
J User

Chris Burke

Copyright © 1991-2002 Jsoftware Inc. All Rights Reserved.
Last updated: 2002-10-4
www.jsoftware.com

.

Table of Contents
 1 J 5.01 Release Highlights and Overview
 2 Old Windows Release Notes
 3 J User License
 4 General Information
 5 About J
 6 Products
 7 J User License Order Form
 8 Support and Questions
 9 Copyright / Warranty / License
 10 Starting J
 11 Mac J.402 Startup
 12 Directory Paths
 13 Session Manager
 14 Session Manager
 15 Execution Windows
 16 Script Windows
 17 Input Log
 18 Menus
 19 Status Bar
 20 Controlling
 21 Script Libraries
 22 system\main
 23 system\packages
 24 system\classes
 25 system\extras
 26 system\examples
 27 user
 28 temp
 29 Directory Layout
 30 Script Library Overview
 31 scriptdoc utility

 32 bmp
 33 colib
 34 color16
 35 colortab
 36 compare
 37 convert
 38 coutil
 39 csv
 40 dates
 41 dd
 42 debug
 43 dir
 44 dll
 45 files
 46 format
 47 graph
 48 isigraph
 49 jfiles
 50 jmf
 51 jselect
 52 keyfiles
 53 kfiles
 54 menu
 55 misc
 56 myutil
 57 nfiles
 58 numeric
 59 pack
 60 parts
 61 plot
 62 print
 63 publish
 64 random
 65 regex

 66 rgb
 67 socket
 68 statdist
 69 statfns
 70 stdlib
 71 strings
 72 sysenv
 73 text
 74 trig
 75 validate
 76 viewmat
 77 winapi
 78 winlib
 79 write
 80 Definition Summaries
 81 Definitions by Script
 82 Development Environment
 83 Menu Commands
 84 Component Files
 85 Keyed Files
 86 Find in Files
 87 Printing
 88 Debug
 89 Overview
 90 Verbs
 91 Commands
 92 Stops
 93 Watch
 94 Project Manager
 95 Overview
 96 Project File
 97 Project Manager
 98 Project Manager Tabs
 99 Building Applications

100 Project Conventions
101 Locked Scripts
102 Window Driver
103 Overview
104 wd
105 Window Forms
106 Event Handlers
107 wdhandler
108 Entering Information
109 Form Locales
110 Other Message Handlers
111 Wait
112 System Events
113 Window Controls
114 Overview
115 Parent Windows
116 Location and Size
117 Child Controls
118 Child Classes
119 Richedit Control
120 Statusbar
121 Tab Control
122 Toolbar
123 Common Dialog Boxes
124 Fonts
125 Accelerator Keys
126 Menus
127 Tab and Cursor Keys
128 Ownerdraw
129 Window Driver Command Reference
130 wd commands
131 gl2 commands
132 fontspec
133 isigraph events

134 Mapping Mode
135 gl3 commands
136 OpenGL printing
137 Form Editor
138 Overview
139 Hints
140 Mouse
141 Keyboard
142 Design
143 New Control
144 Control
145 Parent
146 Menu
147 Toolbar
148 Statusbar
149 Code
150 Tab Order
151 Run
152 Defaults
153 Tech Notes
154 Regular Expressions
155 Regular Expression
156 Patterns
157 Verbs
158 Utilities
159 Demo
160 Copyright
161 Grid Control
162 Overview
163 Classes
164 Methods
165 Properties
166 Actions
167 Plot

168 Overview
169 pd verb
170 plot verb
171 Plot Class
172 Plot Types
173 Plot Commands
174 Plot Options
175 Plot Data
176 Plot Colors
177 OpenGL
178 Movement Keys
179 Viewing
180 Java
181 Java
182 Java jserver class
183 Java classpath
184 Jsoftware Java applets
185 Java examples
186 Java applet security
187 Sockets
188 Socket Driver
189 Socket Utilities
190 J Socket Protocol
191 DDE
192 DDE Overview
193 Server and Client
194 DDE Conversations
195 J Commands & Events
196 Communication Protocol
197 Examples
198 DLLs and Memory Management
199 Calling DLLs
200 cd Domain Error & GetLastError
201 Memory Management

202 Calling J.DLL
203 ODBC Data Driver
204 Overview
205 The SQL Language
206 Installing ODBC
207 Connection & Statement Handles
208 Data Driver
209 Listing the Data Sources
210 ODBC error messages
211 Data Source Connection
212 Selecting & reading data
213 Updating a record
214 Creating a new file
215 SQL Statements
216 SQL Elements
217 SQL Reserved Words
218 OLE & OCX
219 Overview
220 J OLE Automation Server
221 J OLE/OCX Client
222 Examples
223 Tutorial: J OLE Server for Excel
224 Tutorial: J OLE Client to Excel
225 Labs
226 Overview
227 Lab Header
228 Lab Sections
229 Running Labs
230 Lab Author
231 Rich-Text
232 Program Access
233 Index

p1

J 5.01 Release Highlights and Overview

For installation info see Windows or Unix.

J has a console interface called Jconsole and a GUI interface called Jwd. Use Jwd
for an easier, user-friendly introduction to both standard and new features. In
Windows, start Jwd with the blue J icon created in program group J by the install.
In Unix, start Jwd by running jw in the J directory (for example, ~/j501a/jw).

The system includes 3 online books that are introductions: Learning J by Roger
Stokes, and J User License (JUL) p3 to program in J.

J can be installed on any number of platforms and systems for free. All J
installations are complete and there are no 'crippled' versions. Debug, performance,
and other features that previously required a software license fee for each
installation are now available on all J installations.

End user applications (runtime apps) built with J that don't provide a J
programming interface can be used without a JUL.

Incompatible changes

The 501 release is a major release (4 to 5). In minor releases (4.05 to 4.06) we do
our best to minimize changes which will break existing applications. In a major
release we are more cavalier and introduce incompatible changes if we feel there is
sufficient long term benefit.

We have concluded that the tridents (except for fork) and some of the bidents
complicate the system out of proportion to their utility and they are decommited.
See "J 5.01 Non-compatible Changes" in red J icon.

In Unix, start Jwd by running jw in the J directory (e.g., ~/j501a/jw). This can be
made easier by creating an icon, copying jw to a directory in the path, creating a
link, etc.

Jconsole

Jconsole is a command line interface to the JE. It does not implement wd. Jconsole
is very similar in Windows and Unix and can be run from a host console and can
be used like any other console command. The jconsole binary in Windows is called
jconsole.exe and in Unix it is called jconsole.

In Windows, start Jconsole by running jconsole.exe. For example, if J is installed
in directory c:\j501a: click Start taskbar button, select Run, and type
c:\j501a\jconsole. Or you can type that line in any DOS console window. If you
use Jconsole a lot you may want to create a bat file (perhaps called jc.bat) in a
directory in PATH.

In Unix, start Jconsole by running jc in the J directory (e.g., ~/j501a/jc). This can
be made easier by creating an icon, copying jc to a directory in PATH, creating a
link, etc. Hash bang (#!) scripts can use Jconsole. Jconsole uses readline and
identifies itself as 'jconsole'. See the Unix man or info pages on readline.

Script Library

J definitions are stored in ASCII plain text files called scripts. J scripts usually
have a filename suffix of ijs. The system includes an extensive script library and
related files that include an IDE, tutorials, demos, tools, and utilities.

profile

When a JFE starts it loads profile.ijs from the library to initialize the system. The
Jwd profile uses wd to create a complete IDE.

Interactive Development Environement

The same Jwd IDE is available in Windows and Unix. The IDE is written in J/wd
and is implemented in library scripts. It is open and available for study and
modification. The IDE in previous versions was closed and was implemented in
C++.

In previous Windows versions the IDE was based on MDI (multi-document
interface) and the edit and execution windows existed within a single application
frame. The MDI model is dropped in this release and edit and execution windows
are independent top-level windows. Some users who have grown up with MDI will

miss it, but we believe there are benefits to the new approach. It is simpler, does
away with the requirement for MDI support, and is more inline with current IDE's
in other languages.

Context sensitive help

Ctrl+F1 in an ijx or ijs window displays the Dictionary page for the primitive at the
caret.

Ctrl+F1 with the caret in the last line of a script error report opens the script and
highlights the error. An example of a script error report is:

 load 'c:\j501a\user\test.ijs'
|domain error: script
| 'a' +2
|[-5] c:\j501a\temp\2.ijs

Portability

J is portable across platforms. An application written for Jconsole or Jwd is as
close as you can get to 'write once, run anywhere'. The JE is as identical as possible
and wd, except for a few Windows specific features, is portable.

A Jwd application developed in Unix will run in Windows on either Jwdw or
Jwdp.

A Jwd application developed in Windows in either Jwdp or Jwdw will run in Unix
as long as the Windows specific features of Jwdw are not used.

For information on Jwdp in Windows see red J icon.

J Engine Protocol

The J Engine Protocol allows any client with sockets to have full use of a JE. This
provides facilities that are similar to J OLE Automation in Windows, but does so in
a portable, open, more efficient, and much simpler manner. See J Engine Protocol
p190 for documentation.

Index

The index for the online help books has been stripped down to a minimum.
Previously it indexed everything and was so large that it was slow enough to be a
nuisance. Use Edit|Find In Files for a general and powerful search of html help.

PDF Books for Hardcopy

www.jsoftware.com has downloadable PDF versions of all the J books that are
included in online html format with the release. The PDF format is particulary
useful for printing hardcopy pages, chapters, or even entire books. There are
additional publications available at the web site.

ctrl+Break, Break, and ctrl+C

You can interrupt J execution. In Jwdw you signal with ctrl+Break (key labeled as
Pause/Break); in Jwdp you signal with Break, and in Jconsole you signal with
ctrl+C.

One signal interrupts at the start of a sentence with an attention interrupt or a
request for input (for example, 1!:![1) with an input interrupt. Input interrupt is not
currently supported in Jconsole in Unix.

Two or more signals breaks execution in the middle of a sentence with a break

It is much preferred to use a single signal to get an attention interrupt as the state of
execution at the start of a line is clear. In a break it is not clear what has been
executed and there is some chance of crash as it is diffictult to ensure a clean state
in all cases. Signals should be made carefully and you should wait many seconds
before making additional signals.

wd changes

There are numerous wd changes. See Window Driver Command Reference
Overview p129 for documentation.

gl2 changes - wd 2d graphics

load'gl2' now loads into the jgl2 locale. This keeps the many gl2 definitions from
cluttering up the z locale. Production users of gl2 can either use the full name (e.g.
glline_jgl2_) or can add the jgl2 locale to their locale path. Requiring _jgl2_ on all
names for casual use is a nuisance and you can use coinsert to add jgl2 to your
current path. For example: coinsert'jgl2' will allow you to use gllines in base
without having to add the _jgl2_.

gl2 mapping has been changed and simplified. There are 3 standard mapping
modes:

glmap MM_DEFAULT - x right, y up, scales glwindowext to fit
glmap MM_RAW - x right, y down, units are pixels
glmap MM_RIGHTDOWN - x right, y down, scales glwindowext to fit

New gl command 11!:2999 takes a list of multiple gl commands. Each command
starts with an integer count followed by the command and data. For example:
 11!:2999 [4 2013 500 500 4 2013 900 100 2 2036 NB. glline, glline, glshow
 11!:2999 [4 2056 500 200 5 2038 65 66 67 2 2036 NB. gltextxy, gltext, glshow
This can be used to move the overhead in the J Engine Protocol of passing
thousands of individual small commands over the socket interface by one large
2999 command.

Decommitted: glmapraw.

New commands for working with pixels:
 glpixels x y w h pixeldata
 pixeldata is an integer per pixel with RGB values

 pixeldata =: glqpixels x y w h

See gl2 Command Reference p131 for documentation.

Foreigns

Decommitted:
 1!:40 1!:41 1!:42
 2!:4 2!:6
 9!:30 9!:31

New:
 1!:43 returns current working directory (getcwd posix)
 1!:44 sets current directory (chdir posix)
 1!:45 returns default profile (for example: c:\j501a\profile.ijjs)

Java version

Jwdp (Java based Jwd) has has been developed and tested with Java version 1.4.0.

Linux

fvvm2 is NOT supported. You must run Gnome, KDE, or other X window
managers.

jserver and jtelnet classes

The jserver class allows you to create and manage a separate J task as a server.
jserver.ijs (open 'jserver') defines a jserver class that uses the J Engine Protocol to
create and manage a J Engine server. This class works in both Jconsole and Jwd. It
starts a new J task, either on the local machine or a remote machine, and controls
that task with the J Engine Protocol.You can take advantage of multiple processors
on the same host, remote hosts, and build applications where the interactive GUI
runs in one JE and the data processing is done in others as appropriate. For
example:
 require'jserver'
 js=: conew'jserver' NB. create new jserver object
 local__js'' NB. create J server task
 run__js'abc=: i.2 3 4' NB. run sentence in server task
 d=: get__js'abc' NB. get value from J server task
 destroy__js'' NB. destroy object and free resources

The jserver class also supports J server tasks running on on other machines.
It uses jtelent to start the J server on the remote machine. If you had J installed on
another machine that was accessible to you from telnet you could start and use a J
server on that remote machine. For example, if your other machine is called Frodo
and you have a user id of
Bilbo and a password of Baggins, you could try the following:

 require'jserver'
 js=.conew'jserver'
 NB. start J server on remote machine
 remote__js'Frodo Bilbo Baggins 0'
 NB. run sentence on remote server
 run__js'abc=:i.2 3 4'
 destroy__js''

You could use Frodo's IP address (e.g. 192.168.1.5) instead of the name.

The remote jserver uses jtelnet, a simple and naive implementation of the
telnet protocol. For example:

 require'jtelnet'
 tn=: conew'jtelnet' NB. create jtelnet object
 logon__tn'Frodo Bilbo Baggins 0'
 run__tn'ls'
 destroy__tn''

Open and study the scripts for more information and ideas on their use.

Command line parameters

With -jprofile, -jijx, and -js command line parameters you can start J in various
ways. When J starts the JFE puts all the command line parameters into noun
ARGV_z_.

In the following J is j.exe or jconsole.exe or jw or jc. FN is the name of a script.
ARGS is 0 or more additional command line parameters.

J - JFE loads profile
J FN - JFE loads profile; profile loads FN
J FN ARGS - JFE loads profile; profile loads FN; ARGS available in ARGV

J -jprofile - no profile (default ijx window if Jwd)
J -jprofile FN - JFE loads FN (alternate profile)
J -jprofile FN ARGS - JFE loads FN

J -jijx FN - JFE loads profile; profile does not create ijx and loads FN

J -jijx FN ARGS - JFE loads profile; profile does not create ijx and loads FN

J -js ARGS - creates verb ARGVERB_z_ from ARGS and runs it

Examples with -js:
jconsole.exe -js a=.23 b=.3 "echo a*b"
jconsole.exe -js a=.23 b=.3 "echo a*b" exit

An end user application (runtime app) can be started with -jijx if it needs the
standard profile, or with -jprofile FN if it doesn't require profile.

