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Preface

The present text treats the usual topics expected in a
second course in algebra. It differs from conventional
treatments in the following respects:

1. The notation used is simple and precise and applies
to arrays (vectors and matrices) in a simple and uniform
manner.

2. Arrays are used extensively to give a graphic view
of functions by displaying the patterns produced by
applying them to vectors. They are also used to clarify
topics which use vectors directly, such as linear
functions and polynomials.

3. The precision of the notation permits an algorithmic
treatment of the material. In particular, every
expression in the book can be executed directly by
simply typing it on an appropriate computer terminal.
Hence, if a computer is available it can be used by
students for individual or collective exploration of
relevant mathematical functions in the manner discussed
in Appendix C. Even if a computer is not available, the
algorithmic treatment presents the essentials of
computer programming in a mathematical 1light, i.e., as
the precise definition and application of functions.

4. The algorithmic approach is the same as that used in
a cSEEIﬁGEEEon—_Iﬁ_ESEECS such as the slope (derivative)
of functions, and the circular, hyperbolic, exponential,
and logarithmic functions.

5. The organization of topics follows a pattern
suggested by considering algebra as a language; in
particular, the treatment of formal identities is
deferred until much work has been done in the reading
and writing of algebraic sentences. These matters are
discussed fully in Appendix A, "Algebra as a Language",
and any teacher may be well-advised to begin by reading
this appendix.

The pace of the text is perhaps best suited to a
second course, but it can also be used in part for a first
year course since the early chapters contain all of the



essentials such as the introduction of the negative and
rational numbers. When used for a second course these early
chapters can serve not only as a brief review, but also as
an introduction to the notation used.

The text employs the APL language which is available
on computer terminals. Although an APL computer is in no
way essential, it can be a very useful adjunct. Moreover,
the text can be used to provide interesting material and
exercises for courses devoted to introducing APL itself.
Finally, the text should be useful in a variety of algebra
courses in both high school and college, since it presents
traditional material in a new light, combined with the
interest of learning to program and use a computer.

This text grew out of a summer project undertaken in
1969 in collaboration with my colleagues Adin Falkoff and
Paul Berry of IBM, and with five high school teachers - Mr.
John Brown, now of Dawson College, Montreal; Mr. Nathaniel
Bates, of Belmont Hill School, Belmont, Massachusetts; Miss
Linda Alvord, of Scotch Plains-Fanwood High School, Scotch
Plains, New Jersey; and Sisters Helen Wilxman and Barbara
Brennan, of Mary Immaculate School, Ossining, New York. Mr.
Peter Manchester provided valuable assistance in preparing
APL programs and in developing exercises. I am indebted to
all of these people for much fruitful discussion, and
particularly to Messrs. Falkoff and Berry for helping to set
and maintain the direction of the project.

I have also benefitted greatly from discussions with
Miss Nancy Boyd and Mr. Christopher Edley, students at
Swarthmore College. These discussions arose from their work
as tutors in summer courses using this text which were
presented at Swarthmore College by Professor David Rosen and
by Mr. Russell Daniel, now of Temple University. I must
also acknowledge many helpful discussions with colleagues of
the Philadelphia Scientific Center of 1IBM, particularly
Messrs. E. E. McDonnell and P. C. Berry, as well as critical
detailed reviews of the text by Miss Alvord and Mrs. Sandra
Pakin. I am also grateful for the support of the IBM
Corporation, particularly for the freedom provided by its
Fellow program.

The manuscript was entered, revised, and printed on an
APL text editor system. For outstanding clerical assistance
in the use of this system I am indebted to my wife Jean, and
to Mrs. Susan O'Connell. The artwork was done by Mr. David
Hatcher, who also worked long hours in the production of the
final draft. I am particularly indebted to Miss Elizabeth
Llanso for her patient and unfailing assistance in every
aspect of the preparation of the manuscript.

July, 1972 Kenneth E. Iverson
Philadelphia, Pennsylvania
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1

The Language
of Mathematics

1.1 INTRODUCTION

Algebra 1is the language of mathematics. It is
therefore an essential topic for anyone who wishes to
continue the study of mathematics. Moreover, enough of the
language of algebra has crept into the English language to
make a knowledge of some algebra useful to most
non-mathematicians as well. This is particularly true for
people who do advanced work in any trade or discipline, sucn
as insurance, engineering, accounting, or electrical wiring.
For example, instructions for laying out a playing field
might include the sentence, "To verify that the corners are
square, note that the length of the diagonal must be equal
to the square root of the sum of the squares of the length
and the width of the field", or alternatively, "The length

of the diagonal must peVL2+wn | In either case (whether
expressed in algebraic symbols or in the corresponding
English words), the comprehension of such a sentence depends
on a knowledge of some algebra.

Because algebra is a language, it has many analogies
with English. These analogies can be helpful in learning
algebra, and they will be noted and explained as they occur.
For instance, the integers or counting numbers
(1, 2, 3, 4, 5, 6...) in algebra correspond to the concrete
nouns in English, since they are the basic things we
discuss, and perform operations upon. Furthermore,
functions in algebra (such as + (plus), - (subtract), and
x (times)) correspond to the verbs in English, since they do
something to the nouns. Thus, 2+3 means "add 2 to 3", and
(2+3)x4 means "add 2 to 3 and then multiply by u4". In fact,
the word "function" (as defined, for example, in the
American Heritage Dictionary), is descended from an older
word meaning, "to execute", or "to perform".

When the language of algebra is compared to the
language of English, it is in certain respects much simpler,
and in other respects more difficult. Algebra is simpler in
that the basic algebraic sentence is an instruction to do
something, and algebraic sentences (usually called
expressions) therefore correspond to imperative English

sentences (such as "Close the door."). For example, 2+3
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means "add 2 and 3", and YEAR<1970 means "assign to the name
YEAR the value 1970", and Y<1970 means "assign to the name Y
the value 1970". Since imperative sentences form only a
small and relatively simple part of English, the language of
algebra is in this respect much simpler.

Algebra is also simpler in that it permits less
freedom in the ways you can express a particular function.
For example, "subtract 2 from 4" would normally be written
in algebra only as u4-2, whereas in English it could be
expressed 1in many ways such as "take the number 2 and
subtract it from the number 4", or "compute the difference
of the integers 4 and 2".

The most difficult aspect of traditional presentations

of algebra is the early emphasis on identities, or the
equivalence of different expressions. For example, the
expressions (5+7)x(5+7) and (5%x5)+(2x5x7)+(7x7) are

eguivalent in the sense that, although they involve a

different sequence of funtions, they each yield the same

result. English also offers equivalent expressions. For
example, "The dog bit the man" is equivalent to "The man was
bitten by the dog". It 1is not that the rules for

determining equivalence in algebra are more difficult than
in English; on the contrary, they are so much simpler that
their study is more rewarding and therefore more attention
is given to equivalences in algebra than in English.

In the present treatment this aspect of algebra (that
is, the study of identities or equivalence of expressions),
is delayed until the student has devoted more attention to
the reading, writing, and evaluation of algebraic
expressions.

This view of algebra as a language is central to the
present treatment. It 1is Dbuttressed and expanded 1in
Appendix A, and this appendix should perhaps be read first
by any teacher and by any student who has significant prior
experience with traditional treatments of algebra.

The exercises form an important part of the
development, and the point at which the reader should be
prepared to attempt each group of exercises is indicated in
the margin. For example, the first such marginal note
appears as [H1-6 and indicates that Exercises 1 to 6 of this
chapter may be attempted at that point.

Collections of expressions occurring in certain
exercises are Dbroken into groups to provide convenient
reference in assigning and discussing exercises. These

groups sometimes indicate substantive groupings of the
material treated as well.



1.2 Expressions and results 3

The exposition and the exercises are organized to
encourage experimentation and observation as an essential
part of learning. Experimentation and discovery can be
further encouraged to a startling degree by the use of an
APL computer terminal if one is available. All expressions
occurring in the text and exercises can be entered directly
on the terminal keyboard without further knowledge of
computers. Techniques for the use of the computer in
teaching are discussed in Appendix C. Appendix B presents
the computer keyboard and other details necessary to putting
it in operation.

A student wusing an APL computer in exploration is
sometimes confronted with matters not treated until a later
point in the text. For example, a beginning student
entering the expression

2000x3000%x4000
will receive the response
2.4F10
This result is expressed in exponential notation (meaning
2.4 times 10 to the power 10) which 1is not discussed until
Section 5.17. the Index, the Summary of Notation (appearing

inside the covers), and Appendix B can be wused to resolve
such difficulties.

1.2 EXPRESSIONS AND RESULTS

Evaluation of the expression 2+3 produces the

result 5. Such a fact will be written in the following
form:
2+3
5
and will be read aloud as "2 plus 3 makes 5". The following

examples would be read in a similar way:

7T+12
19

32
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Where there is more than one function to be executed,
parentheses are used to indicate which is to be done first.
Thus the expression

(2+3) x4
is evaluated by first performing the function within the

parentheses (that is, 2+3), and then multiplying the result
by 4. The final result is therefore 20, as shown below:

(2+3) x4
20
The foregoing is read aloud as "quantity 2+3, times u". The
word '"quantity" indicates that the first expression
following it is to be executed first. That is, you are to

find the result of 2+3 before attempting to execute the
function "times".

The steps in the execution of an expression may be
displayed on successive lines, substituting at each line the
value of part of the expression above it as illustrated
below:

(2+43)xu

5 xi
20

The vertical line drawn to the left of the first two lines
indicates that they are eguivalent statements, either of
which would produce the result 20 shown on the final line.
The whole statement would be read aloud as "Quantity 2 plus
3 times 4 is equivalent to 5 times 4 which makes 20". The
following examples would be read in a similar way as shown
on the right:

(2+3)x(5+4) Quantity 2 plus 3 times quantity 5§
plus 4
is equivalent to
5 x 9 5 times 9
45 which makes 45

((2x3)+(5x4))x2 Quantity 2 times 3 plus quantity 5§
times 4, all times 2
is equivalent to
( 6 + 20 )x2 quantity 6 plus 20 times 2
is equivalent to
26 X2 26 times 2
52 which makes 52
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The last example illustrates the difficulty of
expressing in English the sequence of execution that is
expressed so simply by parentheses in algebra, that is, when
parentheses are "nested" within other parentheses even the
use of the word "quantity" does not suffice and one resorts
to expressions such as "all times 2". The main point is
this: in learning any new language (such as algebra) it is
important to re-express statements in a more familiar

language (such as English); however, certain things are so
awkward to express 1in the old language that it becomes
important to learn to "think" in the new language. B1l-6

The expression 2+3x4, written without parentheses,
could be taken to mean either (2+3)x4 (which makes 20), or
2+(3x4) (which makes 14). To avoid such ambiguity we make
the following rule: when two or more functions occur in
succession with no parentheses between them, the rightmost
function is executed first. For example:

2+3x4
2+ 12
14
1+2x3+4x5
1+2%x3+ 20
1+2%x 23
1+ L6
L7
(1+2x3)+4x5
(1+ 6)+ 20
7 +20
27 g7-12
1.3 NAMES
Consider the following statements:
(1+3+5+7+9)x2
50
(1+43+5+7+9)x3
75

(1+3+45+7+9 ) x4



6 Names 1.3

Since the expression 1+3+5+7+9 occurs again and again in the
foregoing statements, it would be convenient to give some
short name to the result produced by the expression, and
then use that short name instead of the expression. This is
done as follows:

IT«1+3+5+7+9
ITx2
50
ITx3
75
ITxY4
100
IT
25

The foregoing would be read aloud as follows: "The name IT
is assigned the value of the expression 1+3+5+7+9. IT times
2 makes 50. IT times 3 makes 75. IT times 4 makes 100. IT
makes 25".

Names can be chosen at will. For example:

LENGTH<5
WIDTH<Y4
LENGTHXWIDTH
20
AREA<LENGTHxWIDTH
AREA
20
PRICE<S
QUANTITY<h
PRICEXQUANTITY
20

Mathematicians usually prefer to use short names like L or W
or X or Y, perhaps because this brings out the underlying
structure or similarity of expressions which may deal with
different names. Consider, for example, the following
sequence:

X<«5

Y<h

XxY
20

If X is taken to mean length and Y is taken to mean
width, the result is the area of the corresponding
rectangle; but if X is taken to mean price and Y is taken to
mean quantity, then the result is the total price. This
makes clear that there is some similarity between the
calculation of an area from length and width and the
calculation of total price from price and quantity.
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The names used in algebra are also called variables,

since they may vary in the sense that the same name may
represent different values at different times. For example:

X<3

XxX
9

X<5

XxX
25

This ability to vary distinguishes a name 1like x from a
symbol like 5 which always represents the same value and is
therefore called a constant.

It is interesting to note that the wvariables 1in

algebra correspond to the pronouns in English. For example,
the sentence "close it" 1is meaningless until one Kknows to
what "it" refers. This reference is usually made clear by a
preceding sentence. For example, "See the door. Close it"
is unambiguous because the first sentence makes clear that
"it" refers to "the door". Similarly, in algebra the
expression IT+5 cannot be evaluated unless the value to
which IT refers is known. In algebra this reference is made
clear in one way, by the use of the assignment represented

by the symbol «. For example:

IT<3
IT+5
8

The same name JT can stand for different values at different
times just as the pronoun "it" can refer to different things
at different times. #13-18

1.4 OVER NOTATION
It 1is often necessary to take the sum over a whole

list of numbers. For example, if the list consists of the
numbers 1 3 5 7 9 11, then their sum could be written as

1+3+5+7+9+11
36

It is more convenient to use the following notation:

+/1 3 5 7 9 11
36

The foregoing is read aloud as "Sum over 1 3 5 7 9 11" or as
"Plus over 1 3 5 7 9 11".
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The over notation can be used for other functions as
well as for addition. For example:

READ AS
x/1 2 3 Times over 1 2 3
6 makes 6
x/1 2 3 4 Times over 1 2 3 U4
24 makes 24
+/1 2 3 4 Plus over 1 2 3 4
10 makes 10
(+/1 2 3 4)x6 Quantity plus over 1 2 3 4
times 6
60 makes 60
6x +/1 2 3 4 6 times plus over 1 2 3 4
60 makes 60
N«<1 2 3 4 N assigned 1 2 3 4
+/N Plus over N
10 makes 10
x /N Times over N
19-21H 24 makes 2u

1.5 THE POSITIVE INTEGERS

The natural numbers 1 2 3 4 5 . . . are also called
the positive integers. They may be produced as follows:

13

15
1 2 3 4 5
116
1 23 456 7 8 9 10 11 12 13 14 15 16
N<6
v
1 2 3 4 56

The symbol 1 is the Greek letter iota which corresponds to
the English letter i. The expression 1V is read aloud as
"the integers to N". Thus:

READ AS
+/15 Plus over the integers to 5

15 makes 15
x/15 Times over the integers to 5

22-25H 120 makes 120
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1.6 VECTORS

The numbers in the list are called the elements of the

vector. Thus the first element of the vector 3 5 7 11 is
the number 3, the second element is 5, the third element is
7, and the fourth is 11. The number of elements in the

vector is called the size of the vector. Thus the size of
the vector 3 5 7 11 is 4. Any single quantity (such as 17)

vector.

Vectors can be added and multiplied as shown in the
following examples:

READ AS

35 741 2 3 Vector 3 5 7 plus vector 1 2 3
y 7 10 makes 4 7 10

1 2 3+3 2 1 Vector 1 2 3 plus vector 3 2 1
4 o4y makes 4 4 4

1 2 3x3 2 1 Vector 1 2 3 times 3 2 1
3 4 3 makes 3 4 3

From this it should be clear that when two vectors are added
the first element is added to the first element, the second
element is added to the second, and so on. Multiplication
is performed similarly.

Like any other result, a vector can be assigned a
name. For example:

READ AS
V<1 2 3 4 The name V is assigned vector 1 2 3 4
W<l 3 2 1 The name ¥ is assigned vector 4 3 2 1
V+W Vv plus W
5555 makes 5 5 5 5
VxW V times W
4 6 6 4 makes u4 6 6 U
VxV V times V
14 9 16 makes 1 4 9 16
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The following examples may be read similarly:

READ AS
N<15 N is assigned integers to 5
N N
1 2 3 4 5 makes 1 2 3 4 5
NxN N times N
1 4 9 16 25 makes 1 4 9 16 25
(16)x16 Quantity integers to 6 times
quantity integers to 6
1 4 9 16 25 36 makes 1 4 9 16 25 36

Since the addition of two vectors V and ¥ means that
the first element of V¥ 1is to Dbe added to the first element
of W, the second element of ¥ is to be added to the second
element of ¥, and so on, then an expression such as

1 3 5+6 8 1 4 3
cannot be executed because the vectors are not of the same

size. However, expressions of the following form can be
executed:

READ AS
3+1 3 5 7 3 plus vector 1 3 5 7
4 6 8 10 makes 4 6 8 10

1 2 3 4 546 Vector 1 2 3 4 5 plus 6
7 8 9 10 11 makes 7 8 9 10 11

In other words, if one of the quantities to be added is a
single number (i.e., a scalar), it is added to each element

of the vector. The same holds for multiplication as
follows:
READ AS

3x1 3 5 7 3 times vector 1 3 5 7
3 9 15 21 makes 3 9 15 21

3x15 3 times integers to 5
3 6 9 12 15 makes 3 6 9 12 15

2+3%x15 2 plus 3 times integers to 5
5 8 11 14 17 makes 5 8 11 14 17

1+2%x16 1 plus 2 times integers to 6

3 57 9 11 13 makes 3 5 7 9 11 13
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+/1+2%x16 plus over 1 plus 2 times integers to 6
L8 makes u48
1++/142%x16 1 plus plus over 1 plus 2 times
integers to 6
ug9 makes 49 [H26-28

1.7 REPETITIONS

Consider the following statements and their

verpalization:
READ AS

3p2 3 repetitions of 2
2 2 2 makes 2 2 2

203 2 repetitions of 3
3 3 makes 3 3

5p7 5 repetitions of 7
77 7 77 makes 7 7 7 7 7

The symbol p is the Greek letter rho which corresponds to
the English r.

