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Exploration 

 Something lost behind the ranges 
 Lost and waiting for you. Go! 
 Kipling 
 

A. Introduction 
Exploring a city or wild park on foot is more fun, and often more instructive, than 
studying it in books, lectures, or pictures. A map or other guide may be helpful, 
but it is important to be able to experiment, choosing your own path, approaching 
points of interest from various directions. This can give you a sense of the lay of 
the land that is more useful, and more lasting, than any fixed tour of “important 
points” laid out by someone else. 
Matters other than landscapes may also be explored, effectively and enjoyably. 
For example, to learn about clockwork, begin not with diagrams and discussions 
of balance wheels, springs, and escapements, but rather with an actual old-style, 
wind-up alarm clock. Explore it by first finding what can be done with it. Can 
you: reset the time? make it run faster? stop it? or reset the hour hand 
independently of the minute hand? 
Having learned what it can do, explore the matter of how it does it, by removing 
its cover, studying the works, and finally taking it apart and re-assembling it. You 
may, of course, not be skillful enough to get it working again. 
Exploration can also be applied to other devices that may be more interesting or 
more easily available to you: toasters, typewriters, electrical toggle switches, or 
door locks. But do not forget your own safety—danger lurks in electrical devices 
as well as in wilderness parks. Finally, in choosing a device for exploration, 
favour the older models: modern typewriters and digital clocks may be totally 
inscrutable. At least one author (Ivan Illich) has claimed to see a sinister motive 
in this, claiming that modern design is deliberately inscrutable in order to keep 
ordinary people like us in ignorance. 
But can exploration be applied to abstract, non-physical notions such as math? 
Yes it can. With an ordinary hand-calculator you can explore the relation between 
multiplication and addition by using it to multiply two by three, then to add two 
plus two plus two, and then comparing the results. If the calculator has a button 
for power, you can even explore that less-familiar notion by doing two to the 
power three, and comparing the result with two times two times two. 
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But the abilities of a calculator are limited, and for a general exploration of math 
we will use a computer equipped with suitable software called J. It is available 
from Website http://www.jsoftware.com . We will assume that you have J at hand 
on a computer, and will simply show examples of exploring math with it: 
 
   3+2 
5 
   3*2 
6 
   3-2 
1  
 

These examples are in a uniformly-spaced font (Courier) that differs from the 
Roman font used elsewhere. We will use this difference to append comments to 
some of the examples. In typing the examples on your computer, enter only the 
part in Courier (followed by pressing the Enter key), but do not enter anything 
that appears in Roman. Thus: 
 

   3+2 Addition 
5 
 
   three=:3 Assign the name three to 3 
   three+2 Use the assigned name in a sentence 
5 
 
   b=:2 
   b*b 
4  
In experiments on a sequence of numbers, it will be easier to make the entries and 
to compare the results if we treat them as a list. This may be illustrated as follows: 
 
   2*0 
0 
 
   2*1 
2 
   2*2 
4 
 
   2*0,1,2,3,4,5 
0 2 4 6 8 10 
 
   a=:0,1,2,3,4,5 
   2*a 
0 2 4 6 8 10 
 
   a+a 
0 2 4 6 8 10 
 

Comparisons can be shown more clearly by using the equals function as follows: 
 
   (2*a)=(a+a) 



 Chapter 1  Exploration 
 

3

1 1 1 1 1 1 
 
   a^2 The list a to the power 2 (that is, the square) 
0 1 4 9 16 25 
 
   a*a 
0 1 4 9 16 25 
 
   (a^3)=(a*a*a) The cube equals a product of three factors 
1 1 1 1 1 1 
 

Lists of integers (whole numbers) are so useful that a special function is provided 
for making them. Enter the following expressions, and comment on the results: 
 

   i.6 The first six non-negative integers (whole numbers) 
0 1 2 3 4 5 
 
   a=:i.6 Read aloud as a is (the list) i.6 
   b=:?.~6 The integers in (repeatable) random order 
   b 
5 1 2 4 3 0 
 
   a+b 
5 2 4 7 7 5 
 
   a*b 
0 1 4 12 12 0 
 
   2*a The even numbers (divisible by 2) 
0 2 4 6 8 10 
 
   1+2*a The odd numbers 
1 3 5 7 9 11 
 
   a=b 
0 1 1 0 0 0 
 

As shown by the last result, the lists a and b are not equal, but they are similar in 
the sense that one can be obtained from the other by shuffling or permuting the 
items. It is rather easy to see that a and b are similar, but for longer lists similarity 
is not so easy to spot. For example, are the following lists similar? 
 
   p=:2 15 9 10 4 0 13 13 18 7 10 16 0 1 10 13 0 7 1 8 
   q=:7 4 7 13 0 10 1 1 2 13 13 15 0 10 9 18 10 8 0 16 
 

A good general method for determining similarity is to first sort each list to 
ascending order, and then compare the results: 
 
   sort=: /:~ 
   sort p 
0 0 0 1 1 2 4 7 7 8 9 10 10 10 13 13 13 15 16 18 
 
   sort q 
0 0 0 1 1 2 4 7 7 8 9 10 10 10 13 13 13 15 16 18 
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   (sort p)=(sort q) 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
 
   (sort p)-:(sort q) 
1 
 
The last sentence above uses -: to match the two lists, giving 1 if they agree in 
every item, and 0 otherwise. This makes a comparison possible without reading 
all the items that result from an equals comparison. 
Exercises are commonly used by a student or teacher to test a student’s 
understanding, in order to decide what best to do next. We will also use them to 
suggest further exploration. A few tips on carrying out such explorations: 
Before pressing the enter key, think through what the result should be; 
experiments will teach much more if this rule is always followed. 
On the other hand, do not hesitate to try anything you choose; the result may be 
unintelligible or it may be an error message, but no serious harm can occur. 
Use lists in experiments. Their results often show interesting patterns. 
Do not hesitate to try things totally unknown. For example: 
 
   %:a 
0 1 1.41421 1.73205 2 2.23607 
 

This result will probably convince you that you have discovered the symbol for 
the square root, and you might experiment further as follows: 

   roots=:%:a 
   roots*roots 
0 1 2 3 4 5 

• However, do not spend too much time on results that may be, at the moment, 
beyond your powers. It may be better to defer further exploration until you 
have learned some further math (such as complex numbers). For example: 
 
     %:-a 
  0 0j1 0j1.41421 0j1.73205 0j2 0j2.23607 

• Explore a  complex sentence by experimenting with its parts. For example: 
 

   i:4  Function for symmetric lists 
_4 _3 _2 _1 0 1 2 3 4 
 
   i: 3 
_3 _2 _1 0 1 2 3 
 
   +:3 
6 
 
   >: +:3 
7 
 
   >:@+:3  The function f@g is f atop (applied to the result 

of) g 
7 
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   i.@>:@+:3 
0 1 2 3 4 5 6 
 
   ]3 Identity function 
3 

Exercises 
 
1. What are the commonly-used names for the functions (or verbs) denoted here 

by + * - 
 [plus times minus or addition multiplication (or product) subtraction]  

2. Enter plus=:+ to assign the name plus to the addition function, and then 
experiment with the following expressions: 

 
   3 plus 4 * 2 
11 
   zero=:0 
   one=:1 
   two=:2 
   three=:3 
   four=:4 
   times=:* 
   three plus four times two 

3. As illustrated by the preceding exercise, much math could be expressed in 
English words without forcing students to learn the “difficult” special notation 
of math. Would you prefer to stick to English words?  

4. Experiment with the following editing facilities for correcting errors:  

• Correct a line being entered by using the cursor keys (marked with 
arrows) to move the cursor to any point, and then type or erase (using the 
delete or backspace keys). The cursor need not be returned to the end of 
the line before entering the line.  

• Revise any line by moving the cursor up to it and pressing enter to bring it 
down to the input area for editing.  

Not only is it important to think through the expected result of an experiment 
before executing it on the computer, but it is also a good practice to look for 
patterns in any lists or tables you may see. Then verify your observations by 
doing calculations by hand for short lists, and then test them more thoroughly on 
the computer. For example, the list of odd numbers: 
   1+2*a 
1 3 5 7 9 1 

may be added by hand to give 36. Now add only the first five of the list, the first 
four, and so on down to the first one.  

Do you see a pattern in these results? If not, compare them with the following list 
of squares: 
 
   (1+a)*(1+a) 
1 4 9 16 25 36 
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It appears that for any value of n, the sum of the first n odd numbers is simply the 
square of n. This may be tested further as follows: 
   n=:20 
   a=:i.n 
   odds=:1+2*a 
   odds 
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 
 
   sum=:+/ 
   sum odds 
400 
 
   n*n 
400 

The sum function +/ gives the sum of its arguments, but calculation of the 
subtotals (the sum of the first one, the first two, etc.) would provide a more 
thorough test. Thus: 
 
   sum\ odds 
1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 
400 
 
   (1+a)*(1+a) 
1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 
400 

Hereafter we will suggest many experiments without showing the results, 
expecting students to use the computer to produce them. 

B. Ramble or Research 
The main point of this book is to introduce a new tool for exploring math, and to 
foster its use by applying it to a variety of topics. In other words, it provides a 
ramble through a variety of topics rather than a systematic study of any one of 
them. 

Rambles through any subject can be much more rewarding, and more self-
directed, if one has a systematic knowledge of at least some aspect of it. For 
example, amateur shell-collecting is more interesting to one with some knowledge 
of molluscs and their classification; walks through parks are more rewarding to 
one with some systematic knowledge of plant, animal, or insect life; and walks 
through hills and mountains are made more interesting by a knowledge of 
elementary geology. 

However, any book on rambling would surely fail if stuffed with serious 
digressions on the systematic study of each interesting point as it is discovered. It 
is better to provide the reader with effective but unobtrusive pointers to other 
sources. 

Books 2 and 3 provide deeper studies of two branches of math: arithmetic and 
calculus. Being that branch of math that deals with whole numbers, arithmetic is 
the most elementary and accessible of subjects in math but, as treated in Book 2, 
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it also provides simple introductions to many more advanced topics, including 
proofs, permutations, polynomials, logic, and sets. 
These books are easy to consult because they use the same J notation. Moreover, 
they incorporate more systematic introductions and discussions of the notation 
itself. Further texts of this character include Reiter’s Fractals, Visualization and J 
[1], and Concrete Math Companion [2]. 

On the other hand, treatments in conventional notation of a wide variety of topics 
are more readily available in libraries. Use of them in conjunction with the 
present text will require sometimes difficult translations between J and 
conventional notation. However, the effort of translation is often richly repaid (as 
it is in translating from one natural language to another) by deeper understanding 
of the matters under discussion. 

In fact, a deep appreciation of the method of exploration proposed here may best 
be found in an attempt to write a companion volume to some chosen conventional 
text. Some guidance in such an endeavour is provided by Concrete Math 
Companion [2], published as a companion to Concrete Mathematics [3]. 
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What Is Math 

 math is the short form of mathematics, for 
 which the British use maths, preserving 
 the ugly plural form for a singular noun. 

A. Relations 

It is commonly thought that math is about numbers. So it is, but numbers are not 
the only, nor even the most important, concern of math. It would be more accurate 
to say that math is concerned with relations, and with proofs of relations. 

Although the first chapter dealt only with numbers, it should be clear that the 
interesting aspects were the relations between results. For example: 
 

   a=:i.6 The first six non-negative integers 
   b=:?.~6 The integers in random order 
   b 
5 1 2 4 3 0 
 
   3*a 
0 3 6 9 12 15 
 
   a+a+a 
0 3 6 9 12 15 
 
   (3*a)=(a+a+a) The relation between multiplication and 
addition 
1 1 1 1 1 1 
 
   a=b The lists a and b are not equal 
0 1 1 0 0 0 
 
   sort=:/:~ 
   sort b 
0 1 2 3 4 5 
 
   sort a 
0 1 2 3 4 5 
 
   (sort a)=(sort b) But are similar; one is a permutation of the other 
1 1 1 1 1 1 
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We will further illustrate this matter of relations by examples that do not concern 
numbers. For example, the word 'POST' is said to be an anagram of the word 
'SPOT' because the letters of 'SPOT' can be permuted to give the word 'POST'. 
Thus 'SPOT' and 'POST' are similar in the sense already defined for lists. The 
similarity of these words may be tested as follows: 
 
   w=:'SPOT' 
   x=:'POST' 
   sort w 
OPST 
 
   sort x 
OPST 
 
   (sort w)=(sort x) 
1 1 1 1 
 

Sorting w produces OPST. Is it an anagram? We will say that it is, although it is not 
an English word. 

You could (and should) attempt to write down all distinct anagrams of 'SPOT', 
finding a surprising number of English words among them. However, this might 
be rather difficult to do; in a long list of words it is easy to overlook repetitions, 
and you may not even know how many anagrams to expect all together. 

We will now use the anagram function A. for this purpose. Its left argument 
chooses one of many permutations to apply to the list right argument. Thus: 
 
   w 
SPOT 
   8 A. w 
POST 
 
   12 A. 8 A. w The permutation 12 A. is the inverse of  8 A.  
SPOT 
 
   0 1 2 3 4 5 6 7 8 A. w 
SPOT 
SPTO 
SOPT 
SOTP 
STPO 
STOP 
PSOT 
PSTO 
POST 
   30 A. w 
|index error 
|   30     A.w 
 

The last result shows that there is a limit to the valid left argument; properly so, 
since there is a limit to the number of different permutations of a list. But how 
many are there? In the case of a two-item list 'AB' there are clearly only two 
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possibilities, the identity permutation that leaves the list unchanged, and the one 
that gives 'BA'. Thus: 
 
   0 1 A. 'AB' 
AB 
BA 

Write down all permutations of the list 'ABC' to convince yourself that there are 
six possible permutations. Thus: 
 
   (i.6)A.'ABC'  
ABC 
ACB 
BAC 
BCA 
CAB 
CBA 

Exercises 

1. Produce all anagrams of various three-letter English words to find those 
words that have the largest number of proper English words among their 
anagrams. 

2. Did you find any word more prolific than 'APT'?  

3.  Find all English words among the anagrams of 'SPOT'.  

In solving the last exercise above, it was necessary to find the largest left 
argument of A. permitted. This could be done by experiment. Thus: 
 
   22 A. 'SPOT' 
TOSP 
   23 A. 'SPOT' 
TOPS 
   24 A. 'SPOT' 
|index error 
|   24     A.'SPOT' 
 
   (i.24)A.'SPOT' 
SPOT 
SPTO 
SOPT 
SOTP 
STOP 
STOP 
PSOT 
PSTO 
POST 
POTS 
PTSO 
PTOS 
OSPT 
OSTP 
OPST 
OPTS 
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OTSP 
OTPS 
TSPO 
TSOP 
TPSO 
TPOS 
TOSP 
TOPS 

 

But what is the general relation between the number of permutations and the 
number of items in the list to be permuted? Although we are dealing with English 
words and anagrams rather than with numbers, this is a proper mathematical 
question because it concerns relations. The question can be answered in the 
following steps: 

In a four-letter word, the first position in an anagram can be filled in any one of 
four ways. 

Having filled the first position, the next can be filled from the remaining three 
letters in three different ways. 

The next position can be filled in two ways. 

The last position can be filled in one way. 

The total number of ways is the product of these, that is, four times three times 
two times one. 

This product over all integers up to a certain limit (4 in the present example) is so 
useful that it is given its own name (factorial) and symbol (!). Thus: 
 
   !4 
24 
   4*3*2*1 
24 
   !0 1 2 3 4 5 6 7 
1 1 2 6 24 120 720 5040 
 

The number of items in a list is a function that is also provided with a symbol: 
 
   w3=:'APT' 
   #w3 
3 
   i.!#w3 
0 1 2 3 4 5 
   (i.!#w3)A.w3 
APT 
ATP 
PAT 
PTA 
TAP 
TPA 

Exercises 
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4. Comment on the following experiments:  
   sort=:/:~ 
   w=:'SPOT' 
   sort w 
   table=:(i.!#w)A. w 
   # table   sort table 

5. A table with more rows than columns may be displayed more compactly by 
transposing it. Try the following:  

   transpose=:|: 
   transpose table 

The function A. applies to lists of numbers as well as to lists of letters (words), 
and when applied to lists such as i.3 and i.4 produces tables that show its 
behaviour more clearly. The following experiment uses the link function (;) to 
box tables and link them together for more convenient comparison: 
 
   i=:i.24 
   (i A. 'SPOT');(i A. 'ABCD');(i A. 0 1 2 3) 
+----+----+-------+ 
|SPOT|ABCD|0 1 2 3| 
|SPTO|ABDC|0 1 3 2| 
|SOPT|ACBD|0 2 1 3| 
|SOTP|ACDB|0 2 3 1| 
|STPO|ADBC|0 3 1 2| 
|STOP|ADCB|0 3 2 1| 
|PSOT|BACD|1 0 2 3| 
|PSTO|BADC|1 0 3 2| 
|POST|BCAD|1 2 0 3| 
|POTS|BCDA|1 2 3 0| 
|PTSO|BDAC|1 3 0 2| 
|PTOS|BDCA|1 3 2 0| 
|OSPT|CABD|2 0 1 3| 
|OSTP|CADB|2 0 3 1| 
|OPST|CBAD|2 1 0 3| 
|OPTS|CBDA|2 1 3 0| 
|OTSP|CDAB|2 3 0 1| 
|OTPS|CDBA|2 3 1 0| 
|TSPO|DABC|3 0 1 2| 
|TSOP|DACB|3 0 2 1| 
|TPSO|DBAC|3 1 0 2| 
|TPOS|DBCA|3 1 2 0| 
|TOSP|DCAB|3 2 0 1| 
|TOPS|DCBA|3 2 1 0| 
+----+----+-------+ 

B. Proofs 

Although proofs are an important (and many would say the essential) part of 
mathematics, we will spend little time on them in this book.  

In introducing his book Proofs and Refutations: The Logic of Mathematical 
Discovery [4], Imre Lakatos makes the following point: 

Its modest aim is to elaborate the point that informal, quasi-
empirical, mathematics does not grow through a monotonous 
increase of the number of indubitably established theorems but 
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through the incessant improvement of guesses [Italics added] by 
speculation and criticism, by the logic of proofs and refutations. 

The main point of the present book is to exploit a new tool for the exploration of 
relations and patterns that can be used by both mathematicians and laymen to find 
those guesses that are amenable to, and worthy of, proof. We will defer further 
discussion of proofs to Chapter 9, partly to allow the reader to garner guesses that 
can be used to illuminate the discussion. 

We will, however, recommend the reading of Lakatos at any point. The book is 
highly entertaining, instructive, and readable by any layman with the patience to 
look up the meanings of a small number of words such as polyhedron, polygon, 
and convex. 

The following quotes from Lakatos reflect his view of the importance of 
guessing: 

Just send me the thereoms, then I shall find the proofs. 
 Chrysippus 

I have had my results for a long time, but I do not yet know how I am to 
arrive at them. 

 Gauss 

If only I had the theorems! Then I should find the proofs easily enough. 
 Riemann 

I hope that now all of you see that proofs, even though they may not 
prove, certainly do help to improve our conjecture. 

 Lakatos 
On the other hand those who, because of the usual deductive 
presentation of mathematics, come to believe that the path of discovery 
is from axioms and/or definitions to proofs and theorems, may 
completely forget about the possibility and importance of naive 
guessing. 

 Lakatos  
 

Exercises 
 
6. Read the three pages of Section C, Chapter 5, of  Book 2. 
 

C. Summary 
In brief, we will interpret math in the following sense: it concerns relations, and 
provides languages for expressing them, as well as for expressing transformations 
on tangible representations. 
For example, the first four counting numbers can be represented by the list of 
symbols 
1 2 3 4: 
 

   ! 1 2 3 4 A transformation (or function) 
1 2 6 24 
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   */\ 1 2 3 4 A second transformation 
1 2 6 24 
 
   (! 1 2 3 4)=(*/\ 1 2 3 4) Equivalent to the first 
1 1 1 1 
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Chapter 

3 

 Function Tables 

 The pleasures of the table and make it plain upon tables 
 belong to all ages  that he may run  that  readeth it 
 Jean Anthelme Brillat-Savarin  Habakkuk 
 
 

The effect of multiplication can be shown rather neatly in a succession of 
products of a list as follows: 
 
   a=: i.6 
   0*a 
0 0 0 0 0 0 
   1*a 
0 1 2 3 4 5 
   2*a 
0 2 4 6 8 10 

However, a more perspicuous table of products with each item of a can be 
prepared as follows: 
 
   a*/a 
0 0  0  0  0  0 
0 1  2  3  4  5 
0 2  4  6  8 10 
0 3  6  9 12 15 
0 4  8 12 16 20 
0 5 10 15 20 25  
 

Similar tables can be prepared for other known functions. For example: 
 
   (a*/a);(a+/a);(a-/a) 
+---------------+------------+----------------+ 
|0 0  0  0  0  0|0 1 2 3 4  5|0 _1 _2 _3 _4 _5| 
|0 1  2  3  4  5|1 2 3 4 5  6|1  0 _1 _2 _3 _4| 
|0 2  4  6  8 10|2 3 4 5 6  7|2  1  0 _1 _2 _3| 
|0 3  6  9 12 15|3 4 5 6 7  8|3  2  1  0 _1 _2| 
|0 4  8 12 16 20|4 5 6 7 8  9|4  3  2  1  0 _1| 
|0 5 10 15 20 25|5 6 7 8 9 10|5  4  3  2  1  0| 
+---------------+------------+----------------+ 
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Much can be learned from such tables. For example, the multiplication table is 
symmetric, that is, each row is the same as the corresponding column, and its 
transpose (|:a*/a) is the same as the table a*/a itself. This implies that the 
arguments of multiplication may be exchanged without changing the product, or, 
as we say, multiplication is commutative. The same may be said of addition, but 
not of subtraction, which is non-commutative, as is obvious from  its table. Tables 
for both negative and positive arguments are even more interesting. For example, 
try each of the three tables with the following symmetric argument: 
 
   i: 6   
_6 _5 _4 _3 _2 _1 0 1 2 3 4 5 6  
 

Note how the multiplication table is broken into quadrants of exclusively positive 
or exclusively negative numbers by the row and column of zeros, and try to 
explain why this occurs.  

