X«1 2 3 4 5 6 7

XxX

1 4 9 16 25 36 49

Xo.xX
2 3 4
4 6 8
6 9 12
16
10 15 20
12 18 24
14 21 28

NOoO OV FE WN e
[ee]
[N
N

O EWN R O
AFEFWNR O R
WNR OR N W

R

N = T = N
[N N e
[ N o )
PR R, R OO0 o
N = e NeNeNe NV,
e ReNeNole)

oleoleoNeNoNoNe]

5

O OO O OoOOo

Oﬁ-L'f\)Ol\)-J'—"O')

28

O O woOwo w

ALGEBRA

An Algorithmic
Treatment

Kenneth E. lverson

(X-3)x(Xx-5)

8 30 10 3 8
R«8 7 6 54 32 1 0 "1
M<«Ro.=(X-3)x(X-5)

.M "ox'[1+M]
1 00:0:0 0 1 * *
0 0% b 0o
0 04000 0 O
00000O0TO0
0000O0O0O
01 00010 * *
0000O0TUO0O
00000O0TO
0010100 * %
0001000 *
c
® SPDD ®
@ @ ® ® ®
PIDDD DD D D
® ® ® ®
® ® ® PRIDD
(1 2 3 4 5-5)¢C
® SDBDD ®
® & ® ® ®
BPID D PR ®
® ® ® ®
"] ® D OPIDDD



NAME SYMBOL DEFINITION OR EXAMPLE |SECTION #
DJAddition + 3+U4<>7 1.2
Y|Multiplication x IxL+>12 1.2
AlSubtraction - 3-Ue> 1 3.1
D{Division T 3:h4<«>,75 5.1
I |Maximum [ 3 b<>y 2.4
C|Minimum L 3L4<+>3 2.4

Power * 3x4<«>81 A%xB<+>x/BpA 2.5 6.5-6
F |Remainder | 3| u+>1 7.1
U|Relations <<=>>z |3<u<>1 U<3<>0 4.8
N|Or v 14,2
ClAnd A VIO-1 AJO0 1 »]0 1 ~|0 1]14.2
T |Not-or » o‘o1ooool100‘111u.2
I|Not-and ~ 1112 1 1210 1 110 O 111 O0)14.2
O |Domino o] BEM 1is soln of B=M+.xX }19.15
N|Index-of 1 2 35 715 2«3 1 16.1
S|Repetition 0 3p5«>5 5 5 1.7 13.3
Catenation s 4 2,1 3 5«>4 2 1 3 5 6.2
Take 4 244 5 B«>4 5 10.5
Drop ¥ 2¥4 5 6+-6 10.5
Compression / 011 0/1 2 3 4+>2 3 7.5
M|Negation - —he> 8.2
OJReciprocal 3 th<>, 25 8.3
N |Magnitude | | T4y 8.4
AlFactorial ! Th<«>1x2x3xh 8.1
D|Ceiling [ [3.4<>y 8.5
I|Floor L L3.4«>3 8.5
Ci{Complement ~ ~1+>0 ~0+«~>1 8.6
Matrix Inverse 5] M+.xEM is the identity |19.15
Ravel , 8.7
Integers 1 14«>1 2 3 4 1.5
Size o ot 1 3 6 2«5 8.8
Flipping ¢ o § Flip table about axis 4.3
O|Assignment <+ X<6 1.3
T Indexing X[I] 2 35 7[2 41«»>3 7 4,y
H MLI;J]
EfFunction VZI<F X 9.1-2
R} Definition VZ«X F Y
Parentheses 1.2
Execution order 3xU+5-7«>3x(4+(5-7)) 1.2
Vectors 2 3 5x1 2 3«2 6 15 1.6
Tables, Matrices 2.1 13.3
Reduction (Over) f/ +/2 3 5«10 x/3 L4+>12 1.4 4,10
Outer Product o, f 2.3
Inner Product f.g 13.2 13.u4

SUMMARY OF NOTATION




ALGEBRA :
An

Algorithmic Treatment



ALGEBRA :
An

Algorithmic Treatment

KENNETH E. IVERSON

A
vy

ADDISON-WESLEY PUBLISHING COMPANY
Menlo Park, California
Reading, Massachusetts * London * Don Mills, Ontario



This book is in the
ADDISON-WESLEY INNOVATIVE SERIES

Preliminary edition entitled Elementary Algebra, copyright © 1971
by IBM Corporation.

Copyright © 1972 by Addison-Wesley Publishing Company, Inc. Phil-
ippines copyright 1972 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be repro-
duced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher.
Printed in the United States of America. Published similtaneously
in Canada. Library of Congress Catalog Card No. 72-7276.



Preface

The present text treats the usual topics expected in a
second course in algebra. It differs from conventional
treatments in the following respects:

1. The notation used is simple and precise and applies
to arrays (vectors and matrices) in a simple and uniform
manner.

2. Arrays are used extensively to give a graphic view
of functions by displaying the patterns produced by
applying them to vectors. They are also used to clarify
topics which use vectors directly, such as linear
functions and polynomials.

3. The precision of the notation permits an algorithmic
treatment of the material. In particular, every
expression in the book can be executed directly by
simply typing it on an appropriate computer terminal.
Hence, if a computer is available it can be used by
students for individual or collective exploration of
relevant mathematical functions in the manner discussed
in Appendix C. Even if a computer is not available, the
algorithmic treatment presents the essentials of
computer programming in a mathematical 1light, i.e., as
the precise definition and application of functions.

4. The algorithmic approach is the same as that used in
a cSEEIﬁGEEEon—_Iﬁ_ESEECS such as the slope (derivative)
of functions, and the circular, hyperbolic, exponential,
and logarithmic functions.

5. The organization of topics follows a pattern
suggested by considering algebra as a language; in
particular, the treatment of formal identities is
deferred until much work has been done in the reading
and writing of algebraic sentences. These matters are
discussed fully in Appendix A, "Algebra as a Language",
and any teacher may be well-advised to begin by reading
this appendix.