Jwd tests at the end of the execution of every sentence. If there is an error and no
ijx window, then a message is displayed and the session is terminated after the
message is closed. If there are no forms, then the sesssion is terminated.

Unix J #! script

A #! J script (hash bang J script) is an executable text file with a first line that gives
the full path the jconsole binary.Try the following:

create file sumsquares with 3 lines of text:
#!/usr/local/bin/jconsole
echo +/*:0".>,.2}.ARGV
exit''

make it executable (chmod +x) and run it
./sumsquares 1 2 3 4 5

Use NB. to comment out the exit'' to stay in J.

The following loads profile, which loads the #! script, which echos the result on
the console and leaves J running.

#!/bin/jconsole
load'strings'
echo 'abcXXXdef' rplc 'XXX';' insert '

The following is the same, except it exits J at the end.

#!/bin/jconsole

load'strings'
echo 'abcXXXdef' rplc 'XXX';' insert '
exit''

The following doesn't load profile and just loads the script.

#!jconsole -jprofile
...

Profile loads jconsole with the following definitions that are useful in #! J
scripts:
ARGV - boxed list of jconsole, script name, and arguments
echo - format and display output
getenv - get value of environment variable
stdin - read from standard input
stdout - write to standard output
stderr - write to standard error
exit - exit J (arg is return code)

stdin is defined with stdout as its obverse (see the :. conjunction). When
used with &. (under conjunction), as in foo&.stdin '' stdin is first called,
reading all of standard input. That input is the argument to foo, and the result is
passed to the inverse of stdin, which is stdout. A verb which transforms a character
list can be combined with the stdin verb with under to apply the transformation as a
Unix filter. As an example we will create a Unix filter which reverses all the
characters in a file. Rather than just using |. we'll use (|.@}: , {:) which
reverses all but the last character, and appends the last character to it. For files
which end in a newline, this reverses the file keeping that newline at the end.
Define the #! J script reverse as follows:

#!/usr/local/bin/jconsole
rev=. |.@}: , {:
rev&.stdin ''
exit''

If you wanted to do a complete reverse of a file which does not end in a newline
you could do the following:
rev=. |.`(|.@}: , {:)@.(LF&=@{:)

echo uses 1!:2 to write to J output (file number 2) and formats and writes any J
array. stdout and stderr , however, must be given character lists, and writes

them unaltered. In particular, echo 'a line' will write a trailing newline
character whereas stdout 'a line' does not.

Unix - jconsole - stdin and stdout

The verb defined below calls a program, writes to its standard input, and reads its
output.
run=: 4 : 0
'p o i'=. 2!:2 x. NB. Run command, save Process, Output, Input
y. fwrite i NB. Write to its input
fclose i NB. Close its input
2!:3 p NB. Wait for process to terminate
z=.fread o NB. Read its output
fclose o NB. Close its output
z NB. Result
)

Starting J - tech details

In Windows, 1!:45 returns profile.ijs in the path of the J Front End (j.exe or
jconsole.exe). For example: c:\j501a\profile.ijs.

In Unix, 1!:45 uses environment variables and the J version to determine the
default profile. The version is the text in 9!:14'' up to the first /. If 9!:14'' returned
j501a/2002-07-05/17:50, then the version is j501a. If HOME/version/profile.ijs
exists, then it is the default profile. For example, if HOME was /home/eric, then
/home/eric/j501a/profile.ijs would be the default profile if it existed. If that file
doesn't exist, environment variable JPATHversion (for example, JPATHj501a), if
it is defined, is the default profile.

Normally J is initialized by the JFE with:
 (3 : '0!:0 y.')<1!:45''[ARGV_z_=:...

The JFE command line is given to the JE by setting ARGV_z_. The 1!:45'' returns
the full path to the default profile. The profile is loaded by an explicit verb and it
must use =: for global assignments.

The default profile defines PROFILE_z_ (if not already defined) as 1!:45''. This
makes it easy for a stub profile to redirect to another profile.

-jprofile as the first parameter with additional parameters initializes J with:
 (3 : '0!:0 y.')2{ARGV_z_=:...

That is, the parameter after -jnoprofile is loaded instead of the standard profile.

Previous Release Highlights

See Old Windows Release Notes p2 for documentation from previous releases that
has not yet been merged into the standard documentation, or perhaps just stands
out more clearly.

Windows install

J is installed on your windows system with program j501X.exe (where X indicates
a bug release level). You can download this program from www.jsoftware.com.
Run this program and follow the instructions to install J. Start J with the blue J icon
the install creates in program group J.

Windows Jwdp red J icon

You should normally run Jwdw (blue J icon) as it has the following advantages
over Jwdp:
1. supports OCX and OLE automation (not available in Jwdp)
2. starts quickly (Java is slow to start)
3. don't need to install/maintain Java Runtime Environment
4. is more stable (Jwdp is new and more likely to have bugs)
5. Java is a bit flakey compared to Win32
6. will run applications developed in Jwdp
7. develop apps for Jwdp by simply avoiding Windows only features

You may want to run Jwdp to see more closely how your application will look in
Unix, or to check more carefully that it really is portable, or just because you are
curious.

To run Jwdp you need to have the Java Runtime Environment or the Java SDK

installed (version 1.4 or later, available at the Sun web site).

The easiest way to create a Jwdp icon is to make a copy of the blue J icon and then
edit the properties as follows:

1. edit shortcut target to end in j.jar rather than j.exe
2. Change Icon to select the jr.ico in the J directory

One reason for this icon to fail is that the file assocation between jar and java is
broken. You can fix the association, or try a shortcut target like:
c:\Program Files\Java\j2re1.4.0\bin\javaw.exe -jar c:\j501a\j.jar

Unix install

J is installed on your Unix system with file j501X_Y.tar.gz (where X indicates a
bug release level and Y is the uname in lowercase). Example unames are linux and
darwin (for Mac OS X). You can download this file from www.jsoftware.com.

The first step is to unpack the file to create a directory tree rooted at j501X. The
file is a gzipped tar file and unpacking it varies on different systems. On Linux do
the unpack with:
 tar -xzf j501X_linux.tar.gz

The simplest install is to do the unpack in your home directory. If you do, you are
ready to run J after the unpack.

Start Jwd with command ~/j501X/jw and start Jconsole with ~/j501X/jc. A
common jw failure is that java isn't on your path and you can edit jw to give the
full path.

Customize your installation by edits to jw and jc; copy them to bin directories;
create links and icons.

There is a minimal man page for jconsole at system/extras/help/man/jconsole.1 and
you can make this available to man by copying the file to /usr/local/man/man1 or
other suitable directory.

You don't have to install in the j501X directory in your home directory, but
installing in a different location requires extra steps. When you run J it needs to

find its library files and it looks first in ~/j501X. If you install J in another
directory you must set an environment variable so that it can find the library files.
The variable has the name JPATHj501X. For example, if you installed j501a to
~/programs, then you could edit the jw and jc files as follows:

#!/bin/sh
export JPATHj501a=~/programs/j501a
java -jar ~/programs/j501a/j.jar $*

#!/bin/sh
export JPATHj501a=~/programs/j501a
~/programs/j501a/jconsole $*

More complicated installations, for example installation in a shared, read-only
directory, for use by multiple users are possible, and require both system admin
and J programming knowledge. The profile.ijs has to be modified so that standard J
user directories such as user and temp are properly set. For example, the following
changes to profile.ijs would give each user their own temp and user directories in
their ~/J directory:

USER_j_=: (2!:5'HOME'),'/J'
TEMP_j_=: USER_j_

p2

Old Windows Release Notes (material not merged into general docs)

J 4.06 Release

Data displayed with boxes is an important J feature. Previous versions of J for
Windows, by default, used oem fonts with linedraw characters for boxes with solid
lines. The alternative is +-| ascii characters. Linedraw boxes are pretty, but they
are also a never ending nuisance. Oem fonts aren't ansi or unicode and are
discouraged by Microsoft and other vendors. They aren't standard in Unix and J for
Unix uses +-|. They are a problem in email. In theory html can handle oem fonts,
but across platforms and browsers the reality is a nightmare. Jsoftware has decided
that easy html documentation, email communication, and standard usage across
platforms outweighs pretty boxes. If you want them for your own use, you can still
have them.

Jsoftware favors ascii boxes and the default in this release is ansi "Courier New".

The online J books User, Primer, Phrases, Dictionary, and Release Notes are in
html. Select menu Help|Help to get an overview of the J Help System and the
integrated index.

A preliminary version of 'Learning J' by Roger Stokes and Ken Iverson's
'Computers and Mathematical Notation' are also available through the J Help
System.

A new lab 'A J Introduction' by Ken Iverson is in the Languages category. There
are five other new labs by Ken in the Live Texts category.

For details on new features in this release see the Release Notes in the J Help
System. The following are a few topics covered in those notes.

By default, explicit definitions keep a copy of the original text with whitespace and
comments. This is convenient for casual use and development, but can be a
significant and unnecessary space overhead in large production systems. Foreign
9!:41 can change the default so that this space is not used. Production systems
should startup with 9!:41[0 .

Locales are more efficient and limits have been removed.

Foreigns 9!:36 and 9!:37 provide output formatting control. Adjust output
formatting with Edit|Configure|Parameters.

Dll callbacks are supported. See lab: DLL: Callback.

Symbol and unicode, significant new data types, have been added.

try. control structure has been extended and a new control word throw. has
been added.

assert. is a new control word.

J 4.05 Release

The prokey license was introduced in J 4.05

business

We have consolidated under the name Jsoftware. Iverson Software Inc. has
changed its name to Jsoftware Inc. and does the marketing and sales activities
previously run by Strand Software (the Strand staff now work directly with
Jsoftware).

documentation

The Help for foreigns, wd commands, and runtime have not been updated. Use
them in conjunction with the latest information here.

html help

Help menu item HTML Help runs your browser on documents for new J features.
Of particular interest are: Performance Monitor, Mapped Boxed Arrays, Special
Code, and Execution Time Limit.

labs

Ken Iverson's Lipshutz lab is a companion to the Seymore Lipshutz "Linear

Algebra" of Schaum's Outline Series. Chris Burke's Performance Monitor Utilities
lab is an overview of the new performance monitor.

undo/cut/copy/paste (ctrl+zxcv)

The old Win31 shortcuts (alt+backspace/shift+delete/ctrl+insert/shift+insert) are
no longer supported in the session manager. This was necessary to simplify
resolving conflicts between shortcuts for the session manager, forms, controls, and
OCX.

debug

dbr 2 (13!:0[2) does not require a prokey and records information before clearing
the stack. The debug latent expression (13!:15) executes after the stack is cleared
and debug is reset. See HTML Help for more information. The stack information is
recorded as:

STACK_ERROR_INFO_base_=: (13!:11;13!:12;13!:13;18!:5) ''

jfiles

A change in 3!:1 means that jfiles written with J version 405 cannot be read by
earlier versions. J405 can read jfiles created by earlier versions. The change in 3!:1
supports writing and reading binaries in standard and reverse byte order. For more
information, see Help|HTML Help|3!:1, 3!:2, and 3!:3 Extended.

regex and socket

The regex (16!:x) and socket foreigns (17!:x) have been decommitted. regex.ijs
and socket.ijs scripts now use dll call (cd) to provide the same services. This is
similar to how we previously decommitted the data driver (14!:x) foreigns. This
results in a smaller, more portable J engine and in more open systems where you
have full access to the scripts and underlying system services.

Socket verbs return the result code linked with the result, rather than catenated as
in previous releases.

command line

The form is: [filename] [/command [parameter]] ..

Standard profile (system\extras\config\profile.ijs) is run unless there is a /jnoprofile
command.

Filename is run after the standard profile.

There are 3 types of commands: windows, J startup, and application.

windows:

/register (or /regserver) - register JEXEServer and JDLLServer
/unregister (or /unregsever) - unregister JEXEServer and JDLLServer
/embedding - start as Automation server for COM client

J startup (start with j, as will new ones)

/jnoprofile - start without standard profile
/jtemp path - temp directory
/jddename servername
/jrt - runtime application (see runtime section)

Application commands can be used in the application (wd'qmdline').

Examples:

profile (show session)
c:\j.exe
profile (show session), run foo.ijs
c:\j.exe user\foo.ijs
profile (hide session), run foo.ijs (simple runtime app)
c:\j.exe user\foo.ijs /jrt
no profile, run foo.ijs (production runtime app)
c:\j.exe app.ijs /noprofile /jrt

window driver

wd'...' 65k argument limit removed and 65k result limit is now 500k.

makejr - decommitted (see runtime section)

makejl - decommitted (see runtime section)

picon filename n - set form icon with icon n from file (exe, dll, or ico file)
wd'picon system\examples\data\jy.ico 0' qrt - decommitted (see runtime section)
smicon filename n - set sm icon (see picon)

runtime

The J license is free and you can distribute runtime applications that include as
much of the J system as required.

Simple runtime applications can use the standard profile. Production runtime
systems should be built with the Project Manager.

/rt parameter is decommited. You have to rework old runtime applications.

/jrt parameter causes the standard profile to not do an smmfshow command to
show the session manager. The runtime app can have the standard profile, but not
show the session manager. If there is an error and the session manager is invisible,
J terminates with a message box saying there was an error. If J finishes execution
and the session manager is invisible and there are no forms, then J terminates.

wd'picon ...' sets form icons for the application.

wd commands makeijr and makeijl are desupported. ijr files are no longer
supported. ijl files are created by 3!:6 .

system\examples\demo\runtime.ijs is a simple runtime application. Open and
experiment with the script. Run it from an icon or Start|Run with command line:

c:\j405\j.exe system\examples\demo\runtime.ijs /jrt

system\examples\runtime\bldrt.bat creates a production runtime application setup
and distribution. Study the bldrt.bat file and run it to create a distributable J
runtime application.

ocx controls

OCX controls with ids with blanks are supported by the form editor with quotes.
For example: "ocx:rmocx.RealPlayer G2 Control.1"

OLE command picture and object arguments start with a !. For example:

wd'olemethod images listimages add ,, !picture:abc.bmp'

If the argument contains blanks, it must be quoted, but then it can't be
distinguished from quoted data. A ! by itself is an escape so that the next parameter
can be a quoted picture or object argument. For example:

wd'olemethod ... ,, ! "!picture:my abc file.bmp"

'

addons (LAPACK and FFTW)

J addons are installed in the J addon directory. Old addon downloads won't install
in the proper place for J4.05 and new downloads won't install in the proper place
for previous releases.