The following two columns of statements show some
interesting properties of repetitions, including the
relation between multiplication and a sum of repetitions:

+/3p2 2% 3
6 6

+/4p2 2x L4
8 8

+/5p7 7%5
35 35

+/15p20 20x15
300 300

x/2p2 x/2p3
L 9

x/3p2 x/3p3
8 27

X/ U4p?2 x/4p3
16 81

x/5p2 x/5p3

32 243 H29-31
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1.8 SUMMARY

This chapter has been concerned primarily with the
language or notation of algebra, and the wuses of the

notation have been kept simple. Now that the language has
peen mastered, succeeding chapters can turn to more
interesting uses of it. This does not imply that all the

notation of algebra has now been covered, but rather that
the main ideas have been introduced and that any further

additions will be easy to grasp. The situation may be
compared to the learning of a natural language such as
French. Once the main ideas of the language have been

learned (in months or years of study), the new French words
needed for some particular purpose can be picked up more
easily.

For example, the next chapter treats the maximum

function, represented by the symbol [ and defined to yield
the larger of its two arguments:

READ AS

273 2 maximum 3
3 makes 3

2y 2 maximum 4
u makes 4

2[5 2 maximum 5
5 makes 5

572 5 maximum 2
5 makes 5

The important point 1is that this new function is treated
exactly like the functions plus and times, thus:

2[1 2 3 4
2 2 3 4

315
3 3 3 4 5

[/8 1 7 10 3 10
10

12 3 4 5[5 4 321
5 4 3 4 5
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this
which

The main points of the notation introduced in
chapter will now Dbe summarized in a few examples
snould be useful for reference purposes:

EXAMPLE

(2+3)x4
20

2+3x4
14

N<3

x4
12

+/3 5 7
15

x/2 3 5 2
60

1 2 3x3 2 1
3

3x1 2 3
3

15
1 4 5

Spu4
mn Lo

READ AS

Quantity 2 plus 3
times u

makes 20

2 plus quantity
3 times u
makes 14

N is assigned 3

N times 4
makes 12

Plus over vector
3 5 7
makes 15

Times over vector
2 35 2
makes 60

Vector 1 2 3 times
vector 3 2 1
makes 3 4 3

3 times vector
1 2 3
makes 3 6 9

Integers to 5
makes 1 2 3 4 5

5 repetitions of u
makes 4 4 4 4 4

COMMENTS

Function in paren-
theses is executed
first

Rightmost function
is executed first
if there are no
intervening
parentheses

Name N is assigned
the value of the
expression to
the right of <«

Element-by-element
multiplication

Single number multi-
plies each element



Function Tables
and Maps

2.1 INTRODUCTION

In Chapter 1, addition was spoken of as a "function"
because it "does something" to the numbers it is applied to
and produces some result. Multiplication was also referred
to as a function, but the notion of function is actually
much broader than these two examples alone might suggest.
For example, the average or normal weight of a woman depends
on ner height and is therefore a function of her height. 1In
fact, if one were told that the normal weight for a height
of 57 inches is 113 pounds, the normal weight for a height
of 58 inches 1is 115 pounds, and so on, then one could
evaluate the function "normal weight" for any given height
by simply consulting the 1list of corresponding heights and
weights.

It is usually most convenient to present the necessary
information about a function such as "normal weight" not by
a long English sentence as begun above, but by a table of
the form shown in Figure 2.1.

H 57 113 W
E 58 115 E
I 59 117 I
G 60 120 G
H 61 123 H
T 62 126 T
63 130
I 64 134 I
N 65 137 N
66 141
I 67 145 P
N 68 149 0
C 69 153 U
H 70 157 N
E 71 161 D
S 72 165 S

Table of Normal Weights
Versus Heights

Figure 2.1
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The quantity (or quantities) to which a function is
applied is (are) called the arqument (or arguments) of the

function. For example, in the expression 3x4 the number 3
is the left (or first) argument of the function x and u is

the right (or second) argument. Evaluation of the "normal
weight" function (represented by Table 2.1) for a given
argument (say 68 inches) 1is performed by finding the

argument 68 in the first column and reading the weight (149
pounds) which occurs in the same row.

The domain of a function is the collection of all
arguments for which it is defined. Addition is, of course,
defined for any pair of numbers, but the function "normal
weight" is certainly not defined for heights such as 2
inches or 200 inches. For practical purposes, the domain of
a function such as "normal weight" is simply the collection
of arguments in the table we happen to possess, even though
information for other arguments might be available
elsewhere. For example, the domain of the function of Table
2.1 is the set of integers from 57 to 72, that 1is, the set
of integers 56 +116.

The range of a function is the collection of all the

results of the function. For example, the range of the
function of Figure 2.1 is the set of integers 113, 115, 117
120, etc., occurring in the second column. Hl-2

A table of normal weights often shows several columns
of weights, one for small framed people, one for mediumn,
and one for large. Such a table appears in Figure 2.2. In
such a case the weight is a function of two arguments, the
height and the "frame-class"; the first argument determines
the row and the second argument determines the column in
which the result appears. Thus the normal weight of a
small-boned, 66-inch woman is 133 pounds. BH3-4

An arithmetic function can also be represented by a
table, as is illustrated by Figure 2.3 for the case of
multiplication. Since the domain of multiplication includes

all numbers, no table can represent the entire
multiplication function; Figure 2.3, for example, applies
only to the domain of the first few integers. The

multiplication sign in the wupper left corner is included
simply to indicate the arithmetic function which the table
represents.

In any table, the first column represents the domain
of the first argument and the first row represents the
domain of the second argument; the rest is called the body
of the table. For example, in Figure 2.3, the body of the
table is that part bordered on the left and top by the solid
lines.
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Frame

Small Medium Large

H 57 105 113 121 W
E 58 107 115 123 E
I 59 109 117 125 I
G 60 112 120 128 G
H 61 115 123 131 H
T 62 118 126 135 T
63 122 130 139
I 6L 126 134 143 I
N 65 129 137 147 N
66 133 141 151
I 67 137 145 155 P
N 68 141 149 158 (@)
C 69 145 153 162 U
H 70 149 157 165 N
E 71 153 161 169 D
S 72 157 165 173 S
Normal Weight as a Function
of Two Arguments
Figure 2.2
Function Right Domain
Name X 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 L 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
Left L L 8 12 16 20 24 28 32 36 40
Domain 5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 L8 56 64 72 80

Multiplication Table

Figure 2.3

In any table representing a function of two arguments,
any one column of the body (taken together with the column
of arguments not in the body) represents a function of one
argument. For example, if one takes the second column of
the body of Figure 2.2, it represents the same function of
one argument as does Figure 2.1.

Thus any function of two arguments can be thought of
as a collection of functions of one argument. For example,
the second column of the body of Figure 2.3 represents the
"times two" function, the third column represents the "times
three" function, etc.
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Similarly, one row of the body of a function table

represents a function of one argument. For example, the
fifth row of the body of Figure 2.2 gives weights as a
function of "frame" for 61 inch women. @5-10

2.2 READING FUNCTION TABLES

The basic rule for reading a function table is very
simple: to evaluate a function, £find the row in which the
value of the first argument occurs (in the first column, not
in the body of the table) and find the column in which the
second argument occurs (in the first row) and select the
element at the intersection of the selected row and the
selected column. However, just as there is more to reading
an English sentence than pronouncing the individual words,
so a table can be "read" so as to yield useful information
about a function beyond that obtained by simply evaluating
it for a few cases.

For example, the table of Figure 2.2 can be "read" so
as to answer the following questions:

1. Can two women of different heights have the same normal
weight?

2., For a given frame type, does normal weight always
increase with increasing height?

3. For a given height, does normal weight increase with
frame type?

4, How many inches of height produce (about) the same
change in weight as the change from small to large
frame? Does this change remain about the same
throughout the table?

Arithmetic functions are more orderly than a function
such as that represented by Figure 2.2, and the patterns
that can be detected in reading their function tables are
more striking and interesting. Consider, for example, an
attempt to read Figure 2.3 to answer the following
questions:

5. The second column of the body (which was previously
remarked to represent the "times two" function) contains
the numbers 2 u4 6, etc., which are encountered in
"counting by twos". Can a similar statement be made
about the other columns?

6. Is there any relation between corresponding rows and
columns of the body, e.g., between the third row and the
third column?
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7. Can every result in the body be obtained in at least two
different ways? Are there any results which can be
obtained in only two ways?

Similarly, one can construct a function table for
addition and read it to determine answers to the following
questions:

8. In how many different ways can the result 6 be obtained
by addition? Does the result 6 occur in the table in
some pattern and if so does a similar pattern apply to
other results such as 7, 8, etc.?

9. What is the relation between two successive rows of the
table?

Because of the patterns they exhibit, function tables
can be very helpful in gaining an understanding of
unfamiliar mathematical functions. For this reason they

118 will be used extensively in succeeding chapters.

2.3 EXPRESSIONS FOR PRODUCING FUNCTION TABLES

If A«1 2 3 4 5 6 7 8
B<«1 2 3 4 56 7 8 9 10
then the expression Ao.xB yields the body of the function

table of Figure 2.3 as follows:

Ao .xB

3 L 5 6 7 8 9 10

6 8 10 12 14 16 18 20

9 12 15 18 21 24 27 30
8 12 16 20 24 28 32 36 40
10 15 20 25 30 35 40 45 50
12 18 24 30 36 42 48 54 60
14 21 28 35 42 49 56 63 70
16 24 32 40 48 56 64 72 80

o EN

OO0 F WN P

Similarly, the body of an addition table for the same
set of arguments can be produced as follows:

Ao, +B
2 3 4 5 6 7 8 9 10 11
3 L 5 6 7 8 9 10 11 12
4 5 6 7 8 9 10 11 12 13
5 6 7 8 9 10 11 12 13 14
6 7 8 9 10 11 12 13 14 15
7 8 9 10 11 12 13 14 15 16
8 9 10 11 12 13 14 15 16 17
9 10 11 12 13 1y 15 16 17 18
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The general rule is that the symbol o (called null)
followed by a period followed by the symbol for a function
produces the appropriate function table when applied to any
arguments A4 and B. The expression "4o.+B" may be read as
"the addition table for 4 and B" or as "4 addition table B",
or even as "4 null dot plus B". Similarly, "4o.xB", may be
read as "4 times table B", etc.

It is important to note that the expression 4..+3B
produces only the body of the addition table to which one
may add a first column consisting of 4 and a first row
consisting of B if this is found to make the table easier to
read.

It 1is also important +to note the difference between
the expression 4o.xB, which yields the multiplication
table, and the expression AxB, which yields the
element-by-element product of 4 and B. For example:

A<1 3 5
B«2 4 6

AXB
2 12 30

Ao, xB
2 L 6
6 12 18
10 20 30 F12-13

The body of a table alone does not define a function.
For example, the following tables define two distinct
functions although the bodies of the tables are identical:

+ ]2 3 4 s Fl2 38 5 7
2 % 5 6 7 6 | ¥ 5 6 7
3|5 6 7 8 515 6 7 8
» |6 7 8 9 v e 7 8 9
517 8 9 10 3 17 8 9 10

The name of the function represented by the first
table is + (as shown in the upper left corner), and the
table can be used to evaluate expressions as shown on the
left below:

5 + 3 is 8 5 F 3 is 6
4 + 5 is 9 4 F 5 is 8
3 + 3 is 6 3 F 3 is 8

The function represented by the second table is called

F  (as indicated in the wupper left corner) and the
expressions on the right above show the evaluation of the
function F for the same arguments used on the left. Since

the results differ, the two tables represent different
functions.
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The complete specification of a function table
therefore requires the specification of four items:

1. The left domain (i.e., the domain of the left

3. The body of the table.
4. The name of the function.

From these four items the table can be constructed and
used as illustrated below:

Left domain: 3 4 56

Right domain: 11 9 7 5 3 1

Body: 5 + (3x1U4)o.+(2%x16)
Name: G

¢l11 9 7 5 3 1
3| 10 12 1% 16 18 20
4|13 15 17 19 21 23
5
6

16 18 20 22 24 26
19 21 23 25 27 29

2.4 THE FUNCTIONS DENOTED BY [ AND |

The advantages of the function table can perhaps be
better appreciated by applying it to some unfamiliar
functions than by applying it to functions such as addition
and multiplication which are probably already well
understood by the reader. For this purpose we will now
introduce several simple new functions which will also be
found to be very useful in later work.

It is sometimes instructive to introduce a new
function as a puzzle - the reader must determine the general
rule for evaluating the function by examining the results
obtained when it is applied to certain chosen arguments.
For example, the function L can be applied to certain
arguments with the results shown below:

3L8

47032
32
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If one performs enough such experiments it should be
possible to guess the general rule for the function. In
attempting such a guess it 1is helpful to organize the
experiments in some systematic way, and the body of the
function table provides precisely the sort of organization
needed. For example:

I«1 2 3 4 56 7 8
To.lI
1 1

PR R R R R RP R
NNNNNDNODN PR
WWWwWwwN

FFFFFON

oo EwWN R
OO UEWN R
NN U FEWN e
® O U»FEwWwN R

From the foregoing the reader should be able to state
the definition of the function and from that statement be
able to apply it correctly to any pair of arguments.

The function | is called the minimum function because

it yields the smaller of its two arguments. The maximum

function is denoted by [ and is defined analogously. The
body of its function table appears below:

o

~

.

N UE WN P
N U EWNN
OJOUFEWWwHN
ONO U EEEFE
IO Lo x;
DO O]
ON NN 9NN 99
™ MmO mw o

2.5 THE POWER FUNCTION

Another very useful function is called the power
function and 1is denoted by *. The body of its function
table is shown below:

I«1 2 3 4 5 6 7

To.*xT

1 1 1 1 1 1
4 8 16 32 6uU 128
9 27 81 243 729 2187
16 ou 256 1024 4096 16384

25 125 625 3125 15625 78125
36 216 1296 7776 46656 279936
49 343 2401 16807 117649 823543

~NOoO o EWN R

H17-18
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The power function is defined 1in terms of
multiplication in much the same way as multiplication is
defined in terms of addition. To appreciate how

multiplication is defined as "repecated additions", consider
the following expressions:

2p2
2 2

+/2p2 2x2
4 4

3p2
2 2 2

+/3p2 2%x3
6 6

Lp?2
2 2 2 2

+/Up?2 2x4
8 8

+/5p2 2x5
10 10

+/6p2 2x6
12 12

+/8p3 3x8
24 24

Comparing the results of +/2p2 and 2x2 and the results
of +/3p2 and 2x3, etc., it should be clear that MxN is
equivalent to adding N quantities each having the value M.

The corresponding definition of the power function =
can be obtained by replacing each occurrence of + in the
foregoing expressions by x and each occurrence of x by =:

2p2
2 2

x/2p2 2% 2
4 4

3p2
2 2 2

x/3p2 2%3
8 8

4p?2
2 2 2 2

x/h4p?2 2% L4
16 16

x/5p2 2%5
32 32

x/6p2 2%6
6U B4

x/8p3 3%8
6561 6561

In general, M to the power ¥ (that 1is, M*N) is

obtained by multiplying together N factors each having the
19-22F wvalue pu.
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2.6 MAPS

Figure 2.4 shows a map which represents the "times
two" function. The rule for evaluating a function
represented by a map is very simple: 1locate the specified

argument in the top row, then follow the arrow from that
argument to the result at the head of the arrow in the
bottom row; e.g., the result for the argument 3 is 6.

1234&891011121314
Map of "Times Two" Function

Figure 2.4

The rules for constructing a map are also simple.
First consider all of the wvalues in the domain of the
function together with all of the results, and choose the
smallest number and the largest number from among them.
Write a row of numbers beginning with the smallest and
continuing through each of the integers in order up to the
largest. Repeat the same numbers in a row directly below
the first row. For each argument in the top row now draw an
arrow to the corresponding result in the bottom row.

Just as it is often helpful to read tables, so is it
helpful to read such maps. Consider the four maps shown in
Figure 2.5. From the first it is clear that in the map of
addition of 2, the arrows are all parallel. From the map
pelow this it is clear that the same is true for addition of
3, and that the slope of the arrows depends on the amount
added. The maps on the right show multiplication; here the
arrows are not parallel, and the distance between suc-
cessive arrowheads is seen to be equal to the multiplier.

1 2 3 L 5 6 7 9 10 11 12
\\\\\2 \\\\\\XQ
1 2 3 [ 5 [§) 7 10 11 12
1 2 3 u 5 6 7 9 10 11 12
1 2 3 4 5 [$) 7 9 10 11 12

Maps for Addition and Multiplication

Figure 2.5
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It is sometimes useful to show the maps of a sequence
of functions such as the following:

I«1 2 3 4 5 6

2xT
2 L 6 8 10 12
8+(2xI)

10 12 14 16 18 20

The appropriate maps are shown in Figure 2.6. The
broken lines show the map of the overall result produced,
that is, the map of the function 8+(2xI).

