0

r/§T
3 2 1

LA7 
1 20
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Another oyer function can of course be applied to any 
vector resulting from an gver function applied to a table. 
Hence one would obtain the sum of all elements of T by the 
following expression:

+ /+/T
6

Similarly, the expression */+/T yields the product of 
the sums of the rows of Ti

x/ + /T
0

In particular, the expression L/l/L applied to any 
logical table L will yield a result of 1 (true) only if 
every element of L is true. This is useful in comparing 
tables. For example:

I*-1 2 3 4 5 
SW° . -I 
S = § S

1 0 0 0 0
0 1 0  0 0
0 0 1 0  0
0 0 0 1 0
0 0 0 0 1L / L  /S=)stS

A+I°.+1 
4 =$4

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

L/L/4=6)4
1 B16



5
The Rational 
Numbers

5.1 INTRODUCTION
In Chapter 3, the subtraction or minus function was 

introduced as a function which undid the work of addition, 
that is, for any positive integers, X and A, the expression

(X+A)-A
would yield the result X . Subtraction was therefore said to 
be inverse to addition.

Since addition was also inverse to subtraction, it 
followed that the expression

(X-A)+A

would also yield X. However, if A is larger than X, then 
X-A is not a positive integer, and the negative integers and 
zero were introduced to ensure that every subtraction would 
have a result.

In this chapter the division function will be 
introduced in a similar way, as a function which will undo 
the work of multiplication, that is,

(X*A)iA

yields the result Z. Since multiplication will also undo 
the work of division, it follows that

(XlA)xA

also yields X . That is:

(X*A)iA is Z
and

(XiA)xA is X

READ AS
Quantity X times A divided by A is X 
Quantity X divided by A times A is X
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For example:
3x 8

” 2 4

00
1XCO

CO00X00

" 8

COCO1XCOw
 

124t 3
"8

2^t3

3X( 24t 3 )
“ 2 4

3 x(_24v3)

5+- 4+i7 
S

3 2 1 0  1 2  3
5x 3

9 6 3 0 3 6 9
(5x3)t3

3 2 1 0  1 2  3
M^5x 3 

_ _ M
9 6 3 0 3 6 9

Mt3
“3 2 1 0  1 2  3

(Af+ 3) x3
“9 “6 "3 0 3 6 9 ffll-2

Maps for the examples 5x3 and (5x3 ) *3 appear as 
follows:

The examples for M * 3 
similarly:

1 2 3 4 5 6 7 8 9

and ( A/t 3 ) x 3 can be mapped
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In discussing the expression 4*5, the first argument A 
is called the dividend (that which is to be divided), the 
second argument B is called the divisor (that which 
divides), and the result is called the quotient (how many 
times). For example, in the expression 12*3, the number 12 
is the dividend, 3 is the divisor, and the result 4 is the 
quotient.

Just as the expression X-A would sometimes yield a 
result which was not a positive integer, so the expression 
XtA will sometimes yield a result which is not an integer, 
and it becomes necessary to introduce a new class of numbers 
which are neither positive nor negative integers. These 
numbers are called rational numbers because they arise as a 
ratio of two integers. They are also called fractions, 
because a number such as 1*3 is considered to be one piece 
of a whole which is divided into 3 equal parts, that is, it 
is a fraction or "fractured part" of a whole. However, the 
question of these new numbers will be deferred until we have 

313 considered methods for performing division.

5.2 LONG DIVISION
To divide a small number such as 8 into another small 

number such as 56, one can simply guess at the answer and 
then check the guess by multiplying it by the divisor (that 
is, 8) and comparing the resulting product with the original 
dividend 56. Thus if the guess is 7, the product 7x8 is 56 
-and the guess is correct; the quotient of 56 divided by 8 is 
7. More generally, if DD is the name of the dividend, DR is 
the name of the divisor, and G is the name of the guess, 
then the product DRxG must agree with the dividend DD in 
order that the guess be the correct quotient resulting from 
DD+DR.

For somewhat larger numbers one is less likely to 
guess right the first time, and the comparison of the 
product DR*G with the dividend DD can be used to determine 
whether the next guess should be larger or smaller. For 
example, in the division 40548*124, the value of DD is 
40548, the value of DR is 124, and the first guess G might 
be slightly over three hundred, say 305. The product of G 
and DR may then be computed:

124 
x 305 
620 
000 

372 
37820

Since the product 37820 is less than the dividend 40548, the 
next guess should be somewhat larger than 305.
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One might take the next guess to be 330, in which case 
the product 124x330 would be 40920 and therefore too large. 
The third guess should be somewhere between 305 (which was 
too small) and 330 (which was too large). Guessing in this 
way will eventually lead to the desired quotient, but may 
take a lot of work. @4

It would help to know not only that the next guess 
should be larger (or smaller) but by how much. It is easy 
to find how much the product DR*G should be increased; one 
merely subtracts it from the dividend. Thus in the example
40548t124 and the guess 305:

124 40548
x 3 0 5 -37820
620 2728

000 
372 
37820

The product should be increased by 2728. This can be done 
by increasing the guess by 2728*124.

We are thus faced with a new division problem (that 
is, 2728*124), but this time with a smaller dividend. 
Making a guess of 22 for the quotient would prove correct 
since 22xi24 is equal to 2728. The correct quotient is the 
sum of the first guess (305) and the correction to it (22), 
that is, 327. The whole process is shown below:

40548*124
124 40548 124

x 3 05 -37820 x22
620 2728 248
00 0 2 48

372 2728
37820

2 728 
-2728 

0
305 
+ 22 
327

The work can be organized more conveniently as shown 
on the left below; the necessary multiplications are shown 
separately on the right and their results are transferred to 
the appropriate places on the left:

327 
+ 22
305 124 124

124 140548 x 305 *22
-37820 620 248

2728 000 248
-2728 372 2728

0 37820
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In the foregoing, the final result 327 is entered at the top 
of the column of guesses (305 and 22) of which it is the 
sum.

If the second guess is not correct a third can be 
made, and if that is not correct a fourth can be made, and 
so on. The final result is the sum of the guesses. For 
example, to compute 6704*16:

419 16 16
+ 2 x 40 2 x 1 5

+ 15 32 80
402 00 16

16 | 6 7 0 4 64 240
-6432 6432

2 72 16
-240 x 2

32 32
-32

0

The quotient is 419. This result can be checked by 
multiplying it by 16 to see that the product is indeed equal 

5@ to the dividend 6704.
If one chooses each guess to be a single digit, or a 

single digit followed by one or more zeros (that is, one 
chooses guesses which are single-digit multiples of l, 10, 
100, 1000, etc.) then the necessary multiplications become 
much simpler• For example, the division 40548*124 (used in 
an earlier example) might begin with a guess of 300. Since 
300x124 is equivalent to 3xi24 followed by two zeros, this 
multiplication can be carried out on a single line and need 
not be done off to the side as was the case with the guess 
305 used in the previous example:

___ 200_
124140548 

-37200 
3348

The next guess will be a multiple of 10, say 20:
+ 20 
300

124 40548
-37200

3 34 8
-2480

868
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The next guess is a multiple of 1, say 7:
327 
+ 7 

+ 20 
300

124 [”40548 
-37200 

3348 
-2480 

868 
-868 

0
This method of choosing multipliers not only 

simplifies the necessary multiplications, it also simplifies 
the addition of the guesses. In the previous example, the 
addition of 300 and 20 and 7 involves no carries, because 
each digit position has a single non-zero entry. This will 
always be the case provided that the leading digit in each 
guess is chosen as large as possible.

The preceding example (for the division 40548+124) is 
repeated below on the left. It is also reproduced on the 
right but with all of the trailing zeros dropped from the 
calculations:

124

327
7

20
300

40548
-37200

3348
-2480

868
-868

0

327
7

2

124
3

40548
372
334

-248
868

-868
0

From this it appears that the simpler scheme on the 
right will suffice to record the sequence of calculations. 
In fact, the sequence of guesses 3, 2, and 7 could be 
written on the same line, making the final addition 
unnecessary. The steps of this final scheme (called long 
division) are shown in the columns below:

12 4 | 40548 
-372

33

32
124 | 40 548 

-372 
334 

-248 
86

327
124 | 40548 

- 372 
334 

-248 
868 

-868
0 B6-7
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5.3 RATIONAL NUMBERS
In the preceding examples and exercises, each dividend 

used was an integer multiple of the divisor and the quotient 
was therefore an integer. However, the division 21t4 cannot 
have an integer result since the quotient 5 is too small and 
the quotient 5 is too large. Rational numbers will now be 
introduced to ensure that a quotient such as 2 1**+ has a 
result.

Consider the example

P+~10+119
P

9 8 “7 “6 “5 “*+ ~ 3 2 1 0 1 2 3 *+ 5 6 7 8 9
and the following map for Pi 3 and (p*3)* 3

From this example, it appears that the number 6i3 is 
less than 7*3 which is less than 8*3/ and so on. In other 
words/ the following sequence of four numbers is in
ascending order:

6*3 7*3 8*3 9*3
Since 6*3 is 2 and 9*3 is 3, the above may be written as:

2 7*3 8*3 3
In other words, the numbers 7*3 and 8*3 occur between the 
integers 2 and 3 and therefore cannot be integers. They are 
called rational numbers.

The negative integers and zero (introduced to make 
every subtraction have a result) are a set of numbers which 
precede the positive integers; the rational numbers
(introduced to make every division have a result) are a set 
of numbers which occur between the integers.

Just as names were introduced for the negative numbers 
(for example “5 ~*+ ~3), names can be introduced for 
rationals. The result of 2 * 3 is often written as 2/3, the 
result of 5*2 is written as 5/2, etc. In this book we will 
make very little use of such names, but will instead simply 
write the expression which produces the rational number (for
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example, 2*3 or 5*2/ or */2 3 or */5 2), or else write the 
rational number as a decimal fraction. Decimal fractions 
will be discussed later in this chapter.

Since the integer 2 is equal to 2*1 or to 4 * 2 or to 
6*3/ etc./ then the integer 2 itself can be considered to be 
a rational number. Similarly/ 3 is equal to 3*1 or 6*2/ 
etc. Therefore every integer can also be considered to be a 
rational number.

In discussing a rational such as A*B, the terms 
dividend and divisor were introduced to refer to the parts A 
and Bm The terms numerator (for A) and denominator (for B) 
are also used. To denominate means "to give a name to"/ and 
the second part of a rational gives a name to the result in 
the following sense: 3*5 is called 3 fifths, 5*7 is called 
5 sevenths, etc. Similarly, the numerator gives the number 
of things named, as also illustrated in the examples of the 
preceding sentence. §8-11

5.4 ADDITION OF RATIONALS HAVING THE SAME DIVISOR

5

9

10

Consider the following pairs of examples:

(6*3) + (9*3) (6+ 9 ) * 3
5

(20*5)+(25*5) (20+25)*5
9

(32*4)+(8*4) (32+8)*4
10

Since each of the results in the first column agrees 
with the corresponding result in the second column, it 
appears that the expressions in each pair are equivalent, 
that is, (9*3) + (6*3) is equivalent to (9+6) *3/ and so forth. 
The general rule illustrated by the examples is this: If A 9 
B 9 and C are any three integers, then

(4*C)+(£*£) is equal to (4+£)*C
The first example may be diagrammed as follows:

+ 3

+ 9

10 11 12 13 14 J5

10 11 12 13 14 15

16

16
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Each division in the foregoing examples produces an 
integer, and so the rule for addition deduced above has only 
been shown to hold for such cases. It will, however, be 
assumed to hold for all rational numbers. For example:

(5*3)+(8*3) is equal to 13*3 
The diagram for this example follows:

+ 8
1

It should be clear from the foregoing that similar 
rules apply to the subtraction of rationals having the same 
divisor, that is:

(A*C)-(B*C) is equal to (A-B)*C 
For example:

(13*3)-(8*3) is equal to 5*3.
If the addition or subtraction of two rationals 

produces a dividend which is evenly divisible by the 
divisor, then the result may be further simplified to a 
single integer. For example:

(8*3)+(7*3)
15*3
5
(8 * 3 )-(5*3)
3*3
1

The vertical lines above indicate, as usual, that the 
expressions to the right are equivalent. From here on the 
vertical lines will be omitted; that is, any list of 
expressions should be read as a statement that the 

12-14EH expressions are equivalent.
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5.5 MULTIPLICATION OF RATIONAL NUMBERS
The rules for multiplying two rational numbers will be 

explored by first considering a number of cases in which the 
division can actually be performed. Compare the 
corresponding examples in the following two columns:

(10*5)x(12*3) 
2x1+

8
( 1 Ox 12)*( 5x3) 
120*15

(18*3)x(12*6) 
6x2

(18x12)*(3x6) 
216*18

(32*8)x(35*7) (32x 35)*(8x7)
4x5 1120*56

20 20
Since the results in the two columns agree, it appears 

that (10 * 5 )x(12*3) is equivalent to (I0xi2)*(5x3) and so on. 
In general, if A, B, C, and D are any integers, it appears 
that {A*£)x(c±D) is equivalent to (AxC)t(BxD). The above 
examples illustrate this only for cases where AtB and C*D 
each produce integer results. However, the rule will be 
assumed to apply for all rational numbers. For example:

(3 * 4 ) x(5*2) is equal to 15*8
(4*3)x(2*5) is equal to 8*15
( 3 * 4 ) x (4 *3 ) is equal to 12*12 (that is, 1).
The rule for multiplying rationals can therefore be 

stated as follows:
U * B )  x( c*D)

(AxC)* ( 5 x 0 )

In words, the dividend of the result is the product of the 
dividends and the divisor of the result is the product of 
the divisors.

Applying this rule to the case where A, B , C, and D 
are equal to 4, 5, 3, and 3, respectively, yields

(4 * 5)x( 3*3)
( 4 x 3)*( 5x3 )
12*15
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However, since 3t3 is 1 , then
(4*5)x(3r3)
(4*5)xl
4*5
Therefore, all members of the two sets of expressions 

above are equivalent, and 1 2 * 1 5  is equal to 4t5.
It therefore appears that for any three integers A, B,

and Ci
AirB
(AiB)x(kC*C)
(A* C) i( Bx C)

In words, if the dividend and divisor of a rational number 
are multiplied by the same quantity C, the resulting 

15-18i rational number is equal to the original rational number.

5.6 MULTIPLICATION OF A RATIONAL BY AN INTEGER
Consider again the general rule for the multiplication 

of two ratios, that is:
U * B ) x ( C * Z ? )
(AxC)i(BxD)

If B has the value 1, we obtain the following simpler
rule:

A x ( C t D)
(AH)x(CiD)
(AxC)v(lx/})
{A*C)*£
In other words, if a ratio C±D is to be multiplied by 

an integer A, the result is obtained by simply multiplying 
the numerator C hy A. For example:

5 x ( 3 -i- 7 )
19i 15*7

5.7 MULTIPLICATION EXPRESSED IN TERMS OF VECTORS
Since 3*4 can be written as */3 4, and 5*2 can be 

written as */5 2, etc., then any rational can be written as 
*/7, where V is a two-element vector. The first examples 
used in the multiplication of rational numbers will now be 
repeated but written in this new form:
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(*/10 5 ) x(f/12 3)
2x4

£/ 10 5x12 3
*/120 15

8 8

( */18 3)x( 7 / 12 6)
6x2

*/18 3 x 1 2 6 
* / 2 16 18

12 12

(t/32 8 )x(* / 3 5 7)
4 x5

£/32 8x35 7 
v / 112 0 56

20 20

From the foregoing it appears that the rule for 
multiplying rationals can be written very neatly in terms of 
vectors: if V and W are each two-element vectors, then the
product of the rationals (*/7)x(*/f/) is equivalent to the 
rational */7 xf/. For example:

7^10 5 
W+12 3 
(*/7)x(*/J/)
2x4

8
V*W

120 15
1/V*W

8 @20

5.8 ADDITION OF RATIONALS
The method for adding rationals given in Section 5.4 

applied only to the addition of two rationals sharing the 
same divisor, that is,

(4*0 +(5 *<7) is equal to ( A + B ) ± C

It cannot be applied to add a pair of rationals such 
as 2t 3 and 4*5. However, the results of the preceding
section can be applied as follows:

2*3 is equal to (2x5)*(3x5)
4*5 is equal to (4x3)t(5x 3)
Therefore 2*3 and 4*5 are equal to 10*15 and 12*15, 

respectively. But the last two rationals have the same 
divisor and can therefore be added as follows:

(10*15)+(12*15) is equal to 22*15.
Therefore

(2*3)+(4*5) is equal to 22*15



58 Addition of rationals 5.8

21!

2211

Similarly:
(2t 7)+(4 t 5)
((2t 7 )x ( 5x 5) )+((4i5) x (7 x 7) )
(10*35) + ( 28*35)
38 v 3 5

( 1 * 2 ) + ( li3) + (1t 6)
((1 t 2)»(3i3))+((l*3)x(2*2) )+( 156 )
(3*6)+(2*6)+(1*6)
6x6
1

In general, two rationals, (A*B) and (d D ) may be 
added as follows:

(A i B ) + ( C i D )
(U*B)x(B*£) )+((CiD)x(B*B))
( U x D ) t ( B x Z}) ) +( ( C xB)*(I>xB ) )
( U x B ) + ( C x B )  ) * ( B x B)

5.9 ADDITION OF RATIONALS IN TERMS OF VECTORS
Recall the rule for the addition of two rationals as 

follows:
U*B) + (C*0)
((A*D)+(BxC))t(BxD)
Recall also that if F is a two element vector, then 

i/V is the ratio VIH+VL2]. Consequently, the rule for the 
addition of two rationals */y and */v can be expressed as 
follows:

(*/F)+(*/v)
( + /Fx<)>J/)* (Vl2l*Wl2])

For example:
V-*- 3 5
W+7 2
( x / 3 5 ) + ( x / 7 2)
( + /3 5x2 7 ) x( 5x2 )
( + /6 3 5 ) x10
41*10

5.10 THE QUOTIENT OF TWO RATIONALS
Consider the following examples of division:
12x4

3
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(12x 5)t (4x 5)
3

18 t 2
9

( 1 8 x 7 ) t 2 x 7
9

They illustrate the fact, developed earlier, that the 
multiplication of both numerator and denominator by the same 
quantity leaves a fraction unchanged. That is:

PiQ
(PxR)*(QxR)

Consider now the division of the rational number A±B 
by the rational number CtD, that is,

The result will remain unchanged if the numerator AtB and 
the denominator CtD are each multiplied by the same number 
DiC. That is:

(AiB)t(CiD)
( U tB ) x ( ZHC ' ) ) t ((C'*Z?)x (ZHC'))

The last half of the above expression (that is, (C*D)x(D*C)) 
can be simplified by applying the rule that the product of 
two rationals is the product of their numerators divided by 
the product of their denominators:

(CiD)x(DiC)
(Cxp)-(pxC)

Since C*D and D*C are equal, their quotient is 1. Therefore
(C±D)x(D tC) makes 1.

Finally, then:
(AiB)i(CiD)
( (A*B)x(D*C)) f ( (C*D)x(D*C) )
((AiB)x(DlC)*1 
(AiB)x(D*C)

Therefore the quotient (A+B)*(CtD) is equivalent to 
the product (AiB)*(D*C)» For example:

( 3 6 v 3 ) t( 24H)
2

2
( 3 6 t 3 ) x ( 4 t 2 4 )
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This relation can also be expressed in terms of 
vectors as follows. If V is a two-element vector and W is a 
two-element vector, then:

(t /7)x */cpw

For example:
(-/36 3)*(t/24 4)

2

(-5-/36 3)x(*/4 24)
23@ 2

5.11 DECIMAL FRACTIONS
Any rational number having a denominator such as 10 or 

100 or 1000, etc., can be represented as a decimal fraction 
in the manner illustrated below:

13 8 6-5-10
138.6
1386-5-100
13.86
1386-5-1000
1. 386
1386x10000
. 1386
1386x100000
.01386
The period occurring in a decimal fraction is called a 

decimal point. If the decimal point in a decimal fraction 
is followed by one digit, then the rational it represents is 
the integer represented by the same digits without a decimal 
point, divided by 10. If the decimal point is followed by 
two digits, the rational represented is the same integer 
divided by 100, and, in general, if the decimal point is 
followed by K digits, then the rational represented is the 
same integer divided by the integer formed by a l followed 

24-26S by K zeros.
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5.12 ADDITION AND SUBTRACTION OF DECIMAL FRACTIONS
The following examples show the addition of some pairs 

of decimal fractions in which the fractions in each pair 
have the decimal point in the same place, that is, they have 
the same number of digits following the decimal place:

21.34+16.55 
( 2134+100)+( 1655 + 100)
(2134+1655)+100
3789+100

37. 89
13.659+82.546 
(13659+82546)+1000 
96205+1000

96.205
12.700+39.615 
(12700+39615)+1000

52.315
In other words, a pair of decimal fractions having the 

decimal point in the same place can be added just as if they 
were integers (i.e., by ignoring the decimal point), and 
then placing the decimal point in the same place in the 
result. This rule may be applied to the foregoing examples 
as follows:

21.34 
16.55 
37. 89

13.659 
82.546 
96.205

12.700
39.615
52.315

By the same reasoning, subtraction of such a pair of 
decimal fractions can be carried out in a similar manner. 
For example, the subtraction 21.34-16.55 can be carried out 
as follows:

21.34
16.55
4.79 @27

It remains to add two decimal fractions which do not 
have the same number of digits following the decimal point.
The value of a decimal fraction is not changed by appending 
zeros to the right of it; thus 12.7 and 12.70 and 12.700, 
etc., are all equal. This follows from the fact
(established earlier) that the value of a rational is
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28®

unchanged if the numerator and denominator are each 
multiplied by the same number. For example:

12 . 7 
127*10
(127xl0)*(10x10)
1270-5-100 
12.70 
1270-5-100
(1270x10)+ (100x10)
12700-5-1000
12.700
Therefore, zeros may be appended to the right of any 

decimal fraction without changing its value. To perform the 
addition 12.7+39.615, one appends two zeros to the right of 
12.7 (getting 12.700) and then adds them by the method for 
adding decimal fractions having the decimal point in the 
same place:

12.700 
39.615 
52.315

5.13 THE DECIMAL FRACTION REPRESENTATION OF A RATIONAL
Many rational numbers having denominators which are 

not- of the form 10, 100, 1000, etc., can still be expressed 
as decimal fractions by simply multiplying both numerator 
and denominator by some integer which produces a denominator 
which is of the form 10, 100, 1000, etc. For example:

. 5

1 + 2
( lx5)+(2x5) 
5 + 10 . 6

3*5
6*10

3.5
7 + 2 
35 + 10

. 04
1*2 5 
4*100

9.5
38 + 4 
950+100

. 008
1*125
8*1000

. 0625
1 + 16
625+10000

.0016
1*625
16*10000

From these examples, it should be 
ordinary long division process may be used

clear that the 
to convert such 

rationals to decimal fractions; all that is needed is to 
append to the integer numerator a decimal point followed by 
a sufficient number of zeros. For example, since 38 is
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equivalent to 38.0 then 3 8*4 may be written as 38.0*4 and 
the long division may be carried out as follows:

9.5 
4138.0 
~ 36 

20 
-20

0
Similarly, */l 16 may be converted to decimal fraction 

as follows:
. 0625 

16 | 1.0 0 0 0 
-96 

40 
-32

80
-80

0 @29

5.14 DECIMAL FRACTION APPROXIMATIONS TO RATIONALS
The rational number 75*64 can be converted to a 

decimal fraction by long division as follows:

1.171875
64 p75.000000 

-64 
110 
-64 
460 

-448 
120 
-64 
560 

- 512 
480 

-448 
320 

-320 
0

Therefore, 75*64 is equivalent to 1.171875.

Suppose that one stopped the long division process 
just before the last digit, obtaining the quotient 1.17187 
and leaving a non-zero remainder, that is, 320. The decimal 
fraction 1.17187 is not equal to 75*64, but it is very 
nearly equal to it and is therefore said to be a good 
approximation to 75*64. To see how close 1.17187 is to
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7 5x64 one may subtract the approximation 1.1718 7 from the 
true value 1.171875 as follows:

1.171875 
-1.171870
0.000005

The difference is therefore . 000005 or 5x1000000. This is 
only 5 millionths, a very small quantity.

The decimal fraction 1.17187 is said to be a 5-place 
approximation to 7 5x64 because it is close to 75x64 and has 
5 digits following the decimal place. It is also a best 
5-place approximation to 75x64, since no other decimal 
fraction with only 5 places can be closer (although 1.17188 
is just as close and is also a best approximation).

The decimal fraction 1.171 (obtained by stopping the 
long division after 3 places) is a three-place approximation 
to 75x64, and is smaller than 75x64 by the amount .000875. 
It is not, however, the best approximation, since the 
fraction 1.172 is larger than 75x64 by only .000125 as may 
be seen from the following subtraction:

1.172000 
-1.171875
0.000125

Therefore, to get a best approximation to a rational, one 
should continue the long division one place beyond the 
desired number of places. If the additional digit is less 
than 5, the additional digit should be discarded; if not, 
the additional digit should be discarded but a l should be 
added into the last place kept. For example:

1.1718
64 | 75.0000 

-64 
110 
-64 
460 

-448 
120 
-64 
560 

-512 
48

The best three-place approximation is 1.171+.001, or 1.172.
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Similarly, the best two-place approximation to 115*64 
can be obtained as follows:

1.796 
6 4|115.000 

-64 
510 

-448 
620 

-576 
440 

- 384 
56

The best two-place approximation to 115*64 is therefore 
1.79+.01, which is 1.80, or simply 1.8.

For many rationals, the long division process never 
terminates with a zero remainder. For example, for the 
rational 1*3, the remainder is always l:

. 333 
311.000 

-9 
10 
-9 
10 
-9 
1

For such a case, the long division process can also be used 
to give a best approximation to the rational, thus .333 is 
the best 3-place approximation for the rational 1*3 and 
differs from it by only 1*3000. For,

. 3 3 3 + ( 1*3000)
(333*1000)+(1*3000)
(999*3000)+(1*3000)
1000*3000
1*3
Similarly, .667 may be obtained as the best 3-place 

approximation to 2*3 as follows:
. 6666 

3 f2.0 00 0 
-18 

20 
-18 

20 
-18 

20 
-18

2
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Since the fourth digit of the result exceeds 5, the best 
three-place approximation is .666+.001, or .667.

The following table shows the five-place decimal 
fraction approximations to the rationals resulting from the 
expression (i7)°.t i7:
1.00000 0.50000 0.33333 0.25000 0.20000 0.16667
2.00000 1.00000 0.66667 0.50000 0.40000 0.33333
3.00000 1.50000 1.00000 0.75000 0.60000 0.50000
4.00000 2.00000 1.33333 1.00000 0.80000 0.66667
5.00000 2.50000 1.66667 1.25000 1.00000 0.83333
6.00000 3.00000 2.00000 1.50000 1.20000 1.00000

3 OS 7.00000 3.50000 2.33333 1.75000 1.40000 1.16667

0. 14286 
0.28571 
0.42857 
0.57143 
0.71429 
0.85714 
1.00000

5.15 MULTIPLICATION OF DECIMAL FRACTIONS
The following example shows the multiplication of two 

decimal fractions:
1.3x2.14
(1 3 + 1 0 ) x ( 214+100)
(13x214)+(1000)
2782+1000

2 . 782

From this it is clear that the following rule can be used: 
multiply the numbers as integers (ignoring the decimal 
point) and place a decimal point in the result so that the 
number of digits following it is equal to the sum of the 
number of digits following the decimal points in the two 
factors. For example:

2.14 
1 . 3 
642 

214
31-320 2.782

(2 decimal places)
(1 decimal place)

(2+1 decimal places)

5.16 DIVISION OF DECIMAL FRACTIONS
The following procedure can be used to find the 

quotient where the dividend and divisor are decimal
fractions:
1. Perform the division as if the numbers were integers, 

ignoring the decimal points.
2. In the resulting quotient, move the decimal point as 

many places to the left as there are decimal places in 
the original dividend.
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3. From there move the decimal point as many places to the 
right as there are decimal places in the original 
divisor.

For example, to evaluate the expression ll.025ri.26, 
we first divide the integer 11025 by the integer 126:

87.5
126|11025 

-1008
945

-882
630

-630
0

The decimal point in the quotient 87.5 is now moved three 
places to the left (because the dividend 11.025 has three 
decimal places) to obtain .0875, and the decimal place is 
then moved 2 places to the right (because the divisor 1.26 
has two decimal places) to obtain 8.75. This result can be 
checked by evaluating 8.75x1.26 to see that it yields 11.025 
as required.

The justification for this procedure should be clear 
from the following equivalences:

11.025*1.26
(11025rl000)r(126x100)
(11025x1000)x(100x126)
(11025xl26)x(100x1000) ®33

5.17 EXPONENTIAL NOTATION

Numbers such as 120000000 and .0000000017 are awkward 
to read and write because of the large number of zeros to be 
counted. Exponential notation allows one to write these 
numbers instead as 12E1 and 17#~10.

More generally, one may write any decimal number (or 
integer) followed immediately by an E followed immediately 
by an integer. The value this denotes may be determined as 
follows: take the number before the E and move its decimal 
point by an amount determined by the integer following the 
E, moving it to the right if the integer is positive and to 
the left if the integer is negative. For example:

1.3 4# 5 
134000 
134#3 
.134#6

1.34# 5 
.0000134 
134# 7 
.134#“4 [134-35
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5.18 DIVISION WITH NEGATIVE ARGUMENTS
A study of the map used in introducing rational 

numbers (Section 5.1) should make it clear that (“1 ) 7 3  is 
the negative of 1*3, that (”2)* 3 is the negative of 2*3, 
etc. The result to be obtained when the divisor is negative 
is not so clear.

Consider the rational 3*~4 which has a negative 
divisor. We have seen that it is equivalent to the rational 
( 3 ) *( ~4 xA ), where A is any integer. If we choose A to be
~1, then ( 3x4 ) * ( ~4x4 ) is equal (~3)*4. Similarly, (”3)*(~4) 
is equal to 3*4. From this it appears that the sign of the 
quotient BiC is determined from the signs of the arguments B 
and C in exactly the same way that the sign of the product 
B*C is determined (as illustrated by the large table in 

36@ Section 4.6).
5.19 DIVISION BY ZERO

The result of the division 4*5 is a quotient C such 
that C*B is equal to A . If A is 4 and B is zero, then C 
must be a number such that C*0 is 4. Since 0 times anything 
is 0, there is no such number C. Hence division by zero is 
not possible.



6
Function Tables 

with Rational Numbers

6.1 INTRODUCTION
In Chapter 4 we used function tables to examine the 

function of subtraction newly introduced in Chapter 3, and 
to re-examine familiar functions applied to the negative 
numbers also introduced in Chapter 3. In this chapter we 
will pursue a similar course with respect to the division 
function and the rational numbers introduced in Chapter 5.

In this chapter, the results of divisions are 
represented as decimal fractions correct to three places.

6.2 CATENATION
Catenation is a simple new function which will be 

needed in this and later chapters; it is denoted by the 
comma. "Catena" is a Latin word meaning "chain", and 
catenation is a function which chains its arguments 
together. For example:

1 2  3 

4 5 1 
15

1 2  3 

7 1 2  

7 8

X+l 2 3 
Y^4 5
X, Y 
4 5
Y, X
2 3
+ /X,Y

X 9 1 
7
7,X
3
7,8 H I
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6.3 DIVISION TABLES
If J«-i8, then the body of the division table for the 

arguments 1 to 8 is given by the expression j o . - s - j  as 
follows:

I +-\8 
D + I o.tJ
D

1.000 0.500 0. 333 0.250 0.200 0. 167 0. 143 0. 125
2.000 1.000 0.667 0. 500 0.400 0. 333 0.286 0.250
3. 000 1.500 1.000 0. 750 0.600 0.500 0.429 0.375
4.000 2.000 1. 333 1. 000 0. 800 0.667 0. 571 0. 500
5.000 2. 500 1.667 1. 250 1. 000 0.833 0. 714 0.625
6.000 3. 000 2.000 1. 500 1.200 1.000 0.857 0. 750
7.000 3. 500 2. 333 1.750 1.400 1. 167 1.000 0.875
8.000 4. 000 2.667 2. 000 1.600 1.333 1. 143 1.000

This table has a number of interesting properties. 
For example, each row can be seen to be in descending order 
and each column can be seen to be in ascending order. 
Moveover, the main diagonal consists of all l's, 
illustrating the fact that N*N is equal to 1 whatever the 
value of N. Moreover, many other duplications occur in the 
table, showing that the same value may result from the 
division of different pairs of numbers. Thus the decimal 
fraction 0 . 333 occurs in two places, resulting from H 3  and

The division table can be extended to negative 
arguments as well. However, as pointed out in Chapter 5, 
the number 0 is not permitted as the right argument of 
division:

i9 )-5
J001 2 1 0 1 2 3
K+i 0-ct> 1 4 )
K

4 3 2 1 1 2 3 4
JO . tZ

1.000 1. 333 2.000 4.000
0.750 1.000 1. 500 3. 000
0.500 0.667 1. 000 2. 000
0.250 0. 333 0. 500 1. 000
0.000 0. 000 0.000 0. 000
0.250 0.333 0. 500 1. 000
0.500 0.667 1. 000 2. 000
0.750 1.000 1. 500 3. 000
1.000 1. 333 2.000 4.000

4.000 2.000 1. 333 “l.000
3.000 1.500 1. 000 0.750
2. 000 1.000 0.667 0. 500
1.000 0.500 0. 333 0.250
0.000 0.000 0.000 0. 000
1. 000 0.500 0. 333 0. 250
2 . 000 1.000 0.667 0. 500
3. 000 1.500 1.000 0. 750
4. 000 2.000 1.333 1. 000
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6.4 COMPARISON
Two rationals such as 3*7 and 4*9 can be compared to 

see which is the larger by first converting them each to a 
decimal representation. For example:

3*7
0.429

4*9
0.444

(3*7)<(4*9)
1
It is also possible to compare two rationals without 
actually carrying out any division.

If two rationals have the same denominator, they can 
be compared by simply comparing their numerators. For 
example, 2 7*63 is less then 28*63. Moreover, for any pair 
of fractions one can find an equivalent pair which do have 
the same denominator. For example, 3*7 is equivalent to 
(3x9)*(7x9) (that is, 27*63) and 4*9 is equivalent to 
(7x4)*(7x9) (that is, 28*63).

In general, if N1, D1, N2, and D2 are any integers, 
then Nlt-Dl and N2 + D2 can be compared by forming the 
equivalent pair (N1*D2)*(D1*D2 ) and (£lx#2 ) *(D1*D2 ), which 
have the same denominator. Hence it is only necessary to 
compare the numerators il/lxP2 and Dlx#2. For example:

N1+-3
D1+!
N 2*-4 
D 2+9 
NltDl

0.429
N2 + D2

0.444
(NItDI)<(N2±D2)

1
(tflx£2)<(D1*N2)

1

The same relations 
and D2 are vectors. For

will of course hold if N1, 
example:

D1, D2,

Nl+1 1 1 
Dl+1 2 3 
N 2̂ -4 4 4 
D 2«-4 5 6
NItDI

1 0.5 0.333
N2±D2

1 0.8 0.667

2 2 2 3 3 3 
1 2  3 1 2  3 
5 5 5 6 6 6 
4 5 6 4 5 6

2 1 0.667
1.25 1 0 .

3 1.5 1
33 1.5 1.2 1
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(NHD1 )<(N2±D2 )
1 1 1 0 1 1 0 0 1

( N l x D 2 ) < ( D l xff 2 )
1 1 1 0 1 1 0 0 1

M o r e o v e r , i f o n e w a n t s t o c o m p a r e  e a c h  e l e m e n t  o f
N H ■D1 w i t h e a c h e l e m e n t o f N 2 D 2 r t h e n  t h e  c o r r e s p o n d i n g
c o m p a r i s o n t a b l e s a g r e e as w e l l :

(N I t ,D l ) o  . <(N 2 iD2 ) . X,J2 )< (D i o . x N 2)
1 0 O i l 0 1 1 1 1 0 0 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 O i l 0 1 1 1 1 0 0 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
1 0 O i l 0 1 1 1 1 0 0 1 1 0 1 1 1

L / L / ( ( f f i * D 1 )° . < ( N 2iD2)) = ((N 1 ° . XD 2 )<(Z>1° . Xff2 ) )
4 EE 1

6.5 THE POWER FUNCTION FOR NEGATIVE AND ZERO ARGUMENTS
In Chapter 4 the functions +, x, [, and L were 

re-examined to determine how they applied to the negative 
arguments introduced in Chapter 3. This was not done for 
the power function because the result of an expression such 
as 2*~3 is a rational number, and rational numbers had not 
yet been introduced.

We will begin by recalling the definition of the power 
function as the product over a number of repetitions of a 
certain factor, that is, A*B is equivalent to */BpA. For 
example:

3 p 2
2 2 2

x/3p2
8

2*3
8

The power table for positive integers therefore
appears as follows:

1+2 3 4 5 6  
J<- 2 3 4 5 6 7 
Jo . *J

4 8 16 32 64 128
9 27 81 243 729 2187

16 64 256 1024 4096 16384
25 125 625 3125 15625 78125
36 216 1296 7776 46656 279936
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A simple pattern emerges in each row of the table: any 
element of a row can be obtained from the element which 
precedes it by multiplying by a certain factor, that factor 
being the value of the left argument which produced that 
row. For example, the third row was produced by the 
expression:

4*2 3 4 5 6 7
16 64 256 1024 4096 16384
and the third element in the row can be obtained from the 
one before it by multiplying by 4.

This same pattern can be stated in a different way: 
each element can be obtained from the one fQllQwiag it by 
dividing by the same factor. In this way the pattern can be 
extended to the left to obtain results for right arguments 
less than 2:

1+2 3 4 5  
J+(i7 )-4 
J

3 2 1 0  1 2  3
I o . *J

0.125 0.250 0.500 1. 000 2.000 4.000 8. 000
0.037 0.111 0.333 1. 000 3 .. 0 0 0 9.000 27.000
0. 016 0. 062 0.250 1. 000 4.000 16.000 64.000
0.008 0. 040 0.200 1.000 5.000 25.000 125.000

Two important results emerge from these patterns:

1. Any number A raised to the 
power 1 is equal to A,

Examples
1 2 3 4 5  6*1

2. Any number raised to the 
power 0 is equal to 1.

1 2 3 4 5  6*0 
1 1 1 1 1 1  ®5

The case of a zero left argument has not been 
considered. From the foregoing we may conclude that 0*0 
should be 1 and that 0*1 should be 0. Further entries in 
the expression 0*0 1 2 3 4 will be obtained by multiplying 
by the factor 0 and are all zero:

0*0 1 2 3 4 5  
1 0 0 0 0 0

Recalling that A*~ 1 was obtained from A*0 by dividing 
by A, we may now attempt to define a result for 0* 1 by 
dividing the value for 0*0 (that is, 1) by the appropriate 
factor. But this factor is 0, and division by 0 is not 
allowed. Hence the function 0*R is not defined for negative 
values of the right argument R.
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The application of the power function to a negative 
left argument is straightforward. Recall that 3*4 is 
equivalent to */4p3, and that in general ,4*4 is equivalent 
to x /4p4. Hence if A is ” 3 we h' ,e:

4p 3
"3 3 3

CL
=3r

X

81
3*4

81

00
1

CL
LO

"3 3 3
x / 5 p

“ 243
“ 3*5

The foregoing results can now be used to construct a 
table of the power function for both positive and negative 
arguments, including 0 in the right argument only:

I<-( 0-4>i 4 ), i 4 
J + ( 17 )-4 
I i001 2 1 1 2  3 4

3 2 1 0  1 2 3
I o .

0.016 0.062 “ 0.250 1.000 4.000 16.000 64.000
0.037 0. Ill 0.333 1. 000 3.000 9.000 27.000
0.125 0.250 0.500 1. 000 2.000 4.000 8. 000
1.000 1. 000 1. 000 1.000 1.000 1.000 1.000
1.000 1. 000 1. 000 1.000 1.000 1. 000 1.000
0.125 0.250 0.500 1. ooc 2. 000 4.000 8.000
0.037 0. Ill 0 . 333 1.000 3.000 9.000 27.000
0.016 0.062 0.250 1.000 4.000 16.000 64.000

It should also be recalled that 0*4 is defined
non-negative values of A :

0*0 1 2 3 4 5  
7® 1 0 0 0 0 0

6.6 THE POWER FUNCTION FOR RATIONAL ARGUMENTS
When the power function is applied to a right argument 

consisting of successive integers, the successive elements 
of the result increase by a fixed factor. For example:

4*0 1 2 3 4 5 6 7 8 9
1 4 16 64 256 1024 4096 16384 65536 262144
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The multiplying factor is 4. This same pattern is 
observed when the elements of the right argument are equally 
spaced, even though the spacing is not equal to 1. For 
example:

4*0 2 4 6 8
1 16 256 4096 65536
The multiplying factor is now 16.

The first pattern above can be thought of as being 
obtained from the second by squeezing the odd integers 
between the even integers. Hence if the multiplying factor 
for the pattern 4 * 0 1 2 3 4 5 6 7 8 9  is 4, the factor for 
the pattern 4*0 2 4 6 8 must be 4x4, which agrees with the 
earlier observation.

Similarly the pattern 4*0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5 
can be thought of as being obtained by squeezing the entries 
.5, 1.5, 2.5, 3.5, and 4.5 between the integers 1, 2, 3, 4,
and 5. In this case the multiplying factor must be 2, since 
the product of two factors (that is, 2x2) must be equal to 
the factor 4 which obtains for the pattern for the integers. 
Therefore:

4*0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5 
1 2 4 8 16 32 64 128 256 512 1024

Similarly:

1 9
9*0 1 2 3 4 5  
81 729 6561 59049

1 3
9*0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5 
9 27 81 243 729 2187 6561 19683 59049

1 25
25*0 1 2 3 4 5  
625 15625 390625 9765625

1 5
25*0 .5 1 1.5 2 2.5 3 3.5 4 4.5 
25 125 625 3125 15625 78125 390625 1953125
Each of the left arguments used above is a perfect 

square/ that is, a number which is equal to some integer 
multiplied by itself. Thus 4 equals 2x2 and 9 equals 3x3 
and 25 equals 5x5. Because of this property, the
multiplying factor in each of the "squeezed" patterns is an 
integer. Since 3 is not a perfect square, a left argument 
of 3 gives a pattern in which the fractional powers are not 
integers:

3*0 .5 1 1.5 2 2.5 3
1.000 1.732 3.000 5.196 9.000 15.588 27.000

Nevertheless, the pattern is maintained, the 
multiplying factor is 1.732 (correct to 3 places) and 
1.732x1.732 is (approximately) equal to 3.
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From this it appears that 3*.5 is a number which 
multiplied by itself gives 3; it is called the square root 
of 3. Similarly, 2*.5 is the square root of 2, and 
(2*.5)x(2*.5) must equal 2.

The square root of a number can be obtained by 
"guessing and testing" much like the method described for 
division at the beginning of Chapter 5. For example, to 
obtain the square root of 2 we might try 1 (which is too 
small because lxi is less then 2), and 2 (which is too large 
since 2x2 is greater than 2), and then 1.5. Since l.5x1 . 5  
is 2.25f this is also too large. The next trial might be
1.4 (which is slightly too small), and the next might be 
1.42. Better methods are developed in later chapters.

We
arguments

can now produce a 
of the form (\N)+2

table of powers using

Jt-l 2 3 4 5 6 7 8 9
J 0 . 5 1 1 . 5 2 2 . 5
1° .

1.000 1.000 1. 000 1.000 1.000 1.000
1.000 1.414 2.000 2.828 4.000 5.657
1.000 1.732 3. 000 5 . 196 9.000 15.588
1.000 2.000 4.000 8.000 16.000 32.000
1.000 2.236 5 . 000 11.180 25.000 55.902
1.000 2.449 6.000 14.697 36.000 88.182
1.000 2.646 7.000 18.520 49.000 129.642
1. 000 2. 828 8.000 22.627 64.000 181.019
1.000 3.000 9.000 27.000 81.000 243.000
The same reasoning can be applied to right arguments 

of the form (\N)+K for any value of Kz
(i6)t 3

0.333 0.667 1 1.333 1.667 2
1°

1. 000
.*(i6)*3 
1. 000 1 . 0 0 0 1 . 0 0 0 1. 000 1 . 0 0 0

1.260 1. 587 2 . 0 0 0 2.520 3. 175 4 . 0 0 0
1.442 2.080 3 . 0 0 0 4.327 6 . 240 9 . 0 0 0
1.587 2.520 4 . 0 0 0 6.350 10.079 16.0001.710 2.924 5 . 0 0 0 8.550 14.620 25.000
1.817 3.302 6 . 0 0 0 10.903 19.812 36.000
1.913 3.659 7 . 0 0 0 13.391 25.615 49.000
2.000 4.000 8 . 0 0 0 16.000 32.000 64.000
2.080 4. 327 9 . 0 0 0 18.721 38.941 81.000
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( x 6 )t4
25 0.5 0.75 1 1. 25 1. 5

Jo , *(i6 )H
1 . 000 1 . 0 0 0 1 . 000 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0
1.189 1.414 1.682 2 . 000 2.378 2 . 828
1.316 1.732 2.280 3. 000 3.948 5.196
1.414 2 . 000 2 . 828 4.000 5.657 8 . 0 0 0
1.495 2.236 3. 344 5 . 000 7.477 11.180
1.565 2.449 3.834 6 . 0 0 0 9.391 14.697
1.627 2.646 4.304 7 . 000 11.386 18.520
1.682 2.828 4.757 8 . 0 0 0 13.454 22.627
1. 732 3. 000 5. 196 9 . 0 0 0 15.588 27.000

( i 6 )̂ 5
2 0.4 0 . 6 0 .8 1 1 .2

Jo . *( 1 6 )t5
1 . 000 1 . 0 0 0 1 . 000 1 . 0 0 0 1 . 0 0 0 1 . 000
1.149 1. 320 1.516 1. 741 2 . 0 0 0 2.297
1. 246 1.552 1.933 2.408 3.000 3.737
1.320 1.741 2 . 297 3.031 4.000 5.278
1. 380 1.904 2.627 3.624 5.000 6.899
1.431 2.048 2. 930 4.193 6 . 0 0 0 8 . 586
1.476 2.178 3.214 4.743 7.000 10.330
1.516 2.297 3.482 5.278 8 . 0 0 0 12.126
1.552 2.408 3. 737 5.800 9.000 13.967

The foregoing results have all involved applying the 
power function to non-integer right arguments and 
non-negative left arguments. In general it is not possible 
to apply it to non-integer right arguments together with 
negative left arguments. For example, to evaluate 4*.5 it 
would be necessary to determine a result R such that R*R 
equals ""4. It is, however, impossible to find such a 
number, since the product of any number with itself is 
non-negative. IU9-10



7
The Residue Function 
and Factoring

7.1 THE RESIDUE FUNCTION
Consider the following expressions:
3x0 1 2 3 4 5 6

0 3 6 9 12 15 18
1+3x0 1 2 3 4 5 6

1 4 7 10 13 16 19
2+3x0 1 2 3 4 5 6

2 5 8 11 14 17 20
From the first expression, it is clear that the 

numbers 0, 3, 6, 9, 12, 15 and 18 are each the product of 3
and some integer; they are therefore said to be integer 
multiples (or simply multiples) of 3. A number which is an 
integer multiple of 3 is also said to be divisible by 3.

The numbers 1, 4, 7, 10, 13, 16, and 19 are not 
divisible by 3; when divided by 3 they each yield an integer 
quotient and a remainder of 1. Similarly the numbers 2, 5, 
8, 11, 14, 17, and 20 each yield a remainder of 2 when
divided by 3. The remainder when dividing an integer by 3 
must be either 2 or 1 or 0. If the remainder is 0 the 
number is, of course, divisible by 3.

The remainder obtained on dividing an integer B by an 
integer A is a function of A and B. This function is called 
the remainder or residue and is denoted by a vertical line 
as follows: A\B. For example:

3 | 6
0

3 | 7
1

3 | 0 1 2 3 4 5 6 7 8 9 1 0
0 1 2 0 1 2 0 1 2 0 1

5 | 0 1 2 3 4 5 6 7 8 9  10 
0 1 2 3 4 0 1 2 3 4 0

A function table for residue is shown in Figure 7.1. 
From this table it should be clear that the results of the 
expression A |B must be one of the integers 0, 1, 2, 3, etc.,
up to A-l. That is, the results belong to the vector 
” l + ii4.
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1 1 1 1 1
1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Left Domain:i8
2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 Right Domain:!14
3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 Body:(!8)o4 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 Symbol:|
5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
6 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2
7 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0
8 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

Table of Residues

Figure 7.1 gl-2

7.2 NEGATIVE RIGHT ARGUMENTS

The following examples show how the residue function 
applies to negative right arguments:

S + ~ 6  + i l l  
5

5 4 3 2 1 0 1 2 3 4 5
3 x5

15 12 9 6 3 0 3 6 9 12 15
3 | 3x5

0 0 0 0 0 0 0 0 0 0 0  
1+ 3 XS _

14 11 "8 "5 "2 1 4 7 10 13 16
3 |1+3x5

1 1 1 1 1 1 1 1 1 1 1
2+3x5_

13 10 7 ”4 ” 1 2 5 8 11 14 17
3 |2+3x5

2 2 2 2 2 2 2 2 2 2 2

It should be clear from these examples that the 3-residue of 
B (that i s f 3 |5) is obtained by adding or subtracting some 
integer multiple of 3 so that the result is the smallest 
non-negative number that can be so obtained. In general, 
the result A\B is the smallest non-negative integer that can 
be obtained by adding to, or subtracting from, B some 
integer multiple of A . EE3-4

7.3 DIVISIBILITY

The integer B is divisible by the integer A only if 
the 4-residue of B is zero, that is, only if (4|5) = 0. Since 
the expression (i8)°.|0,il4 produced a table of residues
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(Table 7.1), the expression 0 = (x8 ) ° . |0,1 14 will produce the 
body of the corresponding divisibility table:

0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
3 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
4 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
5 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
6 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
7 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
8 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

It is also interesting to arrange the integers 0 to 99 
in a 10 by 10 table and then observe the patterns produced 
by first taking residues and then determining divisibility. 
For example:

M-<- ( 10 x 0 ,i9)° . + 0 9i 9
M

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99

5 | M 0:= 5 | M
1 2 3 4 0 1 2 3 4 1 0 0 0 0 1 0 0 0 0
1 2 3 4 0 1 2 3 4 1 0 0 0 0 1 0 0 0 0
1 2 3 4 0 1 2 3 4 1 0 0 0 0 1 0 0 0 0
1 2 3 4 0 1 2 3 4 1 0 0 0 0 1 0 0 0 0
1 2 3 4 0 1 2 3 4 1 0 0 0 0 1 0 0 0 0
1 2 3 4 0 1 2 3 4 1 0 0 0 0 1 0 0 0 0
1 2 3 4 0 1 2 3 4 1 0 0 0 0 1 0 0 0 0
1 2 3 4 0 1 2 3 4 1 0 0 0 0 1 0 0 0 0
1 2 3 4 0 1 2 3 4 1 0 0 0 0 1 0 0 0 0
1 2 3 4 0 1 2 3 4 1 0 0 0 0 1 0 0 0 0

3 | M 0 = 3 | M

5-120

1 0 
0 0 
0 1 
1 0 
0 0 
0 1 
1 0

0 0 
0 1 
1 0
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7.4 FACTORS

If B is divisible by A, then A is said to be a factor 
of B. For example, 3 is a factor of 12, and 5 is a factor
of 15, and so on as shown below:

4
1 2 t 3

0
3 | 12

3
15 t 5

0
5 | 15

3

CO•I*CD

0
3 | 9

6
24t4

0
4 | 24

3
2 4t 8

0
8 | 24

From these examples it is clear that the factors of 
any number B occur in pairs such that the product of the 
pair is equal to B. Thus, if 3 is a factor of 12 then 12v3 
(that is, 4) is also a factor and 3x4 is equal to 12. In 
general, if A is a factor of B, then B±A is also a factor 
and the product of the pair of factors A and B*A (that is, 
(BtA)*A) is equal to B.

All possible factors of a number B can be found by 
simply trying to divide it by each of the integers from 1 up 
to and including B. For example, the number 24 has the 
following 8 factors:

1 2  3 4 6 12 24

The factor pairs of 24 can be obtained by simply dividing 24 
by the vector of its factors as follows:

24t1 2 3 4 6 8 12 24 
24 12 8 6 4 3 2 1
Thus 1 and 24 are a pair; 2 and 12 are a pair, and so on.

The residue function can be used to determine which of 
the integers iB are factors of B . For example, if B is 6, 
then:

1 2 3 4 5 6 | 6  
0 0 0 2 1 0

0 = 1 2 3 4 5 6 | 6
1 1 1 0  0 1

The positions of the l's in the last vector indicate which 
of the integers 1 2 3 4 5 6  are factors of 6. For example,
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since the third element is l, then 3 is a factor, and since 
the fourth element is 0, then 4 is not a factor. The vector 
1 1 1 0 0 1  can be used to pick out the actual factors 
1 2  3 6 by means of the compression function discussed in 

13-161H the following section.

7.5 COMPRESSION
The following examples show the behavior of the 

compression function:
1 0 1 0  1/1 2 3 4 5

1 3  5
1 0 1 0  1/2 3 5 7 11

2 5 11
( i 6 ) | 6

0 0 0 2 1 0
0 = ( 1 6 ) | 6 

1 1 1 0  0 1
(0 = ( 1 6 ) | 6)/i6

1 2  3 6
( 0 = ( 1 2 4 ) | 2 4 )/ 1 2 4 

1 2 3 4 6 8 12 24

The left argument of compression must be a vector of l's and 
o's and forms a "sieve” which picks up the element of the 

17-181] right argument wherever a 1 occurs in the left argument.

7.6 PRIME NUMBERS
The following expressions 

of the integers from 1 to 8:

( 0 = (1 1) I 1) /1 1
1 1 5

( 0 = ( 1 2 ) | 2 ) / 1 2
12  1 2

(0=(1 3)|3)/i3
1 3  1 7

( 0 = ( 1 4 ) | 4 ) / 1 4
1 2  4 1 2

yield all factors for each 

(0 = (1 5) I 5)/1 5

( 0 = ( 1 6 ) | 6 ) / 1 6
3

( 0 = ( 1 7) | 7)/x 7

( 0 = ( 1 8 ) | 8 )/ 1 8
4 8

Any number which has exactly two distinct factors is 
called a prime number. From the above examples it is clear 
that 2, 3, 5, and 7 are primes, but 1, 4, 6, and 8 are not. 
Thus a prime has no factors other than itself and 1.

If K is a vector of O's and l's, then \/K gives a 
count of the number of l's in K. For example:
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+ /1 1 0 1 0 0 0 1  
4

0 = ( i 8 ) |8 
1 1 0 1 0 0 0 1  

+ /0 = (i8 ) | 8
4

The conditions for a prime number stated above in words can 
therefore be stated algebraically as followsi B is a prime 
number if the expression 2=+/0=(iB)|B has the value 1. For 
example:

2=+/0=(i1)|1
0

2 = + /0 = ( i2 ) | 2
1

2=+/0 = (i3 ) | 3
1

2= + /0 = (i4) | 4
0

2=+/0 = (i5 ) | 5
1

2=+/0 = (i6 ) | 6
0

2 = 0 + / = ( i7 ) | 7
1

2 = + /0 = (i8 ) | 8
0

This same test can be used to obtain all of the primes 
up to a certain value by applying it to a divisibility 
table. Consider, for example, the following tables:
1 1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 1 0 1 0 1 0 1 0 1 0
3 1 2 0 1 2 0 1 2 0 1 2 0
4 1 2 3 0 1 2 3 0 1 2 3 0
5 1 2 3 4 0 1 2 3 4 0 1 2
6 1 2 3 4 5 0 1 2 3 4 5 0
7 1 2 3 4 5 6 0 1 2 3 4 5
8 1 2 3 4 5 6 7 0 1 2 3 4
9 1 2 3 4 5 6 7 8 0 1 2 3
10 1 2 3 4 5 6 7 8 9 0 1 2
11 1 2 3 4 5 6 7 8 9 10 0 112 1 2 3 4 5 6 7 8 9 10 11 0
D 1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 0 1 0 1 0 1 0 1 0 1
3 0 0 1 0 0 1 0 0 1 0 0 14 0 0 0 1 0 0 0 1 0 0 0 1
5 0 0 0 0 1 0 0 0 0 1 0 0
6 0 0 0 0 0 1 0 0 0 0 0 17 0 0 0 0 0 0 1 0 0 0 0 0
8 0 0 0 0 0 0 0 1 0 0 0 0
9 0 0 0 0 0 0 0 0 1 0 0 0
10 0 0 0 0 0 0 0 0 0 1 0 011 0 0 0 0 0 0 0 0 0 0 1 0
12 0 0 0 0 0 0 0 0 0 0 0 1

Left D:i12 
Right D:i12

Body:(i1 2 )©.|il2 
Symbol:I

Left D:i12 
Right D:i12

Body: 0 = ( 1 12 ) ° . | i12 
Symbol:D
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The last table shows divisibility. For example, the 
1 1s in the 6th column show the position of the 4 factors of 
6. Therefore the sum of the 6th column tells how many 
factors 6 has, and similarily for each column. The sum of 
the columns is obtained by summing the rows of the transpose 
of the table. Thus:

+/$0=(i12)o.|i12
1 2 2 3 2 4 2 4 3 4 2 6

The last result above gives the number of factors for 
each of the numbers 1 to 12. Therefore the expression 
2=+/§o=(i12)°.|il2 determines which numbers are primes:

2=+/$0=( x 12 )o. | i 12 
0 1 1 0 1 0 1 0 0 0 1 0
This vector of 0 * s and 11s can be used to compress the 
vector i12 to finally pick out all of the primes up to 12:

(2 = +/$0 = (i12 )o. I 112 )/i12
19-24i 2 3 5 7 11



8
Monadic

Functions

8.1 INTRODUCTION

Each of the functions discussed thus far have applied 
to two quantities. Thus in the expressions 3x4 and 3+4 and 
3 T 4, each of the functions x, +, and [ apply to the two 
quantities 3 and 4. Recall that these quantities are called 
the arguments of the function; the one to the left of the 
function is called the first or left argument, and the one 
to the right is called the second or right argument.

A function having two arguments is said to be dyadic, 
the prefix dy meaning two. There are also functions which 
apply to one argument; they are called monadic functions. 
The following examples show a monadic function which is
called the factorial function:

11 l 5
1 120

l 2 l 6
2 720

! 3 : 7
6 5040

J 4 : 8
24 40320

From the examples it should be clear that factorial 3 
is the product of the factors 1 2 3 ,  factorial 4 is the 
product of the factors 1 2 3 4 ,  and so on. The examples 
also illustrate a point which applies to all monadic 
functions: the symbol for the function (in this case, !) 
precedes its single argument.

The argument of a monadic function may (like the 
arguments of a dyadic function) be a vector. For example:

! 1 2 3 4 5 6 7 8  
1 2 6 24 120 720 5040 40320 E l - 2
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8.2 NEGATION
Negation is a monadic function

symbol "• For example:
-3 X+-3

"3
-5 3

-X

"5 S+2 3
-"5 -S

5 “2 3 5
--5 --S

5
-2 3 5.8

2 3 5

"2 ”3 5.8
From these examples it should be

the

of a number B is equivalent to subtracting B from zero; that 
is, -B is equivalent to 0-B. In other words, negation 
changes the sign of its argument.

It is also apparent from the examples that the symbol 
used for the monadic function of negation is the same as 
that already used for the dyadic function of subtraction. 
This might be expected to cause confusion, but it does not. 
For example:

Thus the symbol - denotes subtraction if it is preceded by 
an argument, but denotes negation if it is preceded by a 
function.

This double use of symbols (once for a dyadic function 
and once for a monadic function) will be applied to many 
other symbols as well as the -. For example, +, x, ^9 r, L, 
and |, already used for dyadic functions, will be used to 

300 denote monadic functions as well.

8.3 RECIPROCAL
The reciprocal function is a monadic function denoted 

by  ̂ and defined as follows: + B is equal to 1^5. For 
example:

t2
0. 5
0.25
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£+- \ 1 0
5

1 2 3 4 5 6 7 8 9  10 
R+*S 
R

1 0.5 0.33333 0.25 0.2 0.16667 0.14286 0.125 0.11111 0 1 
1 1 1 1 1 1 1 1 1 1

8.4 MAGNITUDE

The numbers 5 and 5 are said to have the same size or 
magnitude, namely 5. In other words, the magnitude of a 
number is a function (denoted by |) which ignores the sign 
of the number. For example:

I 5 
5

I "5
5

£+-“6+1 11 
S

5 4 3 2 1 0 1 2 3 4 5
I S

5 4 3 2 1 0 1 2 3 4 5  
T<- 6 3 2 “5 4
TtT

1 1 1 1 1  
T+ | T

8.5 FLOOR AND CEILING

The floor function is den< 
integer just below or equal b 
function is denoted by [ and 
above or equal to the argument.