The pace of the text is perhaps best suited to a
second course, but it can also be used in part for a first
year course since the early chapters contain all of the



essentials such as the introduction of the negative and
rational numbers. When used for a second course these early
chapters can serve not only as a brief review, but also as
an introduction to the notation used.

The text employs the APL language which is available
on computer terminals. Although an APL computer is in no
way essential, it can be a very useful adjunct. Moreover,
the text can be used to provide interesting material and
exercises for courses devoted to introducing APL itself.
Finally, the text should be useful in a variety of algebra
courses in both high school and college, since it presents
traditional material in a new light, combined with the
interest of learning to program and use a computer.

This text grew out of a summer project undertaken in
1969 in collaboration with my colleagues Adin Falkoff and
Paul Berry of IBM, and with five high school teachers - Mr.
John Brown, now of Dawson College, Montreal; Mr. Nathaniel
Bates, of Belmont Hill School, Belmont, Massachusetts; Miss
Linda Alvord, of Scotch Plains-Fanwood High School, Scotch
Plains, New Jersey; and Sisters Helen Wilxman and Barbara
Brennan, of Mary Immaculate School, Ossining, New York. Mr.
Peter Manchester provided valuable assistance in preparing
APL programs and in developing exercises. I am indebted to
all of these people for much fruitful discussion, and
particularly to Messrs. Falkoff and Berry for helping to set
and maintain the direction of the project.

I have also benefitted greatly from discussions with
Miss Nancy Boyd and Mr. Christopher Edley, students at
Swarthmore College. These discussions arose from their work
as tutors in summer courses using this text which were
presented at Swarthmore College by Professor David Rosen and
by Mr. Russell Daniel, now of Temple University. I must
also acknowledge many helpful discussions with colleagues of
the Philadelphia Scientific Center of 1IBM, particularly
Messrs. E. E. McDonnell and P. C. Berry, as well as critical
detailed reviews of the text by Miss Alvord and Mrs. Sandra
Pakin. I am also grateful for the support of the IBM
Corporation, particularly for the freedom provided by its
Fellow program.

The manuscript was entered, revised, and printed on an
APL text editor system. For outstanding clerical assistance
in the use of this system I am indebted to my wife Jean, and
to Mrs. Susan O'Connell. The artwork was done by Mr. David
Hatcher, who also worked long hours in the production of the
final draft. I am particularly indebted to Miss Elizabeth
Llanso for her patient and unfailing assistance in every
aspect of the preparation of the manuscript.

July, 1972 Kenneth E. Iverson
Philadelphia, Pennsylvania
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1

The Language
of Mathematics

1.1 INTRODUCTION

Algebra 1is the language of mathematics. It is
therefore an essential topic for anyone who wishes to
continue the study of mathematics. Moreover, enough of the
language of algebra has crept into the English language to
make a knowledge of some algebra useful to most
non-mathematicians as well. This is particularly true for
people who do advanced work in any trade or discipline, sucn
as insurance, engineering, accounting, or electrical wiring.
For example, instructions for laying out a playing field
might include the sentence, "To verify that the corners are
square, note that the length of the diagonal must be equal
to the square root of the sum of the squares of the length
and the width of the field", or alternatively, "The length

of the diagonal must peVL2+wn | In either case (whether
expressed in algebraic symbols or in the corresponding
English words), the comprehension of such a sentence depends
on a knowledge of some algebra.

Because algebra is a language, it has many analogies
with English. These analogies can be helpful in learning
algebra, and they will be noted and explained as they occur.
For instance, the integers or counting numbers
(1, 2, 3, 4, 5, 6...) in algebra correspond to the concrete
nouns in English, since they are the basic things we
discuss, and perform operations upon. Furthermore,
functions in algebra (such as + (plus), - (subtract), and
x (times)) correspond to the verbs in English, since they do
something to the nouns. Thus, 2+3 means "add 2 to 3", and
(2+3)x4 means "add 2 to 3 and then multiply by u4". In fact,
the word "function" (as defined, for example, in the
American Heritage Dictionary), is descended from an older
word meaning, "to execute", or "to perform".

When the language of algebra is compared to the
language of English, it is in certain respects much simpler,
and in other respects more difficult. Algebra is simpler in
that the basic algebraic sentence is an instruction to do
something, and algebraic sentences (usually called
expressions) therefore correspond to imperative English

sentences (such as "Close the door."). For example, 2+3
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means "add 2 and 3", and YEAR<1970 means "assign to the name
YEAR the value 1970", and Y<1970 means "assign to the name Y
the value 1970". Since imperative sentences form only a
small and relatively simple part of English, the language of
algebra is in this respect much simpler.

Algebra is also simpler in that it permits less
freedom in the ways you can express a particular function.
For example, "subtract 2 from 4" would normally be written
in algebra only as u4-2, whereas in English it could be
expressed 1in many ways such as "take the number 2 and
subtract it from the number 4", or "compute the difference
of the integers 4 and 2".

The most difficult aspect of traditional presentations

of algebra is the early emphasis on identities, or the
equivalence of different expressions. For example, the
expressions (5+7)x(5+7) and (5%x5)+(2x5x7)+(7x7) are

eguivalent in the sense that, although they involve a

different sequence of funtions, they each yield the same

result. English also offers equivalent expressions. For
example, "The dog bit the man" is equivalent to "The man was
bitten by the dog". It 1is not that the rules for

determining equivalence in algebra are more difficult than
in English; on the contrary, they are so much simpler that
their study is more rewarding and therefore more attention
is given to equivalences in algebra than in English.

In the present treatment this aspect of algebra (that
is, the study of identities or equivalence of expressions),
is delayed until the student has devoted more attention to
the reading, writing, and evaluation of algebraic
expressions.

This view of algebra as a language is central to the
present treatment. It 1is Dbuttressed and expanded 1in
Appendix A, and this appendix should perhaps be read first
by any teacher and by any student who has significant prior
experience with traditional treatments of algebra.