1 23 4_5_6._7 8 9 10 11 12 13 14 15 16 17 18 198 20

NS

2.3 4 5~\§\\7 8..9°10_1112_13 14 15 16 17 18 19 20

\\\\\\NNO

/)

=
1 2 3 4 5 6 7 8 9°10 11712
Maps of a Sequence of Functions

Figure 2.6

23-24f function produces.
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The Negative
Numbers

3.1 SUBTRACTION

The subtraction function is denoted by the minus sign
(-). For example:

READ AS

8-3 8 minus 3
5 makes 5

(5+3)-3 Quantity 5+3 minus 3
5 makes 5

(5-3)+3 Quantity 5-3 plus 3
5 makes 5

The following examples illustrate the relation between
addition and subtraction:

5+3 8-3
8 5
6+3 9-3
9 6
7+3 10-3
10 7
5+4 9-4
9 5
6+4 10-4
10 6
7+4 11-4
11 7
1 2 3 4 543 4 5 6 7 8-3
L 5 6 7 8 1 2 3 4 5
1 2 3 4 5+4 5 6 7 8 9-4
5 6 7 8 9 1 2 3 4 5

From these examples it appears that subtraction will undo
the work of addition. That is, if 3 is added to 5 to
produce 8, and 3 is then subtracted from 8 the final result
is the original value 5. This 1is true in general, and
Thus for any number X and any number 4, the expression
(X+4)-4 will yield X.
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The converse is also true; that is, addition will undo
the work of subtraction, and addition is therefore the
inverse of subtraction. For example:

8-3
5
5+3
8
8 9 10 11 12 13-3
56 7 8 9 10
56 7 8 9 10+3
8 9 10 11 12 13

In other words, (X-4)+4 will also yield X.
In summary then:
(X+4)-A makes X
(X-4)+A makes X
For example:
(8 9 10 11 12 13+3)-3
8 9 10 11 12 13
(8 9 10 11 12 13-3)+3
8 9 10 11 12 13

This inverse relation between addition and subtraction
can also be exhibited in terms of maps as follows:

12 3 456 78 9 10 11 12 13 14 15 16 17

NN

1 2 3 4 56 7 16 17
////// 3
1 2 3 4 5686 7 16 17
1 2 3 4 5 13 14 15 16 17
//////3
1 2 3 4 5 13 14 15 16 17

AN

12 3 45 13 14 15 16 17
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3.2 NEGATIVE INTEGERS

Consider a map for the case (3 4 5 6 7 8 9-5)+5 which
should yield 3 4 5 6 7 8 9 as a final result:
12/8“0
T 7 71 27 3 4 s 8 7 8 9 10
2 3 L 5 6

-5

\\\\”

1 7 8 g 10

A problem arises in some of the subtractions, since 3-5 and
4-5 and 5-5 do not yield positive integers. However, the
map shows that if we keep track of the unnamed positions to
the left of the first positive integer, the overall mapping
for adding 5 and then subtracting 5 yields the correct final
result,

The problem is resolved by assigning names to each of
the new positions as follows:

The first number to the left of 1 is named 0. This is read

aloud as "zero", and means "nothing" or "none". The other
new numbers, 1 and "2, are called negative integers, and
are read as "negative 1" and "negative 2". Of course, the

negative integers continue as far to the 1left as desired,
just as the positive integers continue as far to the right
as desired. The whole pattern including the negative
integers, zero, and the positive integers, will be called

The effect of all this is to introduce new integers so
that eyvery subtraction has a proper result. Addition and
subtraction are still defined as before by moving the proper
number of places to the right or left in the pattern of the
integers, but the pattern has now been expanded to include
the negative integers and zero. E5-6
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3.3 ADDITION AND SUBTRACTION

The expression 7+~ 3 can be considered either as adding
7 to "3 as follows:

4 73 72 71012 34 56 78

+7

4 73 "2 7101 2 34 56 7 8

or as adding 3 to 7 as follows:

4 "3 72 7101 2 34 56 78
+ 3
4 3 "2 "1 012 3456 78

that is, 7+ 3 yields the same result as 7-3. The following
examples each show an expression on the left and the
corresponding map on the right for a variety of additions
and subtractions involving both positive and negative
integers:

S« 2 7101 2

5 4 "3 271 0 1 2 3 4 5
S+3 \\\:::555555:::\\\ +3
5 4 "3 7271 0 1 2 3 "u s

5 Ty T3 T2 71 .

5-3 ///:::::>// -3
5 Ty T3 T20 T
5 T4 T3 72 71 0

S+73 ’//j::::;/// +3
5 T T3 T2 71 o0
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The first and last examples illustrate that subtraction of a
negative number (~3 in the example) is equivalent to adding
the corresponding positive number (3 in the example). This
follows from the fact that subtraction of 73 is inverse to
addition of 73 which is equivalent to subtraction of 3.
Hence subtraction of 3 is inverse to subtraction of 3 and

is therefore equivalent to the addition of 3. B7-9

3.4 EXPRESSIONS FOR PRODUCING THE INTEGERS

The function 1 introduced in Chapter 1 produces the
positive integers as illustrated below:

15
1 2 3 4 5
17
1 2 3 45 6 7

The same function can be wused to generate both
positive and negative integers as follows:

The non-negative integers (that is the positive

integers and zero), can be generated as follows:

(16)-1
01 2 3 45

T1+16
012 3145

Non-positive integers can be generated as follows:

The following examples illustrate some functions applied to
a vector S of integers:

S« 5+19
S S+8

4 T3 72 7101 2 34 8 6 4 T2 0 2 4 6 8
1+5 2x S

3 72 "1 01 2 345 8 76 4 T2 0 2 4 6 8
T2+S S+5+S3

6 5 "4 T3 "2 7101 2 12 "9 6 "3 0 36 9 12
S-3 3x3

00 00O0O0O0O0O 12 "9 "6 "3 0 36 9 12 E10



Function Tables
with Negative Integers

4.1 INTRODUCTION

Function tables were wused in Chapter 2 to explore the
behavior of the functions plus and times. We can now apply
them in the same manner to explore the new function
subtraction introduced in Chapter 3. Moreover, they will be

useful in re-examining the behavior of plus and times when

applied to the new negative numbers also defined in Chapter
3.

4.2 SUBTRACTION
If I«19, then the body of a subtraction table for the

arguments 1 to 9 1is given by the expression Io.-I as
follows:

I<19

I
1 2 3 4 5 6 7 8 9

S<«Io.,-T

S
071 72 73 4 s T "7 "8
1 0 "1 "2 73 7y 75 T 77
2 1 0 1 72 73 74 "5 7s
3 2 1 0 71 72 73 4 s
4 3 2 1 0 "1 "2 73 74
5 4 3 2 1 0 "1 72 73
6 5 4 3 2 1 0 1 "2
7 6 5 4 3 2 1 0 1
8 7 6 S5 4 3 2 1 0

The subtraction table 5 has a number of interesting
properties. For example, the zeros down the main diagonal
of the table show that any number subtracted from itself
yields 0. Moreover, each diagonal parallel to the main
diagonal contains the same number repeated. For example,
the diagonal two places below the main diagonal consists
entirely of 2's.
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Consider the arguments 5 and 3 in the expression 5-3.
The result 2 1is found in the circled position in the
following subtraction table:

N

[
mm:wHHOr—xr\Jm

|
|
|
|
|
|

|
O F WON P O RN WIF
|
|
|
|
|

|
FONRPLPORLNWFOU

|

|

|

|

|
WNPRP,PORLNWF O,

|

|

|

|

NP ORLPNDWFOON
|
|

|
PO RNWFOO |
|

ORLr NwWwF O 3 o

W O 0 0 F W L
OO0 U F WK O
~ouro®r o r

If each argument 1is increased by 1, the result is
found in the next row and next column; in other words, one
place down the diagonal as shown by the square in the above
table. Since every entry in this diagonal is the same, we
conclude that (5+1) - (3+1) yields the same result as 5-3.
More generally, if we increase each argument by any number
N, the result is found by moving N places down the diagonal.
Hence we can conclude that (5+N) - (3+N) yields the same
result as 5-3. This conclusion for the arguments 5 and 3
applies to arguments having any values whatever. Hence we
conclude that (X+N) - (Y+VN) yields the same result as X-Y.

The subtraction table S has another interesting
property. If we choose the element in the third row and
seventh column (which represents the result 3-7), we find
that it is the negative of the result in the seventh row and
third column (which represents 7-3). Hence the result of
3-7 is the negative of the result of 7-3. If any other pair
of numbers is substituted for 7 and 3, the same relation
will be observed in the table. We can therefore conclude
that for any numbers X and Y, the result of Xx-y 1is the
negative of the result of Y-X.

From the above we may conclude the following: if we
take the subtraction table S and form a new table 7 each of
whose columns is equal to the corresponding row of S, then

each element of 7 will be the negative of the corresponding
element of S:

|
OF ONRP, ORNW

|

|

|

|

|
FWONRPLORLNWF

|

|

|

|

NP, ORrNDWFOO
|
I

P ORPNWFOOOJ

WO UEWNR O
N EWN R O
O E WNR OR NN
WNPFP,PORPNWFOM
|
ORr NWF O
FLONPORPLNNWFE
WN P ORrNWFO,
NRORNWFOOD
PO RrNWF OO
ORr NWF O ®
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The sum of 4 and "4 is zero, and in general the sum of
any number and its negative is zero. Hence we can state the
foregoing result in another way; the sum of the tables S and
T must be a table of all zeros:

+
3

[eNeoNeoNeoNeoNolNoNeoNol
[eNeNolNolNeoNeNeoNeoNo)
cNeNoNoNeoNoNoNoNeN)
[eNeoNeoNeoNeoNoNeoNoNe]
[eNeoNeoNoNeNeoNoNoNol
[eNeoNeoNoNoNeoNeoNoNe]
[eNelNeolNeoNoNoNoNeoNeo)
[eNeoNeNeoNeNeoNeoNoNo)
[eNeoNeoNoNoNoNoNoNe)

4.3 FLIPPING TABLES

In the previous section the table T was obtained from
the table S by interchanging rows and columns. This
interchange can be stated in a simple graphic way; flip the
table over about the axis formed by the main diagonal:

P NNWF OO 3

30 0 FwNK

P ORDNWwFOOJI
ORrNWF OO I o

2
1
0
1
2
3
n
5
6

A FONRLORFRL,NW
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Flipping tables

In examining the patterns exhibited by tables, it

is

similar way about a

a

in
vertical axis and about a horizontal axis as follows

convenient to flip them

also

0
1

A

O~ OWF MmN
[ T N I I R B |

SO W PN O
LI T I |

O W+ OGN O
| N B I}

W T O NHO AN
I I N

u321nf123
[

MO N—H O PHNM
[

N O AN
|

HO A NM T WO

0123#567

O~ OWwW T ONA
[ R I A |

S oOwWw I+ ON O

MO N O HANMF
[

N O A NMIFT W0
|

HO A NMIFT OO

O "1 AN M T W1 O

O~ NM I+ OO ©
L A R A R R |

HO A NM 0O
[ |

N —HOANMF WO O
LI R A R A |

MO N—HO A NMF WO
[

T ONHO AN F
[ I

w + ™

N O+ N Mm

OWwWw+ MAN O N
SO T ONAO A

O>~>0OWw F OANAO

table is a
and produces

each of these

three methods of flipping a

Each of these

function which

argument

a table as

takes

for

The symbols

functions is a circle with a line through it which indicates

result.
the axis about which the table is flipped, thus

another table as a

¥, ¢, and

For example

e.

&S

O W+ MO N

w T OAN O

T ONAH O

M AN O N
LI

N OANM

o
—
|

N
|

™
|

=

oS

es

D> OWFTONAO
S OW T ONAO A
|

OW T+ ONAO AN
[

W ONAHO AN®
I

T ONAO A NM
LI N

MO N—HOANMIF W
[ I I B |
N—HOHNMF WO
LI T B R

OHNMF WO O~ ®
[ I A

HO A N® T 1O
LI T I N A

N—=H O AN WO O
LI R N R R |

MO N—HOANMAF W
| A T R I |

T ONTHO A NM F
LI I |

DT ONAHO ANM
o

O W F ONO N
[

SO FTONAO
!

O>OWLWIF MONAHO
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The last of these four examples illustrates how the flipping
functions can be applied in succession.

The function & 1is called transposition (because it
transposes rows and columns), the function ¢ is called row
reversal (because it reverses each row vector in the table),

A vector can be thought of much as a one-row table,
and reversal can therefore be applied to it. For example:

I<«19
I

1 2 3 L 5 6 7 8 9
o1

9 8 7 6 5 L 3 2 1

The relation between the subtraction table S and its
transpose T which was noted at the end of the preceding
section can now be stated as follows:

0
+
o
95

[cNeoNeNoNoNeoNoNoNe]
[eNeoNeoNeoNeoNoNoNoNe)
[eNeoNeoNeoNeoNoNoNoNe)
[eNeoNoNeoNoNeoNoNoNe)
[eNeoNeoNoNeoNoNeoNeoNe)
[eNeoNeoNeoNeoNeoNeoNoNe)
[eNeoNoNoNeoNoNoNoNe)
[eNeoNeoNeoNeoNoNoNoNe]
[cNeoNeoNeoNoNoNoNoNe]

4.4 INDEXING TABLES

In discussing a table it is often necessary to refer
to a particular row of the table (e.g., the fourth row), or
to a particular column, or to a particular element. Such a
reference will be called indexing the table, and the row and
column numbers which refer to a given element are called its
indices.

Indexing is denoted by brackets in the manner
indicated by the following examples:

M+~(16)o.-16

O F NN~ O
FLOoNRFR O
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ML3;4]
1
M[4;3]
1
M[3;]
2 1 0 "1 T2 73
M[ 53]

2 1 0 1 2 3

From the first two examples it should be clear that
the row index appears first. From the third it appears that
a row index alone selects the entire vector in that row.
From the fourth it appears that a column index alone selects
the entire column. However, the column 1is displayed
horizontally, not as a column. This emphasizes the fact
that any single column or row selected from a table is
simply a vector and is displayed as such.

Indexing can also be used to select an element from a
vector, but in this case a single index only is required:

P«2 3 5 7 11

P[4]
7

PL2]
3

2 35 7 11[2]
3

Moreover, a vector of indices can be used to select a
vector of elements as follows:

P[1 3 5]
2 5 11

PL4]
2 3 5 7

P[5 4 3 2 1]
11 7 5 3 2

Finally, vectors can be used for both row and column
indices to a table as follows:

ML1 232 4 6]

1 3
0 "2 Ty
M[1 33]
071 "2 73 "y s
2 1 0 "1 "2 73
ML32 4 6]
1 73 75
0 "2 Ty
171 73
2 0 "2
3 1 "1
4 2 0

B4
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4.5 ADDITION

Consider the addition table 4 defined as follows:

I«17

A<To . +1T

A
2 3 4 5 6 7 8
3 4 5 6 7 8 9
L 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 g 10 11 12
7 8 9 10 11 12 13
8 g9 10 11 12 13 14

It is clear that the transpose of the table A4 (that
is, R4) is equal to 4. From this we may conclude that for
any numbers X and Y, the sum X+Y is equal to the sum Y+X.
The diagonals and counter-diagonals (running from upper
right to lower 1left) of the addition table also show
interesting patterns whose meanings can be examined in the
manner illustrated in the discussion of the subtraction

table in Section 4.2.

It is also interesting to examine an addition table
made for negative as well as positive arguments as follows:

J«(115)-8
J
7 "6 5 "4 "3 "2 "1 0 1 2 3 4 5 6 7
B<dJo.+dJ
B
1y T13 712 T11 T10 "9 "8 7 & 5 4 "3 "2 "1 0
“143 712 T11 T10 "9 "8 "7 "6 5 4 "3 "2 "1 0 1
12 11 10 "9 "8 "7 & 5 4 "3 "2 "1 0 1 2
11 T10 "9 "8 "7 & 5 4 "3 "2 "1 0 1 2 3
10 "9 "8 "7 & 5 4 "3 "2 "1 0 1 2 3 n
"9 "8 "7 "6 "5 T4 T3 T2 "1 0 1 2 3 U 5
8 "7 & 5 4 "3 "2 "1 0 1 2 3 I 5 6
7 "6 5 4 "3 "2 "1 0 1 2 3 n 5 6 7
6 5 4 "3 "2 "1 0 1 2 3 Yy 5 6 7 8
s Ty T3 T2 "1 0 1 2 3 I 5 6 7 8 9
4 T3 T2 1 0 1 2 3 Uy 5 6 7 8 9 10
3 T2 1 0 1 2 3 i 5 6 7 8 9 10 11
2 71 0 1 2 3 Yy 5 6 7 8 g 10 11 12
1 0 1 2 3 I 5 6 7 8 g 10 11 12 13
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

One interesting point 1is that the main diagonal
(consisting of all zeros) divides the positive numbers from
the negative numbers. Other patterns noted in Table 4 can

5 also be found in the extended Table B.
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4.6 MULTIPLICATION

Again it will be convenient to consider two tables, a
multiplication table ¥ for positive arguments only, and a
multiplication table N for negative arguments as well:

I<17

M<«Io xT

M
1 2 3 4 5 6 7
2 y 6 8 10 12 1y
3 6 9 12 15 18 21
4 8 12 16 20 24 28
5 10 15 20 25 30 35
6 12 18 24 30 36 42
7 14 21 28 35 42 49

J<(115)-8

J

7 "6 5 4 "3 "2 "1 0 1 2 3 4 5 6 7
N<do , xd
N

T14 T21 T28 T35 T42 49
T12 T18 T24 T30 36 42
10 15 T20 25 T30 35
8 T12 T16 20 "24 28
T9 T12 T15 T18 "21
8 T10 12 "1y
B 5 T8 7
0 0 0 0
y 5 6 7
8 10 12 1y
g 12 15 18 21
12 16 20 24 28
10 15 20 25 30 35
12 18 24 30 36 42
14 21 28 35 42 49

49 42 35 28 21 14
42 36 30 24 28 12
35 30 25 20 15 10
28 24 20 16 12 8
21 18 15 12 9
14 12 10 8 6

7 6 5 n 3

0 0 0 0 0
"7 "6 5 4 "3
14 T12 T10 8 6
T21 T18 T15 T12 9
T28 T2u4 T20 T16 12 8
T35 T30 ~25 20 ~15 10
Ty2 T36 T30 24 ~18 12
49 Tu2 T35 T28 21 14

|
[ T I B |
O N EFWNRPRORNWF OO
O woO wow
=

[eNoNeoNoNoNoNoNoNoNeoNoNolNoNolNo)
[}
NO O FWNRPRORNWFOOJ

The zeros in N can be seen to divide the table into
four guadrants, one in the upper right corner, one in the
upper left, one in the lower left, and one in the lower
right. For convenience in referring to them we will call
these quadrant 1, gquadrant 2, quadrant 3, and quadrant 4,
assigning the numbers in a counter-clockwise order beginning

with the upper right-hand corner as follows:

quadrant 2 quadrant 1

quadrant 3 quadrant 4

Each quadrant of ©#N contains only positive numbers or
only negative numbers, and the signs reverse as we proceed
counter-clockwise through guadrants 1, 2, 3, and 4. It 1is
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also interesting to consider this change of sign by
examining some row of the table.

First consider the fourth row of table ¥, which
represents the "four times" function for positive arguments:

MOy ]
4 8 12 16 20 24 28

Reading this row from 1left to right is clearly
"counting by u4's"; in other words, each entry is obtained
from the one before it by adding 4. Similarly, reading
backward is equivalent to "counting down by u4's", and each
entry 1is obtained from the one to the right of it by
subtracting 4.