COM

The j.exe and j.dll tlb files are now included as resources and are no longer
separate files. The J installation registers both the JEXEServer and JDLLServer
COM objects. Use jreg.bat to register or unregister.

J 4.04 Release

Release 4.04 has sparse arrays, changes in J COM objects, and OCX license
support.

Sparse arrays

Sparse arrays provide a compact and efficient storage form for very large arrays
where most elements are zero or some other "sparse element". The sparse array
representation does not store extra copies of the sparse element. J primitives work

directly on sparse arrays. A new verb $. converts between sparse and dense
representations of arrays.

In this release, only numeric arrays can be sparse. Subsequent releases will support
sparse character and boxed arrays.

Run lab Sparse Arrays for a quick overview of the new facility. For detailed
information, see Help|HTML Help|Sparse Arrays.

J COM objects

GetB and ErrorTextB methods in previous versions incorrectly returned a BSTR
with a count that included the terminating NULL. This bug has been fixed.
Applications with workarounds may need fixing.

Multiple JDLLServer COM objects are now supported. Each JDLLServer object
created is a complete new instance of J. Previously each JDLLServer object shared
the same globals (for example, symbol tables) and was not useful. It is now
possible to efficiently create completely independent, in-process, J COM
objects.These independent J COM objects can run in the same threads or in
different threads.

The direct DLL interface to J requires new, explicit calls to create and free a J
instance and the instance handle is a new parameter to all other calls. For example:

HANDLE pj = JInit(); // get handle for new J instance
JDo(pj, "a=:i.5");
JFree(pj); // free J instance

OCX license

OCX controls distributed with a J application can be distributed in a runtime
version that requires license information when they are created. On a system with
the design time OCX installed, use olegetlic to get the license The progid is the
same id used in the cc command (without the ocx: prefix). To create the OCX on a
system with a runtime OCX, use olesetlic to set the license. The following example
uses the FarPoint spreadsheet control.

 fpkey =: wd'olegetlic FPSpread.Spread.2'
 fpkey

67 0 111 0 112 0 121 0 114 0 105 0 103 0 104 0 116 0 32 0 ...
 (".fpkey) { a. NB. 2 byte unicode is often readable
Copyright ...

 NB. in a distributed application set key before cc
 wd'olesetlic FPSpread.Spread.2 ',fpkey
 wd'cc ss ocx: FPSpread.Spread.2'

load utility

The load utility has changed, when loading scripts from a directory that includes a
project file. If the left argument of load is not given, then a default locale is used.
Previously, this locale was always base; now, if the directory contains a project
file, the default locale used is that specified in the projects target locale. This
makes it easy to work with individual scripts in a project, since they will
automatically load into the projects target locale.

Debug

The Debug window now includes single-step and single-step-into buttons, plus
several other commands available on shortcut keys.

The toolbar Open button now responds to the current cursor position. If the name
at the cursor is a noun, its definition is displayed in a viewer; otherwise the script
where the name is defined is opened.

See Debug for more details, or with the Debug window active, press Ctrl-H for a
list of the available shortcut keys.

J 4.03 Release

Code Editor

The new code editor was written by Andrei Stcherbatchenko and we're sure you'll
find it makes life as a J programmer more exciting and productive.

● customized code coloring (Edit|Configure)
● large files (up to 10,000 lines)

● multiple undo and redo
● drag and drop editing
● standard arrow/home/end shortcuts (ctrl /shift modifiers)
● Ins toggles overstrike/insert
● left margin
● quick line selection with mouse
● ctrl+shift+0-9 toggles mark
● alt+0-9 scrolls mark visible
● ctrl+shift+F2 clears marks
● Tab indents (shift+Tab exdents) selected lines
● fixed pitch font required
● ijx output truncated with . . . at 256 characters
● ctrl+shift+up/down arrow recalls lines (used to be ctrl+up/down)

Form colors

You can set form and control (text, text background, and background) colors.

wd'pcolor R G B' NB. form color wd'setcolor id textR G B
textbkgndR G B bkgndR G B'

You can add these commands in form initialization.

abc_run=: 3 : 0
wd ABC
NB. initialize form here
wd 'pcolor 0 0 255'
wd 'setcolor cceditm 255 0 0 0 0 255 0 0 255'
wd 'pshow;'
)

The setcolor command can override the gray readonly edit boxes. The setcolor
command has no effect on push buttons or the dropdown listbox of a combobox
(unfortunate Window facts).

Debug

This release includes a preliminary version of a debug GUI. It is built on top of

facilities that have been in J for some time. This version is not complete, and
requires changes in the J engine before it can provide all the facilities we envision.
However, we found that it is already so useful that we decided to include it in this
release. It is a taste of things to come.

Start Debug with Run|Debug. Press the Help button to see documentation. Learn
about Debug with the Debug lab.

HTML Publish

Use Run|HTML Publish, or Tools|HTML Publish from Project Manager, to
convert scripts to HTML format for the web. Hold down the shift key to convert
the active window.

Popup Menu

The release includes Oleg Kobchenko's popup menu, as enhanced by Alex
Kornilovski. For more information, see scripts system\packages\winapi\menu.ijs
and menudemo.ijs.

 load 'menu'
 wdmenu ' one two three'

ODBC

This release decommits the Data Driver foreign family 14!:x . This interface was
written in C and was a closed, black box to J programmers. It didn't support newer
versions of the ODBC API and was missing important features.

The new ODBC support was written by John D. Baker and is provided by scripts
that use DLL calls to directly access the ODBC API. The J programmer now has
the same ODBC access as the C programmer. The new script dd.ijs provides the
same functionality as the previous version with DLL calls to the ODBC API, rather
than with 14!:x calls. An application that uses dd.ijs should work with the new
dd.ijs. There are some performance improvements and significant new
functionality such as support for stored procedures. If you are interested in ODBC,
work your way through the new ODBC labs.

FFTW AddOn

In addition to the Lapack AddOn, there is now an FFTW AddOn. FFTW is a
collection of fast C routines for computing the Discrete Fourier Transform in one
or more dimensions. It includes complex, real, and parallel transforms, and can
handle arbitrary array sizes efficiently. The FFTW AddOn consists of a DLL
incorporating the FFTW routines, plus supporting J scripts and labs. The AddOn is
currently only available for Windows 9x/NT. For more information and to
download the FFTW AddOn, visit www.jsoftware.com (or use the J cdrom AddOn
directory).

Project Manager (PM)

There are several improvements in the Project Manager. If you're an experienced J
user and you don't use PM, then we suggest it is time to start. It is great for both
small and large projects. If you're new to J, start out right by using PM for all your
projects. Start PM from menu command Run|Project Manager.

wd commands

New wd commands (documented in Help|wd commands):

● glgridspace x y - space in from upper left for text
● pcolor R G B - form background color
● setcolor id textR G B textbkgndR B G bkgndR B G - control color
● smcolor n R G B - code editor color
● smkeywords n keywords - code editor keywords (for color)
● smreplace text - replace selected text
● smgetscroll - scroll position of top line
● smflush [bool] - force immediate (unbuffered) output

Enter in a readonly editm control is an enter event.

Miscellaneous

File menu MRU (most recently used) files has 8 items and is retained between
sessions.

Bug fixes (thanks to all you out there, particulary J forum members, for giving us
the chance to fix them!).

try. catch. honors debug stops.

Several performance improvements in the J engine.

J 4.02 Release

Try the new demos pousse and eigenpictures (J LAPACK AddOn is required for
eigenpictures).

Take a look at the new lab Fractals Visualization, & J.

Run labs Mapped Names and Files and Mapped File Database to learn about these
new facilities. A mapped file can be accessed as if it were memory and a mapped
name is an array that is a file.

Run labs DLL: Writing and Using a DLL and DLL: Using System DLLs (file
examples) to learn about changes to the 15!:x DLL call facilities. The User Manual
chapter DLLs and Memory Management has been updated to reflect the changes.
Some of the changes are incompatible with previous releases. Previously this
facility was only available in Win95 and NT. It will now be available on all
platforms.

A J AddOn is a separately packaged installation that is added on to the base J
installation.

The complete LAPACK library is now available with the J LAPACK AddOn.
LAPACK (Linear Algebra Package) is a set of routines for solving systems of
simultaneous linear equations, least-squares solutions of linear systems of
equations, eigenvalue problems, and singular value problems. The associated
matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also
provided, as are related computations such as reordering of the Schur factorizations
and estimating condition numbers.

Download jlapack.exe and run it after you have installed J4.02. This adds the
LAPACK files to the J directory structure. When it is installed, run lab LAPACK
to learn about this powerful new addition to J.

J 4.02 Interpreter

The dyad {. has been extended to accept infinities in the left argument, with an
infinite value specifying the length of the corresponding axis.

 a=: i.4 5
 a
0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
 2 _ {. a NB. first 2 rows and all columns
0 1 2 3 4
5 6 7 8 9
 _ 2 {. a NB. all rows and first two columns
0 1
5 6
10 11
15 16
 _1 __ {. a NB. last row and all columns
15 16 17 18 19
 _ {. a NB. all rows and all columns
0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19

The monad i: has rank 0; i: n gives integers from -n to n inclusive; i: a j. b gives
numbers from -a to a in b equal steps.

 i: 5
_5 _4 _3 _2 _1 0 1 2 3 4 5
 i: _5
5 4 3 2 1 0 _1 _2 _3 _4 _5
 i: 5j4
_5 _2.5 0 2.5 5
 i: _5j4
5 2.5 0 _2.5 _5
 i: 2.5j4
_2.5 _1.25 0 1.25 2.5
 i: 5j_4
|domain error

| i:5j_4

On extended precision arguments, the determinant -/ .* runs faster in less space.

 ts=: 6!:2 , 7!:2@] NB. time and space
 ts '-/ .* h' [h=: % >: +/~ i.10x
0.14 37888
 ts '-/ .* h' [h=: % >: +/~ i.20x
2.073 291520

J 4.01 Release

Use =: for global definitions in scripts. Run|Window and Run|File use load and
definitions made with =. are local to load and disappear when it finishes.

The J file suffix has changed from .j? to .ij? (.js to .ijs) to avoid javascript
conflicts. Use system\extras\migrate\ext.ijs if you have lots of files.

system directory contains the other distributed directories (main\stdlib.js is now
system\main\stdlib.ijs).

p3

J User License (JUL)

You must have a JUL to use J as a programmer.

A JUL is like a driver's license. It has an annual fee and expires if not
renewed. There are 3 JUL types:
Commercial $600 - you use J at work
Non-commercial $100 - you do not use J at work
Free $0 - students, new users, or you only use releases older than 18 months

You must renew your JUL annually at the then appropriate fee. If you stop using J,
you can renew an expired JUL when you start again.

Users with a prokey valid for updates or covered by a site license still need a JUL
and should indicate this status on an application that includes no payment.

Click on Email JUL to create an email message formatted with a JUL application.

If you prefer regular mail or want to pay by USD check or money order see Mail
JUL p7.

Teachers can apply for an Free JUL that covers their students, rather than having
each student apply individually. Click on School JUL to create a formatted email
message.

p4

General Information

About J p5
Products p6
J User License p3
J User License Order Form p7
Support and Questions p8
Copyright / Warranty / License p9

p5

About J

J is a general purpose programming language designed by Ken Iverson and Roger
Hui. It is available on a wide variety of computers and operating systems. J is
distinguished by its simple and consistent rules, a large set of built-in capabilities,
powerful facilities for defining new operations, and a general and systematic
treatment of arrays.

J Systems are developed and distributed by:

Jsoftware Inc.
P.O. Box 330
Excelsior, MN
USA 55331

tel: 952 470-7345
fax: 952 470-9202

To get the latest information, see www.jsoftware.com.

For sales, email: sales@jsoftware.com.
For general inquiries, email: info@jsoftware.com.
For technical support, email: tech@jsoftware.com.

p6

Products

J is a high-level, general purpose programming language. The J system provides:
an engine for executing J; various front ends that provide user interfaces to the J
engine; a library, written in J, that provides an IDE (interactive development
environment), numerous tools, utililties, demos, tutorials; and online documention.

J Systems are available for Windows, Windows PocketPC, Macintosh, Linux,
Solaris, AIX, FreeBSD, NetBSD, and others. The core language is identical in all
versions, and programs not making use of platform-dependent features will work
unchanged on all systems.

J is documented in 5 online html format books that are distributed with the system.
These books, and others, are available in PDF format from the Jsoftware web site.

J is licensed for free installation on all platforms. You can download, redistribute,
and run end user applications built with J for free.

You must have a J User License (JUL) p3 to program in J.

file:///C|/setup501/pdf/user/user/jul.htm

p7

J User License Application (New and Renewal)

Print this page, complete the form, and send to:
Jsoftware Inc., P.O. Box 330, Excelsior, MN 55331 USA

If there is no enclosure you can fax it to: 952 470-9202.

Checks must be in US dollars, or you can send international postal money orders in
US dollars.

name:

email:

JUL (if this is a renewal):

address (used only by Jsoftware for direct mail):

JUL type: __ Commercial $600 __ Non-commercial $100 __ Educational $0

Visa/MasterCard/American Express card #:

name on card:

expiry date:

card billing address (required - used only for credit card validation):

p8

Support and Questions

The J forum (a mailing list) is the best place for general questions on the J
language. Visit www.jsoftware.com to join the forum and for the latest information
and resources.

Check the online manuals and help files available through the J Help menu.

Send email inquiries to:

general info@jsoftware.com
sales sales@jsoftware.com
technical tech@jsoftware.com

When reporting problems, please include all relevant information.

p9

Copyright / Warranty / License

J Products are Copyright © 1994-2002 by Jsoftware Inc. All rights reserved.

Warranty and License Agreement

Jsoftware Inc. ("Licensor") is willing to license the enclosed software to you only
if you accept all of the terms in this license agreement. Please read the terms
carefully before you install this package, because by installing the package you are
agreeing to be bound by the terms of this agreement. If you do not agree to these
terms, licensor will not license this software to you, and in that case you should
delete the software and return any/all related written materials promptly, for a
refund.

Ownership of the Software

The software program, J ("Software") and the accompanying written materials are
owned by Licensor [or its suppliers] and are protected by United States copyright
laws, by laws of other nations, and by international treaties.

You may not reverse engineer, decompile, or disassemble the Software.

Limited Warranty

Licensor warrants that the Software will perform substantially in accordance with
the accompanying written materials for a period of 90 days from the date of your
receipt of the Software. Any implied warranties on the Software are limited to 90
days. Some States do not allow limitations on duration of an implied warranty, so
the above limitation may not apply to you.