L 3
3 3

L 3. 14
3 4

L“3.14
4 "3

L ~3
3 3

L~l. 5 “l ~. 5 0.5 11. 5
2 1 1 0 0 1 1  “l

>ted by L and yields the next 
> the argument. The ceiling 
yields the next integer just 
For example:

T3

T3. 14

r 3.14

r “ 3

r 1.5 1 0 . 5 1 1 . 5
1 0  1 1 2
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The floor and ceiling functions are easily visualized 
by drawing the integers as the floors (and ceilings) in a 
building as follows:

3 --- T 2.6
-2.6

2   L 2 . 6

1 n  l i

1 n  l  i

2 —  r 2 . 4

“ “2.4
“3  L 2.4
The following examples illustrate how the monadic 

function floor is related to the dyadic function residue:

3.'4 
3

71 3

17*5 
L 17*5
( 17-5| 17 )*5

8.6 COMPLEMENT
The complement function is denoted by - and applies 

only to logical arguments (that is, 0 and 1). When applied 
to 0 it produces 1, and when applied to 1 it produces 0. 
For example:

0
1
0 1 
0 0 
1 1

-1
-0
- 1 0 1 0 1 1  

0 1 0  0 
0 = 3| i 12

1 0 0 1 0 0 1 0 0 1  
- 0 = 3 | i 1 2

0 1 1 0 1 1 0 1 1 0  
(-0 = 3| i12)/i 12 
5 7 8 1 0  1 11 2  4
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(0*3| i12 )/i12 
1 2 4 5 7 8 10 11

The symbol ~ is called tilde @ 8-10

8.7 RAVEL
B^yel is a monadic function (denoted by a comma) which 

ravels a table to produce a vector which contains the 
elements of the table in order by rows. For example:

T+2 3 5°. xi 6 
T

2 4 6 8 10 12
3 6 9 12 15 18
5 10 LD 20 25 30
2 4 6 8 10 12 3 6 9 12 15 18 5 10 15 20 25 30

The ravel function applied to any vector simply yields 
the vector unchanged. The result of ravel is always a 
vector, therefore when applied to a scalar it produces a 
one-element vector whose element is equal to the scalar. 
Although a scalar and a one-element vector are very similar, 
they possess certain essential differences. In particular, 
the vector can be indexed but the scalar cannot. For 
example:

5^3 
V+9 3 
V I 11

3
Sill 

RANK ERROR 
Sill
A ill

8.8 SIZE
The number of elements in a vector V is called the 

size of the vector. Size is therefore a monadic function 
and is denoted by p. For example:

V+2 3 5 7 11
5

X+\ 7 
P*

7
p*[2 3 5]

3
Pl[i2]

2
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When applied to a table, the function p yields a 
two-element vector giving the number of rows in the table 
followed by the number of columns. For example:

T+2 3 5 0 . x i 7 
P T

3 7
P

7 3
Tne result of the expression pA is a vector with as 

many elements as there are indices to A. For example, the 
table T takes two indices (as in the expression T[3;4]) and 
pT has two elements as shown in the preceding paragraph. 
Since a scalar takes no indices, the result of applying the 
size function p to a scalar is an empty vector having no 
elements.

The expression p9A yields a one-element vector whose 
element is equal to the total number of elements in A, 
regardless of whether A is a scalar, a vector, or a table. 
For example:

P T
3 7

P ,T
21

PV
5

P,V
5

S+- 2
PS

P > s
12B 1
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Function

Definition

9.1 INTRODUCTION
The expression 0 = 3 U  was shown (in Chapter l) to 

determine whether the argument X was divisible by 3. For 
example:

0=3 | 9
1

0=3|10
0
The expression 0=3\X is therefore a monadic function of X in 
the sense that for any particular value assigned to I, the 
expression yields a particular corresponding value.

Unlike the functions floor, ceiling, and magnitude 
(which have the symbols L, T 9 and |), the^ function 
determined by the expression 0=3\X has no special single 
symbol to denote it. It would, of course, be impractical to 
assign a special symbol to every possible such expression. 
However, it is important to be able to assign a name to any 
such expression which happens to be of interest at the 
moment, and then be able to use that name for the function 
just as L ,  T, and | are used for the floor, ceiling, and 
magnitude functions.

The name D T  is assigned to the function determined by 
the expression 0=3\X in the following manner:

1 Z + D T  X 
Z«-0 = 3 U  V

The above is called definition of the function DT.  Once the 
function D T  has been so defined, it can be used like any 
other monadic function as follows:

1
o
0 0

DT  9 

D T  10 

DT  i 10
1 0 0 1 0 0 1 0
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The symbol V which begins and ends a function 
definition is called del.

Any number of such functions may be defined, but they 
must, of course, be given distinct names. These function 
names, like the names introduced for values in Chapter 1, 
must begin with a letter but may include both letters and 
digits. For example:

VZ+-ZM X 
Z + Q = i*\X V 
DH- i 10

0 0 0 1 0 0 0 1 0 0  
VZ<~D5 X 
Z +0=5|X V 
D 5 i 10

0 0 0 0 1 0 0 0 0 1  
VZ+Q X
Z + (X-3)x(Z-5) V
Q 6 

3
Q  7
Q i 7

8 3 0 1 0 3 8
The rules for determining the meaning of a function 

definition are very simple: when the function is applied to 
an argument, that argument is substituted for each 
occurrence of the name X in the second line of the function 
definition, and the result thereby assigned to the name Z is 
the result of the function. For example, to evaluate Q 7, 
the 7 is substituted for X to yield

Z«-( 7 - 3 ) x ( 7-5)
This is evaluated to yield the result 8. Hence:

1-40 8
Q  7

Functions such as floor and ceiling which have been 
assigned special fixed symbols will now be called primitive 
functions in order to distinguish them from the new class of 
defined functions just introduced. A defined function can 
be used within expressions, just as primitives are. For 
example:

1
DT 12
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DT UrxQ 6
1

Q Q 6
0 @5-7

9.2 DEFINITION OF DYADIC FUNCTIONS
The expression o = J|Y determines whether the argument X 

is a factor of the argument Y • For example:

1
The expression o=J|Y is therefore a dyadic function of the 
arguments X and Y in the sense that for any particular 
values of X and Y the expression yields a particular 
corresponding value.

The name F is assigned to the dyadic function 
determined by the expression o=X\Y in the following manner:

S/Z<-X F Y 
Z+Q=X\Y V

The function F can now be applied to pairs of arguments as 
illustrated below:

5 F 9
0

7 F 21
1

5+7 F 21
6

(5x7) F (5x21)1 @8-13

9.3 A FUNCTION TO GENERATE PRIMES
In Chapter 7 it was shown that the expression 
(2=+/$0=(iN)o.|\N)/\N

would produce a vector of all the primes up to the integer 
N. Therefore a function PR can be defined to generate 
primes as follows:

VZ^Pi? X
Z<-( 2 = + /§0=( i X) ° . | \X) /iXV
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The following examples show the use of the function
PP:

PR 12
2 3 5 7 11

+ /PP 12
28

Pi? 5 5
14® 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53

9.4 TEMPERATURE SCALE CONVERSION FUNCTION

The Centigrade scale and the Fahrenheit scale are two 
different scales for measuring temperature. For any given 
temperature reading in Centigrade there is therefore a 
corresponding value in Fahrenheit; in other words, the 
Fahrenheit value is a function of the Centigrade value. 
This function will be expressed as a defined function called 
CTOF (for Centigrade TO Fahrenheit).

The Centigrade scale has loo degrees between the 
freezing and boiling points of water, whereas the Fahrenheit 
scale has 180 degrees between these same points. Therefore 
any^ Centigrade reading X must be multiplied by 180 and 
divided by 10 0: that is, 180><Zt100. Moreover, o degrees 
Centigrade (the freezing point of water) corresponds to 32 
degrees Fahrenheit and so it is necessary to add 32 to the 
foregoing expression, giving 32+18Oxliio0. The conversion 
function CTOF may therefore be defined and used as follows:

V Z<-CT0F X
Z«-32+180xJ-M00 V
CTOF 0 

32
CTOF 100

212
CTOF ~4 0 “2 0 0 20 40 60 80 100 

40 4 32 68 104 140 176 212

>The function CTOF determines the Fahrenheit value as a 
function of the Centigrade value. It is, of course, also 
possible to define a function FTOC which determines the 
Centigrade value as a function of the Fahrenheit value:

V Z+-FT0C X
Z*- 100x( J-32 ) +180 V
FTOC “40 “4 32 68 104 140 176 212 

40 20 0 20 40 60 80 100
CTOF FTOC ”40 “4 32 68 104 140 176 212 

40 4 32 68 104 140 176 212
FTOC CTOF ”40 ”20 0 20 40 60 80 100 

40 20 0 20 40 60 80 100
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The last two lines above illustrate the fact that the 
function FTOC undoes the work of CTOF, and the preceding two 
lines illustrate that CTOF undoes the work of FTOC. The 
functions FTOC and CTOF are therefore inverse functions. 115

9.5 FUNCTIONS ON RATIONALS
If X is a vector of two integer elements and I is a 

vector of two integer elements, then */X is a rational and 
t /Y is a rational. Moreover, as shown in Section 5.7, the 
product (*/X)x(*/y) is equal to t/(XxX). Therefore, the 
following function multiplies two rationals to produce the 
two element vector which represents their products

VZ+-X P Y
Z*-X*Y V

For example:

21 20

1.05
1.05

3 4 P 7 5 
t/3 4 P 7 5 
(t/3 4)x(*/7 5)

Similarly, the following function will add rationals:
V Z*-X A Y
Z«-( +/*x<)>Y) ,X[2]xY[2] V

For example:
3 4 A 7 5

43 20
t/3 4 4 7 5

2 . 15
(t/ 3 4 ) + ( -5- / 7 5 )

2.15 116-18

9.6 TRACING FUNCTION EXECUTION
A function can be defined by a single expression (as 

in the examples thus far), or it can be defined by a 
sequence of expressions. For example:

V Z+R X
[1] T l«-4xX
[2] T 2*- 3 xX* 2
[3] T 3«-2xX*3
[4] Z+-T1 + T2 + T 3 V
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R 2 
36

R 2 3 4 
36 93 192
The statements are executed in the order in which they 
appear on the page, and each is identified by its number 
appearing in brackets on the left.

To understand the behavior of a function it is often 
helpful to examine some of the intermediate results produced 
by each of the individual statements in its definition. To 
indicate that each intermediate result produced in executing 
the function R is to be displayed, we would write

TkR+l 2 3 4
Thereafter, the execution of R would be accompanied by a 
display of the intermediate results as follows:

W+R 2
if[l] 8
if [ 2 ] 12
if [ 3 ] 16
if[4] 36

W
36

W<-R ■Zf00CM

if[i] 8 12 16
if [ 2 ] 12 27 48
if [ 3 ] 16 54 128
if U ] 36 93 192

W
36 93 192

Such a display of the steps of execution of a function 
is called a trace of the function. The name TtR used in 
initiating the trace of the function R denotes the trace 
control vector for i?. In the preceding example, TtR was set 
to trace every line of R t but it could be set to trace only 
some of them. For example:

T t R +-1 3
W+R 2 3 4 

i?[l] 8 12 16
i?[3] 16 54 128
Moreover, if TAi? is set to 0, no tracing is performed:

TtR+Q 
W<-R 2 3 4 
W

19@ 36 93 192



10
The Analysis 
of Functions

10.1 INTRODUCTION
The problem of converting temperatures from the

Centigrade to the Fahrenheit scale, which was handled by the 
function CTOF of Chapter 9, is often handled by simply 
providing a table covering the values of interest. For 
example, Table 10.1 would suffice for a range of
temperatures just above the freezing point of water:

c F
0 32
1 33 . 8
2 35 . 6
3 j-CO

4 39 . 2
5 41
6 42. 8
7 44.6
8 46.4
9 CMCD

10 50
A Table Representation of the Function 
C TO F for Centigrade Values Near Zero 

Table 10.1
It is often more convenient to use such a table than 

to evaluate the expression 32+18OxC*ioo (used in the 
definition of the function CTOF) for each conversion. 
However, such a tabular representation of a function also 
has its disadvantages; it provides only a limited set of 
values and could not, for example, be used directly to find 
the Fahrenheit equivalent of 25 C (which lies outside of the 
tabled values) or of 5.64 degrees Centigrade (which lies 
between two of the tabled values). For this reason it is 
often desirable to determine from such a table the algebraic 
expression which would produce the same function as that 
represented by the table.

To appreciate the problem of deriving an algebraic 
expression for a function represented only by a table, 
suppose that the expression 32 + l80xC,*ioo is not known and 
that the only information known about the function is that 
contained in Table 10.1. One might begin by observing that
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each Fahrenheit value is at least 32 more than the 
corresponding Centigrade value, and therefore guess that the 
desired function is approximately 32+ C. The next step is to 
append to Table 10.1 a column of values for the function 
32+C so that they can be compared with the tabled values of 
F:

c F 32 +C
0 32 32
1 33 . 8 33
2 35.6 34
3 37.4 35
4 39. 2 36
5 41 37
6 4 2.8 38
7 CD3- 39
8 46.4 40
9 48. 2 41

10 50 42
Although the first entries in the columns F and 32+C 

agree (both are 32), the second entry falls short by 0.8, 
the third entry by 1.6, etc. It therefore appears that one 
should add 0.8xC to the expression 32 +C, yielding 3 2 +C'+.8x£ 
or, more simply, 32+1.8xc. If a column of values for 
32 + 1. 8x<7 is appended to the foregoing table and compared 
with the column F it will be seen that this is the required 
expression.

The process of determining an expression for a 
function from a table of the function will be referred to as 
analyzing the table or, alternatively, as analyzing the 
function represented by the table. The analysis of tables 
is not only an interesting puzzle, it is also a problem of 
the greatest importance, since it underlies every scientific 
discipline. The reason is that in every area of science and 
technology, one attempts to determine the functional 
relationships between various quantities of interest. Thus 
one wishes to know how the acceleration of an automobile 
depends on the power of the engine, how the gasoline 
consumption depends on the speed, how the length of life of 
the brakes depends on the area of the brake-shoes, how the 
electric current supplied to the headlamps depends on the 
battery voltage, how the weight limit of a suspension bridge 
depends on the size of the cable used, and so on. Moreover, 
it is important to be able to express these relations 
algebraically so that it becomes easy to calculate any new 
values needed.

However, the relationships between two quantities are 
normally determined by experiments in which the 
corresponding values of the quantities of interest are 
measured. Such experiments can only yield a table of
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values; they do not yield an algebraic expression for the 
function. The algebraic function must be determined by 
analysis of the table.

In practice one might do a few experiments, make a 
small table, derive from it an algebraic expression for the 
functional relationship, and then do a few more experiments 
to test (and perhaps revise) the derived expression. In a 
book this process cannot be simulated completely since we 
can only give fixed tables resulting from certain
experiments, and cannot allow the reader to choose the 
values to be included in these tables. However, if a
computer is available, one person (the teacher) can enter 
the definition of any function so that another person (the 
student) can "experiment" with the function at will by 
simply applying it to any desired arguments. If the student 
is not permitted to see the original definition of the 
function, then he can be given the problem of experimenting 
with the function, determining a table, and deriving from it 
his own definition of (i.e., algebraic expression for) the 
function.

The remainder of this chapter will be devoted to the 
analysis of tables. Three methods are treated: maps,
graphs, and difference tables. Difference tables provide 
the most powerful method of the three, but maps and graphs 
are treated first because they are easier to comprehend and 
because maps have already been used for other purposes in 
earlier chapters. A fourth and more powerful method (called 
curve-fitting) is treated in Chapter 19. 01

10.2 MAPS
If one first makes a map of a table, then the map can 

be used as a guide in the analysis of the table. In order 
to see what guidance the map can provide, it is useful to 
recall the maps of two simple functions.

If Z«-0,i4, then the map of the function 4+X against X 
appears as follows:

0 1 2

0 1 2

3 5 6 7 8

From this it is clear that the addition of a constant (in 
this case 4) appears in the map as a uniform translation, 
that is, each point is moved by the same amount, and the 
mapping arrows all have the same slope.
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If, as before, J^0,i4, then the map of the function 
3><x appears as follows:

o

0

1 2  3 4  5 6  7 8  9 10 11 12

12

From this it is clear that multiplication by a constant (in 
this case 3) appears in the map as a uniform spreading, that 
is, the distance between the successive arrowheads (in this 
case 3) is the constant of multiplication.

Consider now the mapping of a function which involves 
both addition and multiplication, say 4+3*X:

The effects of uniform translation and uniform spreading are 
now superimposed, but it is still possible to recognize the 
individual effects of each. These observations will now be 
applied to the analysis of the function shown in Figure
10. 2.

X Y

2 1
3 3
4 5
5 7
6 9
7 11

Table and Map of a Function
Figure 10.2

It is usually best 
multiplication (spreading) 
arrowheads are separated 
multiplication factor is 2. 
function 2 xj as follows:

to try to account for the 
first. In this case adjacent 
by 2 units and so the 
Therefore we make a map of the

1
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The map of 2*X is now combined with the map of the original 
table as follows:

In this map, the original table is represented by normal 
lines as usual, and the approximating function 2xj is 
represented by broken lines. The scored lines lead from the 
results of 2xX to the results of the tabled function and
therefore represent the function that must be applied to the
function 2xj to yield the tabled function. Since the scored 
lines all have the same slope, this function must be a 
translation (by ~3), that is, the addition of “3 . The 
required function is therefore ~3 +2 xj, as may be verified by 
computing the values for the case X+2 3 4 5 6 7 and
comparing them with the second column of Figure 10.2.

The functions analyzed by maps thus far have all been 
of the form A+B*X where A and B are constants. In the 
analysis of more complex functions (such as 
3+(5xx)+(2xx*2)), maps are of little help and one of the 
other methods should be used. 12

10.3 GRAPHS

Each row of a function table such as Table 10.1 
consists of a pair of numbers representing an argument and a 
corresponding function value. Any other way of showing the 
pairing of the numbers in each of the rows is obviously a 
possible way of representing the function. For example, in 
a map, each pairing is shown by an arrow from the argument 
to the corresponding function value.

Any single number can be represented by marking off 
the integers at equal intervals along a line and then 
placing a cross on the line to show the desired value. For 
example 4 might by represented as follows:

0 1 2

x

3 4 5 6
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A whole set of numbers could be represented by a set 
of crosses on such a line as follows:

------------x - x - x - x ----------- X ----------------------------------

I I I I I I I0 1 2  3 4 5 6
This line represents the set of arguments of the function 
defined by Table 10.3.

X Y
1.5 5.5
2.0 4.5
2.5 3.5
3.0 2.5
4.0 0.5

Table of a Function
Table 10.3

If the set of function values Y of Table 10.3 are now 
represented similarly along a vertical line rising from the 
0-point of the first line, the picture appears as follows:

6 - |
I
X

I
5 - I

I
X

I
4 - |

I
X

I
3 - I

I
X

I
2 - I

1 - I
I
X

I
0  -  | -------------------X - X - X - X ------------X ---------------------------------

I I I I I I I
0 1 2  3 4 5 6
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If vertical lines are drawn through the crosses on the 
horizontal line, and if horizontal lines are drawn through 
the crosses on the vertical line, the picture appears as 
follows:

6 -

4 -

x --------+ - + - + - + -----+ ------

x --------+ -  + - + - + -----+ -------

X --------+ - + - + - + -----+ -------

X --------+ - + - + - + -----+

+ - + - + --- +-----

0 - + --------x - X - X - X -----X -------

60 1 2 3 4
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The pairing of each argument with its particular 
function value can now be shown by placing a point at the 
intersection of the lines through them as follows:

6

5

4

3

2

1

0

x --------o - + -  + - + ----- + -------

Q -  + - + -----+ -------

x --------+ - +  - O - + -----+

I
X --------+ - + - + -  o

I 
I 
I 
I

x --------+ - + - + - + -----O -------

X - X - X - X

6
In practice, one actually draws neither the lines nor 

the crosses, but simply marks the points of intersection, 
producing the following less cluttered picture:
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6 -

5 -

4 -

3 -

2 -

1 -

0 _ +------------------------
I I I I I I I
0 1 2  3 4 5 6

This picture is called a graph or plot of the function of 
Table 10.3. Negative values are included by simply
extending the horizontal line leftward from the zero and the 
vertical line downward from the zero.

The vertical line of the graph (which passes through 
the zero point of the horizontal line) is called the 
vertical axis or 1-axis, and the horizontal line (through 
the zero of the vertical line) is called the horizontal axis 
or 1-axis. The names are derived from the (arbitrary) 
convention that the argument of a function is often called 1 
and the result is often called Y, so that the expression for 
a function is in the form Y<-F X. @3'

10.4 INTERPRETING A LINEAR GRAPH
If a ruler is laid along the points in the preceding 

graph, the points will be seen to lie in a straight line. 
If one graphs a number of functions of the form A+B*X (where 
A and B are fixed values), it will be seen that the points 
in the graph of any such function lie in a straight line. 
Conversely, every graph whose points all lie in one straight 
line represents a function of the form A+B*X. Moreover, the 
values of A and B can be easily determined from the graph.
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Consider, for example, Figure 10.4 which shows the 
graph of the function of Table 10.3 with a line drawn 
through the points. Any point on the line (not only the 
five taken from the table) represents a point of the 
function. For example, if the argument X is l, then the 
function value Y is 6.5, and if I is 0, then Y is 8.5. But 
if Z is 0, the value of the expression A + B * X is simply 4. 
Hence, for this function A must have the value 8.5.

Graph of Function of Table 10.3 
Figure 10.4
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Moreover, B is clearly the amount that the function 
changes when the argument is changed from some value to a 
value greater by l. Since the function is equal to 4.5 for 

and is equal to 2.5 for * = 3 this change is equal to 
2 .5 -4 .5 or ”2. Therefore B is equal to_ 2. Finally, the 
expression for the function must be 8.5+ 2 xj. This may be 
verified by evaluating the expression for the values 
2> 1.5 2 2.5 3 4 and comparing the results with the second 
column of Table 10.3.

To summarize, the values of A and B can be determined 
from a straight-line graph as follows:

(1) The value of A is the height at which the graph line 
crosses the vertical axis (where *=o) .

(2) The value of B is the change in height corresponding
to a change of l on the horizontal axis. 15

A function table whose graph does not form a straight 
line is not as easy to interpret as a straight line graph. 
However, the graph can still provide some guidance.

Consider, for example, Figure 10.5 which shows a 
function table and the corresponding graph. The points do 
not lie in a straight line, but have been joined by a smooth 
curve which suggests the function values which should be 
obtained between the points included in the table itself. 
For example, the argument 3 is not included in the table, 
but the curve indicates that the corresponding function 
value should be approximately “3.8.

A number of interesting characteristics of the 
function can be seen clearly in its graph. For example, it 
is clear that the function reaches a local low point for an 
argument value of X equal to approximately 3.5 and that it 
reaches a local high point for a value of * a little less 
than 2. Moreover, it is easy to spot those argument values 
for which the function has a zero value, namely for X equal 
to (approximately) 1.4 or 2.6 or 4.2.

Since *-i.4 is zero for *=1.4 and *-2.6 is zero for 
*=2.6 and *-4.2 is zero for *=4.2, then the expression

( * - l . 4 ) x ( * - 2 . 6 ) x (*-4.2)

is zero for * equal to either 1.4 or 2.6 or 4.2. Hence it 
will agree with the given function at least for these three 
values of the argument *. In order to see how well this 
expression agrees with the given function for all points, it 
can be graphed together with the given function as shown in 
Figure 10.6.



108 Interpreting a linear graph 10.4

2.0 3.96
2.4 1.80
2.8 "1.96
3.2 "5.40
3.6 _ 6 .60
4.0 "3.64
4.4 5.40

Table and Graph of a Function 
Figure 10.5
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A comparison of the two curves in Figure 10.6 shows 
that they have the same general shape, that is, the values 
for the given function appear to be larger than those of the 
approximating expression by a fixed ratio. A value for this 
ratio can be determined from two corresponding points, say 
for an argument value of 2.4. The two corresponding 
function values are seen to be 1.8 and .36, and the ratio is 
therefore 1.8*.36, that is, 5.

A better approximation to the given function is 
therefore given by 5 times the expression just tried, that 
is:

5 x ( X - 1 . 4 ) x ( J - 2 . 6 ) x ( * - 4 . 2 )

Evaluation of this function for each of the argument values 
appearing in the first column of Table 10.5 shows that it 

7-8HI agrees exactly with the function given in the second column.

10.5 THE TAKE AND DROP FUNCTIONS

The dyadic functions take and drop are denoted by i 
and l, respectively. The following expressions illustrate 
their use:

y*-o i 4 9 1 6 2 5  3 6

3 1 7 3 1 7
0 1 4 9 1 6 2 5  3 6

2 1 7 2 1 7
0 1 4 9 1 6  2 5  3 6

3 1 7 3 1 7
1 6 2 5  3 6 0 1 4 9

2 1 7 2 1 7
2 5 3 6 0 1 4 9 1 6

The take function takes from its right argument the 
number of elements determined by the left argument, 
beginning at the front end if the left argument is positive 
and at the back end if it is negative. The drop function 
behaves similarly, dropping the indicated number of elements 
from the right argument.

If the left argument is greater than the number of 
elements of the right argument, then the extra positions are 
filled with zeros. For example:

7+-2 3 5 7
6 1 7

2 3 5 7 0 0
6 1 7

9 - 1 0 m  0 0 2 3 5 7
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10.6 DIFFERENCE TABLES
The first difference of a vector 7 is defined as the 

vector obtained by taking the difference between each of the 
pairs of adjacent elements of 7. For example, if Y is the 
vector

0 1 4 9 16 25 36 49 64 81 100
then the first difference of Y is the vector

1 3 5 7 9 11 13 15 17 19
More precisely, the first difference is the function D 
defined as follows:

VZ+D Y
[1] Z+-( 14 7 ) - ( 1 47)V
F or example:

D Y
1 3 5 7 9 1 1 13 15 17 19

To understand the behavior of the function D it may 
help to observe the effects of the terms l47 and 147 as 
follows:

147
1 4 9 16 25 36 49 64 81 100

”147
0 1 4 9 16 2 5 36 49 64 81
The subtraction of the second of these from the first 
clearly yields the differences between each of the adjacent 
elements of 7.

If Y+-F X for some function F and some set of equally 
spaced arguments X, then the first difference of 7 is also 
said to be the first difference of the function F. For 
example, if 7*-0, i 10 and 7*-7*2 (that is, 7 is the square of 
X), then the vector

D 7
1 3 5 7 9 11 13 15 17 19
is said to be the first difference of the square function 
(for the arguments X).

In a function table for F , the vectors X and 7 used in 
the preceding paragraph would appear as the first and second 
columns. Attention will now be limited to function tables
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whose first column X is of the form 0, i/!/, that is, of the 
form 0 1 2  3 etc., up to some integer N. In the first
section of Chapter 11, it will be shown how the methods 
developed can be applied to any set of equally spaced 
arguments such as 1.2 1.6 2.0 2.4 2.8 3.2, etc.

Since attention is being confined to argument sets of 
the form 09\N, the argument column can be dropped from 
function tables without introducing ambiguity. For example, 
the single column on the left of Figure 10.7 shows this 
simplified form of the function table (for the function 
CTOF) of Table 10.1. The right side of the same figure 
shows a two-column table containing the function vector f  
and its first difference D F; such a table is called a 
difference table.

F F D F
32 3 2 1. 8
33.8 33.8 00

35.6 35.6 1. 8
37.4 37.4 1. 8
39.2 39. 2 1. 8
41 41 i—1

 

CD

42. 8 42.8 1. 8
44. 6 44. 6 00

46.4 46. 4 1. 8CN00zf 48. 2 1. 8
50 50 1. 8

Abbreviated Difference Table
Function Table for the Function
for Table 10.1 CTOF of Table 10.1

Function and Difference Table
11-120 Figure 10.7

10.7 FITTING FUNCTIONS OF THE FORM A + B * X
In using maps to analyze functions, it was found that 

any function of the form A + B * X could be recognized by the 
uniform spread between adjacent arrow points, and that the 
actual values of the constants A and B could be determined 
from the map. This type of function is analyzed even more 
easily with the aid of the difference table; the uniform 
spread is recognized by the fact that the elements of the 
first difference (which give the spacing between adjacent 
function values) are all the same. The constants A and B 
are simply the first row of the difference table, that is, 

13-140 32 and 1.8 in Figure 10.7.



1 0 . 8 Faotorial polynomials 113

10.8 FACTORIAL POLYNOMIALS
In analyzing certain functions it will be found that 

the elements of the first difference are not all alike, and 
the function is therefore not of the form A+B*X. In such a 
case one may take a second difference, that is, the 
difference of the first difference. If this second 
difference is not constant, one takes a third difference, 
and so continues until a constant difference is reached.

For example, Table 10.8 shows a function table in 
which a constant difference is reached at the third 
difference.

Y D Y D D Y D D D Y
5 “2 8 6
3 6 2 6
9 8 “4 6

17 4 “10 6
21 ”6 16 6
15 22 22
7 4 4

51
A Constant Third Difference 

Table 10.8
The first row of the table is the vector V+5 ~2 8 ”6. The 
expression for the function is determined from the vector V 
as follows: V is first divided by the vector 1 0 1 2 3
(that is, 1 1 2 6 )  to obtain the vector W as follows:

W*-V±lQ 1 2  3 
W

5 2 4 1

The elements of W are then used to form the following 
expression:

5+(“2xJ)+(4xJx (J-1))+(“lx*x(X-l)x(X-2))

This expression represents the function exactly, as may be 
determined by evaluating it for the argument o,i7 and 
comparing it with the first column of Table 10.8.

The method can be stated in general as follows: 
Calculate the successive columns of the difference table 
until a constant column is obtained. Then use the elements 
of the first row as follows:

Divide the first element by 10 (that is, 1, as shown 
in Exercise 8.2).
Divide the second element by !i and multiply by x.
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Divide the third element by ! 2 and multiply by
X x( X- l)
Divide the fourth element by ! 3 and multiply by
lx(J-l)x(X-2).
and so on.
Finally, add the expressions so obtained.
In other words, if the vector V is the first row of 

the difference table, then the expression
(7[J]t!I-1)x x/x ~~1 +il-1

is evaluated for each value of I from 1 to p V , and the 
results are then added together. It is important to 
remember that the foregoing method applies only if the 
argument column of the function table is of the form 0, i /l/, 
and that the extension to any set of equally spaced 
arguments will be deferred to Chapter 11.

The functions X and Xx(x- 1) and X x ( x - 1 ) x ( x - 2 ) , etc., 
are called factorial polynomials; X is called a factorial 
polynomial of degree 1, and Xx(x- l) is called a factorial 
polynomial of degree 2, etc. In general, the factorial
polynomial of degree N is given by the expression x/ X - ~ 1+iN.

An explanation of why the method works will now be 
developed. The method is based on the fact that each of the 
functions X and X x ( x - l ) and X x (x - 1 ) x (x - 2 ), etc., produce 
difference tables with particularly simple first rows, and 
on the fact that difference tables can be added and 
multiplied by constants in certain useful ways.

Factorial polynomials are important because they can 
(as illustrated above) be used to fit, and therefore to 
evaluate, many functions of practical interest. They are 
also closely related to other important polynomials to be 

15-19H1 introduced in Section 13.5.

10.9 MULTIPLICATION AND ADDITION OF DIFFERENCE TABLES
The first difference of a vector has two very useful 

properties. If Y is any vector, if D Y is its first 
difference, and if A is any constant, then the first 
difference of the vector A x y  is equal to A times the first 
difference of Y ; that is, D A x Y is equal to AxD Y. For 
example:

Y+- 0 1 4 9 16 25 36 49 
D Y

1 3 5 7 9 11 13
6xY

0 6 24 54 96 150 216 294
D 6 x Y

6 18 30 42 54 66 78
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6*D y
6 18 30 42 54 66 78

Clearly the same would be true of second differences, 
third differences, and so on. That is:

D Ax Y D D A x Y
A x D  Y AxD D Y

D D D A * Y  
A *D D D Y

Therefore, if every element in a difference table is 
multiplied by some constant A , then it is still a proper 
difference table, but for the new function A * Y in its first 
column.

Similarly, if Y 1 and Y 2 are two vectors and if D Y 1 
and D Y 2 are their first differences, then the first 
difference of the sum 71+Y2 is equal to the sum of the first 
differences; that is,

D 71+12
(D Y 1 ) + ( D 72)
Again, the same results apply to entire difference 

tables. Consequently, difference tables may be multiplied 
by constants and added together at will and the result is 
always a proper difference table. g2Q-21

10.10 DIFFERENCE TABLES FOR THE FACTORIAL POLYNOMIALS
The factorial polynomials of degrees 0 through 5 are

shown below:
Degree Polynomial

0 i
1 7
2 Xx(X-l)
3 X*(X-l)x(7-2)
4 001XCN1XyH1X><

5 Xx(X-l)x(X-2)x(X-3)x(X-‘i)

The polynomial of degree 2 has 2 occurrences of X, the 
polynomial of degree 3 has 3 occurrences of X , and so on. 
The function with a fixed value of l has been introduced as 
the polynomial of degree 0 in order to complete this 
pattern; it has 0 factors of X.

The difference tables for these factorial polynomials 
are shown in Figure 10.9. Previous tables shown have 
stopped at the first constant column, but these tables have 
been continued so that all have the same number of columns. 
Having the same number of columns, they can be added 
together. However, it is clear that any columns following a 
constant column will consist entirely of zeros.
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Degree:0 
Function:1

Y D Y D D Y

1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0
1 0 0 0
1 0 0
1 0
1

Degree:i 
FunctionzX

Y D Y D D Y

0 1 0 0 0 0
1 1 0 0 0 0
2 1 0 0 0 0
3 1 0 0 0
4 1 0 0
5 1 0
6 1
1

Degree:2 
FunctioniX*(X-l)

Y D Y D D Y

0 0 2 0 0 0
0 2 2 0 0 0
2 4 2 0 0 0
6 6 2 0 0
12 8 2 0
20 10 2
30 12
42

Degree:3
Function:X*(X-l)*(X-2) 

Y D Y D D Y

0 0 0 6 0 0
0 0 6 6 0 0
0 6 12 6 0 0
6 18 18 6 0
24 36 24 6
60 60 30

120 90 
210

Degree:4
Function:X*(X-1)x(X - 2 )x ( X- 3)

Y D Y D D Y

0 0 0 0 24 0
0 0 0 24 24 0
0 0 24 48 24 0
0 24 72 72 24

24 96 144 96
120 240 240
360 480
840

Degree:5
Function:Ix(X-l)x(Z-2)

x(Z-3)x(x-4)

Y D Y D D Y

0 0 0 0 0 120
0 0 0 0 120 120
0 0 0 120 240 120
0 0 120 360 360
0 120 480 720

120 600 1200
720

2520
1800

The Factorial Polynomials 

Figure 10.9
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The first row from each table is shown below, together 
with the degree of the polynomial it is taken from:

First Row of Difference Table
0 1 0 0 0 0 0
1 0 1 0 0 0 0
2 0 0 2 0 0 0
3 0 0 0 6 0 0
4 0 0 0 0 24 0
5 0 0 0 0 0 120

Except for final zeros, the first row of the difference 
table for the factorial polynomial of order N is ( N p O ) 9 lN, 
that is, N zeros followed by IN.

Consider now the function obtained as A times the 
zeroth order polynomial added to B times the first order 
polynomial, added to C times the second, etc.; that is, the 
function:

A+(B*X)+(C* x/X-0 1)+(£* x/X-0 1 2)+(£x x/X-0 1 2 3 )  
+ ( F x  x/X-0 1 2 3 4 )

The difference table for this function will be A times the 
difference table for order o, plus B times the difference 
table for order l, etc. In particular, the first row of the 
difference table will be the sum of the following vectors:

A X 1 0 0 0 0 0
B X 0 1 0 0 0 0
C X 0 0 2 0 0 0
D X 0 0 0 6 0 0
E X 0 0 0 0 24 0
F X 0 0 0 0 0 120

This sum is clearly equal to (a 9b 9C9D9E 9F ) x 1 1 2 6 24 120,
or more simply (4,B,,C,D,e 9F )x l! 0 , i5. Conversely, the values
of A 9B 9C 9D 9E 9F can be determined from the first row v of a 
difference table as follows: A 9B 9C 9D 9E 9 and F are the 
elements of the vector 7t .?09i5. This is the rule which was 
used in Section 10.8. H22

10.11 EXPRESSIONS FOR GRAPHS
Consider the function F defined and used as follows:
V Z<-F X

[1] Z^(*-5)x (*-3)V
X+l 2 3 4 5 6 7  
V+F X
V
0 1 0  3 88 3
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A graph of the function F for the arguments X is shown 
in Figure 10.10. The pattern shown by the points of this 
graph is also shown by the l's in the following result:

R<- 8 7 6 5 ^ 3 2 1 0  “1 
R o . =V

1 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0  1 0  0 
0 0 0 1 0 0 0

0  -  | ------------------ O ------------o

4- I
I I I I I
0 5 10

8 -  I o o

4-

Graph of a Parabola 
Figure 1Q.1Q

The vector R is simply the range of the function for 
the argument X, and the comparison between it and the set of 
values V will clearly yield a 1 at each point to be plotted 
in the graph.

A bar-chart for the same function can be obtained by 
replacing the comparison for equality by a comparison for 
less-than-or-equal:

R o . <V
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 1 0 0 0 1 1
1 1 0 0 0 1 1
1 1 0 0 0 1 1
1 1 1 0  1 1 1

23-26® 1 1 1 1 1 1 1
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The expression i? o . = y will identify only those elements 
of V which agree exactly with elements of R . For example:

.i
Y

1. 1 2 . 1 3 . 1  4 . 1  5 . 1  6 . 1  7 . 1
W+ F Y 
W

7 . 4 1  2 . 6 1  0 . 19  0 . 9 9  0 . 2 1  3 . 4 1  8 . 6 1
i?o . =W

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

However, one might want to plot points where the agreement 
is close. This could be done by taking the integer parts of 
the function values as follows:

L W
7 2 1 1 0 3 8

R o .=IW
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 1 1 0 0 0

The comparison can also be made as loose or as tight 
as desired by simply computing the table \Ro and then 
comparing it with any desired quantity. For example:

T+|R o.-W 
T

0.59 5 . 39 8.19 8. 99 7 . 79 4.59 0.61
0.41 4.39 7. 19 7. 99 6 . 79 3. 59 1.61
1.41 3.39 6.19 6. 99 5 . 79 2.59 2.61
2.41 2.39 5. 19 5.99 4. 79 1. 59 3.61
3.41 1 . 39 4.19 4. 99 3. 79 0. 59 4.61
4.41 0. 39 3.19 3. 99 2 . 79 0.41 5.61
5.41 0.61 2.19 2. 99 1 . 79 1.41 6.61
6.41 1.61 1.19 1. 99 0 . 79 2.41 7.61
7.41 2.61 0.19 0. 99 0. 21 3.41 8.61
8.41 3.61 0.81 0. 01 1.21 4.41 9.61
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. 5 >T 1 >T 2 >T
0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0
0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0
0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0

10.12 CHARACTER VECTORS
If P is a vector of the first five prime integers, 

then one can index it as shown in the following examples:

3

5

3

2

PL  2 ]

PL 3 1 2]
2 3

PL  2 5 4 ]  
1 1  7

P
3 5 7 1 1

Similarly, if L is a vector of the first five letters 
of the alphabet it may be indexed as follows:

B

CAB

BED

ABODE

LL 2 ]

LL3 1 2] 
LL  2 5 M-]

L

The original value of the vector L could be assigned 
by the following expression:

L<-' ABODE '

The quotes are necessary to indicate that the result 
is to be the actual string of characters ABODE rather than 
some value which has been assigned to the name ABODE. For 
example:

PRIMES+2 3 5 7 1 1  
A+PRIMES 
B^'PRIMES' 
i4 [ 4 3 2 5 ]

7 5 3 1 1
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5[4 3 2 5 ]
M I R E

P A
5

P B6 i28
Characters other than letters can also be used. For 

example:
C + ' * + A B C D 1
CL 2 2 1 5 1 3 1 6 1 2  2]

+ + * C * A * D * + +
f * ' [ 2 2 1 2 2 1 2 2 ]

** ** **

This last example illustrates how the space may be used as a 
character. !29

Indexing of a character vector can also be used to 
display the graphs produced in Section 10.11 in a more 
pleasing and more readable form. For example, if R and V 
are the vectors defined in Section 10.11, then:

R
8 7 6 5 

V
4

8 3 0 1 0
M<-R o . = 
M

V

1 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0  1 0 0
0 0 0 1 0  0 0

1+M
2 1 1 1 1 1 2
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 2 1 1 1 2 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 2 1 2  1 1
1 1 1 2  1 1 1
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* *
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In order to make such graphing easy we might even 
define a graphing function GR as follows %

V Zk-GR X
[1] *f[l+X]V

GR M
k k

k k

k k
k

GR (i8)°a>i8
k
k k
kkk
kkkk
kkkkk
k k k k k k
k k k k k k k

30-31® kkkkkkkk



11
Inverse

Functions

11.1 INTRODUCTION
The functions CTOF (for Centigrade TO Fahrenheit), and 

FTOC, introduced in Chapter 10, are an example of a pair of 
mutually inverse functions; that is, FTOC undoes the work of 
CTOF, and CTOF undoes the work of FTOC. This may be stated 
as follows:

FTOC CTOF X yields X for any X.
CTOF FTOC X yields X for any X.

Examples of the foregoing for particular values of X appear 
in Chapter 10.

Inverse functions are very important. The reason is 
that whenever one needs to use a certain function, the need 
for the inverse almost invariably arises. Suppose, for 
example, that F is a function which yields the amount of 
heat produced by an electric heater as a function of the 
voltage applied to it. Then for any given voltage V one can 
determine the heat produced by using the expression F V. 
However, if one wants to produce a specified amount of heat 
H , it will be necessary to determine what voltage will
produce it. This requires the use of the function inverse
to F which will yield the voltage as a function of the heat. 
If this inverse function is called G, then the necessary 
voltage is given by G H . Moreover:

G F X yields X for any X .
F G X yields X for any X.
It is therefore important to investigate methods for 

determining the inverse of any given function F . If F is
represented by a function table, then the inverse function 
is represented by the same table, but with the argument and 
function columns interchanged. For example, Table 10.1 
(reproduced in the left side of Figure 11.1) represents the 
function CTOF for a certain set of arguments. To apply the 
function CTOF to the argument 3, one locates the value 3 in 
the first column of the table and then takes the second 
value in that row (that is, 37.4) as the result. To apply 
the inverse function FTOC, to the argument 41, one locates 
41 in the second column and takes the first element in that
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row (that is, 5) as the result. In other words, the 
appropriate function table for the inverse function is 
obtained from the function table for the original function 
by interchanging the two columns as shown on the right of 
Figure 11.1.

c F F C
0 32 32 0
1 33. 8 33.8 1
2 35.6 35.6 2
3 37.4 37.4 3
4 39.2 39 . 2 4
5 41 41 5
6 42.8 42.8 6
7 44.6 44.6 7
8 46.4 46.4 8
9 48.2 48.2 9
10 50 50 10
A Pair of Inverse Functions

Figure 11.1

11.2 INVERSE OF THE FUNCTION A + B * X
If F is the function A+X, that is:
V Z+F X 
Z+A + X V

then the inverse function is given by X-A or, equivalently, 
by (-A)+X. Thus the inverse function G is defined as 
follows:

1 Z+ G  X 
Z<-(-A)+X V
It is easy to see that F and G are inverse, for G F X 

is equivalent to (-4)+,4+X and since (-4)+4 is zero, this is 
equivalent to 0+X, or simply X as required. Similarly, 
F G X is equivalent to A + ( - A ) + X which is equivalent to 0+X or X.

If H is the function £xX, the inverse function K is 
the function X+B, or (+B)xX. Thus:

1Z+H X VZ<-K X
Z + B * X V Z<-( +B )xX V
From the foregoing results for addition and 

multiplication, it should be clear that the inverse of the



11 . 3 Difference tables 125

function A+B*X is the function (±B)*(-A)+X. Thus if L and M 
are defined as follows:

VA+L X 
Z+A+BxX V

then:
L M X
A+Bx (tB)x (-A)+X 
A+lx(-A ) + X 
A+(-A )+X 
0+X 
X

VZ+M X
Z+(*B)x(-A)+X V

M I X
(tB)x(-A)+A+B*X 
(tB ) x 0+5xZ 
( tB)xBxX 
l x j

11-2

11.3 DIFFERENCE TABLES

These results will now be applied to extend the 
applicability of the difference table method of function 
analysis developed in Chapter 10. Recall that the method 
developed applies only to a set of arguments of the form 
0, 1, 2, 3, etc. Thus the difference table for a function 
whose values are 4 “l ”2 1 8 19 would appear as follows if 
the argument column was added:

X Y D Y D D Y
0 4 5 4
1 1 1 4
2 2 3 4
3 1 7 4
4 8 11
5 19

The function F represented by the table is obtained by using 
the first row of the difference table (that is, 4 54) 
divided by the vector 1 1 2  to obtain the coefficients 
4 ”5 2 for the following expression: 4+(_5xX)+2 xXx(x-i). 
Therefore, the required function F is defined as follows:

V Z*-F X
Z+4+( 5xX)+2xXx(X-l) V

Evaluation of the expression F 0,i5 serves as a check as 
follows:

_F 0 1 2 3 4 5  
4 "1 "2 1 8 19
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Suppose now that the desired arguments were the 
equally spaced values P<-2.0 2.2 2.4 2.6 2.8 3.0. The 
following table shows these arguments appended to the 
difference table as a leftmost column:

p X Y D Y D D Y
2 0 4 5 4
2.2 1 1 1 4
2.4 2 2 3 4
2.6 3 1 7 4
2. 8 4 8 11
3 5 19

Suppose that one were able to determine a function G 
which yields the column X as a function of P, that is:

G 2 2.2 2.4 2.6 2.8 3 
0 1 2 3 4 5

Then F G P would yield 7; that is:
_F G 2 2.2 2.4 2,6 2.8 3 

4 1 2 1 8 19

In other words, the function H defined as follows is the 
required function:

V Z+-H X
Z+F G X V

It remains to determine the function G which yields 
the column X as a function of the column P. Since X is of 
the form 0 1 2 3 4 5 ,  it is easy to determine P as a 
function of X, that is, to determine the function inverse to 
G. This is done by forming the difference table for P as 
follows:

7 P D P
0 2 .2
1 2.2 .2
2 2.4 .2
3 2.6 .2
4 2.8 .2
5 3
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The coefficients 2 .2 in the first row yield the expression 
2+o 2 x j  for the function inverse to G. This is of the form 
A+BxX and its inverse (that is, G) is therefore (tB)*(-A) + X. 
Hence G is defined as follows:

V Z+G X 
Z -̂5 x 2-tX V

Finally s
G 2 2.2 2.4 2.6 2.8.3 

0 1 2  3 4 5
F G 2 2.2 2.4 2.6 2.8 3 

4 "1 ”2 1 8 19
H 2 2.2 2.4 2.6 2.8 3 

4 "1 ”2 1 8 19
Instead of defining and using the separate functions F 

and G, their effect could be combined in a single (but 
cumbersome) expression by substituting for each occurrence 
of X in the expression for F, the expression occurring in 
the function G* Thus, for each X in the expression

4 + ( " 5 x X ) + 2 x j x ( x - 1 )

substitute the expression
5x™2+J

to obtain the single expression
4+(“5x (5x“2+J)) + 2 x ( 5 x “ 2 + J)x ( ( 5x~2 + X)-l) EB3-4

11.4 MAPS
In Chapter 10, it was shown how maps and graphs could 

be useful guides in the analysis of functions. They can 
also be useful guides in determining inverse functions.

If F and G are each monadic functions, then we will 
write F G to denote the function defined by applying F to 
the result of G. That is, the function F G applied to X 
yields F G X. If F and G are inverses, then F G must be the 
identity function, that is, the function which applied to 
any argument X yields X.
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Consider a function G represented by the following 
function table and the corresponding map:

1 2 3 4 5 6 7 8 9  10 11 12 13
A map of the identity function clearly consists of a 

set of vertical arrows. Therefore, if the identity function 
is represented by broken line arrows and superimposed on the 
preceding map, the picture appears as follows:

1 2 3 4 5 6 7 8 9 10 11 1 2 1 3

1 2 3 4 5 6 7 8 9 10 11 12 13
The function F represented by the crossed lines is clearly 
the inverse of G, since the application of F to the results 

5i of G produces the equivalent of the identity function.

11.5 GRAPHS

In a graph, the values of the argument X are 
represented by distances measured along a horizontal line, 
and the values of the function values Y are represented by 
distances measured along a vertical line. Since an inverse 
function is obtained by exchanging the roles of argument and 
result in the original function, the graph of the inverse is 
obtained from the graph of the original function by 
interchanging the horizontal and vertical lines in the 
graph.

X Y
4 1
5 4
6 7
7 10
8 13

1 2 3 4 5 6 7 8 9 10 11 12 13

G
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This interchange is easily visualized as follows:
1. Draw the graph of the original function on translucent 

paper (which can be read through from the obverse side 
of the paper).

2. Label the top two corners of the paper with A and B, and 
the bottom two corners with C and D (both pairs in order 
from left to right).

3. Grasp the paper by corners B and C and flip it over
without changing the positions of the two corners held.

The result is a graph of the inverse function.
For example, the left side of Figure 11.2 shows a 

function table and the corresponding graph. The right side 
shows the table for the inverse function together with the 
graph obtained by the process just described. The broken 
line midway between the X-axis and the X-axis shows the line
through the points B C about which the paper is flipped. It
is the one line in the graph whose position remains 
unchanged.

A  /B

0 1 2  3 4 - 5C  D
X Y 
2 6 
3 4 
A 2 
5 0

X Y 
6 2 
4 3 
2 4 
0 5

Inverse Graph by Reflection 
Figure 11.2
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The graph of an inverse function can, of course, be 
obtained without using translucent paper, by simply plotting 
it from the table for the inverse function. One advantage 
of this is that the scales (the numbers along the horizontal 
and vertical axes) do not appear lying on their sides and 
printed backwards as in Figure 11.2. Figure 11.3 shows a 
pair of functions (the square function X* 2 and its inverse) 
in which the graph of the inverse has been drawn in this 
manner.

I ° I
2.4-1 2.4-1

I I

2 . 0 - 1  o 2 . 0 -1
I I

1 . 6 - | 1 . 6  - | o
I O I o

1.2-1 1.2-1
I o I o

.8-1 .8-1
I O I o

.4-1 ° . 4 - | °
O

0 - o ----------------------------------------------- 0 - ° ---------------------------------------------------

0 .4 .8 1.2 1.6 2.0 2.4 0 .4 .8 1.2 1.6 2.0 2.4

X Y X Y
0 0 0 0

. 2 . 04 . 04 . 2

. 4 . 16 . 16 . 4

. 6 . 36 . 36 . 6

. 8 . 64 . 64 . 8
1 . 0 1 . 0 0 1 . 0 0 1. 0
1.  2 1 . 4 4 1 . 4 4 1. 2
1 . 4 1 . 96 1. 96 1 . 4
1 . 6 2 . 56 2 . 5 6 1. 6

Graphs of a Pair of Inverse Functions
Figure 11.3

The function inverse to the square function is called 
the square root function. It was treated briefly in Section
6.6 where it was shown that the square root of X is 

6-9i equivalent to X*.5.
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11.6 DETERMINING THE INVERSE FOR A SPECIFIC ARGUMENT
For any function whose graph is a straight line, it is 

easy to find an expression for the function since it is only 
necessary to determine the values of the constants A and B 
in the expression A+B*X. It is equally easy to obtain the 
expression for the inverse function since this is given by 
(t5)x (-A)+X. For example, the function graphed_on the left 
of Figure 11.1 is given by the_expression 10+ 2*X and the 
inverse on the right is given by .5x“io+X.

For a function whose graph is not a straight line, it 
may be impossible to obtain an expression for the inverse 
function. However, it is possible to determine the inverse 
function in the following sense: for any given argument in 
the domain of the inverse function it is possible to 
determine the corresponding value of the result of the 
inverse function.

For example, in the case of the square function (X*2) 
graphed on the left of Figure 11.3 we have no expression for 
the inverse function, the square root, graphed on the right. 
However, for any particular argument it is possible to find 
the result approximately from the graph of the inverse; for 
example, if the argument is 2, the result of the inverse 
function is clearly slightly greater than 1.4. Moreover, 
one can achieve the same without the graph of the inverse, 
by working directly from the graph of the original function. 
Thus one locates the argument 2 on the vertical axis and 
determines the approximate corresponding result on the 
horizontal axis.

Finally, one can work directly from the expression for 
the original function without even graphing it. For 
example, the expression for the function on the left of 
Figure 11.2 is X*2. To obtain the value of the inverse 
function applied to the argument 2, one must determine a 
value of X such that X*2 is equal to 2. If one determines a 
value C such that C*2 is less than 2 and another value D 
such that D*2 is greater than 2, then the required value of 
the square root of 2 must lie between C and D .

Thus, if C is 1.4 and D is 1.42, then C*2 is 1.96 and 
D*2 is 2.0164 and the required value lies between 1.4 and 
1.42. The point midway between them is (1.4+1.42)*2, that 
is 1.41. Since 1.41*2 is equal to 1.9881, the required 
value is greater than 1.41. Since it is already known to be 
less than 1.42, we now choose the value midway between 1.41 
and 1.42, that is, 1.415. The value of 1.415*2 is 2.012225 
which is very near to 2. Hence 1.415 is a very good 
approximation to the value of the square root function
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applied to the argument 2. Moreover, the same process could 
be continued to determine better and better approximations 
as long as desired.

Although we have not obtained an expression for the 
square root function, we have devised a process which 
determines the value of the square root when applied to the 
particular argument 2. Moreover, the process could be 
applied for any argument other than 2 which lies in the 
domain of the square root. Finally, the process uses only 
the expression for the original square function.

The procedure used to determine the square root had to 
be repeated or iterated a number of times to obtain a 
sufficiently good approximation to the desired result. Such 
a process is called iterative. Functions which are defined 
by iterative procedures will be discussed more fully in the 

10-lli succeeding chapter.

11.7 THE SOLUTION OF EQUATIONS
If G is the function inverse to F , and one wishes to 

obtain the value of G N, then the required value Y must be 
such that F Y is equal to N. In other words, the following 
expression must be true (that is, have the value 1):

N = F  Y

Such an expression which is required to be true is called an 
§3U§tion, and a value of Y which makes it true is called a 
solution or root of the equation.

The problem of determining the value of the inverse 
function G applied to the argument N is therefore equivalent 
to finding a solution to the equation I\1-F Y . It is for this 
reason that the solution of equations is a very important 
topic in the study of algebra. For example, finding the 
square root of 2 is equivalent to solving the equation 
2=X*2, and finding the square root of 10 is equivalent to 
solving the equation 10=X*2.

The origin of the term "square root" for the function 
inverse to the square function should now be clear; the 
square root of the argument N is the solution or root of the 
equation N = X *2 in which the square function occurs to the 

12-13S right of the equal sign.
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Iterative

Processes

12.1 INTRODUCTION
The iterative process used in Section 11.6 for finding 

the square root of 2 is only one of many possible iterative 
processes for achieving the same end. The following 
procedure is, in fact, more effective than the procedure of 
Chapter 11 in the sense that it closes in on the desired 
value in fewer iterations.

Suppose that S is the square root of a given number X, 
that Z is any other number, and that Y is equal to HZ. 
Then Zxj is equal to X, and S*S is also equal to X. Hence 
if Z is less than S, then Y must be greater than S, and if Z 
is greater than S, then Y must be less. In any case, the 
correct square root S must lie between Z and Y. 
Consequently, the point midway between Z and Y (that is,
.5xz+l) should furnish a good new approximation to the 
square root S. Since Y is equal to IfZ, this expression can 
be written simply as .5xZ+XtZ.

Suppose, for example, that we wish to find the square 
root of 3, that is, X has the value 3. If we choose a value 
of 1 for Z, then the next approximation is given as follows:

X<- 3 
Z«-l
.5xZ+XvZ

2

Respecifying Z by the new approximation 2 yields a new 
approximation which can again be used to respecify z•

Z+- 2
. 5 xZ + XvZ

1. 75
Z«-l . 75 
. 5 x Z+ X t Z 

1.732142857
Z«-l.732142857 
.5 xZ + XtZ 

1.73205081
Squaring this last result yields 3.000000008, showing that 
it is a good approximation to the square root of 3.
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The foregoing procedure can be made clearer by simply 
assigning the value of the new approximation to the name Z 
each time as follows:

X+3
Z+l
Z+. 5xZ+ZiZ
z

2
Z<-. 5 x-Z + X+Z 
Z

1. 75
Z+.5xZ+ZtZ 
Z

1.732142857
Z<-. 5 xZ +JtZ 
Z

1.73205081

From this it is clear that the iteration consists of 
repeating the execution of the expression Z*-.5x z+XtZ enough 
times, the line containing only the expression z being 
inserted solely to allow us to see the successive values of 
the approximation Z.

Such iteration can be specified in a function 
definition as follows:

VZ+SQRT X 
Cl] Z+1
[2] Z<-. 5 x Z + X tZ
[3] ->2 V
The right-pointing arrow on line 3 of the function 
definition is called a branch; the only effect of the 
expression ->2 is to cause statement number 2 to be executed 
next. Hence statements 2 and 3 are executed again and again 
in sequence. This behavior can be seen from a trace of the 
function as follows:

TLSQRT+1 
P<-SQRT 3

2 3

m

SQRTL1] 
SQRT[2] 
SQRTL 3] 
SQRTL21 
SQRTL3] 
SQRTL2] 
SQRTL 3] 
SQRTL2]

75
73214285
73205081

7

The trouble with the function SQRT is that it never 
terminates. It would be desirable to make it terminate when 
a certain condition becomes satisfied, say when the 
magnitude of the difference between Z*2 and the argument X
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becomes less than . 0 0 0 0 1 .  This is achieved in the function 
SQT defined as follows:

I Z ^ S Q T  X
[ 1 ]  Z+l
[2] Z+.5xZ+ZtZ
[ 3 ]  ->2 x . 0 0 0 0 1 < | X - Z  * 2 V

As long as X and Z*2 differ by .00001 or more, the
expression following the branch arrow is equal to 2 x i  and 
statement 2 is executed next. When Z*2 becomes close enough 
to X r the expression has the value 2 x o , (that is, 0 ) , 
indicating that statement 0 should be executed next. Since 
there is no statement 0 , the process terminates.

The function SQT can now be applied to any
non-negative argument. For example:

SQT 2
1 . 4 1 4 2 1 5 6 8 6 2 7 4 5  

( SQT 2 ) *  2 
2 . 0 0 0 0 0 6 0 0 7 3 0 4 9  

SQT 10
3 . 1 6 2 2 7 7 6 6 5 1 7 5 7  

(S Q T 1 0 ) * 2
1 0 . 0 0 0 0 0 0 0 3 1 6 6 8

The detailed behavior of the function SQT can be seen 
in a trace as follows:

T A SQ T+l  2 3 
P+-SQT 10 

S Q T [ 1 ]  1
S Q T l 2 ]  5 . 5
S Q T l3] 2
S Q T l 2]  3 . 6 5 9 0 9 0 9 0 9 0 9 0 9
S Q T l 3 ]  2
S Q T l 2 ]  3 . 1 9 6 0 0 5 0 8 1 8 7 4 6
S Q T l 3 ]  2
S Q T l 2 ]  3 . 1 6 2 4 5 5 6 2 2 8 0 3 9
£ £ X [ 3 ]  2
S Q T l 2]  3 . 1 6 2 2 7 7 6 6 5 1 7 5 7
S Q T l 3 ]  0

P
3 . 1 6 2 2 7 7 6 6 5 1 7 5 7

Iteration is of great importance in mathematics and 
its uses are by no means limited to root-finding. The 
remaining sections of this chapter illustrate a few of its 
uses. Others occur in later chapters. ®2
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12.2 GENERAL ROOT FINDER
The iterative method used in Section 11.6 to determine 

the square root of 2 can now be expressed as a formal 
function definition by using branching. The method consists 
of using two quantities C and D which bound the desired 
value in the following sense: C*2 is less than 2 and D*2  is 
greater than 2, and the desired value therefore lies between 
C and D. The method procedes by computing the point Z 
midway between C and D and then computing Z * 2  to see whether 
it lies above or below 2. If it lies below 2, then C is 
respecified by Z (that is, C<-Z) and the process is repeated; 
otherwise D is respecified by Z and the process is repeated.