The exercises form an important part of the
development, and the point at which the reader should be
prepared to attempt each group of exercises is indicated in
the margin. For example, the first such marginal note
appears as [H1-6 and indicates that Exercises 1 to 6 of this
chapter may be attempted at that point.

Collections of expressions occurring in certain
exercises are Dbroken into groups to provide convenient
reference in assigning and discussing exercises. These

groups sometimes indicate substantive groupings of the
material treated as well.



1.2 Expressions and results 3

The exposition and the exercises are organized to
encourage experimentation and observation as an essential
part of learning. Experimentation and discovery can be
further encouraged to a startling degree by the use of an
APL computer terminal if one is available. All expressions
occurring in the text and exercises can be entered directly
on the terminal keyboard without further knowledge of
computers. Techniques for the use of the computer in
teaching are discussed in Appendix C. Appendix B presents
the computer keyboard and other details necessary to putting
it in operation.

A student wusing an APL computer in exploration is
sometimes confronted with matters not treated until a later
point in the text. For example, a beginning student
entering the expression

2000x3000%x4000
will receive the response
2.4F10
This result is expressed in exponential notation (meaning
2.4 times 10 to the power 10) which 1is not discussed until
Section 5.17. the Index, the Summary of Notation (appearing

inside the covers), and Appendix B can be wused to resolve
such difficulties.

1.2 EXPRESSIONS AND RESULTS

Evaluation of the expression 2+3 produces the

result 5. Such a fact will be written in the following
form:
2+3
5
and will be read aloud as "2 plus 3 makes 5". The following

examples would be read in a similar way:

7T+12
19

32
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Where there is more than one function to be executed,
parentheses are used to indicate which is to be done first.
Thus the expression

(2+3) x4
is evaluated by first performing the function within the

parentheses (that is, 2+3), and then multiplying the result
by 4. The final result is therefore 20, as shown below:

(2+3) x4
20
The foregoing is read aloud as "quantity 2+3, times u". The
word '"quantity" indicates that the first expression
following it is to be executed first. That is, you are to

find the result of 2+3 before attempting to execute the
function "times".

The steps in the execution of an expression may be
displayed on successive lines, substituting at each line the
value of part of the expression above it as illustrated
below:

(2+43)xu

5 xi
20

The vertical line drawn to the left of the first two lines
indicates that they are eguivalent statements, either of
which would produce the result 20 shown on the final line.
The whole statement would be read aloud as "Quantity 2 plus
3 times 4 is equivalent to 5 times 4 which makes 20". The
following examples would be read in a similar way as shown
on the right:

(2+3)x(5+4) Quantity 2 plus 3 times quantity 5§
plus 4
is equivalent to
5 x 9 5 times 9
45 which makes 45

((2x3)+(5x4))x2 Quantity 2 times 3 plus quantity 5§
times 4, all times 2
is equivalent to
( 6 + 20 )x2 quantity 6 plus 20 times 2
is equivalent to
26 X2 26 times 2
52 which makes 52
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The last example illustrates the difficulty of
expressing in English the sequence of execution that is
expressed so simply by parentheses in algebra, that is, when
parentheses are "nested" within other parentheses even the
use of the word "quantity" does not suffice and one resorts
to expressions such as "all times 2". The main point is
this: in learning any new language (such as algebra) it is
important to re-express statements in a more familiar

language (such as English); however, certain things are so
awkward to express 1in the old language that it becomes
important to learn to "think" in the new language. B1l-6

The expression 2+3x4, written without parentheses,
could be taken to mean either (2+3)x4 (which makes 20), or
2+(3x4) (which makes 14). To avoid such ambiguity we make
the following rule: when two or more functions occur in
succession with no parentheses between them, the rightmost
function is executed first. For example:

2+3x4
2+ 12
14
1+2x3+4x5
1+2%x3+ 20
1+2%x 23
1+ L6
L7
(1+2x3)+4x5
(1+ 6)+ 20
7 +20
27 g7-12
1.3 NAMES
Consider the following statements:
(1+3+5+7+9)x2
50
(1+43+5+7+9)x3
75

(1+3+45+7+9 ) x4



6 Names 1.3

Since the expression 1+3+5+7+9 occurs again and again in the
foregoing statements, it would be convenient to give some
short name to the result produced by the expression, and
then use that short name instead of the expression. This is
done as follows:

IT«1+3+5+7+9
ITx2
50
ITx3
75
ITxY4
100
IT
25

The foregoing would be read aloud as follows: "The name IT
is assigned the value of the expression 1+3+5+7+9. IT times
2 makes 50. IT times 3 makes 75. IT times 4 makes 100. IT
makes 25".

Names can be chosen at will. For example:

LENGTH<5
WIDTH<Y4
LENGTHXWIDTH
20
AREA<LENGTHxWIDTH
AREA
20
PRICE<S
QUANTITY<h
PRICEXQUANTITY
20

Mathematicians usually prefer to use short names like L or W
or X or Y, perhaps because this brings out the underlying
structure or similarity of expressions which may deal with
different names. Consider, for example, the following
sequence:

X<«5

Y<h

XxY
20

If X is taken to mean length and Y is taken to mean
width, the result is the area of the corresponding
rectangle; but if X is taken to mean price and Y is taken to
mean quantity, then the result is the total price. This
makes clear that there is some similarity between the
calculation of an area from length and width and the
calculation of total price from price and quantity.
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The names used in algebra are also called variables,

since they may vary in the sense that the same name may
represent different values at different times. For example:

X<3

XxX
9

X<5

XxX
25

This ability to vary distinguishes a name 1like x from a
symbol like 5 which always represents the same value and is
therefore called a constant.