Now consider the row of table ¥ which represents the
same "four times" function, that is, row 12:

N[123;]
28 24 T20 T16 12 T8 "4 0 4 8 12 16 20 24 28

Reading from right to left is again "counting down by
fours" and so the entry 4 is preceded by 0 which is in turn
preceded by "4, and so on. Hence the zero entry separates

the positive and negative entries in this row. The same
conclusion applies to any row, and a similar conclusion
applies to any column. Hence the quadrants must alternate

in sign, as already observed.

4.7 MAXIMUM AND MINIMUM

Consider the following set of positive and negative
numbers:

I<(113)-7
6 5 L 3 2 1 0 1 2 3 L 5 6

For any pair of positive numbers such as 3 and 5, the
value of their maximum 375 1is the value of that one of the
pair which 1lies farthest to the right in the vector I. The
same rule applies to both positive and negative numbers.
For example:

3rs
5
35
3
3rr
3 3 83 3 3 3 3 3 3 3 4 5 86
3T
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Therefore, the maximum table appears as follows:
MAX«Io.[T
MAX

6 5 4 3 271 0 1 2 3 4 5 6

5 75 "4 "3 7271 0 1 2 3 4 5 6

4oy Ty T3 7271 0 1 2 3 4 5 6

"3 73 "3 '3 7271 0 1 2 3 4 5 8

T2 T2 72 727271 0 1 2 3 4 5 6

171 71 71 712712 0 1 2 3 4 5 6

0 0 0 0 0O 0O o0 1 2 3 4 5 &

11 1 1 1 1 1 1 2 3 4 5

2 2 2 2 2 2 2 2 2 3 4 5 58

3 3 3 3 3 3 3 3 3 3 4 5 5%

4 L 4 4 4 4 4y 4L 4y 4 L 5 B

5 5 5 &5 5 5 5 5 5 5 5 5 §

6 6 6 6 6 6 6 6 6 6 6 6 6
The corresponding rule for the minimum function is

obvious, and the minimum table appears as follows:

MIN<Io.LT
MIN

6 6 6 6 6 6 6 6 6 6 6 6 6

6 5 5 75 7’5 "5 75 75 75 5 5 5 7§

B ST TS T T O T T T O T

6 75 T4 T3 "3 73 73 73 73 "3 3 3 3

6 5 T4 T3 T2 T2 T2 T2 T2 T2 T2 T2 72

6 75 T4 T3 T2 7171 717171717171

6 5 4 3 271 0 0O O O O 0 O

6 5 4 37271 0 1 1 1 1 1 1

6 5 4 37271 0 1 2 2 2 2 2

6 5 4 3 2 1 0 1 2 3 3 3 3

6 5 4 3 271 0 1 2 3 4 4 4

6 5 4 3 2714 0 1 2 3 4 5 5

5 4 3 271 0 1 2 3 4L 5 6

4.8 RELATIONS
In the work thus far we have observed a number of

relations among expressions. For example, 3+8 1is equal to

8+3, and 1in general X+Y 1is equal to Y+X. Such relations
have also been observed between whole tables. For example,
if M 1is any multiplication table it is equal to its

transpose &X.

fE8-11
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I<15

M«Io.xT

.-I

S«Ie

15
20

25

12
16

12
15

20

10

15
20
25

12

16
20

12
15

10

S5=88

10000
01000
00100
00010
00 001

11111

11111
11111
11111

M-QM
00 000
0 0 0 O0O
0 0000
00 00O
0 0000

S+&S
0 0 00O
0000 O
00 0 0 O
00 0 0O
00 00O

0=5+Q5
111 11
111 11

11111
11111
11111
11111

11111
11111

11111
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The symbol =z is used to denote the not-equal function.
For example:

3z8
1
33
0
S=zQS
01111
10111
11011
11101
11110

From the foregoing it should be clear that a result of
1 implies that the indicated relation holds (that is, it is
true), whereas a result of 0 implies that the relation does
not hold (that is, it is false). H12

There are other useful relations besides equal and

3<5
5<3

3<3

oN

4 3 2 1 0 1 2 3 i
N<oN

1 1 1 1 0 0 0 0 O
(dN)<N

0 0 0 0 o0 1 1 1 1

It should be clear that one integer is 1less than
another if it precedes it in a list of integers (such as &)
arranged in the usual ascending order.

The symbol > denotes the function greater-than. For
example:

N>oN
0 O 0 0 © 1 1 1 1

(¢N)>N

1 1 1 1 0 O O 0 O

To remember which of the symbols < and > denotes
less-than and which denotes greater-than, it may be helpful
to note that the large end of the symbol points to that
argument which must be larger if the relation is to be true
(that is, have the result 1).
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Two further relations will also be employed: the less

than or egqual to (denoted by <) and the greater than or

equal to (denoted by >). Their definitions should be clear
from their names and from the following examples:

I«(17)-4

ey

I=
0 1 0 0 O 0 0

4.9 LOGICAL VALUES

From all of the examples in the preceding section it
can be seen that every result of a relation function is
either a 1 or a 0, or a vector or table of 1's and 0's. It

vector or logical table to refer to such results which
consist of only 0's and 1's. The term "logical" arises
from the fact that a 1 can be thought of as representing

"true" and a 0 as representing "false".

The functions [ and | (maximum and minimum) have
interesting properties when applied to logical results. The
maximum table restricted to such arguments appears as
follows:

0 10,0 1 rpjo 1
0o 1 oo 1
1 1 1171 1

From this it appears that the result of L[k (when [
and X are both logical scalars) is 1 if either one of the
arguments (or both) is 1. 1In other words, L[X is true if
either [ is true or ¥ is true. Hence the maximum function

applied to logical results can be said to be the function
or.

The following examples may clarify the matter:

X«1 2 3 4 5
Y«5 4 3 2 1
X<Y

1 1 0 0 0
X=Y

o 0 1 0 o
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(X<¥)M(x=Y)
11 1 0 0
X<y
11 1 0 0

For these values of X and Y it can be seen that the
expression (X<Y) [ (X=Y) has the same result as X<Y. The
expression X<Y) [ (X=Y) may be read as "x 1is less than Y or
X equals Y" and therefore the conclusion can be phrased as
follows: "The expression X is less than Y or X equals Y has
the same result as X<y".

In a similar manner it can be shown that the minimum
function applied to logical results is equivalent to and:

0 1o.,L0 1 Lo 1
0 o0 of o 0
0 1 1410 1

In other words, the result LXK is true only if [ is
true and K 1is true. For example, (X<Y) L (X=Y) 1is
equivalent to X-=7Y. These logical functions are discussed
further in Section 14.1.

The function L|/V (minimum over V) applied to any
vector V yields the value of the smallest element in 7.
Hence if V is a logical vector, the expression | /V yields a
0 if there is any =zero in V¥V, and the expression |/V
therefore is true (i.e., 1) only if all elements of V are
true. Therefore |/V can be thought of as "all of V".
Similarly [/V is true if at least one element of V 1is true.
For example:

W<l4 6 2 3 7

1<W

1 1 1 1 1
L/1<W

1
[ /1<W

1
3<W

1 1 0 0 1
L/3<W

0
[/3<w

1
8<W

0 0 0 0 0
L/8<W

0
[/8<W

E15
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4.10 THE OVER FUNCTION ON TABLES

The over function has been frequently used on vectors
in earlier chapters. For example:

+/2 4 3
9

x/2 4 3
24

[/2 4 3
u

L/2 4 3
2

It is also useful to apply the over function to tables, and
the method of doing this will now be defined.

A few examples will be given first:

T<1 2 3 YHo,-1 2 3

W N P O

w
o
w
o

x/T

r/r
2 3
L/r
0 1
The rule should be clear from the foregoing examples:

apply the indicated function over each of the vectors formed
by the rows of the table.

Sometimes one would like to apply a function over each
of the vectors formed by the columns of a table. This can

be done by first transposing the table. For example:

_T
0 1 2 3
10 1 2
271 0 1
+/QT
6 2 2
x/QT
0 0 0
[/&T
3 2 1

L/&T
2
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Another over function can of course be applied to any
vector resulting from an gver function applied to a table.
Hence one would obtain the sum of all elements of T by the
following expression:

+/+/T

Similarly, the expression x/+/T yields the product of
the sums of the rows of T:

x/+/T

In particular, the expression L/L/L applied to any
logical table I will yield a result of 1 (true) only if
every element of [ is true. This is useful in comparing

tables. For example:

I«1 2 3 4 5

S«Io,-T A<To . +T
S=Q5 A=Q4
1 00 0O 11111
01000 111 11
00100 11111
00010 11111
00 001 11111
L/L/S=8S L/L/4A=84
0 1

Ele



The Rational
Numbers

5.1 INTRODUCTION

In Chapter 3, the subtraction or minus function was

introduced as a function which undid the work of addition,
that is, for any positive integers, X and 4, the expression

(X+4)-4

would yield the result X. Subtraction was therefore said to

Since addition was also inverse to subtraction, it
followed that the expression

(X-4)+4
would also yield X. However, 1if 4 is larger than X, then
X-4 is not a positive integer, and the negative integers and

zero were introduced to ensure that every subtraction would
have a result.

In this chapter the division function will be

introduced in a similar way, as a function which will wundo
the work of multiplication, that is,

(XxA4)34A

yields the result X. Since multiplication will also undo
the work of division, it follows that

(X+4)x4
also yields X. That is:
READ AS
(XxA4)+A is x Quantity X times 4 divided by 4 is X

and
(X+A)xA is X Quantity X divided by 4 times A is X
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For example:
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3x 8 3x" 8
24 T2y
(3x8)+3 (3x78)+3
8 ~8
2u4%3 243
8 B
3x(2433) 3x( 7 2u4%3)
24 24
S< U417
S
3 72710123
Sx3
"9 "6 "3 036 9
(Sx3)+3
"3 72 7101 2 3
M+Sx3
M
"9 6 "3 036 9
M:3
372710123
(M+3)x3
"9 76 "3 036 9 B1-2
Maps for the examples Sx3 and (S5x3):3 appear as
follows:

The examples for M:3 and (M:3)x3 can be mapped

similarly:
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In discussing the expression 4:B, the first argument 4
is called the dividend (that which is to be divided), the

second argument B is called the divisor (that which

divides), and the result 1is called the guotient (how many
times). For example, in the expression 12:3, the number 12
is the dividend, 3 is the divisor, and the result 4 is the

quotient.

Just as the expression X-4 would sometimes vyield a
result which was not a positive integer, so the expression
X+4 will sometimes yield a result which is not an integer,
and it becomes necessary to introduce a new class of numbers

which are neither positive nor negative integers. These
numbers are called rational numbers because they arise as a
ratio of two integers. They are also called fractions,

because a number such as 1:3 is considered to be one piece
of a whole which is divided into 3 equal parts, that is, it
is a fraction or "fractured part" of a whole. However, the
question of these new numbers will be deferred until we have
considered methods for performing division.

5.2 LONG DIVISION

To divide a small number such as 8 into another small
number such as 56, one can simply guess at the answer and
then check the guess by multiplying it by the divisor (that
is, 8) and comparing the resulting product with the original
dividend 56. Thus if the guess is 7, the product 7x8 is 56
and the guess is correct; the quotient of 56 divided by 8§ is
7. More generally, if DD is the name of the dividend, DR is
the name of the divisor, and (¢ 1is the name of the guess,
then the product DRxG must agree with the dividend pp in
order that the guess be the correct quotient resulting from
DD+DR.

For somewhat larger numbers one is less 1likely to
guess right the first time, and the comparison of the
product DRxG with the dividend DD can be used to determine
whether the next guess should be larger or smaller. For
example, in the division u405u48+124, the value of DD is
40548, the wvalue of DR is 124, and the first guess G might
be slightly over three hundred, say 305. The product of g
and DR may then be computed:

124
x305
620
000
372
37820

Since the product 37820 is less than the dividend 40548, the
next guess should be somewhat larger than 305.
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One might take the next guess to be 330, in which case
the product 124x330 would be 40920 and therefore too large.
The third guess should be somewhere between 305 (which was
too small) and 330 (which was too large). Guessing in this
way will eventually lead to the desired quotient, but may
take a lot of work. =24

It would help to know not only that the next guess
should be larger (or smaller) but by how much. It is easy
merely subtracts it from the dividend. Thus in the example
40548+124 and the guess 305:

124 40548
X305 -37820
620 2728
000
372
37820

The product should be increased by 2728. This can be done
by increasing the guess by 2728:124.

We are thus faced with a new division problem (that
is, 2728:124), but this time with a smaller dividend.
Making a guess of 22 for the quotient would prove correct
since 22x124 is equal to 2728. The correct quotient is the
sum of the first guess (305) and the correction to it (22),
that is, 327. The whole process is shown below:

40o548+124
124 40548 124 2728 305
x305 -37820 x22 -2728 +22
620 2728 248 0 327
000 248
372 2728
37820

The work can be organized more conveniently as shown
on the left below; the necessary multiplications are shown
separately on the right and their results are transferred to
the appropriate places on the left:

327

+22
305 124 124
12440548 x305 x22
-37820 620 248
2728 000 248
-2728 372 2728

0 37820
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In the foregoing, the final result 327 is entered at the top
of the column of guesses (305 and 22) of which it is the
sum.

If the second guess 1is not correct a third can be
made, and if that is not correct a fourth can be made, and
so on. The final result is the sum of the guesses. For
example, to compute 670u4:16:

419 16 16
“v2 X402 x15
+15 32 80
402 00 16
16'67OM 64 240
-6432 6432
272 16
-240 x2
32 32
=32
0
The quotient is 419. This result can be checked by

multiplying it by 16 to see that the product is indeed equal
to the dividend 6704.

If one chooses each guess to be a single digit, or a
single digit followed by one or more =zeros (that is, one
chooses guesses which are single-digit multiples of 1, 10,
100, 1000, etc.) then the necessary multiplications become
much simpler. For example, the division 40548:124 (used in
an earlier example) might begin with a guess of 300. Since
300x124 is equivalent to 3x124 followed by two zeros, this
multiplication can be carried out on a single line and need
not be done off to the side as was the case with the guess
305 used in the previous example:

00
124)40548

-37200
3348

The next guess will be a multiple of 10, say 20:

+20

300
124|u05u8
-37200
3348
-2480

868
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The next guess is a multiple of 1, say 7:

327
+7

+20
300
124!40548
-37200
3348
-2480
868
-868

0

This method of choosing multipliers not only
simplifies the necessary multiplications, it also simplifies
the addition of the guesses. In the previous example, the
addition of 300 and 20 and 7 involves no carries, because
each digit position has a single non-zero entry. This will
always be the case provided that the leading digit in each
guess is chosen as large as possible,

The preceding example (for the division 40548:124) is
repeated below on the left. It is also reproduced on the
right but with all of the trailing zeros dropped from the
calculations:

327 327
7 7
20 2
300 3
124|40548 124 40548
~37200 -372
3348 334
-2480 -248
868 868
-868 -868
0 0

From this it appears
right will suffice to record the sequence
In fact, the sequence
written on the same
unnecessary. The steps of this final

3

124]40548

-372
33

of guesses 3,
making the
scheme (called 1long

12&[40548

that the simpler scheme on the

of calculations.
and 7 could be
final addition

327
124'40548
-372
334
-248
868
-868
0
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5.3 RATIONAL NUMBERS

In the preceding examples and exercises, each dividend
used was an integer multiple of the divisor and the quotient
was therefore an integer. However, the division 21:4 cannot
have an integer result since the quotient 5 is too small and
the quotient 6 1is too large. Rational numbers will now be
introduced to ensure that a quotient such as 21:4 has a
result.

Consider the example

P<710+119

and the following map for P:3 and (P:3)x3

e\

7 6 5

From this example, it appears that the number 6:3 is
less than 7:3 which is less than 8:3, and so on. In other
words, the following sequence of four numbers is in
ascending order:

6+3 7+3 8:3 9+3
Since 6:3 is 2 and 9:3 is 3, the above may be written as:
2 7+3 8+3 3

In other words, the numbers 7:3 and 8:3 occur between the
integers 2 and 3 and therefore cannot be integers. They are
called rational numbers.

The negative integers and =zero (introduced to make
every subtraction have a result) are a set of numbers which
precede the positive integers; the rational numbers

(introduced to make every division have a result) are a set

Just as names were introduced for the negative numbers
(for example ~5 "4 "3), names can be introduced for
rationals. The result of 2:3 is often written as 2/3, the
result of 5:2 is written as 5/2, etc. In this book we will
make very little use of such names, but will instead simply
write the expression which produces the rational number (for
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example, 2:3 or 5:2, or :/2 3 or :/5 2), or else write the
rational number as a decimal fraction. Decimal fractions

will be discussed later in this chapter.

Since the integer 2 is equal to 2:1 or to uy:2 or to
6:3, etc., then the integer 2 itself can be considered to be
a rational number. Similarly, 3 is equal to 331 or +6:2,
etc. Therefore every integer can also be considered to be a
rational number.

In discussing a rational such as 4:B, the terms

the following sense: 3:5 is called 3 fifths, 5:7 is called

5 sevenths, etc. Similarly, the numerator gives the number

of things named, as also illustrated in the examples of the
preceding sentence. E8-11

5.4 ADDITION OF RATIONALS HAVING THE SAME DIVISOR

Consider the following pairs of examples:

(6+3)+(9:3) (6+9):3
5 5

(20+5)+(25+5) (20+25)=%5
9 9

(32+4)+(8=4) (32+8)+u4
10 10

Since each of the results in the first column agrees
with the corresponding result in .the second column, it
appears that the expressions in each pair are equivalent,
that is, (9:3)+(6:3) is equivalent to (9+6):3, and so forth.
The general rule illustrated by the examples is this: If 4,
B, and ¢ are any three integers, then

(A:C)+(B:C) is equal to (4+B):C

The first example may be diagrammed as follows:

+9

11 12 13 14 _15 16

11 12 13 14 15 16
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Each division in the foregoing examples produces an

been shown to hold for such cases. It will, however, be
assumed to hold for all rational numbers. For example:

(5+3)+(8:3) is equal to 13:3
The diagram for this example follows:

+8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

+3
IRRREREERN

1 2 3
EERREREEAR
+8+3

I
|1

| (]
0 L 5 6 7 8 9 10 11 12 13 14
| N

It should be clear from the foregoing that similar
rules apply to the subtraction of rationals having the same
divisor, that is:

(A:C)-(B:C) is equal to (4-B):cC
For example:

(13:3)-(8%3) is equal to 5:3.