It will be more convenient to combine the bounding 
quantities C and D in a single vector B so that Z 
respecifies either B L 1] or S[2]. The complete definition 
and traced behaviour of the function follow:

[ 1 ]
[ 2 ]
[ 3 ]
C 4 ]
[ 5 ]

Ql 11

VZ + Q X 
B<-1 . 4  1 . 4 2  
Z<-. 5 x + / 5  

1 + J<Z  * 2 
B i n + z
->2 x . 0 0001<  | X-Z*  2V

TAQ+\ 5 
P<-Q 2 

1 . 4  1 . 4 2 QL 2] 1 . 4 1 4 2 1 8 7 5
Q C2] 1 . 41 QL 3] 2
QL 3 ] 1 6 L 4 ] 1 . 4 1 4 2 1 8 7 5
« [ 4 ] 1 . 4 1 « [ 5 ] 2
e t s ] 2 QL 2] 1 . 4 1 4 1 4 0 6 2 5
Ql 2] 1 . 4 1 5 QL 3] 1
QL 3 ] 2 QLnl 1 . 4 1 4 1 4 0 6 2 5
« [ * * ] 1.  415 QL 5 ] 2
« [ 5 ] 2 QL 2] 1 . 4 1 4 1 7 9 6 8 7 5
QL 2] 1 . 4 1 2 5 QL 3 ] 1
QL 3 ] 1 S C 4 ] 1 . 4 1 4 1 7 9 6 8 7 5
« [ 4 ] 1 . 4 1 2 5 QL 5] 2
QLS1 2 QL 2] 1 . 4 1 4 1 9 9 2 1 8 7 5
QL 2 ] 1 . 4 1 3 7 5 QL 3 ] 1
« [ 3 ] 1 QL 4 ] 1 . 4 1 4 1 9 9 2 1 8 7 5
« [ 4 ] 1 . 4 1 3 7 5 S C 5 ] 2
C [ 5 ] 2 Q [ 2 ] 1 . 4 1 4 2 0 8 9 8 4 3 7 5
Q [2] 1 . 4 1 4 3 7 5 Ql 3 ] 1
e c 3 ] 2 « [ 4 ] 1 . 4 1 4 2 0 8 9 8 4 3 7 5
« [ 4 ] 1 . 4 1 4 3 7 5 Ql 5 ] 2
S C 5 ] 2 QL 2 ] 1 . 4 1 4 2 1 3 8 6 7 1 8 7 5
QL 2] 1 . 4 1 4 0 6 2 5 Ql 3] 2
QL 31 1 QL 4 ] 1 . 4 1 4 2 1 3 8 6 7 1 8 7 5
e t 4 ] 1 . 4 1 4 0 6 2 5 QL 5 ] 0
ecs] 2 P

1 . 4 1 4 2 1 3 8 6 7 1 8 7 5
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The foregoing function will determine a root of the 
equation X= Z*2, that is, for a given value of x it will 
determine a value of Z such that the equation is true. In 
order to obtain a general root finder which would solve the 
equation X=F Z for any desired function F , it is necessary 
to replace every occurrence of the expression Z*2 in the 
function Q by the expression F Z.

It will also be convenient to have the bounding vector 
B as an argument of the function so that one can specify 
suitable initial bounding values. The general root-finder 
is therefore defined as follows:

VZ^B GRF X
[1] Z+-. 5 x + /B
[2] B[_ 1 + X <F Z>Z
[3] -+. 0 0 00 1 < | X-F ZV

Suppose, for example, that F is the cube function 
defined as follows:

VZ+-F X 
[ 1 D Z+-X * 3 V
Then, since 4*3 is less than 100 and 5*3 is greater than 
100, the expression 4 5 GRF 100 yields a solution of the 
equation 100=Z*3 as follows:

4 5 GRF 100 
4.6415886878967

(4 5 GRF 100)*3
99.999990581929 ®3

There are two reasons for including the bounding 
values B as an argument of the general root finder function 
GRF. The first is that for some functions F it is very 
difficult to compute suitable initial bounding values and it 
may be necessary to provide them, possibly from information 
obtained from a rough graph. The second reason is that for 
some functions F the equation X-F Z has more than one 
solution, and the initial bounding values permit us to 
isolate any one of the several roots as desired.

For example, suppose that F is defined as follows:
V Z<-F X

Z<-~ 76.44+( 102.2 x*) + ( 4 lx** 2 ) + ( 5x**3) V
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Then several different values of X can be determined for 
which F X is zero:

1.4
2 . 6 

4.  2

1 2 GRF 0

3 2 GRF 0

4 5 GRF 0

It can be verified that this function is equivalent to the 
function 5 x(j-i.4)x(j-2.6)x(x-4.2) whose graph appears in 
Figure 10.5. This graph will therefore be helpful in 
appreciating how the different bounding values lead to 
different roots. Two further solutions appear below:

1 2 GRF 3 
1.64639

3 2 GRF 3 
4-6® 2.23409

12.3 GREATEST COMMON DIVISOR
A common divisor of two integers is an integer which 

is a factor of both, and the greatest common divisor is the 
largest of such common divisors. For example, the numbers 
2 4 and 5 4 have the following divisors:

( 0 = ( i 2 4 )  |2 4 ) /  i 2 4 
1 2 3 4 6 8 12 2 4

( 0 = ( i 5 4 ) | 5 4 ) / i 5 4  
1 2 3 6 9 1 8 27 54

The common divisors are 1 2 3 6 ,  and the greatest common 
divisor is therefore 6 .

An interesting and efficient method for finding the 
greatest common divisor of a pair of integers x and Y is 
based on the following fact: If Z is the remainder obtained 
on dividing X into Y (that is, Z<-X\Y)f then the greatest 
common divisor of X and Y is also the greatest common 
divisor of X and Z. For example, if x is 48 and Y is 66, 
then Z is 18 and the greatest common divisor of 48 and 66 is 
the same as the greatest common divisor of 18 and 48. The 
process can now be repeated since the the greatest common 
divisor of 18 and 48 is the greatest common divisor of 18 
and their remainder, which is 12. Thus we look for the 
greatest common divisor of 12 and 18. The remainder l2|18



1 2 . 3 Greatest common divisor 139

is 6 and we now look at the pair 6 and 12. The remainder 
6|12 is zero. This indicates that 6 is a divisor of 12 and 
therefore 6 is the greatest common divisor of 6 and 1 2 . 
Hence, 6 is also the greatest common divisor of the original 
pair 4-8 and 66.

The foregoing is an iterative process which can 
obviously be defined as follows:

vz-f-x GD X 
[1] Z^J 
[ 2 ] X+X | X
[3 ] x+z
[4 ] +y*ov
The behavior of the function GD can be seen from the 
following trace:

ThGD*-\ 4 
P-*-4 8 GD 6 6 

GDI 1] 48 
GDI 2] 18 
GDI 3] 4 8 
GDI 4] 1 
GDI 11 18 
GDI 2] 12 
GDI 3] 18 
GDI 4] 1
GDI 1] 12 
GDI 21 6 
GDI 3] 12
GDI 4] 1
GDI 1] 6 
GDI 2] 0
GDI 3] 6
GDI 4] 0

P
6

The greatest common divisor function can also be 
defined in terms of a single argument (which is expected to 
be a two-element vector) as follows:

V Z+-GCD X
[1] Z^Xlll
[2] X+(\/X),Xll]
[3 ] ->y[i]*o v
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For example:

TtGCD+\ 3 
P*-GCD 4 8 66 

GCDL1] 48 
GCDL2] 18 48 
GCDL3] 1 
GCDL1] 18 
GCDL2] 12 18 
GCDL3] 1 
GCDL1] 12 
GCDL2] 6 12 
CCD[3] 1 
GCD[1] 6 
G C £ [2 ]  0 6 
GCO[3] 0 

P
70 6

The function GCD can be used in the treatment of 
rational numbers as follows. If F is any two-element vector 
of integers it can be used to represent the rational number 
*/F. Moreover, if v is multiplied by any scalar integer S 
it still represents the same rational number. For example:

F-f-4 8 6 6 
*/F

0.727273 
3*F

144 198
t/3*F

0.727273

Similarly, if F is divided by any integer which is a 
divisor of both elements, the result is a pair of integers 
which also represent the same rational number. For example:

Ff 2
24 33

i/V*2
0.727273
Moreover, if F is divided by the greatest common divisor of 
F[l] and F[2], one obtains the smallest pair of integers 
which represent the same rational. For example:

FtGCD V
8 11

i/ViGCD V 
8-11S 0.727273
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12.4 THE BINOMIAL COEFFICIENTS
Binomial coefficients are of importance in many areas 

of mathematics. In this section they will be introduced as 
a further example of the use of iteration in the function 
which defines them. They will be used and studied more 
thoroughly in Section 15.5.

The binomial coefficients of order N are the /I/+1 
elements of the vector produced by the expression BIN N 
using the function BIN defined as follows:

VZ+BIN X
[1] Z+-, 1
[2] -+3xX>pZ
[3] Z-<-(Z,0)+(0,Z)
[4] -*2 V
The following examples illustrate the behavior of the
function:

BIN 0
1

BIN 1
1 1

BIN 2
1 2 1

BIN 3
1 3 3 1

BIN 4
1 4 6 4 1

BIN 5
1 5 10 10 5

BIN 6
1 6 15 20 15

TNBIN+-\H 
P+BIN 3 

BINl1] 1
BIN121 3 
BINl3] 1 1
BIN[4] 2
BIN 121 3
BINl3] 1 2 1
BIN [4] 2
BINL21 3
BIN [3] 1 3  3 1
BIN[4] 2
BINl21 0

P
1 3  3 1 112-19



13
Inner Products 
and Polynomials

13.1 INTRODUCTION
Each of the expressions +/D*W and l/A + B and r /AIB 

involve a dyadic function applied to the two arguments, 
followed by a reduction of this result by a second dyadic 
function applied over the result. These expressions are 
therefore said to be of the same form, although they do 
differ in the actual dyadic functions employed. Thus the 
first uses + and x, the second uses L and + , and the third 
uses r and [_•

Expressions of this form are so important that they 
will be assigned a special notation known as inner product. 
Their importance is due largely to the fact that they arise 
very frequently in practical problems. Consider, for 
example, the following expressions:

D+ 5 2 4
W+36 12 1
+ / D * W

2 08
A+8 13 10 15
B+1A 7 16 9
L /A+B

20

The expression + / D * W  may arise from a practical 
problem as follows. Suppose that the elements of D express 
a certain distance in terms of yards, feet, and inches, that 
is, D represents the distance 5 yards, 2 feet, and A inches. 
One could express tne same distance in inches alone by 
multiplying the first element by 36, the second by 12, the 
third by i, and then summing the results. In other words, 
if w is the weighting vector as specified above, then the 
distance in inches is given by the expression +/D*W.

The second expression l/A + B may arise as follows. 
Suppose that one wishes to travel from station P to station 
Q and has a choice of four different routes, via the four 
different intermediate stations, Ji, 12, 13, and 14 as shown 
in Figure 13.1. Suppose further that the distances from P 
to the four intermediate stations are given by the four
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elements of the vector A , and that the distances from the 
intermediate stations to the destination Q are given by the 
vector B . Then the expression A+B gives the total distances 
for each of the four possible routes, and l/A + B gives the 
smallest of these distances, that is, the shortest distance 
possible by the available routes.

@ 1-2

13.2 THE INNER PRODUCT OF TWO VECTORS
If X and Y are vectors of the same dimension, then the 

expression I+.xj is called the plus times inner product of X 
and Y, and is defined to be equivalent to the expression 
+/Ixj. Similarly, XI,+Y is called the minimum plus inner 
product and is defined as L/X+Y, and so on for every pair of 
dyadic functions. For example:

X<-2 3 5 7 1 1 
Y+2  1 2 0 1  
Z+ . x y + /XxI

28
XI . +Y

2 8
l/X+Y

A
I x . * 7 x/X*Y

3300
z + . - y

3300
+ /X-Y

22
* + .  *Y

22
+ /X*Y

A

X
 

--
1 II

A
r !X=Y

1 1
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13.3 MATRICES
What we have been calling a table is in mathematics 

more usually called a matrix; we will call it so from now 
on. We will also generalize the dyadic repetition function 
(introduced in Section 1.7 and denoted by p) so that it will 
permit the specification of a matrix with any shape and 
having any desired elements.

The dyadic repetition function p was defined only for 
scalar arguments, but it will now be defined for vector 
arguments as well. For example:

3p 5
5 5 5

5p 3
3 3 3 3 3

3p 1 2 3 4
1 2  3

lOpl 2 3 4
1 2 3 4 1 2 3 4 1 2
From these examples it is clear that the left argument 
determines the size of the result and that the elements of 
the result are chosen from the right argument, repeating 
them over and over if necessary.

If the left argument A is a two-element vector it 
again determines the size of the result, that is, the result 
is a matrix M such that pM (that is, the size of M) is equal 
to A. In other words, M has Alii rows and 4̂ [ 2 ] columns. 
For example:

1 2
2 3p 1 2
3

3
4 5 6

1
3 4pi12
2 3 4

5 6 7 8
9 10 11 12

0 1
3 5p 0 1 

0 1 0
1 0 1 0  1
0 1 0 1 0

The expression V°.+W has been referred to as an 
addition table, V o . x w has been referred to as a 
multiplication table, and so on. In advanced mathematics 
such an expression is more usually referred to as an outer 
product (outer product for addition, outer product for 
multiplication, etc.) and we will now adopt this

6-7S terminology.
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13.4 INNER PRODUCT WITH MATRIX ARGUMENTS
The inner product also applies 

For example: to matrix arguments,

M<- 3 4p 3 0 4 2 4 6 5 1 0 CslLO

tf«-4 5p 6 7 2 1 7 5 6 5 0 5 7 2 3
M

3 0 4 2
4 6 5 1
0 5 2 4

N
6 7 2 1 7
5 6 5 0 5
7 2 3 6 3
1 2 2 1 3

M+ . *N M L . + N
48 33 22 29 39 3 4 4 0 5
90 76 55 35 76 2 3 3 2 4
43 42 39 16 43 5 4 2 1 5

M+ N M+. *N
0 1 1 1 0 4 3 3 3 4
1 1 0 1 0 3 3 4 3 4
1 1 1 0 1 3 3 3 4 3

(M+. = N) + ( M + . * N )
4 4 4 4 4
4 4 4 4 4
4 4 4 4 4

6 3 1 2 2 1 3

The result of an inner product applied to matrices M  
and N is a matrix having as many rows as the first argument 
and as many columns as the second argument. The elements of 
the results are the results obtained by applying the inner 
product to each row vector of the first argument paired with, 
each column vector of the second argument. More 
specifically, if R + M + . x N , then the element R L l ; j ] is given 
by the expression M L X; ] + . x#[ ; j] . For example;

R<-M+ . *N 
R

48 33 22 29 39 
90 76 55 35 76 
43 42 39 16 43

i?C 2; 3]
55

ML 2;]
4 6 5 1

Nl ; 3]
2 5 3 2

ML 2;]+.xNL; 3] 
55

( M L .+ N )[3;5] 
(ML 3;]L. [ ; 5 ]

§8-10
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If X is a vector and M is a matrix, then the inner 
product M +.xj is defined by simply treating X much like a 
1-column matrix. For example:

16
M+. xx

32 35

3
Ml .+X 

4 0

4
M+ . s i  

4 1

0
M+ . =X

0 3

If I is a vector and M is a matrix, then the inner 
product y+. is defined by treating Y much like a l-row 
matrix. For example:

11-18(1

Y+  0 4 2

16 34 24
Yl . +M

2 0 4 2
Y+ .

2 2 2 3

13.5 POLYNOMIALS
If C is a vector and X is a scalar, then an expression 

of the form +/ C * X * ~ l +\p C is a function of X which is called 
a polynomial of degree " l + p C .  For example, if C+-2 5 ” 3 1,  
then +/C * X*~l + ipC is a polynomial of degree 3 and is 
equivalent to the expression + /2 5 ” 3 1 o 1 2  3.  This 
expression is clearly equal to the sum of the following 
quantities:

2xZ*0
5 x J * l  
~ 3 x j *  2 
1 x j *  3

Each of these quantities is called a term of the polynomial; 
each of the constant multipliers is called a coefficient.

Figure 13.2 shows a graph of each of the terms of the 
polynomial + /2 5 ~3 ixj*o 1 2 3,  together with a graph of 
their sum, that is, of the polynomial itself.

The polynomial function described above can be defined 
formally by the following function:

1Z+-C POLY X
[ 1]  Z* -+ /C - *X*  l + i p 9CV
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For example:

8

6

2 5  3 1  P O L Y 2
6 P O L Y 2

The comma following the p in the definition of the function 
P O L Y is included to ravel the argument c so as to avoid 
difficulty in the case of a scalar argument c (as occurs in 
the second use of P O L Y above). (See Sections 8.7 and 8.8.)

Since a polynomial may have any number of terms and 
since each of the coefficients may have any value, the 
graphs of Figure 13.2 suggest (correctly) that coefficients 
can be chosen so as to make a polynomial which approximates 
any function of practical interest. This ability to 
approximate a wide variety of functions is one of the main 
reasons for the overwhelming importance of polynomials. A 
second reason is the ease of evaluation, which involves only 
addition, multiplication, and powers. A third reason is the 
ease with which polynomial functions can be analyzed. @19-21

13.6 POLYNOMIALS EXPRESSED AS INNER PRODUCTS
Since PxQ is equivalent to Q*P, the expression 

+/C*(X*~i+\p,C) for a polynomial can also be written as 
+ /(X* 1+ip9C)*C. Moreover, since +/Q*P can be written in 
the inner product form as Q + t*P, the polynomial can be 
written as the inner product (X*”l +1 p ,<?)+. x£.

It should be clear that none of these equivalent 
expressions for a polynomial apply correctly to a vector 
argument X in order to evaluate the polynomial applied 
separately to each element of X . For example:

C+1 2 1 
Ẑ -3
+/CxX* 1+ip9C

16
X*-4
+ /C*X*~1+ ip , C

25
X<-b
+ /C*X* 1 + 1 p , c

36
X<-3 4 5
+ / C x * * - i + i p ,C

34
X+- 3 4
+/C*X* l + ip,c

(cannot be evaluated because the vectors X and l + \ p , C are not of the same size)
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To obtain the correct result of 16 25 36 when
applying the polynomial with coefficients C+-1 2 l to the 
vector argument 3 4 5, it is necessary to use a different 
expression for the polynomial. This can be obtained by a 
slight modification of the inner product expression 
(X* l + \p9C) + .xC, namely, (X°.*”l + ip,C) + .xC. For example:

C<-1 2 1 
Z^3 4 5
Zo.*“i + ip , C

1 3 9
1 4 16
1 5 25

(Z° . *
16 25 36

The following definition will therefore be adopted for 
the polynomial function:

1Z<-C P X
1 + i p  ,6*)  + . x{7V

The following examples illustrate its use:
1 2 1 P 3 4 5 6  

16 25 36 49
1 3 3 1 P 3 4 5 6  

64 125 216 343
7 P 3 4 5 6 

7 7 7 7 §22-24



14
Identities

14.1 INTRODUCTION
Two expressions are said to be equivalent if they 

represent the same function, that is, if they both yield the 
same value for any specified argument (lying within their 
domains). For example, X*Y and YxX are equivalent, as are 
X\Y and Y\X, but X-Y and Y-X are not equivalent.

If two equivalent expressions are joined by an equal 
sign, the resulting single expression is true (i.e., has the 
value 1) for every possible value of the argument or 
arguments. It is therefore called an identity. For 
example, the expression (XxY)=(Y*X) is always true, as are 
(X[Y)=(Y[X) and (ZL(JLZ)) = ((JLY ) LZ).

For convenience in discussion, many of the more useful 
identities are given names. For example, the identity 
(XxY)-(YxX) is said to express the commutativity of times, 
and (Xl(YLZ))=((XLY )LZ) expresses the associativity of 
minimum. The following list shows (together with their 
names) a number of identities which the reader should either 
find already familiar, or be able to verify by evaluating 
them for a few sample values of the arguments:

Identity
(X+Y)=(Y+X)
( (X[Y)[ Z) = Ur (Y[X))
( X * ( Y + Z ) ) = ( ( X x Y ) + ( J x Z ) )

(XF(YLZ))=((XrY)L(XFZ))

Name
Commutativity of plus
Associativity of maximum
Distributivity of times 
over plus
Distributivity of maximum 
over minimum

(XfY ) = ( - ( - X ) i (- Y )) Duality of maximum
(XLY)=(-(-X)r(-Y)) and minimum
(jvy)=(~(-z)A(~y)) Duality of and
(X*Y)=(~(~X)v(~Y)) and or
Identities are very useful in mathematics, primarily 

because they allow one to easily express the same function 
in a variety of ways, each of the different ways possessing
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some particular advantage such as being easy to evaluate, or 
providing some particular insight into the behavior of the 
function. Consider,, for example, the function + / ( \ X ) * 2  
which yields the sum of the squares of the integers up to 
and including X. The difference table for this function appears as follows:

X + / ( i*)*2 D +/( \ X ) * 2 D L + /(iAr)*2 D D D + /(  i X ) * 2
0 0 1 3 21 1 4 5 22 5 9 7 23 14 16 9 24 30 25 115 55 365 91

According to the method of analyzing a function by 
difference tables developed in Chap ter 10, the firs t row of 
the difference table (that is, 0 1 3 2 )  can be divided by 
' 0 1 2 3  (that is, 1 1 2 6) to obtain the coefficients 
0, 1, 3t 2, and 2 t 6 used in the following expression:

0+Z+((3t2)x*x (*-i ))+(2t6)x*x (Z-1)xZ-2
The expression is equivalent to + / ( \ X ) * 2 . Moreover, 

for large values of X it is much easier to evaluate than 
+ /(iX)*2. For example, the sum of the squares up to 100 is given by:

0+100+((3t2)x100x99)+(2t6)x 100x99x98
0+100+14850+323400338350
Moreover, by methods to be developed in this chapter, 

the expression 0+Z+((3t2 ) * X * X - i) +(2t6)xjx( x - 1)xx - 2 can be 
shown to be equivalent to the polynomial:

(v6)x(J*o 1 2 3) +. x 0 1 3 2
This can be evaluated even more easily. For example:
2^10 0
(t6)x (J*o 1 2 3) +. x 0 1 3 2
( + 6 ) x 1 10 0 10 000 10 00000+.X 0 1 3 2
(t6)x0+100+30000+2000000 
( v6 )x2030100
338350
An argument or series of arguments which clearly 

establishes the equivalence of two expressions is said to be 
a proof of their identity. This chapter is intended not 
only to establish certain important identities, but also to 
illustrate methods of proof which the reader may use to 
establish further identities. Of the basic methods of proof, 
one (mathematical induction) is deferred to Chapter 15.



152 Commutativity 14.2

14.2 COMMUTATIVITY
Since X+Y yields the same result as Y+X, the function 

+ is said to commute/ or to be commutative. The word 
commute implies that the two arguments can be commuted 
(i.e., interchanged) without changing the result. The 
function x is also commutative; that is, ( J x y ) = ( y x j ) .  To 
see why this is so, consider the way in which multiplication 
is defined as repeated addition, that is, 3x4 can be 
considered as the addition of three groups of objects each 
containing four items.

This can be pictured in terms of the array

3 4 p
□□□□
□□□□
□□□□
which consists of three rows, each containing four boxes. 
The total number of boxes is then 3x4. It is clear that the 
array

6)3 4 p
□□□
□□□
□□□
□□□
contains the same number of boxes. It is equally clear that 
this is the same array as

4 3 p
□□□
□□□
O D D
□□□
which represents the product 4 x3 . Hence, ( 3 x 4 ) = ( 4 x 3 ).

The functions maximum and minimum are both 
commutative, that is,

u r y ) = ( i m
and

u m  = (iu)
It is equally clear that equality is commutative, that is,

U  = Y ) = ( y = X ) .

To show that a function is not commutative, it is 
sufficient to exhibit one pair of arguments for which it 
does not commute. For example, 4-3 yields 1 and 3-4 yields 
”1. Since these results differ, it is clear that
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subtraction is not commutative. Similarly 3<4 yields 1 and 
4<3 yields 0 and the function < therefore does not commute.

The results thus far can be summarized in a table as 
follows:

+ - x r l < =
1 0  1 1 1 0  1

A zero lying below a function symbol indicates that the 
function is not commutative, and a l indicates that it is. ill

The 1 * s and 0's in the foregoing table can be thought 
of as the results of a function COM which determines the 
commutativity of its argument, that is, COM f+f yields 1, 
and COM yilelds 0, and so on. This function could be
defined as follows:

VZ+COM X
z^(x=T+-xrL<=')/i o l l i o l

For example, in the evaluation of the expression COM ’I"1, 
the argument X has the value *1"’, and the expression 
X=!+-xrL<=T therefore has the value 0 0 0 1 0 0 0 .  
Consequently, (J=?+-xf|_<=f)/l 0 1 1 1 0 1 yields 1, 
indicating that the function maximum is commutative. EE12
Function Tables. Consider the subtraction table S and its 
transpose shown in Figure 14.1. The circled element in
S is the result of the subtraction 5-3. The corresponding 
element of T (enclosed in a rectangle) is clearly the result 
of 3-5. More generally, if one uses table S to evaluate any 
subtraction X-Y, then the corresponding element of table T 
is the result of the commuted expression Y-X. Consequently, 
a function is commutative only if its function table A 
agrees with its transpose

S T
0 1 2 3 “4 5 “6 0 1 2 3 4 5 6
1 0 1 2 “3 4 "5 1 0 1 2 3 4 5
2 1 0 "1 ~2 "3 4 “2 “1 0 1 2 3 4
3 2 1 0 1 2 “3 3 2 1 0 1 2 3
4 3 ® 1 0 1 2 4 3 QJ 1 0 1 2
5 4 3 2 1 0 1 5 4 3 2 1 0 1
5 5 4 3 2 1 0 6 5 4 3 2 1 0

S ^ ( i 7 ) ° . - i 7

Function Tables for Subtraction 
Figure 14.1

Most functions of interest are defined on a limitless 
domain (e.g., all numbers) and any function table therefore 
represents only a part of the domain. Consequently, the
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fact that a function table agrees with its transpose does 
not prove that the function is commutative, since an 
enlarged table might show that it is not. However, some 
important functions are defined for a limited domain (i.e . , 
for only a small number of argument values), and for such a 
function it is possible to make a complete function table 
and determine the properties of the function directly from 
the table.

We will illustrate this by defining four important 
logical functions, i.e., functions whose ranges are limited 
to the logical values 0 and 1. They are called and, or, 
not-and, and not-or, and are denoted by a , v , tv, and v, 
respectively. They are completely defined by the function 
tables of Figure 14.2. These tables are all symmetric 
(i.e., agree with their transposes), and these functions are 
therefore all commutative.

A 0 1 V 0 l JY 0 1 V 0 1
0 0 0 0 0 l 0 1 1 0 1 0
1 0 1 1 1 l 1 1 0 1 0 0
and or not-and not-or
Function Tables for Logical Functions

3i Figure 14.2
The Method of Exhaustion. The process of examining all 
possible cases to determine some property of a function 
(used above on the logical functions) is called the method 
of exhaustion. It can often be applied even if the number 
of possible values of the arguments is unlimited. For 
example, the arguments of the function < can take on an 
unlimited number of values, but it is only necessary to 
consider three cases: if the arguments are arranged in
ascending order according to value, then the order is either 
X Y, in which case the result of the function X<Y is 1, or 
the order is Y X in which case the result of X<Y is 0, or 
the two are equal, in which case the result is 1. This may 
be summarized in a table as follows:

Case X<Y
~X Y 1
Y X 0
Y = X 1

For example, if X^b and Y+-3 then the values X and Y arranged 
in ascending sequence appear in the order Y X. The 
appropriate case is therefore the second row of the body of 
the table and the result of the function X<Y may be read off 
as 0. Similarly, if X<-5 and Y+-5, then the appropriate case 
is Y-X and the result appears in the last row of the table.
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Moreover, if a column for the expression Y<X is added, 
the table appears as shown in Table 14.3. This table shows 
that the function < is not commutative.

Case X < Y Y <X
X Y 1 0
Y X 0 1
Y = X 1 1

Non-Commutativity of <
Table 14.3

The same scheme of exhaustion can be used to determine 
the commutativity of the other relations < = > > and *, 
and of the functions T and L. For example, Table 14.4 shows 
that maximum is commutative.

Case xr Y Y \X
X Y Y Y
Y X X X
Y-■X X X

Commutativity of r
Table 14.4 g]4

14.3 ASSOCIATIVITY
Since X+(Y+Z) yields the same result as (X + Y )+Z, the 

function + is said to be associative. Multiplication is 
also associative, that is,

(Zx(JxZ))=((IxJ)xZ)
It is easy to show that subtraction and division are not 
associative. For example, 4-(3-2) yields 3 and (4-3)-2 yields “1.

The associativity of the maximum function can be 
established by examining all possible cases. If three names 
I, X, and Z are arranged in non-decreasing order according 
to their values, they can occur in exactly six possible 
arrangements. These are shown in Table 14.5, together with 
columns showing the evaluation of the expression X\( Y\ Z) and 
(X\Y)[Z. This evaluation proceeds as follows. The first 
column shows the values of the expression X \ Y , and the 
second shows the maximum of these values and Z; the third 
column shows the values of Y[Z, and the fourth column shows 
the maximum of X and these values. Since columns 2 and 4 
agree, the function f is associative.
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Case X Y (xrY)[Z Y[Z Xf(YFZ)
X Y Z Y z Z Z
X Z Y Y Y Y Y
Y X Z X Z Z Z
Y Z X X X Z X
Z X Y Y Y Y Y
Z Y X X X Y X

Associativity of T

5-713 Table 14.5

14.4 DISTRIBUTIVITY
The identity
(Xx(y+z) ) = ( Uxj) + (ixz) )

is said to represent the distributivity of multiplication 
over addition, since it shows that the effect of 
inultiplication by X on the sum Y+Z (shown to the left of the 
equal sign) can be said to distribute equally over each of 
the arguments Y and z as shown on the right.

To see why multiplication distributes over addition, 
it is helpful to use the picture of multiplication 
presented in the discussion of commutativity, that is, the 
product of two factors P and Q is pictured as the number of 
elements in the array (P,Q) p The left side of the
identity of the preceding paragraph is then represented by 
the array (X9Y+Z)p’Q 1, and the right side by the sum of the 
arrays {X9Y) p'Df and (X9Z) p»Df. For example, if X<-A and y*-9 
and Z*-5, then:
(X,Y+Z)p

□□□□□□□□□□□□□□
□□□□□□□□□□□□□□
□□□□□□□□□□□□□□
□□□□□□□□□□□□□□
(X9Y)p 'D' 
□□□□□□□□□ 
□□□□□□□□□ 
□□□□□□□□□ 
□□□□□□□□□

(X9Z)P1 □' 
□□□□□ 
□□□□□ 
□□□□□ 
□□□□□

If the last two arrays are pushed together they form an 
array identical to the first and therefore contain the same 

8-9(3 total number of elements as the first.
The function and distributes over or, that is:

(*A(YVZ))=((XAY)v(XAZ))
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Since the arguments X 9 7, and Z are each limited to the 
values 0 and 1, this identity can be examined by evaluating 
the expressions for each of the eight possible cases as 
shown in Table 14.6.

7 Y Z zvz x a (yvz) XA Y ZAZ (ZAJ)V(ZAZ)
0 0 0 0 0 0 0 0
0 0 1 i 0 0 0 0
0 1 0 i 0 0 0 0
0 1 1 l 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 i l 0 1 1
1 1 0 i l 1 0 1
1 1 1 i l 1 1 1

Distributivity of a over v
Table 14.6 110-12

The function [ distributes over L/ that is,
ur(nz)) = (urmum)

To examine this putative identity, it is necessary to 
consider the six possible arrangements of the arguments 
X 9 Y , and z when arranged in non-decresing order according

value • This is shown in Table 14 .7.

Case YLZ xr(y l z) XF Y xrz (xrx)L(xrz)
X Y z Y Y Y Z 7
X z Y Z Z Y z Z
Y X Z Y X X z X
Y z X Y X X X X
z X Y Z X Y X X
z Y X Z X X X X

Distributivity of C over L 

Table 14.7
A function may distribute over itself. For example, 

the function L does so:
(XL(7|_Z) ) = ( (XLZ)L(XLZ))

This fact can be examined by means of a table similar to 
Table 14.7. It can easily be shown that plus does not 
distribute over itself. For example, 3+(4+5) is not equal 
to (3+4)+(3+5).
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The distributivity properties of functions can be 
summarized conveniently in a table. For example, for the 
functions + x f and L, the results derived thus far are 
shown in Table 14.8. For example, the second row (labelled 
x), shows that x distributes over +. The blank entries of 
the table could be filled in by further analysis. For 
example, plus does not distribute over either itself or 
times, but it does distribute over both maximum and minimum; 
the complete first row of Table 14.8 would therefore be 
0 0 1 1 .

+ x r l
+ 0

X 1r 1L 1

Some distributivity properties 
13-15E Table 14.8

14.5 IDENTITIES BASED ON COMMUTATIVITY, ASSOCIATIVITY, AND 
DISTRIBUTIVITY

It is important to recognize that an identity such as 
(Ixj)=(y*x) applies not only to the simple names X and 7, 
but also to any expression that may be substituted for them. 
For example, if the expression (P x Q - r ) is substituted for X, 
and the expression (M + R x Q )  is substituted for Y, then the 
foregoing identity (representing the commutativity of 
multiplication) ensures that

( P x Q - R ) x ( M + R x Q )

is equivalent to
( M + R x Q ) x ( P x Q - R )

The combined use of the properties of commutativity, 
associativity and distributivity leads to a host of
identities too numerous to list. For example, (A + B ) x C is
equivalent to C *(A+B) (since x is commutative), which is 
equivalent to (C * A )+(C * B ) (since x distributes over + ), 
which is equivalent to (A * C ) + ( BxC) (since x is commutative). 
Consequently, ( A + B )xC is equivalent to ( A x C ) + ( B * C ) .

In order to show the proof of such a result clearly, 
it is convenient to simply list the successive equivalent 
statements, one below the other, together with notes to the 
right of them showing what property was used to justify each 
new equivalent statement. For example, the proof used in 
the preceding paragraph would be shown as follows:
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(4+5)xC
Cx ( 4 + 5 ) Commutativity of x
(5x4)+(5x5) Distributivity of x over +
(4xc)+(Bxc) Commutativity of x
A proof can be illuminated by evaluating each of the 

expressions occurring in it for some chosen values of their 
arguments. For example, if 4*-3 and B+-5 and 5«-7, the 
illumination of the foregoing proof would appear as follows:

( 3 + 5 ) x 7 
56

7 x(3 + 5)
56

( 7x 3) + ( 7x5)
56

( 3 x 7 ) + ( 5x7)
56 §16-13

For convenience, the notes written to justify each 
step in a proof will be abbreviated; the symbols 5, 4, and 
5 will be used to denote commutativity, associativity and 
distributivity. Thus 5+ means that + is commutative, 4 x 
means that x is associative, and x5 + means that x 
distributes over +.

The following shows the use of these abbreviations in 
the proof of a rather important identity:

(A+B)x(5+5)
((4+5)x5)+((4+5)*D) *5 +
( 5 x( 4 + 5 )) + (5x(4+5) ) Cx
((5x4)+(5x5) ) + ((5x4) +(5x5) ) x£ +
((4x5)+(5x5))+((4x5)+(5x5)) 5x
(4x5)+((5x5)+(4x5))+(5x5) 4+
(4x5)+((4x5)+(5x5))+(5x5) 5+
(4x5)+(4x5)+(5x5)+(5x5) 4+

Consequently, the first expression, (4+5)x(5+5), is
equivalent to the last, ( 4x 5) +( 4 x5 ) + (5 x 5) + ( 5 xj) ) , that is:

(4 + 5 ) x(5+5)
(4x5)+(4x5)+(5x5)+(5x5)

In other words, each element of the first sum is multiplied 
by each element of the second sum and the four resulting 
terms are added together. §19-21

The foregoing result will be used in proving further 
results, and to make it easy to refer to, it will be given 
the name Theorem 1. One reason for the importance of 
Theorem 1 is that it has some useful special cases. For 
example, if 4 and 5 both have the same value x, then
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according to Theorem 1, the expression (X-tB) x (x+D) is 
equivalent to (X*X)+(X*D)+(Bxi)+(B*D). This leads to the
following derivation:
(X+B)*(X+D)
(B+X)*(D+X)
(BxD)+(B*X)+(XxD)+(XxX)
(BxD)+((BxX)+(X*D))+(XxX)
(B*D)+ ( (X*B)+(XxD) ) + ( W )  
(BxD)+(X*(B+D))+(X*X)
(B*D)+((B+D)xX)+(X*X)
(BxD)+((B+D)*X)+(X*2)
( S x £ )  + ((B + D ) x ( X * 1)  ) + ( * * 2 )
( (Sx£>)xZ*0)+( (S+D)xX*l)+(X*2)
+/((BxD)xX*0),((£+£)xJ*l)9(X*2) 
+/((B*D),(B+D),l)xl*0 1 2

£ +
Theorem l
4+
£xxp+
exU*2) = (zxj)
( j *d  = z
(Z*0)=1
(p+£+i?)=+/p,3,p 
((P[l]xQ[l])+(p[2]x^[2]) 
+ (P[ 3]x£[ 3]) )=+/Px^

Finally then:
(X+B)*(X+D)
+ /((B*D) AB+D) 9 l)xX*Q 1 2

In other words, (X+B)x(x+D) is equivalent to a polynomial in 
X with the coefficients B xD and P+P and l.

For example, if B is 2 and D is 3, the polynomial has 
the coefficients 6, 5, and l. In other words:

((X+2)x(J+3) )=(+/6 5 1x1*0 1 2)
The product ( X + 2 ) x ( x + 3 )  can also be expressed in the 

form x / x + 2  3. In general if V is any two-element vector, 
then x / x + V  is equivalent to (X + V I 1])x(x + V I 2]). Moreover,
the coefficients of the equivalent polynomial are given by 
x / v  and + / V  and 1. That is:

22-23® ( x / x + V ) = + / ( ( x / v ) ,( + / V ) ,l)xj*o 1 2

14.6 IDENTITIES ON VECTORS
Thus far, the identities considered have been applied 

only to scalar arguments. However, many of them apply 
equally to vectors. For example, the commutativity of x 
assures that (axB ) = (BxA ) and that 3x5 is therefore equal to 
5 x3 . However, if A is the vector 3 5 7  and B is the vector 
2 0 “l, it is still true that (AxB)=(B*A). For example:

4 ^ 3  5 7
B +  5 0 1
AxB

15 0 7
BxA

15 0 7
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Commutativity of x applies for vectors because it applies 
for each of the corresponding pairs of elements of the 
arguments.

For the same reason, the associativity and 
distributivity of functions apply to vectors as well. For
example:

i4«-3 5 7 
B+- 5 0 1 
C+- 6 4 2 
(A\B)\C 

6 5 7
A\{B\C)

6 5 7
Ax(B+C)

33 20 7
(AxB)+(AxC) 

33 20 7 
AIB

3 0 1
C+(AIB)

9 4 1
C+A

9 9 9
C+B

11 4 1
(C+A)L(C+B) 

9 4 1 ES24-25
There are also some important identities concerning 

the reduction of vectors. Thus (+/4)+(+/£) is equivalent to 
+/A9B. For example:

(+/1 2 3)+(+/4 5 6 7 )
(l+2+3)+(4+5+6+7) 
1+2+3+4+5+6+7 
+/1 2 3 4 5 6 7  
+ /( 1 2 3),(4 5 6 7)

Definition of +/
A+
Definition of +/ 
Definition of ,

Moreover, if the vectors A and B are of the same dimension 
so that A+B is meaningful, then (+/4)+(+/£) is equivalent to 
+ /A + B. For example, if A is 1 2 3 and B is 4 5 6:

(+/1 2 3)+(+/4 5 6) 
(1+2+ 3) + (4 + 5t6 )
1+2+(3+4)+ 5 + 6 
1+2 + (4 + 3)+5+6 
l + (2 + 4)+(3 + 5 ) + 6 
l+(4+2)+(5+3)+6 
(l+4)+(2+5)+(3+6) 
+/(1+4),(2+5),(3+6) 
+/1 2 3+4 5 6

Definition of +/
4 +
c+
£ + 
c+
A +
Definition of +/
Definition of vector addition
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Since the only properties of addition used in the 
foregoing derivations were its commutativi ty and
associativity, the same results hold for any function which 
is both commutative and associative. For example:

( ( r M ) r (  r / s )  ) = ( [ / a 9b )
( ( \/ a ) r ( \/ b ) ) = ( r /a +b )
( ( x / A ) x ( x /B) ) = ( x / A 9B)
( ( x M  ) x ( x/B) ) = (x/A*B)

Thus if F  is any function which is both associative 
and commutative, then

( ( F / A ) F ( F / B ) ) = ( F / A , B )

Since this is a very useful result which will be referred to 
again in later derivations, it will be given the name 
Theorem 2.

Moreover, if F  is any function which is both 
associative and commutative, and A and B are vectors of the 
same dimension, then

((F/A)F(F/B))=(F/A F B )(Theorem 3)
This result will be called Theorem 3, as indicated by the 

26-2711 note to the right of the identity.
Since x distributes over +, a product of sums can be 

expressed as a sum of products. More explicitly, if v and w 
are two vectors, then

(( + / F ) x ( + /a/)) = + / + / i/ o . x £/ (Theorem a)
For example:

28£

v+3 i a 
W+5 0 2 6
( + / V ) x ( + / W )

104

Xo

15 0 6 18
5 0 2 6

2 0 0 8 24
+ / y o. xw 

39 13 52
+ / + / y ° . xw10 4
The preceding identity (Theorem A) and the following 

one will both be useful in the treatment of products of 
polynomials:

( (AxP)o.x(BxQ) ) = ( (Ao.xB)x(po.xQ) ) ( T h e o r e m  5)



14.6 Identities on vectors 163

For example:
4^1 2 3
P+-4 5 6
P^2 0 2
Qx- 3 1 3
A x P

2 0 6
B x Q

12 5 18 7
(4xP)o.x (£x

24 10 36 14
0 0 0 0
72 30 108 42

A° . xB
4 5 6 7
8 10 12 14

12 15 18 21

P».x$
6 2 6 2
0 0 0 0
6 2 6 2

(-4° . xB) X ( P °
24 10 36 14
0 0 0 0

72 30 108 42
Each side of the identity of Theorem 5 is a table; the 
identity will be derived by showing that (for any value of I 
and any value of J) the element in the I th row and Jth 
column of the table on the left is identical with the 
corresponding element of the table on the right:
((AxP)o.x(BxQ))[J;J] 
(Uxp)[J])x( (BxQ)lJ ]) 
{AlIlxPlIl)x(BlJlxQlJ]) 
AlI}x(PlIlxBlJl)xQlJl 
A l I ^ x i B U I x P l I ]  ) x £ [ J ]  
(/1[I]x B[c/])x (P[I] x $[c/]) 
((io.xB)[I;t/])x((Po.X$)[I;{/]) 
(u°.xB)x(Po.x£))[x;en

Definition of o . x  
Multiplication of vectors
Ax 
£x 
Ax
Definition of o.x 
Multiplication of tables

The only properties of the function x used in this 
derivation are its associativity and commutativity. 
Therefore, the same derivation would apply for any function 
which is both assocative and commutative. Hence Theorem 5 
remains true if any such function is substituted for x. For 
example:

(urp)o.r(srG))=(Uo.rs)r(po.m) @29-31
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14.7 THE POWER FUNCTION
Consider the following expressions:
2*3
2*4

16
(2*3)x(2*4)

128
2 *( 3 + 4)

128
(2 *(3 + 4) ) = ( (2 * 3)x(2*4) )

1

The foregoing result suggests the following identity: 
(A*(B+C))=((A*B)*(A*C)) (Theorem 6)

It can be derived as follows:

3211

( A * B) x( A* C)
(x/Bp4 )x(x/Cp4 )
x / ( S P j4) , x ( C P 4 )  
* / ( B + C ) p A  
A *( B + C )

( P * Q ) = x / Q p P  
Theorem 2
Definitions of p and ,
( P * Q ) = x / Q p p

Theorem 6 leads to a very useful identity on vectors. 
If I is a scalar and E and F are any vectors, then:

( ( X * E ) o . x ( x * F ) ) = ( X * E o . + F ) (Theorem 7)
For example:

E<- 0 1 
F*-0 1 
Z^-2 
J * F

1 2 4
X*F

1 2 4 8 
( X*E ) ° .

1 2 4 8
2 4 8 16
4 8 16 32 

Eo  . +F
0 1 2 3
1 2 3 4
2 3 4 5 

X*Eo,+F
1 2 4 8
2 4 8 16

33® 4 8 16 32



15
Identities 

on Polynomials

15.1 INTRODUCTION
In the introduction to polynomials in Section 13.5 it 

was remarked that the importance of polynomials rests not 
only on the facts that they can be evaluated easily and can 
be used to approximate any function of practical interest, 
but also on the fact that they are easily analyzed: the sum 
of two polynomials is equivalent to a polynomial, the 
product of two polynomials is equivalent to a polynomial, a 
factorial polynomial is equivalent to a polynomial, and an 
expression of the form ( X+ l ) * N is equivalent to a 
polynomial. Each of these equivalences is derived in the 
present chapter. The theorems cited are those of Chapter 
14.

The polynomial was defined in Section 13.5 by the 
expression +/ C * X * ~ 1 + i p , C where C is the vector of 
coefficients and X  is the argument. This expression applies 
only to a scalar argument X, and a more general expression 
applying to a vector argument X  was derived in Section 13.6 
and defined as the function P as follows:

1 Z+-C P X
Z + ( X o . * " l + i p ,<?) + . xCV

15.2 THE SUM OF POLYNOMIALS
Consider the polynomials 1 3 5  P X  and 6 1 4 P X. 

Their sum can be shown to be equivalent to the polynomial 
7 4 9 P X  whose coefficient vector is the sum of the 
coefficient vectors of the given polynomials, that is:

((1 3 5  P  * ) + ( 6  1 4 P *))=((1 3 5+6 1 4 ) P  X)

In general, if X  is a scalar and A 9 B and E  are 
vectors of the same dimension, then

( (+/hxj*£’) + ( + /Sxj*E) ) = (+ / U + S  )xX*F)

In particular, if E  is the vector ~ l + i p A, then the left side 
of the foregoing identity is the sum of the polynomial with 
coefficients A and the polynomial with coefficients B , and
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the right side is the polynomial with coefficients A+B. The 
derivation of the identity follows:

(+/AxX*E)+(+/BxX*E)
+ /(AxX*E)+(B*X*E)
+ /((X*E)*A) + ((X*E)*B) 
+/(X*F)x(A+B)
+/(A+B)x(X*E)

Theorem 3
£x
x£) +
Cx

The polynomials C P X and (£7,0) P X are clearly
equivalent, since an extra term in the polynomial with a
zero coefficient will contribute nothing to the sum. For
example, if O l  2 3, and X̂ -4, then:

C P X
+ /1 2 1 2
+ /1 2 3x1 4 16
+ /1 8 48
57

and
(C, 0) P X
+ /1 2 3 Oxl 4 16 64
t/1 8 48 0
57
More generally, any number of zeros may be appended to 

the right of a vector of coefficients without changing the 
polynomial, that is, ((C,il/p0) P X)-{C P X). Consequently, 
two polynomials with coefficients C and D of different 
dimensions may be added by first appending enough zeros to 
the shorter of the two to yield a vector of the same 
dimension as the longer. For example, if (pD)<pC, then:

((C+(pC)tP) P X)=(C P X) + (D P X)
The following identity applies to every case, that is, for 
( pD) less than, equal to, or greater than pCi

^ ( p o r ( Pz7)
2® ( ( (MfC) + (MiD) ) P X)=(C P X) + (D P X)

15.3 THE PRODUCT OF POLYNOMIALS
The product of two polynomials is equivalent to 

another polynomial whose coefficients are easily determined 
from the coefficients of the given polynomials. In other 
words,

(E P X)=((C P X)x(D P X))

and the coefficients E can be determined from C and D. The 
method will first be described by means of an example and 
the derivation will be shown later.
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Suppose that C ^ 3  1 4 and D ^ 2  0 5 3 .  First form the 
multiplication table C o . x p whose value is:
5 0 15 9
2 0 5 3
8 0 20 12

Then draw diagonal lines through the table and sum the 
numbers on each diagonal, placing each sum at the end of its 
diagonal as shown below:

Co . x D

The result is the vector of coefficients 6 2 23 It 23 12;
that is: (5 2 23 I t  23 12 P X)=(3 I t  P  X ) * ( 2  0 5 3  P X) g 3 - 4

We begin with an informal proof which will expose the 
basic notion employed in the succeeding formal proof. 
Consider the multiplication table C ° . x p  bordered on the left 
by C and above by D , and bordered to the right by the 
exponents of X associated with each of the coefficients C ,  
and bordered below by the exponents associated with the 
coefficients D%

0
1
2

The product of the polynomials C P  X and D P  X is a sum of 
the products formed from each term of the first polynomial 
with each term of the second. These products are therefore 
of the form:

2 0 5__ 3
3 6 0 15 9
1 2 0 5 3
4 8 0 20 12

0 1 2  3

(C[i]x(x * I - l ) * ( D l J ] x X * J - 1)
(0[I]x2[e/] )X(X*J-I)x(**e7-1) OX
C l J]xp[j]x x * ((I - 1)+(J - 1 )) Theorem 6
The product C l I ~ \ x D l J ' ]  is the entry in row I  and column 

J  of the table, and the exponent associated with it is 
therefore (I - 1) + (J - 1), that is, the sum of the corresponding 
bordering elements on the right and below. Hence the 
exponents associated with the body of the table are those in 
the table 0 1 2°.+0 1 2 3 whose value is:
0 1 2  3
1 2  3 4
2 3 4 5
3 4 5 6
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From this it is clear that the products corresponding to any 
one value of the exponent lie along a diagonal and are 
therefore summed as shown at the beginning of this section.

A formal proof will now be presented. The product of 
the polynomials C P X and D P X may be written as:

(+/CxX*~l+\pC)x(+/DxX*~l+\pD )
In this form it is clear that the product is a product of 
the sums of two vectors V and W, where V*-C*X* ~1 +1 p C and 
W+-D*X* 1+ipD, that is, ( + /V)x( + /W). The results of Theorem 
4 can therefore be applied to express the result in terms of 
the multiplication table for V and Wz

((+/V)x(+/W))=+/+/V°.xw

Since V is the product of two vectors (that is, C and 
X* 1+ipC) and W is the product of two vectors, Theorem 5 can 
be applied to write the table V°.*W as the product of the 
two tables C°.*D and (X*”l+ipC)°.x(J*“i +ipD). That is:

(F°.xf/) = (6’o.xZ))x((l*"l+ipC)o.x(l*"i+1p/}))

But Theorem 7 allows us to write X*(“l+ipC)°.+ (”l + ipD) for 
the second table; that is,

(yo.xf/) = ((7o.xp)xj*Ci+ipOo.+Cl + ipZ))
For example, if C and D are as defined in the earlier 

example (that is, <7̂ 3 1 4 and D+2 0 5 3 ), then:

o X ( l+ipC)°,
6 0 15 9 0 1 2 3
2 0 5 3 1 2 3 4
8 0 20 12 2 3 4 5
The table on the right gives the exponents of X.

To summarize:
(C P X)x(D P X)
( + /<7><X* 1 + i pC )x ( + /Z)x j*~i+ i pD ) Definition of polynomial
+/+/(Cxx*~l+\pC)o.x(D*X*~1+ipD) Theorem 4
+ / + /(C'o.xD)xU*-i + ipC')o.xU*-i+ipz?) Theorem 5 
+ / + /(£,°.xp)xj*(“i+lpC)o.+(“i+1pp) Theorem 7

It is clear that the table of exponents 
( l+ipC)°.+( 1+ipP) will always be of the form shown in the 
example in the preceding paragraph, that is, it contains a 
zero in the upper left corner, lTs in the next diagonal, 2’s 
in the next diagonal, and so on. Hence the element of the 
table C°.xD that is multiplied by X*0 is in the upper left 
hand corner, the elements multiplied by X*1 are on the next 
diagonal, etc. Hence the appropriate coefficients for X*0
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and x*l, and X*2, e t c . ,  in the product polynomial are 
obtained as the upper left corner of C°.*D, the sum of the 
next diagonal of C°.*D, the sum of the next diagonal, etc. 
This is the pattern shown in the rule given at the outset 
for multiplying polynomials. 1

15.4 THE PRODUCT x/^+y
In Section 14.5 it was shown that the product 

(X+2)*{X+3) could be expressed in the form x/X+2 3, and
that, more generally, if V were any 2-element vector, then 
x/j+y was equivalent to ( *+y[ 1 ] )x ( *+7[ 2] ). Moreover, it was 
shown that x/j+y was equivalent to the polynomial with 
coefficients (x/y),(+/V),1. The case of a vector V of 
arbitrary dimension will now be considered.

The expression X+2 is equivalent to tne polynomial 
with coefficients 2 1, that is, (I+2)=+/2^hI*o^. 
Similarly, Z+3 is equivalent to the polynomial with 
coefficients 3 1. Therefore, the product (Z+2)x(x+3) can be 
treated as a product of polynomials. The coefficients of 
the product polynomial may then be obtained by the method of 
Section 15.3 as follows:

2 lo.x3 1

This result agrees with that obtained in Section 14.5. 
Consider now the product x/j+4 2 3: 

x/X+Ll 2 3
( X  + L± ) x ( X + 2 ) x ( X - h 3 )  Definition of x/
(^+4)x (6 5 1 P X )  Preceding result
(4 1 P X)x(6 5 1 P X ) X+4 as a polynomial

This last product of polynomials can again be evaluated by 
the method of the earlier section:

4 1 ° . x 6 5 1

Hence (x/x+4 2 3) = (24 26 9 1) P X
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7 - 1 0 1

It should now be clear that the product *■ IX\V is a 
product of polynomials with coefficients VLll,l and V[2l,l 
and F[3],l, etc. The coefficients of a polynomial 
equivalent to x/X+V can therefore be obtained by multiplying 
these polynomials together in turn. The following function 
24 produces the desired coefficients as a function of the 
vector V:

V Z<-QA V
[1] Z-*-l
[2] V*-,V
[3] Jf- pV
[4] Zf(y[i]xz,0)+(o,z)
[5] If-I-1
[6] ->-3 xI s 0 V
For example:

TAQA*-o 
Q 4 2 3

<24 [ 3 ]  3 1
Q A L 3 ] 6 5 1
Q A [ 3 ]  2 4 2 0 9 1
24 26 9 1
Finally, then:

( */X+ V) = (QA V)P X

15.5 BINOMIAL COEFFICIENTS

The function (1+1 ) * 4 is equivalent to the function
(I+l)x(A-+l)x(*+l)x(J+l)

and is therefore equivalent to the function
x/I+l 1 1 1  

or
x / X +4p 1

More generally:
( ( 1 + 1  )*N )= x /X + N p 1

The last result of Section 15.4 stated that
(x/X+V)=(QA V)P X 

For the case Ff-iVpl this becomes
(x/X + Npl ) = (QA Npl)P X
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Combining this result with the final result of the preceding 
paragraph yields the following important identity:

(U+l )*tf)=(&4 N p l ) P  X

The results of Exercise 15.8 suggest that the function 
QA applied to the argument Npl yields the same result as the 
simpler function B IN of Section 12.4 when applied to the 
argument N. In other words, they suggest that:

a /{QA Npl ) -BIN N

The reason for this can be seen by examining the two 
functions repeated below:

VZ*-QA V V Z<-B IN X
[1] Z-f-1 [1] Z + 91
[2] V+,V [2] ->3 x X^ p Z
[3] I + pV C3] Z«-(Z,0) + (0#Z)
[4] Z<-( y[I]xZ , 0 ) + ( 0, Z ) C4] ->2 V
[5] I-kT-1
[6] -*-3 x J;£ 0 V
If each element of the argument V is equal to 1, then line 4 
of the function QA is equivalent to line 3 of the function 
B I N . Moreover, this line of each function is repeated the 
same number of times because pV is equal to N if V*-Npl. EE112

15.6 THE FACTORIAL POLYNOMIALS
The factorial polynomials introduced in Section 10.8 

for the purpose of fitting functions were defined as 
follows:

Degree of 
Factorial Factorial
Polynomial Polynomial

0 i
l X
2 zx ( X - l )
3 Ix(M)x(Z-2)
4 X*(.X-l)x(X-2)x(.X-3)

Such a polynomial can also be written in the form 
x/Z+7, where V is the vector 1 -\N and N is the degree of the 
polynomial.

The coefficients of a polynomial equivalent to the 
factorial polynomial of degree N can therefore be obtained
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by applying the function QA to the argument 1-xN. For 
example:

QA -0
0 1

QA -0 1
O i l

£-4-0 1 2
0 2 3 1

QA -0 1 2 3
0 6 11 6 1
Hence:

( 0
(0

( 0 2
6 11

(0 1 P X)=X
_1 1 P X)=Xx(X-l)
_3 1 P X)=Xx(X-l)x(x-2)
6 1  P X)=Xx(X-l)x(X-2)x(x-3)

In the introduction to Chapter 14 it was shown that 
the function +/(iX)*2 (that is, the sum of the squares of 
the integers to X) was equivalent to the following sum of 
factorial polynomials:

0+X+((3t2)xXx (X-i ))+(2v6)xXx (X-1)x (X-2)
Moreover, it was stated that this expression was equivalent 
to the polynomial (^6)x(x*o 1 2 3)+.xo 1 3 2. This 
statement can now be proven as follows:
0 + X + ( ( 3 v 2 ) x X x ( X - 1 ) ) + ( 2 t 6 ) x X x ( X - i ) x ( J - 2 )
(t 6)x 6 x (X+((3v 2)xX x (X-i ))+(2t 6)x X x (J-1)x (X-2)) 1 = (*6 )x 6
(l6)x((6xZ)+(9xXx(x-i))+(2xXx(X-l)x(x -2))) x£+
(i6)x((6x0 1 P X )+(9x 0 I I P  I) + (2x0 2 ”3 1 P X)) Note 1
(t 6)x ((o 6 P X)+(0 9 9_P X ) + ( 0 4 _ 6 2 P J)) Note 2
(*6)x((0 6 0 0 P X ) + ( 0 “9 9 0  P X ) + ( 0 4 - 6 2 P X)) Note 3
(*6 )x(o 1 3 2 P X) Note 4
(v6 )x+/o 1 3 2 xl*o 1 2 3  Note 5
(t 6)x + /(x *o 1 2 3 )x 0 1 3 2 £x
(v6 )x(J*o 1 2 3)+.x o 1 3 2 Note 6

13-141

Note 1 
Note 2 
Note 3 
Note 4 
Note 5 
Note 6

Polynomial equivalent of factorial polynomials
( A x ( C  P X))=(A*C) P X
((C,0) P X)=C P X
Sum of polynomials
Definition of Polynomials
Definition of +.x

15.7 MATHEMATICAL INDUCTION

The function +/\X can be analyzed by constructing a 
difference table as follows:
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X + /xX D + / i X D D + /xX D D D-y / x X
0 0 1 1 0
1 1 2 1 0
2 3 3 1
3 6 4
4 10

The results of Section 10.8 may then be applied to conclude 
that the function + /iX was equivalent to the following sum 
of factorial polynomials:

0+X+(.5xjx(X-l))
In drawing this conclusion it is assumed that every one of 
the third differences (in the last column) would be 0. This 
happens to be true for the function + /xX, but the 
calculations of this table do not prove it to be so.

For example, suppose one attempted to analyze the 
function

.5x Z x X-l)+Xx(J-l)x(J-2)x(X-3)x(X-4)

The first five entries in the difference table would appear 
exactly the same as the table shown for + /iX, and one might 
erroneously conclude that all third differences would be 
zero. However, if one considered one further row, the table 
would appear as follows:
X Y D Y D D Y D D D Y D D D D Y D D D D
0 0 1 1 0 0 120
1 1 2 1 0 120
2 3 3 1 120
3 6 4 121
4 10 125
5 135

A difference table can yield the coefficients of a 
polynomial which fits a given function exactly for a certain 
number of values of the argument and which probably fits it 
very nearly or exactly for all values of the argument, but 
study of the difference table alone cannot ensure that it 
fits for all points. It is therefore desirable to develop 
other means of verifying that an expression derived from a 
difference table does in fact agree with the given function 
for points other than those actually used in the table.

Let us suppose that the functions + /\X and X+.SxX^X-l 
do agree for some integer value K r that is, we suppose that

(+/iK)=K+.$+KxK-l
From this assumption alone, we will now show that they must 
agree for the argument K+1.
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We have undertaken to show that +/\K+1 is equal to 
(K+l)+.5x(K+l)x(K+l)-l, in other words to show that

( + / i X + l ) - ( U + l ) + . 5 x U + l ) x (  £ + i ) - i )

We wish to show that F and G agree for all integer values of 
their argument, that is, that (F X)-(G X ) is zero for every 
integer X. We begin by expressing the difference for the 
argument K+l in terms of the difference for argument K as 
follows:

(F K+1)-(G K+l)
( + / i K+ 1 ) - ( (K+1) + . 5 x ( K+l ) x (K+l ) -1) Definitions of F and G 
((+/\K)+(K+1))-((K+1)+. 5x (£ + i )xR) (+/\K+1)=(+/\K)+K+1 
( (  + / i £ )  + ( £ + l ) - ( £ + l ) ) - . 5 x ( £  + l ) x £
(( + /\K ) + 0 )-. 5x(K+l)*K 
(+/\K)~. 5x(2*K)+(K-1 )xK 
(+/\K)-K+.b*K*K-l
(F K)-(G K ) Definitions of F and G

Hence the difference between F K+l and G K+l must be 
^the same as the difference between F K and G K. In otner
words, if F K and G K are equal, then F K+l and G K+l must 
also be equal.

But for K-1, F K and G K are obviously equal; that is 
+ /\1 is equal to 1+.5xlx 0 . Hence F 1 + 1 must equal G 1 + 1, 
that is, F 2 equals G 2. Thus, for K=2, F K equals G K.
Therefore F 2+1 equals G 2+1, and so on for all possible 
integer arguments. Hence F X equals G X for all positive 
integer values of X.

This method of proof is called mathematical induction. 
To prove that two function F and G are equivalent, proceed 
as follows:

1) Show that the difference (F K+1)-{G K+l) is equal to 
the difference (F K)-G K.

2) Show that F 1 is equal to G 1.
If items 1 and 2 can both be shown to be true then the 

15® functions must agree for all positive integer arguments.

is zero

Let the functions F and G be defined as follows
V Z^F X 
Z+ + / i XV

1Z+G X
Z+X+.5 xXxX-1V
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The Representation 

of Numbers

16.1 INTRODUCTION
A number can be represented in a variety of ways. For 

example, one dozen could be represented in any of the 
following three ways:

|||||||||||| A list of one dozen marks.
XII Roman numerals.
12 Decimal.