It is interesting to note that the wvariables 1in

algebra correspond to the pronouns in English. For example,
the sentence "close it" 1is meaningless until one Kknows to
what "it" refers. This reference is usually made clear by a
preceding sentence. For example, "See the door. Close it"
is unambiguous because the first sentence makes clear that
"it" refers to "the door". Similarly, in algebra the
expression IT+5 cannot be evaluated unless the value to
which IT refers is known. In algebra this reference is made
clear in one way, by the use of the assignment represented

by the symbol «. For example:

IT<3
IT+5
8

The same name JT can stand for different values at different
times just as the pronoun "it" can refer to different things
at different times. #13-18

1.4 OVER NOTATION
It 1is often necessary to take the sum over a whole

list of numbers. For example, if the list consists of the
numbers 1 3 5 7 9 11, then their sum could be written as

1+3+5+7+9+11
36

It is more convenient to use the following notation:

+/1 3 5 7 9 11
36

The foregoing is read aloud as "Sum over 1 3 5 7 9 11" or as
"Plus over 1 3 5 7 9 11".
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The over notation can be used for other functions as
well as for addition. For example:

READ AS
x/1 2 3 Times over 1 2 3
6 makes 6
x/1 2 3 4 Times over 1 2 3 U4
24 makes 24
+/1 2 3 4 Plus over 1 2 3 4
10 makes 10
(+/1 2 3 4)x6 Quantity plus over 1 2 3 4
times 6
60 makes 60
6x +/1 2 3 4 6 times plus over 1 2 3 4
60 makes 60
N«<1 2 3 4 N assigned 1 2 3 4
+/N Plus over N
10 makes 10
x /N Times over N
19-21H 24 makes 2u

1.5 THE POSITIVE INTEGERS

The natural numbers 1 2 3 4 5 . . . are also called
the positive integers. They may be produced as follows:

13

15
1 2 3 4 5
116
1 23 456 7 8 9 10 11 12 13 14 15 16
N<6
v
1 2 3 4 56

The symbol 1 is the Greek letter iota which corresponds to
the English letter i. The expression 1V is read aloud as
"the integers to N". Thus:

READ AS
+/15 Plus over the integers to 5

15 makes 15
x/15 Times over the integers to 5

22-25H 120 makes 120
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1.6 VECTORS

The numbers in the list are called the elements of the

vector. Thus the first element of the vector 3 5 7 11 is
the number 3, the second element is 5, the third element is
7, and the fourth is 11. The number of elements in the

vector is called the size of the vector. Thus the size of
the vector 3 5 7 11 is 4. Any single quantity (such as 17)

vector.

Vectors can be added and multiplied as shown in the
following examples:

READ AS

35 741 2 3 Vector 3 5 7 plus vector 1 2 3
y 7 10 makes 4 7 10

1 2 3+3 2 1 Vector 1 2 3 plus vector 3 2 1
4 o4y makes 4 4 4

1 2 3x3 2 1 Vector 1 2 3 times 3 2 1
3 4 3 makes 3 4 3

From this it should be clear that when two vectors are added
the first element is added to the first element, the second
element is added to the second, and so on. Multiplication
is performed similarly.

Like any other result, a vector can be assigned a
name. For example:

READ AS
V<1 2 3 4 The name V is assigned vector 1 2 3 4
W<l 3 2 1 The name ¥ is assigned vector 4 3 2 1
V+W Vv plus W
5555 makes 5 5 5 5
VxW V times W
4 6 6 4 makes u4 6 6 U
VxV V times V
14 9 16 makes 1 4 9 16
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The following examples may be read similarly:

READ AS
N<15 N is assigned integers to 5
N N
1 2 3 4 5 makes 1 2 3 4 5
NxN N times N
1 4 9 16 25 makes 1 4 9 16 25
(16)x16 Quantity integers to 6 times
quantity integers to 6
1 4 9 16 25 36 makes 1 4 9 16 25 36

Since the addition of two vectors V and ¥ means that
the first element of V¥ 1is to Dbe added to the first element
of W, the second element of ¥ is to be added to the second
element of ¥, and so on, then an expression such as

1 3 5+6 8 1 4 3
cannot be executed because the vectors are not of the same

size. However, expressions of the following form can be
executed:

READ AS
3+1 3 5 7 3 plus vector 1 3 5 7
4 6 8 10 makes 4 6 8 10

1 2 3 4 546 Vector 1 2 3 4 5 plus 6
7 8 9 10 11 makes 7 8 9 10 11

In other words, if one of the quantities to be added is a
single number (i.e., a scalar), it is added to each element

of the vector. The same holds for multiplication as
follows:
READ AS

3x1 3 5 7 3 times vector 1 3 5 7
3 9 15 21 makes 3 9 15 21

3x15 3 times integers to 5
3 6 9 12 15 makes 3 6 9 12 15

2+3%x15 2 plus 3 times integers to 5
5 8 11 14 17 makes 5 8 11 14 17

1+2%x16 1 plus 2 times integers to 6

3 57 9 11 13 makes 3 5 7 9 11 13
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+/1+2%x16 plus over 1 plus 2 times integers to 6
L8 makes u48
1++/142%x16 1 plus plus over 1 plus 2 times
integers to 6
ug9 makes 49 [H26-28

1.7 REPETITIONS

Consider the following statements and their

verpalization:
READ AS

3p2 3 repetitions of 2
2 2 2 makes 2 2 2

203 2 repetitions of 3
3 3 makes 3 3

5p7 5 repetitions of 7
77 7 77 makes 7 7 7 7 7

The symbol p is the Greek letter rho which corresponds to
the English r.

The following two columns of statements show some
interesting properties of repetitions, including the
relation between multiplication and a sum of repetitions:

+/3p2 2% 3
6 6

+/4p2 2x L4
8 8

+/5p7 7%5
35 35

+/15p20 20x15
300 300

x/2p2 x/2p3
L 9

x/3p2 x/3p3
8 27

X/ U4p?2 x/4p3
16 81

x/5p2 x/5p3

32 243 H29-31
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1.8 SUMMARY

This chapter has been concerned primarily with the
language or notation of algebra, and the wuses of the

notation have been kept simple. Now that the language has
peen mastered, succeeding chapters can turn to more
interesting uses of it. This does not imply that all the

notation of algebra has now been covered, but rather that
the main ideas have been introduced and that any further

additions will be easy to grasp. The situation may be
compared to the learning of a natural language such as
French. Once the main ideas of the language have been

learned (in months or years of study), the new French words
needed for some particular purpose can be picked up more
easily.