Licensor disclaims all other warranties, either express or implied, including but not
limited to implied warranties of merchantability, fitness for a particular purpose,
and non-infringement, with respect to the software and the accompanying written
materials. Licensor's entire liability and your exclusive remedy shall be, at
licensor's choice, either (a) return of the price paid or (b) replacement of the
software that does not meet licensor's limited warranty and which is returned to
licensor with a copy of your receipt. Any replacement software will be warranted

for the remainder of the original warranty period or 30 days, whichever is longer.
These remedies are not available outside the United States of America.

This limited warranty is void if failure of the software has resulted from
modification, accident, abuse, or misapplication. In no event will licensor be liable
to you for damages, including any loss of profits, lost savings, or other incidental
or consequential damages arising out of your use or inability to use the software. If
you have any questions concerning this agreement or wish to contact licensor for
any reason, please write: Jsoftware Inc., P.O. Box 330, Excelsior, MN USA 55331
or call (952) 470-7345 or fax (952) 470-9202, email: info@jsoftware.com.

U.S. Government Restricted Rights. The Software and documentation are provided
with Restricted Rights. Use, duplication, or disclosure by the Government is
subject to restrictions set forth in subparagraph (c)(1)(ii) of The Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013 or
subparagraphs (c)(1) and (2) of Commercial Computer Software - Restricted
Rights at 48 CFR 52.227-19, as applicable. Supplier is Jsoftware Inc.

p10

Starting J

Starting J in Windows and Unix is documented in Release Highlights and
Overview p1.

In addition the following Windows specific command line parameters are
supported:

/ddename - set ddname on start up
/embedding - start as Automation server for COM client J startup
/register (or /regserver) - register JEXEServer and JDLLServer
/unregister (or /unregserver) - unregister JEXEServer and JDLLServer

Mac J.402 Startup p11 for versions prior to the Unix based MAC OS X.

p11

Mac Startup

J requires a Macintosh with System 7 on a 68020 (or better) or a Power PC.
Macintosh and Windows J for Macintosh is a port of J for Windows.

Create and install in a new folder, such as J4.

Help Files
The J documentation is in Microsoft help files and the Microsoft folder contains
the application that displays them.

The Microsoft folder contains files that are distributed with various systems and
may already be on your system. Check if you already have a copy of the file
Microsoft Help and check file dates to see if the diskette version is more recent. To
install the diskette version, drag the Microsoft folder to the Extensions folder in
your System Folder.

Double-click the J Dictionary icon and experiment with the help system.

J Font
Drag JFontR to your System Folder and reply OK to put it in the Fonts folder.
JFontR fonts have box drawing characters used by J.

Loading J
Double-click the J icon to start J and run the standard profile script.

Menu shortcuts
Menu shortcuts use the Command key where Windows uses the Ctrl key. The only
difference is

Run/Window where Ctrl+W conflicted with Command+W for close.

Command+Y is Run/Window.

Command+W is close window (also for window driver windows).

Command+? opens J Dictionary help and displays the vocabulary.

F1 is the same as Command+? (Windows convention).

Ctrl+F1 opens J User help and displays the windows driver reference.

Ctrl+F6 cycles through session manager windows.

F2 through F9 are Tool menu shortcuts.

F10 enters a menu state similar to Windows. Press F10 and navigate the menu with
arrows and letters. Select an item, press Esc, or click the mouse to exit this state.

Icons
J program is a boxed black J.

J scripts are a boxed black J with a bent corner.

Icon shortcuts
Double-click a script to run.

Ctrl+double-click a script to open.

Window Driver
Window Driver windows are resizable but do not display to resize icon in the
lower right corner. Resizable windows in Windows have a thicker frame and do
not have a resize icon.

glfloodfill and glchord commands are not supported.

Ownerdraw buttons and listboxes are not supported.

Windows DIB (Device Independent Bitmap) files display in an ISIPICTURE
window. DIB files usually have a suffix of .dib or .bmp.

Mac PICT files display in an ISPICTURE window.

ODBC access is not supported.

Floating point
J for the Mac (not the PowerPC) does not support the floating point coprocessor.

p12

Directory Paths in J
Directory Foreigns

1!:43 y Query Current Working Directory.
1!:44 y Set Current Working Directory.
1!:45 y Query Default Profile

See J Help on !: (foreign conjunctions) for further details.

Directory Verbs

The J profile defines the following verbs in the z locale:

jsystempath points to J system directory
jcwdpath current working directory
jtemppath temporary directory
juserpath user directory
jconfigpath user configuration directory
jaddonspath addons directory

These verbs are used to provide the full pathname for files, and to ensure that the
path separator is correct for the host operating system. For example:
jsystempath 'system\main\dates.ijs'
c:\j5\system\main\dates.ijs

 jconfigpath 'startup.ijs'
c:\j5\user\config\startup.ijs

 jtemppath''
c:\j5\temp

Note that jsystempath points to the J system directory, while other verbs include
their directories.

The verbs, other than jcwdpath, are created from corresponding nouns defined in
the j locale, and specified in the J profile script (profile.ijs), namely SYSTEM,
TEMP, ADDON, USER and CONFIG. For example:18!:4 <'j' system=: profile
{.~ profile i: pathsep user=: system,pathsep,'user'

These nouns are only used when creating the directory verbs. They are not
referenced after J has been loaded and the profile has been run. The directory verbs
are created before running the user's Startup script.

User Configuration

You can configure the directory verbs by changing the nouns defined in
profile.ijs. Otherwise, once the profile has been run, you can configure these
verbs only by redefining them - changing the corresponding nouns has no effect. In
particular, you would need to redefine the directory verbs if you wanted to
configure them in your Startup script.

p13

Session Manager

Session Manager p14
Execution Windows p15
Script Windows p16
Input Log p17
Menus p18
Status Bar p19
Controlling p20

p14

Session Manager

J for Windows combines the language interpreter with a user interface called the
session manager.

The session manager is a Windows multiple document interface (MDI) application,
which allows the use of several document windows at one time within the same
session. The session manager has a header, a menu line, Status Bar (which may be
turned off), and one or more document windows.

You use the session manager by working with the document windows. You can
have as many of these windows open as you wish - each window is attached to the
same session. Only one window is active at a time.

There are two types of document window: execution windows and script windows:

● An execution window allows sentences to be evaluated. When you type into the
execution window and press Enter, the sentence you entered is executed, and the
result is displayed below.

● A script window allows sentences to be entered without being evaluated.
Typically you use script windows to write your applications, then run the scripts by
loading them into an execution window.

Both window types represent ordinary files that can be saved during the session for
use later on. Both are Windows edit controls, and you can use standard Windows
commands to manipulate them, for example you can cut and paste between the
windows and the Clipboard. You can move them about, resize them and minimize
or maximize them.

p15

Execution Windows

Execution windows are distinguished by their file extension of .ijx. When you load
J, it creates a new execution window for the session. These windows are named
1.ijx, 2.ijx etc. By default, 1.ijx is used, however, if a file of this name already
exists, the next available unused name is picked.

You can type sentences into an execution window. When you press Enter, the
system reads the line on which the cursor is positioned. If this line is at the foot of
the execution window, it is executed and the result displayed below. Otherwise, the
line is copied to the foot of the execution window - press Enter again to execute it.

There is always at least one execution window, but you can open as many as you
wish - all are attached to the same session. This is useful for experimenting with
some sentences - you could open a new execution window to do so, without
writing to your original execution window. Open a new execution window by
selecting New IJX from the File menu.

The execution windows 1.ijx, 2.ijx and so on represent temporary files. That is,
while the J session is active, if you have a window 2.ijx, then there is a file of that
name (temp\2.ijx), but when you close the window or terminate the J session, this
file is deleted. If you want to save these files, you must explicitly save them with a
name other than n.ijx (for integer n); for example, mywork.ijx. If you do save an
execution window in this way, the session manager treats it as a permanent file,
and will save the file again when you close the window or terminate the session.
You can load it in your next session - it will again be treated as a permanent file.

In no case are you prompted when closing an execution window - if it is
temporary, the file is deleted; if it is permanent, the file is saved.

Note that you cannot close the original execution window.

p16

Script Windows

Script windows are typically distinguished by their file extension of .ijs. Note that
this extension is not required - in fact any file that does not have an extension of
.ijx is treated as a script window. However, it is good practice to use .ijs for any
file intended as a J script.

When you create new script windows, the names used are 1.ijs, 2.ijs and so on. By
default, 1.ijs is used, however if a file of this name already exists, the next
available unused name is picked.

You can type sentences into a script window, but these are not evaluated. When
you press Enter, the cursor is simply moved to the line below. To run a script
window, you can either select an execution window and then enter a sentence to
load the corresponding script file, or you can run it directly by selecting one of the
options from the Run menu or pressing the equivalent Ctrl key:

Window Ctrl+W runs script window

Selection Ctrl+E runs selected text only

Line Ctrl+R runs current line only

File Ctrl+T runs a script file, selecting from the File/Open
dialog box

By default, these options are run silently - script output will only display if there is

an error. To run the options with display on, hold down the Shift key when you
click on the menu option, or press Shift-Ctrl-key.

When you select the Run/Window menu option, the session manager first saves the
script as a file (if changes have been made), then loads this file into the most
recently active execution window. In some cases, you do not have to switch to the
execution window at all - for example if you are developing a Windows
application, then you can create and test the parent and child controls directly from
the script window.

You can open as many script windows as you wish - all are attached to the same
session.

The script windows 1.ijs, 2.ijs and so on represent temporary files. That is, while
the session is active, if you have a window 2.ijs then there is a file of that name
(temp\2.ijs), but when you close the window or terminate the session, you are
prompted for the file to be deleted. You can save these files if you wish with the
same name, but when you load them again, they are still treated as temporary and
you will again be prompted to delete them when they are closed.

If you explicitly save them with a name other than n.ijs, for example, mywork.ijs,
then the J session manager treats them as permanent files. If you close a permanent
file or terminate the J session, you are prompted to save the file, if it has been
changed. You are also prompted to save the file when you first save changes to a
permanent script file that you have loaded in a session (which may be when you
run it as a script).

Prompting for script windows is therefore as follows:

● if the file is temporary (i.e. the name is n.ijs), you are prompted to delete the file
when it is closed.

● if the file is permanent (any name other than n.ijs) and you have made changes
to it, you are prompted to save the file when it is closed, or when you first run it as
a script.

p17

Input Log

All sentences entered into execution windows are stored in an input log. You can
recall entries by either pressing the Ctrl up-arrow and Ctrl down-arrow keys to
cycle backwards and forwards through the log; or by selecting an entry from the
Input Log listbox obtained from menu Edit|Input Log or by pressing Ctrl+D.

When you recall an entry from the input log, it is read into the currently active
execution window, or the most recently active execution window if the currently
active window is a script window. Only one input log is maintained, even if there
is more than one execution window.

The input log does not store duplicate entries. If you recall an item from the middle
of the log and execute it, the item now only appears at the end of the log - the entry
in the middle of the log is deleted.

p18

Menus

The session manager includes a Menu bar which for the most part, contains
standard Windows menus:

The File menu is used for file access: open, close, save, delete, print. It also
includes a list of the most recently accessed files. You can also exit the session by
selecting: File, Exit.

The Edit menu provides standard edit capabilities, Undo, Cut, Copy and Paste.
You can also use this menu to restore a window from file (overwriting changes
made since the file was originally loaded), or to toggle a file's Read Only status. A
file marked Read Only may not be changed, until its Read Only status is explicitly
removed.

Edit|Form Edit... loads the Form Editor
Edit|Project Manager... loads the Project Manager
Edit|Configure... loads the session configuration dialog.

The Run menu allows you to run a script window, highlighted text, the current
line, or a script file, either silently or, if the Shift key is held down, with output
displayed in an execution window. You can also set the locale into which a script
is loaded.

The Tools menu contains user-defined items. This menu can be customized as
described in the section below on Session Manager Commands.

The Studio menu lets you run the Labs and Demos.

The Window menu allows standard window positioning (e.g. Tile, Cascade), and
allows you to select a window as the current active window. (You can also select
the active window by pressing Ctrl-F6 to cycle through the active windows.)

The Help menu provides help facilities, including access to the full text of the J
manuals.

p19

Status Bar

The Status Bar is shown at the foot of the screen. It displays a help message,
followed by several status boxes:

● Ready/Running shows whether the interpreter is waiting for input, or running
the previous input.

● CAPS shows the status of Caps Lock

● NUM shows the status of Num Lock
● The two numbers (e.g. 00011/0021) show the cursor position in the active
window.

You can hide the Status Bar by unchecking the Status Bar item in the
Edit|Configure... dialog.

p20

Controlling the Session Manager

A J program can use the Window Driver wd to access some aspects of the Session
Manager, such as the Tools menu document windows. The names of Window
Driver commands specific to the session manager start with the letters sm.

Tools Menu
You can add your own menu items to the Tools menu using smsetcmd. These also
define the function keys. Your menu items can be accessed either by selecting the
item directly from the Tools menu, or by pressing the corresponding function key.
Function keys F2-F9 are available for this purpose.

The form is:
 wd 'smsetcmd num type name sentence;'

where:

● num corresponds to the function key being defined.

● type is one of :
0 = remove definition
1 = add definition, when invoked displays the sentence being run.
2 = add definition, when invoked does not display the sentence being run.

● name is the text that appears on the Tools menu

● sentence is the sentence that will be run when the menu item is invoked.

For example, the following will assign the sentence load 'laserjet' to the
function key F2 and corresponding menu item LaserJet. The sentence will display
when invoked:
 wd 'smsetcmd 2 1 "LaserJet" "load ''laserjet''";'

When you next select the Tools menu, you will see the new menu item LaserJet. It
is a good idea to define a "HotKey" letter and include the number of the
corresponding function key in the menu item. If you do this, you can also right-
justify the function key name by preceding it with a TAB. Thus, the above
command could have been entered as:
 wd 'smsetcmd 2 1 "&LaserJet',TAB,'F2" "load ''laserjet''";'

The menu item will now appear as:
 LaserJet F2

To remove this definition, enter:
 wd 'smsetcmd 2 0;'

Document Windows
There are several Window Driver commands to access the document windows. In
most cases, you must first select the window that is to be the target of subsequent
commands (this need not be the active window). To select a window, you actually
select its filename:

qsmact file name of selected window
qsmall file names of all windows
qsmcsize size of current execution

window
qsmout file name of current execution

window
qsmsize size of selected window (pixels)
qsmwh size of MDI client area (pixels)
smappend appends text to selected window
smcascade cascade windows
smclose close selected window

smfocus activates selected window
smmove xywh move and size selected window

(pixels)
smopen opens selected filename, if not

already open
smread reads data from selected window
smsave saves selected window (if

modified)
smscroll n scrolls selected window
smsetselect set selected text
smsel selects window, by its filename
smshow param shows selected window, with

parameters from the set:

sw_hide sw_maximize
sw_minimize sw_restore
sw_show sw_showmaximized
sw_showminimized
sw_showminnoactive
sw_showna sw_shownoactivate
sw_shownormal

smssetcmd n t name sentence modifies Tools menu
smtile tile windows down
smtilea tile windows across
smwrite writes text to selected window

For example, the following will open file user\mywork.ijs for editing and make it
the active window:
 wd 'smsel "user\mywork.ijs";smopen;smfocus'

Having opened the window, you could write some text (e.g. in the noun TXT) to it
as follows:
 wd 'smwrite *',TXT

p21

Script Libraries

Directory Layout p29
Script Library Overview p30
scriptdoc utility p31

Definition Summaries p80
Definitions by Script p81

p22

system\main

The is the main script directory.