The symbol / in the sentence a*/a denotes an adverb, because it applies to the 
verb * to produce a related verb (that is in turn used to produce a table). 

It is much easier to interpret a table if it is bordered by its arguments. We will use 
a second adverb called table for this purpose. For example: 
 
   b=:2 3 5 7 11 
 
   a *table b       Bordered multiplication table 
+-+--------------+ 
| | 2  3  5  7 11| 
+-+--------------+ 
|0| 0  0  0  0  0| 
|1| 2  3  5  7 11| 
|2| 4  6 10 14 22| 
|3| 6  9 15 21 33| 
|4| 8 12 20 28 44| 
|5|10 15 25 35 55| 
+-+--------------+ 

 
+table~ a        Bordered addition table 

+-+------------+ 
| |0 1 2 3 4  5| 
+-+------------+ 
|0|0 1 2 3 4  5| 
|1|1 2 3 4 5  6| 
|2|2 3 4 5 6  7| 
|3|3 4 5 6 7  8| 
|4|4 5 6 7 8  9| 
|5|5 6 7 8 9 10| 
+-+------------+ 
   *table~ i:6 
+--+-----------------------------------------------+ 
|  | _6  _5  _4  _3  _2 _1 0  1   2   3   4   5   6| 
+--+-----------------------------------------------+ 
|_6| 36  30  24  18  12  6 0 _6 _12 _18 _24 _30 _36| 
|_5| 30  25  20  15  10  5 0 _5 _10 _15 _20 _25 _30| 
|_4| 24  20  16  12   8  4 0 _4  _8 _12 _16 _20 _24| 
|_3| 18  15  12   9   6  3 0 _3  _6  _9 _12 _15 _18| 
|_2| 12  10   8   6   4  2 0 _2  _4  _6  _8 _10 _12| 
|_1|  6   5   4   3   2  1 0 _1  _2  _3  _4  _5  _6| 
| 0|  0   0   0   0   0  0 0  0   0   0   0   0   0| 
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| 1| _6  _5  _4  _3  _2 _1 0  1   2   3   4   5   6| 
| 2|_12 _10  _8  _6  _4 _2 0  2   4   6   8  10  12| 
| 3|_18 _15 _12  _9  _6 _3 0  3   6   9  12  15  18| 
| 4|_24 _20 _16 _12  _8 _4 0  4   8  12  16  20  24| 
| 5|_30 _25 _20 _15 _10 _5 0  5  10  15  20  25  30| 
| 6|_36 _30 _24 _18 _12 _6 0  6  12  18  24  30  36| 
+--+-----------------------------------------------+ 
 
Tables also provide an interesting and effective way to explore unfamiliar functions. 
Often, the display of a bordered function table provides a precise and easily-remembered 
definition of the function. For example: 
 

   <table~ i:5 Relation 
+--+--------------------------+ 
|  |_5 _4 _3 _2 _1 0 1 2 3 4 5| 
+--+--------------------------+ 
|_5| 0  1  1  1  1 1 1 1 1 1 1| 
|_4| 0  0  1  1  1 1 1 1 1 1 1| 
|_3| 0  0  0  1  1 1 1 1 1 1 1| 
|_2| 0  0  0  0  1 1 1 1 1 1 1| 
|_1| 0  0  0  0  0 1 1 1 1 1 1| 
| 0| 0  0  0  0  0 0 1 1 1 1 1| 
| 1| 0  0  0  0  0 0 0 1 1 1 1| 
| 2| 0  0  0  0  0 0 0 0 1 1 1| 
| 3| 0  0  0  0  0 0 0 0 0 1 1| 
| 4| 0  0  0  0  0 0 0 0 0 0 1| 
| 5| 0  0  0  0  0 0 0 0 0 0 0| 
+--+--------------------------+ 

   (<table~ a),.(=table~ a),.(>table~ a) Relations 
+-+-----------+-+-----------+-+-----------+ 
| |0 1 2 3 4 5| |0 1 2 3 4 5| |0 1 2 3 4 5| 
+-+-----------+-+-----------+-+-----------+ 
|0|0 1 1 1 1 1|0|1 0 0 0 0 0|0|0 0 0 0 0 0| 
|1|0 0 1 1 1 1|1|0 1 0 0 0 0|1|1 0 0 0 0 0| 
|2|0 0 0 1 1 1|2|0 0 1 0 0 0|2|1 1 0 0 0 0| 
|3|0 0 0 0 1 1|3|0 0 0 1 0 0|3|1 1 1 0 0 0| 
|4|0 0 0 0 0 1|4|0 0 0 0 1 0|4|1 1 1 1 0 0| 
|5|0 0 0 0 0 0|5|0 0 0 0 0 1|5|1 1 1 1 1 0| 
+-+-----------+-+-----------+-+-----------+ 

 

   (^table~ a),.(!table~ a) Power and “outof” 
+-+-------------------+-+------------+ 
| |0 1  2   3   4    5| |0 1 2 3 4  5| 
+-+-------------------+-+------------+ 
|0|1 0  0   0   0    0|0|1 1 1 1 1  1| 
|1|1 1  1   1   1    1|1|0 1 2 3 4  5| 
|2|1 2  4   8  16   32|2|0 0 1 3 6 10| 
|3|1 3  9  27  81  243|3|0 0 0 1 4 10| 
|4|1 4 16  64 256 1024|4|0 0 0 0 1  5| 
|5|1 5 25 125 625 3125|5|0 0 0 0 0  1| 
+-+-------------------+-+------------+ 

 

 

   %: table~ a Roots 
+-+-----------------------------------+ 
| |0 1       2       3       4       5| 
+-+-----------------------------------+ 
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|0|0 1       _       _       _       _| 
|1|0 1       2       3       4       5| 
|2|0 1 1.41421 1.73205       2 2.23607| 
|3|0 1 1.25992 1.44225  1.5874 1.70998| 
|4|0 1 1.18921 1.31607 1.41421 1.49535| 
|5|0 1  1.1487 1.24573 1.31951 1.37973| 
+-+-----------------------------------+ 

Exercises 
 

1. Produce and examine bordered tables for the following functions: 
 <.  >. 

 <:  >: 
 % 

2.  Produce and examine bordered tables for the following “commuted” 
functions:  

 <.~  >.~ 
 <:~  >:~ 
 %~ 

3. Produce and examine bordered tables for the following Greatest Common 
Divisor and Least Common Multiple functions:  

 +.  *. 

 In particular, apply them to the argument 0 1 (as in +.table 0 1) and note 
that with the interpretation of “true” for 1 and “false” for 0 (as was done by 
Boole), they then represent the logical functions “or” and “and” 

4. Explain the equality denoted by the following sentence:  
    (e>:/e)=(e>/e)+.(e=/e=:s 6) 

5. First enter:  
   at=:+/~ e 
   mt=:*/~ e 
   st=:-/~ e 
   dt=:%/~ e 
   trans=:|: 
Then comment on the results of the following: 
   at-:trans at 

   mt-trans mt 

   st+trans st 

   dt*trans dt 

The following exercises suggest a sequence of experiments that should be tried 
only after reviewing the tips on explorations given in Chapter 1: 

Exercises 
 

6.   a=:i.6 
   +:a 
   -:a 
   (+:a)-(-:a) Double minus half 
   (+:--:)a 
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   Dmh=:+:--: 
   Dmh a 

7. Contrast the result of the following sentence with those of Exercise 6: 
   +:--:a 

8. +/%#)a 
   Average=:+/%# 
   Average a 
   Average 3 1 4 1 6 

9. Re-enter the sentence (a*/a);(a+/a);(a-/a) from the beginning of this 
chapter, and compare the result with the following:  

   a(*/;+/;-/)a 
   f=:*/;+/;-/ 
   a f a 
   f~ a 
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Chapter 

4 

 Grammar And Spelling 

 The level is low I can spell all the words that I use 
 but it has not fallen and my grammar’s as good as my neighbour’s 
 Jacques Barzun W.S. Gilbert 

A. Introduction 
We have already made significant use of J, why trouble us now with its grammar? 
On the other hand, if grammar is important, why was it not treated first? 

In learning our native language we spend years at it and become quite proficient 
before we even hear of grammar. However, grammar becomes important for more 
advanced use of the language in clear writing and speaking. Moreover, the 
teaching of grammar relies on many examples of the use of the language that 
would not be familiar to a beginner. 

Similarly, more advanced and independent writing in J will require knowledge of 
its grammar. Moreover, we will find it helpful to refer to sentences from earlier 
chapters to illustrate and motivate discussions of the grammar. 

In learning a second language a student has the advantage of already appreciating 
the purposes and value of language, as well as some knowledge of grammar from 
her native tongue. On the other hand, one may be seriously misled by such 
knowledge, and the student is sometimes best advised to forget her native 
language as much as possible: one may know too many things that are not true. 

The beginner in J will already know much of two relevant languages: English, 
and Mathematical Notation (to be referred to as MN). The knowledge of English 
grammar is very helpful, especially when we recognize certain analogies between: 

• English verbs (action words) and functions such as + and - and * 

• Nouns on which verbs act, and the arguments (such as 3 and 4 and 'STOP') to 
which functions apply 

• Pronouns such as a and b and mt used in the preceding chapter, and pronouns 
such as “it” and “she” used in English 

• Adverbs (such as table in the preceding chapter) that apply to verbs 
(functions) to produce different, but related, verbs 
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Knowledge of MN can be very helpful, particularly in providing familiarity with 
numbers and symbols for common functions, and with some of the purposes of 
math. On the other hand, MN can be very misleading because it shows little 
concern for simple and consistent grammar. For example: 

• The simple forms a+b and a*b used for some functions of two arguments is 
abandoned in others, as in xn for the x^n used in J, and in (n

m) for m!n (the 
number of ways of choosing m things from n) 

• The rule that a function of one argument precedes its argument (as in -b and 
sqrt b) is abandoned in the case of the factorial (n!). In J this is written as 
!n. 

• The ambivalent use of the minus sign to denote two different functions as 
determined by the number of arguments provided (subtraction in a-b, and 
negation in -b) is not extended to all functions as it is in J. For example, a%b 
and %b denote divided by and reciprocal; a^b and ^b denote power and 
exponential; and a+/b and +/b denote the addition table and sum over. 

• The imposition of hierarchical rules of execution for certain functions: power 
is performed before multiplication and division, which are performed before 
addition and subtraction. The reasons for the development of such rules in 
MN lie in the expressions used for polynomials, and will be discussed further 
in the corresponding chapter.    

B. The Use of Grammar 
The rules of grammar determine how a sentence is to be parsed, that is, the order 
in which its parts are to be interpreted or executed. In particular, these rules cover 
the use of punctuation, which can make an enormous difference, as illustrated by 
the following sentences: 

The teacher said George was stupid 
The teacher, said George, was stupid 

The punctuation in J is provided by parentheses, as illustrated by the following 
sentences from Chapter 2: 
 
   a=:i.6 
   b=:?.~6 
   (3*a)=(a+a+a) 
1 1 1 1 1 1 
 
   3*a=a+a+a  Removal of the punctuation yields a quite different result 
3 0 0 0 0 0 
 

The parsing of a sentence does not depend on the particular word used, but only 
on the class to which it belongs. Thus the English examples used above would be 
parsed without change if the nouns farmer and Mary were substituted for the 
nouns teacher and George. Similarly, the sentence (3*b)=(b+b+b) would parse 
the same as (3*a)=(a+a+a). 

The classes concerned are called the parts of speech. J has only six parts of 
speech (including the punctuation provided by parentheses), all of which have 
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been used in earlier chapters. For example, the nouns 3 and 2, and the verbs + and 
* and - occur in the first three sentences in Chapter 1, and the copula =: 
(analogous to the copulas is and are in English) occurs in the next. 

As in English, an adverb applies to a verb to produce a related verb. Examples 
occurring in Chapter 1 are: 

The adverb / which inserts its argument function between items of the noun to 
which it applies. For example, +/1 2 3 4 is equivalent to 1+2+3+4, and the 
function +/ may therefore be called the sum function. 

The adverb \ which uses its argument function to scan all prefixes of its noun 
argument: +/\1 2 3 is equivalent to (+/1),(+/1 2),(+/1 2 3). 

In English, the phrase “run and hide” uses the copulative conjunction “and” to 
produce a new verb that is a composition of the actions described by the verbs 
“run” and “hide”. In J, @: is a conjunction that applies its first argument verb to 
the result of its second argument verb. For example: 
 
   a 
0 1 2 3 4 5 
 
   b 
5 1 2 4 3 0 
 
   a-b 
_5 0 0 _1 1 5 
 
   +/a-b 
0 
   a +/@:- b 
0 
   sumdif=:+/@:- 
   1 2 3 4 5 sumdif 2 3 5 7 11 
_13 

Exercises 

1. Search earlier chapters for further examples of the various parts of speech. 

2. State the effect of the adverb ~ in the sentences a-~b and a^~b. 

C. Punctuation and Other Rules 
In J, a sentence can be completely punctuated so that the only grammatical rule 
needed to parse it concerns the use of parentheses. For example, the area of a 
rectangular field can be computed as follows: 
 
   Length=:8 
   Width=:6 
   Area=:Length*Width 
   Area 
48 
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If instead the width and the length of the roll of wire available to enclose the field 
are given, the area may be computed as follows: 
 
   Roll=:32 
   Sides=:Roll-(Width+Width) Extent available for other two sides 
   Length=:Sides%2 
   Length*Width Area for given roll and width 
60 
 

The whole may be re-expressed as a single sentence punctuated as follows: 
   Area=:((Roll-(Width+Width))%2)*Width 

Although long names such as Width and Roll can be helpful in understanding the 
point of a sentence, they can also obscure its structure. Briefer (but still 
mnemonic) names may be substituted:  
   W=:Width 

   P=:Roll An abbreviation for the perimeter of the 
field 
   A=:((P-(W+W))%2)*W 

Other grammatical rules make it possible to omit some parentheses. The next rule 
(after the rule for parentheses) is: 

• A sentence is executed from right to left 

Consequently, the phrase (P-(W+W)) may be re-written as (P-W+W). Hence: 
   A=:((P-W+W)%2)*W 

This can be further simplified by using the fact that multiplication is 
commutative: 
   A=:W*((P-W+W)%2) 
   A=:W*(P-W+W)%2 

Since division is not commutative, this trick cannot be repeated, but because 
division by two is equal to multiplication by one-half, we have: 
   A=:W*(P-W+W)*0.5 
   A=:W*0.5*(P-W+W) 
   A=:W*0.5*P-W+W 

Although an unparenthesized sentence or phrase is executed from right to left, it is 
easily read from left to right. To illustrate this we will use the right-to-left 
execution rules to fully parenthesize the last sentence above: 
   A=:(W*(0.5*(P-(W+W)))) 

This can now be read from left to right as follows: A is W times the value of the 
entire phrase that follows it, which in turn is 0.5 times the phrase that follows it, 
and so on. 

The foregoing example made no use of adverbs and conjunctions, and for a 
sentence that does include them we need a further rule: 

• Adverbs and conjunctions are applied before verbs. 

For example: 
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   +/a*b     is equivalent to    (+/)a*b 
   ^&3 a+b   is equivalent to    (^&3)a+b 

A complete formal statement of the grammar of J may be found in J Dictionary 
[5], which is also available on the computer by using the Help menu. This 
statement of the grammar should perhaps be studied at some point, but it is 
probably better to begin by reviewing familiar sentences and trying to apply the 
grammatical rules to them. You might review the sentences of earlier chapters as 
follows: 

• Modify and simplify them, using the methods suggested in the foregoing 
examples (as well as any others that occur to you). 

• Try to read the resulting sentences from left to right, using English to 
paraphrase them. 

• Assign values to any names used in the sentences so that they may be entered 
for execution. If you modify a sentence in any way that changes its meaning, 
you will probably be alerted to the fact by seeing a different result upon 
entering it. 

The following Exercises highlight points that you might well miss in your review. 

Exercises 

3. Comment on the sentence a=:0,1,2,3,4,5 used in Chapter 1 to introduce the 
first example of a list. 

 [The comma denotes a catenate verb that appends one list (or a single item) to 
another. Also experiment with other forms of catenate as in: 

   b=:i.-6 
   a,b 
   a,.b Called stitch 
   a,:b Called laminate 
   a;b  Called link  ] 

4. Why is it possible to enter a list of numbers as in a=:0 1 2 3 4 5 as well as 
by using the catenate function as in Exercise 3? 

 [Certain results that can be produced by functions can also be entered more 
simply as constants. For example: 

 This sentence is equivalent to this constant 
    3-5    _2 
    3+8%10    3.8 
    3%5    3r5 
    3+j.4    3j4  
    2,3,5,7    2 3 5 7 ] 

5. Read the first five pages of Part II (Grammar) of J Dictionary [5] (also 
available in Help, as described in Chapter 10). 

D. Spelling 
The many words in English are each represented by one or more letters from a 
rather small alphabet. The words (nouns, verbs, etc.) of J are each represented by 
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one or more characters from an alphabet of letters and other symbols. For 
example: 
 + +. +: & i. A. 
Every word of more than one character ends with a dot or a colon. 
Any other sequence beginning with a letter and continuing with letters or digits 
(but not ending with a dot or colon) is a name that may be used with a copula, as 
in the following examples: 
   a=:i.6 Pronoun 
   plus=:+ Proverb 
   g=:/\ Pro-adverb 
   p3=:^&2 Proverb 

The representation of numbers is illustrated by: 
  2 and  2.4 and 0.4 
 _2 and _2.4 and _0.4 
A decimal point must be preceded by a negative sign or at least one digit. As 
shown in Exercise 4, an r may be used in a number to denote a rational fraction 
(as in 2r3 for two-thirds), and a list may be represented by a list of numbers (as in 
2.3 2r3 4). 
 
The spelling rules of J determine how words are formed from the string of 
characters that comprise a sentence. They can be clarified by applying the word-
formation verb to a (quoted) sentence. For example: 
 
   ;: '+/4 3 2 1*/i.6' 
+-+-+-------+-+-+--+-+ 
|+|/|4 3 2 1|*|/|i.|6| 
+-+-+-------+-+-+--+-+ 
It should also be noted that redundant spaces may be inserted in a sentence to 
improve readability, as in a=: i. 6 instead of a=:i.6 . 
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Chapter 

5 

 Reports 

 Cornelius the centurion, 
 a man of good report 
 Acts 

A. Introduction 
If a is a list of twelve monthly receipts for a year, then a quarter-by-month report 
of the same receipts can be obtained as follows: 
 
   ]qm=:4 3$ a=:1 7 4 5 2 0 6 6 9 3 5 8 
1 7 4 
5 2 0 
6 6 9 
3 5 8 
 

The sum over the quarters is given by: 
 
   +/qm 
15 20 21 

A two-year report for constant receipts of 10 can be obtained by: 
 
   ten=:2 4 3$10 
   ten 
10 10 10 
10 10 10 
10 10 10 
10 10 10 
 
10 10 10 
10 10 10 
10 10 10 
10 10 10 
 

A more realistic report can be obtained by applying the repeatable random 
generator to this array: 
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   yqm=:?.ten 
   yqm 
1 7 4 
5 2 0 
6 6 9 
3 5 8  
 
0 0 5 
6 0 3 
0 4 6 
5 9 8 
The sums over the years of this report are: 
 
   +/yqm 
 1  7  9 
11  2  3 
 6 10 15 
 8 14 16 

Because yqm has three categories or axes, we call it a rank-3 report or array. Its 
rank-2 cells are the two quarter-by-month tables seen in its display, and its rank-1 
cells are the eight rows (arranged, in effect, in a 2 by 4 array).  

The sums over the quarters in each year are the sums over the two rank-2 cells, 
yielding a 2 by 3 array (for the two years and three months in each quarter). Thus: 
 
   +/"2 yqm 
15 20 21 
11 13 22 
 

Similarly, the sums over the three months in each quarter are a 2 by 4 array given 
by: 
 
   +/"1 yqm 
12 7 21 16 
 5 9 10 22 
 

Exercises 
 

1. Enter the foregoing expressions, and verify that they reproduce the foregoing 
results. 

2. The function ?. reproduced the same result because it is a repeatable random 
number generator. Try the expression ?ten several times to show that the 
results do not repeat. 

3. Predict and verify the results of +/"3 yqm and +/"0 yqm. 

4. Experiment with the box function, as in <3 4 5 and <yqm and <"2 yqm and 
<"1 yqm. 

5. The sentence $yqm gives the shape of the array yqm. Apply $ to other results 
such as +/yqm and +/"2 yqm and +/"1 yqm. 
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6. The function # gives the number of items or major cells in its argument. 
Apply it to various arguments. 