For example, the next chapter treats the maximum

function, represented by the symbol [ and defined to yield
the larger of its two arguments:

READ AS

273 2 maximum 3
3 makes 3

2y 2 maximum 4
u makes 4

2[5 2 maximum 5
5 makes 5

572 5 maximum 2
5 makes 5

The important point 1is that this new function is treated
exactly like the functions plus and times, thus:

2[1 2 3 4
2 2 3 4

315
3 3 3 4 5

[/8 1 7 10 3 10
10

12 3 4 5[5 4 321
5 4 3 4 5



1.8 Summary 13

this
which

The main points of the notation introduced in
chapter will now Dbe summarized in a few examples
snould be useful for reference purposes:

EXAMPLE

(2+3)x4
20

2+3x4
14

N<3

x4
12

+/3 5 7
15

x/2 3 5 2
60

1 2 3x3 2 1
3

3x1 2 3
3

15
1 4 5

Spu4
mn Lo

READ AS

Quantity 2 plus 3
times u

makes 20

2 plus quantity
3 times u
makes 14

N is assigned 3

N times 4
makes 12

Plus over vector
3 5 7
makes 15

Times over vector
2 35 2
makes 60

Vector 1 2 3 times
vector 3 2 1
makes 3 4 3

3 times vector
1 2 3
makes 3 6 9

Integers to 5
makes 1 2 3 4 5

5 repetitions of u
makes 4 4 4 4 4

COMMENTS

Function in paren-
theses is executed
first

Rightmost function
is executed first
if there are no
intervening
parentheses

Name N is assigned
the value of the
expression to
the right of <«

Element-by-element
multiplication

Single number multi-
plies each element



Function Tables
and Maps

2.1 INTRODUCTION

In Chapter 1, addition was spoken of as a "function"
because it "does something" to the numbers it is applied to
and produces some result. Multiplication was also referred
to as a function, but the notion of function is actually
much broader than these two examples alone might suggest.
For example, the average or normal weight of a woman depends
on ner height and is therefore a function of her height. 1In
fact, if one were told that the normal weight for a height
of 57 inches is 113 pounds, the normal weight for a height
of 58 inches 1is 115 pounds, and so on, then one could
evaluate the function "normal weight" for any given height
by simply consulting the 1list of corresponding heights and
weights.

It is usually most convenient to present the necessary
information about a function such as "normal weight" not by
a long English sentence as begun above, but by a table of
the form shown in Figure 2.1.

H 57 113 W
E 58 115 E
I 59 117 I
G 60 120 G
H 61 123 H
T 62 126 T
63 130
I 64 134 I
N 65 137 N
66 141
I 67 145 P
N 68 149 0
C 69 153 U
H 70 157 N
E 71 161 D
S 72 165 S

Table of Normal Weights
Versus Heights

Figure 2.1
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The quantity (or quantities) to which a function is
applied is (are) called the arqument (or arguments) of the

function. For example, in the expression 3x4 the number 3
is the left (or first) argument of the function x and u is

the right (or second) argument. Evaluation of the "normal
weight" function (represented by Table 2.1) for a given
argument (say 68 inches) 1is performed by finding the

argument 68 in the first column and reading the weight (149
pounds) which occurs in the same row.

The domain of a function is the collection of all
arguments for which it is defined. Addition is, of course,
defined for any pair of numbers, but the function "normal
weight" is certainly not defined for heights such as 2
inches or 200 inches. For practical purposes, the domain of
a function such as "normal weight" is simply the collection
of arguments in the table we happen to possess, even though
information for other arguments might be available
elsewhere. For example, the domain of the function of Table
2.1 is the set of integers from 57 to 72, that 1is, the set
of integers 56 +116.

The range of a function is the collection of all the

results of the function. For example, the range of the
function of Figure 2.1 is the set of integers 113, 115, 117
120, etc., occurring in the second column. Hl-2

A table of normal weights often shows several columns
of weights, one for small framed people, one for mediumn,
and one for large. Such a table appears in Figure 2.2. In
such a case the weight is a function of two arguments, the
height and the "frame-class"; the first argument determines
the row and the second argument determines the column in
which the result appears. Thus the normal weight of a
small-boned, 66-inch woman is 133 pounds. BH3-4

An arithmetic function can also be represented by a
table, as is illustrated by Figure 2.3 for the case of
multiplication. Since the domain of multiplication includes

all numbers, no table can represent the entire
multiplication function; Figure 2.3, for example, applies
only to the domain of the first few integers. The

multiplication sign in the wupper left corner is included
simply to indicate the arithmetic function which the table
represents.

In any table, the first column represents the domain
of the first argument and the first row represents the
domain of the second argument; the rest is called the body
of the table. For example, in Figure 2.3, the body of the
table is that part bordered on the left and top by the solid
lines.
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Frame

Small Medium Large

H 57 105 113 121 W
E 58 107 115 123 E
I 59 109 117 125 I
G 60 112 120 128 G
H 61 115 123 131 H
T 62 118 126 135 T
63 122 130 139
I 6L 126 134 143 I
N 65 129 137 147 N
66 133 141 151
I 67 137 145 155 P
N 68 141 149 158 (@)
C 69 145 153 162 U
H 70 149 157 165 N
E 71 153 161 169 D
S 72 157 165 173 S
Normal Weight as a Function
of Two Arguments
Figure 2.2
Function Right Domain
Name X 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 L 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
Left L L 8 12 16 20 24 28 32 36 40
Domain 5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 L8 56 64 72 80

Multiplication Table

Figure 2.3

In any table representing a function of two arguments,
any one column of the body (taken together with the column
of arguments not in the body) represents a function of one
argument. For example, if one takes the second column of
the body of Figure 2.2, it represents the same function of
one argument as does Figure 2.1.