Lib scripts
Scripts with "lib" in the name are automatically loaded by the standard profile, In
distributing scripts, you can assume that these definitions are available. In addition,
these scripts, except for jadelib, are included in any projects built by the Project
Manager. jadelib is an exception since it is has facilities intended to support
development, not runtime applications.

colib

class/object library (z locale)

jadelib

Standard jade library (j locale)

loadlib

script load library (j locale)

stdlib

standard J library (z locale)

winlib

standard windows library (z locale)

Other scripts

compare

comparison utilities

convert

conversion utilities

dates

date and time utilities

dd

data driver utilities

debug

debug definitions and utilities

dir

directory utilities

dll

utilities for calling DLLs

files

file access utilities

format

formatting utilities

gl2

2D graphics definitions

gl3

3D graphics definitions

jmf

mapped files

misc

miscellaneous utilities

myutil

example scripts for user definitions

numeric

numeric utilities

pack

package utilities

parts

partition functions

regex

Regular expression pattern matching

socket

utilities for using sockets

strings

string manipulation

text

text utilities

trig

trigonometric functions

validate

data validation

p23

system\packages

This directory contains various utility packages.

autocode\grid

grid autocode

color\cfmt

color formatter

color\cfmtfns

color fmt functions

color\color16

table of 16 primary colors supported by HTML

color\colortab

colortable used in J (from Internet Explorer)

color\ns216

Netscape primary colors (256 color table)

color\ntcolor

name that color (displays color table)

color\rgb

convert between color triples and RGB values

color\wdcolor

color table for wd 'qcolor'

color\xwin

X Windows color table

dde\server1

Sets up J as a hot-link DDE server.

dde\server2

Sets up J as a cold-link DDE server.

files\csv

CSV file access utilities

files\dbase

dBASE file access utilities

files\jfiles

Component File definitions

files\keyfiles

Keyed-file definitions

files\kfiles

Older keyed-file definitions (superceded by keyfiles.ijs)

files\nfiles

file read/write in various formats

finance\actfns

actuarial functions

finance\actutil

actuarial misc utilities

finance\interest

interest functions

graphics\bmp

supports bitmap files

graphics\gnuplot

supports gnuplot for Windows

graphics\gputil

gnuplot utility functions

graphics\isigmain

supports graphics using the isigraph control

graphics\isigraph

loads all isigraph files

graphics\isigutil

isigraph utilities

graphics\vkeys

vkey definitions

math\bigpi

calculate several digits of pi

math\brent

Brent's method in J

math\det

definitions for determinants

math\fermat

fermat - find factor of n near square root

math\gcd

calculate GCD

math\integer

various integer definitions

math\integrat

various methods for numeric integration

math\jacobi

jacobi's method for eigenvalues and vectors

math\legendre

legendre symbol and quadratic residues

math\linear

solve linear equations

math\makemat

make various matrices

math\matfacto

matrix factorization

math\mathutil

math utilities

math\matutil

matrix utilities

math\mean

various means

math\numbers

various number definitions

math\pollard

Pollard factorizations

math\poly

polynomial functions

math\primutil

prime testing programs

math\quatern

definitions for quaternions

math\spline

calculate cubic spline

math\svd

singular value decomposition

misc\datefmt

date formatters

misc\evolute

calculate evolutes

misc\fgh

displays calling sequence for J expressions

misc\fields

symbolic field indexes and access functions.

misc\ieee64

IEEE 64 bit representation of real number

misc\primitiv

names for primitives

misc\rtfview

view rtf text in richedit control

misc\telecom

serial port I/O API cover functions

misc\vkeyshow

shows vkey names

misc\xenos

suggested names for external conjunctions

ocx\graph

GraphLib definitions

ocx\ocxutil

Utilities for OCX controls

print\label

print labels

print\laserjet

LaserJet utilities

print\print

print package

print\printn

prints text in n columns on a page

print\write

write package

regex\regbuild

utilities for building regular expressions

regex\regdemo

regular expression demo

regex\regj

nouns for applying regular expressions to J code

regex\regjbld

build regular expressions for J code

stats\random

various random utilities

stats\statdist

Statistical Distributions

stats\statfns

Statistical functions

stats\stats

load statistics files

p24

system\classes

This directory contains definitions for J classes.

grid\jfgrid

jfgrid class

grid\jfreport

provides jfreport form

grid\jtable

provides jtable form

grid\jtgrid

jtable grid classe

grid\jwatch

watch form

grid\jwgrid

provides watch grid for data

grid\jzgrid

base grid class

input\jinput

provides jinput form

opengl\jzopengl

base opengl class

opengl\opengl

loads the jzopengl class

pbc\pbc

example class: baggage check

pbc\pbcx

example extend class baggage check

plot\jzplot

base plot class

plot\plot

session definitions for plot

plot\plotdefs

plot defaults

p25

system\extras

This directory is used for system facilities, such as labs, configuration and help
files. The layout is:

extras\config

configuration files

extras\help

help files

extras\java

Java interface support

extras\labs

labs

extras\migrate

migration aids

extras\order

order form

extras\template

template files

extras\util

utilities

p26

system\examples

This directory contains the demos and examples that are available from the menu
Studio|Demos....

p27

user

This is an empty directory set up as a convenience for the user's own scripts. The
layout is:

classes

class definitions

config

configuration

projects

project files

p28

temp

This is the default directory used for temporary ijs and ijx files created by the J
system.

You can choose another directory for this purpose using the /temp start up
parameter. This would be useful if J were installed on a LAN where you do not
have write access.

p29

Directory Layout

The J executables j.exe and j.dll are installed in the main J directory, for example,
c:\j406.

The following system subdirectories are created by the J installation:

System\Main

Main libraries and utilities

System\Packages

Packages (e.g. Stats, Printing)

System\Classes

Class definitions (e.g. Grid, Plot)

System\Extras

Various system utilities

System\Examples

Various Examples

In addition, two other subdirectories are created when J is installed:

User

User Definitions

Temp

Temporary files

Subdirectory Addons is created when one of the J Addons is installed.

p30

Script Library Overview

system\main p22
system\packages p23
system\classes p24
system\extras p25
system\examples p26
user p27
temp p28

p31

Script Documentation

System scripts are documented in comments in the scripts themselves. The
scriptdoc utility can be used to view the documentation. To load enter:

 load 'scriptdoc'

To view script documentation, e.g. for dates and data driver, enter:

 scriptdoc 'dates dd'

Documentation Conventions
The following conventions are used to document J system scripts, and are
recognized by the scriptdoc utility.

Scripts are documented in comment lines (i.e. lines beginning with NB.). Multi-line
comments are consecutive lines beginning with NB. with no break. The first line of
a multi-line comment is used for summary documentation.

The script itself is documented at the beginning. The first line describes the script,
i.e

NB. script description...

Definitions produced by the script are documented in comments where the first
comment line begins NB.* and has the form:

NB.*name type description

where type is a single letter:

a adverb

c conjunction

n noun

v verb

The rest of a multi-line comment for a definition is free form, however,
conventionally it may include lines beginning:

form: describes the usage of the definition, e.gNB. form: calendar
year [,months]

example: example, e.g.

NB. example:
NB. todate 72460
NB. 1998 5 23

Other NB. comment lines in the script are ignored for documentation purposes.

p32

bmp: supports bitmap files

Name Type Description

hue verb generate color from color set

readbmp verb read bitmap file, returning RGB data

readbmphdr verb read header from bitmap file

viewbmp verb bitmap viewer using isipicture control

viewrgb verb view numeric matrix of RGB data

writebmp verb write bmp file from RGB data

hue
generate color from color set
x. is color set
y. is values from 0 to 1, selecting color

readbmp
read bitmap file, returning RGB data

new version thanks to Andrew Nikitin (J Forum 5 Sep 2002)

readbmphdr
read header from bitmap file
returns: bitsize, rows, columns

viewbmp
bitmap viewer using isipicture control

x. = [parentid [;parentname]]
y. = filename(s)

e.g. viewbmp jsystempath 'system\examples\data\j.bmp'

viewrgb
view numeric matrix of RGB data
 (writes bitmap file, then views it)
x. = [parent]
y. = matrix

writebmp
write bmp file from RGB data

Form: data writebmp filename [;minimum bitsize]

picks appropriate bit size of 4 8 or 24, subject
to optional minimum bit size.

p33

colib: class/object library

Name Type Description

coclass verb set current co class

cocreate verb create object

cocurrent verb set current locale

codestroy verb destroy current object

coerase verb erase object

coextend verb add class locale to path (before z)

cofullname verb return name with locale qualifier

coinsert verb insert into path (before z)

coname verb return current co name

conames verb formatted co name list

conew verb create object

conl verb return co name list

copath verb set/get co path

coreset verb destroy object locales,

coerase
erase object
example: coerase <'jzplot'

coextend
add class locale to path (before z)
appends to COCLASSPATH
example:
 coextend 'cdir'
 coextend 'cdir pobj'
 coextend 'cdir';'pobj'

coinsert
insert into path (before z)
 coinsert 'cdir'
 coinsert 'cdir pobj'
 coinsert 'cdir';'pobj'

conl
return co name list
form: conl n
 0 e. n = return named locales
 1 e. n = return numbered locales
 conl '' = return both, same as conl 0 1

coreset
destroy object locales,
other than for jijs and jijx windows

p34

color16: table of 16 primary colors supported by HTML

Name Type Description

COLOR16 noun table of HTML primary colors

p35

colortab: main colortable used in J

Name Type Description

COLORTABLE noun main colortable

p36

compare: comparison utilities

Name Type Description

compare verb compare character data

fcompare verb compare two text files

compare
compare character data
returns list of differences.
arguments may be character strings, with lines delimited
by LF, or character matrices (trailing blanks ignored).

for Mac, tolerates lines delimited by CR.

result shows lines not matched, in form:
 n [l] text
where:
 n = 0=left argument, 1=right argument
 [l] = line number
 text = text on line

omits comparison of swapped lines where
1e7 <: product of number of non-trivial lines

fcompare
compare two text files
form: opt fcompare files
 opt is optional suffix
 files is 2 file names or prefixes
example:
 fcompare jsystempath 'system\main\myutil.ijs
\jbak\system\main\myutil.ijs'
 '\myutil.ijs' fcompare jsystempath 'system\main
\jbak\system\main'

p37

convert: conversion utilities

Name Type Description

av verb convert between characters and indices

detab verb remove tab stops

dfh verb decimal from hex

hex adverb create verb for hex calculation

hfd verb hex from decimal

mfv verb matrix from vector

quote verb quote text

vfm verb vector from matrix

av
convert between characters and indices
e.g. av 'abcde'

detab
remove tab stops
remove tabs from character string
left argument is tab width, default 4

hex
create verb for hex calculation
e.g. 'FF' + hex '8'

mfv
matrix from vector
[delimiter] mfv vector
default delimiter is ' '

quote

quote text
quote 'Pete''s Place'

vfm
vector from matrix
vector from matrix, lines separated by LF

p38

coutil: class/object utilities

Name Type Description

cofind verb find objects containing name in object:

coinfo verb return info on co classes

conouns verb nouns referencing object

conounsx verb object references with locales

copathnl verb path name list

copathnlx verb formatted path name list with defining classes

coselect verb select current locale

costate verb state of class objects

coinfo
return info on co classes
returns noun refs;object;creator;path

conounsx
object references with locales
returns: object;references;locales

copathnl
path name list
path name list

coselect
select current locale

requires wdselect

p39

csv: read/write comma-separated value data (*.csv) files

Name Type Description

readcsv verb reads csv file into a boxed array

writecsv verb writes a boxed array to a csv file

p40

dates: date and time utilities

Name Type Description

calendar verb calendar for year [months]

getdate verb get date from character string

isotimestamp verb format time stamps as: 2000-05-23 16:06:39.268

timestamp verb format time stamps as: 23 May 1998 16:06:39

todate verb converts day numbers to dates

todayno verb converts dates to day numbers

tsdiff verb differences between pairs of dates.

tsrep verb timestamp representation as a single number

valdate verb validate dates

weekday verb returns weekday from date, 0=Sunday ... 6=Saturday

calendar
calendar for year [months]
returns calendar for year, as a 12 element list

argument is one or more numbers: year, months
If no months are given, it defaults to all months.

example:
 calendar 1998 5 6
+---------------------+---------------------+
May	Jun
Su Mo Tu We Th Fr Sa	Su Mo Tu We Th Fr Sa
1 2	1 2 3 4 5 6
3 4 5 6 7 8 9	7 8 9 10 11 12 13
10 11 12 13 14 15 16	14 15 16 17 18 19 20
17 18 19 20 21 22 23	21 22 23 24 25 26 27
24 25 26 27 28 29 30	28 29 30
31	
+---------------------+---------------------+

getdate
get date from character string
form: [opt] getdate string

useful for input forms that have a date entry field

date forms permitted:
 1986 5 23
 May 23 1986
 23 May 1986
and:
 opt=0 (days first - default)
 23 5 1986
 opt=1 (months first)
 5 23 1986

other characters allowed: ,-/:

if not given, century defaults to current

only first 3 characters of month are tested.

examples: 23/5/86; may 23, 1986; 1986-5-23

requires: valdate

isotimestamp
format time stamps as: 2000-05-23 16:06:39.268
y. is one or more time stamps in 6!:0 format

timestamp
format time stamps as: 23 May 1998 16:06:39
y. is time stamp, if empty default to current time

todate
converts day numbers to dates
converts day numbers to dates, converse <todayno>

This conversion is exact and provides a means of
performing exact date arithmetic.

y. = day numbers

x. = optional:
 0 - result in form <yyyy mm dd> (default)
 1 - result in form <yyyymmdd>

example:
 todate 72460
1998 5 23

 todate 0 1 2 3 + todayno 1992 2 27
1992 2 27
1992 2 28
1992 2 29
1992 3 1

todayno
converts dates to day numbers
converts dates to day numbers, converse <todate>

y. = dates
x. = optional:
 0 - dates in form <yyyy mm dd> (default)
 1 - dates in form <yyyymmdd>
0 = todayno 1800 1 1, or earlier

example:
 todayno 1998 5 23
72460

tsdiff
differences between pairs of dates.

form: end tsdiff begin
 end, begin are vectors or matrices in form YYYY MM DD
 end dates should be later than begin dates

method is to subtract dates on a calendar basis to determine
integral number of months plus the exact number of days
remaining.
This is converted to payment periods, where # days remaining are
calculated as: (# days)%365

example:
 1994 10 1 tsdiff 1986 5 23
8.35799

tsrep
timestamp representation as a single number

form: [opt] timerep times
 opt=0 convert timestamps to numbers (default)
 1 convert numbers to timestamps

timestamps are in 6!:0 format, or matrix of same.

examples:
 tsrep 1800 1 1 0 0 0
0
 ":!.13 tsrep 1995 5 23 10 24 57.24
6165887097240

valdate
validate dates
form: valdate dates
dates is 3-element vector
 or 3-column matrix
 in form YYYY MM DD
returns 1 if valid

weekday
returns weekday from date, 0=Sunday ... 6=Saturday
arguments as for <todayno>, e.g.