The expression f"k can be used to apply any function f to the rank-k cells of its 
argument. For example, the mean or average function can be used as follows: 
 
   mean=:+/%# 
   mean 3 4 5 6 
4.5 
   (mean;mean"2;mean"1) yqm 
+-----------+--------------+-------------------------------+ 
|0.5 3.5 4.5|              |                               | 
|5.5   1 1.5|3.75    5 5.25|      4 2.33333       7 5.33333| 
|  3   5 7.5|2.75 3.25  5.5|1.66667       3 3.33333 7.33333| 
|  4   7   8|              |                               | 
+-----------+--------------+-------------------------------+ 

Exercises 

7. Experiment with rank cases of the following functions, and state in English 
the meanings of the various results: 

   |. Reverse 

   2&|. Rotate 

   # Number of items 

   $ Shape 

B. Transposition 
Given a year-by-quarter-by-month report yqm we may want to see the receipts 
displayed as a quarter-by-month-by-year report qmy. If we refer to the successive 
axes (or categories) by the indices 0 1 2, we may say that qmy is to be obtained 
by the transposition 1 2 0 (choosing axis 1, then axis 2, then axis 0). Thus: 
   qmy=:1 2 0 |: yqm 
   qmy;yqm;($qmy);($yqm) 
+---+-----+-----+-----+ 
|1 0|     |     |     | 
|7 0|     |     |     | 
|4 5|     |     |     | 
|   |1 7 4|     |     | 
|5 6|5 2 0|     |     | 
|2 0|6 6 9|     |     | 
|0 3|3 5 8|     |     | 
|   |     |4 3 2|2 4 3| 
|6 0|0 0 5|     |     | 
|6 4|6 0 3|     |     | 
|9 6|0 4 6|     |     | 
|   |5 9 8|     |     | 
|3 5|     |     |     | 
|5 9|     |     |     | 
|8 8|     |     |     | 
+---+-----+-----+-----+ 
 
   (mean;mean"2;mean"1) qmy 
+---------+---------------+-----------+ 
|3.75 2.75|      4 1.66667|0.5 3.5 4.5| 
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|   5 3.25|2.33333       3|5.5   1 1.5| 
|5.25  5.5|      7 3.33333|  3   5 7.5| 
|         |5.33333 7.33333|  4   7   8| 
+---------+---------------+-----------+ 

Transpositions may also be used on higher-rank arrays, as in the following 
product-by-year-by-quarter-by-month report: 
   pyqm=: ?. 2 2 4 3$10 
   ypmq=: 1 0 3 2 |: pyqm 
   ypmq ([;$@[;];$@])pyqm 

Boxing of various ranks can also be used to clarify displays: 
 
   <"2 ypmq 
+-------+-------+ 
|1 5 6 3|5 4 7 7| 
|7 2 6 5|0 7 2 3| 
|4 0 9 8|6 9 0 6| 
+-------+-------+ 
|0 6 0 5|7 2 7 6| 
|0 0 4 9|9 9 6 8| 
|5 3 6 8|3 7 0 2| 
+-------+-------+ 
 
   <"3 ypmq 
+-------+-------+ 
|1 5 6 3|0 6 0 5| 
|7 2 6 5|0 0 4 9| 
|4 0 9 8|5 3 6 8| 
|       |       | 
|5 4 7 7|7 2 7 6| 
|0 7 2 3|9 9 6 8| 
|6 9 0 6|3 7 0 2| 
+-------+-------+
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Chapter 

6 

Terminology 

           If this young man expresses himself in terms too deep for me, 
                Oh what a singularly deep young man this deep young man must be 
 W.S. Gilbert 
 

Special terminology used in various branches of knowledge often imposes a 
serious burden on a beginner. It may sometimes be safely dismissed as pretentious 
and no better than familiar terms, but serious treatment of a topic may well 
require finer distinctions than those provided by familiar language. For example, 
the familiar average may sometimes be substituted for mean as defined in math 
and statistics. However, mean refers not only to average (the arithmetic mean), 
but also to various ways of characterizing a collection by a single number, 
including the geometric mean, harmonic mean, and common mean. 

Similarly, the grammatical terms adopted in J (from English) may seem 
pretentious to anyone familiar with corresponding terms in math, but they make 
possible significant distinctions that are not easily made in MN. We illustrate this 
by a few sentences and the classification of items from them in both J and MN: 
 
   with=:& 
   cube=:^ with 3 
   commute=:~ 
   into=:% commute 
   pi=:7 into 22 
   2 into cube a=:i.6 

 J MN 
Noun 22 Constant 
Pronoun pi Variable 
Verb or Function % Function or Operator 
Proverb cube 
Adverb or Operator ~ Operator 
Pro-adverb commute 
Conjunction or Operator & Operator 
Pro-conjunction with 
List or Vector a Vector 
Table or Matrix a*/a Matrix 
Report or Array a+/a*/a Array 
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In the foregoing, MN makes the same distinction made by noun and pronoun in J, 
but uses the terms constant and variable. The term variable may prove somewhat 
misleading, particularly when used for a pronoun such as pi (for the ratio of the 
circumference to the diameter of a circle), which is not expected to vary. The 
following sentences may be used to clarify the choice of the word variable: 
 

 sqr=:*: The square function in J 
 (sqr 0)=(0+0) 
 (sqr 2)=(2+2) 
 (sqr 0)=(0*0) 
 (sqr 2)=(2*2) 
 (sqr 3)=(3*3) 
 

Each of these sentences express a “true” relation in the sense that each 
comparison yields 1. However, the first pair are true only for the specific 
arguments 0 and 2, and for no other. The last three suggest (correctly) that the 
indicated relation remains true for any argument, or, as we say, the argument is 
allowed to vary. This generality is commonly indicated by using a pronoun 
argument, or, as stated in MN, a variable: 
   (sqr x)=(x*x) 

In MN, the term operator (or functional) is used for both of the cases 
distinguished in J by adverb and conjunction. Moreover, in MN the term operator 
is also commonly used to refer to functions. 

The terms list, table, and report are used in J with meanings familiar to anyone, 
whereas the corresponding terms vector, matrix, and array might be known only 
to specialists. The familiar use of vector is as a carrier, as in disease vector. It 
might be thought that a vector “carries” its items, but the actual etymology of the 
term in math is quite different, although not as bizarre as that of matrix. 

New terminology should be approached by using dictionaries to learn the 
etymology of terms, both old and new. For example, a verb is defined as a word 
that (amongst other things) expresses an action; the corresponding word function 
comes from a root meaning “to perform”. 

Attention to etymology is also rewarding in every-day work. For example, the 
meaning of atom appears clearly in its derivation (a[not] + tem[cut]) as something 
that could not be cut. 

The American Heritage Dictionary [6] presents etymology in a particularly 
revealing manner: all words derived from a given root are listed together in an 
appendix. This highlights surprising and insightful relations, such as that between 
tree and true. As a further example, the root tem that occurs in atom also occurs in 
anatomy, microtome, and tome. Incidentally, tome does not necessarily mean a 
big book, but rather one of the volumes “cut” from a book, such as the 24 tomes 
of the original Oxford English Dictionary. 

Lewis Thomas, a noted bio-chemist, explored the pleasure and profit of 
etymology in his delightful book et cetera, et cetera. [7]. It is well worth reading. 
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Exercises 
 

1. Speculate on the possible relation between the similar-sounding words tree 
and true. Then look them up in AHD [6] , and consult their common Indo-
European root in the appendix. 

2.  Read the entries in the Indo-European sub-dictionary of AHD for the roots ag, 
ak, ar, and gene, and look up some of the words derived from them. 





37 
 

Chapter 

7 

Decimal and Other Number Systems 

 Sixty-four I hear you cry! 
 Ask a silly question and 
 get a silly answer! 
 Tom Lehrer 

A. Introduction 

To most people, the decimal representation is so familiar, and so closely 
identified with “the number itself”, that it may be difficult to grasp the notion of 
representation. For example, what is one to make of the assertion: 

 The decimal representation of 365 is 365 ? 

We will use lists to clarify the discussion: 

 The decimal representation of 365 is 3 6 5 

 The octal (base-8) representation of 365 is 5 5 5 
 

   bv=:#. The base-value function 
   10 bv 3 6 5 
365 
 
   8 bv 5 5 5 
365 

The main idea of a base or radix representation is embodied in the function #. 
which we will now re-express in terms of more familiar functions. Familiarity 
with decimals should make it clear that the representation 3 6 5 is to be 
evaluated by multiplying the first item by 100, the second by 10, and the third by 
1, and summing the products. Thus: 
 
   r=:3 6 5 
   w=:100 10 1 
   r*w 
300 60 5 
 
   +/r*w 
365 

The weights w would not be appropriate for a list of other than three items, and 
the following suggests a more general expression: 
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   y=:1 9 9 6 
   base=:10 
   #y 
4 
 
   i.-#y This is the reversal of the list i.#y 
3 2 1 0 
 
   base^i.-#y 
1000 100 10 1 
 
   +/y*base^i.-#y 
1996 
 
   z=: 3 7 1 4 
   +/z*8^i.-#z 
1996 
 
   BV=:+/@:(] * [ ^ i.@:-@:#@]) Equivalent to bv=:#. 
   10 BV 1 9 9 6 
1996 
 
   8 BV 3 7 1 4 
1996 
 

We may also define and explore specific cases of the base-value function by 
combining it with various left arguments: 
 
   bv10=:10&#. 
   bv8=:8&#. 
   bv2=:2&#. 
   bv8 z 
1996 
 
   bv2 1 0 1 
5  

What function will yield the representation of a given argument? In other words, 
what are the functions inverse to the functions b10, b8, and b2? The adverb ^:_1 
gives the inverse of a function to which it is applied. Thus: 
 
   inv=:^:_1 
   sqrt=:%: 
   sqr=:sqrt inv 
   sqrt i.6 
0 1 1.41421 1.73205 2 2.23607 
 
   sqr sqrt i.6 
0 1 2 3 4 5 
   bv8i=:bv8 inv 
   bv8i 365 1996 
0 5 5 5 
3 7 1 4 
 
   bv2 inv 365 1996 
0 0 1 0 1 1 0 1 1 0 1 
1 1 1 1 1 0 0 1 1 0 0 
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   2 #. bv2 inv 365 1996 
365 1996 
 

We learn to add decimal numbers by adding the items of their representations, 
and performing “carries” as required. What would the result mean if we did not 
perform the carries? For example: 
   bv10i=:bv10 inv 
   ]d10=:bv10i 365 1996 
0 3 6 5 
1 9 9 6 
 
   s10=:+/d10 
   s10 
1 12 15 11 
 
   10#.s10 
2361 
 
   365+1996 
2361 
 
   d8=:bv8i 365 1996 
   d8 
0 5 5 5 
3 7 1 4 
 
   8#.+/d8 
2361 
 

It appears that the sum +/d10 does indeed represent the correct sum in base-10. 
Why then do we normally perform the carries? 
We could perform successive carries on the sum s10 as follows: 
 
   1 12 15 11 
   1 12 16 1 
   1 13 6 1 
   2 3 6 1 

We first verify that 2 3 6 1 represents the correct sum: 
 
   d=:2 3 6 1 
   (10#.d),(10#.s10),(365+1996) 
2361 2361 2361 
 

The reason that the representation d is preferred is that its items can be simply 
written side-by-side to give the normal decimal form, whereas the items of s10 
would give the quite different result 1121511. 

Similar remarks apply to bases other than 10. 

Exercises 

1. Perform the carries on the base-8 sum +/d8 (that is, 3 12 6 9) 

2. Enter x=:?.4#1000 to obtain four random integers less than 1000. Then 
obtain their base-10 represetations, sum them, and perform the carries 
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necessary to obtain a normalized representation. Verify the correctness of the 
final results. 

3. Repeat Exercise 2 for bases other than 10. 

4. The method for adding multi-digit decimal numbers commonly taught 
requires a sequence of carries interleaved with the additions, whereas the 
method used here first performs all additions, and then performs the carries. 
Which is the least error-prone? Which is the easier to re-check by repeating 
all or part of the process? 

5. Give a clear statement (in English) of the “carrying” or “normalization” 
process commonly taught. Include the case of bases other than 10, as well as 
the case where a carry occurs from the leading position (thus increasing the 
number of items in the list). 

As suggested in the last exercise, the hand procedure for normalization can be 
precisely prescribed in English. Can it also be defined as a (computer-executable) 
function in J? We begin with a process on a specific argument: 
 
   y=:3 4 25 
   r=.i.0 Initialize the result as an empty list 
    
   ci=._1{.y Current item is last item of argument 
   r=.(10|ci),r Prefix remainder to the result list 
   c=.<.ci%10 Compute the carry to the next position 
   y=.}:y Truncate by dropping the treated item 
    
   ci=.c+_1{.y Add carry to last item 
   r=.(10|ci),r 
   c=.<.ci%10 
   y=.}:y 
    
   ci=.c+_1{.y 
   r=.(10|ci),r 
   c=.<.ci%10 
   y=.}:y 
   r 
3 6 5 
 
   (10#.r),(10#.3 4 25) 
365 365 
 

The last two groups of four steps are identical, a uniformity that was achieved by 
truncating the argument each time. Complete uniformity would allow the entire 
process to be stated more compactly (and more generally) as a repetition or 
iteration of a fixed procedure defined by the four steps. It remains to make the 
first block uniform: initialize the carry to zero, and replace the first line of the 
block as follows: 
 
   r=.i.c=.0 
   ci=.c+_1{.y 
 

The foregoing process may now be defined as an iteration as follows: 
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   NORM=: 3 : 0 
r=.i.c=.0 
label_loop. 
 
  if. 0<#y. do. 
  ci=.c+_1{.y. 
  r=.(10|ci),r 
  c=.<.ci%10 
  y.=.}:y. 
  goto_loop. 
end. 
r 
) 
   NORM 3 4 25 
3 6 5 

In the foregoing definition: 

• The right argument is denoted by y. 
• The block to be iterated is delimited by do. and end. 
• Repetition of the block is determined by if. followed by a condition 
• The result of the function is the result of the last sentence (that is, r) 
• The entire definition is terminated by a right parenthesis alone on a line 

A function that works correctly on the argument that guided its definition may not 
work in general, and should be thoroughly tested. For example: 
 
   NORM 10 11 12 
1 2 2 
 
   (10#.NORM 10 11 12),(10#.10 11 12) 
122 1122 
 

The discrepancy clearly occurs because the carry computed in the final iteration is 
not zero, and must not be ignored. To rectify this, we make the condition for 
repetition depend upon a non-zero carry as well as upon a non-empty argument: 
 
   NORM=: 3 : 0 
r=.i.c=.0 
label_loop. 
  if. (c~:0)+.(0<#y.) do. 
  ci=.c+_1{.y. 
  r=.(10|ci),r 
  c=.<.ci%10 
  y.=.}:y. 
  goto_loop. 
end. 
r 
)   
 
   NORM 10 11 12 
1 1 2 2 
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   NORM 1234 5 6 
1 2 3 4 5 6 
 

The function may now be generalized to a dyadic definition in which the first 
argument specifies the base used: each occurrence of 10 is replaced by x., and the 
line NORM=: 3 : 0 is replaced by NORM=: 4 : 0 : 
 
   NORM=: 4 : 0 
r=.i.c=.0 
label_loop. 
  if. (c~:0)+.(0<#y.) do. 
  ci=.c+_1{.y. 
  r=.(x.|ci),r 
  c=.<.ci%x. 
  y.=.}:y. 
  goto_loop. 
end. 
r 
) 
 
   (8 NORM 5 3 21);(10 NORM 10 11 12) 
+-----+-------+ 
|5 5 5|1 1 2 2| 
+-----+-------+ 

Finally, it will be convenient to define a function whose dyadic case is NORM and 
whose monadic case is 10&NORM. Thus: 
   N=:(10&NORM) : NORM 
   (8 N 5 3 21);(N 10 11 12) 
+-----+-------+ 
|5 5 5|1 1 2 2| 
+-----+-------+ 

 
Exercises 

6. Although the formal definition of the process carried out by N is rather 
involved, the hand-calculation of it is quick and trivial. Confirm this by 
performing it on various lists, checking the accuracy of your work by applying the 
function 10&#. to each list and its normalized form. 
7. The copula =. used in the definition of NORM differs from the =: used 

elsewhere. Its use localizes the assigned name so that it bears no relation to 
the same name used outside the definition. Experiment with the distinction by 
defining a function GNORM that is identical to NORM except for the use of global 
assignment (=:) and compare the behaviour of the two functions. A name can 
be erased by using 4!:55, as in 4!:55 <'c' . 

B. Addition 
In the example d10=: bv10i 365 1966 we have already seen how the decimal 
representations of two numbers may be added to obtain a representation of the 
sum; we may now obtain a standard representation by applying the function N. 
Thus: 
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   d10=: bv10i 365 1966  
   d10 
0 3 6 5 
1 9 9 6 
 
   +/d10   
1 12 15 11 
 
   N +/d10   
2 3 6 1 
 

Exercises 
8. Use bv10i to compute the table of decimal representations of the list of 

numbers a,b,c, where a=:365 and b=:1996 and c=:29. From this table 
compute the standard representation of the sum a+b+c. 

9. Use ar=:bv10i a and br=:bv10i b and cr=:bv10i c to obtain the decimal 
representations of the numbers of Exercise 1, and use them in expressions to 
obtain the standard decimal representation of the sum b. 

In the table produced in Ex. 8, each of the shorter lists (that is, 3 6 5 and 2 9) are 
padded with zeroes on the left, a change that does not change the values of the 
numbers they represent. In Ex. 9 the representations are not so padded, and the 
lists of differing lengths cannot be added directly. They may be added as 
illustrated below: 
   ar;br;cr 
+-----+-------+---+ 
|3 6 5|1 9 9 6|2 9| 
+-----+-------+---+ 
   bv10&> ar;br;cr 
365 1996 29 
 
   bv10i bv10&> ar;br;cr 
0 3 6 5 
1 9 9 6 
0 0 2 9 
   N +/ bv10i bv10&> ar;br;cr 
2 3 9 0 
 
   a+b+c 
2390 
 

Padding can also be provided more directly, using the fact that the simple opening 
of a boxed list pads it, albeit on the wrong side: 
 
   >ar;br;cr 
3 6 5 0 
1 9 9 6 
2 9 0 0 
 
   pad=:|."1@:(|.&>) 
   pad ar;br;cr 
0 3 6 5 
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1 9 9 6 
0 0 2 9 
 

C. Multiplication 
The commonly-taught methods for addition and multiplication both interleave 
carries with other computations: in multiplication, each item of the multiplier is 
applied to the multiplicand and the carries are propagated to give a list of results 
which are then added to lists for the other items of the multiplier, producing a 
further sequence of carries. However, as in addition, the carries can all be 
segregated in a final normalization. For example: 
 
   a=:365 [ b=:1996 
   ar=:bv10i a [ br=:bv10i b 
   t=:ar*/br 
  
   t 
3 27 27 18 
6 54 54 36 
5 45 45 30 
 

This table of products may now be summed to collect those corresponding to the 
same powers of ten, that is, diagonally as follows: 
 
   s=:3,(27+6),(27+54+5),(18+54+45),(36+45),30 
   s 
3 33 86 117 81 30 
 
   (10#.s),(a*b) 
728540 728540 
 

This may also be expressed by using the oblique adverb /., which applies its 
function argument to each of the diagonals. Thus: 
 
   ]s=:+//.t 
3 33 86 117 81 30 
 

Exercises 
 
10. Carry out by hand the process defined by +//.ar*/br for various values of ar 

and br, and test the correctness of the resulting products. 

11. Experiment with the expression </.ar*/br to get a clear view of the 
behaviour of the oblique adverb. 

12. Define and test a function TIMES such that ar TIMES br gives the standard 
decimal representation of the product of numbers whose decimal 
representations are ar and br. 
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A clearer view of the justification for the diagonal sums used in the expression 
+//.t can be obtained by producing a table of powers of ten which multiplied by 
t gives products weighted by the appropriate powers of ten: 
 
    a=:365 [ b=:1996 
   ar=:bv10i a [ br=:bv10i b 
   t=:ar*/br 
   ea=:i.-#ar [ eb=:i.-#br 
   exp=:ea +/ eb 
   wp=:10^exp 
   wpt=:t*wp 
   wpt 
300000 270000 27000 1800 
 60000  54000  5400  360 
  5000   4500   450   30 
 
   +/+/wpt 
728540 
   a*b 
728540 
 
   TIMES=:N@(+//.@(*/)) 
   ar TIMES br 
7 2 8 5 4 0 
 
   (10#.ar TIMES br),(a*b) 
728540 728540 
 

Exercises 
13. Perform hand-calculations of products using the process defined by the 

function TIMES, and compare its use with the commonly-taught process. 
Which requires the most writing? Which is the more error-prone? Which is 
the easier to re-check by re-calculation of parts of the process? 