There are many other useful ways of representing numbers, 
and no one of them is best, since each possesses advantages 
for certain purposes. For example, the first method above 
is much simpler for a beginner to understand than the 
decimal representation since the use of decimal 
representation requires an understanding of the notion of 
place value and of multiplying the successive digits by 
various powers of ten. On the other hand, a list of marks 
would be tedious to write for a large number such as 210. 
The Roman numeral system is also relatively simple and 
reasonably concise (for example CCX for decimal 210), but is 
much more awkward than decimal when addition or 
multiplication are to be performed on the numbers 
represented. Try, for example, to square XCXLIV (without 
converting to and from decimal), and then try to state 
explicit rules for carrying out such multiplication.

Any scheme for representing numbers is usually 
referred to as a number system. Table 16.1 illustrates each 
of the types of number systems for representing positive 
integers which will be considered in this cnapter. This 
table will be referred to throughout the chapter and a 
careful examination of it at this point will probably be 
helpful. The chapter includes some discussion of the
representation of negative and rational numbers. ill

One way to gain an understanding of an unfamiliar 
number system is to learn how to perform operations such as 
addition and multiplication within it. To make such
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processes clear it will be helpful to write functions which 
define them. For example, if

V+l 0 0 0 0 0 0  
W+l 1 0 0 0 0 0

then (in the Prime Factor system of Table 16.1) the vector V 
represents the number 2 and the vector W represents the 
number 6. Moreover, the vector X + V + W represents the product 
of these two numbers, that is, 12. Thus:

X+V+W
X

2 1 0 0 0 0 0

which represents 12 as may be seen from Table 16.1.
A function for multiplication in the Prime Factor 

system can therefore be defined as follows:
V Z+A PFTIMES B 

[1] Z+A+B
V

For example:
P+- 0 1 0 0 0 0 0 Represents 3
Q+-0 0 1 0 0 0 0 Represents 5
P PFTIMES

2S 0 1 1 0 0 0 0 Represents 15
The number represented by BF in the system Rl of Table

16.1 is represented by 1 5 in system R4. Determining the 
representation of a number in R4 from its representation in 
Rl is referred to as converting the number from Rl to R4.

Studying the rules for conversions from and to an 
unfamiliar number system provides a second approach to 
understanding it. In order to provide an example of 
defining the process of such a conversion it will first be 
convenient to introduce a new primitive function called 
index-of.
Index-of. The index of the quantity 7 in the vector

V*-2 5 7 1 8
is 3, that is, F[3] is 7. The symbol i represents a dyadic 
function which yields the index of its right argument in its 
left argument. Thus:

V i 7 
3
4

Vi 1
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178 Introduction 1 6 . 1

If the right argument is itself a vector, the result is the 
vector of the indices of each of its elements. For example:

7 i 7  1
3 4

2 3 5 7 11 i 5 11 3 
3 5 2

A*-' ABCDEFGHIJKLMNOPQRSTUVWXYZ '
J+A\'I SING OF OLAF'
J

9 27 19 9 14 7 27 15 6 27 15 12 1 5
AIJ1

I SING OF OLAF

If W+-3 1 4  3 7, then the index of 3 in W could be 
either l or 4; the i function is defined to yield the 
smallest possible value of the index. Thus:

Wi 3
1

8 6 1 0 4 6 2 1 0 1 2 4 6 8 1 0  
6 4 2 1 3

If I is a value which does not occur in V, then V\X 
yields 1+pK, that is, one greater than the largest index of 
7:

V<-2 5 7 1 8 
V x 4

6
V\ 1 2 3 4 5 6 7 8  

3 HI 4 1 6 6 2 6 3 5

The conversion from system R1 to system R4 of Table
16.1 can be expressed simply in terms of the index-of 
function:

V Z+TÔ r X
[1] Z+ l+'ABCDEFGHIJ'\X

V
The inverse function for converting from R4 to R1 can be 
defined as follows:

V Z<-T01 X
[ 1 ] Z<-' AB CDEFGHIJ ' [ 1 + X]

V
For example:

TO 4
1 2

TO 1 1 2
4i BC
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We normally refer to any particular number by giving 
its decimal representation. Certain numbers are referred to 
in other ways (e.g., a, dozen for 12, a gross for 144, and a 
score for 20), but most people would find it awkward to 
refer to or think of numbers such as 548 or 1247 in any 
terms other than their decimal representations. This poses 
a difficulty in discussing the decimal representation since 
it may be unclear as to whether a given sequence of digits 
refers to some number to be represented or to its 
representation in decimal. For example, it makes sense to 
say that the representation of the number 630 in Prime 
Factors is 1 2 1 1 0 0 0 ,  but it seems fatuous to say that 
the representation of 630 in decimal is 630.

It would seem natural to begin the discussion of 
individual number systems with the decimal system since it 
is the most important and the most familiar. However, 
because of the matter discussed in the preceding paragraph 
we will begin instead with the less familiar Prime Factors 
system.
16.2 THE PRIME FACTORS SYSTEM

The scheme used in the Prime Factors number system 
should be clear from Exercise 7.20, and from Exercise 16.2, 
but will be summarized here. Any non-negative-integer 
vector E (i.e., a vector whose elements are all non-negative 
integers) represents the number whose value is

x/P*F

where P is the vector of the first pE primes. For example, 
if E + 2 0 2 0 1 ,  then P+2 3 5 7 11 and

P *E
4 1 25 1 11

x/P*F
1100

The system is most convenient for determining the product, 
greatest common divisor, or least common multiple of a pair 
of numbers.

Products. If

M + x / P * E  
E + x / P * F

then the product M*N is equal to
(x/P*F)x(x/p*p)
x/(p * E )x(p * F ) Commutativity and associativity of x
x/P* E+ F Theorem 6 Section 14.7

Consequently the representation of M*N is simply F+P.
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The foregoing arguments justify the function PFTIMES 
of Section 16.1. However, this function works only if the
arguments E and F have the same number of elements. This 
limitation can be removed by first appending zeros to the 
shorter vector to make them both the same length as follows:

V Z+E PFT F
[1] E+((pE)[pF)+E
[2] F*-((pE)[pF)+F
[3] Z+E+F

V
Appending zeros to the right of a vector makes no change in 
the number it represents. For example if E+2 0 2 1 ,  then 
the corresponding value of P is 2 3 5 7 and

x/2 3 5 7*2 0 2 1
700
If E+-2 0 2 1 0 0 , then its corresponding value of P is 
2 3 5 7 1 1 1 3  and

x/2 3 5 7 11 13*2 0 2 1 0 0
700

Since representations of the same length can be 
obtained so easily we will henceforth assume that all are of 
the same length.
Greatest Common Divisor. The greatest common divisor
(defined in Section 12.3) is easily obtained in the Prime 
Factors system as follows:

V Z<-E PFGCD F 
[1] Z<-ElF

V
For example, the representations of 24 and 54 are 3 1 and 
1 3 and:

1 3 PFGCD 3 1
1 1

x/2 3*1 3 PFGCD 3 1
6

The justification for the function PFGCD follows. If 
M is any integer and DM is any divisor of M , and if E and DE 
are the prime factor representations of M and DM, 
respectively (that is, M^*/P*E and DM^x/P*DE), then DE 
cannot exceed E in any component. That is, a/DE<E. For 
suppose that DElK]>ElK]. Then P[P]*PF[P] is a factor of the 
divisor of M but is not a factor of M itself. This is 
impossible.
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Similarly, if N + x / P * F and D N + * / P * D F and DN is a 
divisor of N, then a/DF<F. Any common divisor of M and N 
must satisfy both these conditions. Therefore if H is the 
representation of a common divisor, then a /H<E and a /H<F.

The representation of the greatest common divisor is the 
largest vector satisfying both conditions and is therefore 
equal to ElF.

Least Common Multiple. A common multiple of two numbers is 
a multiple of each of the numbers, that is, each is a 
divisor of the common multiple. The least common multiple 
is the smallest of such common multiples. For example the 
first ten multiples of 24 and 54 are:

2 4 x i 1 0
2 4  4 8  7 2  9 6  1 2 0  1 4 4  1 6 8  1 9 2  2 1 6  2 4 0

5 4 *  i 1 0
5 4  1 0 8  1 6 2  2 1 6  2 7 0  3 2 4  3 7 8  4 3 2  4 8 6  5 4 0

The least common multiple is therefore 2 1 6 .

The function for least common multiple in the Prime 
Factor system follows:

V Z+E P F L C M  F 
[1] Z+E [F

V
Its justification is similar to that of the function P FGCD 
and is left as an exercise.
Factor Tables. Since multiplication, greatest common
divisor, and least common multiple are so easy to compute in 
the Prime Factor system, a table of the Prime Factor 
representations of numbers can be useful for evaluating such
functions. The fourth column of Table 16.1 provides the
beginning of such a table, but its extension would soon 
require the tabulation of very long vectors. For example, 
there are 1 6 8  primes less than 1 0 0 0  and a table to 1 0 0 0
would therefore require some vectors of more than 1 6 0
elements.

A more compact scheme is used in giving the prime 
factorization in Tables 16.2 and 16.3 at the end of this 
chapter. Vectors of a fixed length (10) are used for the 
powers of the primes up to 2 9 .  Any other single prime which 
occurs as a factor is listed in a separate column. This 
scheme permits the representation of all positive integers 
up to but not including the square of the first prime (that 
is, 3 1 )  not covered by the fixed length vectors.

To illustrate the use of Table 16.2, consider the 
following problem: Find the greatest common divisor of M+-3 6  0
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and N+k 20. The corresponding representations E and F can be 
found from the table:

E + 3 2 1 0 0 0 0 0 0 0  
F + 2 1 1 1 0 0 0 0 0 0
E IF

2 1 1 0 0 0 0 0 0 0

The last vector above is the Prime Factor representation of 
the desired result. If one wants the normal decimal 
representation, it may be computed as follows:

P + 2 3 5 7 11 13 17 19 23 29
x/P*F|_F

60
Alternatively, the decimal representation can be found 

by locating the vector E I F in Table 16.2 and reading off the 
decimal equivalent. However, it will be found to be very 
difficult to locate a given vector in the table because the 
vectors do not occur in any obvious sequence. For example, 
try to locate the vector 2 1 1 0 0 1 0 0 0 0  in the table 
without first evaluating its decimal representation. In 
order to make such use of the factorization table 
convenient, a re-ordered version of it is given in Table 
16.3. In this table it is easy to locate the vector 
2 1 1 0 0 1 0 0 0 0  by first scanning down to the twos in 

5-9El column 1, then down to the ones in column 2, and so on.

16.3 THE DECIMAL SYSTEM
The system R4 of Table 16.1 is closely related to the 

decimal system, for in it the successive digits of the 
decimal representation appear as the successive elements of 
a vector representation. This representation will be called 
the vector decimal system. It will be used to discuss the 
decimal system for two reasons:
1. The individual digits of the representations can be 

conveniently referred to by indexing.
2. The confusion between references to the number and its 

representation discussed in Section 16.1 can be avoided 
by its use.

The value of an integer expressed in ordinary decimal 
can be obtained from the vector decimal representation by 
the following function:

V Z + VDVAL X
[ 1 ]  Z++/X* 10*<|>~l+ip 9X

V
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For example:
VDVAL

214
2 1 4

VDVAL
214

0 0 2 1 4
VDVAL

21400
2 1 4 0 0

The comma preceding the X in line 1 of the foregoing 
function ensures that the function p yields the number of 
elements in X even if X itself is a scalar rather than a 
vector. This matter is discussed in Sections 8.7 and 8.8.

From the definition of VDVAL it is clear that the 
elements of the vector representation X are multiplied by 
successive powers of 10 beginning with 10*0 (that is, 1) at 
the right. For example:

X+2 1 4 
“ 1+ip 

0 1 2 _
4 1+ip ,X 

2 1 0
1 0 *()> 1+ip , J 

100 10 1
Jxio*c))~l + ip 9X 

200 10 4
+ /X* 1 0 *cj>“ l + i p ,1

214

The inverse function can be defined as follows:
V Z+-I VDVAL X

[1] Z^iO
[2] Z«-(10U),Z
[ 3 ]  I ^ U - 1 0 U ) t 10
[4] +2x^*0

V
IVDVAL 214

2 1 ^  BIO
If zeros are appended to the left of a vector D then 

the number it represents in the vector decimal system is 
unchanged. For example, 0 0 2 1 4  represents the same 
number as does 2 14. One vector can therefore be easily 
extended by zeros to make it the same dimension as some 
other vector. We will therefore assume that the vectors 
discussed are already of equal dimensions.
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Addition. If ;4+-3 1 4 and 5̂ -4 1 2 are the vector decimal 
representations of two numbers, then the representation of
their sum is obtained very simply as follows:

A+B
7 8 6

VDVAL 4 VDVAL B
314

(VDVAL A ) + VDVAL B
472

VDVAL A+B
786 786
The reason why this addition works is clear; digits to be 
multiplied by the same power of ten are summed to yield the 
result.

If A+3 6 4 and B*-4 7 2, the same process works in the 
sense that VDVAL A+B yields the same result as
( VDVAL A) +(VDVAL B). Thus

7 13
836
836

A+B
6

VDVAL A+B 
(VDVAL A) + VDVAL B

However, 7 13 6 would not be accepted as a suitable 
representation of the number 836, since we normally require 

111 that each of the digits be less than 10.
A digit larger than 10 can be eliminated by "carrying" 

any multiple of ten to the next position to the left (whose 
weight is ten times that of the column it precedes). A 
function for addition based on this notion can be defined as 
follows:

V Z+A VDADD B
[1] Z+101A+B
[ 2 ] C<-( 1110 <A + B ) , 0
[3] -*4xv/0*C
[4] A + Z
[5] B+C
[ 6 ] +1

V
A trace of the foregoing function for the arguments 

3 7 9  and 2 2 1  will show why the statements 2 to 5 may have 
to be repeated several times:
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3 7 9
VDADDl1] 5 
VDADDL2] 0
VDADD[1] 5
VDADDL2] 1 
WMD£ > [1 ]  6 
VDADDL2] 0 
6 0 0

F D 4D C I 2 2 1
9 0
1 0
0 0
0 0
0 0
0 0

This trace also reveals that the method is not the method 
normally learned for addition but that it is a reasonably 
satisfactory method for manually adding two numbers.

The more familiar procedure for addition is described 
by the following function:

[1]
V Z+A SERIALDADD B 

Z+1 0
C2] C+0
[3] 1+1 +pB
[4] I+I-l
[5] ->6 x J* 0
[6] N+C+AUl+BlI]
[7] Z+(10|N),Z
[8] C+1Q<N
[9]

v
For example:

T AS ERI ALDADD*-S 7 8
3 7 9  SERIALDADD 2 2 1  

SERIALDADDL6] 10 
SERIALDADDL7] 0 
SERIALDADDL*] 1 
SERIALDADDL6] 10 
SERIALDADDL7] 0 0
SERIALDADDL8] 1 
SERIALDADDL61 6 
SERIALDADDL7] 6 0 0  S£y?I4LZMD£>E 8] 0 
6 0 0 012-13

16.4 THE BINARY SYSTEM
The binary number system is illustrated in column 2 of 

Table 16.1, and the corresponding vector binary system is 
illustrated in the last column. It is similar to the 
decimal system, differing only in that the weights applied 
to the digit positions are powers of two rather than ten, 
and that the digit values are limited to less than 2, that 
is, to the values 0 and l.
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Functions for treating numbers represented in vector 
binary can therefore be derived from the corresponding 
functions for vector decimal by simply replacing each, 
occurrence of 1 0 by 2:

V Z + V D V A L  X
C l ]  Z + +/X x  10*<|> l  + i p , * V

V Z + V B V A L  X
[ 1 ]  Z+-+/X*2*<\)~ 1+ i p J V

V Z+IVDVAL X 
[  1 ]  Z+-1 0
[2] Z<-(10|*),Z
[ 3 ]  I ^ - ( I - 1 0 U ) t 10
[4] ->2xJ*0V

V Z + I V B V A L  *
[ 1 ]  Z<- lO
[ 2 ]  Z « - ( 2 | * ) , Z
[ 3 ]  Z ^ ( Z - 2 | X ) t 2
[ 4 ]  ->2 0 V

For example:

26

1 1 
2 6 

14-18H 1 1

£<-110 1 0  
R + V B V A L  Q
R

I V B V A L  R 
0 1 0
I V D V A L  VB V A L  Q

I V B V A L  V DV A L  2 6 
0 1 0

16.5 POSITIONAL NUMBER SYSTEMS
The decimal and binary systems discussed in the 

preceding sections are examples of positional number 
systems; any positive integer greater than i could be used 
instead of 2 or 10 and the number chosen to play that role 
is called the base of the number system. Lf the number is 
N, the system is referred to as a base-/]/ number system, 
although other names such as binary tfor 2 ), decimal Cfor 
10), octal (for 8) and ternary (for 3 ) are often used.

General functions for treating any positional system 
could be obtained by substituting the name B A S E  for every 
occurrence of 10 in the functions of Section 16.3 and then 
assigning the desired value to B A S E . For example, a ternary 
system could be treated as follows:

V Z +V A L  X
[  1 ]  Z + + / X x B A S E * < f l  + i p 9XV

3

4

B A S E + 3 
VAL 1 0

VAL  1 1

22
VAL  2 1 1
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The function V A L defined above for evaluating a 
positional number system has a close and interesting 
relation to the polynomial function P O L Y  defined in Section
13.5 and repeated below:

V Z+-C P O L Y _ X[ 1 3 Z«-+ /  C * X * 1 + i p , C
V

For example:
B A S  E+-10 
5^3 1 4
V A L  Q

314
(4>£) P O L Y  B A S E

314
B A S  E+- 8 
V A L  Q

2 04
((\>Q) P O L Y  B A S E

204
From these examples (and from the similarities in the 

definitions of the functions V A L and P O L Y ) it should be 
clear that the value function V A L is in effect a polynomial 
whose argument is the value of the base and whose
coefficients are reversed in order, i.e., the powers of the
base are in descending rather than ascending order. ®19

The digits used in a positional number system normally 
run from zero to one less than the base, i.e_., the digits
for base B are chosen from the vector l+iB .  This
limitation is not essential, and useful representations can 
be formed using a different restriction. For example, in a 
ternary system the digits might be limited to 1, 0, and l
rather than 0, 1 and 2. Thus:

B A S E 3
V A L 0

0
V A L 1 V A L “1

1
V A L 1 "l

"1
V A L "1 1

2
V A L 1 0

"2
V A L "1 0

3
V A L 1 1

"3
V A L "1 "1

4
V A L 1 ”1 “1

"4
V A L "1 1 1

5 5
From the foregoing it is clear that this system can 

represent negative as well as positive integers. EE20
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16.6 ADDITION AND MULTIPLICATION TABLES
In learning to add decimal numbers one must learn not 

only the rules for handling carries but also the sums of all 
the digit pairs, in other words one must learn the addition 
table for the arguments zero to nine. The body of this 
table appears as follows:

S<-0 1 2 3 4 5 6 7 8 9
A

. +5
0 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10 11
3 4 5 6 7 8 9 10 11 12
4 5 6 7 8 9 10 11 12 1 3
5 6 7 8 9 10 11 12 13 14
6 7 8 9 10 11 12 1 3 14 15
7 8 9 10 11 12 13 14 15 16
8 9 10 11 12 1 3 14 15 16 17
9 10 1 1 12 13 14 1 5 16 17 18

Strictly speaking, one does not use the addition table 
directly but rather uses the following "sum" and "carry" 
tables derived from it:

0 1 2
10 \ A  
3 4 5 6 7 8 9 0 0 0

10<4 
0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 0 0 0 0 0 0 0 0 0 0 12 3 4 5 6 7 8 9 0 1 0 0 0 0 0 0 0 0 1 13 4 5 6 7 8 9 0 1 2 0 0 0 0 0 0 0 1 1 14 5 6 7 8 9 0 1 2 3 0 0 0 0 0 0 1 1 1 15 6 7 8 9 0 1 2 3 4 0 0 0 0 0 1 1 1 1 16 7 8 9 0 1 2 3 4 5 0 0 0 0 1 1 1 1 1 17 8 9 0 1 2 3 4 5 6 0 0 0 1 1 1 1 1 1 18 9 0 1 2 3 4 5 6 7 0 0 1 1 1 1 1 1 1 1
9 0 1 2 3 4 5 6 7 8 0 1 1 1 1 1 1 1 1 1

In order to perform addition in a system with a base 
other than ten it is helpful to construct the corresponding 
tables for that base:

S + 0  1 2  3 4 5 6 7
A 8|1 8 </4

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 0 0 0 0 0 0 0 0 12 3 4 5 6 7 8 9 2 3 4 5 6 7 0 1 0 0 0 0 0 0 1 1
3 4 5 6 7 8 9 10 3 4 5 6 7 0 1 2 0 0 0 0 0 1 1 14 5 6 7 8 9 10 11 4 5 6 7 0 1 2 3 0 0 0 0 1 1 1 15 6 7 8 9 10 11 12 5 6 7 0 1 2 3 4 0 0 0 1 1 1 1 1
6 7 8 9 10 11 12 13 6 7 0 1 2 3 4 5 0 0 1 1 1 1 1 1
7 8 9 10 11 12 13 14 7 0 1 2 3 4 5 6 0 1 1 1 1 1 1 1
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S+ o 1
^ 5 ° .+5 
A 2 | A

0 1 
1 0

2 <A
0 0 
0 1

Similar remarks apply to multiplication, 
tables for base 8 are shown below:

Appropriate

0 1 2 3 4 5 6 7
■So .

M 8 | M i M i •8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 0 0 0 0 0 0 0
0 2 4 6 8 10 12 14 0 2 4 6 0 2 4 6 0 0 0 0 1 1 1 1
0 3 6 9 12 1 5 18 2 1 0 3 6 1 4 7 2 5 0 0 0 1 1 1 2 2
0 4 8 12 16 20 24 28 0 4 0 4 0 4 0 4 0 0 1 1 2 2 3 3
0 5 10 1 5 20 25 30 35 0 5 2 7 4 1 6 3 0 0 1 1 2 3 3 4
0 6 12 18 24 30 36 42 0 6 4 2 0 6 4 2 0 0 1 2 3 3 4 5
0 7 14 21 28 35 42 49 0 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6

Since multiplication may produce a carry greater than 
1 it is necessary to replace the simple expression 8<M by 
the expression as shown for the carry table above. 121-22

16.7 NEGATIVE INTEGERS
Although the last system discussed in Section 16.5 can 

represent negative as well as positive integers, the common 
positional number systems (such as the decimal) can 
represent non-negative integers only, and negative integers 
are represented by an extra character (called a negative 
sign) appended to the left of the digit. In the
corresponding vector representations (such as vector decimal 
and vector binary) it is necessary to add a component to the 
vector to represent the sign. For example, if the first 
position is used to represent the sign and if o represents 
positive and 1 represents negative, then the following 
function serves to evaluate such a vector binary 
representation:

V Z + N V B V A L  X
[ 1 ]  Z « - ( “ l * * [ l ] ) x  + / ( l +Z ) x2 * <|>  l + i p l + X

V
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Moreover, the representations of the integers from 5 to 5 
in this system would appear as follows:

5 1 1 0 1
4 1 1 0 0
3 1 0 1 1
2 1 0 1 0
1 1 0 0 1
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1 [123

16.8 RATIONAL NUMBERS
The scheme of representing a rational number by a 

two-element vector introduced in Section 5.7 can be 
considered as a number system for representing rational 
numbers and will be called the rational vector or RV system. 
Functions for addition and multiplication in the RV system 
were treated in Section 9.5. The decimal value of such a 
vector v in the RV system is, of course, the simple 
expression -s- / y.

We will now consider the conversion of decimal 
fractions and repeating decimal fractions to the RV system. 
The number 24.361 is represented in RV as 24361 1000. In 
general, the second element of the RV representation is 
10*N, where N is the number of digits following the decimal 
point. To clarify these matters we will introduce a system 
called fraction vector decimal (FVD) in which the first 
element specifies the number of digits following the decimal 
point, and the remaining elements are the usual vector 
decimal representation. For example:
Decimal FVD RV
24.361 3 2 4 3 6 1  24361 1000

.0024 4 0 0 2 4  24 10000
The following function converts from FVD to RV:

V Z + F V D  X
[1] Z < - ( V D V A L 1U),10*1[1]V
For example:

F V D 3 2 4 3 6 1  
24361 1000

24-25ii3 The function VDVAL is defined in Section 16.3.
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Certain rationals cannot be expressed exactly as 
decimal fractions because the division involved produces a 
never-ending sequence of digits. The first twenty digits of 
such sequences are shown below for a few cases:

7 v 3 2. 33333333333333333333 
2 39 v1 1 21. 72727272727272727272 
2 2 7 v 7 0 3.24285714285714285714

In each of these examples some pattern of digits is soon 
established which repeats unendingly. The first case shows 
a pattern of a single digit (3), the second a pattern of two 
(72), and the third a pattern of six (428571).

The repetition is no accident; any case which does not 
terminate must show a pattern. For, if D is the divisor, 
then no more than D different remainders can arise in the 
division process and one such remainder must recur. When a 
remainder recurs, the same sequence of quotients must also 
recur.

The determination of the rational (RV) representation 
of a number from its repeating decimal form will now be 
illustrated for the number 227^70. We attempt to make the 
second element of the rational representation (i.e., the 
denominator) equal to (10*6)-1, because the length of the 
repeating pattern is 6. Then the first element must be 
(10*6 ) -l times the actual number N. Thus:

/l/x 1 0* 6 : 3242857.1428571428571428571428ooo
N x 1 : 3.2428571428571428ooo

Difference : 3242853.9
Since /l/xio*6 is obtained from N by moving the decimal point 
to the right by a distance equal to the length of the 
repeating pattern, it is clear that the difference
(tfxio*6)-tfxi will be a terminating decimal. However, this 
difference is still not an integer and it is necessary to 
multiply both it and the intended denominator (that is, 
( 10*6 )-l) by ten. Thus the desired representation consists 
of the two elements:

or
32 42 85 39 ( ( 1 0*6 )-1 )xlO
32428539 9999990

Thus V+- 32428539 99 99990 is the RV representation of 2 27t70. 
Clearly W^2 21 70 is also an RV representation of the same 
number and the two can be shown to be equivalent as follows:

ViW
142857 142857

In order to show the details of this process for a 
general case we will now adopt a system for representing
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repeating decimals. A repeating decimal can be specified 
exactly by the following three pieces of information:
1. The sequence of digits up to any point which includes 

the complete repeating pattern.
2. The number of digits following the decimal point.
3. The length of the repeating pattern.
Repeating decimals can therefore be represented in a 
repeating fraction vector decimal (RFVD) system obtained by 
prefixing the FVD representation by an element specifying 
the length of the repeating pattern. For example:

7 t 3 1 1 2 3
2 3 9-5-11 2 2 2 1 7 2
2 2 7 v 7 0 6 8 3 2 4 2 8 5 7 1 4
2 2 7 t 7 0 6 9 3 2 4 2 8 5 7 1 4 2

The two representations for 227t70 illustrate that the RFVD 
representation is not unique; the sequence of digits may be 
cut off at any point which includes the complete repeating 
pattern.

The process illustrated for the case 227t70 can now be 
specified more generally by the following function for 
converting from RFVD to RV:

V Z+RFVD X
[1] Z+(VDVAL( 2\X) ) \X) -VD VAL 2\X
[2] Z«-Z9( 10*X[2])x 1 + 10*J[1]V

For example:
V+6 8 3 2 4 2 8 5 7 1 4  
Q+RFVD V 
Q

324285390000000 99999900000000
It is clear that the function RFVD (like the process 

used in the earlier example) does not yield the smallest 
possible values for the result Q. To obtain the 
representation in the reduced form it is necessary to divide 
the elements of Q by any factor common to them, i.e., to 
divide by the greatest common divisor of the elements of Q. 
For this purpose we will recall and use the GCD function of 
Section 12.3:

V Z+-GCD X
[1] Z+-XL1]
[2] X^(|/X)9J[1]

26-271 [3] +X[1]*0V

GCD Q
1428570000000 

QlGCD Q 
2 27 7 0
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1
23571

11122
37939 1

23571
11122
37939 1

23571
11122
37939 1 11122 

23571 379391 00000 00000 61*00000 00000 61 121 00002 00000 181*00000 00000 1812*10000 00000 62 10000 00000 31 122 10000 00000 61 182 10010 100003*01000 00000 63 02010 00000 123 01000 00000 41 183 01000 00000 614 20000 00000 64 60000 00000 124 20000 00000 31 184 30000 000105*00100 00000 65 00100 10000 125 00300 00000 185 00100 00000 376 11000 00000 66 11001 00000 126 12010 00000 186 11000 00000 317*00010 00000 67*00000 00000 67 127*00000 00000 127 187 00001 010008 30000 00000 68 20000 01000 128 70000 00000 188 20000 00000 479 02000 00000 69 01000 00010 129 01000 00000 43 189 03010 0000010 10100 00000 70 10110 00000 130 10100 10000 190 10100 0010011*00001 00000 71*00000 00000 71 131*00000 00000 131 191*00000 00000 19112 21000 00000 72 32000 00000 132 21001 00000 192 61000 0000013*00000 10000 73*00000 00000 73 133 00010 00100 193*00000 00000 19314 10010 00000 74 10000 00000 37 134 10000 00000 67 194 10000 00000 9715 01100 00000 75 01200 00000 135 03100 00000 195 01100 1000016 40000 00000 76 20000 00100 136 30000 01000 196 20020 0000017*00000 01000 77 00011 00000 137*00000 00000 137 197*00000 00000 19718 12000 00000 78 11000 10000 138 11000 00010 198 12001 0000019*00000 00100 79*00000 00000 79 139*00000 00000 139 199*00000 00000 19920 20100 00000 80 40100 00000 140 20110 00000 200 30200 0000021 01010 00000 81 04000 00000 141 01000 00000 47 201 01000 00000 6722 10001 00000 82 10000 00000 41 142 10000 00000 71 202 10000 00000 10123*00000 00010 83*00000 00000 83 143 00001 10000 203 00010 0000124 31000 00000 84 21010 00000 144 42000 00000 204 21000 0100025 00200 00000 85 00100 01000 145 00100 00001 205 00100 00000 4126 10000 10000 86 10000 00000 43 146 10000 00000 73 206 10000 00000 10327 03000 00000 87 01000 00001 147 01020 00000 207 02000 0001028 20010 00000 88 30001 00000 148 20000 00000 37 208 40000 1000029*00000 00001 89*00000 00000 89 149*00000 00000 149 209 00001 0010030 11100 00000 90 12100 00000 150 11200 00000 210 11110 0000031*00000 00000 31 91 00010 10000 151*00000 00000 151 211*00000 00000 21132 50000 00000 92 20000 00010 152 30000 00100 212 20000 00000 5333 01001 00000 93 01000 00000 31 153 02000 01000 213 01000 00000 7134 10000 01000 94 10000 00000 47 154 10011 00000 214 10000 00000 10735 00110 00000 95 00100 00100 155 00100 00000 31 215 00100 00000 4336 22000 00000 96 51000 00000 156 21000 10000 216 33000 0000037*00000 00000 37 97*00000 00000 97 157*00000 00000 157 217 00010 00000 3138 10000 00100 98 10020 00000 158 10000 00000 79 218 10000 00000 10939 01000 10000 99 02001 00000 159 01000 00000 53 219 01000 00000 7340 30100 00000 100 20200 00000 160 50100 00000 220 20101 0000041*00000 00000 41 101*00000 00000 101 161 00010 00010 221 00000 1100042 11010 00000 102 11000 01000 162 14000 00000 222 11000 00000 3743*00000 00000 43 103*00000 00000 103 163*00000 00000 163 223*00000 00000 22344 20001 00000 104 30000 10000 164 20000 00000 41 224 50010 0000045 02100 00000 105 onio 00000 165 01101 00000 225 02200 0000046 10000 00010 106 10000 00000 53 166 10000 00000 83 226 10000 00000 11347*00000 00000 47 107*00000 00000 107 167*00000 00000 167 227*00000 00000 22748 41000 00000 108 23000 00000 168 31010 00000 228 21000 0010049 00020 00000 109*00000 00000 109 169 00000 20000 229*00000 00000 22950 10200 00000 no 10101 00000 170 10100 01000 230 10100 0001051 01000 01000 111 01000 00000 37 171 02000 00100 231 01011 0000052 20000 10000 112 40010 00000 172 20000 00000 43 232 30000 00001
53*00000 00000 53 113*00000 00000 113 173*00000 00000 173 233*00000 00000 233
54 13000 00000 114 11000 00100 174 11000 00001 234 12000 10000
55 00101 00000 115 00100 00010 175 00210 00000 235 00100 00000 47
56 30010 00000 116 20000 00001 176 40001 00000 236 20000 00000 59
57 01000 00100 117 02000 10000 177 01000 00000 59 237 01000 00000 79
58 10000 00001 118 10000 00000 59 178 10000 00000 89 238 10010 01000
59*00000 00000 59 119 00010 01000 179*00000 00000 179 239*00000 00000 239
60 21100 00000 120 31100 00000 180 22100 00000 240 41100 00000
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1 11122 1 11122 1 11122 1 1112223571 37939 23571 37939 23571 37939 23571 37939241*00000 00000 241 301 00010 00000 43 361 00000 00200 421*00000 00000 421242 10002 00000 302 10000 00000 151 362 10000 00000 181 422 10000 00000 211243 05000 00000 303 01000 00000 101 363 01002 00000 423 02000 00000 47244 20000 00000 61 304 40000 00100 364 20010 10000 424 30000 00000 53245 00120 00000 305 00100 00000 61 365 00100 00000 73 425 00200 01000246 11000 00000 41 306 12000 01000 366 11000 00000 61 426 11000 00000 71247 00000 10100 307*00000 00000 307 367*00000 00000 367 427 00010 00000 61248 30000 00000 31 308 20011 00000 368 40000 00010 428 20000 00000 107249 01000 00000 83 309 01000 00000 103 369 02000 00000 41 429 01001 10000250 10300 00000 310 10100 00000 31 370 10100 00000 37 430 10100 00000 43251*00000 000OO 251 311*00000 00000 311 371 00010 00000 53 431*00000 00000 431252 22010 00000 312 31000 10000 372 21000 00000 31 432 43000 00000253 00001 00010 313*00000 00000 313 373*00000 00000 373 433*00000 00000 433254 10000 00000 127 314 10000 00000 157 374 10001 01000 434 10010 00000 31255 01100 01000 315 02110 00000 375 01300 00000 435 01100 00001256 80000 00000 316 20000 00000 79 376 30000 00000 47 436 20000 00000 109257*00000 00000 257 317*00000 00000 317 377 00000 10001 437 00000 00110258 11000 00000 43 318 11000 00000 53 378 13010 00000 438 11000 00000 73259 00010 00000 37 319 00001 00001 379*00000 00000 379 439*00000 00000 439260 20100 10000 320 60100 00000 380 20100 00100 440 30101 0000026T 020T50 00001 321 01000 00000 107 381 01000 00000 127 441 02020 00000262 10000 00000 131 322 10010 00010 382 10000 00000 191 442 10000 11000263*00000 00000 263 323 00000 01100 383*00000 00000 383 443*00000 00000 443264 31001 00000 324 24000 00000 384 71000 00000 444 21000 00000 37265 00100 00000 53 325 00200 10000 385 00111 00000 445 00100 00000 89266 10010 00100 326 10000 00000 163 386 10000 00000 193 446 10000 00000 223267 01000 00000 89 327 01000 00000 109 387 02000 00000 43 447 01000 00000 149268 20000 00000 67 328 30000 00000 41 388 20000 00000 97 448 60010 00000269*00000 00000 269 329 00010 00000 47 389*00000 00000 389 449*00000 00000 449270 13100 00000 330 11101 00000 390 11100 10000 450 12200 00000271*00000 00000 271 331*00000 00000 331 391 00000 01010 451 00001 00000 41272 40000 01000 332 20000 00000 83 392 30020 00000 452 20000 00000 113273 01010 10000 333 02000 00000 37 393 01000 00000 131 453 01000 00000 151274 10000 00000 137 334 10000 00000 167 394 10000 00000 197 454 10000 00000 227275 00201 00000 335 00100 00000 67 395 00100 00000 79 455 00110 10000276 21000 00010 336 41010 00000 396 22001 00000 456 31000 00100277*00000 00000 277 337*00000 00000 337 397*00000 00000 397 457*00000 00000 457278 10000 00000 139 338 10000 20000 398 10000 00000 199 458 10000 00000 229279 02000 00000 31 339 01000 00000 113 399 01010 00100 459 03000 01000280 30110 00000 340 20100 01000 400 40200 00000 460 20100 00010281*00000 00000 281 341 00001 00000 31 401*00000 00000 401 461*00000 00000 461282 11000 00000 47 342 12000 00100 402 11000 00000 67 462 11011 00000283*00000 00000 283 343 00030 00000 403..00000 10000 31 463*00000 00000 463284 20000 00000 71 344 30000 00000 43 404 20000 00000 101 464 40000 00001285 01100 00100 345 01100 00010 405 04100 00000 465 01100 00000 31286 10001 10000 346 10000 00000 173 406 10010 00001 466 10000 00000 233287 00010 00000 41 347*00000 00000 347 407 00001 00000 37 467*00000 00000 467288 52000 00000 348 21000 00001 408 31000 01000 468 22000 10000289 00000 02000 349*00000 00000 349 409*00000 00000 409 469 00010 00000 67290 10100 00001 350 10210 00000 410 10100 00000 41 470 10100 00000 47291 01000 00000 97 351 03000 10000 411 01000 00000 137 471 01000 00000 157292 20000 00000 73 352 50001 00000 412 20000 00000 103 472 30000 00000 59293*00000 00000 293 353*00000 00000 353 413 00010 00000 59 473 00001 00000 43294 11020 00000 354 11000 00000 59 414 12000 00010 474 11000 00000 79295 00100 00000 59 355 00100 00000 71 415 00100 00000 83 475 00200 00100296 30000 00000 37 356 20000 00000 89 416 50000 10000 476 20010 01000297 03001 00000 357 01010 01000 417 01000 00000 139 477 02000 00000 53298 10000 00000 149 358 10000 00000 179 418 10001 00100 478 10000 00000 239299 00000 10010 359*00000 00000 359 419*00000 00000 419 479*00000 00000 479300 21200 00000 360 32100 00000 420 21110 00000 480 51100 00000
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1 11122 i 11122 1 11122 1 11122
23571 37939 23571 37939 23571 37939 23571 37939

481 00000 10000 37 541*00000 OOOOO 541 601*00000 ooooo 601 661*00000 OOOOO 661
482 10000 00000 241 542 10000 ooooo 271 602 10010 ooooo 43 662 10000 ooooo 331
483 01010 00010 543 01000 ooooo 181 603 02000 ooooo 67 663 01000 11000
484 20002 00000 544 50000 01000 604 20000 ooooo 151 664 30000 ooooo 83
485 00100 00000 97 545 00100 ooooo 109 605 00102 ooooo 665 00110 00100
486 15000 00000 546 11010 10000 606 11000 ooooo 101 666 12000 ooooo 37
487*00000 00000 487 547*00000 ooooo 547 607*00000 ooooo 607 667 OOOOO 00011
488 30000 00000 61 548 20000 ooooo 137 608 50000 00100 668 20000 ooooo 167
489 01000 00000 163 549 02000 ooooo 61 609 01010 00001 669 01000 ooooo 223
490 10120 00000 550 10201 ooooo 610 10100 ooooo 61 670 10100 ooooo 67
491*0001X1 Ooooo 491 551 OOOOO 00101 611 OOOOO 10000 47 671 00001 ooooo 61
492 21000 00000 41 552 31000 00010 612 22000 01000 672 51010 ooooo
493 00000 01001 553 00010 ooooo 79 613*00000 ooooo 613 673*00000 ooooo 673
494 10000 10100 554 10000 ooooo 277 614 10000 ooooo 307 674 10000 ooooo 337
495 02101 ooooo 555 01100 ooooo 37 615 01100 ooooo 41 675 03200 ooooo
496 40000 ooooo 31 556 20000 ooooo 139 616 30011 ooooo 676 20000 20000
497 00010 ooooo 71 557*00000 ooooo 557 617*00000 ooooo 617 677*00000 ooooo 677
498 11000 ooooo 83 558 12000 ooooo 31 618 11000 ooooo 103 678 11000 ooooo 113
499*00000 ooooo 499 559 OOOOO 10000 43 619*00000 ooooo 619 679 00010 ooooo 97
500 20300 ooooo 560 40110 ooooo 620 20100 ooooo 31 680 30100 01000
501 01000 ooooo 167 561 01001 01000 621 03000 00010 681 01000 ooooo 227
502 10000 ooooo 251 562 10000 ooooo 281 622 10000 ooooo 311 682 10001 ooooo 31
503*00000 ooooo 503 563*00000 ooooo 563 623 00010 ooooo 89 683*00000 ooooo 683
504 32010 ooooo 564 21000 ooooo 47 624 41000 10000 684 22000 00100
505 00100 ooooo 101 565 00100 ooooo 113 625 00400 ooooo 685 00100 ooooo 137
506 10001 00010 566 10000 ooooo 283 626 10000 ooooo 313 686 10030 ooooo
507 01000 20000 567 04010 ooooo 627 01001 00100 687 01000 ooooo 229
508 20000 ooooo 127 568 30000 ooooo 71 628 20000 ooooo 157 688 40000 ooooo 43
509*00000 ooooo 509 569*00000 ooooo 569 629 OOOOO 01000 37 689 OOOOO 10000 53
510 11100 01000 570 11100 00100 630 12110 ooooo 690 11100 00010
511 00010 ooooo 73 571*00000 ooooo 571 631*00000 ooooo 631 691*00000 ooooo 691
512 90000 ooooo 572 20001 10000 632 30000 ooooo 79 692 20000 ooooo 173
513 03000 00100 573 01000 ooooo 191 633 01000 ooooo 211 693 02011 ooooo
514 10000 ooooo 257 574 10010 ooooo 41 634 10000 ooooo 317 694 10000 ooooo 347
515 00100 ooooo 103 575 00200 00010 635 00100 ooooo 127 695 00100 ooooo 139
516 21000 ooooo 43 576 62000 ooooo 636 21000 ooooo 53 696 31000 00001
517 00001 ooooo 47 577*00000 ooooo 577 637 00020 10000 697 OOOOO 01000 41
518 10010 ooooo 37 578 10000 02000 638 10001 00001 698 10000 ooooo 349
519 01000 ooooo 173 579 01000 ooooo 193 639 02000 ooooo 71 699 01000 ooooo 233
520 30100 10000 580 20100 00001 640 70100 ooooo 700 20210 ooooo
521*00000 ooooo 521 581 00010 ooooo 83 641*00000 ooooo 641 701*00000 ooooo 701
522 12000 00001 582 11000 ooooo 97 642 11000 ooooo 107 702 13000 10000
523*00000 ooooo 523 583 00001 ooooo 53 643*00000 ooooo 643 703 OOOOO 00100 37
524 20000 ooooo 131 584 30000 ooooo 73 644 20010 00010 704 60001 ooooo
525 01210 ooooo 585 02100 10000 645 01100 ooooo 43 705 01100 ooooo 47
526 10000 ooooo 263 586 10000 ooooo 293 646 10000 01100 706 10000 ooooo 353
527 00000 01000 31 587*00000 ooooo 587 647*00000 ooooo 647 707 00010 ooooo 101
528 41001 ooooo 588 21020 ooooo 648 34000 ooooo 708 21000 ooooo 59
529 00000 00020 589 ooooo 00100 31 649 00001 ooooo 59 709*00000 ooooo 709
530 10100 ooooo 53 590 10100 ooooo 59 650 10200 10000 710 10100 ooooo 71
531 02000 ooooo 59 591 01000 ooooo 197 651 01010 ooooo 31 711 02000 ooooo 79
532 20010 00100 592 40000 ooooo 37 652 20000 ooooo 163 712 30000 ooooo 89
533 00000 10000 41 593*00000 ooooo 593 653*00000 ooooo 653 713 OOOOO 00010 31
534 11000 ooooo 89 594 13001 ooooo 654 11000 ooooo 109 714 11010 01000
535 00100 ooooo 107 595 00110 01000 655 00100 ooooo 131 715 00101 10000
536 30000 ooooo 67 596 20000 ooooo 149 656 40000 ooooo 41 716 20000 ooooo 179
537 01000 ooooo 179 597 01000 ooooo 199 657 02000 ooooo 73 717 01000 ooooo 239
538 10000 ooooo 269 598 10000 10010 658 10010 ooooo 47 718 10000 ooooo 359
539 00021 ooooo 599*00000 ooooo 599 659*00000 ooooo 659 719*00000 ooooo 719
540 23100 ooooo 600 31200 ooooo 660 21101 ooooo 720 42100 ooooo
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1 11122 1 11122 1 11122 1 11122
23571 37939 23571 37939 23571 37939 23571 37939

721 00010 00000 103 781 00001 OOOOO 71 841 OOOOO 00002 901 OOOOO 01000 53
722 10000 00200 782 10000 01010 842 10000 OOOOO 421 902 10001 ooooo 41
723 01000 00000 241 783 03000 00001 843 01000 OOOOO 281 903 01010 ooooo 43
724 20000 00000 181 784 40020 ooooo 844 20000 OOOOO 211 904 30000 ooooo 113
725 00200 00001 785 00100 ooooo 157 845 00100 20000 905 00100 ooooo 181
726 11002 00000 786 11000 ooooo 131 846 12000 OOOOO 47 906 11000 ooooo 151
727*00000 00000 727 787*00000 ooooo 787 847 00012 OOOOO 907*00000 ooooo 907
728 30010 10000 788 20000 ooooo 197 848 40000 ooooo 53 908 20000 ooooo 227
729 06000 00000 789 01000 ooooo 263 849 01000 ooooo 283 909 02000 ooooo 101
730 10100 00000 73 790 10100 ooooo 79 850 10200 01000 910 10110 10000
731 00000 01000 43 791 00010 ooooo 113 851 OOOOO 00010 37 911*00000 ooooo 911
732 21000 00000 61 792 32001 ooooo 852 21000 ooooo 71 912 41000 00100
733*00000 00000 733 793 ooooo 10000 61 853*00000 ooooo 853 913 00001 ooooo 83
734 10000 00000 367 794 10000 ooooo 397 854 10010 ooooo 61 914 10000 ooooo 457
735 01120 00000 795 01100 ooooo 53 855 02100 00100 915 01100 ooooo 61
736 50000 00010 796 20000 ooooo 199 856 30000 ooooo 107 916 20000 ooooo 229
737 00001 00000 67 797*00000 ooooo 797 857*00000 ooooo 857 917 00010 ooooo 131
738 12000 00000 41 798 11010 00100 858 11001 10000 918 13000 01000
739*00000 00000 739 799 OOOOO 01000 47 859*00000 ooooo 859 919*00000 ooooo 919
740 20100 00000 37 800 50200 ooooo 860 20100 ooooo 43 920 30100 00010
741 01000 10100 801 02000 ooooo 89 861 01010 ooooo 41 921 01000 ooooo 307
742 10010 00000 53 802 10000 ooooo 401 862 10000 ooooo 431 922 10000 ooooo 461
743*00000 00000 743 803 00001 ooooo 73 863*00000 ooooo 863 923 ooooo 10000 71
744 31000 00000 31 804 21000 ooooo 67 864 53000 ooooo 924 21011 ooooo
745 00100 00000 149 805 00110 00010 865 00100 ooooo 173 925 00200 ooooo 37
746 10000 00000 373 806 10000 10000 31 866 10000 ooooo 433 926 10000 ooooo 463
747 02000 00000 83 807 01000 ooooo 269 867 01000 02000 927 02000 ooooo 103
748 20001 01000 808 30000 ooooo 101 868 20010 ooooo 31 928 50000 00001
749 00010 00000 107 809*00000 ooooo 809 869 00001 ooooo 79 929*00000 ooooo 929
750 11300 00000 810 14100 ooooo 870 11100 00001 930 11100 ooooo 31
751*00000 00000 751 811*00000 ooooo 811 871 ooooo 10000 67 931 00020 00100
752 40000 00000 47 812 20010 00001 872 30000 ooooo 109 932 20000 ooooo 233
753 01000 00000 251 813 01000 ooooo 271 873 02000 ooooo 97 933 01000 ooooo 311
754 10000 10001 814 10001 ooooo 37 874 10000 00110 934 10000 ooooo 467
755 00100 00000 151 815 00100 ooooo 163 875 00310 ooooo 935 00101 01000
756 23010 00000 816 41000 01000 876 21000 ooooo 73 936 32000 10000
757*00000 00000 757 817 OOOOO 00100 43 877*00000 ooooo 877 937*00000 ooooo 937
758 10000 00000 379 818 10000 ooooo 409 878 10000 ooooo 439 938 10010 ooooo 67
759 01001 00010 819 02010 10000 879 01000 ooooo 293 939 01000 ooooo 313
760 30100 00100 820 20100 ooooo 41 880 40101 ooooo 940 20100 ooooo 47
761*00000 ooooo 761 821*00000 ooooo 821 881*00000 ooooo 881 941*00000 ooooo 941
762 11000 00000 127 822 11000 ooooo 137 882 12020 ooooo 942 11000 ooooo 157
763 00010 ooooo 109 823*00000 ooooo 823 883*00000 ooooo 883 943 ooooo 00010 41
764 20000 ooooo 191 824 30000 ooooo 103 884 20000 11000 944 40000 ooooo 59
765 02100 01000 825 01201 ooooo 885 01100 ooooo 59 945 03110 ooooo
766 10000 ooooo 383 826 10010 ooooo 59 886 10000 ooooo 443 946 10001 ooooo 43
767 00000 10000 59 827*00000 ooooo 827 887*00000 ooooo 887 947*00000 ooooo 947
768 81000 ooooo 828 22000 00010 888 31000 ooooo 37 948 21000 ooooo 79
769*00000 ooooo 769 829*00000 ooooo 829 889 00010 ooooo 127 949 OOOOO 10000 73
770 10111 ooooo 830 10100 ooooo 83 890 10100 ooooo 89 950 10200 00100
771 01000 ooooo 257 831 01000 ooooo 277 891 04001 ooooo 951 01000 ooooo 317
772 20000 ooooo 193 832 60000 10000 892 20000 ooooo 223 952 30010 01000
773*00000 ooooo 773 833 00020 01000 893 OOOOO 00100 47 953*00000 ooooo 953
774 12000 ooooo 43 834 11000 ooooo 139 894 11000 ooooo 149 954 12000 ooooo 53
775 00200 ooooo 31 835 00100 ooooo 167 895 00100 ooooo 179 955 00100 ooooo 191
776 30000 ooooo 97 836 20001 00100 896 70010 ooooo 956 20000 ooooo 239
777 01010 ooooo 37 837 03000 ooooo 31 897 01000 10010 957 01001 00001
778 10000 ooooo 389 838 10000 ooooo 419 898 10000 ooooo 449 958 10000 ooooo 479
779 00000 00100 41 839*00000 ooooo 839 899 ooooo 00001 31 959 00010 ooooo 137
780 21100 10000 840 31110 ooooo 900 22200 ooooo 960 61100 ooooo
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1 11122 1 11122 1 11122 i 11122
23571 37939 23571 37939 23571 37939 23571 37939

1 00000 00000 349*00000 ooooo 349 733*00000 OOOOO 733 323 OOOOO 01100
31*00000 00000 31 353*00000 ooooo 353 739*00000 OOOOO 739 289 ooooo 02000
37*00000 00000 37 359*00000 ooooo 359 743*00000 OOOOO 743 13*00000 10000
41*00000 00000 41 367*00000 ooooo 367 751*00000 OOOOO 751 481 ooooo 10000 37
43*00000 00000 43 373*00000 ooooo 373 757*00000 OOOOO 757 533 ooooo 10000 41
47*00000 00000 47 379*00000 ooooo 379 761*00000 OOOOO 761 559 ooooo 10000 43
53*00000 00000 53 383*00000 ooooo 383 769*00000 ooooo 769 611 ooooo 10000 47
59*00000 00000 59 389*00000 ooooo 389 773*00000 ooooo 773 689 ooooo 10000 53
61*00000 00000 61 397*00000 ooooo 397 787*00000 ooooo 787 767 ooooo 10000 59
67*00000 00000 67 401*00000 o o o o o 401 797*00000 ooooo 797 793 ooooo 10000 61
71*00000 o o o o o 71 409*00000 o o o o o 409 809*00000 ooooo 809 871 o o o o o 10000 67
73*00000 00000 73 419*00000 o o o o o 419 811*00000 ooooo 811 923 o o o o o 10000 71
79*00000 ooooo 79 421*00000 ooooo 421 821*00000 ooooo 821 949 ooooo 10000 73
83*00000 ooooo 83 431*00000 ooooo 431 823*00000 ooooo 823 403 ooooo 10000 31
89*00000 ooooo 89 433*00000 ooooo 433 827*00000 o o o o o 827 377 o o o o o 10001
97*00000 ooooo 97 439*00000 ooooo 439 829*00000 ooooo 829 299 ooooo 10010

101*00000 ooooo 101 443*00000 ooooo 443 839*00000 ooooo 839 247 ooooo 10100
103*00000 ooooo 103 449*00000 ooooo 449 853*00000 ooooo 853 221 o o o o o 11000
107*00000 ooooo 107 457*00000 ooooo 457 857*00000 ooooo 857 169 o o o o o 20000
109*00000 ooooo 109 461*00000 ooooo 461 859*00000 ooooo 859 11*00001 ooooo
113*00000 ooooo 113 463*00000 ooooo 463 863*00000 ooooo 863 407 00001 ooooo 37
127*00000 ooooo 127 467*00000 ooooo 467 877*00000 ooooo 877 451 00001 ooooo 41
131*00000 ooooo 131 479*00000 o o o o o 479 881*00000 ooooo 881 473 00001 ooooo 43
137*00000 o o o o o 137 487*00000 ooooo 487 883*00000 ooooo 883 517 00001 ooooo 47
139*00000 ooooo 139 491*00000 ooooo 491 887*00000 ooooo 887 583 00001 ooooo 53
149*00000 o o o o o 149 499*00000 ooooo 499 907*00000 ooooo 907 649 00001 ooooo 59
151*00000 ooooo 151 503*00000 ooooo 503 911*00000 ooooo 911 671 00001 o o o o o 61
157*00000 ooooo 157 509*00000 ooooo 509 919*00000 ooooo 919 737 00001 ooooo 67
163*00000 ooooo 163 521*00000 ooooo 521 929*00000 ooooo 929 781 00001 ooooo 71
167*00000 ooooo 167 523*00000 ooooo 523 937*00000 ooooo 937 803 00001 ooooo 73
173*00000 ooooo 173 541*00000 ooooo 541 941*00000 ooooo 941 869 00001 ooooo 79
179*00000 ooooo 179 547*00000 ooooo 547 947*00000 ooooo 947 913 00001 ooooo 83
181*00000 ooooo 181 557*00000 ooooo 557 953*00000 ooooo 953 341 00001 ooooo 31
191*00000 ooooo 191 563*00000 ooooo 563 29*00000 00001 319 00001 00001
193*00000 ooooo 193 569*00000 ooooo 569 899 OOOOO 00001 31 253 00001 00010
197*00000 ooooo 197 571*00000 ooooo 571 841 OOOOO 00002 209 00001 00100
199*00000 o o o o o 199 577*00000 ooooo 577 23*00000 00010 187 00001 01000
211*00000 ooooo 211 587*00000 ooooo 587 851 OOOOO 00010 37 143 00001 10000
223*00000 ooooo 223 593*00000 ooooo 593 943 OOOOO 00010 41 121 00002 ooooo
227*00000 ooooo 227 599*00000 ooooo 599 713 OOOOO 00010 31 7*00010 ooooo
229*00000 o o o o o 229 601*00000 ooooo 601 667 OOOOO 00011 259 00010 ooooo 37
233*00000 ooooo 233 607*00000 ooooo 607 529 OOOOO 00020 287 00010 ooooo 41
239*00000 o o o o o 239 613*00000 ooooo 613 19*00000 00100 301 00010 ooooo 43
241*00000 ooooo 241 617*00000 ooooo 617 703 OOOOO 00100 37 329 00010 ooooo 4 7
251*00000 ooooo 251 619*00000 ooooo 619 779 OOOOO 00100 41 371 00010 ooooo 53
257*00000 ooooo 257 631*00000 ooooo 631 817 OOOOO 00100 43 413 00010 ooooo 59
263*00000 ooooo 263 641*00000 ooooo 641 893 OOOOO 00100 47 427 00010 ooooo 61
269*00000 o o o o o 269 643*00000 ooooo 643 589 OOOOO 00100 31 469 00010 ooooo 67
271*00000 ooooo 271 647*00000 ooooo 647 551 OOOOO 00101 497 00010 ooooo 71
277*00000 ooooo 277 653*00000 ooooo 653 437 OOOOO 00110 511 00010 ooooo 73
281*00000 ooooo 281 659*00000 ooooo 659 361 OOOOO 00200 553 00010 o o o o o 79
283*00000 ooooo 283 661*00000 ooooo 661 17*00000 01000 581 00010 ooooo 83
293*00000 ooooo 293 673*00000 ooooo 673 629 OOOOO 01000 37 623 00010 o o o o o 89
307*00000 ooooo 307 677*00000 ooooo 677 697 OOOOO 01000 41 679 00010 o o o o o 97
311*00000 ooooo 311 683*00000 ooooo 683 731 OOOOO 01000 43 707 00010 o o o o o 101
313*00000 ooooo 313 691*00000 ooooo 691 799 OOOOO 01000 47 721 00010 o o o o o 103
317*00000 ooooo 317 701*00000 ooooo 701 901 OOOOO 01000 53 749 00010 ooooo 107
331*00000 ooooo 331 709*00000 ooooo 709 527 OOOOO 01000 31 763 00010 o o o o o 109
337*00000 ooooo 337 719*00000 ooooo 719 493 OOOOO 01001 791 00010 ooooo 113
347*00000 ooooo 347 727*00000 ooooo 727 391 OOOOO 01010 889 00010 ooooo 127
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1 11122 
23571 37939

1
23571

11122
37939

1 11122 
23571 37939

i
23571

11122
37939

917 00010 00000 131 35 00110 00000 699 01000 ooooo 233 165 01101 OOOOO
959 00010 00000 137 805 00110 00010 717 01000 00000 239 105 OHIO ooooo
217 00010 00000 31 665 00110 00100 723 01000 ooooo 241 735 01120 ooooo
203 00010 00001 595 00110 01000 753 01000 ooooo 251 75 01200 ooooo
161 00010 00010 455 00110 10000 771 01000 ooooo 257 825 01201 ooooo
133 00010 00100 385 00111 00000 789 01000 ooooo 263 525 01210 ooooo
119 00010 01000 245 00120 00000 807 01000 ooooo 269 375 01300 ooooo

91 00010 10000 25 00200 00000 813 01000 ooooo 271 9 02000 ooooo
77 00011 00000 925 00200 00000 37 831 01000 ooooo 277 333 02000 ooooo 37

847 00012 00000 775 00200 00000 31 843 01000 ooooo 281 369 02000 ooooo 41
49 00020 00000 725 00200 00001 849 01000 00000 283 ~w r 02(500 ooooo “ O

931 00020 00100 575 00200 00010 879 01000 ooooo 293 423 02000 ooooo 47
833 00020 01000 475 00200 00100 921 01000 ooooo 307 477 02000 ooooo 53
637 00020 10000 425 00200 01000 933 01000 ooooo 311 531 02000 ooooo 59
539 00021 00000 325 00200 10000 939 01000 ooooo 313 549 02000 ooooo 61
343 00030 00000 275 00201 00000 951 01000 ooooo 317 603 02000 ooooo 67

5*00100 00000 175 00210 00000 93 01000 ooooo 31 639 02000 ooooo 71
185 00100 00000 37 125 00300 00000 87 01000 00001 657 02000 ooooo 73
205 00100 00000 41 875 00310 00000 69 01000 00010 711 02000 ooooo 79
215 00100 00000 43 625 00400 00000 57 01000 00100 747 02000 ooooo 83
235 00100 00000 47 3*01000 00000 51 01000 01000 801 02000 ooooo 89
265 00100 00000 53 111 01000 00000 37 867 01000 02000 873 02000 ooooo 97
295 00100 00000 59 123 01000 00000 41 39 01000 10000 909 02000 ooooo 101
305 00100 00000 61 129 01000 00000 43 897 01000 10010 927 02000 ooooo 103
335 00100 00000 67 141 01000 00000 47 741 01000 10100 279 02000 ooooo 31
355 00100 00000 71 159 01000 00000 53 663 01000 11000 261 02000 00001
365 00100 00000 73 177 01000 00000 59 507 01000 20000 207 02000 00010
395 00100 00000 79 183 01000 00000 61 33 01001 ooooo 171 02000 00100
415 00100 00000 83 201 01000 00000 67 957 01001 00001 153 02000 01000
445 00100 00000 89 213 01000 00000 71 759 01001 00010 117 02000 10000
485 00100 00000 97 219 01000 00000 73 627 01001 00100 99 02001 ooooo
505 00100 00000 101 237 01000 00000 79 561 01001 01000 63 02010 ooooo
515 00100 00000 103 249 01000 00000 83 429 01001 10000 819 02010 10000
535 00100 00000 107 267 01000 00000 89 363 01002 ooooo 693 02011 ooooo
545 00100 00000 109 291 01000 00000 97 21 01010 ooooo 441 02020 ooooo
565 00100 00000 113 303 01000 00000 101 777 01010 ooooo 37 45 02100 ooooo
635 00100 00000 127 309 01000 00000 103 861 01010 ooooo 41 855 02100 00100
655 00100 00000 131 321 01000 00000 107 903 01010 ooooo 43 765 02100 01000
685 00100 00000 137 327 01000 00000 109 651 01010 ooooo 31 585 02100 10000
695 00100 00000 139 339 01000 00000 113 609 01010 00001 495 02101 ooooo
745 00100 00000 149 381 01000 00000 127 483 01010 00010 315 02110 ooooo
755 00100 00000 151 393 01000 00000 131 399 01010 00100 225 02200 ooooo
785 00100 00000 157 411 01000 00000 137 357 01010 01000 27 03000 ooooo
815 00100 00000 163 417 01000 00000 139 273 01010 10000 837 03000 ooooo 31
835 00100 00000 167 447 01000 00000 149 231 01011 ooooo 783 03000 00001
865 00100 00000 173 453 01000 00000 151 147 01020 ooooo 621 03000 00010
895 00100 00000 179 471 01000 00000 157 15 01100 ooooo 513 03000 00100
905 00100 00000 181 489 01000 00000 163 555 01100 ooooo 37 459 03000 01000
955 00100 00000 191 501 01000 00000 167 615 01100 ooooo 41 351 03000 10000
155 00100 00000 31 519 01000 00000 173 645 01100 ooooo 43 297 03001 ooooo
145 00100 00001 537 01000 00000 179 705 01100 ooooo 47 189 03010 ooooo
115 00100 00010 543 01000 00000 181 795 01100 ooooo 53 135 03100 ooooo