 5 = weekday 1997 5 23 = 1 weekday 19970523

p41

dd: data driver utilities

Name Type Description

ddcheck verb check response, display any error message

ddcnm verb column names selected by ddsel

ddcnt verb rowcount of last ddsql command

ddcol verb column names in the table

ddcom verb commit transaction

ddcon verb connect to data source

dddis verb disconnect from data source

ddend verb end sql statement started with ddsel

dderr verb error info on last command (name, source, warning, msg)

ddfch verb as ddfet, but with data in columns

ddfet verb fetch next record from selected data

ddrbk verb rollback transaction

ddsel verb prepare and execute sql statement (selection)

ddsql verb prepare, execute, and end sql statement

ddsrc verb data source names available from ODBC manager

ddtbl verb selection handle for tables in data source

ddtrn verb begin transaction

ddcheck
check response, display any error message
example: ch=: ddcheck ddcon 'dsn=Access97'

ddcnt
rowcount of last ddsql command

utility:

p42

debug: debug definitions and utilities

Name Type Description

dberm verb last error message

dberr verb last error number

dbg verb turn debugging window on/off

dbjmp verb jump to line number

dblocals verb display names and locals on stack

dblxq verb latent expression query

dblxs verb latent expression set

dbnxt verb run next (skip line and run)

dbq verb queries suspension mode (set by dbr)

dbr verb reset, set suspension mode (0=disable, 1=enable)

dbret verb exit and return argument

dbrr verb re-run with specified arguments

dbrrx verb re-run with specified executed arguments

dbrun verb run again (from current stop)

dbs verb display stack

dbsig verb signal error

dbsq verb stop query

dbss verb stop set

dbst verb returns stack text

dbstack verb displays call stack with header

dbstk verb call stack

dbstop verb set stops on all lines in namelist

dbstopme verb set stops on current definition if y.

dbtrace verb trace control

dblocals
display names and locals on stack
form: [namelist] dblocals stack indices (default all)
example:
 dblocals '' display all local names in stack
'abc Z' dblocals i.5 display names abc and Z where found
 in first 5 definitions on stack

dbstack
displays call stack with header
if x.=0 ignores definition and source script (default)
 1 displays full stack
y. is the number of lines to display, all if empty
limits display of &.> item to length 30.

dbstopme
set stops on current definition if y.
does nothing if suspension is off

p43

dir: directory utilities

Name Type Description

dir verb directory listings

dircompare verb compare files in directories

dirfind verb find name in directory

dirpath verb directory paths

dirs verb browse files in directory

dirss verb directory string search

dirssrplc verb directory string search and replace

dirtree verb get filenames in directory tree

dirused verb get count and space of files in directory tree

dir
directory listings

y. = dos file specification:
 if empty, defaults to *

x. is optional:
 - if not given, defaults to 'n'
 - if character, returns a formatted directory,
 where x. is the sort option:
 d=by date
 n=by name
 s=by size
 - if numeric, there are 1 or 2 elements:
 0{ 0= list short names
 1= boxed list of full pathnames
 2= full directory list
 1{ 0= filenames only (default)
 1= include subdirectories

subdirectories are shown first
filenames are returned in lower case

e.g. dir ''
 1 dir jsystempath 'system\main\d*.ijs'

dircompare
compare files in directories

form: [opt] dircompare dirs

 dirs = directory names
 opt is optional, with up to three elements:
 0{ =0 short file comparison (default)
 =1 long file comparison
 1{ =0 given directory only (default)
 =1 recurse through subdirectories
 2{ =0 file contents only (default)
 =1 also compare timestamps

e.g. dircompare 'main \jbak\main'

returns text result or error message

dirfind
find name in directory
find name in directory

form: string dirfind directory

returns filenames in directory tree containing string

e.g. 'jfile' dirfind 'packages'

dirpath
directory paths
return directory paths starting from y.
optional x.=0 all paths (default)
 1 non-empty paths (i.e. having files)
e.g. dirpath 'examples'

dirs
browse files in directory
e.g. dirs jsystempath 'system\main*.ijs'

dirss
directory string search

form: string dirss directory

searches for files in directory tree containing string,
returning formatted display where found.

e.g. 'create' dirss 'main'

If x. is a 2-element boxed list, calls dirssrplc

dirssrplc
directory string search and replace
form: (old;new) dirssrplc files
example:
 ('old';'new') dirssrplc jsystempath 'system\main*.ijs'

dirtree
get filenames in directory tree
return filenames in directory tree as boxed matrix
optional x. is a timestamp to exclude earlier files
each row contains: filename;timestamp;size
e.g. dirtree ''
 dirtree 'main'
 dirtree jsystempath 'system\packages*.ijs'
1997 5 23 dirtree '' - files dated on or after date.
directory search is recursive through subdirectories
filenames are returned in lower case

p44

dll: utilities for calling DLLs

Name Type Description

AND verb bitwise AND (&)

bitwise adverb bitwise operations

cd verb call DLL procedure

cdcb verb callback address

cder verb error information

cderx verb GetLastError information

cdf verb free DLLs

fc verb float conversion

fh verb free header

gh verb allocate header

ic verb integer conversion

mema verb memory allocate

memf verb memory free

memr verb memory read

memw verb memory write

OR verb bitwise OR (|)

symget verb get address of locale entry for name

symget verb set array as address

XOR verb bitwise XOR (^)

bitwise
bitwise operations
(monadic and dyadic)
e.g. 7 = 1 OR 2 OR 4
 = OR 1 2 4

ic
integer conversion
conversions
e.g.
 25185 25699 = _1 ic 'abcd'
 'abcd' = 1 ic _1 ic 'abcd'
 1684234849 1751606885 = _2 ic 'abcdefgh'
 'abcdefgh' = 2 ic _2 ic 'abcdefgh'

symget
set array as address
15!:6 - get address of locale entry for name
15!:7 - set array as address
15!:8 - allocate header
15!:9 - free header

p45

files: file access utilities

Name Type Description

fappend verb append text to file

fappends verb append string to file

fcopynew verb copies files if changed

fcopynews verb copies files as strings if changed

fdir verb file directory

ferase verb erases a file

fexist verb test if a file exists

fread verb read file

freadr verb read records from flat file

freads verb read file as string

freplace verb replace text in file

fselect verb file selection dialog

fsize verb return file size

fss verb file string search

fssrplc verb file string search and replace

fstamp verb returns file timestamp

fview verb view file

fwrite verb write text to file

fwrites verb write string to file

fappend
append text to file
The text is first ravelled. The file is created if necessary.
Returns number of characters written, or an error message.
form: text fappend filename
example:

 'chatham' fappend 'newfile.txt'
7

fappends
append string to file
The text is first ravelled into a vector with each row
terminated by the CRLF pair. Any single LF or CR characters
in the text are converted into the CRLF pair.
The file is created if necessary. Returns number of characters
written, or an error message.

fcopynew
copies files if changed
form: tofile fcopynew fromfiles
returns: 0, size not changed
 1, size changed
 _1 failure

fcopynews
copies files as strings if changed
form: tofile fcopynews fromfiles
returns: 0, size not changed
 1, size changed
 _1 failure

fdir
file directory
example:
 fdir jsystempath 'system\main\s*.ijs'

ferase
erases a file
Returns 1 if successful, otherwise _1

fexist
test if a file exists
Returns 1 if the file exists, otherwise 0.

fread
read file
y. is filename {;start size}
x. is optional:
 = b read as boxed vector
 = m read as matrix
 = s read as string (same as freads)

freadr
read records from flat file
y. is filename {;record start, # of records}
records are assumed of fixed length delimited by
one (only) of CR, LF, or CRLF.
the result is a matrix of records.

freads
read file as string
y. is filename {;start size}
x. is optional (b and m same as fread):
 = b read as boxed vector
 = m read as matrix
freads

freplace
replace text in file
form: dat freplace file;pos

fselect
file selection dialog
y. = DOS filespec or ''
x. = optional file type list
returns user selection

fsize
return file size
returns file size or _1 if error

fss
file string search
form: str fss file
search file for string, returning indices

fssrplc
file string search and replace
form: (old;new) fssrplc file

fview
view file
uses standard Windows edit control,
which is limited to around 20K size.

p46

format: formatting utilities

Name Type Description

center verb center text in given width

clipfmt verb format data for clipboard

clipunfmt verb unformat data read from clipboard

colhdr verb define column headers

expandby conj expand data with a given value

expandn verb expand data at every nth item

flatten verb flatten array to a character string

fmt verb format a numeric matrix, various format specs

fold verb fold text to width

hexdump verb show text as hex and ascii characters

nfmt verb simple numeric formatter

ruler verb formatted ruler

sqzint verb squeeze list of positive integers into short form

sqzrun verb squeeze list of numbers into short form

xfmt verb format extended integers

center
center text in given width
form: width center text

clipfmt
format data for clipboard
format array of rank 0 1 or 2 for clipboard.
columns are separated by TAB, rows by CRLF.

clipunfmt

unformat data read from clipboard
returns boxed matrix from clipboard result,
recognizing TAB and CRLF as separators.
characters are not converted to numbers.
note this is not a true inverse of clipfmt.
e.g. try: clipunfmt clipfmt i.5 6

colhdr
define column headers
returns matrix of column headers.

y. = list with columns delimited by semicolons; and lines
 in each column delimited by commas.
x. is wid or (wid;just), where:
 wid = column widths
 just = a singleton or vector of:
 0 = centre header, then right justify (default)
 1 = center header in wid
 2 = right justify
 3 = left justify

e.g. hdr=.
'Number,of,employees;Total,salary;Monthly,net,payment'
 (15 12 12;1) colhdr hdr

expandby
expand data with a given value
e.g. 0 1 0 0 1 expandby 99 [10 20
 99 10 99 99 20

expandn
expand data at every nth item
n expandn dat
expand array at every nth cell.
e.g. 'ABC DEF G' = 3 expandn 'ABCDEFG'

flatten
flatten array to a character string
flattens array to a character string with same display

fmt
format a numeric matrix, various format specs
syntax: specs fmt nums

nums = numeric vector or matrix or boxed list
 a vector is treated as a 1-row matrix.
 a boxed list is treated as boxed columns
specs= formats, separated by commas, applied
 to each column, or item if boxed.

formats are either edit or positional:
edit formats have the form: {o}w{.d}, where:
 o is optional qualifiers from the set:
 nr=n repetitions (must be given first)
 b=blank if zero
 c=commas
 z=zero fill
 w is field width
 d is decimal places

positional formats have the form:
 xn = n blanks, e.g. x3

e.g. 'c10.3,x2,2rz5' has formats:
 width 10, decimal places 3, commas
 2 blanks
 width 5, zero fill, repeated twice

fold
fold text to width
syntax: {width} fold data
data is character vector
width defaults to screenwidth

nfmt
simple numeric formatter
simple format of numeric vector or matrix in readable form.
opt is optional, up to 3 elements:
 0 = maximum decimal places, max 9 (4)
 1 = minimum field width (0)
 2 = display width (screenwidth)

ruler
formatted ruler
returns a formatted ruler
e.g. ruler 75 horizontal
 1 ruler 30 vertical

sqzint
squeeze list of positive integers into short form
Squeeze list of positive integers into short character list.
If x. = 1, sort y. first.
e.g. sqzint 1 2 3 7 8 9 10 = 1-3,7-10
see also <sqzrun>

sqzrun
squeeze list of numbers into short form
Squeeze list of numbers into short character list.
e.g. sqzrun 1.1 1.1 1.1 7 9 9 10.25 = 3#1.1,7,2#9,10.25
See also <sqzint>.

xfmt
format extended integers
form: [width] xfmt number
groups in 3's up to 1e12, and 5's thereafter

p47

graph: graph package

Name Type Description

gdarc verb draw arc

gdarc01 verb draw arc in 0 0 1 1

gdchord verb draw chord

gdchord01 verb draw chord in 0 0 1 1

gdcolor verb set color

gddraw verb wrapper for draw methods

gdellipse verb draw ellipse

gdellipse01 verb draw ellipse in 0 0 1 1

gdlines verb draw lines

gdlines01 verb draw lines in 0 0 1 1

gdopen verb open/clear graphics window

gdpen verb set pen size and style

gdpencolor verb set pen color

gdpie verb draw pie-shaped wedge

gdpie01 verb draw pie-shaped wedge in 0 0 1 1

gdpixel verb draw pixel

gdpixel01 verb draw pixel in 0 0 1 1

gdpolygon verb draw

gdpolygon01 verb draw in 0 0 1 1

gdrect verb draw rectangle

gdrect01 verb draw rectangle in 0 0 1 1

gdroundr verb rounded rectangle

gdroundr01 verb rounded rectangle in 0 0 1 1

gdshow verb show graphics

p48

isigraph: supports graphics using the isigraph control

Name Type Description

cile verb x. cile values of y.

fitrect01 verb fit rectangle data to 0 1

fitrect11 verb fit rectangle data to _1 1

fit01 verb fit data to range 0 1

fit11 verb fit data to range _1 1

gbitmap verb bitmap viewer using isigraph control

gbrush verb set brush color

gclear verb clear graphics window

gfit verb fit data to graphics window

glines verb display line connecting points

gopen verb open graphics window

gpen verb set pen color [;width,style]

gpolygon verb draw polygon given points

grayscale verb generate grayscale

grgb verb set color values

gscale verb scale from (-1,1) to (0,1000)

gshow verb {parent} gshow graph

hue verb generate color from color set

hueRGB verb generate color from RGB color se

polygon verb vertices of a regular polygon

rotate verb rotate angle by given amount

cile
x. cile values of y.
example:

 3 cile i.12

fitrect01
fit rectangle data to 0 1
form: [anisotropic] fitrect01 data

if left argument is 1, applies same factors to both columns
otherwise, scales columns independently.

fit01
fit data to range 0 1
form: [anisotropic] fit data

if left argument is 1, scales columns independently,
otherwise applies same factors to all data,

gbitmap
bitmap viewer using isigraph control
y. is a boolean matrix

Note max size is about 80 x 80 - after which the graphics buffer
is full.