D. Subtraction 
Subtraction leads to the question of representing negative arguments. We will use 
lists of negative numbers, with the standard form limited (as it is for positive 
arguments) to numbers whose magnitudes are less than the base. For example: 
 
   10#. _3 _6 _5 
_365 
 
   10#._3 _4 _25 
_365 
 

The function bv10i=:10&#.^:_1 can be used to obtain the representation of a 
negative number by applying it to the magnitude, and then multiplying the 
resulting list by _1. Thus: 
 
   c=:_365 
   ar=: _1 * bv10i@| a 
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   cr 
_3 _6 _5 
 

A corresponding function for either positive or negative arguments can be 
obtained by multiplying not by _1, but by the signum of the argument: 
 
   * 365 0 _365 
1 0 _1 
 
   REP10=: * * 10&#.^:_1@| 
   REP10 _365 
_3 _6 _5 
 
   REP10 365 
3 6 5 
 

With this representation of negative numbers, expressions for addition apply 
equally for subtraction. For example: 
 
   a=:365 
   b=:1996 
   t=:REP10 a,b 
   t 
0 3 6 5 
1 9 9 6 
 
   -/t 
_1 _6 _3 _1 
 
   (10#.-/t),(a-b) 
_1631 _1631 
 

The normalization function must be modified in the same manner: 
 
   NOR=: *@#. * NORM&| 
   N=:10&NOR : NOR 
   N 3 4 25 
3 6 5 
 
   N _3 _4 _25 
_3 _6 _5 

Exercises 
 

14. Read Chapter 4 of Book 2 (Arithmetic), and try some of its Exercises. Note 
particularly the section on Mixed Bases. 
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Chapter 

8 

Recursion 

 re-, back + currere, to run 
 AHD[5] 

 
 
The factorial function ! introduced in Chapter 2 was seen to be a product of the 
first positive integers. Thus: 
 
   !n=:4 
24 
 
   (4*!3),(4*3*!2),(4*3*2*!1),(4*3*2*1) 
24 24 24 24 

It would therefore appear that !n might be defined simply as n*!n-1. Such a 
definition is said to be recursive, because the function being defined recurs in its 
own definition. But a sequence of the form: 
 
f n  
n*f n-1 
n*(n-1)*f n-2 

would continue forever (through n=:0 and n=:_1 etc.), and it is clear that two 
further pieces of information are required: when to stop the process, and the value 
of the function for the argument at the stopping point. For the present case of the 
factorial, the stopping condition could be that the argument be 1, and the stopping 
value could be given by the identity function ]. The three required functions are: 
 
   p=:]*f@:<: 
   q=:] 
   r=:1&= 
 

The complete definition may now be expressed and used as follows: 
 
   f=:p`q@.r 
   f 4 
24 
 
   f"0 (1 2 3 4 5) 
1 2 6 24 120 
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In the definition of f, the conjunction ` ties the functions p and q to form a 
gerund, from which the agenda conjunction selects one for execution according 
to the index (0 or 1) provided by its right argument function r. Once f is defined 
as above, we can experiment with p and the other functions to see some of the 
workings of the definition of f: 
 

   p Display the definition of p 
] * f@:<: 
 
   p 4 
24 
 
   r 4 
0 
 
   r 4 3 2 1 
0 0 0 1 
 
   q 1 
1 

Exercises 

1. Compare the results of f"0(4 3 2 1 0) and !4 3 2 1 0 and redefine f so 
that it agrees with ! for the argument 0. 

The problem of Exercise 1 could be solved by redefining q and r as follows: 
 
   q=:>: 
   r=:0&= 
   f 0 
1 
 

However, it would seem more straightforward to define q as the constant 1 as 
follows: 
 
   q=:1 
   f 0 
│domain error 
│       f 0 
 

A problem arises because 1 is a noun, not a function, and the arguments in the 
gerund p`q must both be functions. We therefore need a function that returns the 
constant value 1 when applied to any argument. Such constant functions are 
commonly needed, and are produced by the rank conjunction ("), used in Chapter 
5 to modify a function, as in <"2. Thus: 
 

   1"0 x=:i.4 Rank 0 produces a result for each atom of x 
1 1 1 1 
 

   1"_ x Infinite rank gives a single result for any argument 
1 
 
   x"1 'Now is the time' 
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0 1 2 3 
 

The function q may therefore be redefined as follows: 
 
   q=:1"_ 
   f"0 (4 3 2 1 0) 
24 6 2 1 1 
 

Finally, f (of rank 0) may be redefined compactly as follows: 
 
   f=:(]*f@:<:)`(1"_)@.(0&=)"0 
   f 4 3 2 1 0 
24 6 2 1 1 
 

As a second example of recursive definition we will define the sum of the first n 
odd numbers, first met in Chapter 1: 
 
   sod=:0"_`(>:@+:@<: + sod@<:)@.* 
   sod 4 
16 
 
   sod"0 i.6 
0 1 4 9 16 25  
 

The definition of sod may be interpreted as follows: When the argument n is 0, 
then the signum on the right returns 0, choosing the leading function in the 
gerund, giving a result of 0; otherwise, the result is the nth odd number (that is, 
>:@:+:@:<:) plus the sum for an argument n-1 (that is, sod@<:). 
 

Exercises 
 

2. For convenience, certain constant functions are provided directly, without the 
need for the rank operator. Experiment with the constant functions _9: and 
_8: and so on through 9:. Use 1: and 0: to simplify the definitions of f and 
sod above.  

3. Because increment (>:) is the inverse of decrement (<:), the expression 
>:@+:@<: is of the form gi@f@g, where gi is the inverse of g. We say that 
this is a case of applying f under g, and denote it by f&.g. Use this fact to 
simplify the definition of sod, and check the resulting behaviour.    

Recursive definition essentially specifies a function in terms of the same function 
applied to a simpler case, and its use can enormously simplify many definitions. 
For example, the Tower of Hanoi puzzle is stated as follows: 

A set of n drilled discs of different diameters stacked as a pyramid on a peg A 
is to be moved one at a time to a peg C without ever placing a larger on a 
smaller. A third peg B may be used as intermediary. 

The process for two discs may be expressed by the table: 
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AB 
AC 
BC 

which is to be interpreted row-by-row as follows: 
 

Move (the top) disc from A to B 
Move from A to C 
Move from B to C 
 

The case of n discs can be expressed in terms of the case of one fewer as follows: 
Move n-1 discs to the intermediary peg B, then move the remaining largest disc to 
C, and finally move the n-1 discs from B to C.We will use this fact to make a 
recursive definition as follows: 
 
   H=:m`b@.(1&=@[) 
     m=:(<:@[ H 1: A. ]) , b@] , <:@[ H 2: A. ] 
     b=:,:@(0 2&{)@] 
   p=:'ABC' Pegs 
   1 H p 
AC 
 
   2 H p 
AB 
AC 
BC 
 
   |: 3 H p Transposed table 
AACABBA 
CBBCACC 

Exercises 
 

4. Use discs and pegs (or numbered cards and labelled positions on a table) to 
carry out the instructions in the foregoing tables to verify that they provide 
proper solutions to the Hanoi puzzle. Also enter the expression |: 3 H p and 
test it as well. 

5. Give an expression for the number of moves required for n discs. 

6. Explain the behaviour of the definition of H, using experiments to show the 
permutation provided by the function A., the selection provided by the 
indexing function {, and the purpose of the monadic function ,:. Also 
redefine the main function m, using indexing to perform the necessary 
permutations. 

7. Experiment with the function HV=: |:@H. 

8. Read the definition of agenda in [5], and experiment with the use of $: for 
self-reference in recursive definitions.  

9. Compare the following recursively-defined function n with the first definition 
of NORM in the preceding chapter: 

   f=:(0:,10&|) + <.@(%&10) , 0: 
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   g=:+/@(*./\@(0&=)) }. ] 
   h=:*./@(10&>) 
   n=:n@f`g@.h 
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Chapter 

 9 

 Proofs 

 Drug thy memories, lest thou learn it, 
 lest thy heart be put to proof 
 Tennyson 

 

A. Introduction 

It is probably advisable to begin by reviewing the brief discussion of proofs at the 
end of Chapter 2. 

The final experiment of Chapter 1 showed a relation between the sum of the first 
n odd numbers and the square of n. We will first reproduce it here: 
 
   n=:20 
   odds=:1+2*a=:i.n=:20 
   odds 
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 
 
   (+/odds),(n*n) 
400 400 
 
   +/\odds 
1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 
400 
 
   (1+a)*(1+a) 
1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 
400 

But is the indicated relation true for any positive integer n? If you are already 
convinced that it is, any proof may seem pointless. However, you might still ask 
why it is true. The following should be helpful in answering this: 
 

   q=:1+2*i.n=:6 First six odd numbers 
   r=:|.q Odds in reverse order 
   q,:r 
 1 3 5 7 9 11 
11 9 7 5 3  1 
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   (+/q);(+/r);(q+r);(2%~q+r);(+/2%~q+r) 
+--+--+-----------------+-----------+--+ 
|36|36|12 12 12 12 12 12|6 6 6 6 6 6|36| 
+--+--+-----------------+-----------+--+ 

The foregoing shows the rather obvious fact that sums over a list, over the 
reversed list, and over one-half of the sum of the lists all agree. But the half-sum 
of the lists has a pattern whose sum is easily expressed as a product: 
 
   (2%~q+r);(n#n);(+/n#n);(n*n) 
+-----------+-----------+--+--+ 
|6 6 6 6 6 6|6 6 6 6 6 6|36|36| 
+-----------+-----------+--+--+ 

The last agreement (between +/n#n and n*n) is based on the fact that 
multiplication is defined as repeated addition. 

The foregoing attempted to show why two results were equal by exhibiting their 
equivalence to other results, where the equivalence was already known or 
obvious. This is perhaps the only way to answer the question why. However, the 
equivalences assumed may be made clearer by laying out the steps of the 
argument as a proof, that is, as a succession of equivalent statements annotated by 
the justification of the equivalence of each to the one preceding it. Thus: 
+/q=:1+2*i.n 
+/|.q Summation is symmetric (unaffected by ordering) 
2%~(+/q)+(+/|.q) Half sum of equals is an identity  
2%~+/(q+|.q) Summation is symmetric 
+/2%~(q+|.q) Summation distributes over division 
+/(n#n) 
n*n The definition of multiplication 
 

Such a list of supposedly equivalent sentences can be tested (for careless errors) 
by assigning a suitable value to the argument n, entering them on the computer, 
and comparing the results. 

This putative proof has not proved anything but it has, as Lakatos would say, 
broken the original conjecture into a collection of sub-conjectures, each of which 
may be profitably examined. Consider the first assertion that summation is 
symmetric, and gives the same result when applied to any permutation of a list. 
This may be tested as follows: 
   q=:1+2*i.n=:6 
   117 A. q 
1 11 9 5 7 3 
 
   _1 A. q 
11 9 7 5 3 1 
 
   (+/q),(+/117 A. q),(+/_1 A. q) 
36 36 36  
 

But why is summation symmetric? We may, for example, ask whether the notion 
applies to other functions, as in product over (*/), maximum over (>./), and 
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subtraction over 
(-/), beginning with the following tests: 
 
   r=:|.q 
   (+/q),(*/q),(>./q),(-/q) 
36 10395 11 _6 
 
   (+/r),(*/r),(>./r),(-/r) 
36 10395 11 6 
 

What is it about the functions +, *, and >. that make +/, */, and >./ symmetric? 
The answer is that they are both associative and commutative. These matters are 
examined further in Exercises, but the main point is that any conjecture may lead 
to further sub-conjectures that can be identified and pursued until the reader 
reaches assertions that are satisfying to him. As Lakatos shows, assertions 
satisfactory for one reader (or purpose) may not be satisfactory for another. 
 

Exercises 
 
1. Addition is said to be associative because a sequence of additions can be 

associated by parenthesizing them in any way without changing the result. For 
example, +/1 2 3 4 and (1+(2+(3+4))) and ((1+2)+(3+4)) and 
(1+(2+3)+4) are all equal. Test the associativity of addition by entering a 
variety of equivalent expressions. 

2. Repeat Exercise 1 for product and maximum. 

3. The completely parenthesized form of +/q is 1+(3+(5+(7+(9+11)))), and 
the corresponding form of +/117 A. q) is 1+(11+(9+(5+(7+3)))). Write a 
sequence of sentences [such as 1+(3+(5+(7+(11+9))))]that uses only 
associativity and commutativity to move from the first expression to the last, 
and enter them all to test their equivalence. 

4. Use the words Comm and Assoc to annotate your solution to Exercise 3 to 
provide a formal proof of the equivalence of +/q and +/117 A. q. 

5. The proof that +/q is equivalent to n*n is completely formal except for one 
omission. Complete it. 

Following Lakatos’s point that a formal or informal proof may suggest further 
lines of inquiry, we note that the list sum q+|.q gave items with a common value. 
This is, of course, a proposition that is not true for every list q, but depends upon 
some property of q. What is that property? 

The point is that q is an arithmetic progression; successive items increase by the 
addition of a fixed constant (in this case 2). The sum of the first and last items 
therefore equals the sum of the item just following the first and just preceding the 
last, and so on for further pairs. This is more easily stated (and seen) by reversing 
the list to bring corresponding pairs together. Thus: 
 
   q,:|.q 
 1 3 5 7 9 11 
11 9 7 5 3  1 
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   +/q,:|.q 
12 12 12 12 12 12 
 

The method of proof can therefore be applied to find expressions equal to the sum 
of any geometric progression. For example: 
 
   g=:i.n=:6 
   g,:|.g 
0 1 2 3 4 5 
5 4 3 2 1 0 
 
   +/g,:|.g 
5 5 5 5 5 5 
 
   (n*n-1)%2 
15 
 
   +/g 
15  
 
   b=:4 [ s=:3 [ n=:7 
   h=:b+s*i.n An AP beginning at b with steps of size s 
   h 
4 7 10 13 16 19 22 
 
   +/(h,:|.h)%2 
13 13 13 13 13 13 13 
 
   b+(s*n-1)%2 
13 
 
   n*b+(s*n-1)%2 
91 
 
   +/h 
91 
 

Exercises 
 

6. Write formal proofs for each of the foregoing results. 

7. Define a function f such that f b,s,n gives the mean of the arithmetic 
progression beginning at b and continuing with increments s for a total of n 
items. 

B. Inductive Proof 

An inductive proof of the equivalence of two functions proceeds by first assuming 
that they are equal for some unstated value of the integer argument n, and using 
that assumption (called the induction hypothesis) to prove that they are therefore 
equal for the next argument n+1. It is then shown that they are indeed equal for 
some specific argument n=:k. It therefore follows that they are equal for all 
values k, k+1, k+2, and so on without limit. For example:  
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   ssq=:+/@*:@i.@>:"0 
   ssq 5 Sum of squares of first 6 non-negative integers 
55 
 
   ssq i.6 
0 1 5 14 30 55 
 

Using rational constants (such as 2r6 for 2%6), we then define a putative 
equivalent function g, adopt the induction hypothesis that f n is equal to g n, and 
use it to prove that f n+1 equals g n+1:  
 
   g=:(1r6&*)+(3r6&*@(^&2))+(2r6&*@(^&3)) 
   ssq n+1 

   +/ *: i. >: n+1 Definition of ssq 
   (+/*:i.>:n)+(*:n+1) (Sum of first terms) plus last term 

   (ssq n)+(*:n+1) Definition of ssq 
   (g n)+(*:n+1) Induction hypothesis 
   (1r6*n)+(3r6*n^2)+(2r6*n^3)+(*:n+1) Definition of g 
   (1r6*n)+(3r6*n^2)+(2r6*n^3)+1+(2*n)+(n^2) 
   (1r6*n+1)+(3r6*(n+1)^2)+(2r6*(n+1)^3) 

   g n+1 Definition of g 
 
The lines of the foregoing proof that are not annotated concern the use of 
manipulations from elementary algebra, including the expansion of the square and 
the cube of the sum n+1. The inductive proof may now be completed by showing 
that the functions are equal for the argument 0. 

Exercises 
 

8. Enter n=:6, and then enter the lines of the foregoing proof to verify that they 
each give the same result. It is advisable to enter such a sequence in a “text” 
or “script” file, then execute it, observe the result, and return to the script file 
to correct any errors and re-try.  To open the script file, hold down the control 
key and press n; to execute it, hold down both the control and shift and press 
w; to see the result, switch to the execute window by holding down control 
and pressing the tab key;  return to the script window by the same action. 

9. Define the function s=: +/@:i.@>: and an equivalent function t that does 
not use summation. Give an inductive proof that they are equivalent. 

A recursive definition of  a function f provides a clear statement of the value of 
f n+1 in terms of the value of f n; this fact is obviously valuable in the 
construction of an inductive proof.  

But how does one find a function such as g? This matter will be treated in Chapter 
14. But for present use in further experiments with inductive proofs, we provide 
the following methods. 

The function g is an example of a polynomial, a sum of weighted powers of the 
argument, the weights being 0 1r6 3r6 2r6. They may be obtained as follows: 
 
   ]w=: (ssq a) %. a ^/ a=: i.5 
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_2.99066e_14 0.1666667 0.5 0.3333333 _6.50591e_14 
 
   6*w 
_1.7944e_13 1 3 2 _3.90354e_13 
 

Because %. (matrix divide) produces its results by approximation, the extreme 
items of 6*w are not quite zero. They can be “zeroed” by the following function, 
in which the first argument specifies the tolerance in number of decimal digits: 
 
   ZERO=: ] * |@] > 10&^@-@[ 
   8 ZERO 6*w 
0 1 3 2 0 
 
   14 ZERO 6*w 
_1.7944e_13 1 3 2 _3.91687e_13 
 

For convenience in experimenting with a variety of functions, we will adopt from 
Section F of Chapter 14 the conjunction FIT, so defined that n FIT f x gives the 
n-item list of coefficients of a polynomial that best fits the function f at the points 
x. For example: 
 
   V=:] ^/ i.@[ 
   FIT=:2 : 'y. %. (x. & V)' 
 
   3 FIT ^ 
^ %. 3&V 
 
   ]c=:3 FIT ^ b=:0.2*i.5 
1.00238 0.9203119 0.7569838 
 
   c p. b 
1.00238 1.21672 1.49162 1.82708 2.2231 
 
   ^ b 
1 1.2214 1.49182 1.82212 2.22554 

As remarked, g is an example of a polynomial, and the coefficients produced by 
FIT can (preferably after being zeroed) be used with the polynomial function p. 
to produce an equivalent function. Thus: 
 
   ]c=: 8 ZERO 4 FIT ssq a=:i.5 
0 0.1666667 0.5 0.3333333 0 
 
   c p. i.8 
0 1 5 14 30 55 91 140 
 
   g i. 8 
0 1 5 14 30 55 91 140 
 

Exercises 
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10. Study the discussion of proofs in Section D of Chapter 5 of Book 2. 

11. Find a function equivalent to the sum of cubes, and construct an inductive 
proof of the equivalence. 

[]c=: 8 ZERO 5 FIT scubes x=:i.6] 

12. For many functions, the coefficients for an equivalent or approximate 
polynomial may be conveniently obtained by using the Taylor adverb t., as in 
f t. i.6. Experiment with this for the functions: 
] ^&4 (^&4-^&2) 

(>:^4:) (<:^4:)         ^ 
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Chapter 

10 

Tools 

 Without tools he is nothing, 
 with tools he is all 
 Carlyle 

 

A. Introduction 
This chapter concerns tools for exploration. They are fully treated in Burke’s J 
User Manual (available on-line under the help menu in the J system), but should 
themselves be explored in the manner used for math in preceding chapters. 

For example, an overall view of the tools available may be obtained by dropping 
the menus. This can be done by clicking the mouse on each of them, but they can 
also be dropped by first pressing the alt key, then the down arrow, then the left or 
right arrow to move over the menus. The alt key will roll up a menu. 

With a menu dropped, use the up and down arrows to select an item, and press 
enter to execute it. Alternatively, an underscored letter in an item can be entered 
to execute it. Some menu items can be invoked directly (without dropping the 
menu) by pressing a key (usually while holding down the control key), as 
indicated  to the right of the item’s name. 
For example, (as shown in the help menu), the F1 key may be pressed to display 
the J vocabulary, and any entry in the vocabulary may be chosen for display by 
double-clicking on it with the mouse. A definition is then displayed, and may also 
be printed by using Print topic in the file menu.  
 

Exercises 
 

1. Using items from the help menu, display and read various pages from the User 
Manual, including Chapter 1. 

2. Display and read a few sections from the introduction to the J dictionary 

3. Read the section on grammar in the J dictionary. 
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B. Editing 
As remarked in Chapter 1, a previously entered line can be brought to the input 
area for editing and re-entry by moving the cursor up to it and pressing enter. 
Moreover, a line containing any phrase can be found by pressing Control f to 
highlight the search entry box, entering the phrase in it, and pressing enter. 
Repeated searches on the same phrase will find successive occurrences of it. 

Pressing Control d drops a menu of previous entries; one may be selected for use 
by pressing the up arrow. 

C. Script Windows 
Enter Control n to open a script window, enter one or more J sentences in it, and 
press Control-Shift w to execute the sentences. The execution occurs in the 
execution window, and can be viewed by entering Control Tab to switch back to 
it. 
A window may be saved as a file (under the name shown on the window) by 
pressing Control s, and can be re-opened at any time by pressing Control o. It can 
also be saved under any chosen name by using Save As or Save Copy As from the 
file menu.  

 

Exercises 

Select the item Session Manager from the User Manual, and from it select the 
item Script Windows. Read the discussion of their use. 
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Chapter 

11 

Coordinates and Visualization 

 It was their belief that, if they stared long enough at these 
 mystic curves and angles, red ink would turn into black. 
 Alva Johnson 
 

A. Introduction 
Take a sheet of graph or squared paper (ruled with equidistant vertical and 
horizontal lines), choose some point of intersection as the origin to be labelled 
0 0, and label vertical lines from left to right and horizontal lines from bottom to 
top with symmetric integers as follows: 
 
   i: 9 
_9 _8 _7 _6 _5 _4 _3 _2 _1 0 1 2 3 4 5 6 7 8 9 
 

Any point of intersection may then be labelled by two coordinates, the first (or x) 
coordinate specifying the vertical line through it, and the second (or y) coordinate 
the horizontal. Such a coordinate system makes it possible to describe geometric 
figures, and leads to analytic or coordinate geometry. For example: 

   p=:3 4 A single point 

   q=:9 4 

   r=:6 8 

   s=:9 7 

   t=:8 6. 

   is=:p,q,:r Isosceles triangle 

   rt=:p,q,:s Right (-angled) triangle 

   qd=:p,q,s,:r Quadrilateral 

   pg=:p,q,s,r,:t Pentagon 

Properties of the geometric figures can be obtained from their coordinate 
representations. For example: 
   disp=:1&|. - ] Rotate by 1 and subtract 
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   disp is Displacements from vertex to vertex 
 6  0 
_3  4 
_3 _4 
 

   length=:+/&.*:"1 Length according to Pythagoras 
   length p Length or distance from origin 
5 
   length disp is Lengths of sides of isosceles triangle 
6 5 5 
 
   heron=:%:@(*/@:(semip,semip-])) Heron’s formula for area 
     semip=: 2:%~+/ Semi-perimeter 
   heron length disp rt Area of the right triangle 
9 
 
   area=:heron@:length@:disp Area function using Heron 
   area rt 
9 
 
   area is Area of the isosceles triangle 
12 

 Exercises 

1. Plot the points p through t on graph paper, and join the appropriate points by 
straight lines to show the figures is through pg . Then use the base and 
altitude of each triangle to compute their areas, and compare with the results 
of Heron’s formula. 