95 00100 00100 573 01000 00000 191 885 01100 ooooo 59 945 03110 ooooo
85 00100 01000 579 01000 00000 193 915 01100 ooooo 61 675 03200 ooooo
65 00100 10000 591 01000 00000 197 465 01100 ooooo 31 81 04000 ooooo

845 00100 20000 597 01000 00000 199 435 01100 00001 891 04001 ooooo
55 00101 00000 633 01000 00000 211 345 01100 00010 567 04010 ooooo

935 00101 01000 669 01000 00000 223 285 01100 00100 405 04100 ooooo
715 00101 10000 681 01000 00000 227 255 01100 01000 243 05000 ooooo
605 00102 00000 687 01000 00000 229 195 01100 10000 729 06000 ooooo
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1 11122 1 11122 1 11122 1 11122
23571 37939 23571 37939 23571 37939 23571 37939

2*10000 00000 706 10000 00000 353 406 10010 00001 762 11000 00000 127
74 10000 00000 37 718 10000 00000 359 322 10010 00010 786 11000 00000 131
82 10000 00000 41 734 10000 00000 367 266 10010 00100 822 11000 00000 137
86 10000 00000 43 746 10000 00000 373 238 10010 01000 834 11000 00000 139
94 10000 00000 47 758 10000 00000 379 182 10010 10000 894 11000 00000 149

106 10000 00000 53 766 10000 00000 383 154 10011 00000 906 11000 00000 151
118 10000 00000 59 778 10000 00000 389 98 10020 00000 942 11000 00000 157
122 10000 00000 61 794 10000 00000 397 686 10030 00000 186 11000 00000 31
134 10000 00000 67 802 10000 00000 401 10 10100 00000 174 11000 00001
142 10000 00000 71 818 10000 00000 409 370 10100 00000 37 138 11000 00010
146 10000 00000 73 838 10000 00000 419 410 10100 00000 41 114 11000 00100
158 10000 00000 79 842 10000 00000 421 430 10100 00000 43 102 11000 01000
166 10000 00000 83 862 10000 00000 431 470 10100 00000 47 78 11000 10000
178 10000 00000 89 866 10000 00000 433 530 10100 00000 53 66 11001 00000
194 10000 00000 97 878 10000 00000 439 590 10100 00000 59 858 11001 10000
202 10000 00000 101 886 10000 00000 443 610 10100 00000 61 726 11002 00000
206 10000 00000 103 898 10000 00000 449 670 10100 00000 67 42 11010 00000
214 10000 00000 107 914 10000 00000 457 710 10100 00000 71 798 11010 00100
218 10000 00000 109 922 10000 00000 461 730 10100 00000 73 714 11010 01000
226 10000 00000 113 926 10000 00000 463 790 10100 00000 79 546 11010 10000
254 10000 00000 127 934 10000 00000 467 830 10100 00000 83 462 11011 00000
262 10000 00000 131 958 10000 00000 479 890 10100 00000 89 294 11020 00000
274 10000 00000 137 62 10000 00000 31 310 10100 00000 31 30 11100 00000
278 10000 00000 139 58 10000 00001 290 10100 00001 930 11100 00000 31
298 10000 00000 149 46 10000 00010 230 10100 00010 870 11100 00001
302 10000 00000 151 38 10000 00100 190 10100 00100 690 11100 00010
314 10000 00000 157 874 10000 00110 170 10100 01000 570 11100 00100
326 10000 00000 163 722 10000 00200 130 10100 10000 510 11100 01000
334 10000 00000 167 34 10000 01000 110 10101 00000 390 11100 10000
346 10000 00000 173 782 10000 01010 70 10110 00000 330 11101 00000
358 10000 00000 179 646 10000 01100 910 io n o 10000 210 11110 00000
362 10000 00000 181 578 10000 02000 770 10111 00000 150 11200 00000
382 10000 00000 191 26 10000 10000 490 10120 00000 750 11300 00000
386 10000 00000 193 806 10000 10000 31 50 10200 00000 18 12000 00000
394 10000 00000 197 754 10000 10001 950 10200 00100 666 12000 00000 37
398 10000 00000 199 598 10000 10010 850 10200 01000 738 12000 00000 41
422 10000 00000 211 494 10000 10100 650 10200 10000 774 12000 00000 43
446 10000 00000 223 442 10000 11000 550 10201 00000 846 12000 00000 47
454 10000 00000 227 338 10000 20000 350 10210 00000 954 12000 00000 53
458 10000 00000 229 22 10001 00000 250 10300 00000 558 12000 00000 31
466 10000 00000 233 814 10001 00000 37 6 11000 00000 522 12000 00001
478 10000 00000 239 902 10001 00000 41 222 11000 00000 37 414 12000 00010
482 10000 00000 241 946 10001 00000 43 246 11000 00000 41 342 12000 00100
502 10000 00000 251 682 10001 00000 31 258 11000 00000 43 306 12000 01000
514 10000 00000 257 638 10001 00001 282 11000 00000 47 234 12000 10000
526 10000 00000 263 506 10001 00010 318 11000 00000 53 198 12001 00000
538 10000 00000 269 418 10001 00100 354 11000 00000 59 126 12010 00000
542 10000 00000 271 374 10001 01000 366 11000 00000 61 882 12020 00000
554 10000 00000 277 286 10001 10000 402 11000 00000 67 90 12100 00000
562 10000 00000 281 242 10002 00000 426 11000 00000 71 630 12110 00000
566 10000 00000 283 14 10010 00000 438 11000 00000 73 450 12200 00000
586 10000 00000 293 518 10010 00000 37 474 11000 00000 79 54 13000 00000
614 10000 00000 307 574 10010 00000 41 498 11000 00000 83 918 13000 01000
622 10000 00000 311 602 10010 00000 43 534 11000 00000 89 702 13000 10000
626 10000 00000 313 658 10010 00000 47 582 11000 00000 97 594 13001 00000
634 10000 00000 317 742 10010 00000 53 606 11000 00000 101 378 13010 00000
662 10000 00000 331 826 10010 00000 59 618 11000 00000 103 270 13100 00000
674 10000 00000 337 854 10010 00000 61 642 11000 00000 107 162 14000 00000
694 10000 00000 347 938 10010 00000 67 654 11000 00000 109 810 14100 00000
698 10000 00000 349 434 10010 00000 31 678 11000 00000 113 486 15000 00000
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1 11122 i 11122 1 11122 i 11122
23571 37939 23571 37939 23571 37939 23571 37939

4 20000 00000 476 20010 01000 8 30000 00000 16 40000 00000
148 20000 00000 37 364 20010 10000 296 30000 00000 37 592 40000 00000 37
164 20000 00000 41 308 20011 00000 328 30000 00000 41 656 40000 00000 41
172 20000 00000 43 196 20020 00000 344 30000 00000 43 688 40000 00000 43
188 20000 00000 47 20 20100 00000 376 30000 00000 47 752 40000 00000 47
212 20000 00000 53 740 20100 00000 37 424 30000 00000 53 848 40000 00000 53
236 20000 00000 59 820 20100 00000 41 472 30000 00000 59 944 40000 00000 59
244 20000 00000 61 860 20100 00000 43 488 30000 00000 61 496 40000 00000 31
268 20000 00000 67 940 20100 00000 47 536 30000 00000 67 464 40000 00001
284 20000 00000 71 620 20100 00000 31 568 30000 00000 71 368 40000 00010
292 20000 00000 73 580 20100 00001 ~3W 30000 00000 73 "304" 40000 OO1O0
316 20000 00000 79 460 20100 00010 632 30000 00000 79 272 40000 01000
332 20000 00000 83 380 20100 00100 664 30000 00000 83 208 40000 10000
356 20000 00000 89 340 20100 01000 712 30000 00000 89 176 40001 00000
388 20000 00000 97 260 20100 10000 776 30000 00000 97 112 40010 00000
404 20000 00000 101 220 20101 00000 808 30000 00000 101 784 40020 00000
412 20000 00000 103 140 20110 00000 824 30000 00000 103 80 40100 00000
428 20000 00000 107 100 20200 00000 856 30000 00000 107 880 40101 00000
436 20000 00000 109 700 20210 00000 872 30000 00000 109 560 40110 00000
452 20000 00000 113 500 20300 00000 904 30000 00000 113 400 40200 00000
508 20000 00000 127 12 21000 00000 248 30000 00000 31 48 41000 00000
524 20000 00000 131 444 21000 00000 37 232 30000 00001 912 41000 00100
548 20000 00000 137 492 21000 00000 41 184 30000 00010 816 41000 01000
556 20000 00000 139 516 21000 00000 43 152 30000 00100 624 41000 10000
596 20000 00000 149 564 21000 00000 47 136 30000 01000 528 41001 00000
604 20000 00000 151 636 21000 00000 53 104 30000 10000 336 41010 00000
628 20000 00000 157 708 21000 00000 59 88 30001 00000 240 41100 00000
652 20000 00000 163 732 21000 00000 61 56 30010 00000 144 42000 00000
668 20000 00000 167 804 21000 00000 67 952 30010 01000 720 42100 00000
692 20000 00000 173 852 21000 00000 71 728 30010 10000 432 43000 00000
716 20000 00000 179 876 21000 00000 73 616 30011 00000 32 50000 00000
724 20000 00000 181 948 21000 00000 79 392 30020 00000 928 50000 00001
764 20000 00000 191 372 21000 00000 31 40 30100 00000 736 50000 00010
772 20000 00000 193 348 21000 00001 920 30100 00010 608 50000 00100
788 20000 00000 197 276 21000 00010 760 30100 00100 544 50000 01000
796 20000 00000 199 228 21000 00100 680 30100 01000 416 50000 10000
844 20000 00000 211 204 21000 01000 520 30100 10000 352 50001 00000
892 20000 00000 223 156 21000 10000 440 30101 00000 224 50010 00000
908 20000 00000 227 132 21001 00000 280 30110 00000 160 50100 00000
916 20000 00000 229 84 21010 00000 200 30200 00000 800 50200 00000
932 20000 00000 233 924 21011 00000 24 31000 00000 96 51000 00000
956 20000 00000 239 588 21020 00000 888 31000 00000 37 672 51010 00000
124 20000 00000 31 60 21100 00000 744 31000 00000 31 480 51100 00000
116 20000 00001 780 21100 10000 696 31000 00001 288 52000 00000

92 20000 00010 660 21101 00000 552 31000 00010 864 53000 00000
76 20000 00100 420 21110 00000 456 31000 00100 64 60000 00000
68 20000 01000 300 21200 00000 408 31000 01000 832 60000 10000
52 20000 10000 36 22000 00000 312 31000 10000 704 60001 00000

884 20000 11000 828 22000 00010 264 31001 00000 448 60010 00000
676 20000 20000 684 22000 00100 168 31010 00000 320 60100 00000

44 20001 00000 612 22000 01000 120 31100 00000 192 61000 00000
836 20001 00100 468 22000 10000 840 31110 00000 960 61100 00000
748 20001 01000 396 22001 00000 600 31200 00000 576 62000 00000
572 20001 10000 252 22010 00000 72 32000 00000 128 70000 00000
484 20002 00000 180 22100 00000 936 32000 10000 896 70010 00000

28 20010 00000 900 22200 00000 792 32001 00000 640 70100 00000
868 20010 00000 31 108 23000 00000 504 32010 00000 384 71000 00000
812 20010 00001 756 23010 00000 360 32100 00000 256 80000 00000
644 20010 00010 540 23100 00000 216 33000 00000 768 81000 00000
532 20010 00100 324 24000 00000 648 34000 00000 512 90000 00000



17
Logic 
and Sets

1 7 . 1  LOGIC

Logic concerns pEQPQsitigas; a proposition is any 
statement which may be judged to be either true or false. 
Thus a proposition is a function having a result limited to 
two values; these two values are usually referred to by the 
words true and falsg and represented by the integers 1 and 
0. In other words, a proposition is a function whose range 
is 0 1. For example:

Proposition read as:
X+3
^<5 x is less than 5

1 true
0 = 3 \ X

1
X is divisible by 3 
true

(X>5)ao = 3|X X is greater than 5 and X is divisible by 3 
0 false

A proposition is also referred to as a logical 
expression or logical function. Although the term 
E£QPQsitiQn has not been used in earlier chapters, 
propositions have been used freely. In fact any expression 
which used compression has had a left argument which is the 
result of a proposition, and most branches occurring in 
function definition incorporate propositions. Consider, for 
example, the functions PR and BIN from Sections 9.3 and 
1 2 . 4 :

VZ^PP X
Cl ] Z+( 2=+/§0=( \X) o . I \ X)/x XV

VZ^PPP X
[1] Z + 91
[2] ->3 *X>p Z
[3] Z«-(Z,0)+(0,Z)
[*4] + 2 V

The left argument of compression in the function PR contains 
two uses of propositions, first a comparison with zero (to 
determine divisibility) and then a comparison with 2 (to 
determine which integers have two divisors). Moreover, the
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branch on line 2 of the function BIN incorporates the 
proposition X>pZ.

The important logical functions are the relations 
(< < = > > *), the functions and, or, nand, and nor
(a v tv v ), complement (~) , and set membership (e ) . The
relations have been used freely in the foregoing chapters,
the complement was introduced in Section 8.6, and the
functions and, or, nand, and nor were introduced and 
analyzed in Section 14.2. The set membership function will 
be introduced in the treatment of sets. There therefore
remains little to be learned about logic except the use of
the terms proposition, logical expression, and logical 
function. EE 1-5

17.2 SETS
A set is a collection of items defined by some 

proposition. For example:
"The set of all positive even integers less than 15"
"The set of all positive factors of 24"
"The set of all items now lying on the desk"
"The set of all numbers occurring as elements of the 

vector W specified as W+-2 3.5 7 8 13"
"The set of all vowels"
"The set of all letters occurring as elements of the 

vector V specified as V+'AEIOU1"
The primary question concerning sets is membership, 

that is, "is a given value of X a member of a specified 
set". Thus 8 is a member of the set of all positive factors 
of 24 but 5 and ~8 are not. The membership of any value X 
in a set is determined by applying to X the proposition 
which defines the set. For example, the proposition 
defining the set of all positive factors of 24 is defined 
and used as follows:

V Z+-PD 2 4 X
[1] Z + (X>0)A0=X\24V

PD 2 4 8
1

PD 2 4 "8 5 8 
0 0 1

PD 2 4 i 24
1 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1  

{PD 2 4 i 2 4 ) / i 2 4
3 4 6 8 12 241 2 16-7
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Certain propositions can be defined only in terms of 
an explicit list t>f the elements of the set. For example, 
the proposition defining the set of all vowels would have to 
employ the list 1 AEIOU1. Thus:

1Z+V0WEL X
8El [1] Z + v/X='AEIOU'V

A more general proposition to determine membership in any 
list presented as the second argument could be defined as 
follows:

IZ^X ISAMEMBEROF S 
[1] Z<-v /X = S1

For example:

0

1

1
0

'Z)f ISAMEMBEROF *AEIOU'
V+- 'AEIOU f

ISAMEMBEROF V

W+2 3.5 7 8 13
7 ISAMEMBEROF W

'A 1 ISAMEMBEROF W

The foregoing proposition will not apply properly to a 
Y§ctor left argument and it will be more convenient to 
define the following (otherwise equivalent) function which 
does :

1Z+X BELONGSTO S 
[1] Z^v/Jo.=sv

For example:
A 13^1ABCDEFGHIJKLM' 
ill 3 BELONGSTO V 

1 0 0 0 1 0 0 0 1 0 0 0 0
(i41 3 BELONGSTO V)/A13

AEI

The function BELONGSTO is an important function that 
will be assigned the symbol e (i.e., the Greek letter 
epsilon).

AlZeV
1 0 0 0 1 0 0 0 1 0 0 0 0

The function denoted by e is referred to as "membership", 
9-10EI "is a member of", or "belongs to".
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The function e is actually slightly more general than 
the function BELONGSTO; it applies to either matrix or 
vector arguments, determining for each element of the left 
argument whether it occurs as a member of the right
argument. For example:

M N 5
4 6 8 10 4 5 6 1 2  3 4
6 9 12 15 7 8 9
8 12 16 20

10 15 20 25
NeM MeN SeN

1 0 1 1 1 1 0 0 0 0 1
0 1 1 1 1 0 0

1 0 0 0
0 0 0 0

Any set with a finite number of elements can therefore 
be conveniently represented by a vector S whose elements 
include all elements of the set; the proposition defining 
the corresponding set is then simply XeS. Consequently it 
is often convenient to think of the vector S as the set 
itself. This is analogous to thinking of the string of 
characters 144 as the number which it represents, even 
though we know that this is only one of many possible 
representations, as discussed in Chapter 16. Therefore 
although we may carelessly refer to "the set Sn it is 
important to realize that this notion may lead to confusion 
and one must always be ready to remember that S is not the 
set itself but only one of many possible representations of 
it.

Any vector can therefore represent a set. It is, 
however, convenient to use only vectors which have no 
repeated elements, since a second occurrence of any value in 
the vector does not enlarge or otherwise affect membership. 
Thus the members of the set represented Joy the vector 
2 3 4 6  are the same as the members of the set represented 
by the vector 2 3 2 4 3 6 4 .

It should also be noted that any vector T obtained by 
reordering the elements of a vector S represents the same 
set as does 5. For example:

A+- 'ABCDEFGHIJKLMNOPQRSTUVWXYZ 1 
S+'STEAM'
T+Sl5 4 2 3 1 ]
T

MATES
(AeS)/A

AEMST
(AeT)/A

AEMST
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Thus the membership function X eS does not depend on 
the order of the elements of the vector S which represents 
the function, and for this reason it is often said that the 
set itself is unordered. The fact that the result of some 
function applied to a vector does not depend on the order of 
the^elements in the vector is, of course, not unusual. For 
example, the values of the expressions +/X and \/X do not 
depend on the order of the elements in X (since + and T are 
both associative and commutative), although the expressions 

12-1410 -/ X and \/X do depend on the order.
In order to emphasize that membership in a set does 

not depend on the order of the elements in its representa­
tion, it is common to represent a set by distributing a 
number of values on a page at random and then drawing a 
curve around the elements belonging to the set, as follows:

If this set is labelled A and if a second curve 
representing the set of elements 2, 8, 29, and 21 is drawn 
and is labelled B, the picture appears as follows:

The intersection of the two curves (i.e., the area 
common to both curves) is said to represent the set which is 
the intersection of the sets A and B; in this case its 
elements are the numbers 2 and 8. A member of the
intersection of the two sets must be a member of both; hence 
if P and Q are the propositions defining the two sets, the 
proposition defining their intersection may be stated as 
follows:

VZ^P X
[1] Z«-(P X ) A  (Q J)v
For example:

VẐ -P X VZ+Q X
[1] Z+0=2\XV [1] Z*-0 = 3|XV

P 1 2 3 4 5 6 
0 1 0  1 0  1

Q 1 2  3 4 5 6 
0 0 1 0 0 1 

R 1 2 3 4 5 
0 0 0 10 0

6
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Moreover, if S and T are the vectors representing two 
sets, then their intersection is represented by the set 
(TeS)/T, since the logical vector TeS selects from T only 
those elements which also belong to S. A function for the 
intersection of two sets in terms of the vectors 
representing them can therefore be defined as follows:

VZ+-X I Y
[1] Z^(XeX)/XV
For example, the intersection of the sets A and B previously 
represented by closed curves can be determined as follows:

1 16 2 17 8 24 I 8 21 2 29
2 8 @15

The set S less the set T refers to the set which 
contains all elements of S except those also contained in Z7.
The expression (~TeS)/T clearly selects from T all those 
elements which do not belong to S. Hence the less function 
can be defined as follows:

VZ^X L Y
[1] Z^(~X€X)/XV
For example:

1 16 2 17 8 24 L 8 21 2 29
1 16 17 24 @16

The union of two sets refers to the set which contains 
all elements which are in either of the two sets. The union 
of the sets represented by S and T can therefore be 
represented by the vector S 9T. However, to avoid repeated 
elements in the vector it is better to use the expression 
S,T L S. Thus:

VZ^X U Y
[1] Z^XJ L XV

1 16 2 17 8 24 U 8 21 2 29
1 16 2 17 8 24 21 29 @17-18

If every element of a set S belongs to a second set Z7, 
then S is said to be a subset of Z7. If E is any logical 
vector then the set E/T is clearly a subset of Z7. Moreover, 
every possible subset of T can be written as E/T for a 
suitable choice of E. If T is a vector of three elements,
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then E must also have three elements and every possible 
value of E is listed as some row of the following table:

TAB
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
This table is precisely the table produced in Exercise 16.16 
to list all possible 3-digit binary numbers in ascending 
order. More generally it can be seen that the logical 
vectors representing all possible subsets of a set of N 
elements are listed in the table of all N -digit binary 
numbers.

The transpose of the matrix TAB appears as follows: 
STAB

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
If T is a numeric vector of three elements, then the inner 
product yields a vector of the sums over all
possible subsets of T; that is, Rill is the sum over no 
elements, i?[ 2] is the sum over the last element, i?[3] is the 
sum over the second element, R l ^ l is the sum over the last 
two elements, and so on. For example:

T+ 2 3 7 
T+ . *STAB

19-20® 0 7 3 10 2 9 5 12



18
Linear

Functions

18.1 INTRODUCTION
The expression 4+3xY is said to be a linear function. 

The reason for the term "linear" becomes evident on plotting 
the function; as shown in Figure 18.1, the plot forms a straight line.

15- I

10-

5-

"5 i i i i i i i i- 4 - 2  0 2 4
The Linear Function 4 + 3 xj 

Figure 18.1
More generally, if A and B are any scalar constants, 

then the expression A + B * X is a linear function. A plot of 
several linear functions sharing the same value of B and 
having different values of A (Figure 18.2) shows that the 
graphs have the same slope (i.e., they are parallel), but 
that they intercept the Y-axis at different points 
determined directly by the value of A . That is, the 
Y-intercept of the function 5+3xY is 5, the Y-intercept of 2 + 3xy is 2, and so on.
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15-

—4 —2 0 2 4

Linear Functions A + 3*X  (Common Slope)
Figure 18.2

A plot of the function A + B * X  for a common value of A 
and different values of B (Figure 18.3) shows that the 
functions share the same Y — intercept but have different 
slopes which are directly determined by B, that is, the 
vertical distance between any two points on the graph is B 
times the horizontal distance between them.

I f  a , B,  and C are scalar constants, the expression 
A + ( B x X ) + ( C x Y ) is a function of two arguments X and Y , but 
for any fixed value of I it is a linear function of Y alone. 
For example, the function 1+(2xj ) + (3xy) is equivalent to 
l+(2x4)+(3xy) if x is given the fixed value 4. This in turn 
equals 9+3xy, which is clearly a linear function of Y .
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1 5 -

10-

5-

0-

" 5 i i i i ! i i i i- 4 - 2  0 2 4

Linear Functions 4+flxj (Common Intercept)
Figure 18.3

Similarly, for a fixed value of Y, the expression 
A + ( B * X ) +(Cxy ) is a linear function of X. Consequently it is 
said to be a linear function of two arguments.

If the two arguments x and Y are combined in a single 
two-element vector V, then the linear function 1+(2xx) + (3xy) 
can be written more concisely as 1 + 2 3+.xy. More generally, 
for any scalar A and any two-element vector B, the
expression A+B+.*V represents a linear function of the two arguments VI1] and VI 2].

This vector form of writing linear equations possesses 
three important advantages. First, the expression A+B+.*V 
applies for a linear function of any number of arguments; 
it is only necessary that B and V each have the same number 
of elements as there are arguments. For example, the 
expression 1+ 2 3 4+.xy represents a linear function of the
three arguments 7[l]f> 7[2], and 7[3]. It could be written in terms of these individual arguments as follows:

l+(2x7[i])+(3xy[2])+(4xy[3])
or, if the three arguments are called x, Y, and z it could be written as:

• 1 • •

l+(2 x X ) +(3xy)+(4xZ) 11-3
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The second advantage of using the expression A + B + . * V  
is that it can express not only one linear function, but 
several. For example, if B is the matrix

B<- 2 2 p 2 3 1 4
B

2 3
1 4

and A is the vector 5 7 ,  then A + B + . * V yields two results:
5 + 2  3 + . x y

and
7 + 1 4 + . x y

Hence 4+S+.xy expresses two linear functions in two 
arguments.

In general, if A is a vector of M elements and B is an 
M by N matrix, then A + B + . * V expresses M linear functions in

4-6® N arguments.

18.2 MAPPINGS
If A is a two-element vector and B is a 2 by 2 matrix, 

then the expression A + B + , * V applies to a two—element vector 
V and yields a two-element vector as a result. For example:

2 ” 4
B*-2 2 p 1 2 3 2
B

1 2 
3 2

B + .x 1 2
5 7

A + B + . x l 2
3 3

The vector 1 2 can be shown as a point on the graph as 
can the vector 3 3 which results from applying the linear 
function 4+S+.xy to it. Hence the effect of the linear 
function can be shown as a map by drawing an arrow from the 
point representing the vector 1 2 to the point representing 
the result 3 3. This is shown in Figure 18.4.

A more complete picture of the effect of the linear 
function A + B + . * V can be obtained by computing^and plotting 
the results from applying it to a number of points. Figure
18.5 shows the mapping from the points 1 2 and 1 5 and 5 5 

7® and 5 2.

The effects of A and B can be studied separately by 
considering certain special cases. For example, if A has 
the value 0 0, then 4+£+.xy is equivalent to S+.xy.
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4 -

0 5 1 0

A Linear Mapping 
Figure 18.4

*

o- ------------------------------
I I I I I I I
0 4 8 12

A Linear Mapping on Several Points 
Figure 18.5

15
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The linear function S+.xy always leaves the origin 
(the point o o) unchanged, that is, B+.xO o is 0 0 no matter 
what B is. Apart from this simple fact, the mapping 
produced by B + . * V  can be quite complicated. For example, if

B<- 2 2 p 2 . 5 " . 5  1 . 5  .5
B

2 . 5  " 0 . 5
1 . 5  0 . 5  

B+  . x 1 7
" l  5

B + . x 2 6
2 6

5 + . x 3 5
5 7

B+  . x i\ 4
8 8
then the mapping produced by B + . * V  is shown in Figure 18.6. 
From this figure it appears that the effects on different 
points may be quite different. For example, the last point 
s is "stretched" (that is, It maps into a point straight 
away from the origin in the same direction as s), the second 
point q maps into itself, and the arrows from p and r lead 
in opposite directions. Points (such as p, q, r, and s) 
which lie on a line do, as remarked before, map into points 

8® which also lie on a line.

A Linear Mapping 
Figure 18.6

10
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18.3 ROTATIONS
There is a certain class of matrices which yields a 

very simple and important mapping. If B is a 2 by 2 matrix 
of the form

5 C 
-C S

and C is equal to either (1-5*2)*.5 or -(1-5*2)*.5, then the 
mapping 5+.xy is a rotation about the origin. That is, each 
point maps into a point the same distance from the origin 
but displaced by rotation through, a certain angle. Such, a 
matrix will be called a rotation matrix. For example, if
5-*-. 5f then (1-5*2)*. 5 is equal to (3*4)*. 5 (which is 
approximately .866), and B is the matrix:
_0. 5 0.866
0.866 0.5

Figure 18.7 shows the mapping 5+.xy applied to the following 
set of points:

5+.x 0 0
0 0 5+.x1 l 
1.366 "0.366

B+ . x 2 2
2.732 "0.732

B+.x 1 l 
0.366 1.366

5+.xo 1 
0.866 0.5

5+.xl 2
2.2 32 0. 1 34

To see why this mapping is called a rotation, lay a 
sheet of translucent paper over the plot and copy onto it 
the original points V and the axes. Then place a pin 
through the origin and rotate the translucent overlay until 
one of the points V coincides with, the point B+.xV into 
which it maps. It will then be seen that all points in v 
lie over the corresponding points 5+.xy. Moreover, the 
angle of rotation is the angle formed between the new and 
old positions of the axes.

If 5 is equal to 1, then (1-5*2)*.5 Is equal to zero, and the rotation matrix B becomes
i o 
0 1

In this case it is clear that B + . * V yields V for any V. The 
mapping B + . x V is therefore called the identity mapping, and 
the matrix B is called the identity matrix. 19-13
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A Rotation
Figure 18.7
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18.4 TRANSLATION
The effect of the vector a in the linear function 

A+B+.xV is most easily seen if B is chosen to be the 
identity matrix. In that case B + .xV yields v and the 
expression 4+£+.xy is therefore equivalent to the expression 
A+V. _ This mapping is shown in Figure 18.8 for the case 
A+2 “l. All of the mapping arrows are parallel and of the 
same length. This sort of mapping is called a translation.

If the first element of A is zero, the translation is 
vertical, moving upward if A L 2] is positive and downward if 
it is negative. Likewise, if the second element is zero the 
translation is horizontal, to the right if A L l] is positive, 
and to the left if it is negative. gl4

o----------  -------------------------
_ l  _ l  I I I I I I

2 1 0 1 2 3 4 5  

Translation 
Figure 18.8

18.5 LINEAR FUNCTION ON A SET OF POINTS
It is often necessary to apply the expression B + . x y to 

a number of points, that is, for a number of different 
values of V. This can be done conveniently by assembling 
the values into a single matrix M such that each point 
appears as a column of Af. Then the expression B + . x M yields 
a matrix whose columns are the results of applying the 
linear function to each column of Af. For example, if the 
required points are 2 3 and 4 2 and 1 5,  then

AN-g3 2p 2 3,  4 2 , 1 5
M

2 4 1
3 2 5
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Moreover, if
B<- 2 2 p 1 2 3 2
B

1 2 
3 2

then
B+ .

8 8 11 
15H] 12 16 13

The translation A+V does not extend to a matrix of 
points quite so neatly as does the expression B+.xv. For 
example, if A+l 2 and M Is the matrix of the preceding 
paragraph, then A+2 3 is a translation of the vector 2 3 but 
A+M cannot be evaluated because A and M are not of the same 
shape. What is needed is a matrix P of the same shape as M 
and having each column equal to A, that is:

P
1 1 1
3 3 3

Then P+M yields the desired translation of the columns of M;
P+M 

3 5 2
6 5 8

The matrix P can be obtained by the expression 
$(4>pAf) p,4. Hence the translation of a set of points M can be 
expressed as:

($(<|>pM)pj4)+Af

and the general linear function A+B+.xV can be expressed for 
a set of points M as:

16@ (§(bpM)pA)+B+.

18.6 ROTATION AND TRANSLATION
If B is a rotation matrix, then the function B+.xy is 

a rotation and the function A+B+.xV is a rotation followed 
by a translation. Similarly, B+.*A+V is a translation 
followed by a rotation. A few experiments with these 
expressions for some chosen values of A and B applied to a 
number of points V will show that the two expressions are 
not equivalent.

However, the same experiments will be seen to suggest 
that B+.xA+V is equivalent to rotation by B (that is, B+.xV)
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followed by some translation. The amount of the translation 
will be found to be not A but rather B+.*A. In other words:

B+  .
(B+.*A) + (B + .x V )
The foregoing identity expresses the fact that the 

inner product function +.x distributes over +. This 
identity holds for any matrix B (i.e., It is not limited to 
rotation matrices). A proof of this for 2 by 2 matrices is 
fairly simple and is outlined in an exercise. The identity 
also holds for matrices B of any dimension. The proof of 
this is more involved and will not be attempted here, 
although the reader should be able to extend the method of 
proof used for a 2 by 2 matrix to the case of a 3 by 3 
matrix. Any reader not wishing to work, through, the proofs 
may wish to shore up his faith in the identity by performing 
a number of experiments. EE)17

18.7 STRETCHING
If B is the matrix
3 0
0 3

then the expression B+.xV "stretches" the point v by a 
factor of 3,  since each element of the result is 3 times the 
corresponding element of V . In a plot, such stretching is 
equivalent to extending the line from the origin to the 
point V to 3 times its length. If I is the identity matrix 
and T is any scalar value, then T *l  is a stretching matrix 
whose degree of stretch is equal to T .

A more general stretching is illustrated by the matrix 
B below:

3 0
0 2

For such a matrix, the expression B + . x v  stretches by a 
different amount for each coordinate. ft] 18

18.8 IDENTITIES ON THE INNER PRODUCT +.x
The inner product +.x has been seen to be central to 

the treatment of linear functions. Certain identities 
involving the inner product are also important in the study 
of linear functions. One of these has already been 
established, namely, the distributivity of +.x over + :

B+  . *A + V
(B+ .xA) + ( B +  .xV)
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A second important fact is that this inner product +.x 
is associative, that is :

M+ . x (B + . x V)
(M+.xfl)+.X v

A proof of this will be outlined in exercises for the case 
9-21(1 of 2 by 2 matrices M and B.

18.9 LINEAR FUNCTIONS ON 3-ELEMENT VECTORS
If V is a 3-element vector, B is a 3 by 3 matrix and A 

is a 3-element vector, then A+B+.*V is again a linear 
function of V which produces a 3-element result. In order 
to get a clear picture of the mapping produced by the func­
tion A+B+.xV for vectors V of dimension 3, it is necessary 
to devise a way of plotting a point having 3 coordinates: 
Draw the usual coordinates for a graph on a flat piece of 
thick styrofoam and obtain a set of wires of various 
lengths. Stick a wire into the point 3 4 on the graph so 
that it extends straight up to a length, of 5 units. The tip 
of the wire then represents the point (that is, the vector) 
3 4 5 .  Other points can be represented similarly.

The points plotted in 3-dimensions will be easier to 
see if the wires are tipped with colored beads. Moreover, 
if two different colors are used to plot the points V and 
the points A+B+.xV, then the effect of a linear mapping can 
be observed easily. Light tape can be used to connect each 
point to the corresponding point produced by th.e linear 
function. Alternatively, numeric labels identifying the 
points can be attached to them. For example;

B+- 3 3p 2 0 1 1  2 1 1 1 1
M+§ 5 3pl 1 1, 2 2 2 , 3 3 3, O i l
B M

2 0 1 1 2 3 0 0
1 2 1 1 2 3 1 2
1 1 1 1 2 3 1 2

B+.xM _
1 2 3 “l "2
0 0 0 1 2
3 6 9 2 4

The plot of this mapping is shown in Figure 18.9.
Most of the properties of linear functions observed 

for 2-element vectors carry over to the case of 
3-dimensions. For example, points lying on any line map 
into points lying on a line. Since this is true for a line 
in any direction it is also true for any plane, that is, 
points lying in the same plane map into points lying in a 
plane. Performing and plotting experiments for various 
values of B and V should make this clear.
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A Mapping in Three Dimensions 
Figure 18.9
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The identity matrix for 3-dimensions is the matrix I 
shown below:

1 0  0 
0 1 0  
0 0 1

It is easy to show that this is the identity matrix by 
22-23(1 showing that I + . * V yields V for any 3-element vector V.

18.10 ROTATIONS IN THREE DIMENSIONS
In an earlier section it was shown that the expression 

S+.xy produced a rotation (in two-dimensions) if B was a 
matrix of the form:

5 C
-c s

where C is equal to (1-5*2)*.5 or to -(1-5*2)*.5.

It was also shown (in Exercise 18.13) that for such a 
matrix B, multiplication by its transpose yields the 
identity matrix, that is: 5+.xq# is equal to the identity 
matrix. This is the essential property of a rotation matrix 
and applies in 3-dimensions as well. Thus any 3 by 3 matrix 
B such that 5+.xq# yields the identity matrix is a rotation 
matrix. For example, if 5 and C satisfy the requirements 
imposed in the first paragraph, then tire following matrix R 
is a rotation matrix:

R <5* R
1 0 0 1 0  0
0 5 5 0 s -c
0 - c 5 0 c s

5+ . x§i?
1 0 0
0 (5*2) + (5*2) (Sx-C)+(Cxs)
0 (-5x5)+(5x5) (C*2)+(S*2)
Since (5*2)+(5*2) equals 1, the matrix is the
identity.

Similarly,
5 5 0 5 0 5
-5 5 0 and 0 1 0
0 0 1 -5 0 5

are rotation matrices. Moreover, If R and T are rotation 
24-250 matrices then the product R + . * T is also a rotation matrix.
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Inverse Linear  

Functions

19.1 INTRODUCTION
The importance of inverse functions was noted in 

Chapter 11 where it was remarked that whenever one finds use 
for a particular function, the need for the inverse of that 
function usually arises. This is true of linear functions, 
and this chapter will be devoted to methods for obtaining 
the inverse of a linear function.

For a linear function of a single argument X, the 
inverse has already been determined in Chapter 11, where it 
was shown that the inverse of the function

A + B * X
was

( tB ) x ( - A )+X
For example, if A is 3 and B is 4 and X is 7, then A+B*X 
makes 31. Applying the inverse function to this result 
yields:

( t 4 ) x ( - 3 ) + 3 1
(t4)x28
7

Hence the result is the original value of X as required.
An important point is that the inverse function 

(fB)x(-,4)+x is itself a linear function. To show that this 
is so, we write the expression in an equivalent form as 
follows:

( )x(-A )+X
( ( t B ) x ( - 4 ) )  + ( U B ) x I )

The last expression is a linear function since it is a 
constant (that is, (t£)x (-4)) added to a constant (that is, 
t B) times X. For example, if A is 8 and B is 4, then the 
original linear function A + B*X is 8 + *+xx and the inverse is

U v4)x (-8))+((t4)xX)
2+.2 5 x X
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Chapter 11 dealt only with the inverses of functions 
of a single argument and, strictly speaking, the notion of 
inverse functions applies only to such a case. However, as 
shown in Chapter 18, a linear function of several arguments 
X, Y, and Z can be treated as a function of the single 
vector argument y, where V+X,Y,Z. In this sense, a linear 
function of several arguments does possess an inverse. As 
was just shown for the case of a single argument x, the 
inverse of any linear function is itself a linear function.

19.2 SOME INVERSE FUNCTIONS

As we did in the study of linear functions in Chapter 
18, we will begin with a simple case in which a is zero, 
that is, we will consider the linear function B+.xy. 
Suppose that B and IB are defined as follows:

3
5

B+ 2 2p 3 1 5  2 
IB+-2 2p 2 ~1 "5 3 
B IB

1 _2 i
2 5 3

Then the linear function JB+.xy is the inverse of the 
function B+.xy. This can be tested on a number of examples 
as follows:

5

1
“ 5

“3
2

2

B +.xl 2 
9

IB+.x 5 g
2

B+ . x ~ 3 4

IB+.x 5 ~7 
4
B +.xJB+.x 2 5 

5
IB+.xB+.x 2 5 

5

Similarly, in 3 dimensions the following matrices b 
and IB define inverse functions:

B<- 3 3 p l 0 2 2 1 3  4
IB+-3 3 p 
B

1 0 .5 1 1
IB

1 0 2 ~1 0 . 5
2 1 3 1 1 . 25
4 0 

16

4
B + . x l  2 

20

1 0 " . 2 5

J B + . x g  16 20
4l-2i 1 2
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The foregoing illustrates how the linear function 
5+.x7 may have an inverse T5+.xy which is also a linear 
function. It does not show how to go about finding a 
suitable inverse IB for any given matrix 5 . This is a 
rather difficult matter which will be addressed in 
subsequent sections.

In these later sections we will be considering the 
problem of finding an inverse for the function 5+.xy and 
will ignore the more general problem of finding an inverse 
to the general linear function A+B +. *V . The reason is that 
the inverse to 4+5+.xy can be easily obtained once we find 
an inverse to 5+.xy. This will now be shown.

Suppose a matrix IB has been found which is inverse to 
B, that is,

T5+.x5+.xy yields V.

Then T5+.x(-4)+y is the function inverse to A + B + . * V . For:
J5+.x(-4)+(4+5+.xy)
15+.x((- A )+4)+(5+.xv ) Associativity of +
J5+.x o + ( 5 + . x v)
15+.x5+.x v
V Because IB is inverse of 5

Consequently, attention will be restricted to the problem of 
finding an inverse to the function 5+.xy.

19.3 THE SOLUTION OF LINEAR EQUATIONS
In Section 11.7 it was remarked that even though a 

general expression for a function G inverse to F could not 
be found, one could find the value of G N for any argument N 
by simply finding a value of Y such that

N = F Y

This value satisfies the only requirement on G, namely, that 
F G N must be equal to N, for if G N is Y, then F G N is F Y 
which in turn is equal to N since Y was so chosen.

Finding a value of Y such that N=F Y is called 
"solving the equation N=F Y". It is often easier to solve 
such an equation than to find a general expression for the 
inverse function G. Moreover, solving such an equation for 
several different values of N may give some clues to an 
expression for G.

In any case, we shall approach the problem of finding 
an inverse to the function 5+.xy by developing methods for 
solving the equation N=B+.*V. Since N is a vector, we 
require a value of V such that each element of N agrees with
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each element of B + . x y .  This can be expressed by saying that 
the following expression is required to be true:

a/N-B + . xy 
For example, if

B +  2 2 p 1 2 2 3 
B

1 2 
2 3

N+ 3 4 
V+l 1 
B+. xV

3 5
N=B+.xF

1 0
a/N=B+.xy

then the first element of B+.xy agrees with the first 
element of N, but V is not a solution of the equation 
N = B + . * V since the elements do not all agree, as shown by the 
zero value resulting from the expression a / N= B+ .* V.  
However, the vector ~*1 2 is a solution as shown below:

3

1
3-4® 1

V+ 1 2 
B + . x V

n
N = B + . * V

1
a / N = B+.xF

19.4 BASIC SOLUTIONS
A solution of the equation 
A /1 0 = B+.xV 

or of the equation 
a /O 1 = B+.xV

will be called a basic solution. Basic solutions have two 
important properties:

They are rather easy to obtain.
They can be used to determine solutions to the 
equation a/N=B+.*V for any value of N.
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The second matter will be explored first, that is, we will 
first assume that we know two basic solutions 71 and V2 such 
that

a/1 0-B+.x 71 
a / 0 l-B-v . x 72

and will show how VI and 72 can be used to determine a 
solution to the general equation a/n =B+.xV. The matter of 
how to determine 71 and 72 themselves will be deferred to 
the succeeding section.

If 71 and 72 are basic solutions for a matrix B, then 
the vector

V<-(Nl l]x71 )+(£[ 2]x72 )
is a solution of the equation a /#=#+.x7. For example, if B 
is the matrix
4 2
1 3

then
71+-._3 .1
72+- .2 .4

are basic solutions, for:
B+.x 71

1 0
£+.x72

0 1
Moreover, if N<-3 5, then:

7-(/i/[l] x71) + (tf[2] x 72 )
7

0.1 1.7
£ + . x 7

3 5
and 7 is indeed a solution of the equation a/£=£+.x 7 . g5-

The method is based on two simple facts:
1) £+.x£x7 is equal to £x£+.x7 for any scalar S
2) B+.xP+Q is equal to (£t.xp ) + (b +.xQ )

(Distributivity of +.x over +)
The first of these facts is easily established and the 
second was established in Exercises in Chapter 18.
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The following arguments can now be used to show that 
V+(Nt1]x71) +(N[2]x7 2 ) is in fact a solution of the equation 
a/N=B+. xV:

B+.xV
B + . x ( ( N l l l x V l ) + ( 5 [ 2 ] x 7 2 ) )  
(B+.x^[l]x71)+(B+.x^[2]x 72) 
( t f [ l ] x £ + . x 7 1 ) + ( ^ [ 2 ] x 5 + . *V2) 
(/1/ C l ] x l  0 ) + ( i l 7 [ 2 ] x O  1 ) 
( i ! 7 [ l ] , 0 ) + ( 0 , ^ [ 2 ] )
N

Definition of 7 
Fact 2 
Fact 1
Definition of 71 and 72

19.5 DETERMINING BASIC SOLUTIONS
We now address the problem of finding basic solutions, 

that is, finding solutions 71 and 72 for the following set 
of equations:

a /1 0 = B+.x 71 
a / 0 1 = S + . x  7 2

If one has a vector VA such that B+.*VA is equal to 
5,0 then 71+(±S)xVA is a basic solution. For example:

B
1 3
4 2

VA
2

B+ .*VA
"10 0

71«-( t“10 )xVA 
71

2 . 4
5+.x 71

1 0
The foregoing is a simple application of Fact 1 of the 
preceding section. Moreover, the expression (v5)*74 can be 
written equivalently as VAt5.

To find a basic solution we can therefore begin with 
the simpler problem of finding a vector VA such that B+.*VA 
is equal to 5,0 for any value of 5. It is easy to choose a 
value of VA such that the second element of 5+.*74 is zero; 
simply take the second row of 5, reverse the sign of its 
first element, and then reverse the order of its elements. 
In other words:

VA*r§ "1 1 x5[ 2 ; ]
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For example, if B is the matrix

1 3
4 2

then
4 2 Second row of B (that is, B[2 ;])

”4 2 Reversal of sign (“l lxs[2 ;])
2 “4 Reversal of order (<t>”l lxB[2;])

B +.x 2 “4
”10 0
Hence if 74*«-2 ”4, then B+.x74 is ”10 0 . Moreover, V1+VA±~10 
is a basic solution:

V1<-VA + ~10 
71

.2 .4
B+.x71

1 0 EH7-9

The following set of equivalent statements show why 
the second element of B+.*VA is zero when VA is determined 
by the foregoing procedure:
(B+.x74)[2] Second element of B+.x74
B [ 2 ; ] + . x 74 Definition of inner product
+ /B[2 ;]x 7  ̂ Definition of inner product
+ /B[2 ; ] x <()-i lxs[2 ; ] Choice of 74
+/B[2 ;]xs[2 ;2 ],-B[2 ;1 ] Reversals of sign and order
+/(B[2;1],B[2;2])x (3[2;2]9-B[2;1])
(B[2;1]x£[2;2])+(B[2;2]x-S[2;1])
0

The entire procedure for determining the basic 
solution 71 can therefore be summarized as follows:

74-MIT 1 lxB[2;] 
i?l̂ B + . x VA 
71«-74*i?l[l]

It should be clear that a similar procedure applies to the 
second basic solution 72 such that a/o 1 = B+.x72. It is 
only necessary to interchange the roles of the first and 
second elements as may be seen by comparing the pair of 
procedures below:

74H>"1 1 XB [ 2 ; ] VB+Ql ”lx5[l;]
R1<-B+.*VA R2+-B+ . x VB
Vl + VAiRlll ] 72^7Bvi?2[2]
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B
3 5
2 4

1 1XB [ 2 ; ] 
VA

4 2
R1+B +.x VA 
R1

2 0
Vl + VAiRll 1]
712 1
B+.x 71

101 1 0

75^1  “ l x B C l ; ]
VB

5 3
i?2+-£ + . xVB 
R 2

0 2
72x-7£ ii? 2 [ 2 ]
7 2

2.5 1.5
£ + . x 7 2

0 1

19.6 SIMPLIFIED CALCULATIONS FOR BASIC SOLUTIONS
Examination of the procedures for determining basic 

solutions shows that certain simplifications can be made. 
For example, in calculating Rl<-B+. x 7 4, only the first 
element of Rl need be calculated since it is the only one 
used in the expression 71+-VA+R 1[ 1 ]. Thus Pi[i] can be 
computed as B [ 1 ; ] + . x , which requires only half as much 
computing as does 5 +.x 7 4 . On the other hand, it may be wise 
to do the whole calculation B +. *VA since the value of the 
second element (which must be zero if 7,4 has been computed 
correctly) is a check on the work thus far.

Similar remarks apply to the calculation of i?2[ 23 for 
the second basic solution; that is , P 2 [2 ] is B [ 2 ; ] +. x yp. 
Moreover, B2[ 2 ] need not be computed at all since it is 
equal to Bi[ 1 ], as you may have noticed in previous examples 
and exercises. The reason for this appears in the following 
identity, in which the first line is the expression for 
i?l[l] and the second line is the expression for r 2[2 ]»

+ / ( B [ 1 ; 1 ] , B [ 1 ; 2 ] ) x ( B [ 2 ; 2 ] , - B [ 2 ; 1 ] )
+/(B[2;l],B[2;2])x((-B[l;2]),5[l;l])
Taking either of these expressions for z?i[i], It is 

clear that if B is a matrix having the elements p, q ,  p, and 
S as follows:

P Q
R S

then Pi[1 ] is equal to ( Pxp) - ( Q x r ) .  In other words ,  one 
takes the product of the first element with- the one 
diagonally opposite and subtracts from it the product of the 
remaining two elements. For example, if b Is the matrix

5 2
7 4

then the value of Pi[i] is (5x4)-(2 x7 )/ that is, 6•
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Continuing with this example, the whole computation of 
71 can be expressed as follows:

71^4  “ 7 f ( 5 * 4 ) - ( 2 x 7 )

Similarly, 72 is obtained as follows:
72^"2 5t(5x4)-(2x7) ill

19.7 THE DETERMINANT FUNCTION
The expression for i?i[l] (or for i? 2 [ 2 ]) developed in 

the preceding section is a very important function called 
the determinant. It was also shown that if B is the matrix

P  Q  
R S

then the determinant of B is the expression (P*S)-(Q*R).
The determinant function may be defined formally as 

follows:
V Z+DET B

[1] Z«-(S[1;1]x£[2;2])-(B[1;2]xS[2;1])V
For example:

B +  2 2 p 5 2 7 4
B

5 2
7 4

DET B
6

The function BET will be used throughout the remainder 
of this chapter. The notion of determinant is used for 
square matrices of dimensions higher than 2 by 2, but it 
must be emphasized that the function DET applies only to 2 
by 2 matrices. E112-15
19.8 MATRIX FORM OF THE BASIC SOLUTIONS

It is convenient to represent the basic solutions 71 
and 72 as a single matrix BS whose first column is 71 and 
whose second column is 72. For example, if B is the matrix

3 5
2 4

then 71̂ -2 "l and 72̂ -"2.5 1.5 and the matrix BS is
_2 "2.5
1 1.5



232 Matrix form of the basic solutions 19.8

Since B+.*V1 is 1 0, the first column of B+.*BS is 1 0 and 
similarly the second column is 0 1. Thus

B+.*BS
1 0 
0 1

Recalling the names VA and VB used in first deriving 
basic solutions:

VA + cj>“l _lxB[2;]
VB*-<J> 1 lxS[ 1 ; ]

and the fact that VI and V2 are obtained by dividing these 
vectors by the determinant of B :

Vl+VA+DET B 
V2+VB±DET B

Then if M is the matrix whose columns are the vectors VA and 
VB, it follows that the matrix BS of basic solutions can be 
obtained from M as follows:

BS+-M1DET B

The matrix M can be determined as follows. Suppose 
that the elements of B are called P, Q, R, and S as follows:

P Q 
R S

then the first column of M is (S,-R) and the second column 
is ((-Q),P). Hence M is

S -Q
-R P

In other words M is obtained from B by simply interchanging 
the first element of B with the one diagonally opposite, and 
reversing the signs of the remaining two elements. Finally, 
the matrix of basic solutions BS is obtained by dividing M 
by the determinant of B .

To summarize, if B is the matrix
P Q 
R S

form the matrix
5 -Q
-R P

and divide it by the determinant (PxS)-(QxR) to obtain the 
matrix of basic solutions.
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For example:
B

9 8
8 6

M
6 8 
8 9

DET B 
10

BS
.6 _. 8
.8 .9

B+ . *BS
1 0 
0 1 116-17

19.9 THE GENERAL SOLUTION FROM THE BASIC SOLUTIONS
In section 19.4 we saw that the solution of the 

general linear equation
A / f f = B + . x 7

could be obtained from the basic solutions 71 and 72 as 
follows:

7+-(W[l]x71) + (tf[2]x72)
This can be written more neatly in terms of the matrix of 
basic solutions BS as follows:

V+-BS+ . *N
For example, if

N+5 6
71^2 3
72^4 5

then BS is
2 4
3 5

and
71/[1] x VI

10 15
Nl2] x V2

24 30
( t f [ l ]  x  7 1 )  +  (  [  2  ]  x  7 2  )

34 45
BS+.xN

34 45 118-19
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We will now show that BS+.xN is equivalent to 
(W[ l]x71) + (/l/[ 2]x72 ) by showing that each of their two 
elements agree. Beginning with the first element:
(BS+.xtf)[l]
B5[1;]+.x#
(BSl 1 ; l]xtf[ 1] ) + (55[l; 2]xtf[ 2] )
( 1] )+( miJxtfC 2] )
(W[l]x71[l]) + (W[2]x72[l]) 
((7V[1]x 71) + (^[2]x 72) )[l]

Definition of inner product 
Definition of inner product 
Definition of BS 
Commutativity of x 
Definition of indexing

A similar proof applies for the second element.

19.10 THE INVERSE LINEAR FUNCTION

In the preceeding section we saw that if BS  is the 
matrix of basic solutions for the matrix B , then B S + . x N  is a 
solution of the general equation

A / N = B + . x V

Consequently if 7 is any vector and N+ - B+ . xV  then B S + . x N  
yields 7. In other words

BS+  . x(B+. xV)
yields 7. Therefore the function B S + . x V  is the linear 
function inverse to the function B + . x 7 .

Since the inverse relationship is mutual, the 
expression

5+.x (B5+.x 7)
20-210 also yields 7.

19.11 PROPERTIES OF THE INVERSE LINEAR FUNCTION
As noted in the preceding section
BS+.x(B +.x V) B+.x(BS+.xV)
V V

the inner product +.x is associative, it also followsSince
that

(BS+.xB)+.x 7 
(5+.xBS) + .x 7
7
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But the only matrix which multiplied by any vector V yields 
V is the identity matrix I  which has the value

1 0 
0 1

Hence
B S + .*B 
B + .*BS 
I

It is already clear that B + . x B S yields the identity 
matrix, since the columns of BS are the basic solutions for 
B and the columns of B + . x B S are therefore 1 0 and 0 1. The 
reader may wish to verify that BS + .xB is also equal to the 
identity matrix for each of the corresponding values of BS 
and B determined in earlier examples and exercises. [E22-23

19.12 ALTERNATIVE DERIVATION OF THE INVERSE
The linear function B S + . x V inverse to B + . x V was first 

determined by computing BS as the matrix of basic solutions 
for B . The method used applies only for vectors V of 
dimension 2 and cannot be applied for higher dimensions. We 
will now develop an alternative method which is somewhat 
more difficult but which has the important advantage that it 
applies to higher dimensions.

Since B S + . x V is inverse to B + . x V only if B S + . x B is the 
identity matrix, we can pose the problem as follows: find a 
matrix BS such that B S + . * B is the identity matrix. We will 
determine BS in several steps. Thus if 51 is a matrix such 
that H l + . x B is "closer" to the identity than B itself, we 
may find a second matrix H 2 such that H 2 + . x (h i + . x B) is even 
closer to the identity. Suppose that in four such steps the 
result

# 4 + . x ( t f 3 + . x ( t f 2 + . x ( # l + . x £ ) ) )

is equal to the identity matrix. Then (because + .x is 
associative):

( # 4 + . x t f 3 + . x t f 2 + . x t f l ) + . x B

is also equal to the identity matrix. Hence
BS+HH+.xH3+ . xH2+ . xHl 

is the required inverse matrix.
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For example:

B<- 2 2 p 5 3 4 2 
B

5 3
4 2

H1+2 2 p . 2 0 0 1
HI

. 2 0 
0 1

H1+.
1 . 6 
4 2

H 2<-2 2 p 1 0 "4 1 
H2

_1 0 
4 1

#2+.x(#l+.xS)
1 _• 50 .4

H3^2 2 p 1 0 0 “2.5
H3

1 _0
0 2.5

#3 + .x(#2+.x(#l+.x£ ) )
1 . 6 
0 1

#4*- 2 2 p 1 “.6 0 1
H4

1 . 6 
0 1

#4+.x(tf3+.x(tf2+.x(tfl+.xB)))
1 0 
0 1

4+.  xtf3 + . xtf 2 + . xHl  
BS

1 _1. 5
2 “2.5

BS+.x5
1 0 
0 1

There are a number of points to observe in the 
foregoing sequence. Each of the H matrices itself differs 
from the identity in only one element. tfl+.x# is closer to 
the identity than B in the sense that the first element is 
1; thus the first element of HI was chosen as the 
reciprocal of 5 so as to divide the first row of B by 5.

The matrix H2 was chosen so that the second row of the 
result would be obtained by adding “4 times the first row to 
the second row, thus making the first element in the second
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row of the result zero. Thus the element h 2[2;1] was chosen 
as -(H1+.xB)[2;l]. The result H2+.*(H 1+.*B) therefore 
agrees with the identity in the entire first column.

The matrices H3 and #4 are chosen similarly to make 
the second column agree; H3 multiplies the second row by 
the reciprocal of the last element of the matrix 
#2+.x#i+.xB, and Hh adds the appropriate multiple of the 
second row to the first so as to make the upper right 
element of the result zero.

It will be instructive to repeat the foregoing 
sequence using a name BT for the intermediate results 
produced so that we write BT<-B and BT+-H1 + .X-BT and 
BT+H2+ .*BT, etc. Moreover, if we first set BS to be the 
identity matrix, and then write BS+-H1+ .*BS and BS<-H2+. *BS, 
etc., the final value of BS will be the required product of
the H matrices. Thus:

BT+B BS<-2 2 p 1
BT BS

5 3 1 0
4 2

BT^H 1 + . y-BT

0 1

BS+Hl+.xBS
BT BS

1 . 6 . 2 0
4 2 0 1

BT<-H2+ . *BT BS+H 2+. xBS
BT BS

1 . 6 . 2 0
0 . 4

BT+H 3+ . xBT
. 8 1

BS+H3+.xBS
BT BS

1 . 6 . 2 0
0 1

BT^H^+.xBT
2 2 . 5

BS<-Ĥ  + . *BS
BT BS

1 0 “ l 1 . 5
0 1

BS+.x£
2 2 .5

1 0
0 1

Finally, since BS and BT are subjected to the same 
sequence of multiplications, we can combine the matrices BT
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and BS into a single matrix M whose first two columns 
represent BT and whose last two columns represent BS. The 
foregoing computation then appears as follows:

1 +2 2 p 1 0 0 1
I

1 0
0 1

M+B , I 
M

5 3 1 0
4 2 0 1

M<-H 1+ . xM 
M

1 . 6  . 2 0
4 2 0 1

M<-H 2 + . xM
M

1 6 2 0
0 .4 .8 1

M+H3+.xM
M

1 .6 .2 0
0 1 2 " 2  . 5

M*-H4+ . xM 
M

1 0 “ l  _1 .5
0 1 2 2 . 5

The last two columns of M are the required inverse.
In other words, if we append the identity matrix to 

the right of B and multiply the resulting matrix by any 
sequence of matrices such that the first two columns become 
the identity matrix, then the last two columns will be the 
inverse of the matrix b .

It may be noted that each of the matrices n were 
chosen such that each multiplication H+. xM affected only one 
row and affected that row in one of two simple ways:

It multiplied the row by a scalar (chosen so as to 
make the diagonal element of the row equal to i.
It added to the row some multiple of another row 
(chosen so as to make one of the elements zero).

We can perform such a sequence of calculations without 
actually writing out the matrices h which produce them. To 
illustrate this we repeat the preceding example in this form 
together with notes showing what calculations were 
performed:
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B ,I
5 3 1 0
4 2 0 1

1 . 6 . 2 0
4 2 0 1

1 . 6 . 2 0
0 ” . 4 “ . 8 1

1 . 6 . 2 0
0 1 2 LOCM1

1 0 “ l 1.5
0 1 2 LOCM1

Row 1 is multiplied by t5

“4 times row 1 is added to row 2

Row 2 is multiplied by v”.4
“.6 times row 2 is added to row l

The foregoing should be compared carefully with_ the 
earlier example which used the matrices HI, H2, etc. This 
method for determining the inverse of a matrix is called the 
Gauss-Jordan method. §24

19.13 EFFICIENT SOLUTION OF A LINEAR EQUATION
A solution to the equation a/N-B+.xV can be obtained 

by determining the matrix BS which is inverse to B and then 
computing 17+BS+.*N to obtain the solution. A modification 
of the Gauss-Jordan method can provide the solution more 
efficiently as follows: apply the Guass-Jordan method to 
the matrix b 9N instead of to s,j and the last column of the 
result will be the desired solution. For example, if N is 
the vector 4 6 and B is the matrix of the preceding example, 
then:

B ,N
5 3 4
4 2 6

1 .6 .8
4 2 6

1 _ . 6 .8
0 ” , 4 2 . 8

1 . 6 lQ
0 1 7

0  _ 5
1 7

1
0
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The solution is therefore 5 7. This may be checked as
follows:

B+ . x5 "7
4 6

N
25d 4 6

19.14 INVERSE LINEAR FUNCTIONS IN THREE DIMENSIONS
If V is a vector of 3 elements and B is a 3 by 3 

matrix, then £ + . x y  is a linear function of v. The inverse 
function SS+.xy can be determined by the Gauss-Jordan 
method. The reason it works is the same as in the case of 
two elements, namely, if B is multiplied by a sequence of 
matrices until the result becomes the identity matrix, then 
the product of that sequence of matrices is a matrix BS such 
that BS+.xB is the identity. In other words, BS is the 
inverse of B. The Gauss-Jordan method is simply an
efficient way of keeping track of the product of the 
sequence of matrices applied to 5.