If the addition or subtraction of two rationals
produces a dividend which is evenly divisible by the
divisor, then the result may be further simplified to a
single integer. For example:

(8+3)+(7%3)

15+3
5

(8:3)-(523)
3:3
1

The vertical 1lines above indicate, as usual, that the

expressions to the right are equivalent. From here on the

vertical lines will be omitted; that is, any 1list of

expressions should be read as a statement that the
12-14F expressions are equivalent.
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5.5 MULTIPLICATION OF RATIONAL NUMBERS

The rules for multiplying two rational numbers will be
explored by first considering a number of cases in which the
division can actually be performed. Compare the
corresponding examples in the following two columns:

(10:5)x(12%3) (10x12)+(5x3)
2x U 120%15

8 8
(18:3)x(12%6) (18x12)+(3x6)
6x2 216:18

12 12
(32:8)x(35%7) (32x35) +(8x7)
uxs 1120356

20 20

Since the results in the two columns agree, it appears
that (10:5)x(12:3) is equivalent to (10x12)3(5x3) and so on.
In general, if 4, B, ¢, and D are any integers, it appears
that (4:B)x(C:D) is equivalent to (4xC):(BxD). The above
examples illustrate this only for cases where A4:B and (C:D
each produce integer results. However, the rule will be
assumed to apply for all rational numbers. For example:

(3:4)x(5:2) is equal to 15:8
(4:3)x(2:5) is equal to 8:15
(3:4)x(u423) is equal to 12:12 (that is, 1).

The rule for multiplying rationals can therefore be
stated as follows:

(A:B)x(C=+D)

(AxC)=(BxD)
In words, the dividend of the result is the product of the
dividends and the divisor of the result is the product of

the divisors.

Applying this rule to the case where 4, B, C, and D
are equal to 4, 5, 3, and 3, respectively, yields

(425)x(3%3)
(4x3)+(5x3)
1215
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However, since 3:3 is 1, then

(4:5)x(3:3)
(4+5)x1
45

Therefore, all members of the two sets of expressions
above are equivalent, and 12:15 is equal to u:s.

It therefore appears that for any three integers 4, B,
and C:

A+B
(A:B)x(C=:C)
(AxC)=+(BxC)

In words, if the dividend and divisor of a rational number
are nmultiplied by the same quantity (¢, the resulting
rational number is equal to the original rational number.

5.6 MULTIPLICATION OF A RATIONAL BY AN INTEGER

Consider again the general rule for the multiplication
of two ratios, that is:

(A:B)x(C=+D)
(AxC)=(BxD)

If B has the value 1, we obtain the following simpler
rule:

Ax(C=zD)
(A+1)x(C+D)
(AxC)+(1xD)
(AxC)=+D

In other words, if a ratio (C:D is to be multiplied by
an integer 4, the result is obtained by simply multiplying
the numerator ¢ by 4. For example:

5x(3+7)
15+7

5.7 MULTIPLICATION EXPRESSED IN TERMS OF VECTORS

Since 3:4 can be written as :/3 4, and 5:2 can be
written as :/5 2, etc., then any rational can be written as
+/V, where V is a two-element vector. The first examples
used in the multiplication of rational numbers will now be
repeated but written in this new form:
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(+/10 5)x(%/12 3) +/10 5x12 3
2%l +/120 15
8 8
(£/18 3)x(+/12 6) $/18 3%x12 6
6x2 +/216 18
12 12
(+/32 8)x(+/35 7) +/32 8x35 7
4 x5 +/1120 56
20 20

From the foregoing it appears that the rule for
multiplying rationals can be written very neatly in terms of
vectors: if V and W are each two-element vectors, then the
product of the rationals (:/V)x(:/W) 1is equivalent to the
rational :/VxW. For example:

V<10 5
W<12 3
(/V)x(2/W)
2x4
8
VxW
120 15
+/VXW
8 E20

5.8 ADDITION OF RATIONALS

The method for adding rationals given in Section 5.4
applied only to the addition of two rationals sharing the
same divisor, that is,

(A:C)+(B:C) is equal to (4+B):C

It cannot be applied to add a pair of rationals such
as 2:3 and Uu:5. However, the results of the preceding
section can be applied as follows:

2:3 1s equal to (2x5)+(3x5)

4:5 is equal to (4x3):(5x3)

Therefore 2:3 and 4:5 are equal to 10:15 and 12+15,
respectively. But the 1last two rationals have the same
divisor and can therefore be added as follows:

(10%15)+(12+15) is equal to 22:15.

Therefore

(2+3)+(u4+5) is equal to 22:15.
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Similarly:

(2:7)+(4:5)
((2:7)x(5+5))+((4+5)x(7%7))
(10+35)+(28235)

38:35

(1:2)+(123)+(1:6)
((122)x(3+3))+((1+3)x(2%2))+(1:6)
(3:6)+(2:6)+(126)

626

1

In general, two rationals, (4:B) and ((C:D) may be
added as follows:

(4*B)+(C=D)
((A+B)x(D:D))+((C+D)x(B%B))
((AxD)+(BxD))+((CxB)+(DxB))
((AxD)+(CxB))*(BxD)

5.9 ADDITION OF RATIONALS IN TERMS OF VECTORS

Recall the rule for the addition of two rationals as
follows:

(A:B)+(C=zD)
((AxD)+(BxC)):(BxD)

Recall also that if ¥V is a two element vector, then
+/V is the ratio V[1]:V[2]. Consequently, the rule for the

addition of two rationals :/V and /W can be expressed as
follows:
(=/V)+(=/W)

(+/Vx¢W)+(VL21xwL2])
For example:
V<3 5
W<«7 2
(/3 5)+(+/7 2)
(+/3 5%x2 7)+(5x2)
(+/6 35)+10
41+10
5.10 THE QUOTIENT OF TWO RATIONALS

Consider the following examples of division:

1234
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(12x5)+(4x5)

3

18+2
9

(18x7)+2x7
9

They illustrate the fact, developed earlier, that the
multiplication of both numerator and denominator by the same
quantity leaves a fraction unchanged. That is:

P:Q
(PxR)+(QxR)

Consider now the division of the rational number 4:B
by the rational number ¢:D, that is,

(A:B):(C=:D)

The result will remain unchanged if the numerator 4:B and
the denominator (¢:D are each multiplied by the same number
D:C. That is:

(A:B):(C=+D)
((A:B)x(D2C)):((C:D)x(D=+C))

The last half of the above expression (that is, (C:D)x(Dz(C))
can be simplified by applying the rule that the product of
two rationals is the product of their numerators divided by
the product of their denominators:

(C:D)x(D=C)
(CxD):(DxC)

Since (xD and Dx( are equal, their quotient is 1. Therefore
(C:D)x(D:C) makes 1.

Finally, then:

(A:B):(C3D)
((A+B)x(D:C))=((C+D)Yx(D=+C))
((A=B)x(D=zC)=1

(A:B)x(D=C)

Therefore the quotient (4:B):((C:D) 1is equivalent to
the product (4:B)x(D:C). For example:

(36+3)+(2434)

(3633)x(L4=+24)
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This relation can also be expressed in terms of
vectors as follows. If V is a two-element vector and W is a
two-element vector, then:

(+/V)s(2/W)
(+/V)xz/¢W

For example:

(+/36 3):(=:/24 u4)

(/36 3)x(3/4% 24)
238 2

5.11 DECIMAL FRACTIONS

Any rational number having a denominator such as 10 or
100 or 1000, etc., can be represented as a decimal fraction
in the manner illustrated below:

1386%10
138.6

1386%100
13.86

1386+1000
1.386

1386+10000
.1386

13863+100000
.01386

The period occurring in a decimal fraction is called a
decimal point. If the decimal point in a decimal fraction
is followed by one digit, then the rational it represents is
the integer represented by the same digits without a decimal
point, divided by 10. If the decimal point is followed by
two digits, the rational represented 1is the same integer
divided by 100, and, in general, if the decimal point is
followed by KX digits, then the rational represented is the
same integer divided by the integer formed by a 1 followed

24-260 by K zeros.
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5.12 ADDITION AND SUBTRACTION OF DECIMAL FRACTIONS

The following examples show the addition of some pairs
of decimal fractions in which the fractions in each pair
have the decimal point in the same place, that is, they have
the same number of digits following the decimal place:

21.34+16.55
(2134+100)+(1655%+100)
(2134+1655) %100
37893100

37.89

13.659+82.546
(13659+82546)%1000
96205+1000

96.205

12.700+39.615
(12700439615)+1000
52.315

In other words, a pair of decimal fractions having the
decimal point in the same place can be added just as if they
were integers (i.e., by ignoring the decimal point), and
then placing the decimal point in the same place in the
result. This rule may be applied to the foregoing examples
as follows:

21.3Y4 13.659 12.700
16.55 82.546 39.615
37.89 96.205 52.315

By the same reasoning, subtraction of such a pair of
decimal fractions can be carried out in a similar manner.
For example, the subtraction 21.34-16.55 can be carried out
as follows:

21.34
16.55
4.79 F27

It remains to add two decimal fractions which do not
have the same number of digits following the decimal point.
The value of a decimal fraction is not changed by appending
zeros to the right of it; thus 12.7 and 12.70 and 12.700,
etc., are all equal. This follows from the fact
(established earlier) that the wvalue of a rational is
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unchanged if the numerator and denominator are each
multiplied by the same number. For example:

12.7

127+10
(127x10)+(10x10)
1270+100

12,70

12702100
(1270%x10)%(100x10)
12700%1000

12.700

Therefore, zeros may be appended to the right of any
decimal fraction without changing its value. To perform the
addition 12.7+39.615, one appends two zeros to the right of
12.7 (getting 12.700) and then adds them by the method for
adding decimal fractions having the decimal point in the
same place:

12,700
39.615
52.315

5.13 THE DECIMAL FRACTION REPRESENTATION OF A RATIONAL

Many rational numbers having denominators which are
not- of the form 10, 100, 1000, etc., can still be expressed
as decimal fractions by simply multiplying both numerator
and denominator by some integer which produces a denominator
which is of the form 10, 100, 1000, etc. For example:

1+2 3:5
(1x5)+(2x5) 6+10
5310 .6
.5 ¢
7%2 1+25
35310 4+100
3.5 .04
38+ 4 1+125
950+100 8+1000
9.5 .008
1+16 13625
625310000 16+10000
.0625 .0016

From these examples, it should be <clear that the
ordinary long division process may be used to convert such
rationals to decimal fractions; all that is needed is to
append to the integer numerator a decimal point followed by
a sufficient number of zeros. For example, since 38 is
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equivalent to 38.0 then 38:4 may be written as 38.0:4 and
the long division may be carried out as follows:

9.5
4|38.0
-36
20
-20
0

Similarly, */1 16 may be converted to decimal fraction
as follows:

.0625

16'1.0000

40

H29

5.14 DECIMAL FRACTION APPROXIMATIONS TO RATIONALS

The rational number 75:64 can be converted to a
decimal fraction by long division as follows:

1.171875
64[75.000000
-6l
110
-6L4
460
-Lug
120
-64
560
-512
T 480
-4u48
320
-320
0

Therefore, 75:64 is equivalent to 1.171875.

Suppose that one stopped the long division process
just before the last digit, obtaining the quotient 1.17187
and leaving a non-zero remainder, that is, 320. The decimal
fraction 1.17187 1is not equal to 75:64, but it is very
nearly equal to it and is therefore said to be a good
approximation to 75:64. To see how close 1.17187 1is to
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75+64 one may subtract the approximation 1.17187 from the
true value 1.171875 as follows:

1.171875
-1.171870
0.000005

The difference is therefore .000005 or 5:1000000. This is
only 5 millionths, a very small quantity.

The decimal fraction 1.17187 is said to be a 5-place
approximation to 75:64 because it is close to 75:64 and has
5 digits following the decimal place. It is also a best
5-place approximation to 75:64, since no other decimal
fraction with only 5 places can be closer (although 1.17188
is just as close and is also a best approximation).

The decimal fraction 1.171 (obtained by stopping the
long division after 3 places) is a three-place approximation
to 75:64, and is smaller than 75:64 by the amount .000875.
It is not, however, the best approximation, since the
fraction 1.172 is larger than 75:64 by only .000125 as may
be seen from the following subtraction:

1.172000
-1.171875
0.000125

Therefore, to get a best approximation to a rational, one
should continue the 1long division one place beyond the
desired number of places. If the additional digit is 1less
than 5, the additional digit should be discarded; if not,
the additional digit should be discarded but a 1 should be
added into the last place kept. For example:

1.1718
64]75.0000
-64
110
-64
460
-448
120
-64
560
-512
48

The best three-place approximation is 1.171+.001, or 1.172.
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Similarly, the best two-place approximation to 115:6W4

can be obtained as follows:

1.796
64]115.000
-6U
510
-448
620
-576
440
-384
56

The best two-place approximation to 115:64 1is therefore

1.79+.01, which is 1.80, or simply 1.8.

For many rationals, the long division process never

terminates with a 2zero remainder. For
rational 1:3, the remainder is always 1:

.333

3!1.000

-9

-9

1

o O

-]

example, for the

For such a case, the long division process can also be used
to give a best approximation to the rational, thus .333 is

the best 3-place approximation for the
differs from it by only 1:3000. For,

.333+(1+3000)
(333+1000)+(1%3000)
(999:3000)+(1+3000)
1000+3000

1:+3

Similarly, .e667 may be obtained as
approximation to 2:3 as follows:

. 6666

3|2.0000

rational 1:3 and

the best 3-place
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Since the fourth digit of the

three-place approximation is

The following table

result exceeds 5,

.666+.001, or

shows

the

five-place

5.14
the best

.667.
decimal

fraction approximations to the rationals resulting from the
172

expression
1.00000 0
2.00000 1
3.00000 1
4,00000 2
5.00000 2.
6.00000 3.
7.00000 3.

(17)o0.

.50000
.00000
.50000
.00000

50000
00000
50000

NNNRr P, P OO

.33333

. 66667
.00000
. 33333
.66667
.00000
.33333

RRrRrRRLROOO

.25000
.50000
.75000
.00000
. 25000
.50000
. 75000

0.20000
0.40000
0.60000
0.80000
1.00000
1.20000
1.40000

5.15 MULTIPLICATION OF DECIMAL FRACTIONS

0.16667
0.33333
0.50000
0.66667
0.83333
1.00000
1.16667

.14286
.28571
. 42857
.57143
. 71429
.85714
1.00000

[eNeoNoNeoNoNe]

The following example shows the multiplication of two
decimal fractions:

1.3x2

.14

(13210)x(214%100)
(13x214)+(1000)

2782+
2.782

1000

From this it is

multiply the
point) and place a decimal point in
number of digits following

numbers

as

it is

clear that the following rule can be used:
integers

(ignoring the decimal
the result so that the

equal to the

number of digits following the decimal points in
factors. For example:

2.14
1.3
642

214

2.782

5.16 DIVISION OF DECIMAL FRACTIONS

The

following procedure
dividend

quotient where

fractions:

the

(2 decimal places)

(1 decimal place)

(2+1 decimal places)

1. Perform the division
ignoring the decimal points.

2. In the resulting quotient, move
many places to the left as

can
and

be used to

divisor

as if the numbers were

the decimal

there are decimal

are

sum of the

the two

find the
decimal

integers,

point as
places in
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3. From there move the decimal point as many places to the
right as there are decimal places in the original
divisor.

For example, to evaluate the expression 11.025:1.26,
we first divide the integer 11025 by the integer 126:

87.5
126[11025
-1008

9qus
-882

630

-630

0

The decimal point in the quotient 87.5 is now moved three
places to the 1left (because the dividend 11.025 has three
decimal places) to obtain .0875, and the decimal place is
then moved 2 places to the right (because the divisor 1.26
has two decimal places) to obtain 8.75. This result can be
checked by evaluating 8.75x1.26 to see that it yields 11.025
as required.

The justification for this procedure should be clear
from the following equivalences:

11.025+1.,26

(11025+1000)%(126%100)
(11025%1000)x(100+126)
(110252126)x(100:1000)

5.17 EXPONENTIAL NOTATION

Numbers such as 120000000 and .0000000017 are awkward
to read and write because of the large number of zeros to be
counted. Exponential notation allows one to write these

numbers instead as 12E7 and 17E  10.

More generally, one may write any decimal number (or
integer) followed immediately by an E followed immediately
by an integer. The value this denotes may be determined as
follows: take the number before the E and move its decimal
point by an amount determined by the integer following the
E, moving it to the right if the integer is positive and to
the left if the integer is negative. For example:

1.34E5 1.34E°5
134000 .0000134
134E3 134E" 7

.134E6 L134E 4

B33

#34-35
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5.18 DIVISION WITH NEGATIVE ARGUMENTS

A study of the map wused in introducing rational
numbers (Section 5.1) should make it clear that (7 1):3 is
the negative of 1:3, that (72):3 is the negative of 2:3,
etc. The result to be obtained when the divisor is negative
is not so clear.

Consider the rational 3: 4 which has a negative
divisor. We have seen that it is equivalent to the rational
(3x4)+( uxA), where 4 is any integer. If we choose 4 to be
"1, then (3xA4):( ux4) is equal (7 3):4. Similarly, (73):("4)
is equal to 3:4. From this it appears that the sign of the
quotient B:( is determined from the signs of the arguments B
and ( in exactly the same way that the sign of the product
BxC is determined (as illustrated by the large table in
Section 4.6).

5.19 DIVISION BY ZERO

The result of the division 4:B 1is a quotient C such
that CxB is equal to 4. If A is 4 and B is zero, then ¢
must be a number such that ¢(x0 is 4. Since 0 times anything
is 0, there is no such number C. Hence division by zero is
not possible.
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Function Tables
with Rational Numbers

6.1 INTRODUCTION

In Chapter 4 we used function tables to examine the
function of subtraction newly introduced in Chapter 3, and
to re-examine familiar functions applied to the negative
numbers also introduced in Chapter 3. In this chapter we
will pursue a similar course with respect to the division
function and the rational numbers introduced in Chapter 5.

In this chapter, the results of divisions are
represented as decimal fractions correct to three places.