Thus any function of two arguments can be thought of
as a collection of functions of one argument. For example,
the second column of the body of Figure 2.3 represents the
"times two" function, the third column represents the "times
three" function, etc.
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Similarly, one row of the body of a function table

represents a function of one argument. For example, the
fifth row of the body of Figure 2.2 gives weights as a
function of "frame" for 61 inch women. @5-10

2.2 READING FUNCTION TABLES

The basic rule for reading a function table is very
simple: to evaluate a function, £find the row in which the
value of the first argument occurs (in the first column, not
in the body of the table) and find the column in which the
second argument occurs (in the first row) and select the
element at the intersection of the selected row and the
selected column. However, just as there is more to reading
an English sentence than pronouncing the individual words,
so a table can be "read" so as to yield useful information
about a function beyond that obtained by simply evaluating
it for a few cases.

For example, the table of Figure 2.2 can be "read" so
as to answer the following questions:

1. Can two women of different heights have the same normal
weight?

2., For a given frame type, does normal weight always
increase with increasing height?

3. For a given height, does normal weight increase with
frame type?

4, How many inches of height produce (about) the same
change in weight as the change from small to large
frame? Does this change remain about the same
throughout the table?

Arithmetic functions are more orderly than a function
such as that represented by Figure 2.2, and the patterns
that can be detected in reading their function tables are
more striking and interesting. Consider, for example, an
attempt to read Figure 2.3 to answer the following
questions:

5. The second column of the body (which was previously
remarked to represent the "times two" function) contains
the numbers 2 u4 6, etc., which are encountered in
"counting by twos". Can a similar statement be made
about the other columns?

6. Is there any relation between corresponding rows and
columns of the body, e.g., between the third row and the
third column?
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7. Can every result in the body be obtained in at least two
different ways? Are there any results which can be
obtained in only two ways?

Similarly, one can construct a function table for
addition and read it to determine answers to the following
questions:

8. In how many different ways can the result 6 be obtained
by addition? Does the result 6 occur in the table in
some pattern and if so does a similar pattern apply to
other results such as 7, 8, etc.?

9. What is the relation between two successive rows of the
table?

Because of the patterns they exhibit, function tables
can be very helpful in gaining an understanding of
unfamiliar mathematical functions. For this reason they

118 will be used extensively in succeeding chapters.

2.3 EXPRESSIONS FOR PRODUCING FUNCTION TABLES

If A«1 2 3 4 5 6 7 8
B<«1 2 3 4 56 7 8 9 10
then the expression Ao.xB yields the body of the function

table of Figure 2.3 as follows:

Ao .xB

3 L 5 6 7 8 9 10

6 8 10 12 14 16 18 20

9 12 15 18 21 24 27 30
8 12 16 20 24 28 32 36 40
10 15 20 25 30 35 40 45 50
12 18 24 30 36 42 48 54 60
14 21 28 35 42 49 56 63 70
16 24 32 40 48 56 64 72 80

o EN

OO0 F WN P

Similarly, the body of an addition table for the same
set of arguments can be produced as follows:

Ao, +B
2 3 4 5 6 7 8 9 10 11
3 L 5 6 7 8 9 10 11 12
4 5 6 7 8 9 10 11 12 13
5 6 7 8 9 10 11 12 13 14
6 7 8 9 10 11 12 13 14 15
7 8 9 10 11 12 13 14 15 16
8 9 10 11 12 13 14 15 16 17
9 10 11 12 13 1y 15 16 17 18
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The general rule is that the symbol o (called null)
followed by a period followed by the symbol for a function
produces the appropriate function table when applied to any
arguments A4 and B. The expression "4o.+B" may be read as
"the addition table for 4 and B" or as "4 addition table B",
or even as "4 null dot plus B". Similarly, "4o.xB", may be
read as "4 times table B", etc.

It is important to note that the expression 4..+3B
produces only the body of the addition table to which one
may add a first column consisting of 4 and a first row
consisting of B if this is found to make the table easier to
read.

It 1is also important +to note the difference between
the expression 4o.xB, which yields the multiplication
table, and the expression AxB, which yields the
element-by-element product of 4 and B. For example:

A<1 3 5
B«2 4 6

AXB
2 12 30

Ao, xB
2 L 6
6 12 18
10 20 30 F12-13

The body of a table alone does not define a function.
For example, the following tables define two distinct
functions although the bodies of the tables are identical:

+ ]2 3 4 s Fl2 38 5 7
2 % 5 6 7 6 | ¥ 5 6 7
3|5 6 7 8 515 6 7 8
» |6 7 8 9 v e 7 8 9
517 8 9 10 3 17 8 9 10

The name of the function represented by the first
table is + (as shown in the upper left corner), and the
table can be used to evaluate expressions as shown on the
left below:

5 + 3 is 8 5 F 3 is 6
4 + 5 is 9 4 F 5 is 8
3 + 3 is 6 3 F 3 is 8

The function represented by the second table is called

F  (as indicated in the wupper left corner) and the
expressions on the right above show the evaluation of the
function F for the same arguments used on the left. Since

the results differ, the two tables represent different
functions.
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The complete specification of a function table
therefore requires the specification of four items:

1. The left domain (i.e., the domain of the left

3. The body of the table.
4. The name of the function.

From these four items the table can be constructed and
used as illustrated below:

Left domain: 3 4 56

Right domain: 11 9 7 5 3 1

Body: 5 + (3x1U4)o.+(2%x16)
Name: G

¢l11 9 7 5 3 1
3| 10 12 1% 16 18 20
4|13 15 17 19 21 23
5
6

16 18 20 22 24 26
19 21 23 25 27 29

2.4 THE FUNCTIONS DENOTED BY [ AND |

The advantages of the function table can perhaps be
better appreciated by applying it to some unfamiliar
functions than by applying it to functions such as addition
and multiplication which are probably already well
understood by the reader. For this purpose we will now
introduce several simple new functions which will also be
found to be very useful in later work.