The general scheme is to first reduce the first column 
to 1 00, then reduce the second column to o l o, then the
third column to 0 0 l. The first operation for the first 
column is to divide the first row by its first element. The 
next is to add a multiple of the first row to the second, 
and the next is to add a multiple of the first row to the 
third. On the second column we first divide the second row 
by its second element and then add multiples of it to rows l

st divide the third row by 
ltiples to rows l and 2.

and 3. On the third column we
its third element and then add
For example:

B+- 3 3p 2 1 3 1 0  2 4 0 4
B

2 1 3
1 0 2

0 4
B ,3 3p 1 0 0 0 10 0 0 1

2 1 3 1 0 0
1 0 2 0 1 0
4 0 4 0 0 1
1 . 5 1 . 5 . 5 0 0
1 0 2 0 1 0
4 0 4 0 0 1
1 . 5 1 . 5 . 5 0 0
0 '.5 . 5 . 5 1 0
0 2 "2 2 0 1

Multiply row 1 by *2

Add _1 times row 1 to row 2 
Add 4 times row 1 to row 3
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1 .5 1 . 5 . 5 0 0
0 1 1 1 "2 0
0 2 2 ~ 2 0 1

1 0 2 0 1 0
0 1 "1 1 "2 0
0 0 0 1

1 0 2 0 1 0
0 1 1 1 2 0
0 0 1 0 1 " . 2 5

1 0 0 0 ” 1 . 5
0 1 0 1 " l " . 2 5
0 0 1 0 1 . 25

The desired inverse is

BS+ 3 3p 0 1 .5 1 ' l 25 0 1
BS

0 1 . 5
1 1 . 25
0 1 . 25

BS+ . xp
1 0 0
0 1 0
0 0 1

P+. xBS
1 0 0
0 1 0
0 0 1

Multiply row 2 by x~.5

Add ”. 5 times row 2 to row 1 
Add 2 times row 2 to row 3

Multiply row 3 by
Add “2 times row 3 to row 1 
Add l times row 3 to row 2

the last 3 columns, that is:
>5

The inverse function 241

126-28

19.15 THE INVERSE FUNCTION
We have seen that if B S + . * B is the identity matrix, 

then the function B S + . * V is inverse to the function p + .xy. 
For this reason the matrix BS is said to be the inverse of 
the matrix B. The inverse of a matrix is an important 
function which will be assigned the symbol g. Thus if 
then P+.xQ and Q+.xp are both equal to the identity matrix.

Moreover, (!#)+.xp is the solution of the equation 
a //!/ = #+. Xy. This is easily seen by substituting the solution 
(Hk?)+.xtf for V obtaining:

a /N=Q+.x(!£)+.xp
a /P =(#+.x|^)+.xp Associativity of +.x
a /N — 1+ . xp $+.x[f]$is the identity I
A/P = P 
1
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The solution of the equation a/N=Q+.*V is also an 
important function of N and Q and will be assigned the 
symbol 1 as a dyadic function; that is, /i/g# yields the
solution of the equation a /N=Q+.*V. In other words:

M Q
( !2 )+.*N29-320

19.16 CURVE FITTING
In Chapter 10, the problem of fitting a function F was posed 
as follows: given a table of a vector of arguments X and the 
corresponding vector Y+F X, determine a function E defined 
by some expression such that E X is equal to y. In Chapter 
10 this problem was solved by constructing a difference 
table and using its first row to determine multipliers of 
factorial polynomials whose sum became the required 
expression. This solution applied only to a set of 
arguments X of the form 0,iN.

In Chapter 11 the method was extended to apply to any 
set of equally spaced arguments, that is, to any set of 
arguments X of the form A+B*\N* Moreover, in Chapter 14 a 
simpler equivalent expression was found which involved a 
polynomial rather than the factorial polynomials. However, 
the method still applied only to equally spaced arguments.

The inverse linear function can now be applied in a 
simple manner to obtain a solution for any set of arguments 
X. We seek a vector of coefficients c suck that the 
polynomial C POL X is equal to the required set of function 
values Y, that is:

a /Y=C POL X

Recalling the definition of the polynomial function 
from Section 13.6, this requirement may be written as 
follows:

A/Y = (Xo. 1 + 1 p 9C) + .xC
Furthermore, because C must have the same number of elements 
as X, the expression ipC may be replaced by ipx so that the 
outer product in the foregoing expression becomes a function 
of X only. Thus:

A/y=(Xo.*~i+iP ,x)+.xc
This is clearly a linear equation with, a given value of y, a 
given matrix X°.*_l+ip,i, and an argument c whose values are
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to be determined. Hence the required value of C is given by 
the expression:

!!(X°. *~l+ip 9X)
For example, if A>0 3 4 6 8 (not equally spaced) and

if F is the function +/(iX)*3, then Y has the value 0 36 100 
441 1296, and the square matrix has the value:

1 0 0 0 0
1 3 9 27 81
1 4 16 64 256
1 6 36 216 1296
1 8 64 512 4096

The solution may then be obtained by appending the vector Y 
as a final column on this matrix and applying the efficient 
method of Section 16.13 to the resulting matrix shown belovvr:

1 0 0 0 0 0
1 3 9 27 81 36
1 4 16 64 256 100
1 6 36 216 1296 441
1 8 64 512 4096 1296

The solution is:

C + 0 0 0.25 0.5 0.25

This result may be checked by evaluating the polynomial
C P 0 3 4 6 8. H33-34



Exercises

1.1 Evaluate the following
expressions, entering the result 
in the position indicated by the 
underscore:

( 3 + 4 ) x 6

3+(4x6)

3+ ( 4 + 6 )

( 3 + 4) + 6

3 x(4x6)

For example, the last exercise 
would appear as follows:

( ( (( 1 + 2 ) X 3 ) + 4 ) X 5 ) + 6 
((( 3 x 3)+4)x5)+6
(( 9 +4)x 5) + 6
( 13 x 5 ) + 6

1.3 Enter numbers in the 
underscored positions such that 
each expression gives the 
indicated result:

(3x4)x 6

(3+5)x(6+4)
( 9 + 19)x(42+8) 

(18+10)+5 

( 16x 13)+49 

49+(.16x 13)

42
27
30
30
200

17

( 3+____ ) x 6
3+ (___x 6 )
( 7+____ ) x 3
( 7 + 3 ) x____

( 42+___) x4
(__ +6 ) + 4

3 x ( ( 5 x 6 )+4)

( 3 x ( 5x6 ) )+ 4 

( ( 2  + 3 ) x (4 + 6) ) + ( 2 x 5 )  

l+(2x( 3 + ( 4 x(5 + 6 ) ) ) ) 
( ( ( (1 + 2)x 3) + 4)x5) + 6

49
274
77
38
33

( 2 x___)+ 19
___+ (45x6)
( 4+____) x ( 5 + 6 )

( 3+ ( 4 x (___+2 ) ) ) + 7
( 2  x ( (( 3 +___ ) + ( 2 x 2 ) )  + 5))  + 3

1.2 Check your answers to
Exercise 1.1 and repeat each one 
which is incorrect, filling in 
the steps of the evaluation in 
the manner shown in the text.

1.4 Check your answers for 
Exercise 1.3. For each one that 
is incorrect, show every step of 
the evaluation using the number 
that you entered in the 
underscored position.
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1.5 Write an equivalent
algebraic expression for each of 
the following sentences:
Quantity 7 plus 1 multiplied by
3.

17 added to the product of 6 
and 2.
5 times the quantity 17x6.
Add the quantity 3+2 to the 
product of 8 and 5.

The product of the quantities
6 + 10 and 7 + 3.
The sum of 4 and 14 added to 
the product of 3 and 13.
29 plus the product of 19 and
6 .

Quantity 9+2 0 added to the sura 
of 7 and 6.
Increase the quantity 8x3 by 7.
Add 15 to the sum of 14 and 8.
Multiply 6 times itself and 
then add 3.
Quantity 1+2+3 times 8.
The product of 3+4 and 8.
2 plus twice the quantity 9+5.
Six more than the product of 2 
and 8 .

1.6 Write an equivalent English 
expression for each algebraic 
expression in Exercise 1.1.

1.7 Evaluate the following:
2x3 + 4
2 + 3x4

1 + 2 x 3 + 4 x 5

1+(2x 3)+4

1+(2x 3)+4x 5

(2+9+20)x 16 

14x15x13+6+20 

2x10+10  

9x(2 + 7 )x 3

23+7x2+1  

l + (9x11 ) + 11 x1 

l + (2 x 3 + 4)x5+6 

l + ( 2x3 ) + ( 4 x 5 ) + 6

1.8 For each wrong answer
obtained in Exercise 1.7 take the 
given expression and modify it by 
inserting all of the parentheses 
implied by the rule to evaluate 
the rightmost function first. 
Then evaluate the resulting 
expression. For example:

l + (2x3 ) + 4x 5
l + ( (2x 3) + (4x 5) )

27
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1.9 Enter a number in each of A+B
the underscored positions such
that the expression gives the A*B
indicated result:

A + 3
2+___x 3+ 5

162 4 xB + 8 *A
2+ ( x 3 ) + 5

67 (10+B )*A
2 x ( 3+___ )x  5 + 3

144 2 x( + 3)x 5 + 3 P-*-9
144

10 + 6x4+ x 2
B*-2

130 10 + (6xi+)+ x 2
yl + Px 3

130 (B+B )xp

10x2 5+___+4 5 --- A + B + B + B
800

xgx3 xlx7 yl + ( 3xB)
9072

(___+40 + 10 ) x 2 — A+ 3xB
118

10 + 17+ x17x 5 A + ( P + 7 )
197

43+9x6+ —
160 SPEED*- 6 0

TIMERS
1.10 For each wrong answer D I S T A N C E + S P E E D x T I M E
obtained in Exercise 1.9, fill
into the given expression your D I S T A N C E
answer and all of the implied ___
parentheses and then evaluate the SPEEDxi
resulting expression. ___
1.11 Using as few parentheses as
possible, write algebraic
expressions for each of the
English expressions of Exercise 
1.5.
1.12 Write equivalent English
expressions for each of the
expressions of Exercise 1.7.
1.13 Evaluate the following:

4+-2
B + 3

SPEED+^0 
S P E E D xTIM E

3x(4x4 )
( 4 x4 ) x 3

( 4 x 4 ) x 3

4x4x3

CAT+-1 
K I T T E N S«-4 
TOTAL*-CAT\KI T TENS
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TOT AL 1.14 For each wrong answer in
Exercise 1.13, repeat the work
showing every step of the

N E W K I T T E N S + K I T T E N S*5 evaluation.
T O T A L + T O T A L + N E W K I T T E N S

1.15 Fill in the underscored
TOTAL positions so that the expressions

give tne indicated result:
2xT0274L+(4 x 7 )

WIDTHS 9
(5+(CATxTIME) + 3)x 3

(___+WIDTH ) x 3
CATxCAT+5 93

8 + (___xWIDTH)
CAT 44

1 7 + ( 1 7 + TOTAL ) x 2 LEN+-

WIDTH+LEN
T<-i\ 13
V+-1

22
(LEN*3)+(WIDTH+ )

V*(T+3)
18

10+LENx

( T+3 ) x 7
HEIGHTS

(T*V) + (3 x F )
20+HEIGHT+

(FxT7) + (Fx 3) 37

Fx T+Fx 3 VOLUME<-LEN* WIDTH*HEIGHT

___ x VOLUME
D0+-3 360

(LEN+VOLUME)+___
D (7+6x7 190

(3+^+LEN)*
3+£>0x 4 + 5 55

(3+4)+(LEN*___)
DO 55

1.16 For each wrong answer in
2>3 Exercise 1.15, write in your 

answer and every step in the
JxZ evaluation of the expression.

1.17 Translate each of the
2>5 following sentences into a 

sequence of algebraic
Zxl expressions:

The length of a playing field
is 100 yards. Its width is 50
yards. The area is the length 
times the width.
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A weightlifter has a steel bar 
weighing 20 lbs. He also has 
two weights, each weighing 50 
lbs. The total weight that he 
will be lifting is the sum of 
the bar and the two weights.
A triangle has three sides. 
Side a is 3 inches long, side b 
is 4 inches, and side c is 5 
inches long. The perimeter of 
the triangle is the sum of the 
lengths of the sides.
A nickel has a value of five 
cents. A dime is worth ten 
cents. A quarter is worth two 
dimes and one nickel.
An airplane is flying directly 
east with a heading of 90 
degrees. He turns right 30 
degrees. The new heading will 
be the sum of the old heading 
and the amount that the plane 
turned.
On a trip across the country, 
the Smiths travelled for six 
days, covering 500 miles each 
day. The total distance
travelled is the daily mileage 
times the number of days in 
transit.
John weighed 100 lbs. He then 
ate three pieces of steak, each 
weighing 1 lb. His new weight 
is the sum of his old weight 
and all that he ate.

1.18 Make up "word problems" to 
correspond to each of the 
following groups of algebraic 
sentences:

z^- 1 00
y^-50

IxJ
5 00 0

( Y A R D S * 3 6 ) + ( F E E T * 1 2 ) + INCHES
175

1.19 Evaluate the following:
+/9 7 19 19 

x / 4 2 1 6  3 

x/20 5 7

18+(x/20  3 1)

( x /2 9 ) + 3 9

(+/10 2 0 )x 3 

+ /43 7 19 21 28 

+ /1 6 15 50 36

+ / 3 0 4

3 + 3+3 

3 + 3 

3

+ / 3 3 3 

+ / 3 3 

+ / 3

+/10 19
+ / 3 0 7 45
( + / 3 4 1 ) x 7 

+ / 7
x/8 3 7

ABC+1 3 5
DE*~2 4 6 8 10

I NCHES  
FEET+ 2 
YARDS*-  4
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+ /ABC + /5

—
x /  DE +/9 26 42 15

x /ABC x/2 6 9 27 19

— ABC

CNvHX 49 4 5 ) x 8

— + /DE + /1 5 34 14

3++/ABC x/9

2x2x2 1.20 Use the over notation to
write an equivalent algebraic

2x2 expression for each of the
following sentences:

2
Plus over 4 6 8 9.

x / 2 2 2 Times over 2 4 6 .
x / 2 2

The sum over 20 15 4.
X / 2

6 plus the product over 4 1 2 .

x/19 19 5

+/9 10 1 
7 + x / 3 5 7

2 plus the sum over 3 12 4 20. 
The product of 3 and 7.
Ten times the product over 8 3.

x/3
( + /9 43 46 4 ) + 7 
x/13 5

E+ 2
E + * / A B C

Four plus 3 plus 7.
Three times the Siam over 1 2  3
4 5 6.
Six times seven times one times 
three.
Quantity 4+3 times the sum over
20 17 4 7.

(+/DE)*E 
£>3 + x/ABC 
E+(+/ABC)+(+/DE) 
(£x3)++/ABC

The sum of 3 4 and 5, all times 
the product over 2 8 3 4 .

1.21 Write an equivalent English 
expression for each of the first 
10 expressions in Exercise 1.19.

+/ABC++/DE
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1.22 Evaluate the following: N +___
i 4 x/1 N

120
+ / i 4 + /i
x / l 4 x/i___A

i 5
x/l

3628800
— + /i 5 1.24 Write an equivalent
— x / l 5

algebraic expression for each of 
the following sentences:

i 1 The first three integers.
” + /i 1 Iota 5.

N+3
The integers to nine.
The sum of the first three

+ /\N integers.
+ /itf +1 Times over the integers to 4.
+/iW+2 Plus over the integers to 7.

— + / \ 2 * N Q is assigned the value 4.
— The integers to Q.
1.23 Fill in the underscored
position so that each of the The one digit integers.
expressions 
results:

give the indicated
1.25 Write an equivalent English
expression for each of the

i___ expressions of Exercise 1.22.
1 2 3 4

+ /i___ 1.26 Evaluate the following:
10

+ /i___ 3 5 7 4 + 6 2 9 1 5
1 5

+ /i___ 4 3 2 1 + 1 2 3 4
5 5

3 5 7 9 + i 4
x/l___

2 4 + / 3 5 7 9 + i 4
X / 1 3 +

7 2 0 3 5 7 9 + 3
+ / l 4 +

7 8 3 + 3  5 7 9
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3+14 
5x i 4 

3+ 5 x i 4

( i4)x(i4)

+ /( i4)x(i4)

N+Z 5 7 9  
AH-4
N+M

N+\M

N*N

M+M*\M

+ / 3 x i 6 

3x + / i 6 

3x4+ i 5 

12+3xi5

1.27 Fill in the underscored 
positions so that each of the 
expressions give the indicated 
result (Note that each entry may 
be either a vector or a scalar):

2 3 5  7+___
5 10 6 10

2 3 5  7+___
6 7 9 11

___ +____x i___
8 13 18 23 28 33

3 x_+ i___
18 21 24 27 30 33 

___ x___ + i___
15 20 24 28 32

___ +___ x i___
16 20 24 28 32
1.28 Write an equivalent 
algebraic expression for each 
English expression:

The first five integers 
following 4.
Every third integer beginning 
with 3 and ending with 21.
Every third integer beginning 
with 7 and ending with 31.

1.29 Evaluate the following:

3p 5 

+ /3p 5 

3x5 

x / 2p 4

x/10 p 4

( 4p 1 ) + 2 3 5 7

1+2 3 5 7  
(4p 2 ) x i 4

2 8 1 6x
6 32 4 30

2 8 1 6x
10 40 5 30

___ + i 4
6 7 8 9

___ x i 4
20 40 60"“ 80

___+ i___
8 9 10 11 12 

x i

x/9p10 

4 xx/3p 7 

3 + + /3 p 7

16 9 13 10++/4p4

7 14 21 28 35
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1.30 Fill in the blanks so that ip
the expressions give the printed 1
result- • 7p

3 3 3 3 3 3 3
+ / 4p___ p7

12 7 7 7 7 7 7 7 7
8 P x/ p i

8 8 8 8 8 8 8 8 1
+ /8p___ + /____P 5

64 40
6p

6 6 6 6 6 6 P 3
x / P 3 3 3 3 3

243 ____P9
9 9 9

*/ 5p___ P 8
100000 8 8 8 8 8 8

2 P____ + /____p5
3 3 5

+ /____plO
80 1.31 Write an equivalent

+ /____p4 algebraic expression for each of
28 the following sentences:

+ /____P 6
60 Three repetitions of 5.

lOp 5 repetitions of 3.
2 2 2 2 2 2 2 2 2 2

x /3p
343

P7
7 7 7 7 7 7 7 7 7

Plus over 6 repetitions of 4.
The product of 3 repetitions of 
7.

8p___
5 5 5 5 5 5 5 5

___P2
2 2 2 2 2 2 2 2

x /9p___
134217728

___P5
5 5 5 5 5 5 

2p___
10 10

____P 3
3 3 3 3 3 3 3 3 3 3  

x /____P 4
262144

Seven repetitions of six.
The sum of ten repetitions of 
four.

Times over vector 3 6 plus 2 
repetitions of 5.
Vector 5 7 9  times 3
repetitions of 1.
4 repetitions of 7 plus 4 
repetitions of 3.
3 times 6 repetitions of 5.
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1.32 Evaluate the following: \ + /N

N+2 3 5 7 +/\+/N
M+8 7 6 5 — + / i + /1 3
M+N — + / i + /3p2
M+NxM — x / \ x / 2p 3
(M+4)xM —

(M+N)xM 2 r 3

(M+\^)xN — M\N
— r /M

((3*AO + (2xtf))x2 — r /n
+ /3 xM — r /m +n
3x + /M —

+ /M*N r /Afx/y

M* + /N
—

([/M)+[/N
— (\/M)xfl

(+/M)*N — + /M[N
( + /M)x+/;y

_______

x/M+N x/M[N

(x/M)+N — n[N

(x/M)+x/N — + /^[N

x A T  N



2.1 Use Table 2.1 to evaluate 
the function "normal weight" for 
the following arguments:

2.3 Evaluate the function 
represented by Table 2.2 for each 
of the following cases:

59 63 69 60
2.2 We will use the term "two 
times" for a function whose 
result is twice the argument. 
Thus a table for this function 
for the arguments i4 would appear as follows:

Argument Result
1 2
2 4
3 6
4 8

Make a table
times" function for the same 
set of arguments as used in 
Table 2.1.

6l inches medium frame 
58 inches large frame 
63 inches small frame 
65 inches all frames 
68 inches small and large

2.4 Use the information in Table
2.2 to make tables to represent 
each, of the following functions:

a) Normal weights for large 
frame and heights 60 to 66.
b) Normal weights for all 
frames and heights 66 to 7 0 .
c) Normal weights for small 
frame and for even numbered 
heights from 58 to 68, that is, 
for heights 56+2xl6.

b) Is the "two times" function 
a good approximation to the 
"normal weight" function of 
Table 2.1? Over what set of 
arguments do the two functions 
differ by not more than 2?

d) Normal weights for height 
67 and all frames.

2.5 a} Extend the table of 
Figure 2.3 to include arguments 
up to 12 (for both arguments).

c) One could add a certain 
"correction" to each result of 
the "two times" function to 
obtain the exact normal weight. 
For example, for the argument 
63 the value of "two times" is 
126 and a correction of 4 is 
needed to give the actual 
normal weight of 130. Make a 
table to represent an 
appropriate "correction" 
function for the arguments from 
60 to 70.

b) Circle the result in the 
table which results from the 
expression 6x8.
c) Underscore the result of 
the expression 8x6.
d) Pick out all occurrences of 
the number 40 in your table and 
label each with a different 
letter of the alphabet. Then 
write these letters in a column 
and beside each write the
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expression (e.g., 5x8) which
corresponds to that particular 
entry in the table.
e) Repeat part (d) for the 
number 24.

2.6 a) Construct an addition 
table for the arguments l to
12.
b) Label each occurrence of
the result 9 in the table with 
a different letter. Then list 
the letters and show with each 
the expression which
corresponds to that entry.
c) Repeat part (b) for the 
number 20.

2.7 Let X denote the domain of 
the first argument of the 
multiplication table of Figure
2.3 (that is, X+-\8), and let Y 
denote the domain of the second 
argument (that is, Y<-iio). Then 
the function represented by the 
third row of the body of Figure
2.3 can also be represented as 
3xy, and the function represented 
by the fourth column can be 
represented as Ixi+. Use this 
scheme to write expressions which 
represent each of the functions 
represented by the following 
parts of the body of Table 2.3:

a) Row 2.
b) Column 10.
c) Row 5.
d) Column 5.

2.8 Make a table whose body 
consists of one column taken from 
the 8th column of the body of the 
multiplication table of Figure 
2.3, and whose first column (that 
is, the arguments lying outside

the body) is taken from the 
second column of the body of 
Figure 2.3. Call the function 
represented by this table F •

a) Evaluate the function F for 
the arguments 4, 6, and 10.
b) What is the domain of F?
c) What is the range of F?
d) Write an expression (in the 
manner of Exercise 2.7) which 
represents F .

2.9 Repeat Exercise 2.8 using
row 9 of the body of Figure 2.3 
as the one-column body of the 
table, and row 3 as the
arguments. If any of the
arguments in part (a) do not lie 
in the domain of this function, 
indicate that they cannot be 
evaluated.
2.10 Repeat Exercise 2.9 using
rows from the addition table 
constructed in Exercise 2.6
rather than Figure 2.3.
2.11 ( P a r t s  a-i)Answer the nine 
questions posed in Section 2.2.
2.12 Let A<-1 2 3 4 and
B+-1 2 3 4 5. Then evaluate the
following:

a) A o . xB
b) A o . +B
c) B o . xA
d) B ° ,+A

e) Bo ,xB

f) A o . +A
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2.13 Evaluate the following:
a) ( i 3 ) °. x ( \ 4 )

b) (2*i5)o.+i3
c) (2xi5)o.+(2xi5)
d) 2x(i3)o,x(ii|)
e) 5+(i3)o.x (i4)

f) 2x (i 5)o .+i 5

2.14 a) Construct a function
table according to the
following specifications:
Left domain:
Right domain: 1 6
Body: (3*i4)o.+i6
Name: H

b) Evaluate the following:
3 tf 5
5 3
1 H 1

4 H Cl H 1)

4 H 1 H 1

2 H 1 H 2
2.15 a) Construct a function

table according to the
following specifications:
Left domain: 56+il6
Right domain: 1 2 3  
Body: Same as Fig. 2.2
Name: W

b) Evaluate the following:
68 W 1
68 W 2
63 W 3

c) State clearly the relation

between the function W and the 
function represented by Figure
2 . 2 .

2.16 a) Construct the following 
function table:
Left domain: 18
Right domain: 18
Body: (i8)°.+x8
Name: P LUS

b) Evaluate the following:
3 P L U S 5
4 P L U S 6 
3x4 P L U S 6 
2 P L U S 2x3 
4x2 P L U S 2x3

(4x2) P L U S 2x3 
2+3 P L U S 4 
2 P LU S 3+4 
2 + 3+4
2 P L U S 3 P L U S 4

2.17 Evaluate the following:
3T 3
3 L 8 
8T 3 
8L 3

2 x 5 f 7 

C 5 + 2 ) r 9 
(5x2 ) T9 
3T 5L 2 
l3f 5)L2
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2.18 Evaluate the following:
lor 8T6r14T 7T9
r/10 8 6 14 7 9
L/10 8 6 14 7 9
A*-10 8 6 14 7 9 
B«-17 4 13 2 19

r IB 
L IB

(i/A)+l/B

l/A+B

(+/A)i+/B

(+/A)[+/B

l/A[B 
r/AIB 
+ /AIB 
A° . [B 

B ° A  A 
Bo . U

2.19 a) Evaluate the following:
+ / 3p 4 
4x3 

+ / 5 p 3 
5x3

+/10p10
10x10

b) Use multiplication to 
evaluate the following:

+ /2 5p16 
+/100p13
+ /2 0 p 2 0
+ /2000p 512

2.20 Evaluate the following:
x / 3p 2
2*3
x/5p2
2*5
x /6p 4
4*6

x /10 p 2 

2*10 
x / 2 p 10 

10*2

2.21 Evaluate the following:
A*-2 3 4 5 6 7 8 9
1 *A
2 *A 
3* A 
4 *A
A o . *A

2.22 Evaluate the following:
B*-l 2 3 4 5 6 
B* 2 
B* 3

+ /6p 3 B * 4
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2.23 a) Let F be the function 
represented by the following 
map:

4 5  6 7 8 910

4^5 6 7 8 9 10
Then evaluate the following:

F 4 
F 6

F G 4
G F 4
F G 6
G F 6
F G 4 5 6 7 8 9 10
G F 4 5 6 7 8 9 10

How are the functions
G related?

F 9 
F F 6 
F 2x3 
2 xF 3

d) Make maps of some other 
pair of functions H and K which 
are related in the same manner 
that F and G are.
e) Construct a function table 
to represent the function F .

F 4 5 6 7 8 9 1 0
b) Let G be the function 
represented by the following 
map:

f) Repeat part (e) for each of 
the functions G, H, and K .

2.24 Let F and G be the
functions defined by maps in 
Exercise 2.23. Then if X is any 
argument value, the expression 
F G X means to apply the function 
G to X and then apply the
function F to the result.

Then evaluate the following:
G 4 
G 6 
G 7 
G G 6 
G 2x3

a) Make maps to show the 
sequence of functions F G X.
b) Make a single map to show 
the overall result of the 
expression F G X.
c) State the overall effect of 
applying F to the result of G»
d) Repeat parts (a-c) for the 
expression G F X.
e) Repeat parts (a-d) for the 
functions H and K of Exercise 
2.23.

(74 5 6  7 8 9 1 0
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8-6 6-i 5

13-6 + /i 5

13-6 5 4 3 2 1 " +/6-15
6 7 8 9  10-5 2 x+/ i 5

1 2 3 4  5+5 — ( i 5) + (6-i5)
8 - i 4 + /( i5) + (6-i5)

100-f-

P-*- 7 + i 5

M+8 12 7 11 43 
N + 6 7 2 1 20

L
O1Oa*

M-N 3.2 Fill in the blanks so that
the expressions will give the

M+N indicated results. Note that
each entry may be either a scalar

(M-N)+N or a vector:

(M+N)-N
5

8-___

M o.+N
10

( 8-___) + 6
(8+6)-___

2x+/x5 10

L
D

z|-COCN1

5x6 6 9 1 8
-i 5

2x + / i6 2 4 6 8
+/8-1___

6x7 25
2 x + / i 7 M+2 3 5 7
7x8 -M

8 7 14 2
-M

6 5 3 1
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3.3 In defining the over
notation it was shown that 
+ /14 10 8 7 2 means 14+10+8+7+2. 
Similarly, -/14 10 8 7 2 means 
14-10-8-7-2, where the expression 
is evaluated from the right as 
usual. That is, -/14 10 8 7 2 is 
equivalent to 14-(10-(8-(7-2))), 
or 7. Use this fact to evaluate 
the following:

- / 8 6 4 2

- /12 9 8 4 3

-/2 0 14 12 10 18 9

(2 0+12 + 18 )-(14 + 10 + 9)

- / 8 7 6 5 4 3 2 1 
(8 + 6 + 4+ 2 )-(7+5 + 3+1) 
-/I 6 5 4 3 2 1  

(7+5+3+1)-(6+4+2)

3.4 Make a map to represent 
each of the following:

7 8 9 10 11-5

2 3 4 5  6+5

10 11 12 13 14-8

2 3 4 5  6+8

8-1 8 

O-i 8

£^i8
S + S

S - S

S o . - S

T + S + S  

To . -T 

To. -S 

S o . - T

-/10 8 6 4  
-/I 2 3 4  
~ / i 5 

-  / 1 6 

-/i7 

-  / 1 8

3.6 Fill in the blanks so that 
the expressions will yield the 
indicated results:

((i5)+6)-6

3.5 Evaluate the following:
5-8 

5-i 8

3
8-
8 -

3

0 2 

“2

( 8+___ ) -4 8

3_4 5 12 
”5 "8

3 4 7  12-_ 
1 2  7
_( i5)-_ 

3 3 3 3 3

l-i 8
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+ / 3 - i___ P-N
0

+ /5-1___ N - P
0

+ /7-1___
0 Po . +71/

-/i___
3 Po. -71/

-/i4 71/o . +P
-/i

8 7l/o. -p
3.7 Make maps to represent the —
following: 3.9 Fill in the blanks so «

make the expressions yield
( i 5 ) - 3 indicated results:

(i5 ) + “3 3 2 1  5-
8 6 4 18

( i 7 ) - 9 4 1  3 7  5+___
”8 “5 "3 2 12

(i7)+“9
S«-” 8 ”5 ”3 2 12

( i7) + 9
P-

(i7)-"9 ”4 1 3 7 5
P+___

3.8 Evaluate the following: 14 2 8 3 7
P +

( i 5 ) - 3 “5 "2 0 5 15 
S+

(i5)+”3 ”11 8 6 1 9
P-

(i7)-~9 0 0 0 0 0
5+

(i7)+9 0 0 0 0 0
— + /0-1___

N+0-\6 ”10
P«-i 6

"21
+ /0-1___

N
3

-/l___
P

“3
-/l___

P+71/
4 -/l___

-/l
4
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3.10 Write algebraic expressions 
for each of the following:

The integers from ”8 to 8
The integers from ”4 to 15
Every third integer from ”12 to
12
Every second integer from “9 to
7

4
4.1 a) Construct a subtraction 

table with a left domain of il2 
and a right domain of il2.
b) Make a clear statement of
each property you observe in 
the table of Part (a).

4.2 Two functions can be
compared by comparing their 
tables. Try to arrange the
tables produced in this exercise 
so that the comparisons among 
them required in Part (d) will be 
as convenient as possible. Let

A*-1 3 
B+\4 
S+Ao.-B

a) Evaluate the following:

<\>S

05
Bo .-A

The positive integers to 6
The positive integers to 6 in 
descending order
The negative integers from -6 
in ascending order (that is, 
running from “6 to ”l)
The negative integers greater 
than ”7 in descending order

b) Without using any of the
flipping functions e, or <t>,
write an expression to yield a 
result equivalent to $5.
c) Evaluate the following:

4>s
(J>5
A o . -<j)B
(M
(<M)o.-B

d) State any relations you 
observe among the expressions 
of Part (c).
e) Write an expression using S 
(but not A or B ) to yield a 
result equal to the result of 
the expression (cM)o.-<|>£.

4.3 The following simple table M  
will be used to observe the 
behavior of the flipping 
functions:O-Bo.-A
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AH-0 2 ° . +1 2
M

1 2 
3 4

a) Evaluate the following 
expressions, arranging the 
tables for easy comparison:

<\>QM

©(J>M
§<$>M

<|AM

b) The expressions of Part (a) 
produce several different 
results although some pairs 
produce the same result. Using 
sequences of flipping functions 
as long as you like, how many 
different results can you 
produce?
c) Can any sequence of 
flipping functions applied to M 
produce the result

1 2 
4 3

d) Can you give a convincing 
argument to show that the 
different results you produced 
in Part (b) are all that can be 
produced?
e) Write the shortest possible 
expressions you can find for 
each of the different results 
produced in Part (b). For 
example, the expression 
produces the result

and is therefore equivalent to 
rotating M clockwise by one 
position. Hence a
re-application of the pair c|>g 
(that is, <$>§<b§M) will effect a 
second rotation to produce the 
result

4 3
2 1

However, this can also be
produced by the shorter
expression ©<|>Af.
f) From the preceding parts of 
this exercise it should be 
clear that ©<)>Af is not
equivalent to $A/.
Nevertheless, for the
subtraction table S it was 
obvious from the examples given 
in the text that ©4>S is
equivalent to $£. What is
there about the table S that 
makes this so?

4.4 Let
A 3 + \ 6 
£*-2* i 5 
M+A°.-B

a) Evaluate the following:
4[4]
BL 2]
ML 3;5]
A/C 5 ; 3 ]

(§M)C 3;5 ] 
( ) C 5 ; 3 ]
ML 2;]
ML ; 4]

3 1
4 2

(M[3;])[5]
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b) Evaluate the following:
Al 2 4]

AL i3]
4[3+i3]
Ml 2 4;1 3 5]
Ml 2 4;]

Ml;1 3]
4 [ 3 ]
B [4]
4[3]+B[4]
(4°.+B)[3;4]

4.5 Consider the addition table 
B given in the text. State any 
patterns you observe in the. 
table. Where possible make your 
statements in both English and 
algebra. For example:

§B is equal to B .

0-<t>B[2;] is. equal to Bl 2;].
Bll;l is equal to Bl;I] for any 
value of i.
Blb;l is equal to 2+B[3;].

4.6 Repeat the work of Exercise
4.5 for the multiplication table 
N given in the text.
4.7 Quadrant 2 of the
multiplication table m given in 
the text consists of the first 
seven rows and first seven 
columns of #. Hence Quadrant 2 
is the table Q2 defined as
follows:

Q2+N [ i 7 ; i7] '

Quadrant 4 can be specified 
similarly:

Q H + N l 8+i7;8+i7]
a) Write similar expressions 
to define the remaining 
quadrants Q i and Q 3.
b) State any relations you 
observe among the quadrants.

4.8 Repeat the work of Exercise
4.5 on the table MAX defined in 
the text.
4.9 Repeat the work of Exercise
4.5 on the table MIN defined in 
the text.
4.10 Evaluate the following and 
compare the results:

I«-i6
J+O-I

I o . II
J o . l J

I o. LI
Jo. IJ

4.11 a) Repeat Exercise 4.10 
with j>(113)-7.
b) Evaluate the following 
expressions and comment on the 
patterns in the table t :

K +  \ 8 
R + K o .1K 
T+-R T ©cj>i?

4.12 Evaluate the following:
3 = 7 
3 = 3 
A>i 7
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II>< X<Y

X*Y r/x<i

iio V/X<Y

x°. *x 5 <X+Y

IIo r/5<x+j
4.13 Evaluate the following:

L/5<X+Y
X+- i 1

r / 9 <X+Y

>< o V ><

L/$<X+Y

>< 0 IV >C

r /15<X+Y
x°.<x

1/15<X+Y-e-VIo><

4.16 Evaluate the following
W o  . >J

4-i-( i 6 ) » . + x 6
4.14 Evaluate the following:

4=6)4
I«-( 111 )-6 
^Jo.+I L/4=6)4

4<4 L/L/4=6)4

1 6 <4 * 2
5-*-( i 6 ) o . - i 6

M+I o . xj 5=6)5

4<S L/L/5=6)5

12 >M T/5=6)5

14 4 >M*2 L/T/5 = 6)5

4.15 Evaluate the following:
Ẑ -8 4 3 5 7 6 
Ĵ -4 3 10 8 2 5

C+-( x 6 ) ° . > i 6 
+ /C

X+Q 4 3 5 7 6  
Ŷ -4 3 10 8 2 5

+ /$C



5
Evaluate the following: P-*--8 12 10 21

16 15 35 49
4x8 Rf-2 3 5 7
3 2+4 PtR

00•i»CMCO QiR

-p 00 •l» 00 (PiR)+(QiR)

00003-+00•l»CMCO — (P+Q)iR
( 32 + 48 ) + 8 (P-Q ) vi?

5«-6xi7 5.2 Fill in each underscored
position giving either the result

5 of evaluating the expression or a
value such that the expression

5 + 2 will yield tne indicated result:
5 + 3

24
___x 3

5 + 6 24 + 3
5 + 1 ___x 1 5

300
300+15

5 ° . + 1 2 3 6 ___

( -5) + 2 + 20
25

"3 ”6 "9 “12 x 2 25x20
— + 7

T+-S - 2 4 32
T

32x7

T° . * 1 2 3 6 ( 2 5 v 5 ) f ( 35-i-5)
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(25T35)t5 2 5 6 + 8

40
"40

( 28+___) + 5
+ 5

40
40
"40
2 7 16 
22 21

( 28+___)i5
("28+ ) + 5
("28+ ) + 5
22 21 32+
22 21 32+
32

5.3 Make maps to represent each 
of_the following, wnere S+\6 and 
N+- 4+x 7 and M«-4*S:

5x5
5x5 followed by (5x5)+ 5 
N* 2 followed by (#x 2)+ 2 
M+4 followed by (Af+4)x4

5.4 Evaluate the following using 
the method of guessing, first 
obtaining two guesses which 
"bracket" the result (that is, 
one is too high and the other is 
too low), and then closing in on 
the result by successive guesses 
whicn lie between the guesses 
which bracket the result most 
closely. Make your guesses as 
good as possible to shorten the 
work, but show all of your work:

378 + 7 
4096+16 
5040+42 
40320+105

362880+144
362880+27
362880+48
362880+36

5.5 Evaluate tne following, 
using the method of guessing at a 
quotient, subtracting from the 
dividend the product of this 
guess with the divisor, making a 
guess at the quotient of the new 
remainder divided by the divisor, 
and so on. Show all of your 
work.

40548+124
51324+78
971203+257
2511930+1095

5764896+2164
1505625+1375
751424+3184

5.6 Repeat the examples of 
Exercise 5.5 using the method of 
long division.
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5.7 Fill in the blanks in the 
following, using long division 
wnere necessary.

241724*178
____ x 3 1 4

853452
3 1 4  x____

1174046
(___+15 )x624

144144
(___-48 )xl76

457248

(___* 3 ) * 16 7
416331

2578647*( 167x3 )
( 268000*4 )*250 
268000*( 250x4 )
( 238750x5 )*50 
23870*( 50*5 )

1728*12
1728*12*2
1728*12*3

5.8 Make maps to represent each 
of the following, where 5«-“4+i9:

5*4 followed by (5*4 )x4
5*3 followed by (5*3 )x6

5*6 followed by (5*6 )x3

5.9 State the values of the 
divisor, dividend, and quotient 
for the following:

8*4
10*2
196*14
2048*64
1728*144

5.10 State the values of the 
numerator and denominator for 
each of the expressions of 
Exercise 5.9.
5.11 Give appropriate names 
for the following fractions:

1*2
1*3
2*5
7*5
2*6
3*6
4*6
6*6
7*12

5.12 Under each expression below 
enter a simpler equivalent 
expression of the form 4*5 (where 
A and 5 are integers), as shown 
by example in the first four 
lines:

(2*8)+(5*8)
7*8
(7*3)+(8*3)
15*3
(10*7)+(4*7)
(~6*13)+(32*13) 
(32*13)-(6*13)
(42*15 )+•( “4 2*15) 
(26*3)-(“22*3)
(38-47)*19 
(25+14)*7 
(25+9)*(4+5)
(19+“38)*(7+8)
(3*9)-(25*9)+(“20*9)



5.17 Exeroises 269

(10+27)*(4-3)
(-32*12)-(-32*12)
(-1*18)-(_19*18)-(6*18)
(2*11 ) + (2*11 ) + (2*11 )

(3x2 )*11
5.13 Review each of the results 
obtained in the preceding 
exercise and add a third line 
giving an equivalent integer if 
there is such an integer. For 
example:

(7*3)+(8*3)
15*3
5

5.14 Fill in the underscored 
expressions with integers such 
that the indicated equivalences 
will hold:

(5*13)+(___*13)
19*13
(5*13 ) + (___*13 )
2

(16*31 ) + (___*31 )
8*31
( *17)+(21*17)
2

(31*99)-(___*99)
22*99
( 64*19 )-(___*19 )
64*19
( 29*___) + ( 19*___)
4

5.15 Under each expression enter 
a simpler equivalent expression 
of the form integer * integer:

(2*3)x(5*7)
( 3 * 5 ) x ( 5*3)

(-10*17)x(51*2)
(_2*3)x("2*3)
(4*7)x(7*9)+(15*9)

(13*8)x(14*6)-(“l7*6)

((13*8)x(ll*3))+((7*12)x(5*2))
((3*4)+(10*4))x (35*15)-(19*15)

("2*8)x(_5*3)

(0*4)x(“l5*3)

(- 7*5)x(5*5)

(3*4)x (12*12)
5.16 Review each result obtained 
in the preceding exercise and 
give an equivalent integer where 
possible.
5.17 Fill in the underscored 
positions appropriately:

( 3 * 5 ) x (___ *12)
18*60

(17*8 )x( 2*___ )
34*120

(15*___ )x(____*20)
120*80
( 17*24)x(___ *___ )
85*96
(5*___ ) x ( 6 *____)
30*54
( 5 * 3 ) x (___ *____)
4
( 5* 3 ) x (___ *___ )
1

( 1 7 * 2 3 ) x ( ___ *____)
1

(___ *____)x( 39*41)
1
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5.18 Under each expression enter 
an equivalent expression of the 
form integer t integer:

(2i3)x(252)
(2t 3)x (3t 3)
(3*4)x (5*5)

(7*9)+(2*3)x (3t 3) 
(7i9)+(2i3)xl 
(7t 9)+(2t 3)

((8x4 )x(5t 5 )) + ("13*20)
((3*4)x(5f5))+((3i5)x(4*4))
((2*3)x(2*2))+((l*2)x(3*3))

5.19 For each expression write 
an equivalent expression of the 
form integer * integer:

3x(4*5)
4x(3t 5 )
5 x ( 3-f 5 )

(7t 9 )xll 
3x(7*9 )x 3
3 x 7 t 9 x 3
(7*9)x(3*3)

5x14*13x2 
1 x 2 t 3x 4 
lx(2*3 )x4
4 X 3 -r 2 x 1

5.20 As shown in the first
example, write equivalent
expressions of the form */V where 
V is a vector wnose two elements 
are integers:

( * / 3  5 ) x ( t /2 3)
* / 6 15

( f / 1 6  2 8 ) x ( t /10 20)

( 1 6 * 2 8 ) x (  10*20 )

( 1 0 * 7 ) x ( ~ l 2 * 3 )

(t /23 4)x (*/4 23)

( t/ 12 2 5 ) x (  -r/4 4)

( 3 *12  ) + ( 5 * 1 2 )

( * / 3  1 2 ) + ( f / 5  12)

( * / 1 5  2 8 ) + ( *  / ~1 28)

( s / 1 7  2 9 ) - ( * / - 32 29)

( * / 2  5 ) x ( * / 3  7)

* / 2 5x3 7 

2 x * / 4 5

* /2x4 5 

5xi/2 3x4 7
5.21 For each expression write 
an equivalent expression which 
involves not more than two 
integers:

( 2 * 7 ) + ( 4 * 5 )

( 3 *  5)  + ( 4 * 6  )

( 1 2 * 2 4 ) + ( ~ 3  * 17)

( 1 2^ 24 )  - ( 3 * 1 7 )

( 12*24 ) - ( ~3* 17 )
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(2*5 ) + (3*10) (*/V)-(*M)
(*/2 5 ) + (*/3 10) (*/{/) + ( 2 X ( * / 4 ) )
(*/5 2)+(*/10 3) (*/B)+(*/ftO

2 x(* / 5 2)-(*/-10 3 ) (*/B)x(*/i4)

2 7x(*/5 2 ) + (*/3 11 )
(*/A0*(*/£?)

3 3x(*/5 7 )-(*/ —11 6 ) (*/f/)x(*/P/)

(1*2 ) + (3*4 ) + (5*6 ) (*/G)x(*/B)
(l*2)+(2*3)+(3*4) (*/V)+(*/B)
(*/i2)+(*/l+i2)+(*/2+i2)

5.22 Under each expression write 
a series of equivalent

5.23 For each expression write a 
simpler equivalent expression 
involving at most two integers:

expressions showing the steps in 
simplifying to a final expression

(9*2)*(4*3)

of the form X H i (7*3)*(4*9)

4«-4 7 
B-s-2 5

(-7*3)*(4*9)

(*M) + (*/B)
3*(4*9 )

(*A4)-(*B)
5*(5*6 )

(*/B)-(*M)
j4-«-3 4 
B-*-5 6

(*/B) + (*M) ( */i4)*( */B)
(*M) + (*M) (*/B)*(*M)
G«-10 9 (*M) x(*/B)*(*/j1)
(*/B )-(*/(?) 
(*A4)+(*/G)-(*/G)

(*/78 23)*(*/45 3)

(*/ff)-(*/B)
(4*7)*(*/3 1)

fcM*M) + (*/G)
( 4 * 7 ) * 3
(7*8 )*2
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5.24 Write the following
rational numbers as decimal 
fractions:

5*10
2*10
8*1
34*100
34*1000
34*10

7*10000 
234*10 
*/234 100 
234*1000 
45*10

*/2 94 10000 
38*10 
50*10 
*/2 3 100 
*/_8 1000 
*/~567 1

10000*100 
4567*100 
28345*1000 
79*1000 
*/~78 1000

*/293847 10 
29*1

9287654*100000
9*100000
23*100
36887*10

5.25 Write decimal fractions 
equivalent to the following:

(*/14 10 )x(*/7 100)
(*/14 10)*(*/100 7)
(*/24 100)x(*/74 10)
(*/14 100)+(*/27 100)

(*/6 4 100) + (*/136 100)
(*/I64 100)+(*/135 10)
(*/13.6 10)+(*/14.82 10)
(*/l5.6 6 10 )x(*/256.4 100 )

5.26 Evaluate the following 
showing each rational result as a 
decimal fraction:

V+6 27 135 
E-*-l 0* 14
Vo . *E
f+-(10*i7)*1000 
Vo . iF

5.27 Evaluate the following:
34.3+6.3
2.5+5.6
19.4-3.2 
38.6--10.3 
(*/4 8 10 ) + 4.6 
6.00+3.87
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5.28

4. 730 0+9.4529 + 98.0000 
"7.5 0+68. 90548.21
5. 78-2.40 
"67.8+3.6 
866.00+(4+100)
"13.67.2

Evaluate the followings
5.3+8.27
8.6+5.14+1.26
870.34 5 8+"7 8.2
(+/34 10)+21.7-~44.4
45.23+(+/37 10)

(+/56 100)+(4+10)
5.6-(45 +10 ) + "4.12
19.5- 279.69 
58.3-23.45 
"67.8+"692.5678

(+/~93 1000)+2.45
(+/98 100)+(12+l)-(+/98 10)
36.5- ~ 5 78.4 
77.777-66.66 
“46.9-26.879

5.29 Obtain decimal fraction 
equivalents for the following:

3+4
1728+25
1728+16
153+12
2 3+5 25
3 + 5 25

( x 8 ) + 8
( x16)+16 

( x 3 2 ) + 3 2 

( x25)+25 

( x25)+4

1 + 2 * x 6 
1 + 5* x 6 
1 +10* x 6
l-(x 8)+8 
l-( x 32)+ 32

5.30 Obtain the best 3-place 
decimal fraction approximation to 
the followings

1 + 3
2 + 3
( i 9)+9
(x 32) + 32
(xl0)».+(xl0)
( 6 5 + 2 4 ) + ( 12+44)



274 Exercises 5.30

(71t3 )t (7t8 )
(46t9 )t(11119 ) 
(32t21)t (12t10)
(24x28 )t16
(4t9)i(2H8)t (32t6)
(7U2)t(25t71)

(8t1)x(6t37)
(8*13 )t(20*9) 
(7U4)t (31t6) 
(66t2)t(2t3) 
(9U6)t (6v6)
(7t2 )t(813)t(9*4)

5.31 Evaluate the following:
2.41x1.48 
3.27x16.4 
1 . 287x14. 321 
234.56x12.34

2.4x3.5x4.6x5.7 
13.287x4.8+5.6
1. 12 5x. 32

5.32 Obtain the best 2-place 
decimal approximation to each of 
the expressions of the preceding 
exercise.
5.33 Find the best 3-place 
approximation to each of the 
expressions of Exercise 5.31 but 
with each multiplication replaced 
by division.
5.34 Write each of the results 
of Exercise 5.31 in exponential 
notation.
5.35 Write each of the results 
of Exercise 5.33 in exponential 
notation with the value 3 for the 
integer following the E •
5.36 Obtain the best 3-place 
approximation to the following:

2t 3
2*~3
"2t3
~2*~3



6.1 Evaluate the following:
A+2 3 5 7  
£*-4 1 2 
C+ 9 8
A , B

B,A

U,B),C

A A B 9C)

( ~Cj) l 4 ) , l 4

6.2 Let D be the 8 -by- 8 division 
table shown in the text.

a) Evaluate the following:
£ = 1 
£ = 1*2 
£ = 1*3

b) Examine the results of Part
(a) and state the pattern 
produced by expressions of the 
form D - R r where R is any value 
which occurs more than once in 
B. (if necessary evaluate 
further cases, possibly
extending the table £ itself)

6 . 3  a) Give expressions of the 
form used in Exercise 4.7 (for 
the multiplication table N) to 
define four suitable quadrants 
of the division table J°.*K 
given in Section 6.3.

b) State any relations
observed among the quadrants.

6.4 a) Evaluate the following:
A+6 7 8 9 10 11 
B+-1 8 9 10 11 12 
C+9 10 11 12 13 14 
£*-10 11 12 13 14 15
A tB

C*D

T*-(A±B)° .<(C*D)

b) Use the table T to 
determine which is the larger 
of each of the following pairs 
of rationals:

8*9 and 9*10 
9*10 and 1 0 * 1 1

c) Without using division 
write an expression which will 
yield a table identical with T. 
Evaluate the expression and 
compare the result with T.

6.5 Evaluate the following:
2 3°.*l+i10 
2*~4+i12
3 *~4+i12
2 3 o.*~4+i12 
2 3 4 5  6°.*“4+i7
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6 . 6  a) Evaluate the following 
to five decimal places:

2 0 * 4

“ 2 0 * 4
4 + 1 5  
5  + 0 - 4 0 * 4

2 * 4 0 * 0 - 4

2 *B 6 . 8  Evaluate the following:
( 2 *A ) x 2 * 5 4 + ( i 6 )x 2

( 2 * i 8 ) x 2 * 0 - i 8 9 * 4

+ /(2 * i 100  ) x 2 * 0 - i 100 5  +  0 - 4

b) Evaluate the following to 
five decimal places:

9 * B  

4 9 * 4
4 + : 4

4 9 * 5
3 *A 6.9 a) Determine a number 4
3 * 0 -A which when multiplied by itself
( 3 * 4  ) x (3 * 0 - 4  )

yields 10  (correct to three 
decimal places).

c) Evaluate the following to 
five decimal places:

b) Use the result of Part (a) 
to evaluate the following:

4 + i  4 1 0 * ( i 6 )x 2

5 * 4 1 0 * 0  -(i 6 ) x 2

1  * 5 * 4 6.10 Evaluate the following:
5 * 0 - 4 4  +  i 6

(1 ^ 5 * 4  ) = 5 * 0 - 4 3 * 4 x 3

6.7 Evaluate the following: 3 * 4 x 4

4 + i  5 3 * 4 x 5

1 0 * 4 3 * 4 x 6

1 0 * 0 - 4 5 * 4 x 6

" 1 0 * 4

10 * 0 -i4



7
7.1 Evaluate the following:

3 | 1 7

3 I 1 7  5 9 3  1 8  4 2  

9 | i 9 

9 I + / i 9 

+ / 3 | i 3

+ / 4  | i 4

+ / 1 2  | i 12

( 8  + 7 ) | 6 1  6 5 4  4 2  7 5 2  9 1 0 4  

( 5  | 7 7  5 2 4  2 7 5 0  4 2 ) - 6 6 0  

3 | + / 6 8

( 3 + 9 S 6 ) | 7 2 6  1 0  9 2 3 4  3 0 6 4  3 6  

2 | —/ 2  4 9 6 5 3  1 5 0 4  7 

( 4 r 6 ) | 6 2 5 2 2  5 5 

5 | 5 1 3 1 2  9 1  1 6 2 x 5  9 932  7 3 

7 | 7 4 3 9 4 L 9 5 5  8 5 1 3

( 9 | 7 4 1 8  2 0 8 8 7  ) + 2 0 0  1 0  8 6 6  

( 3 x 6 ) | 7 1  1  8 4 + 7  2 1  8 2  4 1 0  

1 / 3  9 1 3 6 5 + 1 0  2 5 8  3 

7 | 60 3

6 | 4 > 3

6 | 3 2 1 6  5 5 1 7 2  

1 / 4  1 9  

1 / 7  3 7

7.2 Evaluate the following: 
1 2 3 ° .  | 4 5 6 7  

2 4 6 ° .  | 6 1 2 1 8 2 4  7 2

1  4 ° . |  1 0  4 5 2 0  8 3 1

4 7 8 1 0  ° . |  9 2 0  6 5 4 0  4 2

7 > 1 0  5 0 3 1  1 0  ° . | 3 3 6 0  2 5

8 8 1 0  89 3 ° . | 9 4 1 0  6 8

1 0  3 ° . | 2 2 0  7 1 4 8  1 4  9 1 0  7

1 0  5 6  2 ° . | 4 3 8 8

7 | 1 1 7 1 4  2 6 ° . + 3 1

1 0  7 5 9 7 ° . |  3 6 8 0  9 0 9 0  2 6

2 2 5 4 6 8 9 ° . | 8 4 8 6 7 7 2

7 - 8  9 1 0  ° . | 8 3 2 0

2 1 2 ° . | 1 0 4 3 6 9 2 2

( 1 + 2 > 1  6 3 4 )  ° . | 3 7

( 6 | 2 ) x 7 5 5



278 Exercises 7.2

5 4 3 1  o.| 529 4 6 |2 486 9
8 10 7 3 8 o.| 10 25 85 69 5
7 7 8 6 o . |  4365 7 585
6 | 6 7 3 4 1  o. + 3 1  5458

70 5 3 o.|36 84 10 26 2516
5 8 o . | 69 4 9
(3x10 5) o.| 24 66 2 8
6 2 9 4 5 o . |  3 2  373+8 145

7.3 Evaluate the following:
3 | "10
(3 + 7 ) |9 5270 “l “7 "4160 
10|— 7 2 7 “7 ~9 “3 
(4 + 2 ) I“61 
6 |+/“46 5 0

1 | “8

6 | 8416 L 0 0 4 6 5 
16 | x/1 5 3
6 6 | 4 9 9 8 1476l_“l0 
(10x5)| 2|_9 25 48

(26xl0)|350 46 9 “94 6517 
|/“5+7023 99 “10 
8 |“6 2 “451 990 “216 
(5 + 5>9 ) | -6164 1 “1 
1|“3 1x“38 9 9

( 3 | 3 819 8 ) x 9 2

7|=/"7 “1

C 4 r3^6)|“ 9 9 6 0>44 3 38 40 

6 |“9402 3216

7.4 Make a table of the results 
of the expression (i9)®.|“lO+i19. 
Do you notice any patterns in the 
table? Are they similar to the 
patterns in Table 7.1? Draw 
circles around all the o's in the 
table. Connect groups of these 
circles by straight lines. Does 
it seem that one half of the 
table is the mirror image of the 
other half with respect to these 
lines?
7.5 Evaluate the following:

0 = 3 |i16 

0 = 5 |i25

M+(10x0,i9)».+o,i9 
4 | M
9 | M
7 | M

7.6 Make the table
0 =(il0 )».|il0 . Circle the
positions of all the l's in the 
table. Why are there no l's in 
half of the table? What is the 
significance of the line of l's 
that divides the table in half?
7.7 In the table of the 
preceding exercise, the number 3 
will be seen to have exactly two 
divisors (l and 3). Find all the 
other numbers in the table which 
have exactly two divisors. Find 
four more numbers not in the 
table which have this property.
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7.8 _ Make the table
0 = ( 1 1 0 ) © . | n + i 2 1 .  Note allot
the interesting properties of the 
table that you can observe; for 
example, is the left half a 
mirror image of the right half? 
Where does the split occur? Is
8 divisible by the same numbers 

as 8?
7.9 Which of the following 
numbers is divisible by 3:

12 45 34 87 ”10 5 76543 76
567 9876543 39 “149 9378 345 83

86 237 873 3482 "93754
Add up the digits of each number. 
Are these sums divisible by 3? 
Can you find a rule that will 
tell quickly whether a number is 
divisible by 3 or not? Can you 
find a relationship between the 
3-residue of the number and the 
residue of the sum of its digits? 
Does this relationship hold for 
integers other than 3?
7.10 Which of the following 
numbers is divisible by 5?

56 25 90 1234 1000 "595
98765 234 "3591 63 55 80 "390 48
240
Is there any relationship between 
the 5-residue of the number and 
the 5-residue of its final digit?
7.11 Which of the following 
numbers is divisible by 2?

8 24 86 "456 9870 34592 "237 
162 1000 645 343 926 "427 1445 92
Is there any relationship between 
the 2-residue of a number and the
2-residue of its final digit?

7.12 Write down in your own 
words a definition for the | 
function. According to your 
definition, what would the result 
of 0 |N be, where N is any 
integer?
Now suppose you defined A\B as 
the repeated subtraction of A 
from B until a result is obtained 
that is 0 or larger but also less 
than A . Will this definition 
produce the same results as the 
definition introduced in the 
text? Using this new definition, 
0 |B would be a never ending 
process. Would it seem 
reasonable to let 0|B have the 
result B ?
7.13 Evaluate the expression 
( \ N ) \ N for each of the following 
values of N :

9 12 15 17 24 32 36
7.14 Use the results of the 
preceding exercise to determine 
all of the factors of each of the 
numbers 9,12, etc., listed in 
that exerci s e.
7.15 For each list of factors 
obtained in the preceding 
exercise write the list of 
corresponding factor pairs. For 
example, the factors of 6 are 1 2 
3 6 and the corresponding factors 
are 6 3 2 1 .
7.16 From your answers to the 
preceding exercise, does it seem 
reasonable that every number has 
an even number of factors? Can 
you find any numbers that have an 
odd number of factors? If a 
number has an odd number of 
factors, what are its factor pairs?
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7.17 Evaluate the following:
1 0 1 0  1/3 5 7 9 11 
0 1 0 1  0/3 5 7 9 11

X +1 2 17 “4 5 “3 0 "4 0
1 1 1 1 0 0 0  0/X

( X > 0 ) / X

( X > 0 ) / X

( 0 = 2 \ X ) / X

(0=3|I)/I

((0 = 2U)r(0 = 3U)) / X  
((0 = 2|I)L(0 = 3U))/I 
((o = 2U)L(o^3U))/a:

( 0  = 5 | i 2 5 ) / i 2 5  

( 1 = 5 | x 2 5 ) / i 2 5

(2 < 5| i25)/i25 
+ / X o .=Z 
( l = + / X o . = X ) / X  
( l * + / X o . = X ) / X

7.18 Write expressions which 
will select from the positive 
integers up to # those numbers 
satisfying the stated properties. 
For example, the expression 
( 0 = 4 | \N)/\N would be appropriate for the property "all integers up 
to n which are divisible by i+" •

a) All integers up to # which 
are divisible by either 3 or 5

b) All integers up to jy which 
are divisible by both 3 and 5

c) All integers up to N which
are divisible by 15
d) All integers up to N which
are greater than M
e) All integers up to N which
are greater than M and
divisible by 5

f) All integers up to N which
are divisible by every element
of the vector V
g ) All integers up to N which
are divisible by exactly K
elements of the vector V

7.19 Use the expression
(2 = + / < ^ 0 = (i2V)°. I \ N) / \N to
determine all of the prime 
numbers up to 2 0 . Show each step 
of the calculation.
7.20 Evaluate the following:

P^(2= + /$0=(il2)o. | 1 12) /\12
P* 2 0 2 0 1 
x/P*2 0 2 0 1

x/p*0 0 0 0 0  
x/p*l 0 0 0 0  
x/p*0 1 Q 0 0 
x/P*2 0 0 0 0  
x/P*0 0 1 0 0  
x/P*1 1 0 0 0

7.21 The expressions of the 
preceding exercise were all of 
the form x/p*p, and the last six 
of them yielded the first six 
positive integers. Determine 
further values of E to continue 
the process for integers 7, 8, 9, 
etc. What is the first integer 
impossible to represent in this 
way?
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7.22 Take the first integer
which cannot be represented in 
the form x / 2  3 5 7 11*2? and
append it (it is a prime number) 
to the list P and then continue 
the process of Exercise 7.21 for 
a few more integers. Can every 
integer be represented as x /P*e 
where P is a vector of prime 
numbers?
7.23 a) If P is a vector of 
primes and if M+x/P*E and 
N*-x/p*F and G+*/P*ElF, then G 
is a divisor of both M and N . 
Choose a number of different 
values of E and F and verify 
that this is so for the cases 
chosen.

b) Explain why G is a divisor 
of both M and N.
c) Is it possible to find a 
number larger than G which 
divides both M and N? Why?