2.  Use the AHD[6] to examine the etymology of the several terms used for 
figures that differ only in the number of their sides (or angles or vertices), and 
suggest a compact common terminology. 

 [3-gon, 4-gon, and n-gon (from polygon)] 
3. A vertex may be shifted to the left by subtracting a vector with a zero final 

element. Plot the following triangles, and use both base-times-altitude and 
Heron’s formula to compute their areas: 

 
   rts=:p,q,:r-8 0 
   is=:p,q,:s-8 0 
 

Although plotting polygons by hand may be instructive, it is also convenient to 
use the computer to plot them. We begin by normalizing the coordinates of a 
figure: 
• sliding them to bring the lowest point to 0 0   
• sizing them to no more than 1 in magnitude 
• doubling and subtracting 1 to bring them between _1 and 1 
• ravelling them to form a list for use by the plotting function 
 
   slide=:] -"1 <./ 
   size=:] %"1 >./ 
   scale=:,@(<:@+:@size@slide) 
   slide is 
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0 0 
6 0 
3 4 
   size slide is 
  0 0 
  1 0 
0.5 1 
   <: +: size slide is 
_1 _1 
 1 _1 
 0  1 
   scale is 
_1 _1 1 _1 0 1 

The following steps introduced the necessary graphing functions, and use them to 
display the isosceles triangle: 
 
   load 'graph' 

   gdopen'a'      Opens graph window labeled 'a'. Use mouse to return focus 
to J 
   gdpolygon scale is   
   gdshow'' 

We then superpose a red right triangle and, finally, clear the window:  
 

   255 0 0 gdpolygon scale rt   Colors red, green, blue; intensity 0-255 
   gdshow'' 
 

 
    
   gclear 'a' 

A graphics window may be closed by clicking the upper right corner with the 
mouse. 

The functions provided by the graphics file may be displayed by entering 
names_z_'' . However, they should for the moment be treated as tools, whose 
internal workings may be ignored provided that their effects are sufficiently 
understood.  

It will be found most convenient to enter a sequence of graphics commands in a 
script window (opened by entering Control n), and to execute them by using the 
drop-down run menu. 
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To learn more about the use of graphics, use the mouse to drop the Studio menu 
in J, then click on Labs, and then on Graph Utilities.   
 

Exercises 
 

4. Enter the foregoing sequence of graphics sentences in a script window, and 
use the “Selection” option from the run menu to execute it.  

5. Display each of the polygons defined in this section in various colors; in 
particular, display rt in red and (without clearing the window) -:is in green. 

6. Permute the coordinates of the polygons (as in 1 A. pg), and discuss the 
appearance of the resulting figures. 

7. Enter rot=:^@j.@rfd@[*], and rfd=:%&180p_1, and experiment with rot by 
plotting the results of the following forms: 

   45 rot rt 

   45&rot&.> rt;is;rts 

8. Experiment with, and comment on, the function rotate introduced by the 
graphics file.  

B. Visualization 
The examples of Section A illustrate the fact that the coordinate representation 
and the graphic representation of figures are complementary; each provides 
certain advantages. For example, the graph of Exercise 6 shows how easy it is to 
distinguish an “improper” polygon (in which sides cross), a matter that would not 
be easy to spot in a table of coordinates. 

On the other hand, for the computation of properties such as areas, coordinates 
are far superior. For the particular triangles rt and is (and even for rts and iss 
plotted by hand in Exercise 3) the computation of area appears simple, but this 
simplicity is deceptive, as illustrated by the rotated figure of rts in Exercise 7. 

Moreover, the determinant function provides an even simpler statement of area 
than does Heron’s formula, and yields additional important information. Thus: 
 
   det=:-/ . * 
 
   rt,"1 (0.5) 
3 4 0.5 
9 4 0.5 
9 7 0.5 
 
   det rt,"1 (0.5) 
9 
 
   det (1 A. rt),"1 (0.5) 
_9 
 
   AREA=:det@(,"1&0.5) 
   AREA rt 
9 

Exercises 
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9. If you are familiar with the computation of determinants from high school, 
check the foregoing results by hand. 

10. The result of AREA is positive if the coordinates are in counter-clockwise order 
(when plotted), and are negative if clockwise. Test this for various triangles. 

11. What is the significance of a zero result from AREA? 

12. Enter t=:?.7 2$10 to generate a random table of seven points. Referring to 
these points by the letters A through G, determine which of the last five lie on 
opposite sides of the line determined by the first two. 

 

 [Enter L=:0 1 { t, and compare signs of 
 the areas of the triangles C,L and D,L, etc.] 
 

13. Compute the area of the pentagon pg of Section A. 
 

 [Referring to the points by A-E, compute the three (signed) 
 areas A,B,:C and A,C,:D  and A,D,:E and add them] 

C. Plotting Multiple Figures 
As illustrated by Exercise 4, different figures may be displayed together. 
However, as seen from the same exercise, they are scaled independently, and 
therefore do not give a satisfactory picture. 
 
We will now rectify this by developing functions that will handle arguments of 
the form rt;is;pg, and scale the whole according to the requirements of the 
entire collection. It suffices to modify the functions slide, size, and scale so as 
to apply to each box (that is, under (&.)  open (>)), and to find the maxima and 
minima after razing the argument (by applying ;). Thus: 
 
   SLIDE=:] -"1&.> <@(<./@;) 
   SIZE=:] %"1&.> <@(>./@;) 
   SCALE=:,&.>@(<:@+:&.>@SIZE@SLIDE) 

We may then proceed with experiments such as the following (which plots the isosceles 
triangle together with the right-triangle displaced two places up and to the right: 
POLY=:gdpolygon&> 
color=:0 255 0;255 0 0 
gdopen'' 
color POLY SCALE is;2+rt 
gdshow'' 

Exercises 

14. Experiment with the plotting of multiple figures, using expressions of the 
form: 

 
    (255 0 0;0 0 255) POLY SCALE rt;pg 
 

15. Enter SCALE <rt and SCALE rt to see that only the former gives the desired 
result. Define a corresponding function M that works in either case 
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 [M=:SCALE@ bifo=:<^:(-:>). Observe the results 
 of bifo (box if open) applied to rt and to <rt.] 
 

16.Enter the definition reg=:+.@^@j.@o.@(2:*i.%]), and verify that reg 4 and 
reg 6 give the coordinates of regular polygons inscribed in a unit circle. This 
definitionemploys complex numbers, so do not spend time on the definition 
itself at this point. Instead plot the figure reg 6 and various permutations of 
it, and interpret the figures observed. Include the following sequence: 
red=:<255 0 0 

 gdopen 'a' 
 red POLY SCALE < reg 6 
 gdshow''    
      gdopen 'b' 
   red POLY SCALE < 1 A. reg 6 
 gdshow'' 
 gdopen 'c' 
 red POLY SCALE < /:~ reg 6 
 gdshow'' 
 
   <@reg"0 i.6 

D. Plotting Functions 
This section illustrates the use of various facilities for plotting functions: 
 
   load 'plot' 
   plot x=:2 3 5 7 11 

 
In this and the following plot, the horizontal axis is labeled with the default values from 0 
to 4. The next plot after that uses the form x;*:x to label this axis according to the 
argument x. 
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The alternative function PLOT=:'stick,line'&plot draws vertical "sticks" to each 
point as well as the "lines" between the points. Similarly, BAR=:'stick'&plot 
produces barcharts. 

Enter the definitions of these functions, and experiment with them. 
   plot *: x NB. Plot square function 

 
 

   plot x;*: x NB. square Versus argument 

 
Entering load 'graph' also makes available a function called steps that produces a 
grid from one value to another in a specified number of steps. For example: 
   steps 2 4 10 
2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4  

We will give it an alternative name as follows:  
   grid=:steps 
   grid 2 4 10  NB. 2 to 4 in 10 steps 
2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 
   sin=:1&o. 
   cos=:2&o. 
   plot sin x=:grid 0 6 100 
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   plot (sin ; sin*cos) x 

 
 
   plot sin */~ grid 0 3 30 NB. Multiple sines 
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   'surface'plot sin*/~grid 0 3 30   
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Chapter 

12 

Linear Functions  

 That wholly consisted  
 of lines like these 
 C.S. Calverley 

 

A. Distributivity 
The properties of commutativity and associativity introduced in Chapters 3 and 9 
concerned a single function; the important property of distributivity concerns a 
pair of functions. It is commonly treated as a relation between two dyadic 
functions, as illustrated below: 
 

   'abc'=: 3 4 5 Assign the names a and b and c 
   a,b,c 
3 4 5 
 
   ]d=:a*(b+c) 
27 
 
   ]e=:(a*b)+(a*c) 
27 
 

The general equivalence of the results d and e is expressed by saying that times 
distributes over addition. However, this distributivity might equally be expressed 
with the sum as the left argument of times as follows:  
 
   ]f=:(b+c)*a 
27 
   ]g=:(b*a)+(c*a) 
27 
 

Times also distributes over subtraction, a fact that may be illustrated as follows: 
 
   (a*(b-c));((a*b)-(a*c));((b-c)*a);((b*a)-(c*a)) 
+--+--+--+--+ 
|_3|_3|_3|_3| 
+--+--+--+--+ 

Does division distribute over addition? It can be tested as follows: 
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   (a%(b+c));((a%b)+(a*c));((b+c)%a);((b%a)+(c%a)) 
+--------+-----+-+-+ 
|0.333333|15.75|3|3| 
+--------+-----+-+-+ 
The result is conflicting; one pair agrees, and the other does not; a matter 
sometimes resolved by saying that division distributes to the left, but not to the 
right. It is simpler and clearer to note that the monadic function a&% does not 
distribute over addition, but that the function %&a does. We will hereafter speak 
only of the distributivity of monadic functions. For example, +: (double) and -: 
(halve) both distribute over addition. 
 

Exercises 
 

1. Does %&a distribute over subtraction? Test your assertion. 

2. Repeat the experiments of this section using conformable (that is, equal in 
number of items) lists a, b, and c. 

3. Repeat the experiments of this section using conformable tables A, B, and C.  

4. Experiment with the dyadic cases of the functions f@g and g&f for various 
values of the proverbs f and g (such as f=:% and g=:-), and state clearly the 
effects of the conjunctions @ and &  

 

 [b f@g c is equivalent to f b g c, and 
  b f&g c is equivalent to(g b)f(g c)] 
 

5. Comment on the assertion that the equivalence of f@g and g&f is a test of the 
distributivity of f over g 

6. Experiment with the conjunction dtest=: 12 : 'x.@y. -: y.&x.' in 
testing for distributivity. Include +dtest- and b %&3 dtest + c and b 3&% 
dtest + c 

B. Linearity 
A function that distributes over addition is said to be linear. Linear functions 
prove to be important in almost every branch of applied math.  

The functions L1=:*&2 and L2=:%&2 and L3=:|."1 are each linear. Thus: 
 
   a=:3 4,9 4,:9 7 [ b=:3 4,9 4,:6 8 
 
   a;b 
+---+---+ 
|3 4|3 4| 
|9 4|9 4| 
|9 7|6 8| 
+---+---+ 
 
   L1 (a+b) 
12 16 
36 16 
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30 30 
 
   (L1 a)+(L1 b) 
12 16 
36 16 
30 30 
 

Such matters may be expressed more clearly and compactly as follows: 
 
   a (L1@+ ; +&L1) b 
+-----+-----+ 
|12 16|12 16| 
|36 16|36 16| 
|30 30|30 30| 
+-----+-----+ 
 
   a (L1@+ -: +&L1) b 
1 

C. Linear Vector Functions 
A function of rank 1 applies to each vector in its argument, and may be called a 
vector function. We will use the term in a more restrictive sense: the result must 
be the same shape as the argument. Thus L3=:|."1 defined in the preceding 
section is a linear vector function: 
 
   d=: 4 2 1 [ e=: 2 3 5 
   L3 d+e 
6 5 6 
   (L3 d)+(L3 e) 
6 5 6 
 

If f=:+/@:*"1, then the function w&f is a weighted sum, with weights specified 
by the vector w. Moreover, it is linear. For example: 
 
   w=:2 0 3 
   w&f d 
11 
   w*d 
8 0 3 
 
   +/w*d 
11 
 
   (w&f d+e),:(w&f d)+(w&f e) 
30 
30 
 

Although w&f is linear, it is not a linear vector function according to our strict 
definition. Such a linear vector function may be defined as follows: 
 
   x=:5 1 2  
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   y=:7 2 0 
   g=: w&f,x&f,y&f 
   g d 
11 24 32 
 
   t=:w,x,:y 
   t 
2 0 3 
5 1 2 
7 2 0 
 
   h=: t&f 
   h d 
11 24 32 
 

In general, if t is an n-by-n table, then t&f is a linear vector function on any 
vector of n elements. 

Exercises 

7. Use the arguments x and y to test the assertions that each of the following 
functions is linear: 

 
   x=:2 7 1 8 
   y=:3 1 4 2 
   L4=:+/\ 
   L5=:L4*L4 
   L6=:L4^:_1 
 

[L5 is not linear. L6 illustrates the fact that the inverse of a linear function is 
linear. L4 gives subtotals, and L6 gives differences: try L4 L6 x and L6 L4 x 
to test the assertion that they are inverse functions.] 

D. Inner Product 
Applied to the sum (+/) and product (*), the dot conjunction produces the matrix 
product function that is (for the arguments used in the preceding section) 
equivalent to the function f defined there: 
 

   mp=:+/ . * The space before the dot is essential 
   w mp d Using w and d and t from the preceding section 
11 
 
   t &mp d 
11 24 32 
 

For any square matrix m (that is, =/$m), the function mp&m is a linear vector 
function. For example: 
 
   m=:5-~?.4 4$10 
   L=:m&mp"1 
   x=:2 7 1 8 
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   y=:3 1 4 2 

 
   m;(L x);(L y);(L x+y);(L x)+(L y) 
+----------+------------+-------------+-------------+-------------+ 
|_4  2 _1 0|            |             |             |             | 
|_3 _5  1 1|5 _32 18 _37|_14 _8 16 _18|_9 _40 34 _55|_9 _40 34 _55| 
| 4 _2  0 3|            |             |             |             | 
|_5 _5  0 1|            |             |             |             | 
+----------+------------+-------------+-------------+-------------+ 

Conversely, for any linear function, a matrix m  that represents it (in the function 
L=:m&mp"1) can be obtained by simply transposing the table produced by 
applying the function to the appropriate identity matrix. For example: 
 
   (];L;|:@:L;m"_) I=:=i.4 
+-------+-----------+----------+----------+ 
|1 0 0 0|_4 _3  4 _5|_4  2 _1 0|_4  2 _1 0| 
|0 1 0 0| 2 _5 _2 _5|_3 _5  1 1|_3 _5  1 1| 
|0 0 1 0|_1  1  0  0| 4 _2  0 3| 4 _2  0 3| 
|0 0 0 1| 0  1  3  1|_5 _5  0 1|_5 _5  0 1| 
+-------+-----------+----------+----------+ 
 
   (|:L I)&mp x 
5 _32 18 _37 
 
   L x 
5 _32 18 _37 

Exercises 

8. Using the result of L4 x from Exercise 7, try to determine by hand the value 
of the matrix m such that m&mp x gives the same result. Compare your result 
with 
|:@:L4 I=:=i.4. 

9. Compare the results of the function m&mp derived in Exercise 8 with the result 
of L4 when applied to the argument z=:2 7 1 8 2 8.  

10. Repeat Exercise 8 for the function L6. 

11. Repeat Exercise 8 for the function L3=:|."1. 

The error produced in Exercise 9 illustrates the fact that the domain of the matrix 
product representation of a linear function is restricted to arguments of a specific 
number of items, even though the linear function from which it is derived has a 
wider domain. 

E. Why The Name “Linear”? 
Why is a function that distributes over addition called linear? We will attempt to 
answer this by applying an arbitrary linear vector function to geometric figures, 
beginning with the right-angled and isosceles triangles of Chapter 11: 
 
   is=:3 4,9 4,:6 8 
   rt=:3 4,9 4,:9 7 
   ]m=:?.2 2$10 
1 7 
4 5 
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   mp=:+/ . * 
   L=:m&mp"1 
   rt;L rt 
+---+-----+ 
|3 4|31 32| 
|9 4|37 56| 
|9 7|58 71| 
+---+-----+ 
 
   is;L is 
+---+-----+ 
|3 4|31 32| 
|9 4|37 56| 
|6 8|62 64| 
+---+-----+ 

We may plot these resulting triangles (by hand or by the methods of Chapter 11) 
to try to assess the effects of the linear function. Is the right-angle of rt retained? 
Do the two equal sides of is remain equal? Is the order of the vertices reversed? 
We may also apply the function AREA of Chapter 11 to compare the areas: 
 
   AREA=:det@(,"1&0.5) 
     det=:-/ . * 
   (AREA L rt)%(AREA rt) 
_23 
 
   (AREA L is)%(AREA is) 
_23 
 

The areas of the two triangles appear to be multiplied by the same factor. In fact, 
the area transformation produced by a function m&mp is the determinant of m : 
 
   det=:-/ . * 
   det m 
_23 
 

We now consider three points on a line, that is, a degenerate triangle having zero 
area: 
 
   a=:3 4 
   b=:5 13 
   ]deg=: a,b,:(a%4)+(3*b%4) 
  3     4 
  5    13 
4.5 10.75 
 
   AREA deg 
0 
 
   AREA L deg 
0 
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This result suggests (correctly) that a linear function transforms a line into a line, 
a fact that suggests the use of the term linear for it. 

A point in three-dimensional space can be represented by a three-element vector 
such as p=:3 1 5. A linear function on such a point must, of course, be 
represented by a 3-by-3 matrix m. Moreover, a tetrahedron may be represented  by 
a 4-by-3 table, and the function AREA may be modified to give its volume as 
follows: 
   VOL=:det@(,"1&1r6) 
 

Exercises 
 

12. Use a tetrahedron (such as tet=:0 0 0,0 0 1,0 1 0,:1 0 0) whose 
volume is easily computed to test the behaviour of the function VOL. 

13. Use a permutation of the vertices of tet to show that VOL gives the signed 
volume of its argument much as AREA does. State the condition for a non-
negative volume. 

 [Try VOL 1 A. tet. The volume is non-negative if the vertices of the “base” 
triangle are in counter-clockwise order when viewed from the leading vertex] 

14. Use expressions analogous to those used for the area of a triangle to 
investigate the volume transformation effected by a linear function on a 
tetrahedron. 

15. Define a degenerate tetrahedron (in which the four points are co-planar) to 
illustrate the fact that a linear function on it yields a co-planar result. 
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Chapter 

13 

Representations of Functions 

 No computation 
 without representation 
 Adin Falkoff 

A. Introduction 
A family of monadic functions is commonly represented by a single dyadic 
function, a particular member of the family being obtained by bonding a 
parameter. As an example, consider the permutation or anagram function 
introduced in Chapter 2: 
 
   a=:'ABCDE' 
   2 A. a 
ABDCE 
 
   f=:2&A. 
   f a 
ABDCE 
 
A family may also be represented in several ways, using different dyadic 
functions. For example: 
 

   0 1 4 3{a The indexing or from function 
ABED 
 
   p=:0 1 3 2 4 A permutation vector (a permutation of i.5) 
   p{a 
ABDCE 
   p&{ a A monadic permutation function 
ABDCE 
 
   ]b=:0;1;3 2;4 
+-+-+---+-+ 
|0|1|3 2|4| 
+-+-+---+-+ 
 
   b C. a The cycle function C. 
ABDCE 
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   b&C. a A monadic permutation function 
ABDCE 
 

Since different representations have different uses, it is important to provide 
transformations from one to the other. The monadic cases of A. and C. provide 
such transformations: 
 
   A. p 
2 
 
   (A. p) A. a 
ABDCE 
 
   ]b=: C. p 
+-+-+---+-+ 
|0|1|3 2|4| 
+-+-+---+-+ 
 
   C. b 
0 1 3 2 4 
 

The behaviour of these various representations of permutations can be studied by 
using random permutations generated by the function ?.~. For example: 
 
   ]q=:?.~9 
7 1 3 2 6 4 0 5 8 
 
   A. q 
288918 
 
   (A.q)A. i.9 
7 1 3 2 6 4 0 5 8 
 
   C. q 
+-+---+---------+-+ 
|1|3 2|7 5 4 6 0|8| 
+-+---+---------+-+ 
 

Exercises 
 

1.   Generate a table of all permutations of order 4. 
 [(i.!4)A. i.4] 

2. Use the example of q=:?.~9 and C.q to illustrate the scheme used in the cycle 
representation of permutations. 

 [The third box of C.q signifies that item 5 moves to position 7, item 4 to 
position 5, item 6 to 4, item 0 to 6, and item 7 to 0. Moreover, item 8 moves to 
8 (and therefore remains fixed). Use the help menu for discussion of 
permutations in the introduction to the dictionary, the vocabulary, and the 
phrase book.]  

3. Is a permutation a linear function? If it is, produce the matrix m that represents 
it in the expression m&(mp=:+/ . *) . 
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 [m=:q=/i.#q] 
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Chapter 

14 

Polynomials 

A. Coefficients Representation 
A function that is a multiple of a non-negative integral power of its argument is 
called a monomial. In MN it is written in the form 3x2, yielding the value 12 if the 
argument x has the value 2. 

A sum of monomials is called a polynomial, and is written in MN in the form 
2x0+4x1+3x2+x3, having the value 30 if x is 2. 