6.2 CATENATION

Catenation is a simple new function which will be
needed in this and later chapters; it is denoted by the
comma. "Catena" is a Latin word meaning "chain", and
catenation is a function which chains 1its arguments

together. For example:

X«<1 2 3
Y<4 5
X,Y
1 2 3 45
Y, X
4 5 1 2 3
+/X,Y
15
X,7
12 3 7
7,X
71 2 3
7,8

7 8 Bl
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6.3 DIVISION TABLES

If I<18, then the body of the division table for the
arguments 1 to 8 1is given by the expression Ie°.:I as
follows:

I+<18

D«Io 3T

D
1.000 0.500 0.333 0.250 0.200 0.167 0.143 0.125
2.000 1.000 0.667 0.500 0.400 0.333 0.286 0.250
3.000 1.500 1.000 0.750 0.600 0.500 0.429 0.375
4,000 2.000 1.333 1.000 0.800 0.667 0.571 0.500
5.000 2.500 1.667 1.250 1.000 0.833 0.714 0.625
6.000 3.000 2.000 1.500 1.200 1.000 0.857 0.750
7.000 3.500 2.333 1.750 1.400 1.167 1.000 0.875
8.000 4.000 2.667 2.000 1.600 1.333 1.143 1.000

This table has a number of interesting properties.
For example, each row can be seen to be in descending order
and each column can be seen to be in ascending order.
Moveover, the main diagonal consists of all 1's,
illustrating the fact that N:N is equal to 1 whatever the
value of N¥. Moreover, many other duplications occur in the
table, showing that the same value may result from the
division of different pairs of numbers. Thus the decimal
fraction 0.333 occurs in two places, resulting from 1:3 and
2+6.

The division table can be extended to negative
arguments as well. However, as pointed out in Chapter 5,
the number 0 is not permitted as the right argument of
division:

J<(19)-5
J

I 3 2 1 0 1 2 3 4
K«<(0-¢d14),14

K
4y T3 T2 T1 1 2 3 4

Jo. K
1.000 1.333 2.000 4.000 "4.000 ~2.000 ~1.333 ~1.000
0.750 1.000 1.500 3.000 ~3.000 1.500 ~1.000 ~0.750
0.500 0.667 1.000 2.000 2.000 1.000 0.667 ~0.500
0.250 0.333 0.500 1.000 ~1.000 ~0.500 0.333 ~0.250
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
T0.250 T0.333 "0.500 ~1.000 1.000 0.500 0.333 0.250
"0.500 T0.667 ~1.000 ~2.000 2.000 1.000 0.667 0.500
"0.750 "1.000 ~1.500 ~3.000 3.000 1.500 1.000 0.750
71.000 T1.333 T2.000 "4.000 4.000 2.000 1.333 1.000
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6.4 COMPARISON

Two rationals such as 337 and 4:9 can be compared to
see which is the larger by first converting them each to a
decimal representation. For example:

3:7
0.429

439
0.Lu4y

(3:7)s(u4z9)
1

It is also possible to compare two rationals without
actually carrying out any division.

If two rationals have the same denominator, they can
be compared by simply comparing their numerators. For
example, 27:63 is less then 28:63. Moreover, for any pair
of fractions one can find an equivalent pair which do have
the same denominator. For example, 3:7 1is equivalent to
(3x9)+(7x9) (that is, 27:63) and u4:9 1is equivalent to
(7x4)+(7x9) (that is, 28:63).

In general, if ~¥1, D1, N2, and D2 are any integers,
then ~N1:D1 and N2:D2 can be compared by forming the
equivalent pair (N1xD2):(D1xD2) and (D1xN2):(D1xD2), which
have the same denominator. Hence it is only necessary to
compare the numerators N1xD2 and Di1xN2. For example:

N1+<3

D1<«7

N2<4

D2+<«9

N1:D1
0.429

N2+D?2
0,44l

(N1:D1)<(N2:D2)
1

(N1xD2)<(D1xN2)
1

The same relations will of course hold if ~vi1, D1, D2,
and D2 are vectors. For example:

Ni«1 1 1 2 2 2 3 3 3
Di«1 2 3 1 2 3 1 2 3
N2<4 4 4 5 5 5 6 6 6
D2«4 5 6 4 5 6 4 5 6
N1:D1
1 0.5 0.333 2 1 0.667 3 1.5 1
N2:D2

1 0.8 0.667 1.25 1 0.833 1.5 1.2 1
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(N1:D1)<(N2:D2)

1 1 1 0 1 1 0 0 1
(N1xD2)<(D1xN2)

1 1 1 0 1 1 0 0 1

Moreover, if one wants to compare each element of
N1+D1 with each element of N2:D2, then the corresponding
comparison tables agree as well:

(N1+D1)o.<(N2:D2) (N1o,xD2)<(D1o.xN2)
100110111 100 110111
111111111 111111111
111111111 111111111
00 O0O0OOOOU ODODO 0 000 O0OO0OO0OO 0O
100 110111 100110111
111111111 111111111
00 0 0 O0OOOTOD O 0 000 O0O0O0DO0O0
0000 O0O0O1O0O0 0 00O0O0O0OT1TO0TO0
100110111 100110111

L/L/((N1:D1)o.<(N2:D2)) = ((N1e.xD2)<(D1lo.xN2))

6.5 THE POWER FUNCTION FOR NEGATIVE AND ZERO ARGUMENTS

In Chapter 4 the functions +, x, [, and | were
re-examined to determine how they applied to the negative
arguments introduced in Chapter 3. This was not done for
the power function because the result of an expression such
as 2* 3 is a rational number, and rational numbers had not
yet been introduced.

We will begin by recalling the definition of the power
function as the product over a number of repetitions of a
certain factor, that is, 4*B is equivalent to x/BpA. For
example:

3p2
2 2 2
x/3p2
8
2%3
8
The power table for positive integers therefore
appears as follows:

I<2 3 4 5 6

J«2 3 4 5 6 7

To,*xJ
4 8 16 32 64 128
9 27 81 243 729 2187
16 64 256 1024 4096 16384
25 125 625 3125 15625 78125

36 216 1296 7776 46656 279936
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A simple pattern emerges in each row of the table: any
element of a row can be obtained from the element which
precedes it by multiplying by a certain factor, that factor
being the value of the left argument which produced that
row. For example, the third row was produced by the
expression:

4x2 3 4 5 6 7
16 64 256 1024 4096 16384

and the third element in the row can be obtained from the
one before it by multiplying by 4.

This same pattern can be stated in a different way:
each element can be obtained from the one following it by
dividing by the same factor. In this way the pattern can be

extended to the 1left to obtain results for right arguments
less than 2:

I«2 3 4 5

J<(17)-4

J
3 "2 "1 0 1 2 3

I
0.125 0.250 0.500 1.000 2.000 4.000 8.000
0.037 0.111 0.333 1.000 3.000 9.000 27.000
0.016 0.062 0.250 1.000 4.000 16.000 64.000
0.008 0.040 0.200 1.000 5.000 25.000 125.000

Two important results emerge from these patterns:

Examples
1. Any number 4 raised to the 1 2 3 4 5 6x%1
power 1 is equal to 4. 1 2 3 4 5 6
2. Any number raised to the 1 2 3 4 5 6%0

power 0 is equal to 1. 11 1 1 1 1

The case of a =zero left argument has not been
considered. From the foregoing we may conclude that 0%0
should be 1 and that 0x1 should be 0. Further entries in
the expression 0%0 1 2 3 4 will be obtained by multiplying
by the factor 0 and are all zerno:

0x0 1 2 3 4 5
1 0 O O 0 o0

Recalling that 4A* 1 was obtained from A*0 by dividing
by 4, we may now attempt to define a result for 0% 1 by
dividing the value for 0*0 (that is, 1) by the appropriate
factor. But this factor is 0, and division by 0 is not
allowed. Hence the function 0*R is not defined for negative
values of the right argument R.

B5-6
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The application of the power function to a negative
left argument is straightforward. Recall that 3=4 is
equivalent to x/4p3, and that in general 4=*4 is equivalent

to x/4pA. Hence if 4 is "3 we h- .e:
4p~ 3
3 T3 T3 73
x/4p" 3
81
3%y
81
5p" 3
3 "3 "3 T3 73
x/5p 3
243
T3%5
T2u3
The foregoing results can now be used to construct a
table of the power function for both positive and negative

arguments, including 0 in the right argument only:

I«(0-d14),14

J«(17)-4
I
4 T3 T2 "1 1 2 3 4
J
3 "2 71 0 1 2 3
To.xJ
T0.016 0.062 ~0.250 1.000 "4.000 16.000 64.000
T0.037 0.111 0.333 1.000 73.000 9.000 ~27.000
T0.125 0.250 0.500 1.000 72.000 4,000 ~8.000
71.000 1.000 1.000 1.000 T1.000 1.000 ~1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.125 0.250 0.500 1.00¢C 2.000 4,000 8.000
0.037 0.111 0.333 1.000 3.000 9.000 27.000
0.016 0.062 0.250 1.000 4.000 16.000 64.000
It should also be recalled that 0%*4 is defined for

non-negative values of 4:

0x0 1 2 3 4 5
1 0 0 0 0 O

6.6 THE POWER FUNCTION FOR RATIONAL ARGUMENTS

When the power function is applied to a right argument
consisting of successive integers, the successive elements
of the result increase by a fixed factor. For example:

4x0 1 2 3 4 5 6 7 8 9

1 & 16 64 256 1024 L4096 16384 65536 262144
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The multiplying factor is 4. This same pattern is
observed when the elements of the right argument are equally
spaced, even though the spacing 1is not equal to 1. For
example:

4x0 2 4 6 8
1 16 256 4096 65536

The multiplying factor is now 16.

The first pattern above can be thought of as being
obtained from the second by squeezing the odd integers
between the even integers. Hence if the multiplying factor
for the pattern 4*x0 1 2 3 4 5 6 7 8 9 1is 4, the factor for
the pattern u4*0 2 4 6 8 must be u4x4, which agrees with the
earlier observation.

Similarly the pattern 4*x0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5
can be thought of as being obtained by squeezing the entries
.5, 1.5, 2.5, 3.5, and 4.5 between the integers 1, 2, 3, 4,
and 5. In this case the multiplying factor must be 2, since
the product of two factors (that is, 2x2) must be equal to
the factor 4 which obtains for the pattern for the integers.
Therefore:

4%*0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5
1 2 4 8 16 32 64 128 256 512 1024

Similarly:

9x0 1 2 3 4 5
1 9 81 729 6561 59049
9%0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5
1 3 9 27 81 243 729 2187 6561 19683 59049
25«0 1 2 3 4 5
1 25 625 15625 390625 9765625
25«0 .5 1 1.5 2 2.5 3 3.5 4 4.5
1 5 25 125 625 3125 15625 78125 390625 1953125 E8

Each of the left arguments used above is a perfect
square, that is, a number which is equal to some integer
multiplied by itself. Thus % equals 2x2 and 9 equals 3x3
and 25 equals 5x5, Because of this property, the
multiplying factor in each of the "squeezed" patterns 1is an
integer. Since 3 is not a perfect square, a left argument
of 3 gives a pattern in which the fractional powers are not
integers:

3*0 .5 1 1.5 2 2.5 3
1.000 1.732 3.000 5.196 9.000 15.588 27.000

Nevertheless, the pattern is maintained, the
multiplying factor is 1.732 (correct to 3 places) and
1.732x1.732 is (approximately) equal to 3.
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From this it appears that 3x%.5 is a number which
multiplied by itself gives 3; it is called the square root

of 3. Similarly, 2x.5 1is the square root of 2, and
(2%.5)x(2*,.5) must equal 2.

The square root of a number can be obtained by
"guessing and testing" much 1like the method described for
division at the beginning of Chapter 5. For example, to
obtain the square root of 2 we might +try 1 (which is too
small because 1x1 is less then 2), and 2 (which is too large
since 2x2 is greater than 2), and then 1.5. Since 1.5x1.5
is 2.25, this is also too large. The next trial might be
1.4 (which is slightly too small), and the next might be
1.42. Better methods are developed in later chapters.

We can now produce a table of powers wusing right
arguments of the form (1N¥):2:

I«1 2 3 456 7 839
J<«0 .5 1 1.5 2 2.5

To.*dJ
1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.414 2.000 2.828 4.000 5.657
1.000 1.732 3.000 5.196 9.000 15.588
1.000 2.000 4,000 8.000 16.000 32.000
1.000 2.236 5.000 11.180 25.000 55.902
1.000 2.449 6.000 14.697 36.000 88.182
1.000 2.646 7.000 18.520 49,000 129.642
1.000 2.828 8.000 22.627 64.000 181.019
1.000 3.000 9.000 27.000 81.000 243.000

The same reasoning can be applied to right arguments
of the form (1#N):X for any value of X:

(16)+3
0.333 0.667 1 1.333 1.667 2

To.*x(16)+3

1.000 1.000 1.000 1.000 1.000 1.000
1.260 1.587 2.000 2.520 3.175 4.000
1.442 2.080 3.000 4,327 6.240 9.000
1.587 2.520 4.000 6.350 10.079 16.000
1.710 2.924 5.000 8.550 14.620 25.000
1.817 3.302 6.000 10.903 19.812 36.000
1.913 3.659 7.000 13.391 25.615 49,000
2.000 4,000 8.000 16.000 32.000 64.000
2.080 4.327 9.000 18.721 38.941 81.000
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0.25 0.5 0.75 1 1.25 1.5

1.000 1.000 1.000 1.000 1.000 1.000
1.189 1.414 1.682 2.000 2.378 2.828
1.316 1.732 2.280 3.000 3.948 5.196
1.414 2.000 2.828 4.000 5.657 8.000
1.4895 2.236 3.344 5.000 7.477 11.180
1.565 2.449 3.834 6.000 9.391 14.697
1.627 2.646 4.304 7.000 11.386 18.520
1.682 2.828 4,757 8.000 13.454 22,627
1.732 3.000 5.196 9.000 15.588 27.000
(16)+5
0.2 oO.4 0.6 0.8 1 1.2
To.*x(16)%5
1.000 1.000 1.000 1.000 1.000 1.000
1.149 1.320 1.516 1.741 2.000 2.297
1.246 1.552 1.933 2.408 3.000 3.737
1.320 1.741 2.297 3.031 4,000 5.278
1.380 1.904 2.627 3.624 5.000 6.899
1.431 2.048 2.930 4,193 6.000 8.586
1.476 2.178 3.214 4,743 7.000 10.330
1.516 2.297 3.482 5.278 8.000 12.126
1.552 2.408 3.737 5.800 9.000 13.967
The foregoing results have all involved applying the
power function to non-integer right arguments and
non-negative left arguments. In general it is not possible
to apply it to non-integer right arguments together with
negative left arguments. For example, to evaluate 4%.5 it
would be necessary to determine a result R such that RxR
equals 4. It is, however, impossible to find such a

number, since the product of any number with itself is
non-negative.

E9-10
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The Residue Function
and Factoring

7.1 THE RESIDUE FUNCTION
Consider the following expressions:

3x0 1 2 3 4 5 6
0 36 9 12 15 18

1+3x0 1 2 3 4 5 6
1 4 7 10 13 16 19

2+3x0 1 2 3 4 5 6
2 58 11 14 17 20

From the first expression, it 1is «clear that the
numbers 0, 3, 6, 9, 12, 15 and 18 are each the product of 3
and some integer; they are therefore said to be integer
multiples (or simply multiples) of 3. A number which is an

The numbers 1, 4, 7, 10, 13, 16, and 19 are not
divisible by 3; when divided by 3 they each yield an integer
quotient and a remainder of 1. Similarly the numbers 2, 5,
8, 11, 14, 17, and 20 each yield a remainder of 2 when
divided by 3. The remainder when dividing an integer by 3
must be either 2 or 1 or 0. If the remainder is 0 the

number is, of course, divisible by 3.

The remainder obtained on dividing an integer B by an
integer A4 is a function of 4 and B. This function is called
the remainder or residue and is denoted by a vertical line

as follows: A|B. For example:

3|6
0

3]7
1

3]0 1 2 3456 7 89 10
01201201201

5/]0 1 2 3456 7 8 9 10
012340123140

A function table for residue is shown in Figure 7.1.

From this table it should be clear that the results of the

expression 4|B must be one of the integers o0, 1, 2, 3, etc.,

up to 4-1. That is, the results belong to the vector
1+14.
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11111
| ]01 2 3456 7 89 012 34
110000O0O0CO0O0O0CO0O0O0O00O00O Left Domain::8
201 0101010101010 Right Domain:i1u
3]012012012012012 Body:(18)o. 114
4401 2301230123012 Symbol: |
5101234012 340123y
6101 2345012345012
7101 2345601234560
80123456 70123%U45¢6

Table of Residues
Figure 7.1 B1-2

7.2 NEGATIVE RIGHT ARGUMENTS

The following examples show how the residue function
applies to negative right arguments:

S« 6+111
S
5 "4 73 72 "1 012 345
3x5
“15 712 "9 76 T3 0 3 6 9 12 15
3| 3xS
00000O0O0OOGO0O
1+3xS
“14 T11 T8 75 T2 1 4 7 10 13 16
3] 1+3xS
11111111111
2+3x3
T13 710 77 T4 T1 2 5 8 11 14 17
3|2+3%xS3
22222222222

It should be clear from these examples that the 3-residue of
B (that 1is, 3|B) is obtained by adding or subtracting some
integer multiple of 3 so that the result is the smallest
non-negative number that can be so obtained. 1In general,
the result 4|B is the smallest non-negative integer that can
be obtained by adding to, or subtracting from, B some
integer multiple of 4. H3-4

7.3 DIVISIBILITY
The integer B is divisible by the integer 4 only if

the A-residue of B is zero, that is, only if (4|B)=0. Since
the expression (18)c.]|0,114 produced a table of residues
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|0,114 will produce the

body of the corresponding divisibility table

(18)o.