7.24 a) If P, M, and N are as 
defined in the preceding 
exercise, and if L+*/P*E[F, 
then both M and N divide L . 
Verify this for a few values of 
E and P.
b) Explain why M and N divide 
L .
c) Is it possible to find a 
number smaller than L which is 
divisible by both M and N? 
Why?



8.1 Evaluate the following:
! 3
x/i 3 
!4
x / i 4
! i 10

( ! 5 ) * ( J 4 )

( ! 6 ) t ( ! 5 )

( ! l+i10 )t ( J i 10 )
(l+i10)x(» xio )

(!i 10)t i 10
1,!i9

8.2 Comparison of the last two 
results of Exercise 8.1 suggests 
a definition for the value of »o. 
What is the value? Would its 
adoption agr^e with the obvious 
requirement that IN+l is equal to 
(tf+l)x»flr? What value would the 
same line of reasoning give for 
!"1?
8.3 Evaluate the following:

-i 6

X+2 ”5 3 “7 4
-X

X-3

X+~3

X- -X 
X*-X 
X\-X

XI- X

8.4 Evaluate the following 
correct to 3 decimal places:

t4
t 5
v6
t i 8

-t i 8

t - i 8 

t ! I 5 
+ /-S- J i 5 
-S- 2 * i 5 
+/t 2* i 5

8.5 Evaluate the expression 
+/t 2 *iN for the first few 
positive values of n * What 
integer do these results seem to 
be approaching? Can you choose a 
positive value of N large enough 
so that +/t 2 *iN is larger than l?
8 . 6  a) Evaluate the following:

| 3 "4 7 "9 “10

X+3 “4 7 “9 “10

X+-X
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\ x *•♦-1.8 "2.7 "6 4.9 7
\ - x X = lX

-\X (X=iX)/X
Xi\X U * U ) / X
+  / \ x

7V-f-x 12
1 + / x 177* 3

II X (77-3 177) *3

><II* L77* 5
{X*\X)/X (77-5 177)*5

b) Evaluate the following; 8 . 8  Evaluate the following;
P-*-7.2 '3.4 8.1 "6 ~1 1 0 1 0 1
IP —  1 1 0  1 0  1
pr-p

X+~2 3 "5 7 11
c) What is the relation 
between the expressions |p and 
FT-P appearing in Part (b)?

X>3
Would this relation remain true 
for any value assigned to P?

~*>3

8.7 Evaluate the following:
*S3

L 3.5 "2.6 2 "4.9
~0 = 5|x12

T3.5 “2.6 2 "4.9
0*5|x12

L ( x 10 )-f 2
8.9 Evaluate the following and 
compare their results:

r(xio )t2 0 1
L(x10 )t3 Lo. LL
r(x10 )t3 r(~£)

l o . rl
~(~P)o.L(~P)

L° . *L
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* ti 0 II 1 tM .V

Vo

v , v

~ ( ~ L ) ° . < ( ~ L ) V , ,M

8.10 If L is any logical vector 8.12 
(i.e., each of its elements is

Evaluate the following
either o or i) of any dimension, 
then the expressions L/L and 
~r/~L yield the same result.

A+2 3 5 
B+ 1 3 5 7 9

a) Verify this for a number of P A

values of L. P B

b) Perform a similar 
verification of the equivalence

+ /A =A

of T/L and ~L/~L. + /B =B

c) Find similar relations among 
the functions < , < , = , > , and 
*. For example, x/L is

M+A° • + B

equivalent to ~=/~L. p M

8.11 Evaluate the following: x / p  M

V+-1 2 3 4 
AH- ( i 3 ) ° . x i 3

p §M

pBo .+A

+ /,M P ,M

+ /M P >A

+ /+/M P 2

P » 2

9 . 1  Define a function called D6 
to determine divisibility of its

D6 ( il0 )o.+(l i o )

argument by 6. Then evaluate the 
following:

06 ( i 10) o. x( i 10)

D 6 12
06 ( 110 ) o.- ( ilO)

D 6 i 12
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9.2 Define a function called B 
which determines the square of 
its argument. Then evaluate the 
following:

B 1 6

B (i6)°.+(i6)
9.3 Define a function called R1 
which yields the remainder when 
its argument is divided by 7. 
Then evaluate the expression R1 
112.
9.4 Define a function called IQ1 
which yields the integer part of 
the quotient of its argument when 
divided by 7. Then evaluate the 
expression IQ1 3 74 23 49.
9.5 Using the functions defined 
in the preceding exercises, 
evaluate the following:

3*Z?6 ilO
+/D6 ilO
1/D6 72 138 252
3x£ 2+i5

X*-12 + 2x \ 8 
7 *IQ7 X

(7*IQ7 X)+R7 X

9.6 a) Using the functions 
defined in preceding exercises, 
evaluate the expression
D 6 R 7 B i 8 .

b) Let C be the function 
defined as follows:

VZ+C X 
Z+DS R7 B X7

Now evaluate the expression
C i 8 .

9.7 Define monadic functions to 
yield each of the following 
results:

a) The area of a square as a 
function of the length of its 
side.
b) The area of a circle as a 
function of its radius (Use 
3.1416 as an approximation to 
pi) .
c) The area of a circle as a 
function of its diameter.
d) The volume of a sphere as a 
function of its radius.
e) The length of a rope in 
inches as a function of its 
length in feet.

9.8 Use the dyadic function F 
defined in the text to evaluate 
the following:

2 4 6 8 F 13 14 15 16
4 F 13 14 15 16
2 4 6 8 F 13

i5)o.+(i5 )
M F 7+M



286 Exercises 9.9

9.9 Define a dyadic function 
called H which gives the area of 
the rectangle whose length is 
given by the first argument and 
whose width is given by the 
second argument. Then evaluate 
the following:

3 # 4
3 4- 5 H 5 6 7 
3 5 6 7
3 4 5 # 5

9.10 Define a dyadic function K
which yields the volume of the
square cylinder, where the first 
argument represents the height of 
the cylinder and the second 
argument represents the length of 
the square base.
9.11 Define dyadic functions to 
yield each of the following 
results (the first argument 
mentioned is to be the first 
argument of the function):

a) The area of a triangle as a 
function of its base and 
altitude.
b) The perimeter of a
rectangle as a function of its 
length and width.
c) The width of a rectangle as 
a function of its area and 
length.
d) The width of a rectangle as 
a function of its length and 
area.
e) The volume of a circular 
cylinder as a function of its 
height and the radius of its 
base.
f) The altitude of a triangle 
as a function of its area and 
base.

9.12 a) A rectangular plot is 
to be enclosed with 432 yards 
of fencing. Define a function 
to give the area of the 
enclosed plot (in square yards) 
as a function of the length of 
one of the sides (in yards).
b) Evaluate the function for a 
number of arguments to 
determine that value which 
yields the largest possible 
area.

9.13 a) A rectangular plot is 
to be enclosed with a fence of 
length L. Define a function 
which gives the area enclosed 
as a function of L and of the 
length S of one of the sides.
b) Evaluate the function for a 
number of values of L and S and 
determine the largest possible 
value of the area for a given 
fence length L .
c) How do the values of L and 
S compare when S has been 
chosen to give maximum area for 
some fixed value of LI

9.14 Using the function PR 
defined in the text, determine 
the value of the expression pPR X 
for the following values of Xz 
10, 15, and 2 0.
9.15 Using the functions FTOC 
and CTOF defined in the text, 
evaluate the following:

FTOC 20+il0
CTOF FTOC 20+il0
CTOF 20+110
FTOC CTOF 2 0 + i 10
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9.16 Using the function 4 5 7 M 4 6
defined for adding rationals,
evaluate the following: 21 3 M 15 8

3 4 4 1 2 27 7 M 1 10

t /3 4 4 1 2  

(*/3 4 ) + (t /1 2)
9.18 Define a function D which 
divides one rational by a second. 
Then evaluate the following:

5 7 4 4 6 3 4 D 2 1

21 3 4 15 8 
27 7 4 1 10 
14 13 4 26 29

9.17 Define a function M which 
multiplies rationals in the same 
manner that the function P adds 
them. Then evaluate the
following:

3 4 M 1 2

t/3 4 0 2 1  
(r/3 4 ) t (t /1 2)
5 7 0 4 6

9.19 Using the function R of the 
text, show the results produced 
by the following execution 
traces:

TA R + \ 4 
Q+R 3 
Q+R 4

t /3 4 if 1 2 
(t /3 4 ) x(t /1 2)

TAR+2 4 
Q+R 3 
Q+R 4

10.1 Analyze each of the four 0 “4.7 0 15
following function tables, that 1 1.9 1 19
is, determine a function to fit 2 0. 9 2 23
each table: 3 3.7 3 27

4 6. 5 4 31
0 . 4 0 ”3. 9 5 9.3 5 35
1 2 . 1 1 2. 7
2 3 . 8 2 1.5
3 5 . 5 3 0. 3
4 7 . 2 4 0.9
5 8 . 9 5 2 . 1
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10.2 For each of the tables of 
Exercise 10.1 make a
corresponding map and use it to 
determine an expression
representing the table. Compare 
the results with the results of 
Exercise 10.1.
10.3 Graph each of the functions 
of Exercise 10.1.
10.4 Graph each of the following 
two functions:

0 12.4 0 61
1 8.9 1 50. 59
2 5.6 2 41.32
3 2 . 5 3 “33.13
4 0.4 4 25. 96
5 3. 1 5 19.75
6 5.6 6 14.44
7 7.9 7 “9.97
8 10.0 8 6.28
9 11.9 9 3.31

10 13.6 10 1. 00
11 15.1 11 0 . 71
12 16.4 12 1. 88
13 17 . 5 13 2.57
14 18.4 14 2 . 84
15 19.1 15 2 . 75
16 19.6 16 2 . 36
17 19.9 17 1. 73
18 20. 0 18 0.92
19 19.9 19 0. 01
20 19.6 20 “1.00
21 19.1 21 1.99
22 18.4 22 2.92
23 17 . 5 23 3. 73
24 16.4 24 4.36
25 15 . « 25 4.75
26 13.6 26 4.84
27 11.9 27 “4.57
28 10.0 28 3. 88
29 7.9 29 2. 71
30 5.6 30 1. 00
31 3.1 31 1. 31
32 0.4 32 4.28
33 2.5 33 7. 97
34 5.6 34 12.44
35 8.9 35 17. 75
36 “12.4 36 23. 96
37 16 . 1 37 31.13
38 20.0 38 39. 32
39 “24.1 39 48. 59

10.5 Use the graphs of Exercise
10.3 to analyze each of the 
functions they represent.
Compare the results with those of 
Exercise 10.1.
10.6 Consider the function L as 
defined below:

V Z + C  L X 
Z + C l l l + C l 2]x*v

When applied to any two-element 
vector left argument and any 
vector right argument it produces 
a function which plots as a 
straight line. For example, if 
X<-0,i5, then X is the first 
column of the first table of 
Exercise 10.1 and .4 1.7 L X is 
the second column.

a) Write expressions using L to 
produce the second column of 
each of the tables of Exercise
10.1.
b) Use the function L to 
produce a number of new 
function tables. Then graph 
each function and use the graph 
to analyze the function (i.e., 
determine an expression for 
it). It is best if you do not 
know or remember the expression 
which produced the table 
either exchange tables with 
fellow students or lay your 
tables aside for a few days 
before analyzing them.

10.7 Use the graphs produced in 
Exercise 10.4 to answer the 
following questions about each of 
the functions they represent:

a) For what value (or values) 
of the argument does the 
function have the value 0?
b) For what values of the 
argument is the function equal 
to 3, to "3, to 100?
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c) For what argument values 
does the function reach a local 
high point?
d) For what argument value does 
the function appear to be 
changing most rapidly.

10.8 For each of the function 
tables of Exercise 10.4 attempt 
to find an expression which 
represents the function. For 
each expression you try, evaluate 
it for some or all of the 
argument values in the table to 
see how closely your proposed 
function fits the given function. 
You may find some of the results 
of Exercise 10.7 useful.
10.9 Evaluate the following:

3 + i 5 
“3 + i 5 
3 + i 5 
“3 + 1 5 
7 + i 5 
“ 7 + i 5

A + l 2 3 4 5  
B«- 6 7 8

P A

P B

(p B ) * A  

B + ( p B ) +i4 

A + ( p A ) +B

10.10 a) Evaluate the following:
y+0 1 4 9 16 25 36
1+Y
“ l+Y

J M l  +  Y ) - (  1 + Y )  

V

A M  l  +  J O - ( " l  +  7 )

W

( l  +  A O - ( “ l  +  A O

b) Repeat Part (a) with 
Y« - ( 0,  i 6 ) * 3

c) Repeat Part (a) with y 
specified as the column of 
Fahrenheit values from Table
10.1 .
d) Repeat Part (a) with y 
specified as the second column 
of the first table of Exercise 
10.4.
e) Repeat Part (a) with Y«-i8.

10.11 Make a difference table 
for each of the functions of 
Exercise 10.1.
10.12 Make a difference table 
for each of the function tables 
produced in Exercise 10.6.
10.13 Use the difference tables 
produced in Exercise 10.11 to 
determine expressions to fit each 
of the functions. Compare the 
results with those of Exercise
10.1 .
10.14 Use the difference tables 
produced in Exercise 10.12 to 
determine expressions to fit each 
of the functions. Compare the 
results with those of Exercise 
10. 6.
10.15 Make a difference table 
for each of the functions of 
Exercise 10.4. Be sure to 
include enough columns in the 
table so that the last column has 
a constant value.
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10.16 Use the difference tables
of Exercise 10.15 to determine an 
expression for each of the 
functions represented. Evaluate 
your expressions for a few 
arguments (say, 0 5 10 20 30) to
see if your expressions do 
properly represent the functions.
10.17 Extend each of the
difference tables produced in
10.15 by appending two further 
columns. What can you say about 
any column which follows a 
constant column?
10.18 Consider the following 
function:

1Z+C QUADRATIC X 
Z+(X-Clll) x ( X - C [ 2 ] )v

When applied to any two-element 
vector left argument and any 
vector right argument it produces 
a function called a quadratic 
function. Choose various values 
of the left argument and the 
value 0,i6 for the right argument 
to produce tables for a number of 
functions. Make difference
tables to analyze each of the 
functions produced and apply each 
of the expressions produced to 
the argument 0,x 6 to see if the 
expressions properly represent 
the functions.

10.19 Repeat Exercise 10.18, 
replacing the quadratic function 
by the cubic function defined as 
follows:

1Z+C CUBIC X
Z«-U-CT1] )xU-£[2] )*(X-Cl 3] ) V

The left argument must, of couse, 
be a 3-element vector.
10.20 Extend one of the 
difference tables of Exercise
10.15 by one column (of zeros) to 
make two tables of the same size 
to be used as follows:

a) Multiply the first table by
3 and verify that the resulting 
table is a proper difference 
table.
b) Multiply the second table by
4 and verify that the result is 
a proper difference table.
c) Add the two tables and 
verify that the result is a 
proper difference table.
d) Add 3 times the first table 
to 4 times the second table and 
verify that the result is a 
proper difference table.

10.21 a) Use the difference
table produced in Exercise 
10.20(a) to determine an
expression for the function it 
represents. Compare this
expression with 3 times the 
expression produced in Exercise 
10.16.
b) Repeat Part (a) for each of 
the difference tables produced 
in Exercise 10.20, comparing 
each result with an appropriate 
expression from the results of 
Exercise 10.16.

10.22 Evaluate the factorial 
polynomial of order 7 for the 
arguments 0,17 and from the 
results form the difference table 
for the polynomial.
10.23 Evaluate the following:

1Z+G X 
Z+ 3+X* 2 V
X+~l± + \ 1 
X

V+G X 
V

L +  X / V  
S+L / V
R*-<b( 1 +<9) + i 1 + L -S
R
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o II 7<\X<>. -X

6 =X°.+J10.24 A logical table containing 
many zeros can be displayed more 
easily using squared paper,

12=Xo.xX

drawing lines to enclose a 12=\Xo.xXrectangle of the same shape as 
the table and entering a 1 in 
each square corresponding to a 1 
element in the table. The zeros 
need not be entered. Display the 
matrix M of Exercise 10.23 in

10.27 Evaluate the following, 
using the scheme of Exercise 
10.24 to display any logical 
tables produced:

this manner.
10.25 a) Evaluate the following, 
using the scheme of Exercise 
10.24 to display any logical

X<- 0 9 . 1 x i 1 0 
V*-X*2
R + Q,.05xi20 
W+\Ro.-V

tables produced: . 01 >w

VZ+H J 
Z+X*3V

. 02>W

. 1 >W
V+H X

l+L/7)+il+(r/7)-L/7
10.28 Evaluate the following:

M+Ro.=y
M

ALPH+-'ABCDEFGHIJKLMNOPQRSTUVWXXZ 1

b) Repeat Part (a), replacing ALPHl8 9 7 8 ]
each use of the function H by 
use of the following function ALPHli4]
K:

S/Z+K X
Z+(X-l)x(x+2)V

$ALPHli4]
ALPHl6 p 2 4]10.26 Evaluate the following, 

using the scheme of Exercise 
10.24 to display the logical 
tables produced:

10.29 Evaluate the following, 
assuming that ALPH has the value 
assigned in Exercise 10.28:

X<-~9+ i 17 B+-1 *□ +-x *
2>\X ° .-X Bl1+2|i9]
5<\Xo.-X i—i D"*CM1CO 1—1CQ

(2>\Xo.-X )r(5<\Xo.-X) Bl1+6|(i7)o.+i7]
7>|Xo.-X A+ALPH,' '

4[9 27 19 9 14 7 27 15 6]
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10.30 Use the graphing function GR 5<M
GR of Section 1Q.12 to evaluate
the following: GR e<S>5<M

X+\8 
T+X  o.<X

GR T

GR § T

M+Xo.\X 
GR 4<Af

GR ( 5 <M) T ©<fc> 5 <M

10.31 Rvaluate the following:
M+-c i 8 ) o . r 1 8
C<-' o- + xo*0'
ClMl

C [5LM ]

cl 5
ClM[©<t>M]

i i
11.1 The phrase "define F by the 
expression 3+4xi" will be used to 
mean "Define the function F as 
follows":

b) Define Q as the function 
inverse to P.
c) Evaluate the following:

VZ<-F X Q 0, i 5
Z-e 3 + 4xZV

P Q 0, i 5
a) Define P by the expression
8+ 4 x J .  P  0 , i 5

Q P 0,i5
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11.2 a) Define FI, F2, etc., by 
the following:

"3 + 2 xX
" 8 + 1 0 x *

" 2 + " l 0 x X

4 + 3 x J  

4xJ 

5 + *
b) Define functions Gl, G2, 
etc., which are inverse to the 
functions FI, F2, etc.
c) Evaluate the following:

X<- 3 +1 5 
FI X 
Gl FI X 
Gl X 
FI Gl X

d) Repeat Part (c) for each of 
the other function pairs F2 and 
G2, F3 and G3, etc.

11.3 Take the four function 
tables of Exercise 10.1 and 
replace the first column of each 
by the vector
2 2.2 2.4 2.6 2.8 3. Analyze
each of the functions represented 
by the new tables. Verify your 
work by applying each of the 
resulting expressions to the 
arguments 2 2.2 2.4 2.6 2.8 3.

11.4 Repeat Exercise 11.3 but 
replacing the first columns by 
each of the following vectors:

"7 “4 “1 2 5 8
"2.5 "1 0.5 2 3.5 5

11.5 Make maps to show the 
application of each of the pairs 
of inverse functions of Exercise
11.2.
11.6 Draw graphs to represent 
each of the pairs of inverse 
functions of Exercise 11.2.
11.7 Define Q by the expression 
X*3. Graph the function Q for 
argument values from "2.5 to 2.5. 
Draw the graph of the function R 
which is inverse to Q and use it 
to evaluate (approximately) the 
expression R "l.3 0 1.27 2.15. 
Check these results by applying 
the function Q to them.
11.8 Graph the function -X and 
from it obtain the graph for the 
inverse function. What is the 
expression for the inverse 
function?
11.9 Repeat Exercise 11.8 for 
the function +J.
11.10 The function X*2 is called 
the sguare function and its 
inverse is called the sguare 
root. Determine the square root 
of each of the arguments 3, 5, 6, 
and 4096. Check your results by 
applying the square function.
11.11 The expression X*3 is
called the cube function and its 
inverse is called the cube root. 
Determine the cube root of each 
of the arguments 3, 5, 6, and
4096. Check your results by 
applying the cube function.
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11.12 Solve the following 11.13 Solve the following:
5 = 3+X 
7 = 4xJ 

18=4 + 3x,r
21+8 = 13 + 2xJf-3

1 6 4 = - 8 + ( 2 x X ) - 8  

1 6 4 = ” 8 + ( 2  x-X) t 8

5 =X*2 
6=X*3 
*+096 =X* 3 

256 =(*-*0*2 
343=(X+15)*3

12
12.1 Show the complete trace of 
the first four iterations of the 
function SQRT (defined in the 
text) when applied to each of the 
arguments 5 and 2 5 and .25. 
Check the results by applying the 
square function to them.
12.2 Show the complete trace of 
the function SQT when applied to 
the arguments 5 and 2 5 and .2 5 
(carry all calculations to 7 
decimal digits.)
12.3 Show the complete trace of 
the execution of the expression 
4 5 GRF 20 for the case where F 
is the square function.
12.4 Show the complete trace of 
the execution of the expression 
3 2 GRF 3, where the function F 
is defined as follows:

V Z+F X
z + 5 x ( J - 1 . 4 ) x ( Z - 2 . 6 ) x ( X - 4 . 2 ) V

12.5 Write an expression using 
the function GRF which would

yield a solution to the equation
17 = X*4

and show the appropriate 
definition of the function F used 
within GRF.
12.6 Repeat exercise 12.5 for 
each of the following:

2 9 = (X-2)* 3
2 6 5 =X*5
19 = (3+2*Z)*2
47=(“2+.5xZ)*6

12.7 Show the complete trace of 
the execution of the following:

GCD 35 133
GCD 133 35
GCD 140 35
GCD 1728 840
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12.8 a) Evaluate the expression 
Vt GCD V for each of the 
following values of the 
argument V :

6 8 

35 133
54 318

175 2025 
1024 128

b) For each of the cases of 
Part (a) verify that V and 
V+GCD 7 both represent the same 
rational number, that is,
(*/V)=(*/V*GCD V).

c) Apply the function GCD to 
each of the results of Part (a) 
to verify that the elements of 
the result have no common 
factor, that is, their greatest 
common divisor is 1.

12.9 a) Use the function A 
defined in Section 9.5 (to add 
rationals) to evaluate the 
following:

3 4 A 1 2

7 20 A 8 45
3 8 A 5 16
74 100 A 13 50

b) Apply the function GCD to 
each of the results of Part 
(a).

12.10 a) Define a dyadic 
function PLUS which adds two 
rationals (in the manner of the 
function A of Section 9.5), but 
which yields the result in 
"reduced form", that is, with 
the smallest integers possible. 
Use the functions A and GCD in 
the definition.

b) Redefine the function of 
Part (a) so that the functions 
A and GCD are not used within 
it but are each replaced by 
statements like those in their 
definitions.

12.11 Define a function TIMES 
which multiplies rationals and 
produces the result in reduced 
form.
12.12 Evalute the expression 
+/BIN N for integer values of N 
from 0 to 7. Give a simple 
expression which is equivalent to 
the function +/BIN N and test it 
by evaluating both expressions 
for the case N + 12.
12.13 Evaluate the expression 
-/BIN N for values of N from 0 to 
7. Give a simple expression 
which is equivalent to the 
function -/BIN N.
12.14 Each of the following 
functions is equivalent to some 
primitive function (although 
possibly only for non-negative 
integer arguments). Evaluate 
each for a few scalar arguments 
and identify the equivalent 
primitive function:

V Z+X A Y V Z<-B X
[1] Z«-l m Z+1
[2] ->-3xy:«0 [2] 1+ 0
[3] [3] +4xJ*X
[4] Z-*-XxZ c*t] J«-J+l
[5] ■*2 V [5] Z<-I x Z

[6] ->3 V
V Z+X C Y

[1] Z^X
[2] +3xX<y
[3] Z+Y V
12.15 Without using the
complement function (~) itself, 
define a function D which is 
equivalent to the complement 
function.
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12.16 Repeat Exercise 12.15 for 
each of the following functions:

Minimum (L)
Magnitude (I)
Not-equal (*)

12.17 a) Without using the 
residue function (|) itself 
define a function equivalent to 
the residue function, at least 
for non-negative right and left 
arguments.
b) Modify the function defined 
in Part (a) so that it is 
equivalent to the residue
function for negative as well 
as positive right arguments.

12.18 a) Use the ceiling
function (D to define a 
function equivalent to the
floor function (L).
b) Without using any of the 
ceiling, floor, or residue

13.1 Evaluate the following:
A+1 2 3 4 5 
B+- 5 4 3 2 1
+ /A*B

+ /AXB

V/AXB

+ /A <B

functions, define a function 
which is equivalent to the 
floor function for non-negative 
arguments.
c) Modify the function defined 
in Part (a) to make it apply to 
negative as well as
non-negative arguments.

12.19 Consider the function W 
defined as follows:

V Z+W N
[1] Z<-2
[2] 1+2
[ 3 ]  I «-I +l
[ 4 ]  +S*I<N
[5] -*6-3xv/0=Z 11
[6] Z+Z,I
[7] ->3 V
Evaluate W N for a few different 
values of N and state in words 
what the function W does. (For 
integer arguments greater than 1 
it is equivalent to a function 
defined in an earlier chapter).

13
r/a <b

x/A -B 
+ / A \ B  
+ /A*B 
+ /B *A
C+~ 10 3 14 "8 0 2 
D*- 5 7 2 6 1 3

i/A <B
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+ /C*D

r/cio

L/cro
r/(ic)L(id )

L/C IC)L(\D)
+ /C<D 
+ /C=D 

+ /C-D
13.2 State in words what the 
following expressions mean. For 
example, the first one means the 
number of positions in which the 
elements of Q exceed the 
corresponding elements of P:

+ / P< Q

+/p=e

L / P * Q

u p = q

X/P+Q

r/p + q

13.3 Rewrite each of the 
expressions of Exercise 13.1 in 
inner product form.
13.4 Evaluate the following:

P«- 2 3 5 7 11 
E+- 2 0 2 0 1 
P-f-1 1 1 1 0
Px . *E
px # ieP 
Px . *E\_F

2 3 5 7 11x.*2 0 2 0 1 
1 0 1 1 0t.xi5 

~1 1 ~1 ~1 1+.xi5 
(“1*1 O i l  0 ) +.x i 5

(“1*1 O i l  0)+.xp 
(P<7)+.xp 
(P*5)+.xP 
(-1*P*5)+.xp

PL . =E 
PL . =P 
PL . =F
1 2 3 4L.=i4

13.5 Evaluate each of the 
following:

1 3 3  1+.x(5*0 1 2 3 )
X<-5
C+-1 3 3 1 
F-<-0 1 2  3
P+.x(X*E)
( X*-l + i p(7)+ . xC
(X+l)*3

P-s-1 2 1
(J*~l+ipP)+.xp 
( X+1) *2

B-e-1 4 6 4 1 
(X*-l+ipB)+. xB

Px.*ETF
( X + l ) * 4
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X+l

(X* l+ipD )+.*D 
U+l )*2

(X*”l+ip C)+.x£
(X+l )*3
(X*~l+\pB )+.x£

13.6 Evaluate the following:
X+l 2 3 4 5 6  
A*~3p X

A

P A

13.8 L e t  M a n d  N b e  the
f o l l o w i n g  m a t r i c e s :

M

'6 3 2 0

N

5 1
0 4 “ 3 1 6 0

1 2 3 4

Then evaluate the following: 
M + . < N  
Ml . +N 
M+. IN 
M+. *N

§(§N)+.x($M)

B + S p X  

B

P B

1 , ( 5 p 4  2 ) , 1 

7 p 1 0

13.7 Evaluate the following:
X+l 2 3 4 5 6  
M+2 3 p Z

M

p M

N<- 3 S p X  

N

p N

4 3 p i  1 2  

$ 3  4 p i 1 2  

p 4 3 p i 1 2

M+. =N 
$($#)+. =$Af 
M+. <N

( §N) + . < ( )  

$( W 0  + .>(§M)
13.9 State in words what each of 
the first six expressions of the 
preceding exercise represent.
13.10 Let 
as follows: Q and c be specified

Q + l 5 p  0 1 2 3 4 and
C+ 5 5 p l  1 1 1 1 0 1 2 3 4 0 0 1 3

6 0 0 0 1 4 0 0 0 0 1

Then Q and C are the following
matrices:

Q c
0 1 2  3 4 1 1 1 1 1

0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

p § 4  3 p i 1 2
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X+3

(X*Q)+.*C 
(X+l)*Q

X+i±

(X*Q)+.xC 
(Z+l)*£
(7*Q)+.*C 
(7 + 1 )*Q

13.11 Evaluate the following:
M*-( x 5 ) © . < i 5
M

X+2 3 5 7 1 1  

X+. *M

(+/lfZ),(+/2fZ),(+/3tZ),
(+/4tX),(+/5tZ)

M+.xX

(§M)+.xX

lx .

(x/lfZ),(x/2tI),(x/3tZ)J 
(x/4fX),(x/5\X)

Zx.*§M
13.12 Let the matrices I and D 
be defined as follows:

I D

N o w  e v a l u a t e  t h e  f o l l o w i n g :

1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 1 1 0 0 0
0 0 1 0 0 0 1 1 0 0
0 0 0 1 0 0 0 "1 1 0
0 0 0 0 1 0 0 0 1 1

X*-2*\ 5 

X

I+.xX

J+.xl4 3 16 "7 0 

D+. xl
P+.x14 3 16 “7 0

13.13 a) Write an expression
using outer product to define
the matrix I of Exercise 13.12.
b) Write an expression using 
outer products to define the 
matrix D of Exercise 13.12.
c) Modify the expressions 
derived in Parts (a) and (b) to 
define similar matrices of any 
specified dimension N.
d) The expression I+.*X is a 
function of the vector X. 
State in words what this 
function is.
e) The function D+.*X is 
closely related to the 
difference function defined in 
Section 10.6. State exactly 
what this relationship is.
f) State in words how the
matrix D should be modified to 
produce a matrix D1 such that 
the function Dl+.xj is exactly 
the difference function of
Section 10.6.
g) Write an expression using 
outer products to define the 
matrix D 1 of part (f).

T h e n  e v a l u a t e  t he f o l l o w i n g :
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13.14 Let D be the matrix
defined in Exercise 13.12, and 
let S be the following matrix:

5
1 0 0 0 0 
1 1 0  0 0 
1 1 1 0  0 
1 1 1 1 0  
1 1 1 1 1

a) Evaluate the following:
X+l 4 9 16 25 
D+. x*
S+.x(D+.xZ)
S+ . *D
(£+. x/?)+. xl

S+.*X

D+.x ( 5 + .x j )

D+ . x £

( £ > + .  x 5 ) + .  x Z

b) State in words the relation 
between the functions D+.*X and 
S+.xX.

13.15 Let M be the following 
matrix:

M
2 3 1 4  
0 1 2  0 
2 3 2 4
0 1 0  0 
1 0  0 1

a) Evaluate the following:
P+2 3 5 7 11
N+P* . *Af
N

GCD 
N + GCD

b) Verify that GCD is the 
greatest common divisor of the 
elements of N.
c) Choose any other value for 
M, except that the matrix must 
have 5 rows and must contain 
only non-negative integer 
elements. Then repeat Parts 
(a) and (b).

13.16 a) Using the matrix M of 
Exercise 13.15, evaluate the 
following:

P+2 3 5 7 11 
N+Px . *Af

N

LCM+P*.*[/M

LCM

LCM+N

b) Verify that LCM is the 
least common multiple of the 
elements of N.
c) Choose another value for M 
(as in Exercise 13.15 (c)) and 
repeat Parts (a) and (b).

13.17 Let M be the matrix:
M

2 3 5
0 1 2  
4 "2 2

a) Evaluate the following:
A+(Ml ;l]x 2) + (M[ ;2]xl) + (M[ ;3]x3 ) 
B<-M+l*2 1 3 
V+2 "4 3
C<r(M\_ ;l]xy[l ] ) + (Af[ ; 2 ] x y[ 2 ] )

+ (M[;3]x y[3])
D+M+.xV

GCD+P*.*L/M
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b) Display and compare the
values of A and B and of C and 
D. State in words the
relationship this comparison 
suggests.
c) Test the relationship you 
expressed in Part (b) by 
evaluating C and D for several 
different values of V and of M.

13.18 Follow the steps of 
Exercise 13.17 to establish a 
similar relationship between the 
expression V+ . xAf and expressions 
involving the rows of M.
13.19 a) Evaluate the following:

Z^4
x*o 1 2 3

5 2 0 1><Z*0 1 2 3

+ /5 2 0 1 x Z *  0 1 2  3

E+Q 1 2 3

+ /5 0 0 0 *X*E

+ / 0 5 0 0 x j * £

5*X*1
+ /0 0 7 0 *X*E 

1*X*2

b) Identify each of the curves 
of Figure 13.2, labelling each 
as a "first term", "second 
term", etc.

13.20 Let the functions SUM and 
TERMS be defined as follows:

V Z*-C TERMS X 
[1] Z+C*X* 1 + ipCl
Evaluate the following:

C+2 1 0 4  
X+5

C TERMS X 

SUM C TERMS X

13.21 Repeat Exercise 13.20 for 
the following values of X and Ci

X c
4 1 3 3 1
5 0 0 0 1
5 1 3 3 1
6 0 0 0 1
0 1 3 3 1
1 0 0 0 1
2 1 4 6 4 1
3 0 0 0 0 1

13.22 Use the function P 
defined in Section 13.6 to 
evaluate the following:

5 0 7 2 P 0 1 2 3 4 5

"5 0 “ 7 2 P  0 1 2

” 5 0 “ 7 2 P  "4 "3

1 1 p 0 ,i5

0 1 p 1 + 0 , i 5

1 2 1 P 0 , i 5

0 0 1 P 1 + 0 , x 5

1 3 3 1 P  0 , x 5

0 0 0 1 P  1 + 0 , x 5

V Z+SUM X [1] Z++/XV
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13.23 Use the difference
function D defined in Section
10.6 to evaluate the following:

V*-5 0 2 3 P 0 , i 5

V

D 7 
D D V 
D D D V

13.24 Use the matrix S defined 
in Exercise 13.14 to evaluate the 
following:

N + i  5

S + .  *N

0 0. 5 0 . 5 P N 
S + .*N*2

( 0 1 3  2 t 6 ) P N

W+ 5 0 2 3 1 P 0 9 i 7 

W

D D D D W

£ +.x N*3
0 0 0.25 0.5 0.25 P ilf 

S +. xjV*0 
0 1 P N

14.1 For each of the dyadic 
functions + - x * < < = | r  and 
L, state:
a) Whether you think it is 
commutative or not.
b) An example proving that the 
function is non-commutative for 
each case you declare to be 
non-commutative.

14.2 Modify the function COM 
defined in Section 14.2 so as to 
include in its domain all of the 
function symbols appearing in 
Exercise 14.1.
14.3 a) Make tables to prove 

that the functions and and or 
are commutative.

b) Evaluate the following:
0 A 1 

0 v 1 
0*1 
0vl

X+-0 O i l  
Y*- 0 1 0  1
XAY

X vY

XAY

X*Y
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14.4 Use the method of
exhaustion to examine the commut­
ativity (or non-commutativity) of 
the dyadic functions < < = > > * 
and L.
14.5 Make a table similar to
Table 14.5 to prove that the 
minimum function is associative.
14.6 Make a table (of 8 cases 
labelled 0 0 0  and 0 0 1  and 
0 1 0 ,  etc., to 1 1 1) which will 
show whether the and function is 
associative.
14.7 Repeat Exercise 14.6 for
each of the following functions: 
v f< v.

14.8 a) Write an example to show
that addition does not
distribute over multiplication.
b) Write an example to show
that addition does not
distribute over itself.
c) Write an example to show 
that multiplication does not 
distribute over itself.
d) Write a few examples to 
illustrate that multiplication 
distributes over addition 
(include some negative numbers 
in the example).
e) Complete the following table 
so as to summarize the 
foregoing results, using a 1 to 
denote distributivity and a 0 
to denote non-distributivity:

„ l + „ x

+ 1 
I

x|

14.9 Extend the table of Exercise
14.8 (e) to include the functions 
+ x - T and L. You are not 
expected to provide proofs of 
distributivity, but test the

matter thoroughly by evaluating a 
number of expressions looking for 
values which will prove
non-distributivity. Be sure to 
use some negative values in this 
search. For each case stated to 
be non-distributive, give an 
example which proves it so.
14.10 Make tables to determine 
whether:

a) v distributes over a

b) v distributes over v
c) a distributes over a .

14.11 Summarize the results of
Table 14.6 and of Exercise 14.10 
in a distributivity table of the 
form

| v A

v I
I

A |
entering a 1 in the Jth row and 
/th column of the table if the 
function heading the Xth row 
distributes over the function 
heading the J t h column, and a 0 
otherwise.
14.12 Extend the distributivity 
table of Exercise 14.11 to 
include the functions v a * and 
v-. Make tables of the form of 
Table 14.6 to develop any results 
you may need for this table.
14.13 a) Make a table similar to 

Table 14.7 to prove that 
addition distributes over 
maximum.
b) make a table to test whether 
subtraction distributes over 
maximum.
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c) If in Exercise 14.9 you 
concluded that multiplication 
distributes over maximum, then 
evaluate the following pair of 
expressions and compare the 
results:

~6xi +r  9

Cexior ("6 x9 )
14.14 Repeat Exercise 14.13 
substituting minimum for maximum.
14.15 Make a table of the form 
of Table 14.8 to summarize all of 
the results obtained thus far. 
Enter 01s and 1"s only for 
results that have been proven, 
and leave other entries blank. 
Include the dyadic functions + - 
x v r L v a v and *. Fill out 
blank spaces in the table by 
constructing further proofs if 
you wish.
14.16 Illuminate the proof given 
in Section 14.5 for each of the 
following values of A, B, and Ci

A B _C
_3 14 8
_3 _5 _7
3 5 7

14.17 a) Prove that (P l Q ) [ R is 
equivalent to (RTPHCQI-#). Use 
the first such proof in Section
14.5 as a model, writing the 
justification of each step to 
the right of it.
b) Choose values of P ,  Q, and R 
and illuminate the proof of 
Part (a).

14.18 Repeat Exercise 14.17 to
show the equivalence of each of 
tne following pairs of
expressions:

A a(BaC)
Ca(BaA )

A + ( B + C )
<7+(B+4)
A * B x C * D  
Z ? x  C*B*A

14.19 For each of the proofs of 
Exercises 14.17 and 14.18 add the 
abbreviated form of the note to 
the right of each note in the 
proof.
14.20 Choose values of A, B, C, 
and D and use them to illuminate 
the proof (given in the text) 
that ( 4 + P ) x ( C + p )  is equivalent toU x C )  + U x p )  + (BxC) + (£xp)

14.21 Make (and illuminate) 
proofs for the following pairs of 
equivalent statements:

( A I B ) + ( C I D )
( A + C ) L ( A + D ) L ( B + C ) l ( B + D )

Aa(BvCvD )
U A B )  v(AaC)v(AaD)

14.22 a) Determine a value of 
the vector C such that the 
expression + / C * X * 0 1 2  is 
equivalent to the expression
x/X+4 1.
b) Evaluate the expressions in 
Part (a) for several values of 
X and compare the results 
(which should agree).

14.23 Repeat Exercise 14.22 for 
each of the following:

( Z + 4 ) x ( Z + l )

x/J-4 1
x/jf+1 1
x/X+1 0

x / X + 0  1  

( Z + _ l ) x ( Z + " l )
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(X-l)xU-l)

if-*-3 5 

x/X+R 

x/X+(-R) 

x/X-R

14.24 Choose vector values of 
the arguments to illuminate the 
proof illuminated in Exercise 
14.16.
14.25 Chose vector values to 
illuminate each of the proofs of 
Exercise 14.18.
14.26 Evaluate the following:

4f-3 “ 8 15 6 
Bf- 5 0 18 43 7

+ /A.B

( + / 4 ) + (+ / B )

T/A ,B
<r /a ) r ( r /b )

L /A,B

( L / 4 ) L ( L / B )

x/A,B

(xA4)x(x/B)
~/A,B

(~/A )-(-/B)

Cf-1 0 1 0  1 
Df-0 1 1

14.27 Evaluate the following:
i4f-3 ~ 8 _ 1 5  6 
Bf-4 2 1 4

+ /A + B

(+M) + (+/B) 
x/AxB

(x/A)x(x/B)

r/AXB

( r / a ) r ( r / b )
-/A-B

(-/A) /B)

14.28 Use each of the 
pairs of values of V 
illuminate the identity 
by Theorem 4:

following 
and W to 
expressed

V
1 1 0  2 3

W
2 0 5

2 0 5 1  5 2 3

" 3  1 0  2 " 8 2 0 " 2  ” 3 1

14.29 Use the following values
to illuminate Theorem 5:

4*- 3 1 0 4- 2
B  + 5 2 6
P + ~ ' 2 2 1 0  5

7 2 4

14.30 a) Repeat Exercise 14.29, 
substituting the function + for 
every occurrence of x in 
Theorem 5.
b) Repeat Part (a) using r 
instead of +.

v/C.B

( v / C ) v ( v / B )
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14.31 Use the values of A, B t P, 
and Q from Exercise 14.29 and the 
values I*-4 and J+2 to illuminate 
the proof of Theorem 5.

A B C
3 2 4
2 3 5
3 4 4

14.32 Use the following sets of 
values of A, B r and C to 
illuminate Theorem 6:

14.33 Choose some values for X, 
E, and F and use them to 
Illuminate Theorem 7.

15
15.1 a) For each of the 

following pairs of values of A 
and B t determine a vector D 
such that the expression D P X 
is equivalent to
(A P X) + (B P X) (where p is the 
polynomial function defined in 
Section 13.6):

A
2 1 4 3

B
2 5

6 18 4 2 3 3 8oC
M 4 8 0 0 0

b) Verify each of the foregoing 
results by evaluating the 
expressions D P X _ and
(A P *) + (B P X) for *<-”3+i5.

15.2 Repeat Exercise 15.1 for 
the following values of A and Bz

A _B
6 1 2 _  3 0 4 8 2
2 1 3 2 4  2 0 1

15.3 a) Determine the
coefficients of the polynomial 
equivalent to the product 
(C P X ) * ( D  P X) for the
following pairs of values of C 
and Dz

C D
3 1 4 2 0 4
2 0 4 1 3 1 4
3 5 2 0 1
3 5 2 0 0 1
3 5 2 3
b) Verify the foregoing results 
for the case *<-2.

15.4 Repeat Exercise 15.3 for 
the following pairs of values of 
C and Dz

C D
2 0 4 1 1 1
1 1  1 1  
1 2  1 1 1
1 3  3 1 1 1
1 4 6 4 1 1 1

15.5 Illuminate the summary of 
the formal proof of Section 15.3 
for each of the following sets of
values Of C, D, and Xz

C D *2 0 4 3 1 2 5 2
2 0 4 3 1 2 5 3
3 1 2 5 2 0 4 3



15.10 Exercises 307

15.6 a) For each of the 
following determine the
coefficients of an equivalent 
polynomial:

x/X+2 3
x/Z+4 7
x/X+1 4

x/JSr+(-7 4)

x/Z-7 4 
x/Z+“7 “4 
x/*+2 3 4 
x/J+4 3 2

x/X+3 2 4 

x / Z - 0  1  

x / X - 0  1  2 

x / J - 0  1 2 3

b) Verify each of the results 
of part (a) for the case A>5.

15.7 Perform a complete trace of 
the function QA of Section 15.4 
for each of the following cases:

QA 2 1 3  
QA 1 1 1 1

15.8 a) For each of the
following determine the
coefficients of an equivalent 
polynomial:

X/Z+l

x/Z+4p 1 
x/Z+5p1 
x./*+6p 1

b) Compare the results of Part 
(a) with the binomial 
coefficients of Section 12.4.

15.9 Use the results of Exercise
15.7 to test the identity
(*/X+V) = (.QA V )P  X for thefollowing cases:

V X2 1 3 4
1 1 1 1 3

15.10 The dyadic function <)>applied to ii scalar left argumentand a vector right argumentrotates the vector to the: left by
an amount determined by the left 
argument. For example:

3cJ> 1 2  3^+5 
4 5 1 2  3
If the left argument is negative, 
the rotation is to the right:

3cJ> 1 2 3 4 5 
3 4 5 1 2
If the right argument is a matrix 
M and the left argument is a 
vector V whose size is equal to 
the number of rows of the matrix, 
then the 7th row of M is rotated 
according to the value of 7[J]. 
For example:

M 2 0 2<(>A/1 2 3 4 5 3 4 5 1 29 8 7 6 5 9 8 7 6 54 5 6 7 8 7 8 4 5 6
X/J+l 1
X/J+1 1 1
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a) Use the foregoing definition 
of rotation to evaluate the 
expression

3 1 4 ( 7 2 0 5 3
where G is defined as follows:

V C G I)
Z<- + / § ( l - i p C )  §>C o . x Z7 9 O ^ l l C V

b) Compare the result of part 
(a) with the polynomial product 
shown at the beginning of 
Section 15.3, and show that the 
function G produces the product 
of two polynomials.

15.11 Use the results of
Exercise 15.8 to test the 
identity (U+l )*#) = (« N q 1)P X for 
the case X+3 and the cases N 
equal to 1, 2, 3, and 4.
15.12 Perform complete traces of 
the functions BIN and QA (shown 
in Section 15.5) for the 
following cases:

QA 4p 1
B I N 4

15.13 Let M be the following
matrix:

1 0 0 0
0 1 1 2
0 0 1 "3
0 0 0 1

a) Compare the columns of M
with the coefficients of
polynomials equivalent to the 
factorial polynomials and state 
how the columns correspond to 
the degrees of the factorial 
polynomials. (Note that final 
zeros appended to a vector of 
coefficients make no difference 
to the value of the 
polynomial).

b) Evaluate the following:
V*-Q, 1, ( 3t2 ) , ( 2t6 )
A + M +.x V 
A

c) Use the results of Exercise
13.17 (in Chapter 13) to state 
in words the relation between 
the result of Part (b) and a 
certain weighted sum of the 
columns of M (that is, of the 
coefficients of polynomials 
equivalent to the factorial 
polynomials).
d) Use the vector A of Part (b) 
and the polynomial function P 
defined in the text to evaluate 
the expression A P X for 
several values of X • Compare 
the results with the evaluation 
of +/(iZ)*2 for the same values 
of X.

e) Explain the agreements 
obtained in Part (d).

15.14 Exercise 15.13 illustrated 
how the expression M + . x V would 
yield the coefficients of a 
polynomial equivalent to the sum 
of V I 1] times the o-degree 
factorial polynomials, 7[2] times 
the l-degree factorial
polynomial, etc. Apply this 
result to obtain the coefficients 
of a polynomial equivalent to 
+ / ( \ X ) * 3 as follows:

a) Extend the matrix M to be a 
5 by 5 matrix incorporating the 
coefficients for the next 
factorial polynomial.
b) Evaluate +/(iJ)*3 for a 
number of values of X beginning 
with 0.
c) Use the difference table
method of Section 10.8 to 
determine an equivalent
function (expressed as a 
weighted sum of factorial 
polynomials).
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d) Evaluate the expression 
Q + M + .x R * l0 1 2 3 4 ,  where R is 
the first row of the difference 
table.

15.15 Use mathematical 
induction to prove that the 
functions +/(iX)*2 and ( + /0 1 3 
2xj*o 1 2 3) -5-6 are equivalent.

e) Compare Q P X and + / (\ X )* 3 
for a number of values of X .

16
16.1 Examine each of the number 

systems of Table 16.1 and 
then:
a) Add to each the
representation of the next 
integer in sequence (that is, 
18) .
b) Repeat part (a) for the
integer 19. State clearly how 
a particular difficulty
arising in one of the systems 
is resolved.
c) For each system give a 
verbal statement of how it 
works.
d) Can the number 0 be 
represented in the Prime 
Factor System?

16.2 The vectors
v+i o o o o o o  
W+l 1 0 0 0 0 0  
X+2 1 0 0 0 0 0

are a triple of vectors occurring 
in Table 16.1 such that X is 
equal to V+W. Determine every 
triple of vectors satisfying

these requirements and for each 
triple show that the product of 
the numbers represented by V and 
W is the number represented by X.

16.3 Evaluate the following:
V*-2 3 5 7 11 
R<- 2 1 4  1 3  4 7 
A + ' A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ' 
T + ' N O W  I S  T H E  T I M E f
V i 5 
V\ 13 
7i 0 
V w q V 
(\pV)\V

R l 1 pi?
A \ T
A L A x T l

16.4 a) Apply the function T O4 
to the following arguments:

'RB 1 
1 J J 1
'BCDE'

b) Apply the function TO 1 to 
each of the results of part 
(a) .
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16.5 a) Use Table 16.2 to 
determine the prime factor 
representations of the
following numbers:

480
512
960
111
139
125

b) Use Table 16.3 to 
determine the decimal value of 
the numbers represented by the
following vectors :

5 1 1 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0
6 1 1 0 0 0 0 0 0 0
0 0 3 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 1

16.6 Use 1Tables 16. 2 and 16.3 to
determine the greatest common
divisor of each of the following 
pairs of numbers:

of each of the following pairs 
of numbers:

24 and 15 
75 and 7 
8 5 and 11 

252 and 252 
240 and 275

b) Determine the decimal 
values of the results of part 
(a). Use Table 16.3 where 
possible.

16.9 a) Use Tables 16.2 and
16.3 to determine the 
following quotients:

429*39
960*24
578x34

b) Define a dyadic function 
which when applied to vectors 
V and W will determine whether 
the number represented by V is 
divisible by the number 
represented by W.

480 and 660 
375 and 960 
726 and 455 
735 and 539

16.7 a) Use Table 16.2 to 
determine the prime factor 
representation of the least 
common multiple of each of the 
following pairs of numbers:

240 and 336 
960 and 64 
480 and 660 
735 and 539 
465 and 341

b) Determine the decimal 
values of each of the results 
of part (a). Where possible 
use Table 16.3.

16.8 a) Use Table 16.2 to 
determine the prime factor 
representation of the product

16.10 Show a complete trace of 
the function IVDVAL of Section
16.3 for the following arguments:

548
176

3
2147

16.11 a) Evaluate the
expression A+B for each of the 
following pairs of vectors A 
and Bz

A
2 3 5 1 4

B
4

2 3 5 7 9 5
3 0 4 8 4 9 4 1
8 1 2 6 5 1 3 0
2 1 7 4 3 8 2 6
Which Of the results of

part (a) are acceptable vector 
decimal representations?
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c) Apply the function VDVAL 
of Section 16.3 to the 
argument A+B for each of the 
cases of part (a) and show 
that each result is indeed the 
sum of the corresponding 
numbers represented by A and 
B.

16.12 Show a complete trace of 
the function VDADD of Section
16.3 for each of the pairs of 
arguments of Exercise 16.11(a).
16.13 Repeat Exercise 16.12 for 
the function SERIALDADD of 
Section 16.3.
16.14 Apply the function VBVAL 
of Section 16.4 to the following 
arguments:

1 1 0  
1 1 0  1 
1 1 1 1  
1 0 0 0 0

16.15 Show a complete trace of 
the function IVBVAL of Section
16.4 for the following arguments:

6
1 3
3 1
3 2

16.16 a) Make a matrix of 8
rows and 3 columns which lists 
the 3-digit vector binary 
representations of the
integers from o to 7. (Note 
that any binary vector can be 
extended by appending zeros to 
the left without changing the 
value it represents.)
b) Repeat part (a) for the 
numbers o to 15, making the 
matrix of the appropriate 
size.
c) Repeat part (b) for the 
numbers 0 to 31.

d) State how the matrix for 
the numbers 0 to 63 could be 
constructed from the matrix 
produced in part (c).

16.17 a) Define a function
called VBADD which will add 
vector binary representations 
in the same sense that the 
function VDADD of Section 16.3 
adds vector decimal
representations.
b) Apply the function VBADD 
defined in part (a) to the 
pair of arguments shown on 
each line below:

1 0 1 0 1  0 0 1 1 1  
0 0 0 0 1  0 1 1 1 1

16.18 a) Define a function 
called SERIALBADD (and modeled 
on the function SERIALDADD of 
Section 16.3) which adds 
vector binary representations.
b) Apply the function defined 
in part (a) to the argument 
pairs of Exercise 16.17(b).

16.19 a) Define functions
called VAL, IVAL, ADD, and 
SERIALADD which are derived 
from the analogous functions 
of Section 16.3 by
incorporating the variable 
BASE as suggested in Section 
16.5.
b) Illustrate the use of each 
of the functions defined in 
part (a) by applying them to 
suitable arguments for the 
case BASE*-3.
c) Repeat part (b) for the 
case BASE*-7.

16.20 Define a function called 
BT (for balanced ternary) which 
will add numbers represented in 
the ternary system using weights
1, 0, and 1.
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16.21 Determine sum and carry 
tables for addition in each of 
the following number systems:

a) Ternary (i.e., base 3)
b) Base 4
c) Base 5
d) Base 7
e) Balanced Ternary (Base 3 

with weights “l, 0, and 1).
16.22 Repeat Exercise 16.21 for
multiplication instead of
addition.
16.23 a) Apply the function 

NVBVAL of Section 16.7 to the 
following arguments:

0 1 0  1 
1 1 0  1 

0 1 0  1 0  
1 1 0  1 0  
0 0 0 0 0
1 0 0 0 0

b) Define 
function for 
vector binary 
in which the 
determines 
Illustrate its 
it to the following arguments:

0 7 1 6  
1 7  1 8

16.24 a) Apply the function FVD 
of Section 16.8 to the 
following arguments:

16.25 Define a function called 
IFVD which is inverse to the 
function FVD of Section 16.8 and 
illustrate its use by applying it 
to the results of Exercise 
16.24(a).
16.26 a) Determine the

representation of each of the 
following rational numbers in 
the RFVD system described in 
Section 16.8:

17-s- 3
2 5-i-H
1*7

b) Rationals are often
represented by placing bars 
over the last P digits, where 
P is the length of the 
repeating pattern. (For
example, the number
represented by 3 4 1 2 6 3 7 4  
in the RFVD system would be 
shown as 12.6374). Show this 
representation for each of the 
cases of part (a).

16.27 a) Apply the function 
RFVD to each of the results of 
Exercise 16.26(a) so as to 
obtain a rational vector 
representation for each.
b) Verify the results of part 
(a) by carrying out the 
indicated divisions to obtain 
the same representation
obtained in Exercise 16.26(b).

an analogous 
evaluating a 

representation 
leading element 
the sign,

use by applying

4 0 0 2 4
2 1 3  4
3 9 8 4

b) Write the ordinary decimal 
representation for each of the 
results of part (a).

c) Verify the results of part 
(a) by using the GCD function 
on each result to reduce it to 
lowest terms. The resulting 
vectors should agree with the 
original arguments of division 
given in Exercise 16.26(a).
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17.1 Examine each of the
functions defined in Chapter 12 
and identify each use of a 
proposition, including
propositions which occur as 
portions of more complex 
expressions. Identify each
proposition by writing it and 
citing Section number, function 
name, and line number.
17.2 a) Examine each of the

expressions used in the text 
of Chapter 4 and list each 
expression (or portion
thereof) which is a
proposition, indicating the 
Section in which each occurs. 
Note that the functions r and 
L produce propositions when 
applied to purely logical 
results, that is, o's and l's.
b) For each of the
propositions in the list of 
part (a) which uses the
functions f or L, write an 
equivalent logical expression 
which does not use them. (See 
Sections 4.9 and 14.2.)

17.3 Comment on the following
statement: "A theorem is a
proposition which is asserted to 
be true (i.e., have the value 
1) for any possible value of its 
arguments. Consider, for example, 
the proposition
( ( 0 = 2 U ) A 0  = 3|I)<0=6| X.
17.4 Evaluate the following:

X<Y
~X>J
X>Y
~X<Y
X*Y
~x=y

17.5 Evaluate the following:
X+0 O i l
y*-o 1 0 1  

~x  

— x
XAI
(~x)v(~y)
~ ( ~ x ) v ( ~ y )

xvy
(~x )a (~j )
~(~x )a (~j )

x<i
~(~X)<(~Y)
X = Y

17.6 For each of the first three 
of the six sets defined by 
English sentences at the 
beginning of Section 17.2, write 
a function definition (i.e., a 
proposition) which defines the 
set. Comment on any cases for 
which such definition proves to 
be impossible. Use the names Pi, 
P2, and P3 for the functions 
defined.

X+0 O i l  
Y+Q 1 0 1
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17.7 Each of the propositions 
defined in Exercise 17.6 should 
apply to any numbers (perhaps 
yielding a zero for most) and 
therefore has an infinite domain. 
For practical purposes one may 
limit attention to a more 
restricted domain (of a finite 
number of elements) called the 
universe of discourse. This 
universe is often specified by a 
vector which lists its elements.

a) Apply each of the logical 
functions Pi and P 2 defined in 
Exercise 17.6 to the following 
universe of discourse:

U D + ~ 10+ i35

b) Evaluate the expressions
(PI U D )/UD and (P2 UD)/UD.

17.8 a) Define functions called 
P 4 ,  P 5 , and P 6 which define 
the last three of the six sets 
described at the beginning of 
Section 17.2.
b) Evaluate the following:

P4 1 
P4 2 
P 5 f P !
PS 'U'
P 6

17.9 a) Define functions P 4 7 ,  
P S V f P S V which are equivalent 
to the functions P 4 ,  PS, and 
P6 of Exercise 17.8 except 
that they will apply properly 
to vector left arguments.
b) Evaluate the following:

17.10 a) Evaluate the following:
A+l 2 3 4 5  
B+9 7 5 3
AeB  
BeA  
- AeB  
- BeA

b) Evaluate the following:
( A e B ) /A 
( B e A )  /B 
( - A e B )  /A  
( - B e A )  /B

c) For each of the expressions 
of part (a), state in words 
the proposition which defines
the set produced by the
expression.
d) Choose one or more new
values of A and B to
illustrate that your answers
to part (b) apply to any pair
of sets A and B .

17.11 a) Evaluate the following:
S<- 2 3 4 5 6 7 8

So . xS 
S e S o . x5 
- S e S o . xS 
( - S e S o . x S ) / S

b) Evaluate the expression 
( - S e S o . x S ) / S  for the case 
£-*-1+119. Skip the evaluations 
of all of the intermediate 
results if you can.
c) Identify the function 
defined in Chapter 9 which is 
equivalent to the following
function:

[1] 
[ 2 ]

P S V  T 
P S V  T 
(PSV T )/ T

UD 2-s-.5x 9+ i 17
S I N G  OF OLAF'

P4 7 U D 2 
(P4V U D 2 ) / U D 2

V Z-*-F X 
S + 1 + \ X
Z + ( - S e S o.xS)/SV



17.17 Exercises 315

17.12 a) Show several different 
vectors which could be used to 
represent the set represented 
by the vector V+2 3 5 7 .
b) Repeat part (a) for the 
vector W^-'STEAM'.
c) Indicate which of the
following vectors represent 
the same set as does the 
vector 7:

7[ 4 2 1 3 ]
7[ 2 1 3 1 4 ]
7[4 2 1 3 2 2 2 ]
7[ 4 2 2 3 4 4 2 ]

d) Indicate which of the
following vectors represent 
the same set as does the
vector W:

WL 5 3 4 2 1]
fv̂C 2 3 4 5 5 4 2 3 1 ]
WL2 4 1 2 3 1 ]

e) state in words the 
conditions which an integer 
vector I must satisfy in order 
that the vector XL 11 represent 
the same set as the vector X.
f) Define a dyadic function
SAMESET which defines the 
proposition requested in 
part (e), that is, the 
expression X SAMESET I must 
yield 1 if XLI] represents the 
same set as does X, and 0 
otherwise.