This function is fast for small bitmaps. Use viewbmp in bmp.ijs
to display larger bitmaps.

e.g. gshow gbitmap ?40 40$2 [gopen''

gfit
fit data to graphics window

scales each column of data independently to range (0,1000)

glines
display line connecting points

{color;width;style} glines points

points should be a 2 column matrix of xy values

gopen
open graphics window
y. = controlname;parentname
 if either empty, default to 'isigraph'
e.g gopen ''
 gopen '';'J Graphics'

gpen
set pen color [;width,style]
(default 1,0}

gpolygon
draw polygon given points
{color} gpolygon points

grayscale
generate grayscale
example:
 grayscale (i.%<:) 5

hue
generate color from color set
x. is color set
y. is values from 0 to 1, selecting color

hueRGB
generate color from RGB color se
x. is RGB color set (default HUES)
y. is values from 0 to 1, selecting color

polygon
vertices of a regular polygon
y. = number of points
x. = scale factor on angle 2p1%y. (default 1)

e.g. polygon 5 = pentagon

 2 polygon 5 = 5 pointed star

rotate
rotate angle by given amount

e.g. 0.5p1 rotate points = rotate clockwise a quarter turn

p49

jfiles: component file definitions

Name Type Description

jappend verb append to jfile, (<i.2 3) jappend 'dat'

jcreate verb create jfile, jcreate 'dat'

jdup verb duplicate jfile, 'new' jdup 'dat'

jerase verb erase jfile, jerase 'dat'

jread verb read jfile, jread 'dat';2

jreplace verb replace in jfile, ('new value';123) jreplace 'dat';2 5

jsize verb return size of jfile, jsize 'dat'

p50

jmf: mapped files

Name Type Description

additem verb add item to mapped noun

createjmf verb create mapped file

map verb map a file

memshare verb share memory with a process

memshareclose verb close memory shared with memshare

share verb share a mapped file

showmap verb show all mappings

unmap verb unmap a mapped file

unmapall verb unmap all mapped files

createjmf
create mapped file
createjmf fn;msize

map
map a file
[type [,trailing_shape]] map name;filename [;sharename;ro]

memshare
share memory with a process

Form: {mapping-address} =: memshare {'share-name'}

this permits sharing memory with a non-J process

memshare and memshareclose contributed by Tony Zackin

memshareclose
close memory shared with memshare

Form: memshareclose {'share-name'}

unmap
unmap a mapped file
[force] unmap name [;newsize] - 0 ok, 1 not mapped, 2 refs

unmapall
unmap all mapped files
[force] unmapall dummy - unmap all

p51

jselect: provides jselect form

Name Type Description

create verb create select form

destroy verb destroy select form

p52

keyfiles: keyed-file definitions

Name Type Description

keycreate verb create file

keydir verb keyword directory

keydrop verb drop keywords

keyerase verb erase file

keyread verb read data

keyreadx verb read extra data

keywrite verb write data

keywritex verb write extra data

key_new verb make new components

key_new
make new components
form: key_new number, handle, used

p53

kfiles: older keyed-file definitions, replaced by keyfiles

Name Type Description

kcreate verb create file

kdir verb keyword directory

kerase verb erase file

kread verb read data for keyword

kwrite verb write date for keyword

p54

menu: popup menu

Name Type Description

wdmenu verb provide a pop-up menu

p55

misc: miscellaneous utilities

Name Type Description

addwmfheader verb add metafile header to wmf file

boxcols verb box columns of matrix

chop verb chop array into boxed list

default verb set default value

diff verb second differences

index verb index where result is _1 if not found, instead of #x.

join verb join boxed items

nubcount verb nub + count

pathname verb split DOS name into path;name

prompt verb prompt for input

scriptform verb script representation of names

show verb show names using linear representation

subs conj substitution

tolist verb convert boxed list to LF delimited list

addwmfheader
add metafile header to wmf file
form: [outfile] addwmfheader infile

metafiles used by Word etc. require 22 byte header

outfile addwmfheader infile ; width height (%1000 of inches)

boxcols
box columns of matrix
y. is a matrix
x. indicates partitions
 - a single integer is size of each partition

 - a boolean is beginning of each partition
examples:
 3 boxcols i.3 7
+--------+--------+--+
| 0 1 2| 3 4 5| 6|
| 7 8 9|10 11 12|13|
|14 15 16|17 18 19|20|
+--------+--------+--+

 1 0 1 0 0 0 1 boxcols i.3 7
+-----+-----------+--+
0 1	2 3 4 5	6
7 8	9 10 11 12	13
14 15	16 17 18 19	20
+-----+-----------+--+

chop
chop array into boxed list
chop character vector or matrix into boxed list.
x. is optional delimiter, default LF if in text, else blank.
If a matrix, the delimiter must be vertically aligned,
otherwise use chop"1 to chop each row of the matrix.
e.g. chop ": 10 20 30
 chop ": i. 5 4

default
set default value
name default value
set global name to value if not already defined

index
index where result is _1 if not found, instead of #x.
example:
 'abc' index 'ce'
2 _1

prompt
prompt for input

prompts for input, optionally with a default result

form: [default] prompt prompt_text

examples:
 prompt 'start date: '
'2001 5 23' prompt 'start date: '

scriptform
script representation of names
representation using multi-line script form for most explicit
definitions, otherwise linear representation.
useful for writing object definitions to a script file.

show
show names using linear representation
show names using linear representation to screen width
syntax:
 show namelist (e.g. show 'deb edit list')
 show numbers (from 0 1 2 3=nouns, adverbs etc)
 show '' (equivalent to show 0 1 2 3)
useful for a quick summary of object definitions

subs
substitution
form: new (old subs test) data
examples:
 10 (2 subs =) 1 3 2 1 5 2
1 3 10 1 5 10
 10 (2 subs <:) 1 3 2 1 5 2
1 10 10 1 10 10
(from David Alis)

p56

myutil: example scripts for user definitions

Name Type Description

brep verb boxed representation

lrep verb linear representation

pps verb set print precision

prep verb parenthesized representation

snap verb names snapshot

time verb time

timespacex verb time and space for expressions

timex verb time expressions

tolist verb convert boxed list to LF delimited list

tree verb tree representation

timespacex
time and space for expressions
Form: [repetitions] timex 'expression'
Example:
 10 timespacex &> 'q:123456787';'3^10000x'
0.005 58432
0.061 52352

timex
time expressions
Form: [repetitions] timex 'expression'

p57

nfiles: read/write native files in various formats

Name Type Description

nappend verb append to file

nread verb read file

nwrite verb write to file

nappend
append to file
left argument is data

nwrite
write to file
left argument is data

p58

numeric: numeric utilities

Name Type Description

baserep verb y. in base x.

clean verb clean y. to tolerance of x. (default 1e_10)

colsum verb sum data columns of matrix by key

groupndx verb group indices of y. in x.

int01 verb interval in n steps from 0 to 1 (= steps 0 1,n)

linsert verb linear insert x. (default 2) steps into y.

randomize verb sets a random value into random link

range verb range from a to b [in steps of c]

recur verb solves recurrence r(i)=a(i)+r(i-1)*m(i-1)

round verb round y. to nearest x. (e.g. 1000 round 12345)

rounddist verb round y. to nearest x. preserving total

roundint verb round to nearest integer

steps verb steps from a to b in c steps

clean
clean y. to tolerance of x. (default 1e_10)
form: tolerance (default 1e_10) clean numbers
sets values less than tolerance to 0

colsum
sum data columns of matrix by key
form: key colsum mat
sum data columns of matrix on key columns
e.g. if column 2 of mat is age, then
 2 colsum mat
sums the remaining columns by age

groupndx
group indices of y. in x.
Return group indices of elements of y.
x. is an integer vector of the starting numbers of each group,
assumed to be in ascending order.
e.g. 0 0 0 1 1 1 2 2 = 0 3 6 groupndx i.8
i.e. <:@(+/@(<:/))

recur
solves recurrence r(i)=a(i)+r(i-1)*m(i-1)
form: r = m recur a
 r(0) = a(0)
 r(i) = a(i)+r(i-1)*m(i-1)
e.g 1.05 1.10 recur 100 100 100
 100 205 325.5

rounddist
round y. to nearest x. preserving total
distributive rounding
round y. to nearest x. preserving total to nearest x.
e.g. 0.1 rounddist 6$0.45
 0.5 0.5 0.5 0.4 0.4 0.4

steps
steps from a to b in c steps
form: steps a,b,c

p59

pack: package utilities

Name Type Description

pack verb package namelist

packlocale verb package locales

pcompare verb compare two packages

pdef verb package define

pex verb remove namelist from package

pget verb return value of name in package

psel verb select namelist from package

pset verb merge new into old

pack
package namelist

form: pack 'one two three'
 pack 'one';'two';'three'

packlocale
package locales

form: packlocale locales

example: packlocale 'base';'z';'j'

each locale is packaged and forms one row of the result

pcompare
compare two packages
form: pk1 pcompare pk2

pdef
package define

form: pdef pk

pex
remove namelist from package
form: namelist pex pk

pget
return value of name in package
form: name pget pk - return value of name in package

psel
select namelist from package
form: namelist psel pk

pset
merge new into old
form: new pset old
result has values in new, plus any values in old that
were not replaced in new

p60

parts: partition functions

Name Type Description

firstones verb first 1's in partition

lastones verb last 1's in partition

lfp verb lengths from partition

partition verb partition items (1 marks new item)

pfl verb partition from lengths

preverse verb partioned reverse

psort verb partioned sort

psum verb partioned sum

psumscan verb partioned sumscan

runindices verb indices from run lengths

runlengths verb lengths of each run

firstones
first 1's in partition
form: firstones part

lastones
last 1's in partition
form: lastones part

lfp
lengths from partition
form: lfp part

partition
partition items (1 marks new item)
form: partition dat

partition=: 1: , }. ~: }:

pfl
partition from lengths
form: pfl len

preverse
partioned reverse
form: part preverse dat

psort
partioned sort
form: part psort dat

psum
partioned sum
form: part psum dat

psumscan
partioned sumscan
form: part psumscan dat

runindices
indices from run lengths
form: runindices

runlengths
lengths of each run
form: runlengths dat

p61

plot: session definitions for plot

Name Type Description

pd verb plot driver

plot verb standard plot

plot
standard plot

in jwplot locale:
PForm form name
pclose close form

p62

print: print package

Name Type Description

print verb print text

printfile verb print file

printfile2 verb print file in 2-up mode

print2 verb print text in 2-up mode

xtab verb remove tab stops from character string

xtabline verb remove tab stops

xtabline
remove tab stops
remove tabs from single line

p63

publish: publish J code to HTML

Name Type Description

fmtlines verb format lines of J code

fmtscript verb format script

fmtscriptto verb format script

publish verb interactive publisher

fmtlines
format lines of J code
 fmtlines 'J code'

fmtscript
format script
 fmtscript 'script.ijs' NB. saved as script.htm

fmtscriptto
format script
 'script.ijs' fmtscriptto 'output.htm'B. defaults (note default
for BROWSER done at runtime)

publish
interactive publisher
 publish '' or publish 'scriptname'

p64

random: various random number utilities

Name Type Description

deal verb deal x. items from y. (no repetition)

dealx verb deal x. indices from list y. (no repetition)

randomize verb sets a random value into random link

rand01 verb generate y. random numbers in interval (0,1)

rand11 verb generate y. random numbers in interval (_1,1)

setrl verb set random link

toss verb pick x. items from y. (with repetition)

tossx verb pick x. indices from list y. (with repetition)

tossx
pick x. indices from list y. (with repetition)

examples:

 p=: ;: 'anne dave mary tom'
 words=: ;: inverse

 words deal p
mary anne dave tom

 words 3 deal p
tom dave mary

 words 6 toss p
mary mary dave dave mary tom

 dealx 2 3
0 1
1 1
0 2
1 2
0 0

1 0

 3 dealx 3 5 7
2 4 6
1 0 6
2 4 5

 4 tossx 2 3
0 2
1 2
1 1
0 2

p65

regex: Regular expression pattern matching

Name Type Description

rxall verb regex equivalent of { (all matches)

rxapply verb apply verb to pattern

rxcomp verb compile pattern

rxcut verb cut string into nomatch/match list

rxeq verb regex equivalent of -:

rxerror verb last regex error message

rxE verb regex equivalent of E.

rxfirst verb regex equivalent of {.@{ (first match)

rxfree verb free pattern handles

rxfrom verb matches from string

rxhandles verb list pattern handles

rxin verb regex equivalent of e.

rxindex verb regex equivalent of i.

rxinfo verb info on pattern handles

rxmatch verb single match

rxmatches verb all matches

rxmerge verb replace matches in string

rxrplc verb search and replace

p66

rgb: convert between color triples and RGB values

Name Type Description

RGB verb convert between color triples and RGB values

p67

socket: winsock package

Name Type Description

sdaccept verb accept connection

sdasync verb set up async connection for the socket

sdbind verb bind socket

sdcheck verb check socket for errors

sdcleanup verb initialize winsock

sdclose verb close socket

sdconnect verb connect to the socket

sdgethostbyaddr verb returns a name from an address

sdgethostbyname verb returns an address from a name

sdgethostname verb returns host name

sdgetpeername verb returns address this socket is connected to

sdgetsockets verb returns all socket numbers

sdgetsockname verb returns address of this socket

sdinit verb initialize winsock

sdioctl verb read or write socket control information

sdionread verb get number of bytes available for reading socket

sdlisten verb set up listener for the socket

sdrecv verb read data

sdrecvfrom verb read data from

sdselect verb find sockets that need work

sdsend verb send data

sdsendto verb send data

sdsetsockopt verb sets the value of a socket option.