(Table 7.1), the expression 0

11111

It is also interesting to arrange the integers 0 to 99

F| v OO O OO
M~ O OO O O oo
ANl O OO
Al O OO OO oo
Ol 1 OO 1O OO
O O 1O O O OO
O 1 O+ OO O
N1 ©O OO0 OO o
Ol 1O O 1 OO
O+ O O O 1 OO O
Tl v O O O OO
M1 O 1 O O O OO
N[+ 1 OO O O OO
vy O OO O O OO
Olvd v~ v v~
AN F OO0

table and then observe the patterns produced

in a 10 by 10

determining divisibility.

by first taking residues and then

For example

.+t0,19

M<(10x0,19)0°

19
29
39
49
59
69
79
89
99

18
28

17
27
37
L7

16
26
36
46

15

14
24
34
uy

13
23
33

12
22
32

11
21
31
41

10
20
30
40

25
35

38
L8

45

43

L2

58
68
78
88
98

57
67

56
66

55
65

75

54
U
74
8l
9y

53
63

52
62
72

51
61
71
81
91

50

60
70
80
90

77
87
97

76
86
96

73

83 85
93

82
92

95

0=5|M
1 000010000

5|M
0123401 23H4

1000010000

100 0010000

0123401234

0123401234

1000010000

0123401234
0123401234

0123401234

10000100O0O0O0

1 00001000O00O

1000010000

0123401234

01234012 34

10000 100O0O

100 0 0100O0O0

01 23401234
01 234 012 34

10000 10 00O0O

0=3|M
1001001001

3|M
0120120120

0010010010
0100100100

1001001001

1201201201

2012012012

0120120120
120120126001

0010010010

0100100100

2012012012

1001001001

0120120120

0010010010

1201201201
2012012012

5-120 01 2 01 201 20

0100100100

1001001001
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7.4 FACTORS

of B. For example, 3 is a factor of 12, and 5 is a factor
of 15, and so on as shown below:

If B is divisible by 4, then 4 is said to be a factor

1233 3112
Yy 0

15:5 5]15
3 0

9:3 319
3 0

243y U2y
6 0

24:8 824
3 0

From these examples it is clear that the factors of
any number B occur in pairs such that the product of the
pair is equal to B. Thus, if 3 is a factor of 12 then 12:3
(that is, 4) is also a factor and 3x4 is equal to 12. In
general, if A4 is a factor of B, then B:4 is also a factor
and the product of the pair of factors 4 and B:4 (that is,
(B+A)xA) is equal to B.

All possible factors of a number B can be found by
simply trying to divide it by each of the integers from 1 up
to and including B. For example, the number 24 has the
following 8 factors:

12 34 6 8 12 24

The factor pairs of 24 can be obtained by simply dividing 2u
by the vector of its factors as follows:

2431 2 3 4 6 8 12 2u
24 12 8 6 4 3 2 1

Thus 1 and 24 are a pair; 2 and 12 are a pair, and so on.

The residue function can be used to determine which of

the integers 1B are factors of B. For example, if B is 6,
then:
12 3 45 6]6
000210
0=1 2 3 4 5 66
11100 1

The positions of the 1's in the last vector indicate which
of the integers 1 2 3 4 5 6 are factors of 6. For example,
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since the third element is 1, then 3 is a factor, and since
the fourth element is 0, then u4 is not a factor. The vector
111 001 can be wused to pick out the actual factors
1 2 3 6 by means of the compression function discussed in
the following section.

7.5 COMPRESSION

The following examples show the behavior of the
compression function:

101 01/1 2 3 4% 5
1 35

101 01/2 35 7 11
2 5 11

o
o
o
(]
Il O/\F—‘(D

)16
0
16)16
1
(16)16)/16
12

w

0=(124) |24) /124

8 12 24

-
-
N
:z«cvf\o<3k>ﬁ

(o201

12

w

The left argument of compression must be a vector of 1's and
0's and forms a "sieve" which picks up the element of the
right argument wherever a 1 occurs in the left argument.

7.6 PRIME NUMBERS

The following expressions yield all factors for each
of the integers from 1 to 8:

(0=(11)]1) /11 (0=(15)15)/15
1 1 5 .

(0=(12)12) /12 (0=(16)16)/16
12 12 3

(0=(13)]3)/13 (0=C17)17) /17
1 3 17

(o0=(i14) ) /14 (0=(18)18)/18
12 4 1 2 4 8

Any number which has exactly two distinct factors is
called a prime number. From the above examples it is clear
that 2, 3, 5, and 7 are primes, but 1, 4, 6, and 8 are not.
Thus a prime has no factors other than itself and 1.

If K is a vector of 0's and 1's, then +/K gives a
count of the number of 1's in X. For example:
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+/1 10 1 00 0 1

In
0=(18)]8
1101 0
+/0=(18)]8
n

The conditions for a prime number stated above in words can
therefore be stated algebraically as follows: B is a prime
number if the expression 2=+/0=(1B)|B has the value 1. For
example:

2=+/0=(11)]1 2=+/0=(15)|5
0 1

2=+/0=(12)]|2 2=+/0=(16)|6
1 . 0

2=+/0=(13)|3 2=0+/=(17)17
1 1

2=+/0=(14) |4 2=+/0=(18)]8
0 0

This same test can be used to obtain all of the primes
up to a certain value by applying it to a divisibility
table. Consider, for example, the following tables:

| |1 2 3 4 5 6 7 8 9 10 11 12
10 0 0 0 0 0O O O O O O O Left D:112
20120 1 0 1 0 1 0 1 0 1 0 Right D:112
31 2 0o 1 2 0 1 2 0 1 2 0 Body:(112)e. 112
4422 3 0o 1 2 3 0 1 2 3 0 Symbol:|
51 2 3 4 0 1 2 3 4 0 1 2

6{1 2 3 4 5 0 1 2 3 4 5 0

71T 2 3 4 5 6 0 1 2 3 L4 5

8|1 2 3 4 5 6 7 0 1 2 3 4

9|1 2 3 4 5 6 7 8 0 1 2 3

10/2 2 3 4 5 6 7 8 9 0 1 2

1112 2 3 4 5 6 7 8 9 10 0 1

1212 2 3 4 5 6 7 8 9 10 11 0

DJ]1 2 3 4 5 6 7 8 9 10 11 12

11 1 1 1 1 1 1 1 1 1 1 1 ZLeft D:112
200 1 0 1 0 1 0 1 0 1 0 1 Right D:112
30 0 12 0 0 1 0 0 1 O 0 1 Body:0=(112)0,|112
40 0 0 1 0 0 0 1 0 0 0 1 Symbol:D
50 0 0 0 1 0 O O 0 1 0 O

6|0 0 0 O O 14 0 O 0 O 0 1

7/0 0 0 0O O O 1 0 O O 0 O

8|0 0 0 0O O O O 1 0 0 0 O

90 0 0 O 0 0O O O 1 0 0 0

1010 o0 0 0O 0O O O O O 1 0 O

110 0o 0 0 0 O O 0O 0O 0 1 o0

12j0 0 0 0 0O O O O O 0 0 1
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The last table shows divisibility. For example, the
1's in the 6th column show the position of the 4 factors of
6. Therefore the sum of the 6th column tells how many
factors 6 has, and similarily for each column. The sum of
the columns is obtained by summing the rows of the transpose
of the table. Thus:

+/80=(112)e. 112
1 22 3 2 424 3426

The last result above gives the number of factors for
each of the numbers 1 to 12. Therefore the expression
2=+/80=(112)0.]112 determines which numbers are primes:

2=+/80=(112)0. 112
011010100010

This vector of 0's and 1's can be wused to compress the
vector 112 to finally pick out all of the primes up to 12:

(2=+/80=(112)0.|112) /112
19-248 2 3 5 7 11
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Monadic
Functions

8.1 INTRODUCTION

Each of the functions discussed thus far have applied
to two quantities. Thus in the expressions 3x4 and 3+4 and
3[4, each of the functions x, +, and [ apply to the two
quantities 3 and 4. Recall that these quantities are called
the arguments of the function; the one to the 1left of the

function is called the first or left argument, and the one

to the right is called the second or right argument.

the prefix dy meaning two. There are also functions which
apply to one argument; they are called monadic functions.

The following examples show a monadic function which is

A function having two arguments is said to be dyadic,

1 !5
1 120

12 )
2 720

!3 7
6 5040

Iy !8
24 40320

From the examples it should be clear that factorial 3
is the product of the factors 1 2 3, factorial &4 is the
product of the factors 1 2 3 4, and so on. The examples
also illustrate a point which applies to all monadic
functions: the symbol for the function (in this case, !)
precedes its single argument.

The argument of a monadic function may (like the
arguments of a dyadic function) be a vector. For example:

!172 3 4 56 7 8
1 2 6 24 120 720 5040 40320
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8.2 NEGATION

Negation is a monadic function denoted by the
symbol -. For example:

-3 X<3
] -X
-5 3
°5 8«2 3 5
-Tg -S
5 2 73 75
--5 --S
5 2 35
-2 3 5.8
T2 73 "s5.8

From these examples it should be clear that negation
of a number B is equivalent to subtracting B from zero; that
is, -B is equivalent to 0-B. 1In other words, negation
changes the sign of its argument.

It is also apparent from the examples that the symbol
used for the monadic function of negation is the same as
that already used for the dyadic function of subtraction.
This might be expected to cause confusion, but it does not.
For example:

4-3
1
4x-3
12
4--3
7
Thus the symbol - denotes subtraction if it is preceded by

an argument, but denotes negation if it is preceded by a
function.

This double use of symbols (once for a dyadic function
and once for a monadic function) will be applied to many
other symbols as well as the -. For example, +, x, +, M, L,
and |, already used for dyadic functions, will be used to
denote monadic functions as well.

8.3 RECIPROCAL

The reciprocal function is a monadic function denoted

by + and defined as follows: B is equal to 1:B. For
example:

+2
0.5

T4
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S<110
S
123 456 7 8 9 10
R<%S
R
1 0.5 0.33333 0.25 0.2 0.16667 0.14286 0.125 0.11111 0.1
SxR
1111111111

8.4 MAGNITUDE

The numbers 5 and ~5 are said to have the same size or
magnitude, namely 5. In other words, the magnitude of a

number is a function (denoted by |) which ignores the sign
of the number. For example:

| 5
|75

S« 6+111
S - -
- 2 1012345

012 34+5
32 54

8.5 FLOOR AND CEILING

The floor function is denoted by | and yields the next

integer just below or equal to the argument. The ceiling

function 1is denoted by [ and yields the next integer just
above or equal to the argument. For example:

L3 I3
3 3
L3.14 r3.1u
3 n
_ L73.14 r73.14
n ~3
_ L™3 _ r’s
3 3

L'1.5 71 7.5 0 .51 1.5  [71.5 "1 0 .51 1.5

1 519
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The floor and ceiling functions are easily visualized
by drawing the integers as the floors (and ceilings) in a

building as follows:

3 — 2.6
— 2.6
2 - L2.6
1—— ri L1
0-—.—
11— r1 L1
T2 2.4
— 2.4
T3 L7 2.4

The following examples illustrate how the monadic
function floor is related to the dyadic function residue:

17+5
3.4
L17=5
3
(17-5]17)+5
3

8.6 COMPLEMENT

The complement function is denoted by ~ and applies

only to logical arguments (that is, 0 and 1). When applied

to 0 it produces 1, and when applied to 1 it produces 0.
For example:

~1
~0

~1 01011
010100

0=3]112
001001001001
~0=3]112
110110110
(~0=3]112)/112
5 7 8 10 11
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(023[112)/112
12 45 7 8 10 11

The symbol ~ is called tilde. E8-10

8.7 RAVEL

Ravel is a monadic function (denoted by a comma) which
ravels a table to produce a vector which contains the
elements of the table in order by rows. For example:

T«2 3 50.x16
T
2 4 6 8 10 12
3 6 9 12 15 18
5 10 15 20 25 30
, T
2 4 6 8 10 12 3 6 9 12 15 18 5 10 15 20 25 30

The ravel function applied to any vector simply yields
the vector unchanged. The result of ravel is always a
vector, therefore when applied to a scalar it produces a
one-element vector whose element 1is equal to the scalar.
Although a scalar and a one-element vector are very similar,
they possess certain essential differences. 1In particular,
the vector can be indexed but the scalar cannot. For
example:

5<«3
V<,3
vL1]
3
SC11]
RANK ERROR
SC1]
A B1l1

8.8 SIZE
The number of elements 1in a vector V is called the
size of the vector. Size is therefore a monadic function

and is denoted by p. For example:

V<2 3 5 7 11
oV

X<17
pX

pX[2 3 5]

pX[12]
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When applied to a table, the function p yields a
two-element vector giving the number of rows in the table
followed by the number of columns. For example:

T<2 3 50,.x17
pT

p&T

The result of the expression p4 1is a vector with as
many elements as there are indices to 4. For example, the
table T takes two indices (as in the expression T[3;4]) and
pT has two elements as shown in the preceding paragraph.
Since a scalar takes no indices, the result of applying the
size function p to a scalar is an empty vector having no
elements.

The expression p,4 yields a one-element vector whose
element is equal to the total number of elements in 4,
regardless of whether 4 is a scalar, a vector, or a table.
For example:

pT

128 1



Function
Definition

9.1 INTRODUCTION

The expression 0=3|X¥ was shown (in Chapter 7) to
determine whether the argument X was divisible by 3. For
example:

0=319
1

0=3|10
0

The expression 0=3|X is therefore a monadic function of X in
the sense that for any particular value assigned to X, the
expression yields a particular corresponding value.

Unlike the functions floor, ceiling, and magnitude
(which have the symbols L, [, and |), the function
determined by the expression 0=3|X has no special single
symbol to denote it. It would, of course, be impractical to
assign a special symbol to every possible such expression.
However, it is important to be able to assign a name to any
such expression which happens to be of interest at the
moment, and then be able to use that name for the function
just as L, [, and | are used for the floor, ceiling, and

magnitude functions.

The name DT is assigned to the function determined by
the expression 0=3|X¥ in the following manner:

VZ«DT X
z«0=3|Xx V

The above is called definition of the function DT. Once the

function DT has been so defined, it can be wused like any
other monadic function as follows:

DT 9
1

DT 10
0

DT 110
0010010010
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The symbol VvV which begins and ends a function
definition is called del.

Any number of such functions may be defined, but they
must, of course, be given distinct names. These function
names, like the names introduced for values in Chapter 1,
must begin with a letter but may include both letters and
digits. For example:

VZ<«Duy X
Z<0=4|X V¥
D4 110
0001000100
VZ<D5 X
Z<0=5|X V
D5 110
00001000G01
VZ<Q X
Z«(X-3)x(X-5) V

Q 6
Q7

Q 17
8 30 10 3 8

The rules for determining the meaning of a function
definition are very simple: when the function is applied to
an argument, that argument is substituted for each
occurrence of the name X in the second line of the function
definition, and the result thereby assigned to the name 7 is
the result of the function. For example, to evaluate ¢ 7,
the 7 is substituted for X to yield

2<(7-3)x(7-5)
This is evaluated to yield the result 8. Hence:

Q 7

Functions such as floor and ceiling which have been
assigned special fixed symbols will now be called primitive

functions in order to distinguish them from the new class of

defined functions just introduced. A defined function can

be used within expressions, just as primitives are. For
example:
Q 6
3
4xQ 6
12

DT 12



9.3 A function to generate primes 93

DT 4x@ 6

Q@ Q6

9.2 DEFINITION OF DYADIC FUNCTIONS

The expression 0=X|Y determines whether the argument X
is a factor of the argument Y. For example:

0=5]9
0

0=7]21
1

The expression 0=X|Y is therefore a dyadic function of the
arguments X and Y in the sense that for any particular
values of X and Y the expression yields a particular
corresponding value.

The name F is assigned to the dyadic function
determined by the expression 0=X|Y in the following manner:

VZ<X F Y
Z«0=X|Y V

The function F can now be applied to pairs of arguments as
illustrated below:

5 F 9
0
7 F 21
1
5¢7 F 21
6
(5x7) F (5%x21)
1

9.3 A FUNCTION TO GENERATE PRIMES
In Chapter 7 it was shown that the expression
(2=+/Q0=(1N)o. | \N) /N
would produce a vector of all the primes up to the integer
N. Therefore a function PR can be defined to generate

primes as follows:

VZ<PR X
Z<(2=4/Q0=(1X)o. | 1X) /1 XV

@5-7

@8-13
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The following examples show the wuse of the function

PR:
PR 12
2 35 7 11
+/PR 12
28
PR 55

2 35 7 11 13 17 19 23 29 31 37 41 43 47 53

9.4 TEMPERATURE SCALE CONVERSION FUNCTION

The Centigrade scale and the Fahrenheit scale are two
different scales for measuring temperature. For any given
temperature reading in Centigrade there is therefore a
corresponding value in Fahrenheit; in other words, the
Fahrenheit value is a function of the Centigrade value.
This function will be expressed as a defined function called
CToF (for Centigrade TO Fahrenheit).

The Centigrade scale has 100 degrees between the
freezing and boiling points of water, whereas the Fahrenheit

scale has 180 degrees between these same points. Therefore
any Centigrade reading X must be multiplied by 180 and
divided by 100: that is, 180xX:100. Moreover, 0 degrees

Centigrade (the freezing point of water) corresponds to 32
degrees Fahrenheit and so it is necessary to add 32 to the
foregoing expression, giving 32+180xX:100. The conversion
function CTOF may therefore be defined and used as follows:

VZ«CTOF X
Z+32+180xX+100 V
CTOF 0

32
CTOF 100

212

CTOF 40 ~20 0 20 40 60 80 100
TL0 T4 32 68 104 140 176 212

The function (TOF determines the Fahrenheit value as a
function of the Centigrade value. It is, of course, also
possible to define a function FT0C which determines the
Centigrade value as a function of the Fahrenheit value:

VZ<FTOC X
Z«100x(X-32)+180 V

FTOC "40 "4 32 68 104 140 176 212
40 20 0 20 40 60 80 100

CTOF FTOC “40 ~4 32 68 104 140 176 212
40 "4 32 68 104 140 176 212

FTOC CTOF “40 ~20 0 20 40 60 80 100
40 20 0 20 40 60 80 100
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The last two lines above illustrate the fact that the
function FTOC undoes the work of CTOF, and the preceding two
lines illustrate that CT0F undoes the work of FT0C. The
functions FTOC and CTOF are therefore inverse functions. E1l5

9.5 FUNCTIONS ON RATIONALS

If X is a vector of two integer elements and Y is a
vector of two integer elements, then :/X is a rational and
+/Y is a rational. Moreover, as shown in Section 5.7, the
product (:/X)x(:/Y) is equal to */(XxY). Therefore, the
following function multiplies two rationals to produce the
two element vector which represents their product:

VZ<X P Y
Z<«XxY V¥

For example:

3 4P 75
21 20

+/3 4 P 75
1.05

(/3 4)x(+/7 5)
1.05

Similarly, the following function will add rationals:

V Z<X A Y
Z<(+/Xx¢Y),X[21x¥Y[2] V

For example:

3 4 4 75
43 20
$/3 4 475
2.15
(/3 W)+(+/7 5)
2.15 EFl6-18

9.6 TRACING FUNCTION EXECUTION

A function can be defined by a single expression (as
in the examples thus far), or it can be defined by a
sequence of expressions. For example:

V Z«R X
[1] T1«UxX
[2] T2 3xX*2
[3] T3«2xX*3
Cu] Z2«T1+T2+T3V
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R 2
36

R 2 3 4
36 93 192

The statements are executed in the order in which they
appear on the page, and each is identified by its number
appearing in brackets on the left.