17.13 a) Define a monadic
function called REDUCE which 
yields the shortest possible 
vector which represents the 
same set as the argument, 
i.e., the result is the 
argument with duplications 
removed.
b) Evaluate the following:

17.14 Apply the following
function to the arguments of the 
function REDUCE in Exercise 17.13 
(b) and compare the results with 
those obtained in applying the 
function REDUCE:

VZ+RD X
Cl] Z+((\pX)=XiX)/XV
17.15 a) Use the intersection 

function I defined in the text 
to evaluate the following:

A+l 2 3 4 5 6  
B+10 8 6 4 2  
C+3 4 6 12

A I B 
B I A 
A I C 
C I A
A I(B I C)
(A I B)I C

b) Remembering that two
different vectors may
represent the same set, state 
whether you believe the 
intersection function to be 
associative? Is it
commutative?
c) Choose a variety of values 
for A , B, and C and evaluate 
the expressions of part (a) in 
order to further illustrate 
the conclusions you presented 
in part (b).

17.16 Repeat Exercise 17.15
replacing the intersection
function I by the less function L 
(defined in the text) throughout.
17.17 Repeat Exercise 17.15
replacing the intersection
function I by the union function 
U throughout.

REDUCE 2 1 4 7 1 2 2 8  
REDUCE 3 3 3 3 3
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17.18 a) Does the intersection
function I distribute over the 
union function U in the sense 
that results represent the 
same sets? Evaluate
appropriate expressions for 
various values of arguments in 
order to illuminate your 
conclusion.
b) Repeat part (a) for the 
question of whether U 
distributes over I .

17.19 Consider the following 
monadic function:

VZ+BT N
[1] Z<-2 | L ( l+i2*i7)°. *2*ct> 1+iil/V
a) Evaluate the expression BT 3 
and show that the result is 
equal to the matrix TAB given 
in the text.
b) Evaluate the expression BT N 
for several positive integer 
values of N to illustrate that 
the result can be considered 
either as:

i) the enumeration of the
N-digit binary
representations of the 
first 2 *N non-negative 
integers, or as
ii) the logical vectors 
which will select all 
possible subsets from a 
vector of N elements.

c) Evaluate the following:
T+2 3 7 10

d) State in words the
significance of each of the 
expressions evaluated in
part (c).

17.20 a) Evaluate the following:
R+2 3 5

N+-R
T*-B T p N

( 4 )0 ,  i p N) = + / T )  + . x71/x .*§T

b) Evaluate the following 
expressions (the last two will 
agree if your work is 
correct):

X-R
x/X-R
■\-/C*X* 1+ i p , c

c) The expression
+/CxZ*“i+ip9C is the
definition of a polynomial 
with coefficients c as defined 
in Section 13.6, and the 
expression x/x-R is the 
definition of a polynomial in 
terms of its zeros or roots R. 
The work of part (a) is a 
computation of the
coefficients £ of a polynomial 
which has the roots prescribed 
by the vector R. The method 
used is based on Newton's 
symmetric functions. Redo 
parts (a) and (b) for various 
values of R and x and verify 
that the last two results of 
part (b) agree in every case.

T+ .* § B T p T  
T* .* § B TpT



4+(3xX)+C0xJ)+(0xZ)
18

18.1 For each of the following 
linear expressions, write an 
equivalent expression in terms of 
a single vector argument V, where
V+X,Y or V+X9Y9Z or V+W9X9Y9Z as 
appropriate:

3+( J+xJO + (5xy)
“ + + (6x7)+7Xj
" >  + ( 6 x J ) + 7 x Z

3+(~6 x7)+ 0 x 7
3+ ( ~6 x7 )

“  8+ ( 0 x 7 ) + " g x Y  

~8 + _9xj 
-(8+9xJ)
0+(3x7)+(~6x7)
( 3 x7 ) + ( ~6 x 7 )
( 3 x7 ) - ( 6 x 7)

4-(3x7)+7x7 
8+(2x7)+(5 x 7) + (10 x Z) 
8+(2x7)+(0x7)+(10xZ) 
"4+(2x7)+(10xZ)

4 + (3x7)
7+7+Z
Z+(2x7)+(4x7)
7-7-Z
X+Y+Z+W

18.2 Take each result of
Exercise 18.1 and (without
looking at the original
expression in the exercise) write
an equivalent expression in terms 
of the arguments 7 and 7 (and if 
necessary, Z and w ). Compare 
your results with, the original 
expressions.
18.3 Let 7*-3 and 7«-2 and Z^+ and
W+15 and let V+X%Y or V*-X9Y9Z or 
V+-X9 Y9Z %W as appropriate. Then 
evaluate each expression of
Exercise 18.1 and evaluate each 
equivalent expression which you 
obtained and compare the results.
18.4 a) Determine a vector A and

a matrix B such that the 
express ion A + B +.x x 97 is
equivalent to the following 
pair of expressions:

3+(2x7)+(~4x7)
4+( 3x7)+(2x7)

18+10 x z More precisely, A+B+.*X 9 Y is
equivalent to the catenation of 
these expressions, that is:
C 3 + ( 2 x 7 ) +(  i|Xy )),4  + ( 3 x 7 )  + ( 2 x 7 )
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b) Evaluate A+B+.xX9Y and 
compare the result with the 
result of evaluating the given 
expressions for each of the 
following pairs of values of X 
and It

X Y
2 5
3 0
0 3

_ °  04 _2
_3 _1

9 3

c) Take the result of Part (a) 
and from it write the 
equivalent expressions in terms 
of X and Y and compare with the 
original expressions.

18.5 Repeat Exercise 18.4 for
the following pairs of
expressions:

” 3 + ( 4 x J ) + ( “2xY)
6+(2xJ)+(7xj)
“3-("4x*)+£2xY)
6-( 2xZ)+( 7xY)
( 3 x Y ) + ( 7x j )
( 4 x y ) + ( QxX)

2+ 3*X
8+7 xy

18.6 Choosing any values that 
you wish for Z in the 
evaluations, repeat Exercise 18.4 
for the following set of 
expressions;

18+(3x*) + (~4.xY) + ( 7xZ) 
13+(2xY)

2 + (OxY) + (3 x Y ) + ( ” 4 x Z)

18.7 a) Plot the mapping 
produced by the expression 
A+B+.xV for the following set 
of values:

A _ B _ V
3 5  _2 1 2 1

3 4
b) Add to the plot of Part (a) 
the mappings for each of the 
following 7 values of V (shown 
in columns to save space):
“2 0  0 1 1 ~1 “1.4
1 0 1 0 1 1  .2

c) Make other maps for any 
values of A and B that you wish 
to choose. For each case try 
to find some value of V which 
(like the last one in Part 
(b))maps into the origin (that 
is, the point 0 0).

18.8 Repeat Exercise 18.7 but
with A assigned the value 0 0 in
every case.
18.9 Let B be the followingmatrix:

. 5 .866

. 866 . 5
a) Plot the mapping B + . * V  when 
applied to each of the set of 
points V listed in exercise
18.7 (b).
b) Verify that this mapping is 
a rotation.

18.10 Repeat Exercise 18.9 for 
each of the following values of 
the matrix B :
0 1 0 1 1 0 1 0
1 0 1 0 0 1 0 1
. 707 . 707 . 707 “. 707
.707 .707 . 707 . 707
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18.11 a) Let B be the matrix of 
Exercise 18.9. Then plot the 
mappings produced by repeated 
applications of B to the point 
V+l 2, that is:

B + . x v
B + .xB +.x v
B + .x£+.x B+.x V

and so forth.
b) How many applications of B 
are equivalent to the identity 
function?
c) Write an expression of the 
form B + .x£+.x£+.xBf with N 
occurrences of B, where N 
denotes the answer to Part (b). 
Evaluate this expression and 
compare the result with the 
identity matrix.

18.12 a) Repeat Exercise 18.11 
for each of the matrices of 
Exercise 18.10.
b) Determine a rotation matrix 
whose first and last elements 
are .5*.5 and repeat Exercise
18.11 for this matrix.

18.13 a) Let B be a rotation
matrix with elements S, C, -C, 
and S as defined at the 
beginning of Section 18.3. 
Show that the product is
the identity matrix.
b) Show that ($£)+.x£ is the 
identity matrix.
c) Test these results by
applying them to the rotation 
matrices of Exercise 18.10

18.14 Plot the mapping produced
by the translation A + V applied to 
each of the points V of Exercise
18.7 (b) for each of the
following cases:

a) A+- 3 5
b) A+3 0
c) A<r~ 3 0
d) A<-0 4

18.15 Let M be the matrix given 
for V in Exercise 18.7 (b), that 
is, the columns of M are the 
values of V in the order shown.

a) Evaluate the expression 
B+.xM, where B is the matrix of 
Exercise 18.9. Compare the 
results with those of Exercise
18.9.
b) Repeat Part (a) for the 
matrices B listed in Exercise
18.10.

18.16 Define a matrix P to be
used with the matrices B and M of 
Exercise 18.15 in the expression 
P + B + . x M to produce the
translation 3 ”5.
18.17 Use the matrices P and M
of Exercise 18.16 and the matrix 
B<-2 2 p 0 1 ~i 0 and plot the
mappings produced by each of the 
following:

P+B + . xM
B + .x P+M
( B + .x P ) + ( B + .xM)

18.18 a) Define a stretching
matrix B and apply it to the 
matrix M of Exercise 18.15, 
that is, evaluate the
expression B + . x M .
b) Compare the matrices M and 
B + . x m  and state the relation 
between them.
c) Repeat Part (a) for a number 
of stretching matrices which 
you choose.
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18.19 a) Choose a number of
matrices and use them to test 
the distributivity of the inner 
product +.x over +.
b) Choose a number of matrices 
and use them to test the
associativity of the +. x inner 
product.

18.20 Let A, B, and C be 2-by-2
matrices and give names to each 
of the elements according to
the following scheme:

All A12 B11 B12 C11 C12
A21 A22 B21 B22 C21 C22

a) For each of the following 
expressions write an equivalent 
expression in terms of the
names All, A12, etc:

5+. xC
A+.x ( 5 + .xC)
(A+.xB)+.xC

M
1 2 3 0 0 0 1 1
1 2 3 1 2 0 2 1
1 2 3 1 2 0 3 1
b) Evaluate the expression
B + .xM for the following matrix
Bi

B
2 0 “l
1 2 1
1 1 1
c) Add to the plot the points
determined in Part (b) and show 
the mapping produced by the 
matrix B .

18.23 a) Choose any three 3 by 3 
matrices C D and E and use them 
to test the associativity of 
the +.x inner product in three 
dimensions.
b) Use the same matrices to 
test the distributivity of + .x 
over +.

b) Prove that the expression 
obtained for the second case of 
Part (a) is equivalent to the 
expression obtained for the 
third case. (This proves the 
associativity of +.x for 2-by-2 
matrices.)

18.21 Repeat Exercise 18.20, 
replacing the second and third 
expressions of Part (a) by the 
following expressions

A+.x(B+C)

(A+ . *B ) + ( i4+ . x C )

(This proves that + . x  distributes 
over + for 2-by-2 matrices.)
18.22 a) Make a 3-dimensional 

plot of the eight points, 
represented by the following 
matrix Mi

18.24 a) Make a plot to show 
the mapping B+.xM, where B is 
the following 3-dimensional 
rotation matrix:

1 0 ^ 0  
0 _.707 .707
0 .707 .707

and M is the matrix of points 
given in Exercise 18.22.
b) Repeat Part (a) for any
3-dimensional rotation matrices 
you may wish to construct.

18.25 a) Evaluate the
following:

^ 0  1 2 3 4 5 6 7 8 9  10
Y+<$>X
Y
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M + ( 2 * Y ) o , + ( x - 1 2 ) 
M

N+Yo.+~lxX
N

0 =M
0 =N
f * f [ l+0=M]  

» *!['i+0=il/]
( 0 =Af) v ( Q=N) 

(0=M)A(0=N)

b) Discuss the results of Part 
(a), stating as clearly as you 
can what each of the logical 
matrices represent.
c) Repeat Part (a) for various 
values of X and I and for 
various linear functions of 
your own choosing.

19
19.1 a) Test the fact that the

2-dimensional matrices B and IB 
given in Section 19.2 actually 
produce inverse functions by 
applying them to the set of 
points represented by the 
following matrix Mi

1 2 0 1 “3 ~5 1 0
2 5 0 1 5 2 0 1

b) Evaluate the expressions 
B + . x I B and I B + . * B and compare 
them with the identity matrix.

19.2 Repeat Exercise 19.1 for 
the 3-dimensional matrices B and 
IB given in Section 19.2 and for 
the following matrix Mi

9 “*3 1 0 0 "8 0
16 _5 0 1 0 1 0
20 7 0 0 1 5 0

19.3 _a) Evaluate the expression
a /3 _7 =5+ . x v for the matrix B<-2 
2 p1 3 2 4 and for each of the
following values of the

2-element vector Vi

1 0.5  4.5  ” 3.2  1 0
2 3.5 0.5 4.2 0 1

b) Use the results of Part (a) 
to determine which of the given 
values of V is a solution of 
the equation 3 ~7=B+.x y.

19.4 Let M and N be the
following matrices:

M
1 5 1 1 5 9
3 3 8 2 0 6

N
18 “10 10 14 2 2
39 5 10 22 11 41

Each column of M (that is Ml;12) 
is a solution of the equation 
NL ; J 2 = B + . xML ; I 2  for some e/th 
column of N, where B is the 
matrix B+-2 2p 2 0 “ l  5.  Determine 
which column of M gives the 
solution of the equation for each 
column of N.
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19.5 If B+r 2 2 p 2 3 3 5 , then the 
basic solutions 71 and 72 are 
among the columns of the 
following matrix:

a) Determine 
solutions of B

1. 5
3. 5
the basic

b) Using the values of 71 and 
72 obtained in Part (a) , 
evaluate the following:

b) Determine a value of K such 
that if 71 <-VA±K, then 71 is a 
basic solution of B.

19.8 The vector VA+0 0 would 
satisfy the requirement imposed 
in Part (a) of Exercise 19.7, 
namely that the second element of 
B+.xVA must be zero. Try to use 
this value of VA to determine a 
basic solution 71 as in Part (b) 
of the same exercise. Whey does 
it not work?
19.9 Repeat Exercise 19.7 for

A M  4x0 l)+( 2x1 0) each of the following values of
N Bz

7-<-( 4x71) + ( 2x72) 4 2 2 3 8 6
7 7 3 2 8 6 8

B+.x7 19.10 a) Repeat the steps of
Exercise 19.7 but modified to

a/N=B+ . X 7 determine the second basic
solution 72.

c) Use the scheme suggested by
Part (b) to determine a b) Repeat Part (a) for the
solution to the equation matrices of Exercise 19.9.
N=B+. x7 for the following
values of Nz 19.11 Determine basic solutions

for each of the following
5 1 matrices:
3 8
0 0 2 7 4 3 16 5 6 9
7 0 1 3  8 11 8 10 3 5
0 4

19.12 a) Evaluate the
19.6 The basic solutions for the determinant of each matrix of
matrix B+- 2 2p4 2 7 3 also occur Exercise 19.11
among the columns of the matrix 
give in Exercise 19.5. Use this 
fact to repeat the work of 
Exercise 19.5 for this value of 
B.

19.7 Let 
matrix:

B be the following

a) Determine a value for VA 
such that the second element of 
B+.xVA is zero.

b) Evaluate the determinant of 
each matrix of Exercise 19.9

19.13 a) construct a matrix B 
whose determinant is 4
b) If the determinant of B is 
4, what is the determinant of 
the matrix -B?
c) Modify the matrix B of Part 
(a) to obtain a matrix whose 
determinant is “4
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d) Construct at least 3
different matrices whose
determinants have the same 
value 100
e) Construct at least 3
different matrices whose
determinants have the value 1.

19.14 What effect does each of 
the following changes to a matrix 
have on the value of its
determinant:

a) Interchanging its two rows?
b) Interchanging its columns?
c) Interchanging the rows and 
then interchanging the columns?
e) Changing 
element?

the sign of every

19.15 a) Evaluate the
determinant of the following
matrix:

6 12 
4 8

b) Is it possible to determine 
basic solutions for this 
matrix?
c) Construct at least three 
different matrices for which it 
is impossible to determine 
basic solutions.

19.16 Determine the matrix BS 
which gives the basic solution in 
matrix form for each of the 
following matrices:

3 7 8 4
1 3  5 3

19.17 Determine the matrix of 
the basic solutions for each of 
the matrices of Exercise 19.11 
and compare the results with 
those of Exercise 19.11.
19.18 a) Use the results of

Exercises 19.16 and 19.17 to 
determine the solution of the 
equation 3 13 = B + . x V for each of 
the matrices B involved in 
those exercises.

19.19 Find solutions to the 
equation

A/N=(2 2p 7 5 5 3)+.x7 
for the following values of N :

10 23
14 12
17 3
1 0
0 1

>.20 a) Determine B S as the
matrix of basic solutions for
the matrix B +-2 2p9 4 4 2 
b) Evaluate the expressions:

B+ . xM
BS+.xB+. xM 
BS+.xM 
5+.xBS+ . xM

for the matrix M given below:
1 3 1 "7 0 0 25 
1 5 0 6 1 0 3

19.21 Repeat Exercise 19.20 for 
the values of the matrix B :

4 7  13 ~3 12 2
8 11 3 7  11 6

19.22 a) For the matrices B and 
BS of Exercise 19.20, evaluate 
the following:

B + .xBS

B S + .xB

b) Repeat Part (a) for each of 
the pairs B and B S of Exercise 19.21.
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19.23 If BS is the matrix of 
basic solutions for B, then 
B + . x B S is always equal to B S + . * B  
(since each is equal to the 
identity matrix). This might 
suggest that the function + .x is 
commutative. Show that this is 
not so by constructing at least 
one pair of matrices C and D such 
that C + . * D is not equal to D+.*C.

19.24 a) Use the Gauss-Jordan 
method to determine the matrix 
BS of basic solutions for the 
matrix B of Exercise 19.20. 
Show all of your work.
b) Repeat Part (a) for each of 
the matrices of Exercise 19.21.

5 2 7 12 8 4
8 1 3 3 17 2
1 4 2 1 9 16

19.28 Apply the efficient method 
of solution to solve the 
following equation:

A/12 3 14 = B t . x F

where B is the following matrix:
10 3 14
_2 12 1 

4 7 15

19.29 Evaluate the expression 
El]B, where B is the matrix of 
Exercise 19.28.

19.25 a) Apply the efficient 
method of Section 19.13 to 
solving the equation

a /3 ~ 1 1 = B + .xy

for the matrix B of Exercise 
19.20. Show all of your work.
b) Repeat Part (a) for each of 
the matrices of Exercise 19.21.

19.26 a) Use the Gauss-Jordan 
method to determine the matrix 
B S which is inverse to the 
following matrix B :

4 4 0 
3 2 1 
2 1 0

carry all calculations to 4 
decimal places.
b) Check your result by
evaluating the expression
B + .* B S .
c) Use the matrix BS to obtain 
the solution to the equation 
A/2 ” 5 6 = B+. x7

19.27 Repeat Exercise 19.26 for 
each of the following matrices:

19.30 Define a function F which 
is equivalent to the function 1 
when applied to a 2 by 2 matrix 
argument.
19.31 Define a function G which 
is equivalent to the function EE 
when applied to a 3 by 3 matrix 
argument. Base the function 
definition on the Gauss-Jordan 
method and use iteration as much 
as possible.
19.32 Modify the definition of 
the function G of Exercise 19.31 
so that it applies to a square 
matrix argument of any dimension.
19.33 Apply the efficient method 
of Section 19.13 to the 5 by 6 
matrix given in Section 19.16. 
Compare the result with the 
solution C given in the same 
section.
19.34 Apply the general curve 
fitting process to the following 
function table:.

X | I

1 I 1
3 | 6
8 | 36



Algebra 
as a Language

A,1 INTRODUCTION
Although few matnematicians would quarrel with the 

proposition that the algebraic notation taught in high 
school is a language (and indeed the primary language of 
mathematics), yet little attention has been paid to the 
possible implications of such a view of algebra. This paper 
adopts this point of view to illuminate the inconsistencies 
and deficiencies of conventional notation and to explore the 
implications of analogies between the teaching of natural 
languages and the teaching of algebra. Based on this 
analysis it presents a simple and consistent algebraic 
notation, illustrates its power in the exposition of some 
familiar topics in algebra, and proposes a oasis for an 
introductory course in algebra. Moreover, it shows how a 
computer can, if desired, be used in tne teaching process, 
since the language proposed is directly usable on a computer 
terminal.

A.2 ARITHMETIC NOTATION
We will first discuss tne notation of arithmetic,

i.e., that part of algebraic notation which does not involve 
the use of variables. For example, the expressions 3-4 and 
(3+4)-(5+6) are arithmetic expressions, but the expressions
3-X and (X+4)-(J+6) are not. We will now explore the 
anomalies of arithmetic notation and the modifications 
needed to remove them.
Functions_and_symbols_for_functions. The importance of 
introducing the concept of "function" rather early in the 
mathematical curriculum is now widely recognized. 
Nevertheless, those functions which the student encounters 
first are usually referred to not as "functions" but as 
"operators". For example, absolute value ( |- 31 ) and 
arithmetic negation (-3) are usually referred to as 
operators. In fact, most of the functions which are so 
fundamental and so widely used that they have been assigned 
some graphic symbol are commonly called operators 
(particularly tnose functions such as plus and times which 
apply to two arguments), whereas the less common functions 
wnich are usually referred to oy writing out their names 
(e.g., Sin, Cos, Factorial) are called functions.
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This practice of referring to the most common and most 
elementary functions as operators is surely an unnecessary 
obstacle to the understanding of functions when that term is 
first applied to the more complex functions encountered. 
For this reason the term "function" will be used here for 
all functions regardless of the choice of symbols used to 
represent them.

The functions of elementary algenra are of two types, 
taking either one argument or two. Thus addition is a 
function of two arguments (denoted by Y+Y) and negation is a 
function of one argument (denoted by -Y). It would seem 
Doth easy and reasonable to adopt one form for each type of 
function as suggested by the foregoing examples, that is, 
the symbol for a function of two arguments occurs between 
its arguments, and the symbol for a function of one argument 
occurs before its argument. Conventional notation displays 
considerable anarchy on this point:

1. Certain functions are denoted by any one of 
several symbols which are supposed to be synonomous 
but which are, however, used in subtly different ways. 
For example, in conventional algebra X*Y and XY both 
denote the product of X and Y. However, one would 
write either 3xy or 3X or X*3r or 3x4, but would not 
likely accept X3 as an expression for Zx3, nor 3 4 as 
an expression for 3x4. Similarly, Ity and X/Y are 
supposed to oe synonomous, but in the sentence "Reduce 
8/6 to lowest terms", the symbol / does not stand for 
division.
2. The power function has no symbol, and is denoted 
by position only, as in X^. Tne same notation is 
often used to denote the Nth element of a family or 
array X.
3. The remainder function (that is, the integer 
remainder on dividing X into Y) is used very early in 
arithmetic (e.g., in factoring) but is commonly not 
recognized as a function on a par with addition, 
division, etc., nor assigned a symbol. Because the 
remainder function nas no symbol and is commonly 
evaluated by the method of long division, there is a 
tendency to confuse it with division. This confusion 
is compounded by the fact that the term "quotient" 
itself is ambiguous, sometimes meaning the quotient 
and sometimes the integer part of the quotient.
4. The symbol for a function of one argument 
sometimes occurs before the argument (as in -4)  but 
may also occur after it (as in 4! for factorial 4) or 
on both sides (as in \X\ for absolute value of X).
Table A.l shows a set of symbols which can be used in 

a simple consistent manner to denote the functions mentioned
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thus far, as well as a few other very useful basic functions 
such as maximum, minimum, integer part, reciprocal, and 
exponential. The table shows two uses for each symbol, one 
to denote a monadic function (i.e., a function of one 
argument), and one to denote a dyadic function (i.e., a 
function of two arguments). This is simply a systematic 
exploitation of the example set by the familiar use of the 
minus sign, either as a dyadic function (i.e., subtraction 
as in 4-3) or as a monadic function (i.e., negation as in 
-3). No function symbol is permitted to be elided; for 
example, x*Y may not be written as XY.

Monadic form f B f Dyadic form AfB
Definition 
or example

Name Name Definition 
or example

+ 3 «--► 0 + 3 Plus + Plus 2 + 3.2 «-► 5.2
-3 0-3 Negative - Minus 2-3.2 -<--»■ "1.2
x 3 (3>0 )-(3<0 ) Signum X Times 2x3.2 «-+■ 6.4
t3 ^ 1*3 Reciprocal x Divide 2+3.2 t~+0.62 5
B r B IB Ceiling r Maximum 3 T 7 *-+■ 7
3.14 

~ 3. 14
4

”3
3
4 Floor L Minimum 3 L 7 «--*■ 3

* 3 (2.71828°°)*3 Expon­
ential

* Power 2*3 *-»■ 8

®*5 ► 5 hi~+ *®5 Natural
logarithm

® Loga­
rithm

1 0®3-*--nLog 3 base 1 0  

10®3 —*|( ® 3 ) T ® 1 0

| “ 3 . 14 3 . 14 Magnitude i Remain­
der

3 | 8 *-+ 2

Table A.1
A little experimentation with the notation of Table

A.1 will show that it can be used to express clearly a 
number of matters which are awkward or impossible to express 
in conventional notation. For example, X+Y is the quotient 
of x divided by Y; either L(X-M) or ((X-(Y|X))*Y yield the 
integer part of the quotient of X divided by I; and X[(-X) 
is equivalent to \X.

In conventional notation tne symbols <, <, =, >, >, 
and * are used to state relations among quantities; for 
example, tne expression 3<4 asserts that 3 is less than 4. 
It is more useful to employ them as symbols for dyadic 
functions defined to yield the value l if the indicated 
relation actually holds, and the value zero if it does not. 
Thus 3<4 yields the value 1, and 5+(3<4) yields the value 6.
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Arrays. The ability to refer to collections or arrays of 
items is an important element in any natural language and is 
equally important in mathematics. The notation of vector 
algebra embodies the use of arrays (vectors, matrices, 
3-dimensional arrays, etc.) but in a manner which is 
difficult to learn and limited primarily to the treatment of 
linear functions. Arrays are not normally included in 
elementary algebra, probably because they are thought to be 
difficult to learn and not relevant to elementary topics.

A vector (tnat is, a 1-dimensional array) can be 
represented by a list of its elements (e.g., 1 3 5 7 )  and 
all functions can be assumed to be applied 
element-by-element. For example:

1 2 3 4 X CM00 1 produces
4 6 6 4

Similarly:
1 2 3 4 + CM00 1

5 5 5 5t 1 2  3 4
1 2 6 24

1 2 3 4 * 2
1 4 9 16

2 * 1 2 3 4
2 4 8 16

In addition to applying a function to each
an array, it is also» necessary to be able to apply some
specified function to the collection itself. For example, 
"Take the sum of all elements", or "Take the product of all 
elements", or "Take the maximum of all elements". This can 
be denoted as follows:

12

60
5

+/2 5 3 2  
x/2 5 3 2  

f / 2 5 3 2

The rules for using such vectors are simple and 
obvious from the foregoing examples. Vectors are relevant 
to elementary mathematics in a variety of ways. For 
example:
1. They can be used (as in the foregoing examples) to 

display the patterns produced by various functions when 
applied to certain patterns of arguments.

2. They can be used to represent points in coordinate 
geometry. Thus 5 7 19 and 2 3 7  represent two points, 
5 7 1 9 - 2 3 7  yields 3 4 12, the displacement between
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them, and (+/(5 7 19 - 2 3 7)*2)*.5 yields 13, the 
distance between them.

3. They can be used to represent rational numbers. Thus if 
3 4 represents the fraction three-fourths, then 3 4x5 6 
yields 15 24, the product of the fractions represented 
by 3 4 and 5 6. Moreover, */3 4 and t/5 6 and */15 24 
yield the actual numbers represented.

4. A polynomial can be represented by its vector of 
coefficients and vector of exponents. For example, the 
polynomial with coefficients 3 1 2 4  and exponents 
0 1 2 3  can be evaluated for the argument 5 by the 
following expression:

+/3 1 2 4 x 5 * 0 1 2 3
558
Constants. Conventional notation provides means for writing 
any positive constant (e.g., 17 or 3.14) but there is no
distinct notation for negative constants, since the symbol - 
occurring in a number like -35 is indistinguishable from the 
symbol for the negation function. Thus negative thirty-five 
is written as an expression, which is much as if we 
neglected to have symbols for five and zero because 
expressions for them could be written in a variety of ways 
such as 8-3 and 8-8.

It seems advisable to follow Beberman Cl] in using a 
raised minus sign to denote negative numbers. For example:

3 - 5 4 3 2 1  
2 1 0  1 2

Conventional notation also provides no convenient way 
to represent numbers which are easily _expressed in

8 9
expressions of the form 2.l4xio or 3.265xio . A useful
practice widely used in computer languages is to replace the 
symbols xio by the symbol E (for exponent) as
follows: 2.14F8 and 3.265F_9.
Order_of_execution. The order of execution in an algebraic 
expression is commonly specified by parentheses. The rules 
for parentheses are very simple, but the rules which apply 
in the absence of parentheses are complex and chaotic. They 
are based primarily on a hierarchy of functions (e.g., the 
power function is executed before multiplication, which is 
executed before addition) which has apparently arisen 
because of its convenience in writing polynomials.

Viewed as a matter of language, the only purpose of 
such rules is the potential economy in the use of 
parentheses and the consequent gain in readability of 
complex expressions. Economy and simplicity can be achieved
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by the following rule: parentheses are obeyed as usual and 
otherwise expressions are evaluated from right to left with 
all functions being treated equally. The advantages of this 
rule and the complexity and ambiguity of conventional rules 
are discussed in Berry [2], page 27 and in Iverson [3], 
Appendix A. Even polynomials can be conveniently written 
without parentheses if use is made of vectors. For example, 
the polynomial in X with coefficients 3 1 2 4  can be written 
without parentheses a s + / 3 1 2 4 x z * o i 2 3 .  Moreover, 
Horner's expression for the efficient evaluation of this 
same polynomial can also be written without parentheses as 
follows:

3+Xxl+Jx2+Xx4

Analogies_with_natural_language. The arithmetic expression 
3 x4 can be viewed as an order to do something, that is, 
multiply the arguments 3 and 4. Similarly, a more complex 
expression can be viewed as an order to perform a number of 
operations in a specified order. In this sense, an 
arithmetic expression is an imperative sentence, and a 
function corresponds to an imperative verb in natural 
language. Indeed, the word "function" derives from the 
latin verb "fungi" meaning "to perform".

This view of a function does not conflict with the 
usual mathematical definition as a specified correspondence 
between the elements of domain and range, but rather 
supplements this static view with a dynamic view of a 
function as that which produces the corresponding value for 
any specified element of the domain.

If functions correspond to imperative verbs, then 
their arguments (the things upon which they act) correspond 
to nouns. In fact, the word "argument" has (or at least 
had) the meaning topic, theme, or subject. Moreover, the 
positive integers, being the most concrete of arithmetical 
objects, may be said to correspond to proper nouns.

What are the roles of negative numbers, rational 
numbers, irrational numbers, and complex numbers? The 
subtraction function, introduced as an inverse to addition, 
yields positive integers in some cases but not in others, 
and negative numbers are introduced to refer to the results 
in these cases. In other words, a negative number refers to 
a process or the result of a process, and is therefore 
analogous to an abstract noun. For example, the abstract 
noun "justice" refers not to some concrete object (examples 
of which one may point to) out to a process or result of a 
process. Similarly, rational and complex numbers refer to 
the results of processes; division, and finding the zeros 
of polynomials, respectively.
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A. 3 ALGEBRAIC NOTATION
Namsa. An expression such as 3 xy can be evaluated only if 
the variable X has been assigned an actual value. In one 
sense, therefore, a variable corresponds to a pronoun whose 
referent must be made clear before any sentence including it 
can be fully understood. In English the referent may be 
made clear by an explicit statement, but is more often made 
clear by indirection (e.g., "See the door. Close it."), or 
by context.

In conventional algebra, the value assigned to a 
variable name is usually made clear informally by some 
statement such as "Let X have tne value 6" or "Let 7=6". 
Since the equal symbol (that is, ' =') is also used in other 
ways, it is better to avoid its use for this purpose and to 
use a distinct symbol as follows:

7+-6
7^3x4
7+7

18
(7-3)x(7-5)

3

&S£igning_naiBes_£Q_gxPE£SsiQns. In the foregoing example, 
the expression (7-3)x(y-5) was written as an instruction to 
evaluate the expression for a particular value already 
assigned to X. One also writes the same expression for the 
quite different notion "Consider the expression (X-3)*(X-5) 
for any value which might later be assigned to the argument 
7." This is a distinct notion which should be represented 
by distinct notation. The idea is to be able to refer to 
the expression and this can be done by assigning a name to 
it. The following notation serves:

V Z G X
Z<-( X- 3 ) x ( X- 5 ) V
The V's indicate that the symbols between them define 

a function; the first line shows that the name of the 
function is G. The names X and Z are dummy names standing
for the argument and result, and the second line shows how 
they are related.

Following this definition, the name G may be used as a 
function. For example:

3
8 3 0

G 6
G 1 2 3 4 5 6 7  
1 0  3 8

Iterative functions can be defined with equal ease as 
shown in Chapter 12.
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FQ:m_Qf..Jiame.s.. If the variables occurring in algebraic 
sentences are viewed simply as names, it seems reasonable to 
employ names with some mnemonic significance as illustrated 
by the following sequence:

LENGTHS
WIDTH+5
AREA+LENGTH*WIDTH
HEIGHT+Hr
VOLUME^AREAxHEIGHT
This is not done in conventional notation; apparently 

because it is ruled out by the convention that the
multiplication sign may be elided; that is, AREA cannot be 
used as a name because it would be interpreted as AxR*E*A.

This same convention leads to other anomalies as well, 
some of which were discussed in the section on arithmetic 
notation. The proposal made there (i.e., that the
multiplication sign cannot be elided) will permit variable 
names of any length.

A. 4 ANALOGIES WITH THE TEACHING OF NATURAL LANGUAGE
If one views the teaching of algebra as the teaching 

of a language, it appears remarkable how little attention is 
given to the reading and writing of algebraic sentences, and 
how much attention is given to identities, that is, to the 
analysis of sentences with a view to determining other 
equivalent sentences; e.g., "Simplify the expression 
(X-M-) x (X+4) ." It is possible that this emphasis accounts 
for much of the difficulty in teaching algebra, and that the 
teaching and learning processes in natural languages may 
suggest a more effective approach.

In the learning of a native language one can 
distinguish the following major phases:
1. An informal phase, in which the child learns to

communicate in a combination of gestures, single words, 
etc., but with no attempt to form grammatical sentences.

2. A formal phase, in which the child learns to communicate 
in formal sentences. This phase is essential because it 
is difficult or impossible to communicate complex 
matters with precision without imposing some formal 
structure on the language.

3. An analytic phase, in which one learns to analyze
sentences with a view to determining equivalent (and 
perhaps "simpler" or "more effective") sentences. The 
extreme case of such analysis is Aristotelian Logic, 
which attempts a formal analysis of certain classes of 
sentences. More practical everyday cases occur every
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time one carefully reads a composition and suggests 
alternative sentences which convey the same meaning in a 
briefer or simpler form.

The same phases can be distinguished in the teaching 
of algebraic notation:
1. An informal phase in which one issues an instruction to 

add 2 and 3 in any way which will be understood. For 
example:

2+3 Add 2 and 3
2____________________ 2 

__3̂ + 3

Add two and three
Add / / and III

The form of the expression is unimportant, provided that 
the instruction is understood.

2. A formal phase in which one emphasizes proper sentence 
structure and would not accept expressions such

2
as 6 x _3 or 6x(add two and three) in lieu of 6x(2 + 3).
Again, adherence to certain structural rules is 
necessary to permit the precise communication of complex 
matters.

3. An analytic phase in which one learns to analyze 
sentences with a view to establishing certain relations 
(usually—identity) among them. Thus one learns not only 
that 3+4 is equal to 4+3 but that the sentences X+Y and 
Y+X are equivalent, that is, yield the same result 
whatever the meanings assigned to the pronouns X and Y.

In learning a native language, a child spends many 
years in the informal and formal phases (both in and out of 
school) before facing the analytic phase. By this time she 
has easy familiarity with the purposes of a language and the 
meanings of sentences which might be analyzed and
transformed. The situation is quite different in most 
conventional courses in algebra - very little time is spent 
in the formal phase (reading, writing and "understanding” 
formal algebraic sentences) before attacking identities 
(such as commutativity, associativity, distributivity, 
etc.). Indeed, students often do not realize that they 
might quickly check their work in “simplification” by 
substituting certain values for the variables occurring in 
the original and derived expressions and comparing the 
evaluated results to see if the expressions have the same 
"meaning”, at least for the chosen values of the variables.
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It is interesting to speculate on what would happen if 
a native language were taught in an analogous way, that is, 
if children were forced to analyze sentences at a stage in 
their development when their grasp of the purpose and 
meaning of sentences were as shaky as the algebra student's 
grasp of the purpose and meaning of algebraic sentences. 
Perhaps they would fail to learn to converse, just as many 
students fail to learn the much simpler task of reading.

Another interesting aspect of learning the 
non-analytic aspects of a native language is that much (if 
not most) of the motivation comes not from an interest in 
language, but from the intrinsic interest of the material 
(in children's stories, everyday dialogue, etc.) for which 
it is used. It is doubtful that the same is true in 
algebra - ruling out statements of an analytic nature 
(identities, etc.), how many "interesting” algebraic 
sentences does a student encounter?

The use of arrays can open up the possibility of much 
more interesting algebraic sentences. This can apply both 
to sentences to be read (that is, evaluated) and written by 
students. For example, the statements:

2*1 2 3 4 5  
2 x l  2 3 4 5  
2*1 2 3 4 5  
1 2 3 4  5*2 
1 2 3 4  5*2 
1 2 3 4  5x5 4 3 2 1

produce interesting patterns and therefore have more 
intrinsic interest than similar expressions involving only 
single quantities. For example, the last expression can be 
construed as yielding a set of possible areas for a 
rectangle having a fixed perimeter of 12.

More interesting possibilities are opened up by 
certain simple extensions of the use of arrays. One example 
of such extensions will be treated here. This extension 
allows one to apply any dyadic function to two vectors A and 
B so as to obtain not simply the element-by-element product 
produced by the expression A*Br but a table of all products 
produced by pairing each element of A with each element of 
£. For example:

A*-1 2  3 
B+-2 3 5 7
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A o . A ° . +B A ©. *B
2 3 5 7 3 4 6 8 1 1 1 1
4 6 10 14 4 5 7 9 4 8 32 128
6 9 15 21 5 6 8 10 9 27 243 2187

If S+1 2 3 4 5 6 7, then the following <expressions
yield an addition table, a multiplication table, a
subtraction table f a maximum table, an "equal " table r and a
"greater than or equal" table:

So, +5 S° .rs
2 3 ✓ 4 5 6 7 8 1 2 3 4 5 6 7
3 4 5 6 7 8 9 2 2 3 4 5 6 7
4 5 6 7 8 9 10 3 3 3 4 5 6 7
5 6 7 8 9 10 11 4 4 4 4 5 6 7
6 7 8 9 10 11 12 5 5 5 5 5 6 7
7 8 9 10 11 12 13 6 6 6 6 6 6 7
8 9 10 11 12 13 14 7 7 7 7 7 7 7

So, x* 5O =S
1 2 3 4 5 6 7 1 0 0 0 0 0 0
2 4 6 8 10 12 14 0 1 0 0 0 0 0
3 6 9 12 15 18 21 0 0 1 0 0 0 0
4 8 12 16 20 24 28 0 0 0 1 0 0 0
5 10 15 20 25 30 35 0 0 0 0 1 0 0
6 12 18 24 30 36 42 0 0 0 0 0 1 0
7 14 21 28 35 4 2 49 0 0 0 0 0 0 1

So, -S so .>5
0 1 2 3 "4 ”5 "6 1 0 0 0 0 0 0
1 0 1 2 ”3 “4 5 1 1 0 0 0 0 0
2 1 0 1 2 ”3 4 1 1 1 0 0 0 0
3 2 1 0 1 2 "3 1 1 1 1 0 0 0
4 3 2 1 0 1 2 1 1 1 1 1 0 0
5 4 3 2 1 0 "1 1 1 1 1 1 1 0
6 5 4 3 2 1 0 1 1 1 1 1 1 1

Moreover, the graph of a function can be produced as 
an "equal11 table as follows. First recall the function G 
defined earlier:

1Z+-G X
Z+(X-3)x(X-5)V

G S-8 3 0 1 0 3 8
The range of the function for this set of arguments is 

from 8 down to ~1, and the elements of this range are all 
contained in the following vector:

R+ 8 7 6 5 4 3 2 1 0  1
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Consequently, the “equal" table R ° . = G  S produces a rough 
graph of the function (represented by l's) as follows:

R o .=G S
1 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 0 0

A. 5 A PROGRAM FOR ELEMENTARY ALGEBRA
The foregoing analysis suggests the development of an 

algebra curriculum with the following characteristics:
1. The notation used is unambigious, with simple and 
consistent rules of syntax, and with provision for the 
simple and direct use of arrays. Moreover, the 
notation is not taught as a separate matter, but is 
introduced as needed in conjunction with the concepts 
represented.
2. Heavy use is made of arrays to display 
mathematical properties of functions in terms of 
patterns observed in vectors and matrices (tables), 
and to make possible the reading, writing, and 
evaluation of a host of interesting algebraic 
sentences before approaching the analysis of sentences 
and the concomitant development of identities.
Such an approach has been adopted in the present text, 

where it has been carried through as far as the treatment of 
polynomials and of linear functions and linear equations. 
The extension to further work in polynomials, to slopes and 
derivatives, and to the circular and hyperbolic functions is 
carried forward in Chapters 4-8 of Iverson [3].

It must be emphasized that the proposed notation, 
though simple, is not limited in application to elementary 
algebra. A glance at the bibliography of Rault and 
Demars[4] will give some idea of the wide range of 
applicability.
The_role_of_the_computer. Because the proposed notation is 
simple and systematic it can be executed by automatic 
computers and has been made available on a number of 
time-shared terminal systems. The most widely used of these
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is described in Falkoff and Iverson [51. It is important to 
note that the notation is executed directly, and the user 
need learn nothing about the computer itself. In fact, each 
of the examples in this appendix are shown exactly as they 
would be typed on a computer terminal keyboard.

The computer can obviously be useful in cases where a 
good deal of tedious computation is required, but it can be 
useful in other ways as well. For example, it can be used 
by a student to explore the behavior of functions and 
discover their properties. To do this a student will simply 
enter expressions which apply the functions to various 
arguments. If the terminal is equipped with a display 
device, then such exploration can even be done collectively 
by an entire class. This and other ways of using the 
computer are discussed in Berry et al [6] and in Appendix C.



B
The Mechanics 
of Computer Use

B .1 INTRODUCTION
An APL computer consists of a typewriter connected by 

a telephone or wire to a remote computer. The user controls 
the computer only by typing on the typewriter keyboard shown 
in Fig. B.l. Each entry is concluded by a carriage return, 
that is, the computer responds only after the carriage 
return button is depressed. For example:

A two-position mode switch marked LOCAL and COMMUNICATE can 
be switched to the position LOCAL to make the typewriter 
usable as an ordinary typewriter. This mode is convenient 
for gaining familiarity with the keyboard.

The material in this Appendix applies almost exactly 
to any APL computer. Particular APL computers may, however, 
differ in minor details and information on such details can 
be found in the manual for the particular computer. These 
manuals also present other aspects of the APL language not 
treated in this text and should eventually be consulted by 
any serious user.
B.2 GETTING STARTED

There are several different procedures for connecting 
the typewriter to the remote computer. In the case of a 
wired connection one simply turns the typewriter power 
switch to ON and the mode switch to COMMUNICATE. In the case 
of a phone connection one must also dial the number of the 
computer, wait until the computer answers with a 
high-pitched tone, depress the button marked DATA on the 
special telephone used, and then cradle the handset.
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When the connection to the remote computer has been 
established, a user may sign on by. typing a right 
parenthesis followed by the account number assigned to him. For example:

) 11 81
0 0 1 ) 15.00.13 01/21/72 KEIVERSON

The last line above shows a typical response of the computer to a sign-on.
B. 3 USING APL

Once signed on, a user may enter any sequence of valid 
APL expressions and expect each to be executed as soon as 
the carriage return is depressed. Examples of valid APL 
expressions and the expected results may be found in abundance in the text.

Numbers can be entered (and may be printed by the 
computer) in either the familiar decimal form or in the 
exponential form presented in Section 5.17. For example:

2x14.3E~ 3
0.0286

23x10000x10000x10000
2.3E13

Any entry can be revised at any time before pressing 
the carriage return by backspacing to the position of the 
change, striking the attention button, (which spaces the 
paper up and marks the position with a caret) and then 
continuing typing. For example:

X+'ABCDFGHv
EFGHIJK*

X
ABCDEFGHIJK

Y*-' ABCDFGHIJ v
Y

ABCDEFG

EFG'

The attention button can also be used to stop the printing 
of any output and to interrupt the execution of any function.
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B .4 ERROR REPORTS
The entry of any invalid expression will invoke an 

error report. For example:
128*8-4x2 

D O M A I N  E R R O R
128*8-4x2

A

The report indicates the type of error committed, repeats 
the entire expression, and marks the point of difficulty. 
Following an error report one may continue to enter 
expressions in the normal way, usually revising the 
offending expression to the desired form. For example:

12 8 *(8-4 )x2
16
The various types of errors are listed in Table B.2 together 
with the probable cause and suggested corrective action.

A name already used for a function cannot be used as a 
name for a variable. For example:

V Z+4 X
[1] Z+X+IV

4+17
S Y N T A X  E R R O R  4+17 

A

Conversely:
F+3
VZ+F X 

D E F N  E R R O R
VZ+F X

A

Any name in use can, however, be freed for a different use 
by erasing it as follows:

)E R A S E  A 
4 + 17 
)ERASE F 
VZ+F X

[1] Z+X*2V
If an error is detected in some line of a defined 

function, the error report includes (at the left) an
indication of the function and the line number. Before 
revising or re—using the function one should escape frQm
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(i.e., terminate) it by entering a right arrow alone (that is, ■+) .
B.5 REVISING A FUNCTION DEFINITION

When a function is being defined, the computer 
helpfully prints the number of each line (in brackets) 
before unlocking the keyboard to permit entry of the body of 
the. However, one may change the line number by
beginning the entry with any desired line number enclosed in 
brackets. In this way one may give a revised specification to any line already entered. For example:

VZ«-G N 
[ 1 ] S+iN
[ 2 ] Z+(.~SeSo .xS)/S 
C3] ms+i+ijy-i
[ 2 ]  V

The final expression on line l then becomes £-<-l + itf-l. The header is referred to as line 0.
The definition of a function G may be re-opene^ by 

entering VG. The function definition may then be revised or 
displayed before re-closing the definition. Display is requested by entering [□]. For example:

VG
[ 3 ]  [ Q ]

V Z+-G N
C l ]  S+l+iN-l
C2] Z«-(~SeS° . xS)/S

V
[ 3 ]  V

A new line may be inserted between lines 1 and 2 by 
referring to it by some fraction (say [1.5]) between 1 and
2. When the function definition is closed, integer line 
numbers are reassigned in the obvious order. For example:

VG
[ 3 ]  [ 1. 5 ]5-<-2xG
[ 1 . 6 ]  V

VGCO]V 
V Z+G N

[1] G-«-l+ i N- 1
[2] G-*-2xS
[ 3 ]  Z<-(~SeS°.*S)/S

V
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B.6 THE ACTIVE WORKSPACE
The remote computer keeps all record of the functions 

defined and the variables specified in a section of memory 
referred to as the active workspace. This workspace is 
limited in size (usually accomodating a few thousand 
numbers) and certain expressions may fail of execution for 
lack of space. For example, the following expression asks 
for the production of a huge table but would instead evoke 
the response shown:

( i 8 0 0 0  ) o . + i 2 5  
WS FUL L

( i 8 0 0 0  ) o . 2 5
A

During any session, the current value of any variable 
and the current definition of any function remain accessible 
in the active workspace at all times until removal by 
erasure or until the entire workspace is cleared by the 
entry )CLEAR.

B .7 TERMINATING A WORK SESSION
A work session may be terminated as follows:
) C O N T I N U E

1 5 . 1 1 . 5 0  0 1 / 2 1 / 7 2  C O N T I N U E  
0 0 1  1 5 . 1 1 . 5 1  0 1 / 2 1 / 7 2  K E I
C O N N E C T E D 0 . 1 1 . 3 8  TO D A T E 6 8 , 3 0 . 5 3
CPU T I M E 0 . 0 0 . 0 0  TO D A T E 0 . 0 6 . 4 7

The last two lines above show a typical response by the 
computer giving both the length of the sesson (C O N N E C T E D  
time) and the remote computer time used in hours, minutes, 
and seconds.

The next time this same account number is signed on, 
the work may be continued exactly as if there had been no 
interruption; the active workspace remains intact from the 
previous session.

A work session may also be terminated by the entry 
)0FF in which case the active workspace is lost and the 
session at the next sign—on begins with a clear workspace.
B .8 USE OF LIBRARIES

Each account number has associated with it a library, 
and a copy of the active workspace can be preserved in this 
library under any desired name by entering )SAVE followed by 
the name. For example:

)SAVE C H A P T E R 3 
1 5 . 1 2 . 4 6  0 1 / 2 1 / 7 2
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Moreover, the current active workspace could then be recalled at any later time as follows:
)LOAD C H A P T E R S  

S A V E D 15.12.46 01/21/72
A workspace can be loaded repeatedly; to remove it from the library one must enter:
)DR0P C H A P T E R S

The content of any library workspace can be added to 
the active workspace by entering )C0PY followed by the 
workspace name. For example, the workspaces C HA P T E R 1 and 
N E W could be merged in the active workspace as follows:

)L0AD C H A P T E R l  
S A V E D 15.13.55 01/21/72 

)C0PY N E W
S A V E D 15.14.01 01/21/72
Moreover, any single function or variable can be copied from 
a library workspace by appending its name after the workspace as follows:

)C0PY C H A P T E R S  X

The foregoing expressions concern only the user's 
personal library associated with his account number. He may 
also load or copy from any other library for which he knows 
the account number and workspace names; the account number 
is simply inserted after the words L OA D or C O P Y . For example:

)L0AD 2073 A L G E B R A  
S A V E D 15.15.01 01/21/72
It is, of course, impossible for a user to S A V E into any library but his own.
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TYPE Cause; CORRECTIVE ACTION
CHARACTER Illegitimate overstrike.
DOMAIN Arguments not in the domain of the function.
DEFN Misuse of V or □ symbols:

1. V is in some position other than the first.
2. The function is in use. ENTER -* REPEATEDLY 
UNTIL LIST OF FUNCTIONS IN USE (OBTAINED BY 
ENTERING )SI) IS EMPTY.
3. Use of other than the function name alone in 
reopening a definition.
4. Improper request for a line edit or display.

INDEX Index value out of range.
LENGTH Shapes not comformable.
RANK Ranks not conformable.
RESEND Transmission failure. RE-ENTER. IF CHRONIC, 

REDIAL OR HAVE TERMINAL OR PHONE REPAIRED.
SYNTAX Invalid syntax; e.g., two variables juxtaposed; 

function used without appropriate arguments as 
dictated by its header; unmatched parentheses.

VALUE Use of name which has not been assigned a value. 
ASSIGN A VALUE TO THE VARIABLE, OR DEFINE THE 
FUNCTION.

WS FULL Workspace is filled (perhaps by temporary values 
produced in evaluating a compound expression). 
ENTER + , ERASE NEEDLESS OBJECTS, OR REVISE 
CALCULATIONS TO USE LESS SPACE.

Error Reports
TABLE B.2



c
Use of the Computer 
in Teaching

C .1 INTRODUCTION
The computer is an important tool of mathematics. 

Nevertheless, it is essential that it be treated as a tool, 
and that the details of its use not be permitted to dominate 
or obscure the treatment of mathematical topics. For 
example, it is important in algebra to introduce matters 
such as iteration and function definition as fundamental 
mathematical notions and not as ingenious tricks for making 
use of a computer. In order to clearly maintain this 
subordinate role of the computer, no mention is made of it 
in the body of the text, and the discussion of techniques 
for the use of the computer in teaching is confined to this 
appendix. Teachers and students may also find Iverson [7] 
helpful in learning to use the computer.

The discussion covers four major types of use: for 
experimentation, for checking solutions to exercises, as a 
computational tool, and for administering drill. Within 
these types three modes of use by the student are discussed: 
direct personal use, collective (e.g., classroom) use, and 
remote use.
C.2 EXPERIMENTATION

The APL computer is, in effect, a mathematical 
laboratory; it can therefore be used to explore the 
properties of various mathematical functions by 
experimentation in their use. Such experimentation must, of 
course, be guided in some degree if it is to be effective. 
Many ideas for experimentation should flow from the 
exposition in the text, but the primary guidance must come 
from the exercises assigned. Exercises should, in fact, be 
designed and selected with the thought of providing guided 
experiments.

For example, if students have ready access to a 
computer the teacher might not explain the meanings of the 
various symbols f, L, *, I, <, etc., but rather explain
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the general form of expressions involving dyadic functions, 
exemplifying the form by familiar functions as follows:

7
12

0. 75

3 + 4 
3x4 
3 + 4

and then ask the students to discover the meanings of the 
other symbols by analogous experiments on the computer.

One important general notion which can arise from such 
an exercise (and which does not seem to be known to present 
high school students) is the idea of systematic 
experimentation. Students seem to begin their experiments 
with large numbers ("Wow, it can multiply 1372 by 24967 in a 
flash") which give no insight. They then use smaller 
numbers but discover only gradually the importance of 
systematic experimentation. For example, execution of the 
sequence of expressions 3*4 and 5*2 and 6*7 would not give 
such useful clues to the properties of the function * as 
would the sequence 3*1 and 3*2 and 3*3. Moreover, students 
must be led to appreciate the use of arrays to organize such 
experiments, as in the use of expressions such as 3*1 2 3 
and 1 2 3 4o. ri 2 3 4.

Experimentation on a bare APL computer is limited to 
the primitive functions denoted by symbols such as r, L, *, 
etc. However, one can add to this basic environment by 
defining any number of new functions and allowing 
experimentation with them. These functions may be drawn 
from the algebra text, although they could also be functions 
which describe phenomena from disciplines such as physics; 
the computer then becomes in some sense a physics 
laboratory. See, for example, the paper by Berry, et al., 
[8].

A student experimenting with a defined function could 
display and examine its definition as well as apply it to 
arguments. This may oe desirable, but it may also be 
desirable to prevent such examination of the definition. 
This can be done by locking the function as follows: the 
function definition is closed not by a V but by a ¥ (formed 
by V backspace ~). A locked function gannot be further 
revised or displayed. The author of a function to be locked 
should perhaps keep an unlocked version in some library 
workspace.
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A student who claims to understand a function as a 
result of experimenting with it should be able to 
communicate that understanding in some way. He might for 
example:

1. Give the value of the result for any arguments 
presented to him.

2. Give a verbal statement of the function.
3. Define an equivalent function.

Any one of these three forms may be suitable for some 
purpose since they reflect three different levels of 
understanding - e.g., anyone who can give a verbal statement 
can also evaluate the function, but the converse is not 
necessarily true. The third form (i.e., the design of a 
suitable function definition) is not an easy task and should 
be first approached in terms of functions for which the 
first two levels of understanding have already been well 
assimilated.

A group of students can often be stimulated to further 
experimentation by the game "Guess My Function" in which any 
student may define (and probably lock) a function and 
challenge others to expose it. The exposure required may be 
the definition of an equivalent function, or it may be only 
a verbal statement or the ability to evaluate the function.

C .3 CHECKING SOLUTIONS TO EXERCISES
The computer is convenient for checking manual 

solutions; one need only type in the expression to be 
evaluated to obtain the correct answer. Answers to 
questions of the type in Exercise 1.3 (which require an 
answer to be inserted in some expression so that it will 
yield a specified result) can be checked with equal ease.

There are certain advantages to allowing the student 
to use the computer to check his own exercises. First, this 
reinforces the important notion that one should always seek 
some method of validating a result. Second, it allows 
students to gain familiarity with the keyboard and other 
aspects of the computer in the context of a simple routine 
task.
C. 4 USE AS A COMPUTATIONAL TOOL

In the practical world computers are used primarily as 
a computational tool, applying certain defined functions 
(such as payroll calculation) to thousands or millions of 
different arguments. In teaching, this type of use is 
secondary since the main point is the understanding of a
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function rather than its application. Nevertheless, routine 
calculations do play some role in teaching.

For example, the functions POLY and P of Sections 13.5 
and 13.6 may first be of interest for the insight they give 
into the meaning of the polynomial function. However, in a 
later study of graphing one might wish to use these known 
functions to evaluate points on various curves to be 
plotted. In this case the computer is serving only as a 
computational tool, allowing the accurate treatment of 
numerous examples which would be tedious to undertake 
without it.

In a series of exercises intended primarily to 
familiarize a student with various functions, he should 
often be permitted to use his own discretion in omitting 
many of them. On the other hand, such a series of exercises 
can be designed so that their results exhibit some pattern 
or identity which the alert student should detect, but which 
he will probably miss if parts of the sequence are omitted. 
For this reason a student may wish to complete the sequence 
with a minimum of tedium by using the computer to evaluate 
some of the exercises.

The following sequence (taken from Exercise 3.1 and 
shown together with the computed results) illustrates such a 
case:

30
30
42
42
56
56

2 x + / i 5

5x6
2 x + / i 6 

6 x 7

2 x + / i 7 

7x8

The foregoing results suggest that the sum of the first N 
integers is equal to one half of the product N*N-1-1 . 
Moreover, the ensuing sequence in Exercise 3.1 suggests a 
proof of the identity.

Although most of the functions employed for 
computation may themselves be objects of study, there are 
many useful functions (called utility functions) which one 
may not care to understand in detail. For example, the 
expressions for plotting functions developed in Sections
10.11 and 10.12 are simple and worthy of study, but for 
practical use one may prefer a more complex plotting 
function which performs any necessary scaling and adds 
coordinate lines and labels, etc. The details of such a
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complex function are of interest to some people, but are of 
secondary interest in the study of algebra and it would 
therefore be viewed as a utility function.

Certain utility functions are available on all APL 
computer systems and are described in the corresponding 
manuals. There is in addition a wealth of utility functions 
available from users who have written their own and are 
pleased to exchange or share them with others via the 
workspace libraries provided.
C.5 DRILL

The use of a computer to administer drill is commonly 
referred to by the too-inclusive term Computer Aided 
instruction or CAI. Functions to administer such, drill can 
be conveniently written in APL. For example:

1TIMESDRILL N
[1] Y+?N
[2] Y
[3] -*4- 3 *□= x /y
[4] 'WRONG, TRY AGAIN
[5] + 2 V

TIMESDRILL 5 30
1 23 
□ :

23
3 16 
□ :

38
WRONG , TRY AGAIN
3 16 
□ :

48
2 2 
□ :

The definition of the foregoing function employs two 
symbols (□ and ?) for functions which have not been 
previously defined. The occurrence of quad (D) causes the 
symbols □: to print, and unlocks the keyboard to permit an 
entry, then evaluates that entry and substitutes the value 
for the □ in the expression in which, it occurs. In the 
present case the entry is compared to the product over the 
vector Y which was printed out on line 2. The roll t?\ 
applied to a scalar S produces an integer chosen at random 
from the set xs. When applied to a vector it applies to 
each of the elements in the usual manner.
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Because the expressions in the definition of 
TIMESDRILL apply to vectors of any size, the function may be 
used for drill on the products of more than two factors as 
follows:

TIMESDRILL 10 10 10
7 7 10
□ :

4 90
4 6 9
□ :

-y

Moreover, a function employing TIMESDRILL can easily be 
written to specialize drill for any particular student. For 
example:

VJOHN
Cl] TIMESDRILL 12 12V 

JOHN
1 9
□ :

63
1 5
□ :

Drill programs of great complexity can be defined to 
analyze student response in great detail and to respond 
accordingly. Moreover, they can be designed to apply to 
non-mathematical topics. Examples may be found in Reference 
9.
C.6 COLLECTIVE USE

Private use of the computer by a student can provide 
an excellent opportunity for individual exploration. 
Economic considerations may, however, severely limit this 
kind of use and it is important to exploit collective uses 
of the computer. Moreover, there are some advantages of 
collective use which cannot be otherwise realized.

A teacher will find the computer a valuable aid for 
working out examples for use in class. The printed result 
of a session at the computer can be reproduced for 
distribution or be used to produce a transparency for 
projection in class.

Active interaction of a class with the computer can be 
achieved by displaying the printed results as they are 
produced. This can be done with a closed circuit TV or 
other optical projection system. With such an arrangement a 
teacher at the typewriter can even mediate collective 
experimentation by the class. This collective
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experimentation can be most rewarding in itself and can also 
suggest techniques of exploration for private use.
C. 7 REMOTE USE

The computer can be operated by a typist who simply 
enters expressions from sheets written and submitted by the 
ultimate users. The typewritten results can then be 
returned to each user, thus affording him remote access to 
the computer. This scheme has the disadvantage that the 
user cannot make immediate changes based on the results 
produced by the computer. It has the advantage that a 
trained typist may type much faster than the ordinary user 
and so make more efficient use of the computer. It also 
permits correspondence students and others at remote 
locations to use the computer.
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SUMMARY OF NOTATION
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