A direct translation to J would read as (2*x^0)+(4*x^1)+(3*x^2)+x^3. The 
numerous parentheses required suggest a reason for the precedence rules adopted 
in MN (power before multiplication before addition); they are precisely the rules 
that permit the polynomial to be expressed without parentheses. 
 

Exercises 
 
1. Write a parenthesis-free J expression for the foregoing polynomial, then 

assign the value 2 to x and enter the expression to test its validity. 

2. Use the results of Exercise 1 to define a function py so that 2 4 3 1 py x 
yields the value of the polynomial for any single argument x. 

 [py=:+/@([ * ] ^ i.@#@[)] 

3. Use py to define a function poly so that it applies to each element of a list x, 
and test it by using it with the arguments 2 4 3 1 and i.8. 

 [poly=:py"1 0] 

4. Comment on the function 2 4 3 1&poly. 

 [The dyadic function poly represents a family of polynomials, 2 4 3 1&poly 
is a specific member of this family. The elements of the list 2 4 3 1 are 
called coefficients, and poly is said to be a coefficients representation of  
polynomials.] 



Exploring Math 
 

86 

5. The dyadic case of the primitive function p. is a coefficients representation of 
polynomials. Experiment with the expression c p. x for various values of c 
and x. 

6. Experiment with tc p./ x, where tc is a table of coefficients and x is a list. 

B. Roots Representation 
The product */x-r is said to be a polynomial expressed in terms of the list of 
roots r. It is called a polynomial because any such function can also be expressed 
in a coefficients representation. Thus: 
 
   x=:4 
   r=:2 3 5 
   x-r 
2 1 _1 
 
   */x-r 
_2 
 
   _30 31 _10 1 p. x 
_2  
 

The monadic case of p. applied to the boxed roots yields the coefficients of the 
other representation: 
 
   p. <r 
_30 31 _10 1 

Exercises 

7. Define a “polynomial in terms of roots” function pir such that r&pir x 
evaluates a polynomial with roots r for the argument x. 

8. Why are the elements of the list r in the function r&pir called roots? 

 [Each of the elements is a zero or root of the function in the sense that it 
yields a zero result. For example, enter pir=: */@(]-[)"1 0 and r&pir r] 

9. Every function of the form r&pir can be represented in the form c&p.. Is the 
converse true? 

 Try to define a list s such that s&pir is equivalent to d&p., where d=:2*p.<r. 
Then look at the result of p. d and of (p. d) p. x=:i.8 ] 

10. Discuss the result of p. d. 

 [The dyadic function p. covers both the coefficients and roots representations. 
If the left argument is open (not boxed), it is treated as a list of coefficients. If 
it is boxed (and contains two items), the last item is the boxed list of roots, 
and the first is the boxed “multiplier”. If it contains a single item b, it is 
equivalent to 1;b (that is, a multiplier of 1).] 
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C. Versatility 
The polynomial is a most important function in math. This importance stems from 
its versatility, which in turn stems from a few simple properties. 

The discussion of these properties leads to a number of topics not yet discussed, 
such as complex numbers, derivatives, power series, and transcendental functions 
(including the exponential (^), sine (1&o.), and cosine (2&o.)). Even if you are 
unfamiliar with such matters, you will probably find it fruitful and interesting to 
use this section as an introduction to them, always remembering the injunction of 
Chapter 1: do not spend too much time on matters that may be, at the moment, 
beyond your powers. 

In presenting the properties of polynomials we will use the following in 
examples: 
 
   c=:1 3 3 1 
   d=:2 1 0 4 
   s=:c+d 
   p=:+//.c*/d 
   c;d;s;p 
+-------+-------+-------+---------------+ 
|1 3 3 1|2 1 0 4|3 4 3 5|2 7 9 9 13 12 4| 
+-------+-------+-------+---------------+ 
• The sum (or difference) of two polynomials is itself a polynomial. For 

example, the polynomial f=:c&p.+d&p. is equivalent to the polynomial 
g=:(c+d)&p.. 

• The product of polynomials is a polynomial: c&p.*d&p. equals p&p. 

• Polynomials can be used to approximate a wide variety of important 
functions. A power series is a polynomial whose coefficients are each 
expressible as a function of its index. For example, the reciprocal factorial 
function expc=:%@! specifies the power series approximation to the 
exponential funtion. Thus: 

 
        expc=:%@! 
     ]e8=:expc i.8 
  1 1 0.5 0.1666667 0.04166667 0.008333333 
 
     e8&p. i.4 
  1 2.71667 7.26667 18.4 
 
     ^i.4 
  1 2.71828 7.38906 20.0855 
 
• The derivative (that is, the rate of change or slope of the tangent to the graph) 

of a polynomial is itself a polynomial. For example, the derivative of c&p. is 
(1 }. c * i.#c)&p. 

 
• The integral (or anti-derivative) of a polynomial is itself a polynomial. For 

example the integral of c&p. is (0 , c % 1+i.#c)&p. . 
 
• The composition (c&p.)@(d&p.) is a polynomial. 
 

Exercises 
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11. Experiment with the foregoing examples. 

12. Define and use plus=:+ and times=:+//.@(*/) and der=:1: }. ] * i.@# 
and int=:0: , ] % 1: + i.@# . Comment on their behaviour. 

 [der@int is an identity function. The function plus fails for arguments that 
do not have the same number of items. Try the function plus=:+/@,: and 
examine how the laminate function pads a shorter argument with (non-
significant) trailing zeros] 

13. Explain the reason for the diagonal sums (produced by /.) used in the 
function times. 

 [See the multiplication of decimal numbers in Section C of Chapter 7] 

The Taylor series adverb t. produces a function that gives the coefficients of a 
power series. For example: 
 
   c&p. t. i.8 
1 3 3 1 0 0 0 0 
 
   (c&p.*d&p.) t. i.8 
2 7 9 9 13 12 4 0 
 
   ^ t. i. 7 
1 1 0.5 0.1666667 0.04166667 0.008333333 0.001388889  
   sin=:1&o. 
   cos=:2&o. 
   ]sc=:sin t. i.8 
0 1 0 _0.1666667 0 0.008333333 0 _0.0001984127 
 
   ]cc=:cos t. i.8 
1 0 _0.5 0 0.04166667 0 _0.001388889 0  
 
The power series for an ordinary polynomial (that is, one with a finite list of 
coefficients) ends with (non-significant) zeros, but the series for a transcendental 
function continues with non-zero terms. However, the coefficients for the 
exponential, sine, and cosine diminish rapidly in magnitude. This rapid decline 
accounts for the utility of a small number of terms in approximating functions. 
 

Exercises 
 

14. Predict and confirm the results of ((cos*cos)+(sin*sin))t. i.8 

15. Repeat Ex 14 for ((cc times cc)plus(sc times sc))t. i.8 

16. Repeat Ex 14 for (^t.i.8)times(^@-t.i.8) 

17. The function h=:(1 2 3&p.)@(4 3&p.) is a polynomial. Determine its 
coefficients by hand, and confirm the result by entering h t. i.8.  

18. Read Section 9D (Expansion) of Book 2. 
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If f and g are polynomials, then (f*g)%g is equivalent to f. On the other hand, 
division for an arbitrary pair (such as f%g) may be not a polynomial, but a power 
series. For example: 
 
   f=:1&p. 
   g=:1 _1 _1&p. 
   (f%g) t. i. 8 
1 1 2 3 5 8 13 21 
 

The foregoing Taylor series may be surprising: it is the Fibonacci series, in which 
each item is the sum of the two preceding it. This matter is discussed in Concrete 
Mathematics [3], and in Concrete Math Companion [2]. 

D. Parity 
A function E is said to be even if E is equivalent to E@-, that is, E x equals E-x for 
any argument x. Graphically this implies that the graph of an even function is 
reflected in the vertical axis. 
A function O is odd if O is equivalent to -O@-, that is, O x equals -O-x for any x. 
Consequently, the graph of an odd function is reflected in the origin. 
 

Exercises 
 

19. What is the parity (odd or even) of each of the functions sine and cosine? 

20. Enter sin t. i.8 and cos t. i.8 and comment on the power series of odd 
and even functions. 

[The coefficients of all odd powers of an even function are zero, and conversely.] 

21. What are the parities of the products of an even function with an even; an 
even function with an odd; an odd with an odd? Test your assertions. 

22. What is the parity of the exponential function? 

The exponential is an example of a function that is neither odd nor even. 
However, any function can be expressed as the sum of two functions, an odd part 
and an even part. For example: 
 
   opex=:2: %~ ^ - ^@- 
 
   epex=:2: %~ ^ + ^@- 
 
   (^,opex,epex,:opex+epex) i.8 
1 2.71828 7.38906 20.0855 54.5982 148.413 403.429 1096.63 
0  1.1752 3.62686 10.0179 27.2899 74.2032 201.713 548.316 
1 1.54308  3.7622 10.0677 27.3082 74.2099 201.716 548.317 
1 2.71828 7.38906 20.0855 54.5982 148.413 403.429 1096.63 

The odd and even parts of a function may be functions of interest in their own 
right. In the present case, opex and epex are the hyperbolic sine and hyperbolic 
cosine (often abbreviated as sinh and cosh); denoted in J as illustrated below: 
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   (5&o.,:6&o.)i.8 
0  1.1752 3.62686 10.0179 27.2899 74.2032 201.713 548.316 
1 1.54308  3.7622 10.0677 27.3082 74.2099 201.716 548.317 
 

The adverbs O=: .:- and E=: ..- produce the odd and even parts of functions to 
which they are applied. For example, ^O is equivalent to opex and ^E is 
equivalent to epex.  

Exercises 

23. Compare the coefficients ^t.i.8 and opex t.i.8 and epex t.i.8 .  

24. Comment on the functions cos E and cos O and sin E and sin O . 

25. The function j. multiplies its argument by 0j1, the “imaginary” square root 
of negative _1. Comment on the even function ^@j.E . 

 [^@j.E is the cosine. Try entering ^@j. t. i.8 and ^@j.E t. i.8] 

E. Linearity 
Since (c+d)p. x equals (c p. x)+(d p. x), it appears that a polynomial is in 
some sense a linear function of its coefficients. We will now consider a series of 
examples to clarify this vague statement, producing the matrix that represents the 
linear function, and a simple expression for it as a  power table: 
   mp=:+/ . * 
   c=:1 3 3 1 [ d=:2 1 0 4 [ x=:1 2 3 4 
   (c p. x);(c&p. x);(p.&x c) 
+-----------+-----------+-----------+ 
|8 27 64 125|8 27 64 125|8 27 64 125| 
+-----------+-----------+-----------+ 
 
   I=:=i.4 
   I 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 
 
   ]m=:|:p.&x"1 I The matrix that represents the linear function 
p.&x 
1 1  1  1 
1 2  4  8 
1 3  9 27 
1 4 16 64 
 
   m mp c 
8 27 64 125 
 
   m&mp c 
8 27 64 125 
 

The matrix m that represents the desired linear function of the coefficients looks 
like a power table, and may be so expressed in terms of the argument x and its 
indices as follows: 
 
   ]e=:i.#x 
0 1 2 3 
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   x ^/ e 
1 1  1  1 
1 2  4  8 
1 3  9 27 
1 4 16 64  
 

The table m is called the (Complete) Vandermonde matrix of x. A Vandermonde 
function may be defined and used as follows: 
 

   V=:] ^/ i.@[ The Vandermonde function 
   (#x) V x Vandermonde matrix for x 
1 1  1  1 
1 2  4  8 
1 3  9 27 
1 4 16 64 
 
   ]y=:((#x) V x)&mp c Linear function in terms of 
Vandermonde  
8 27 64 125 
 
   f=:c&p. 
   f x 
8 27 64 125  
 
   CV=:# V ] Complete Vandermonde function 
 
   ]y=:(CV x)&mp c 
8 27 64 125 

The complete Vandermonde matrix is square and invertible. Its inverse provides 
the inverse linear function, which may be used to determine the coefficients of a 
polynomial that represents the function as illustrated below: 
   %. CV x 
   4  _6    4        _1 
  _4.33333 9.5   _7   1.83333 
 
       1.5  _4  3.5        _1 
_0.1666667 0.5 _0.5 0.1666667 
 
   (%.CV x)&mp y The inverse linear function applied to y 
1 3 3 1 
 
   (%.CV x)&mp f x Using the fact that y is f x 
1 3 3 1 
 
   f Show the definition of f 
1 3 3 1&p.  
 

Exercises 
 

26. Use the foregoing discussion as a model for experimenting with 
Vandermonde matrices for various values of the arguments x and c, and 
comment on the results. 

 

 [The linear function (CV x)&mp applies only to arguments 
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 that have the same number of items as does x.] 
27. Use x=:10%~i.10  and y=:(sin=:1&o.) x to obtain coefficients c such that 

c&p. agrees with sin for the arguments x. Use expressions of the form (c&p. 
; sin) 5 2$x to show the comparison clearly. 

28. Test the use of c&p. to approximate sin by evaluating (c&p.-sin)z for other 
arguments such as z=:0.65 0.8 and z=:i.5 2 and comment on the results. 

 

 [The approximation is good in the range covered by x 
 (0-0.9), but may be very bad for arguments outside this range.] 

F. Polynomial Approximations 
Sections C and E have presented two methods of approximating a function f by a 
polynomial. The first used the Taylor series f t. i. n, and the second the 
complete Vandermonde matrix CV x to fit the function exactly at the points f x. 
We will first compare their results for the example treated in Exercise 27: 
 

  '`sin mp CV'=: (1&o.)`(mp=:+/ . *)`(# (V=:] ^/ i.@[) ]) 
   x=:10%~i.10 
   tc=:sin t. i. # x 
   vc=:(%.CV x) mp sin x 
 
   ((sin-tc&p.);(sin-vc&p.)) 5 2$x 
+-------------------------+------------------------+ 
|           0            0|_2.18587e_13  1.5066e_12| 
|_5.27356e_16 _4.43534e_14|_4.92267e_12 1.02958e_11| 
|_1.04966e_12 _1.22129e_11|_1.40716e_11 1.53755e_11| 
|_9.06789e_11  _4.9381e_10|_4.78062e_12 1.69003e_11| 
| _2.14316e_9  _7.82095e_9| 3.04181e_11  6.7725e_11| 
+-------------------------+------------------------+ 
 
   ((sin-tc&p.);(sin-vc&p.)) 5 2$x+0.1 
+-------------------------+------------------------+ 
|           0 _5.27356e_16| 1.5066e_12 _4.92267e_12| 
|_4.43534e_14 _1.04966e_12|1.02958e_11 _1.40716e_11| 
|_1.22129e_11 _9.06789e_11|1.53755e_11 _4.78062e_12| 
| _4.9381e_10  _2.14316e_9|1.69003e_11  3.04181e_11| 
| _7.82095e_9  _2.48923e_8| 6.7725e_11   1.05946e_8| 
+-------------------------+------------------------+ 
   ((sin-tc&p.);(sin-vc&p.)) 5 2$-x 
+-----------------------+-------------------------+ 
|          0           0|_2.18587e_13  _1.07342e_8| 
|5.27356e_16 4.43534e_14| _9.83991e_8   _5.0716e_7| 
|1.04966e_12 1.22129e_11| _1.92828e_6  _6.01583e_6| 
|9.06789e_11  4.9381e_10| _1.62857e_5  _3.95772e_5| 
| 2.14316e_9  7.82095e_9| _8.83031e_5 _0.000183771| 
+-----------------------+-------------------------+ 
 
The first panel above shows that vc provides the better approximation at the very 
points on which it was determined; the second panel shows that this better 
performance persists for other points in the range spanned by them; and the third 
shows that the Taylor series generally performs better at points (that is, -x) 
outside the range.  
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Exercises 

29. Will the use of a larger number of terms in a polynomial approximation 
improve its fidelity? Experiment to test the matter. 

[Not necessarily. Although the higher-order elements of the coefficients f t. 
i.n may decrease rapidly, the power of the argument by which each is 
multiplied in the polynomial evaluation may rapidly increase. The resulting 
product produced (to limited precision) may introduce large “round-off” 
errors.]  

We will now develop a polynomial of lower degree that provides a “least-squares 
best fit” to the values f x. With a left argument less than #x the Vandermonde 
function V produces non-square power tables as illustrated below: 
 
   x=:1 2 3 4 
   (1&V;2&V;3&V;4&V;CV) x 
+-+---+------+---------+---------+ 
|1|1 1|1 1  1|1 1  1  1|1 1  1  1| 
|1|1 2|1 2  4|1 2  4  8|1 2  4  8| 
|1|1 3|1 3  9|1 3  9 27|1 3  9 27| 
|1|1 4|1 4 16|1 4 16 64|1 4 16 64| 
+-+---+------+---------+---------+ 

Although these matrices are not square, they may be used with the generalized 
inverse function denoted by %. as illustrated below: 
 
   %.3 V x 
 2.25 _0.75 _1.25  0.75 
_1.55  1.15  1.35 _0.95 
 0.25 _0.25 _0.25  0.25 
 
   %.2 V x 
   1  0.5   0 _0.5 
_0.3 _0.1 0.1  0.3 
 
   f=:(c=:1 3 3 1)&p. 
   ]vc3=:(%. 3 V x) mp f x 
11.5 _13.7 10.5 
 
   vc3 p. x 
8.3 26.1 64.9 124.7 
 
   c p. x 
8 27 64 125 
 

The matrix product (%. 3 V x) mp f x used above can be written more simply 
as a “matrix divide”, by using the dyadic case of the function %. . Thus: 
 
   (f x)%.(3 V x) 
11.5 _13.7 10.5 
 

Finally we define a conjunction FIT such that n FIT f x gives an n-element list 
of coefficients that fits the function f at the points x. Thus: 
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   FIT=:2 : 'y. %. (x. & V)' 
   3 FIT ^ 
^ %. 3&V 
 
   c=:3 FIT ^ y=:0.1*i.7 
   c p. y 
1.00133 1.10388 1.22004 1.3498 1.49317 1.65015 1.82073 
   ^y 
1 1.10517 1.2214 1.34986 1.49182 1.64872 1.82212 
 
   f  
1 3 3 1&p. 
 
   d=:3 FIT f x 
   d p. x 
8.3 26.1 64.9 124.7 
 
   f x 
8 27 64 125 

Exercises 

30. Experiment with the conjunction FIT for various values of its parameters. 
Include the example used at the beginning of this section, and compare the fit 
provided by the coefficients tc with that provided by the five-element list 
tc5=:5 FIT sin x.  
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Chapter 

15 

 Arithmetic 

A. Introduction 
 As remarked in Chapter 1, arithmetic is that branch of mathematics that deals 
with whole numbers. As treated in Book 2, it includes topics such as 
permutations, polynomials, and logic. These are usually considered to be 
advanced topics, to be treated only after the introduction of fractions, irrational 
numbers, and even complex numbers. What are the potential advantages of 
extending the treatment of arithmetic in this manner? 

• It may serve to defer the treatment of fractions until the student has matured 
through experience gained in many interesting uses of whole numbers. How 
many cooks fear the use of fractions involved in dividing a recipe? Is 2/3 
really a number since it cannot be written in decimal, although 3/4 can? And 
how many question the point of complex numbers whose mechanics are often 
elaborated long before any of their interesting uses can be shown? 

• Although polynomials may be of little practical use when limited to integer 
arguments, notions such as the product of coefficients (+//.c*/d) remain 
meaningful and interesting. Indeed they provide useful insights into the 
products of multi-digit numbers, as shown in Chapters 7 and 14. 

B. Insidious Inverses 

The familiar counting numbers may be defined as follows: there is a first (denoted 
by 1), and a successor function (denoted by >:). Thus: 
 
   >:1 
2 
 
   >:2 
3 
 
   >:>:>:1 
4 
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An inverse predecessor function (denoted by <:) undoes the work of the 
successor. Thus: 
 
   <:4 
3 
 
   <:>:3 
3 
 

However, <: is not a proper inverse, because its application to the first counting 
number cannot yield a counting number. Thus: 
 
   <:1 
0 
 
   <:0 
_1 
 
   <:_1 
_2 
 
In other words, the introduction of a seemingly-innocent inverse has broadened 
the class of counting numbers to define the class of integers, which includes zero 
and negative numbers. The introduction of the further classes of rationals, 
irrationals, and complex numbers can be viewed in a similar light.  
 

Exercises 
 

1. Illustrate the fact that the successor and predecessor are proper inverses on the 
domain of integers. Include examples of the powers <:^:n and >:^:n for both 
positive and negative values of n. 

2. Same and illustrate the use of a function that has a proper inverse on some 
domain. 

 [On the domain of permutation vectors (permutations of the 
 integers i.n), the grade (/:) is its own proper inverse.] 

3. Experiment with some of the inverse pairs listed in the definition of the power 
conjunction (^:) in the J dictionary [5]. 

4. Read the discussion in the first three pages of Book 2. 

5. Study Section 2 I (Identity Elements and Infinities) of Book 2. 

C. Rational Numbers 
The multiplication of two integers yields an integer. Moreover, division is inverse 
to multiplication in the sense illustrated below: 
 
   _2*8 
_16 
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   (_2*8)%8 
_2 
 

More precisely, if i is an integer, then the functions *&i and %&i are inverse: 
 
   i=:8 
   *&i _2 
_16 
 
   %&i *&i _2 
_2 
 

Again, %&i is not a proper inverse because it may lead out of the class of integers, 
producing the class of rationals. For example: 
 
   %&i _2 
_0.25 
 

Exercises 
 

6. Illustrate the fact that the rationals are closed under multiplication and 
division. 

D. Irrational Numbers 
The square function is closed on the rationals, and the square root (%:) provides 
an inverse. For example: 
 
   ]r=:3%5 
0.6 
 
   *:r 
0.36 
 
   %: *: r 
0.6 
 

Again %: is not a proper inverse, because there is no rational whose square is 2, 
and the result is to introduce a further class of irrationals. Because there is at least 
one rational between any pair of distinct rationals (their average), it might seem 
impossible that there could be any numbers that are not rational. However, the 
school of Pythagoras produced a rather straightforward argument to show that the 
square root of 2 (the length of the hypotenuse of a right-triangle with sides of unit 
length) is not a rational. 