To understand the behavior of a function it is often
helpful to examine some of the intermediate results produced
by each of the individual statements in its definition. To
indicate that each intermediate result produced in executing
the function R is to be displayed, we would write

TAR<«1 2 3 4

Thereafter, the execution of R would be accompanied by a
display of the intermediate results as follows:

W<R 2
R[1] 8
R[2] 12
R[31] 16
R[4] 36
W
36
W<R 2 3 4

R[11] 8 12 16
R[2] 12 27 48
R[3] 16 54 128
RL4] 36 93 192

W
36 93 192

Such a display of the steps of execution of a function
is called a trace of the function. The name 7TAR used in

initiating the trace of the function R denotes the trace

control vector for R. In the preceding example, TAR was set

to trace every line of R, but it could be set to trace only
some of them. For example:

TAR<1 3

W<R 2 3 4
R[1] 8 12 16
R[3] 16 54 128

Moreover, if TAR is set to 0, no tracing is performed:

TAR<O0
W<R 2 3 4
W

196 36 93 192
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The Analysis
of Functions

10.1 INTRODUCTION

The problem of converting temperatures from the
Centigrade to the Fahrenheit scale, which was handled by the
function CTOF of Chapter 9, is often handled by simply
providing a table covering the values of interest. For
example, Table 10.1 would suffice for a range of
temperatures just above the freezing point of water:

C F

32
33.
35.
37.
39.
41
L2,
by,
46.
8.
50

N F O ©

N F O ©

O WWOWJIO0O U FWwNNE O

[N

A Table Representation of the Function
CTOF for Centigrade Values Near Zero
Table 10.1

It is often more convenient to use such a table than
to evaluate the expression 32+180x(C+100 (used in the
definition of the function C(TOF) for each conversion.
However, such a tabular representation of a function also
has its disadvantages; it provides only a limited set of
values and could not, for example, be used directly to find
the Fahrenheit equivalent of 25 C (which lies outside of the
tabled values) or of 5.64 degrees Centigrade (which lies
between two of the tabled values). For this reason it is
often desirable to determine from such a table the algebraic
expression which would produce the same function as that
represented by the table.

To appreciate the problem of deriving an algebraic
expression for a function represented only by a table,
suppose that the expression 32+180x(C+100 is not known and
that the only information known about the function is that
contained in Table 10.1. One might begin by observing that
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each Fahrenheit value is at least 32 more than the
corresponding Centigrade value, and therefore guess that the
desired function is approximately 32+C. The next step is to
append to Table 10.1 a column of values for the function
32+C so that they can be compared with the tabled values of
F:

C F 32+C
0 32 32
1 33.8 33
2 35.6 34
3 37.4 35
4 39.2 36
5 41 37
6 42.8 38
7 4u.6 39
8 4e.4 40
9 48.2 41
10 50 L2

Although the first entries in the columns F and 32+C
agree (both are 32), the second entry falls short by 0.8,
the third entry by 1.6, etc. It therefore appears that one
should add 0.8x(C to the expression 32+(C, yielding 32+(C+.8x(C
or, more simply, 32+1.8xC. If a column of values for
32+1.8x(C is appended to the foregoing table and compared
with the column F it will be seen that this is the required
expression.

The process of determining an expression for a
function from a table of the function will be referred to as
analyzing the table or, alternatively, as analyzing the
function represented by the table. The analysis of tables
is not only an interesting puzzle, it is also a problem of
the greatest importance, since it underlies every scientific
discipline. The reason is that in every area of science and
technology, one attempts to determine the functional
relationships between various quantities of interest. Thus
one wishes to know how the acceleration of an automobile
depends on the power of the engine, how the gasoline
consumption depends on the speed, how the length of life of
the brakes depends on the area of the brake-shoes, how the
electric current supplied to the headlamps depends on the
battery voltage, how tihe weight limit of a suspension bridge
depends on the size of the cable used, and so on. Moreover,
it is important to be able to express these relations
algebraically so that it becomes easy to calculate any new
values needed.

However, the relationships between two quantities are
normally determined by experiments in which the
corresponding values of the quantities of interest are
measured. Such experiments can only yield a table of
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values; they do not yield an algebraic expression for the
function. The algebraic function must be determined by
analysis of the table.

In practice one might do a few experiments, make a
small table, derive from it an algebraic expression for the
functional relationship, and then do a few more experiments
to test (and perhaps revise) the derived expression. 1In a
book this process cannot be simulated completely since we
can only give fixed tables resulting from certain
experiments, and cannot allow the reader to choose the
values to be included in these tables. However, if a
computer is available, one person (the teacher) can enter
the definition of any function so that another person (the
student) can "experiment" with the function at will by
simply applying it to any desired arguments. If the student
is not permitted to see the original definition of the
function, then he can be given the problem of experimenting
with the function, determining a table, and deriving from it
his own definition of (i.e., algebraic expression for) the
function.

The remainder of this chapter will be devoted to the
analysis of tables. Three methods are treated: maps,
graphs, and difference tables. Difference tables provide
the most powerful method of the three, but maps and graphs
are treated first Dbecause they are easier to comprehend and
because maps have already been used for other purposes in
earlier chapters. A fourth and more powerful method (called

10.2 MAPS

If one first makes a map of a table, then the map can
be wused as a guide in the analysis of the table. In order
to see what guidance the map can provide, it is useful to
recall the maps of two simple functions.

If X<0,14, then the map of the function 4+X against X
appears as follows:

01 2 3.4 56 7 8

N

O\

012 34 56 78

From this it is clear that the addition of a constant (in
this case 4) appears in the map as a uniform translation,
that is, each point is moved by the same amount, and the
mapping arrows all have the same slope.



100 Maps 10.2

If, as before, X<«0,14, then the map of the function
3xX appears as follows:

0 \\\:::\\\\\\\\\ 9 10 11 12
| \\\\\\\\\\\\\;\;;\TT‘12

From this it is clear that multiplication by a constant (in
this case 3) appears in the map as a uniform spreading, that
is, the distance between the successive arrowheads (in this
case 3) is the constant of multiplication.

Consider now the mapping of a function which involves
both addition and multiplication, say 4+3xX:

0. 1 2 3 4_ 5 6 7 8 9 10 11 12 13 14 15 16

o 1 2 3 4 5 6 7 8 910 11 12713 14 15 16

The effects of uniform translation and uniform spreading are
now superimposed, but it is still possible to recognize the
individual effects of each. These observations will now be
applied to the analysis of the function shown in Figure
10.2.

X Y
2 1 8 9 10 11
3 3
4 5
5 7
6 9 8 9 10 11
7 11
Table and Map of a Function
Figure 10.2
It 1is wusually best to try to account for the
multiplication (spreading) first. In this case adjacent
arrowheads are separated by 2 units and so the
multiplication factor is 2. Therefore we make a map of the

function 2xX as follows:

1 2 3 kL 9 10 11 12 13 14

S

1 2 3 4 9 10 11 12 13 14
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The map of 2xX is now combined with the map of the original
table as follows:

1 7 8 9 10 11 12 13 1u

In this map, the original table is represented by normal
lines as wusual, and the approximating function 2xX is
represented by broken lines. The scored lines lead from the
results of 2xX to the results of the tabled function and
therefore represent the function that must be applied to the
function 2xX to yield the tabled function. Since the scored
lines all have the same slope, this function must be a
translation (by ~3), that is, the addition of T~3. The
required function is therefore ~3+2xX, as may be verified by
computing the values for the case X<+2 3 4 5 6 7 and
comparing them with the second column of Figure 10.2.

The functions analyzed by maps thus far have all been
of the form A4+BxX where 4 and B are constants. In the
analysis of more complex functions (such as
3+(5xX)+(2xXx2)), maps are of 1little help and one of the
other methods should be used.

10.3 GRAPHS

Each row of a function table such as Table 10.1
consists of a pair of numbers representing an argument and a
corresponding function value. Any other way of showing the
pairing of the numbers in each of the rows is obviously a
possible way of representing the function. For example, in
a map, each pairing is shown by an arrow from the argument
to the corresponding function value.

Any single number can be represented by marking off
the integers at equal intervals along a 1line and then
placing a cross on the line to show the desired value. For
example 4 might by represented as follows:
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A whole set of numbers could be represented by a set
of crosses on such a line as follows:

This line represents the set of arguments of the function
defined by Table 10.3.

Table of a Function
Table 10.3
If the set of function values Y of Table 10.3 are now
represented similarly along a vertical line rising from the

0-point of the first line, the picture appears as follows:

6 -

—_——X—_——————— X ——— X —— — X —— — X — —

————— X=X=X=Xm == Xm == == == =

| I | | I
2 3 4 5 8

o —
n —_
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Graphs

10.3

If vertical lines are drawn through the crosses on the

horizontal line, and if horizontal lines are

drawn through

picture appears

as

the

crosses on the vertical line,

the

follows

_+———+————————
l
|
l

| | | l l |
12 3 4 5 6

Fmmmm e X =X =X =X === X = m

|
0

0
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The pairing of each argument with its particular
function value can now be shown by placing a point at the
intersection of the lines through them as follows:

6 - | L I
| L I
X———-- O—t-F-t-——t--—--—--
l (I l

5 - | 1 l
| L |
X—mm o= e A
l L1 l

bo- | [ I l
| L1 |
X oo e e T
| [ |

3 - | L |
| [ I |
X——=- e i
| 1 |

2 - | [ [
l [ l
l [ |
| N l

1 - | [ I
l [ l
X-—m o= +-t-t-t---0---——-—-
| [ |

0 - +----- X=X=X-Xm=meXom—mm— e
| | | | [ | |
0 1 2 3 L4 5 6

In practice, one actually draws neither the lines nor
the crosses, but simply marks the points of intersection,
producing the following less cluttered picture:
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This picture is called a graph or plot of the function of
Table 10.3. Negative values are included by simply
extending the horizontal line leftward from the zero and the
vertical line downward from the zero.

The vertical line of the graph (which passes through
the zero point of the horizontal 1line) is <called the
vertical axis or Y-axis, and the horizontal line (through

or X-axis. The names are derived from tﬁé_—YEEBEErEE§7
convention that the argument of a function is often called x
and the result is often called Y, so that the expression for

a function is in the form Y<F X. E3-4

10.4 INTERPRETING A LINEAR GRAPH

If a ruler is 1laid along the points in the preceding
graph, the points will be seen to lie in a straight line.
If one graphs a number of functions of the form 4+BxX (where
A and B are fixed values), it will be seen that the points
in the graph of any such function lie in a straight line.
Conversely, every graph whose points all lie in one straight
line represents a function of the form 4+BxX. Moreover, the
values of 4 and B can be easily determined from the graph.
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Consider, for example, Figure 10.4 which shows the
graph of the function of Table 10.3 with a line drawn
through the points. Any point on the line (not only the
five taken from the table) represents a point of the
function. For example, if the argument X is 1, then the
function value Y is 6.5, and if X is 0, then Y is 8.5. But
if X is 0, the value of the expression A+BxX is simply A.
Hence, for this function 4 must have the value 8.5.

Graph of Function of Table 10.3

Figure 10.4
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Moreover, B is clearly the amount that the function
changes when the argument is changed from some value to a
value greater by 1. Since the function is equal to 4.5 for
x¥=2 and is equal to 2.5 for X=3 this change is equal to
2.5-4.5 or ~2. Therefore B is equal to ~2. Finally, the
expression for the function must be 8.5+ 2xX. This may be
verified by evaluating the expression for the values
¥<«1.5 2 2.5 3 4 and comparing the results with the second
column of Table 10.3.

To summarize, the values of 4 and B can be determined
from a straight-line graph as follows:

(1) The value of A is the height at which the graph line
crosses the vertical axis (where x=0).

(2) The value of B is the change in height corresponding
to a change of 1 on the horizontal axis. E5-6

A function table whose graph does not form a straight
line is not as easy to interpret as a straight line graph.
However, the graph can still provide some guidance.

Consider, for example, Figure 10.5 which shows a
function table and the corresponding graph. The points do
not lie in a straight line, but have been joined by a smooth
curve which suggests the function values which should be
obtained between the points included in the table itself.
For example, the argument 3 is not included in the table,
but the curve indicates that the corresponding function
value should be approximately 3. 8.

A number of interesting characteristics of the
function can be seen clearly in its graph. For example, it
is clear that the function reaches a local low point for an
argument value of X equal to approximately 3.5 and that it
reaches a local high point for a value of X a 1little less
than 2. Moreover, it is easy to spot those argument values
for which the function has a zero value, namely for X equal
to (approximately) 1.4 or 2.6 Or 4.2.

Since X-1.u4 is zero for X=1.4 and X-2.6 1is zero for
¥=2.6 and X-u4.2 is zero for X=u4.2, then the expression

(X-1.4)x(X-2.68)x(X-4.2)

is zero for X equal to either 1.4 or 2.6 or 4.2. Hence it
will agree with the given function at least for these three
values of the argument X. In order to see how well this
expression agrees with the given function for all points, it
can be graphed together with the given function as shown in
Figure 10.6.
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Interpreting a linear graph

-l

—6—

—8—

1 2 3
X Y
1.2 4,20
1.6 2.60
2.0 3.96
2.4 1.80
2.8 “1.96
3.2 5,40
3.6 "6.60
4.0 T3.64
T 5.40

Table and Graph of a Function

Figure 10.5

=

10.4
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Interpreting a linear graph

10.4
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A comparison of the two curves in Figure 10.6 shows
that they have the same general shape, that is, the values
for the given function appear to be larger than those of the
approximating expression by a fixed ratio. A value for this
ratio can be determined from two corresponding points, say
for an argument value of 2.4. The two corresponding
function values are seen to be 1.8 and .36, and the ratio is
therefore 1.8:.36, that is, 5.

A better approximation to the given function is
therefore given by 5 times the expression just tried, that
is:

S5x(X-1.4)x(X-2.6)x(X-4,2)

Evaluation of this function for each of the argument values
appearing in the first column of Table 10.5 shows that it
agrees exactly with the function given in the second column.
10.5 THE TAKE AND DROP FUNCTIONS

The dyadic functions take and drop are denoted by +
and +, respectively. The following expressions illustrate

their use:

Y«0 1 4 9 16 25 36

34+Y 3vY

0 1 4 9 16 25 36
24Y 2vY

0 1 4 9 16 25 36
T34y T3vY

16 25 36 0 1 4 9
T24Y TovY

25 36 0 1 4 9 16

The take function takes from its right argument the
number of elements determined by the left argument,
beginning at the front end if the left argument is positive
and at the back end if it is negative. The drop function
behaves similarly, dropping the indicated number of elements
from the right argument.

If the 1left argument is greater than the number of
elements of the right argument, then the extra positions are
filled with zeros. For example:

X«2 3 5 7
64X

2 3 5 7 0 o0
Bt X



10.6 Difference tables 111

10.6 DIFFERENCE TABLES

The first difference of a vector Y is defined as the
vector obtained by taking the difference between each of the
pairs of adjacent elements of Y. For example, if y is the
vector

01 4 9 16 25 36 49 64 81 100
then the first difference of Y is the vector
1 35 7 9 11 13 15 17 19

More precisely, the first difference is the function D
defined as follows:

VZ<D Y
[1] Z<(14Y)-(T1+Y)V

For example:

DY
135 7 9 11 13 15 17 19

To understand the behavior of the function p, it may
help to observe the effects of the terms 1+y and T“1+Yy as
follows:

1vY
1 4 9 16 25 36 49 64 81 100

T1vyY
01 4 9 16 25 36 49 64 81

The subtraction of the second of these from the first
clearly yields the differences between each of the adjacent
elements of Y.

If Y«F X for some function F and some set of equally
spaced arguments X, then the first difference of Y is also
said to be the first difference of the function F. For

example, if X<0,110 and Y«Xx2 (that is, Y is the sgquare of
X), then the vector

DY
135 7 9 11 13 15 17 19

is said to be the first difference of the square function
(for the arguments X).

In a function table for F, the vectors X and Y used in
the preceding paragraph would appear as the first and second
columns. Attention will now be limited to function tables
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whose first column X is of the form 0,1%, that is, of the
form 01 2 3 etc., up to some integer . In the first
section of Chapter 11, it will be shown how the methods
developed can be applied to any set of equally spaced
arguments such as 1.2 1.6 2.0 2.4 2.8 3.2, etc.

Since attention is being confined to argument sets of
the form 0,1V, the argument column can be dropped from
function tables without introducing ambiguity. For example,
the single column on the left of Figure 10.7 shows this
simplified form of +the function table (for the function
CTOF) of Table 10.1. The right side of the same figure
shows a two-column table containing the function vector g
and its first difference D F; such a table is called a

F F D F
32 32 1.8
33.8 33.8 1.8
35.6 35.6 1.8
37.4 37.4 1.8
39.2 39.2 1.8
41 41 1.8
42,8 42.8 1.8
Ly, 6 Ly,6 1.8
4e.4 4.4 1.8
48.2 48,2 1.8
50 50 1.8
Abbreviated Difference Table
Function Table for the Function
for Table 10.1 CToF of Table 10.1

Function and Difference Table

Figure 10.7

10.7 FITTING FUNCTIONS OF THE FORM A+BxX
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