It is sometimes instructive to introduce a new
function as a puzzle - the reader must determine the general
rule for evaluating the function by examining the results
obtained when it is applied to certain chosen arguments.
For example, the function L can be applied to certain
arguments with the results shown below:

3L8

47032
32
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If one performs enough such experiments it should be
possible to guess the general rule for the function. In
attempting such a guess it 1is helpful to organize the
experiments in some systematic way, and the body of the
function table provides precisely the sort of organization
needed. For example:

I«1 2 3 4 56 7 8
To.lI
1 1

PR R R R R RP R
NNNNNDNODN PR
WWWwWwwN

FFFFFON

oo EwWN R
OO UEWN R
NN U FEWN e
® O U»FEwWwN R

From the foregoing the reader should be able to state
the definition of the function and from that statement be
able to apply it correctly to any pair of arguments.

The function | is called the minimum function because

it yields the smaller of its two arguments. The maximum

function is denoted by [ and is defined analogously. The
body of its function table appears below:

o

~

.

N UE WN P
N U EWNN
OJOUFEWWwHN
ONO U EEEFE
IO Lo x;
DO O]
ON NN 9NN 99
™ MmO mw o

2.5 THE POWER FUNCTION

Another very useful function is called the power
function and 1is denoted by *. The body of its function
table is shown below:

I«1 2 3 4 5 6 7

To.*xT

1 1 1 1 1 1
4 8 16 32 6uU 128
9 27 81 243 729 2187
16 ou 256 1024 4096 16384

25 125 625 3125 15625 78125
36 216 1296 7776 46656 279936
49 343 2401 16807 117649 823543

~NOoO o EWN R

H17-18
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The power function is defined 1in terms of
multiplication in much the same way as multiplication is
defined in terms of addition. To appreciate how

multiplication is defined as "repecated additions", consider
the following expressions:

2p2
2 2

+/2p2 2x2
4 4

3p2
2 2 2

+/3p2 2%x3
6 6

Lp?2
2 2 2 2

+/Up?2 2x4
8 8

+/5p2 2x5
10 10

+/6p2 2x6
12 12

+/8p3 3x8
24 24

Comparing the results of +/2p2 and 2x2 and the results
of +/3p2 and 2x3, etc., it should be clear that MxN is
equivalent to adding N quantities each having the value M.

The corresponding definition of the power function =
can be obtained by replacing each occurrence of + in the
foregoing expressions by x and each occurrence of x by =:

2p2
2 2

x/2p2 2% 2
4 4

3p2
2 2 2

x/3p2 2%3
8 8

4p?2
2 2 2 2

x/h4p?2 2% L4
16 16

x/5p2 2%5
32 32

x/6p2 2%6
6U B4

x/8p3 3%8
6561 6561

In general, M to the power ¥ (that 1is, M*N) is

obtained by multiplying together N factors each having the
19-22F wvalue pu.



2.6 Maps 23

2.6 MAPS

Figure 2.4 shows a map which represents the "times
two" function. The rule for evaluating a function
represented by a map is very simple: 1locate the specified

argument in the top row, then follow the arrow from that
argument to the result at the head of the arrow in the
bottom row; e.g., the result for the argument 3 is 6.

1234&891011121314
Map of "Times Two" Function

Figure 2.4

The rules for constructing a map are also simple.
First consider all of the wvalues in the domain of the
function together with all of the results, and choose the
smallest number and the largest number from among them.
Write a row of numbers beginning with the smallest and
continuing through each of the integers in order up to the
largest. Repeat the same numbers in a row directly below
the first row. For each argument in the top row now draw an
arrow to the corresponding result in the bottom row.

Just as it is often helpful to read tables, so is it
helpful to read such maps. Consider the four maps shown in
Figure 2.5. From the first it is clear that in the map of
addition of 2, the arrows are all parallel. From the map
pelow this it is clear that the same is true for addition of
3, and that the slope of the arrows depends on the amount
added. The maps on the right show multiplication; here the
arrows are not parallel, and the distance between suc-
cessive arrowheads is seen to be equal to the multiplier.

1 2 3 L 5 6 7 9 10 11 12
\\\\\2 \\\\\\XQ
1 2 3 [ 5 [§) 7 10 11 12
1 2 3 u 5 6 7 9 10 11 12
1 2 3 4 5 [$) 7 9 10 11 12

Maps for Addition and Multiplication

Figure 2.5
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It is sometimes useful to show the maps of a sequence
of functions such as the following:

I«1 2 3 4 5 6

2xT
2 L 6 8 10 12
8+(2xI)

10 12 14 16 18 20

The appropriate maps are shown in Figure 2.6. The
broken lines show the map of the overall result produced,
that is, the map of the function 8+(2xI).

1 23 4_5_6._7 8 9 10 11 12 13 14 15 16 17 18 198 20

NS

2.3 4 5~\§\\7 8..9°10_1112_13 14 15 16 17 18 19 20

\\\\\\NNO

/)

=
1 2 3 4 5 6 7 8 9°10 11712
Maps of a Sequence of Functions

Figure 2.6

23-24f function produces.
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The Negative
Numbers

3.1 SUBTRACTION

The subtraction function is denoted by the minus sign
(-). For example:

READ AS

8-3 8 minus 3
5 makes 5

(5+3)-3 Quantity 5+3 minus 3
5 makes 5

(5-3)+3 Quantity 5-3 plus 3
5 makes 5

The following examples illustrate the relation between
addition and subtraction:

5+3 8-3
8 5
6+3 9-3
9 6
7+3 10-3
10 7
5+4 9-4
9 5
6+4 10-4
10 6
7+4 11-4
11 7
1 2 3 4 543 4 5 6 7 8-3
L 5 6 7 8 1 2 3 4 5
1 2 3 4 5+4 5 6 7 8 9-4
5 6 7 8 9 1 2 3 4 5

From these examples it appears that subtraction will undo
the work of addition. That is, if 3 is added to 5 to
produce 8, and 3 is then subtracted from 8 the final result
is the original value 5. This 1is true in general, and
Thus for any number X and any number 4, the expression
(X+4)-4 will yield X.
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The converse is also true; that is, addition will undo
the work of subtraction, and addition is therefore the
inverse of subtraction. For example:

8-3
5
5+3
8
8 9 10 11 12 13-3
56 7 8 9 10
56 7 8 9 10+3
8 9 10 11 12 13

In other words, (X-4)+4 will also yield X.
In summary then:
(X+4)-A makes X
(X-4)+A makes X
For example:
(8 9 10 11 12 13+3)-3
8 9 10 11 12 13
(8 9 10 11 12 13-3)+3
8 9 10 11 12 13

This inverse relation between addition and subtraction
can also be exhibited in terms of maps as follows:

12 3 456 78 9 10 11 12 13 14 15 16 17

NN

1 2 3 4 56 7 16 17
////// 3
1 2 3 4 5686 7 16 17
1 2 3 4 5 13 14 15 16 17
//////3
1 2 3 4 5 13 14 15 16 17

AN

12 3 45 13 14 15 16 17
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3.2 NEGATIVE INTEGERS

Consider a map for the case (3 4 5 6 7 8 9-5)+5 which
should yield 3 4 5 6 7 8 9 as a final result:
12/8“0
T 7 71 27 3 4 s 8 7 8 9 10
2 3 L 5 6

-5

\\\\”

1 7 8 g 10

A problem arises in some of the subtractions, since 3-5 and
4-5 and 5-5 do not yield positive integers. However, the
map shows that if we keep track of the unnamed positions to
the left of the first positive integer, the overall mapping
for adding 5 and then subtracting 5 yields the correct final
result,

The problem is resolved by assigning names to each of
the new positions as follows:

The first number to the left of 1 is named 0. This is read

aloud as "zero", and means "nothing" or "none". The other
new numbers, 1 and "2, are called negative integers, and
are read as "negative 1" and "negative 2". Of course, the

negative integers continue as far to the 1left as desired,
just as the positive integers continue as far to the right
as desired. The whole pattern including the negative
integers, zero, and the positive integers, will be called

The effect of all this is to introduce new integers so
that eyvery subtraction has a proper result. Addition and
subtraction are still defined as before by moving the proper
number of places to the right or left in the pattern of the
integers, but the pattern has now been expanded to include
the negative integers and zero. E5-6
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3.3 ADDITION AND SUBTRACTION

The expression 7+~ 3 can be considered either as adding
7 to "3 as follows:

4 73 72 71012 34 56 78

+7

4 73 "2 7101 2 34 56 7 8

or as adding 3 to 7 as follows:

4 "3 72 7101 2 34 56 78
+ 3
4 3 "2 "1 012 3456 78

that is, 7+ 3 yields the same result as 7-3. The following
examples each show an expression on the left and the
corresponding map on the right for a variety of additions
and subtractions involving both positive and negative
integers:

S« 2 7101 2

5 4 "3 271 0 1 2 3 4 5
S+3 \\\:::555555:::\\\ +3
5 4 "3 7271 0 1 2 3 "u s

5 Ty T3 T2 71 .

5-3 ///:::::>// -3
5 Ty T3 T20 T
5 T4 T3 72 71 0

S+73 ’//j::::;/// +3
5 T T3 T2 71 o0
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The first and last examples illustrate that subtraction of a
negative number (~3 in the example) is equivalent to adding
the corresponding positive number (3 in the example). This
follows from the fact that subtraction of 73 is inverse to
addition of 73 which is equivalent to subtraction of 3.
Hence subtraction of 3 is inverse to subtraction of 3 and

is therefore equivalent to the addition of 3. B7-9

3.4 EXPRESSIONS FOR PRODUCING THE INTEGERS

The function 1 introduced in Chapter 1 produces the
positive integers as illustrated below:

15
1 2 3 4 5
17
1 2 3 45 6 7

The same function can be wused to generate both
positive and negative integers as follows:

The non-negative integers (that is the positive

integers and zero), can be generated as follows:

(16)-1
01 2 3 45

T1+16
012 3145

Non-positive integers can be generated as follows:

The following examples illustrate some functions applied to
a vector S of integers:

S« 5+19
S S+8

4 T3 72 7101 2 34 8 6 4 T2 0 2 4 6 8
1+5 2x S

3 72 "1 01 2 345 8 76 4 T2 0 2 4 6 8
T2+S S+5+S3

6 5 "4 T3 "2 7101 2 12 "9 6 "3 0 36 9 12
S-3 3x3

00 00O0O0O0O0O 12 "9 "6 "3 0 36 9 12 E10



Function Tables
with Negative Integers

4.1 INTRODUCTION

Function tables were wused in Chapter 2 to explore the
behavior of the functions plus and times. We can now apply
them in the same manner to explore the new function
subtraction introduced in Chapter 3. Moreover, they will be

useful in re-examining the behavior of plus and times when

applied to the new negative numbers also defined in Chapter
3.

4.2 SUBTRACTION
If I«19, then the body of a subtraction table for the

arguments 1 to 9 1is given by the expression Io.-I as
follows:

I<19

I
1 2 3 4 5 6 7 8 9

S<«Io.,-T

S
071 72 73 4 s T "7 "8
1 0 "1 "2 73 7y 75 T 77
2 1 0 1 72 73 74 "5 7s
3 2 1 0 71 72 73 4 s
4 3 2 1 0 "1 "2 73 74
5 4 3 2 1 0 "1 72 73
6 5 4 3 2 1 0 1 "2
7 6 5 4 3 2 1 0 1
8 7 6 S5 4 3 2 1 0

The subtraction table 5 has a number of interesting
properties. For example, the zeros down the main diagonal
of the table show that any number subtracted from itself
yields 0. Moreover, each diagonal parallel to the main
diagonal contains the same number repeated. For example,
the diagonal two places below the main diagonal consists
entirely of 2's.
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Consider the arguments 5 and 3 in the expression 5-3.
The result 2 1is found in the circled position in the
following subtraction table:

N
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If each argument 1is increased by 1, the result is
found in the next row and next column; in other words, one
place down the diagonal as shown by the square in the above
table. Since every entry in this diagonal is the same, we
conclude that (5+1) - (3+1) yields the same result as 5-3.
More generally, if we increase each argument by any number
N, the result is found by moving N places down the diagonal.
Hence we can conclude<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>