E. Complex Numbers 

Because there is no rational whose square is negative, the square root applied to a 
negative argument leads to the further class of complex numbers. Thus: 
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   %:_1 
0j1 
 
   ]a=:i.6 
0 1 2 3 4 5 
 
   %:a 
0 1 1.41421 1.73205 2 2.23607 
 
   %:-a 
0 0j1 0j1.41421 0j1.73205 0j2 0j2.23607 

 
Taken together with the rationals, these imaginary square roots of negative 
numbers form the class of complex numbers, closed under square root as well as 
under addition, subtraction, multiplication, and division.  
 

Exercises 
 

7. Read Section 9F (Real and Complex Numbers) of Book 2. 

8. Read Chapter 7 (Permutations) of Book 2. 

9. Read Chapter 8 (Classification and Sets) of Book 2. 
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Chapter 

16 

Complex Numbers 

A. Introduction 
The following tables illustrate some of the consequences of adding the imaginary 
square root of minus one to the number system: 
 

   T=:1 : '[by]over x./' ~ Bordered table adverb 
     by=:[:":' '&;@,.@[,.] adapted from Ch. 3 
     over=:({.;}.)@":@,    
 
   ]i=:%:_1 
0j1 
   ]c=:(i.4),i*i.4 
0 1 2 3 0 0j1 0j2 0j3 
 

   +T c Addition table 
+---+-------------------------------+ 
|   |  0   1   2   3   0 0j1 0j2 0j3| 
+---+-------------------------------+ 
|  0|  0   1   2   3   0 0j1 0j2 0j3| 
|  1|  1   2   3   4   1 1j1 1j2 1j3| 
|  2|  2   3   4   5   2 2j1 2j2 2j3| 
|  3|  3   4   5   6   3 3j1 3j2 3j3| 
|  0|  0   1   2   3   0 0j1 0j2 0j3| 
|0j1|0j1 1j1 2j1 3j1 0j1 0j2 0j3 0j4| 
|0j2|0j2 1j2 2j2 3j2 0j2 0j3 0j4 0j5| 
|0j3|0j3 1j3 2j3 3j3 0j3 0j4 0j5 0j6| 
+---+-------------------------------+ 
   *T c Multiplication table 
+---+---------------------------+ 
|   |0   1   2   3 0 0j1 0j2 0j3| 
+---+---------------------------+ 
|  0|0   0   0   0 0   0   0   0| 
|  1|0   1   2   3 0 0j1 0j2 0j3| 
|  2|0   2   4   6 0 0j2 0j4 0j6| 
|  3|0   3   6   9 0 0j3 0j6 0j9| 
|  0|0   0   0   0 0   0   0   0| 
|0j1|0 0j1 0j2 0j3 0  _1  _2  _3| 
|0j2|0 0j2 0j4 0j6 0  _2  _4  _6| 
|0j3|0 0j3 0j6 0j9 0  _3  _6  _9| 
+---+---------------------------+ 
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   %:T 1 2 3 0j1 0j2 0j3       Roots 
+---+---------------------------------------------------------------------------------------------+ 
|   |1                  2                  3               0j1               0j2               0j3| 
+---+---------------------------------------------------------------------------------------------+ 
|  1|1                  2                  3               0j1               0j2               0j3| 
|  2|1            1.41421            1.73205 0.707107j0.707107               1j1   1.22474j1.22474| 
|  3|1            1.25992            1.44225      0.866025j0.5  1.09112j0.629961  1.24902j0.721125| 
|0j1|1 0.769239j_0.638961 0.454832j_0.890577           4.81048  3.70041j_3.07371   2.18796j_4.2841| 
|0j2|1 0.940542j_0.339677 0.852887j_0.522096           2.19328 2.06287j_0.745007   1.87062j_1.1451| 
|0j3|1 0.973427j_0.228999 0.933693j_0.358074           1.68809 1.64323j_0.386571 1.57616j_0.604461| 
+---+---------------------------------------------------------------------------------------------+ 

Exercises 
 

1. Comment on the foregoing tables, including the two-part representation that 
appears to be used for each complex number. 

2. Enter |@+T c and comment on the results. 

3. Study the tables for other functions such as -, %, and ^ (and perhaps even +. 
and *. and ^. and |). 

Two-part representations for individual numbers are not uncommon: 

• The result of 36%4 is represented as 9.25, using an integer part and a 
fractional part joined by a dot. 

• The result of 23*10^5 can also be represented as 23e5, using a factor and an 
exponent joined by the letter e. 

• The rational 2%3 can be represented as 2r3, using a numerator and 
denominator joined by the letter r. 

• Two pi cubed (2*(o.1)^3) can be represented as 2p3 using a factor and an 
exponent joined by the letter p. 

• The complex number 3+4*%:_1 is represented as 3j4, using a real part and an 
imaginary part joined by the letter j. 

• Further cases may be found in the discussion of constants in the J dictionary. 

The monadic function | used in the table |@+T a  is called magnitude; it yields 
the square root of the sum of the squares of the real and imaginary parts of an 
argument. When applied to a real (non-complex) number it is sometimes called 
the absolute value.  

Functions defined on real numbers are extended to complex numbers without 
change, except that they apply to the new element %:_1 according to the normal 
rules. The extended functions can therefore be examined in terms of elementary 
algebra. 

B. Addition 

The sum of complex numbers can be analyzed in terms of their real and imaginary 
components as follows: 
   i=:%:_1 
   ar=:5 [ ai=:2 [ br=:3 [ bi=:4 
   (a=:ar+i*ai),(b=:br+i*bi) 
5j2 3j4 
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The following sequence of identities shows that the components of a sum are the 
sums of the components: 
 
a+b 

(ar+i*ai)+(br+i*bi) Definitions of a and b 
ar+br+(i*ai)+(i*bi) Addition is associative and commutative 
(ar+br) + (i*(ai+bi)) Multiplication by i (that is, i&*) distributes 
  over + 

Exercises 

4. Enter the foregoing sequence and check that each of the sentences yield the 
same result. 

5. Write and enter a corresponding sequence for multiplication. 

C. Multiplication 

In discussing multiplication we will use further functions, illustrated as follows: 
 
   a=:5j2 [ b=:3j4 
   ]ca=:+. a 
5 2 
 
   ]cb=:+. b 
3 4 
 
   ]ab=:+. a,b 
5 2 
3 4 
 
   j. 4 
0j4 
 
   3 j. 4 
3j4 
 
   j./cb 
3j4 
 
   j./+.b 
3j4 
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Multiplication is analyzed in the following sequence of identities: 
a*b 
(j./ca)*(j./cb) 
(ar+j.ai)*(br+j.bi) 
(ar*(br+j.bi))+((j.ai)*(br+j.bi)) 
(ar*br)+(ar*j.bi)+((j.ai)*br)+((j.ai)*j.bi) 
(ar*br)+(ar*j.bi)+((j.ai)*br)-(ai*bi) 
((ar*br)-(ai*bi))+(ar*j.bi)+((j.ai)*br) 
((ar*br)-(ai*bi))+(j.(ar*bi)+(ai*br)) 

Exercises 

6. Express the result of the foregoing sequence in English. 

 [The real part of a product is the difference of the product of the component 
lists; the imaginary part is the sum of the real part of each multiplied by the 
imaginary part of the other.] 

7. Re-express the final sentence of the sequence in terms of the table ab=:+.a,b 
. 

 [(-/*/ab)+ (j.+/*/0 1|."0 1 ab)] 

The function +. produces a two-element vector representation of a complex 
argument in terms of its real and imaginary components. If we plot the point 
whose coordinates are given by +. and draw a line to it from the origin we see the 
possibility of another two-element representation in terms of the length of the line 
and its angle. This is called a polar representation, and is given by the function 
*.. Thus: 
 

   *.b Angle in radian units rather than degrees 
5 0.9272952 
 

   |b Magnitude (also called absolute value 
5 for real arguments) 
 

Multiplication is easily expressed in terms of the polar representation: the 
magnitude is the product of the magnitudes, and the angle is the sum of the 
angles. For example: 
 
   *. a,b,a*b 
5.38516 0.3805064 
 
      5 0.9272952 
26.9258    1.3078 
 
   */|a,b 
26.9258 
 
   (+.,*.)a,b,a*b Both representations 
      5         2 
      3         4 
      7        26 
5.38516 0.3805064 
      5 0.9272952 
26.9258    1.3078 
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The measure of an angle in radians is the length of arc measured on a circle of 
radius one unit; consequently one-half pi radians is a right-angle, and therefore 
equivalent to 90 degrees, and pi radians is a “straight” angle of 180 degrees. Since 
the constant 180p_1 is 180 multiplied by the reciprocal of  pi,  the conversions 
between radians and degrees may be expressed as follows: 
 

   rfd=:1r180p1&* Radians from degrees 
 
   dfr=:180p_1&* Degrees from radians 
 
   rfd 0 45 90 180 
0 0.7853982 1.5708 3.14159 
 
   dfr rfd 0 45 90 180 
0 45 90 180 
 
   pid=:({.,dfr@{:)"1@*. Polar representation in degrees 
 
   pid a,b,0j1,1j1,_1j0 
5.38516 21.8014 
      5 53.1301 
      1      90 
1.41421      45 
      1     180 

D. Powers and Roots 
We will illustrate the use of powers and roots by developing a function to give the 
coordinates of regular polygons: 
 
   2%:_1 Second (square) root of _1 
0j1 
 
   (2%:_1)^i.4 First four powers of second root of _1  
1 0j1 _1 0j_1 
 
   +.(2%:_1)^i.4 Coordinates of 4-sided polygon (square) 
 1  0 
 0  1 
_1  0 
 0 _1 
 
   3%:_1 Cube root of _1 
0.5j0.8660254 
 
   +.(3%:_1)^i.6 Coordinates of hexagon 
   1           0 
 0.5   0.8660254 
_0.5   0.8660254 
  _1 1.22461e_16 
_0.5  _0.8660254 
 0.5  _0.8660254 
 

   reg=:+.@((-:%:_1:)^i.)"0 Function for regular polygons 
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   <@reg 3 4 5 6 Boxed polygons of 3-6 sides 
+--------------+-----+-------------------+--------------+ 
|              |     |        1         0|   1         0| 
|   1         0| 1  0| 0.309017  0.951057| 0.5  0.866025| 
|_0.5  0.866025| 0  1|_0.809017  0.587785|_0.5  0.866025| 
|_0.5 _0.866025|_1  0|_0.809017 _0.587785|  _1         0| 
|              | 0 _1| 0.309017 _0.951057|_0.5 _0.866025| 
|              |     |                   | 0.5 _0.866025| 
+--------------+-----+-------------------+--------------+ 
 
Compare the function reg with that used in Chapter 11, and use the plotting 
functions of that chapter in the following Exercises.  
 

Exercises 
 

8. Plot the figures (reg 4);(2*reg 4) in contrasting colors. 

9. Use the function rot of Chapter 11 to plot rotated figures. 

E. Division 
Since %&b (division by b) is the inverse of *&b (multiplication by b), division is 
easily expressed in a polar representation: the magnitude is the quotient of the 
magnitudes, and the angle is the difference of the angles. For example: 
 
   a%b 
0.92j_0.56 
 
   *.a,b,a%b 
5.38516  0.3805064 
 
      5  0.9272952 
1.07703 _0.5467888 
 
   %/|a,b 
1.07703 

A complex number may be normalized by dividing it by its magnitude, yielding a 
complex number with magnitude 1. For example: 
 
   b%5 
0.6j0.8 
 
   |b%5 
1 
 
   norm=: ]%| 
   ]nb=:norm b 
0.6j0.8 

Since a normalized number can be restored by multiplying its norm by a real 
number, it is often convenient to work in terms of normalized numbers, and then 
multiply results by appropriate real scale factors. 
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The reciprocal of a normalized number is simply related to the number itself. For 
example: 
 
   %nb 
0.6j_0.8 
 
   +nb The monad + is called the conjugate; it reverses 
0.6j_0.8 the sign of the imaginary part 
 
   b*+b The product with the conjugate is a real number; the 
25 magnitude is its square root. 
 
   %:b*+b 
5 
 

We have yet to examine division in terms of the real/imaginary representation. 
This may be approached by noting that a%b is equivalent to a*%b (that is, 
multiplication by the reciprocal). Since we already have expressions for the 
product and the reciprocal, the overall result can be obtained by simple, but 
perhaps tedious, algebra. 
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Chapter 

17 

Calculus 

A. Secant Slope 
If a function f is plotted over a range of arguments that includes x and y, then the 
straight line through the points x,f x and y,f y is called a secant line, and the 
quotient of the differences (f y)-(f x) and y-x is called its slope. This slope 
gives the approximate rate of change of the function in the vicinity of x and y. For 
example: 
 
   f=:*:  
   ’x y’=:1 3 
   rise=:(f y)-(f x) 
   run=:y-x 
   ]slope=:rise%run 
4 

The secant slope may be expressed in a function that uses the run as the left 
argument, and in an adverb that may be applied to any function: 
 
   ss=:(f@+-f@])%[ 
   2 ss 1 
4 
 
   SS=:1 : '(x.@+-x.@])%['"0 
   2 f SS 1 
4 
 
   2 ^&3 SS 1 Secant slope of cube with run of 2 at 1 
13 
 
   ]r=:10^-i.6 
1 0.1 0.01 0.001 0.0001 1e_5 
 
   x=:i.7 
   r ^&3 SS/ x   Slopes of cube for various runs and points of 
application 
     1       7      19      37      61      91     127 
  0.01    3.31   12.61   27.91   49.21   76.51  109.81 
0.0001  3.0301 12.0601 27.0901 48.1201 75.1501  108.18 
  1e_6   3.003  12.006  27.009  48.012  75.015 108.018 
  1e_8  3.0003 12.0006 27.0009 48.0012 75.0015 108.002 
 1e_10 3.00003 12.0001 27.0001 48.0001 75.0001     108 
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B. Derivative 

As the run decreases in size, the slope appears to be approaching a limit, which 
we may interpret as the derivative, the slope of the tangent at the point x. 
However, a zero value for the run gives only the meaningless ratio of 0 divided by 
0: 
 
   0 ^&3 SS/ x 
0 0 0 0 0 0 0 
 

For the case of the cube, this derivative may be obtained exactly, because the 
cube of x+r is (x^3)+(3*(x^2)*r)+(3*x*r^2)+(r^3), and the rise (found by 
subtracting x^3) is(3*(x^2)*r)+(3*x*r^2)+(r^3). Dividing this by the run 
gives (3*x^2)+(3*x*r)+(r^2). Setting r to zero in this expression gives 3*x^2, 
the derivative of the cube at the point x. 

The function for the derivative of the cube may therefore be expressed and used 
as follows: 
 
   d3=:3:*^&2 
   d3 x 
0 3 12 27 48 75 108 
 

This result may be compared with the final row of the table of secant 
slopes.Similar analysis for other powers yields d4=:4:*^&3 for the derivative of 
^&4, d5=:5:*^&4 for the derivative of ^&5, and so on. We define a corresponding 
adverb for the derivative of any power: 
 
   D=:1 : 'x.&*@(]^x."_-1:)' 
   2 D x 
0 2 4 6 8 10 12 
 
   3 D x 
0 3 12 27 48 75 108 
 
   4 D x 
0 4 32 108 256 500 864 

None of this constitutes a proof that the derivatives of all powers follow this 
pattern, but it does suggest an induction hypothesis for a recursive proof. This 
matter is treated in Book 3. 

Exercises 

1. If f=:^&3 is the cube and g=:5:*f is five times the cube, what is the 
derivative of g? 

 [Five times the derivative of f, that is, 5:*3:*^&2. Since any secant slope of g 
is five times the slope of f, the same is true of the limiting value, that is, the 
derivative.] 

2. If h=:2:*^&4, what is the derivative of the sum s=:g+h? 
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 [The sum of the derivatives of g and h, 
 that is, (5:*3:*^&2)+(2:*4:*^&3)] 
 

3. If C=:3 1 4 2"_ and E=:0 1 2 3"_ are constant functions, then 
t=:+/@(C*]^E) is a weighted sum of powers. What is its derivative? 

 [der=:+/@(C*E*]^E-1:)"0. Try der 1 2 3 4 5]  

C. Polynomials 
The preceding Exercises developed the fact that the derivative of a weighted sum 
of powers is itself such a sum, with the exponents decreased by 1. Since a 
polynomial is a weighted sum of powers, its derivative is also a polynomial, of 
degree one less. The derivative of c&p. is d&p., where the coefficients d are 
obtained from c by applying the following function: 
 
   dc=:1:}.]*i.@# 
 

For example: 
 
   c=:6 5 4 3  
   ]i.#c 
0 1 2 3 
 
   c*i.#c 
0 5 8 9 
 
   1}.c*i.#c 
5 8 9 
 
   ]d=:dc c 
5 8 9 
 
   (c&p. ,: d&p.) x=:i.7 
6 18 56 138 282 506 828 
5 22 57 110 181 270 377 
 
 

Exercises 
 

4. Use the fact that the polynomial 0 0 0 1&p.is equivalent to the cube function 
to compare the use of the function dc with the derivatives of powers obtained 
in the preceding section. 

 [Compare (dc 0 0 0 1)&p. x=:i.7 with 3 D x ] 

5. Comment on the polynomial (dc dc c)&p.. 

 [This is the second derivative of c&p., that is, the rate of change of the rate of 
change.  For example, if c&p. gives the position of a vehicle, then (dc c)&p. 
gives its speed, and (dc dc c)&p. gives its acceleration.] 
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D. Differential Equations 
Many important functions are simply related to their rates of change, their first or 
second derivatives. For example, capital invested at compound interest increases 
at a rate proportional to its value, and the exponential or growth function 
(denoted by ^) increases at a rate equal to itself. In other words, the exponential is 
equal to its derivative. 
Is there a polynomial with this property? Clearly not, since the derivative of a 
polynomial is of lower degree, possessing one less term. However, it is possible 
to define a power series having the desired property.  
 

Exercises 

6. Try to develop a rule or function to generate the coefficients of a power series 
that equals its derivative. 

 [Hint: Begin with the coefficients c=:1 1 1 1 1 1, 
 and apply the function dc to it.] 

Pursuing the idea suggested in the exercise we have: 
 
   c=:1 1 1 1 1 1 
   dc c 
1 2 3 4 5 

Since the second element of the derivative dc c is twice the value of the 
corresponding element of c, we replace the third element by one-half its value to 
compensate: 
 
   c=:1 1 1r2 1 1 1 
   dc c 
1 1 3 4 5 
 

Since the third element of dc c is now six times its required value of one-half, we 
replace the fourth element of c by 1r6, and so on: 
 
   dc c=:1 1 1r2 1r6 1 1 
1 1 0.5 4 5 
 
   dc c=:1 1 1r2 1r6 1r24 1 
1 1 0.5 0.1666667 5 
 
   dc c=:1 1 1r2 1r6 1r24 1r120 
1 1 0.5 0.1666667 0.04166667 
 
   dc dc c 
1 1 0.5 0.1666667  

It should now be clear that the coefficients are the reciprocal factorials: 
 
   ]c=:%!i.6 
1 1 0.5 0.1666667 0.04166667 0.008333333 
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   dc c 
1 1 0.5 0.1666667 0.04166667 
 

   ce=:%@!@i. Coefficients for exponential 
   ce 6 
1 1 0.5 0.1666667 0.04166667 0.008333333 
 

   (ce 10) p. x=:i.4 Ten-term approximation to exponential 
1 2.71828 7.38871 20.0634 
 
   ^x 
1 2.71828 7.38906 20.0855 

We have, in effect, defined the exponential as that function which satisfies (i.e., is 
the solution of) an equation that requires it to equal its own derivative. We may 
write such equations more clearly in terms of the following derivative adverb: 
 

   D=:("0)(D.1) The scalar first derivative adverb 
   ^&3 D The derivative of the cube 
3&*@(^&2)"0 
 

   ^&3 D x=:i.6 Applied to an argument 
0 3 12 27 48 75 
 

   ^D x Derivative of the exponential applied to 
argument 
1 2.71828 7.38906 20.0855 54.5982 148.413 
 

   (^ = ^D) x Test of the differential equation satisfied by ^ 
1 1 1 1 1 1 
 

The hyperbolic sine (5&o.) and the hyperbolic cosine (6&o.) introduced in 
Chapter 14 both satisfy a similar equation, but one that involves the second 
derivative: 
 

   (5&o. = 5&o. D D) x Sinh equals its second derivative 
1 1 1 1 1 1 
 

   (6&o. = 6&o. D D) x Cosh equals its second derivative 
1 1 1 1 1 1 
 

   (1&o. = -@(1&o. D D)) x Sin is minus its second derivative 
1 1 1 1 1 1 
 

   (2&o. = -@(2&o. D D)) x Cos is minus its second derivative 
1 1 1 1 1 1  

Exercises 

7. Use the differential equation satisfied by the hyperbolic cosine together with 
the approach suggested in Exercise 6 to develop a power series for it. 

 
 [coshc=:ce*0:=2:|i.. Use the Taylor series 
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 6&o. t. i.6 to confirm this solution]  
 

8. Use Taylor series as guides in defining functions to generate power series for 
the hyperbolic sine, cosine, and sine. 

9. Experiment with the weighted Taylor coefficients adverb t:for each of the 
functions treated in Exercises 6-8, study the patterns produced, and state its 
definition.  

10. Predict and confirm the result of  ^@- t: i. 10. 

11. Study and experiment with the table of derivatives given in Sec. B, Chapter 2 
of Book 3. 

E. The Exponential Family 
In Chapter 13 we introduced odd and even adverbs that produced the odd and 
even parts of functions to which they were applied. Moreover, we saw that the 
odd part of the exponential was equivalent to the hyperbolic sine, and that the 
even part was equivalent to the hyperbolic cosine. Thus: 
 
   O=: .:- 
   E=: ..- 
   (^O , ^E , ^ ,: ^O+^E) x=:i.6 
0  1.1752 3.62686 10.0179 27.2899 74.2032 
1 1.54308  3.7622 10.0677 27.3082 74.2099 
1 2.71828 7.38906 20.0855 54.5982 148.413 
1 2.71828 7.38906 20.0855 54.5982 148.413 
 
   (^O t. ,: ^E t.)x Coefficients of odd and even parts of 
^  
0 1   0 0.1666667          0 0.008333333 
1 0 0.5         0 0.04166667           0 
 
   (5&o.t. ,: 6&o.t.)x Coefficients of hyperbolic sine and 
cosine 
0 1   0 0.1666667          0 0.008333333 
1 0 0.5         0 0.04166667           0 
 

   (^O t: ,: ^E t:)x Weighted Taylor coefficients 
0 1 0 1 0 1 
1 0 1 0 1 0 
 
   (5&o.t: ,: 6&o.t:)x 
0 1 0 1 0 1 
1 0 1 0 1 0 
 

If j. is applied to the argument of the hyperbolic sine (to make it imaginary) , the 
odd positions of the coefficients of the resulting function 6&o.@j. are unaffected, 
because they are all zero. Moreover, those in each fourth place are multiplied by 
_1 (that is the fourth power of j.1). The function 6&o.@j. is therefore equivalent 
to the cosine. Thus: 
 
   6&o.@j. t. x 
1 0 _0.5 0 0.04166667 0 
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   2&o. t. x 
1 0 _0.5 0 0.04166667 0 
 

The sine may also be similarly expressed in terms of the hyperbolic sine. 
Moreover all four of these functions can be expressed directly in terms of the 
exponential, using only the function j. and the odd and even adverbs.  

Finally, the real and imaginary parts of the function ^@j. are the cosine and sine 
respectively. For example: 
 
    (+.^@j. x) ; ((cos ,. sin) x)  
+-------------------+-------------------+ 
|        1         0|        1         0| 
| 0.540302  0.841471| 0.540302  0.841471| 
|_0.416147  0.909297|_0.416147  0.909297| 
|_0.989992   0.14112|_0.989992   0.14112| 
|_0.653644 _0.756802|_0.653644 _0.756802| 
| 0.283662 _0.958924| 0.283662 _0.958924| 
+-------------------+-------------------+ 
 

Exercises 
 

12. Study the plot of sine versus cosine in Section 9J of Book 2. 

13. See Chapters 3 (Vector Calculus) and 4 (Difference Calculus) of Book 3. 
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Chapter 

18 

Inverses and Equations 

A. Inverse Functions 
The many scattered references to “inverse” in the index suggests the ubiquity of 
the notion in math. The general reason for its importance appears in the following 
example: if we use heat=:*&4@*: to compute the output of an electric heater as a 
function of the voltage applied, we will commonly need the inverse 
volts=:%:@(%&4) to determine what voltage would be required to produce a 
desired amount of heat. Thus: 
 
   heat=:*&4@*: 
   volts=:%:@(%&4)   
   (];heat;volts@heat) i.5 
+---------+------------+---------+ 
|0 1 2 3 4|0 4 16 36 64|0 1 2 3 4| 
+---------+------------+---------+ 
A method for obtaining the inverse of a composition of two functions may be seen 
in the following example: 
 

   cff=:m@s Celsius from Fahrenheit 
     m=:100r180&* Multiply by conversion factor 
     s=:-&32 Subtract a conversion constant 
   cff temp=:_40 32 212 Celsius for equal, freezing, boiling points 
_40 0 100 
 
   im=:m I=:^:_1 Inverse of m 
   is=:s I Inverse of s 
   m s temp 
_40 0 100 
 
   im m s temp 
_72 0 180 
 
   is im m s temp 
_40 32 212 
   ffc=:is@im 
   ffc cff temp 
_40 32 212 
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   cff ffc temp 
_40 32 212 
 
In general, if several functions are applied one after the other, the inverse is 
obtained by applying their inverses in reverse order. 

Exercises 

1. Define the adverb FI=: f. ^:_1 (fix and invert) and predict and confirm the 
results of applying it to each of the following functions: 

 cff m@s is@im cff@ffc 

2. Repeat Exercise 1 for the following functions (perhaps using the simpler 
I=:^:_1 instead of FI): 

 ^ ^. ^@^. (^*^@-) 

[The last function gives a domain error, because ^*^@- is a constant 
function (giving 1 for any argument), and a constant function cannot have 
an inverse.] 

3. Repeat Exercise 1 for the following functions: 
 *: %: ^&2 ^&3 ^&3@% 

4. Although *:2 and *:_2 both yield 4, the “inverse” function %: yields only 2 
when applied to 4. Comment on this matter. 

B. Monotonic Functions 
A (strictly) monotonic function is one that tends in the same direction as its 
argument increases. A graph of such a function f (as, for example, f=:^) provides 
a visualization of its inverse as follows: at any point y on the vertical axis draw a 
horizontal line to intersect the graph of f, and from the point of intersection draw 
a vertical line to intersect the horizontal axis at x. Then y is f x, and conversely x 
is f^:_1 y.  

A similar treatment of a non-monotonic function can illuminate the matter raised 
in Exercise 4: the square function f=:*: graphed on a domain that includes both 
negative and positive arguments is seen to be an even function, and a horizontal 
line through a point such as y=:4 intersects the graph in two points, giving two 
possible values for the inverse. 

Only a strictly monotonic function can have a proper inverse, but a non-
monotonic function may have a useful inverse when restricted to a principal 
domain in which it is monotonic. In the case of the square, the non-negative real 
numbers provide such a principal domain, and the inverse *:^:_1 provides the 
inverse on it. 

An inverse for arguments not in a principal domain is often easily obtained from 
the inverse on the principal domain. In the case of the square it is simply 
-@(*:^:_1). 

Any periodic function (such as the sine or cosine) cannot be monotonic, but may 
be when restricted to a suitable domain. 
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Exercises 
 

5. Define a function pn that gives both positive and negative inverses of the 
square function, and test it on the argument x=:0 1 4 9 16 25. 

 [pn=:(],.-)@%: (Or use ,: or ; instead of ,..)] 

6. Experiment with the functions n&o. and their inverses (-n)&o. for integer 
values of n from 0 to 8. Which of the inverses have restricted principal 
domains? 

7. What are the limits of the principal domains of _1&o. and _2&o.? 

 [Apply them to the argument _1 1]  
 
C. Under 
 
   I=:^:_1 
   idr=:10&#. Inverse of decimal representation; i.e., decimal value 
   dr=: idr I Decimal representation 
   dr x=:213 
2 1 3 
 
   idr dr x 
213 
 
   (];dr;idr@dr) x 
+---+-----+---+ 
|213|2 1 3|213| 
+---+-----+---+ 
 
   az=:,&0 Append zero 
   az dr x 
2 1 3 0 
 
   idr az dr x Decimal value with appended zero 
2130 
 
   x*10 
2130 
 

The foregoing elaborates the familiar idea that a number can be multiplied by ten 
by appending a zero to its decimal representation. The full expression may be 
paraphrased in English as “Obtain the decimal representation, append a zero, then 
evaluate the resulting list in decimal (that is, apply the function inverse to the 
decimal representation). It illustrates the form f^:_1 g f that occurs so often that 
it is also provided by the conjunction &. as follows: 
 
   idr@az@dr x 
2130 
 
   az&.dr x 
2130 
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The general idea is that f&.g applies f under g, in the sense that g “prepares” the 
argument for the function f, and the “preparation” is finally undone. For example: 
 

   +:&.^. y=:4 Double under natural logarithm 
16 
 
   *:y Is equivalent to squaring 
16 
 
   +:&.(10&^.) y=:4 
16 
 
   -:&.(10&^.) y=:4 
2 
 
   %:y 
2 

Exercises 

8. Paraphrase the foregoing expressions in detail. 
 

 [+:&.^. takes the natural logarithm of its argument,  
 doubles it, and applies the exponential (inverse log).] 
 

9. Experiment with the expressions 6+&.(10&^.)3 and 6-&.(10&^.)3 and 
comment on the results. 

 [The first multiplies its arguments by adding their base-10 logarithms and 
applying the anti-log (that is, ten-to-the-power); the second uses subtraction to 
obtain the quotient. The dyadic case of the function f&.g is similar to the 
monadic, but applies the “preparation” function g to each of the arguments] 

10. Define the function saf=:</\ (suppress after first) and experiment with the 
expressions saf b and saf&.|. b for various values of the Boolean list b, 
such as b=: 0 0 1 0 1 1 0. Comment on the results. 

 

[saf suppresses all ones after the first in a Boolean list; saf&.|. 
suppresses all before the last by first reversing the list, and again 
reversing the resulting list after applying the function saf.] 

D. Equations 
A function such as f=:3 _4 1&p. may not have a known inverse, but we can 
obtain the inverse of a given argument such as y=: 6 by solving the equation y=f 
x; that is, by finding a value x that satisfies the indicated relation. 

If we know values a and b such that f is monotonic in the interval from a to b, 
and if y lies in the interval from f a to f b, then a suitable solution x can be 
obtained by simple repeated approximations: take the average of a and b; consider 
the intervals bounded by it and each of them; and choose as a new interval the one 
whose function values still embrace the argument y. 
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See Section C of Chapter 7 of Book 3 for an executable definition of the 
foregoing bisection method, and Sections D and E for the faster Newton and 
Kerner methods that employ derivatives. 

The many uses of equations and their solutions in math can mostly be seen as 
limited means of obtaining inverse functions. 
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Chapter 

19 

Readings 

A. Introduction 
Reading any math text can serve as a stimulus to further exploration, whatever 
notation it may be expressed in. Those, such as Book 2 and Book 3, that are 
expressed in J are particularly accessible to users of this book. We will here 
discuss other books of this type that are easily available because they can be 
conveniently displayed on the screen (by using the Help menu), and because 
selections from them can be printed (using the resulting Print menu) for study. 

We will here present a few examples from two such books, J Phrases and J 
Dictionary. 
 
B. Phrases 
After printing the Table of Contents and displaying and reading the first page of 
the book of J Phrases to learn the conventions used, you may choose any chapter 
for further exploration. Some, such as Chapter 2 (Primitive Notions) and Chapter 
8 (Numbers), will provide further elaboration of matters already treated in earlier 
chapters here. Others, such as Chapters 12 and 13 (Finance and Data) enter new 
territory. 

Chapter 16 (Extended Topics) provides an entree to a wide variety of topics 
addressed by three authors: C. Burke, D.B. McIntyre, and C. Reiter. 

C. Sample Topics 

This section of J Dictionary and Introduction provides brief treatments of a 
variety of topics. You might begin with the discussion of Classification and Sets 
(Sections 8-11), and continue with Directed Graphs and Closure (Sections 20-21). 
The discussion of polynomials (Sections 23-28) covers some material already 
treated here in Chapter 14, but also includes matters such as explicit functions for 
Newton’s and Kerner’s methods for finding roots, as well as stopes that 
generalize the notions of falling factorials and rising factorials. 
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D. Vocabulary and Definitions 

Begin by printing out the Vocabulary. Then with the vocabulary displayed, click 
the mouse on any definition, such as Self-Classify . Equal in the upper left corner. 

A study of the defintion will probably provide all the information you need 
concerning the conventions used. If not, display the page of the dictionary headed 
by III. Definitions for details of them. 
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assign, 5, 87 
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atom, 34, 50 

atop, 5 

average, 31, 33, 99 

axes, 30, 31 

axioms, 14 
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backspace, 5 

base-8, 37, 40 
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bisection, 121 

block, 40, 41 

Boole, 20 

Boolean, 120 

Bordered, 18, 101 

box, 13, 30, 64, 69, 70, 84 

boxed roots, 88 

Boxing, 32 

by, 24, 101 

calculus, 7 

Calculus, 109 

carries, 34, 39, 40, 44 

catenate, 27 

Celsius, 117 

Classification, 122 

Closure, 122 

Coefficients Representation, 87 

Colors, 67 

commutative, 18, 26, 57, 103 

commutativity, 57, 75 

commuted, 20 

companion volume, 7 

Comparisons, 2 

complex numbers, 4, 70, 89, 97, 98, 99, 100, 102 

Complex Numbers, 99, 101 

composition, 25, 89, 117 

Concrete Math Companion, 7, 91 
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conjunction, 7, 25, 33, 34, 50, 60, 76, 78, 96, 98 

conjunctions, 27, 76 

constant, 27, 29, 34, 50, 51, 57, 105, 111 

constant function, 118 

constants, 27, 59, 102 

conventional notation, 7 

conventions, 123 

coordinate geometry, 65 

coordinate system, 65 

Coordinates, 65 

copula, 25, 28, 42 

copulative conjunction, 25 

cosine, 89, 90, 91, 92, 113, 114, 115 

counting numbers, 97, 98 

cube, 3, 33, 59, 109, 110, 111, 113 

cursor, 5, 64 

Data, 122 

Decimal, 37 

decimal point, 28 

Decimal representation, 119 

deductive, 14 

Definitions, 123 

degenerate triangle, 80 

degrees, 104, 105 

delete, 5 

denominator, 102 

derivative, 89, 110, 111, 112, 113 

Derivative, 110 

dervatives, 89 

determinant, 68, 80 

determinants, 69 

dfr, 105 

diagonally, 44 

Difference Calculus, 115 

Differential Equations, 112 

Directed Graphs, 122 

Displacements, 66 
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divided by, 24, 110 
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Editing, 64 

English, 5, 10, 11, 12, 23, 24, 25, 27, 28, 31, 33, 
34, 40, 104, 125 
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execution, 24, 26, 27, 50, 64 

exploration, 1, 2, 4, 7, 14, 63 
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exponential, 24, 89, 90, 91, 112, 113, 114, 115 

Exponential Family, 114 

Extended Topics, 122 

factor, 80, 102 

factorial, 12, 19, 24, 49, 89 

Fahrenheit, 117 

falling factorials, 122 
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false, 20 
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gerund, 50, 51 

gopen, 67, 70 

gpolygon, 67 

grammar, 23, 24, 27, 63 

Grammar, 23, 24 

graph, 65, 66, 67, 68, 89, 91 

Greatest Common Divisor, 20 

guesses, 14 

Help, 122 

help menu, 63, 84 

heron, 66 

Heron’s formula, 66, 68 

hierarchical rules, 24 

hyperbolic, 92, 113, 114, 115 

identities, 103, 104 

identity, 11, 49, 56, 79, 90 

Identity, 5, 98 

imaginary, 92, 100, 101, 102, 104, 107, 114, 115 

improve, 14, 28, 95 

indexing, 52, 83 

Indo-European, 35, 125 

induction hypothesis, 59, 110 

induction hypothesis), 59 

INDUCTIVE PROOF, 59 

Infinite rank, 50 

Inner Product, 78 

integer part, 102 

integers, 3, 9, 12, 40, 49, 59, 65, 98, 99 

interpreted, 24, 51, 52 

intervals, 120 

inverse, 10, 38, 51, 78, 93, 95, 97, 98, 99, 106 

Inverse, 117 

Inverses, 117 

INVERSES, 97 

Irrational Numbers, 99 

irrationals, 98, 99 

iteration, 40, 41 
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J Introduction and Dictionary, 122 

J Phrases, 122 

Kerner, 121 

Kerner’s, 122 

Lakatos, 14, 56, 57, 125 

laminate, 27, 90 

languages, 14 

Least Common Multiple, 20 

left to right, 26, 27, 65 

length, 26, 66, 99, 104, 105 
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Lewis Thomas, 34 

Linear functions, 76 

Linear Functions, 75 

Linear Vector Functions, 77 

Linearity, 76, 92 

link, 13, 27 
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logic, 7, 14, 97, 125 
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math, 1, 2, 4, 5, 6, 7, 9, 24, 33, 34, 63, 76, 89 

Math, 9 

mathematical, 12, 125 

matrix, 34, 60, 78, 79, 81, 85, 92, 93, 94, 96 

matrix product, 78 

mean, 31, 32, 33, 34, 39, 58 

Mixed Bases, 47 

MN, 23, 24, 33, 34, 87 

monomial, 87 

Monotonic, 118 

multiplication, 1, 5, 9, 17, 18, 24, 26, 44, 56, 87, 
90, 98, 99, 100, 103, 106, 107 

Multiplication, 44, 103 

native language, 23 

natural logarithm, 120 

negative numbers, with the standard form limited 
(as it is for positive arguments) to numbers, 46 

Newton, 121 

Newton’s, 122 

normalization, 40, 44, 47 

normalized number, 107 

noun, 9, 25, 34, 50 

nouns, 24, 25, 28 

Nouns, 23 

number of items, 12, 31, 40, 76, 79, 90, 94 

Number of items, 31 

Numbers, 122 

numerator, 102 

oblique, 44, 45 

octal, 37 

odd numbers, 3, 5, 6, 51, 55 

operator, 34, 51 

or, 20 

origin, 65, 66, 91, 104 

over, 101 

Padding, 44 

Parity, 91 

parse, 24, 25 

parsed, 24 

pattern, 6, 56, 110 

patterns, 4, 5, 14, 114 

pentagon, 69 

perform, 34, 39, 40, 52 

perimeter, 26, 66 

periodic function, 118 

permutation, 9, 10, 11, 52, 56, 81, 83, 84, 85, 98 

permutations, 7, 10, 11, 12, 52, 70, 84, 97, 98 

permuted, 10, 12 

permuting, 3 

Phrases, 122 

pi, 33, 34, 102, 105 

Plotting, 69 
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PLOTTING, 70 

polar representation, 104, 106 

polygons, 66, 68, 70, 105, 106 

polynomial, 60, 61, 87, 88, 89, 90, 91, 92, 93, 94, 
95, 111, 112 

Polynomial Approximations, 94 

polynomials, 7, 24, 87, 88, 89, 91, 97, 122 

Polynomials, 87 

POLYNOMIALS, 111 

power, 1, 3, 24, 87, 89, 90, 91, 92, 93, 95, 98, 
110, 112, 113, 114 

Power, 19 

power series, 89, 112 

POWERS AND ROOTS, 105 

predecessor, 97, 98 

Primitive Notions, 122 

principal domain, 118 

Pro-adverb, 28, 33 

Pronoun, 28, 33 

Pronouns, 23 

proof, 14, 55, 56, 57, 58, 59, 60, 61, 110 

proofs, 7, 9, 13, 14, 55, 58, 60, 61 

Proofs, 13, 55 

proper inverse, 98, 99 

proposition, 57 

Proverb, 28, 33 

punctuation, 24 

Punctuation, 25 

Pythagoras, 66, 99 

quadrant, 66 

quadrants, 18 

quotient, 106, 109 

radian units, 104 

radians, 105 

Ramble, 6 

random, 3 

random generator, 29 

rank conjunction, 50 

rank-k, 31 

ranks, 32 

rate of change, 89, 109, 111 

Rational Numbers, 98 

rationals, 98, 99, 100 

Readings, 122 

reciprocal, 24, 89, 105, 107, 112 

Recursion, 49 

recursive proof, 110 

Refutations, 14, 125 

reg, 70, 105, 106 

relation, 1, 9, 12, 34, 35, 42, 55, 75 

relations, 9, 10, 12, 14, 34 

Relations, 9 

repeatable, 3 

repeated approximations, 120 

report, 29, 30, 31, 32, 34 

Reports, 29 

representation, 28, 37, 38, 39, 40, 43, 45, 46, 68, 
79, 83, 84, 87, 88, 102, 104, 105, 106, 107 

Representations Of Functions, 83 

Research, 6 

reversal, 38 

Reverse, 31 

rfd, 68, 105 
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right parenthesis, 41 

right to left, 26 

rising factorials, 122 

Roots Representation, 88 

Roots table, 102 

Rotate, 31, 66 

SAMPLE TOPICS, 122 

Save As, 64 

scan, 25 

script, 59, 64, 68 

Script Windows, 64 

secant line, 109 

Secant Slope, 109 

second derivative, 113 

selection, 52 

Self-Classify, 123 

sets, 7 

Sets, 122 

Shape, 31 

signum, 46, 51 

similar, 3, 9, 10, 35, 98, 113 

sine, 89, 90, 91, 92, 113, 114, 115 

slope, 89, 109, 110 

solving, 120 

sort, 3, 4, 9, 10, 13 

specific arguments, 34 

Spelling, 23, 28 

square, 3, 118 

squares, 6, 59, 95, 102 

stitch, 27 

stopping condition, 49 

stopping value, 49 

subtotals, 6, 78 

Subtraction, 46 

successor, 97, 98 

sum, 6, 24, 25, 29, 39, 40, 43, 51, 55, 56, 57, 58, 
59, 60, 61, 75, 77, 78, 87, 89, 91, 102, 103, 
104, 110, 111 

sum function, 6, 25 

symmetric, 4, 18, 56, 57, 65 

table, 13, 17, 18, 19, 24, 34, 43, 44, 45, 52, 68, 
69, 78, 79, 81, 84, 88, 92, 93, 101, 102, 104, 
110, 114 

TABLE, 18, 19, 20, 23 

tables, 5, 13, 17, 18, 20, 30, 52, 76, 95, 101, 102 

tangent, 89, 110 

tangible representations, 14 

Taylor adverb, 61 

Taylor series, 90, 91, 94, 95, 113, 114 

Taylor series adverb, 90 

Terminology, 33 

tetrahedron, 81 

the reciprocal factorials, 112 

ties, 50 

Tools, 63 

Tower of Hanoi, 51 

transcendental functions, 89 
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