sdsockaddress verb returns address

sdsockerror verb retrieve socket error code

sdsocket verb creates a socket

sdaccept
accept connection
y. - socket

sdbind
bind socket
y. - socket , family , address , port

sdcheck
check socket for errors
socket utilities

sdclose
close socket
y. - socket

sdconnect
connect to the socket
y. - socket , family , address , port

sdgethostbyaddr
returns a name from an address
y. - AF_INET;host ip address

sdgethostbyname
returns an address from a name
y. - host name

sdgetpeername
returns address this socket is connected to
y. active socket

sdgetsockname
returns address of this socket
y. active socket

sdlisten
set up listener for the socket
y. - socket;queue_length
SOMAXCONN - The maximum length of the queue of pending
connections

sdrecv
read data
y.- socket,data_size,An indicator specifying the way in which the
call is made (0)

sdrecvfrom
read data from
y.- socket,data_size,An indicator specifying the way in which the
call is made (0)

sdsend
send data
y.- socket;An indicator specifying the way in which the call is
made (0)
x.- data

sdsendto
send data
y.- socket ; flags ; family ; address ; port
x.- data

sdsockaddress
returns address
y. active socket

p68

statdist: statistical distributions

Name Type Description

betarand verb random numbers in a beta distribution

binomialdist verb discrete values for binomial distribution

binomialprob verb probability of success in binomial distribution

binomialrand verb random numbers 0 and 1 in binomial distribution

cauchyrand verb random numbers in a cauchy distribution

discreterand verb random numbers in a discrete distribution

exponentialrand verb random numbers in an exponential distribution

gammarand verb random numbers in a gamma distribution

normalprob verb probability of success in normal distribution

normalrand verb random numbers in a standard normal distribution,

poissondist verb discrete values for poisson distribution

poissonprob verb probability of success in poisson distribution

poissonrand verb random numbers in a poisson distribution

p69

statfns: statistical functions

Name Type Description

cile verb x. cile values of y.

comb verb combinations of size x. from i.y

corr verb correlation

cov verb covariance

dev verb deviation from mean

dstat verb descriptive statistics

freqcount verb frequency count

geomean verb geometric mean

harmean verb harmonic mean

kurtosis verb kurtosis

lsfit verb least-squares fit

max verb maximum

mean verb arithmetic mean

median verb median

midpt verb index of midpoint

min verb minimum

perm verb permutations of size y.

regression verb multiple regression

skewness verb skewness

spdev verb sum of products of deviations

ssdev verb sum squares of deviation

stddev verb standard deviation

var verb variance

p70

stdlib: standard library

Name Type Description

adverb noun integer 1

assert verb assert value is true

bind conj binds argument to a monadic verb

boxopen verb box argument if open

boxxopen verb box argument if open and 0<#

bx verb indices of 1's in boolean

clear verb clear all names in locale

conjunction noun integer 2

cutopen verb cut argument if open

CR noun carriage return character

CRLF noun CR LF pair

datatype verb noun datatype

def conj : (explicit definition)

define adverb : 0 (explicit definition script form)

do verb name for ".

drop verb name for }.

dyad noun integer 4

each adverb each (&.>)

empty verb return empty result (i.0 0)

erase verb erase namelist

every adverb every (&>)

expand verb boolean expand

EAV noun ascii 255 character

fetch verb name for {::

FF noun formfeed character

inverse adverb inverse (^:_1)

leaf adverb leaf (L:0)

list verb list data formatted in columns

LF noun linefeed character

monad noun integer 3

nameclass verb name for 4!:0

namelist verb name for 4!:1

names verb formatted namelist

nc verb name for 4!:0

nl verb selective namelist

noun noun integer 0

on conj name for @:

pick verb pick (>@{)

rows adverb rows ("1)

script verb load script, cover for 0!:0

scriptd verb load script with display, cover for 0!:1

sign adverb sign (*)

smoutput verb output to session

sort verb sort up

split verb split head from tail

table adverb function table

take verb name for {.

toCRLF verb converts character strings to CRLF delimiter

toHOST verb converts character strings to Host delimiter

toJ verb converts character strings to J delimiter (linefeed)

tolower verb convert text to lower case

toupper verb convert text to upper case

type verb object type

TAB noun tab character

verb noun integer 3

wcsize verb size of execution window

assert
assert value is true
assertion failure if 0 e. y.
e.g. 'invalid age' assert 0 <: age

bind
binds argument to a monadic verb
binds monadic verb to an argument creating a new verb
that ignores its argument.
e.g. fini=: wdinfo bind 'finished...'

boxopen
box argument if open
boxxopen - box argument if open and # is not zero
e.g. if script=: 0!:0 @ boxopen, then either
 script 'work.ijs' or script <'work.ijs'
use cutopen to allow multiple arguments.

clear
clear all names in locale
 returns any names not erased
example: clear 'myloc'

cutopen
cut argument if open
this allows an open argument to be given where a boxed list is
required.
most common situations are handled. it is similar to boxopen,
except
allowing multiple arguments in the character string.

x. is optional delimiters, default LF if in y., else blank

y. is boxed or an open character array.

if y. is boxed it is returned unchanged, otherwise:
if y. has rank 2 or more, the boxed major cells are returned
if y. has rank 0 or 1, it is cut on delimiters in given in x., or
 if x. not given, LF if in y. else blank. Empty items are
deleted.

e.g. if script=: 0!:0 @ cutopen, then
 script 'work.ijs util.ijs'

expand
boolean expand
form: boolean expand data

list
list data formatted in columns
syntax: {width} list data
accepts data as one of:
 boxed list
 character vector, delimited by CR, LF or CRLF; or by ' '
 character matrix
formats in given width, default screenwidth

nl
selective namelist
Form: [mp] nl sel

 sel: one or more integer name classes, or a name list.
 if empty use: 0 1 2 3.
 mp: optional matching pattern. If mp contains '*', list names
 containing mp, otherwise list names starting mp. If mp
 contains '~', list names that do not match.

e.g. 'f' nl 3 - list verbs that begin with 'f'
 '*com nl '' - list names containing 'com'

split
split head from tail
examples:

 split 'abcde'
 2 split 'abcde'

table
function table
table - function table (adverb)
e.g. 1 2 3 * table 10 11 12 13
 +. table i.13

p71

strings: string manipulation

Name Type Description

charsub verb character substitution

cut verb cut text, by default on blanks

cuts verb cut y. at x. (conjunction)

deb verb delete extra blanks

delstring verb delete occurrences of x. from y.

dlb verb delete leading blanks

dltb verb delete leading and trailing blanks

dltbs verb delete multiple leading and trailing blanks

dropafter verb drop after x. in y.

dropto verb drop to x. in y.

dtb verb delete trailing blanks

dtbs verb delete multiple trailing blanks in text

fstringreplace verb file string replace

ljust verb left justify

rjust verb right justify

rplc verb replace characters in text string

ss verb string search

stringreplace verb replace characters in text string

takeafter verb take after x. in y.

taketo verb take to x. in y.

charsub
character substitution
characterpairs charsub data
For example:

 '-_$ ' charsub '$123 -456 -789'
123 _456 _789
Use <rplc> for arbitrary string replacement.

cuts
cut y. at x. (conjunction)
string (verb cuts n) text
 n=_1 up to but not including string
 n= 1 up to and including string
 n=_2 after but not including string
 n= 2 after and including string

dltbs
delete multiple leading and trailing blanks
text is delimited by characters in x. with default LF
example:
 < 'A' dltbs ' A abc def Ars A x y z '
+-------------------+
|Aabc defArsAx y z|
+-------------------+

dtbs
delete multiple trailing blanks in text
text is delimited by characters in x. with default CRLF
example:
 < 'A' dtbs ' A abc def Ars A x y z '
+----------------------+
|A abc defArsA x y z|
+----------------------+

Algorithm thanks to Brian Bambrough (JForum Nov 2000)

fstringreplace
file string replace
form: (old;new) fstringreplace file

rplc
replace characters in text string

form: text rplc oldnew
 oldnew is a 2-column boxed matrix of old ,. new
 or a vector of same

replace priority is the same order as oldnew

Examples:

 'ababa' rplc 'aba';'XYZT';'ba';'+'
XYZT+

 'ababa' rplc 'ba';'+';'aba';'XYZT'
a++

stringreplace
replace characters in text string

form: oldnew stringreplace tet
 oldnew is a 2-column boxed matrix of old ,. new
 or a vector of same

stringreplace priority is the same order as oldnew

Examples:

 ('aba';'XYZT';'ba';'+') stringreplace 'ababa'
XYZT+

 ('ba';'+';'aba';'XYZT') stringreplace 'ababa'
a++

p72

sysenv: sysenv - System Environment

Name Type Description

ADDON noun path to addons

ARGV noun command line

CONFIG noun path to user configuration files

FIXFONT noun fixed space font (used in session windows)

IFCONSOLE noun if a console front end

IFJAVA noun if a Java front end

IFUNIX noun if UNIX

IFWINCE noun if Windows CE

IFWINNT noun if Windows NT,2000,XP

IFWIN32 noun if Windows (9x,ME,NT,2000,XP)

jaddonpath verb adds path to addons

jconfigpath verb adds path to user configuration files

jhostpath verb converts path name to use host path separator

jsystemdefs verb loads appropriate netdefs or hostdefs

jsystempath verb adds path to J system directory

jtemppath verb adds path to directory for temporary files

juserpath verb adds path to user's directory

JIJX noun 1 if -jijx parameter (i.e. don't create ijx window)

PROFILE noun name of profile file

PROFONT noun proportional font (used in forms)

SYSTEM noun path to J system directory

TEMP noun path to temporary directory for temporary files

UNAME noun name of UNIX o/s

USER noun path to user's directory

p73

text: text utilities

Name Type Description

capitalize verb capitalize text

cutpara verb cut text into boxed list of paragraphs

cuttext verb cut text into boxed list of texts

foldpara verb fold single paragraph

foldtext verb fold text to given width

topara verb convert text to paragraphs

capitalize
capitalize text
capitalize text (vector delimited by LF, or matrix)

all first letters are capitalized, otherwise:
x.=0 capitalize first letter following a fullstop followed by
 a blank or LF or LF,LF (sentence capitalization=default)
 1 capitalize any letter preceded by a blank
 2 capitalize first letter in any alphabetic string

cutpara
cut text into boxed list of paragraphs
form: cutpara text

cuttext
cut text into boxed list of texts
form: cuttext text

foldpara
fold single paragraph
syntax: {width} fold data
data is character vector

foldtext
fold text to given width
form: width foldtext text

topara
convert text to paragraphs
form: topara text
replaces single LFs not followed by blanks by spaces,
except for LF's at the beginning

p74

trig: trigonometric functions

Name Type Description

arccos verb arccos

arccosh verb arccosh

arcsin verb arcsin

arcsinh verb arcsinh

arctan verb arctan

arctanh verb arctanh

cos verb cos

cosd verb cos in degrees

cosh verb cosh

dfr verb degrees from radians

indegrees adverb convert function to use degrees:

pi noun pi

rfd verb radians from degrees

sin verb sin

sind verb sin in degrees

sinh verb sinh

tan verb tan

tand verb tan in degrees

tanh verb tanh

p75

validate: data validation

Name Type Description

inrange verb (low, high) inrange data

isbalanced verb pair isbalanced string

isboolean verb data is all 0 or 1

isboxed verb is boxed

ischaracter verb data is character

iscomplex verb data is complex

iscounter verb data is non-negative integer (counting number)

isdate verb is date (as yyyy mm dd)

isinteger verb data is all integer

ismatrix verb data is a matrix

isnumeric verb data is numeric

isreal verb data is all real

isscalar verb data is a scalar

isunicode verb data is unicode

isunique verb data has no duplicates

isvector verb data is a vector

p76

viewmat: viewmat init

Name Type Description

gethue verb generate color from color set

viewmat verb view matrix in isigraph control

gethue
generate color from color set
x. is color set
y. is values from 0 to 1, selecting color

viewmat
view matrix in isigraph control

y. = [hue] mat [;title]] (as for viewbmp)

mat may be one of:
 boolean (black/white)
 other numeric (color scale from 0 upwards)
 other (converted to numeric)

hue is: 3 column table of R-G-B triples
 or: list of RGB values

if mat is boolean, x. defaults to black/white
otherwise hue defaults to red - purple spectrum

e.g. viewmat (?50 50$2);'';'Random Boolean'

p77

winapi: windows api utilities

Name Type Description

winconst verb look up Windows constants

winset verb set values of windows constants

win32api adverb look up Win32 API declaration, returning verb

win32apir adverb win32api, except verb returns first element of call result

winconst
look up Windows constants
returns 2-element list: values ; names
e.g. winconst 'EM_GETMODIFY EM_SETMODIFY'

win32api
look up Win32 API declaration, returning verb
e.g.
 'GetProfileStringA' win32api
'kernel32 GetProfileStringA i *c *c *c *c i'&(15!:0)
 >'GetVersion' win32api ''
_1073741820

p78

winlib: standard windows library

Name Type Description

wd verb main window driver, name for 11!:0

wdbox verb box wd argument

wdcenter verb center form on another

wdclipread verb read clipboard

wdclipwrite verb write to clipboard

wde verb as wd but displays error and signals break

wdfit verb fit form in window

wdget verb get values from matrix, e.g. wd'q'

wdhandler verb wd handler

wdinfo verb information box

wdisparent verb return 1 if a parent window

wdmove verb position window, relative to side of screen

wdpclose verb close parent window

wdqshow verb display result of wdq

wdquery verb query box

wdreset verb reset window driver

wdselect verb selection box

wdstatus verb put status message on screen

wdview verb text viewer

wdbox
box wd argument
use this to analyze arguments to wd
in code: whs=whitepace, del=delimiters

wdcenter
center form on another
form: wdcenter xywh
use this to center a form on another

wdfit
fit form in window
y. is two integers for horizontal and vertical
in each case, the entire form will be shown

values are:
 0 move the side out of view back into the window
 - typically reduces the form size
 1 move the form so it is all visible
 - typically leaves the form size unchanged
 2 stretch the form to the window
 3 maximize the form to full screen, hiding caption and
borders

an empty argument is treated as 1 1

wd'qm' - return system metrics:
0-1 screen width, screen height,
2-3 x logical unit, y logical unit,
4-5 cxborder, cyborder,
6-7 cxfixedframe, cyfixedframe,
8-9 cxframe, cyframe,
10-11 cycaption, cymenu,
12-15 desktop xywh

wdget
get values from matrix, e.g. wd'q'
utility to index 2-column boxed array, e.g. result of wd 'q'
form: names wdget data
returns items in second column indexed on names in first column
result is boxed if left argument is boxed
e.g. 'sysfocus' wdget wdq

wdhandler
wd handler
runs in form locale
sets global event data: wdq

runs first found of: form_handler, form_event, form_default,
with global event variables from wdq
if debug is off, wraps event handler in try. catch.
catch exits if error message is the last picked up by debug.

wdinfo
information box
syntax: wdinfo [title;] message

wdmove
position window, relative to side of screen
form: [window] wdmove offset

offset is the xy offset.
 if >: 0 the offset is from topleft
 if < 0 the offset is from bottomright (less 1)

e.g.
 0 0 = topleft
 _1 _1 = bottomright
 5 _11 = 5 from left, 10 from bottom

wdqshow
display result of wdq
display wdq result - useful for testing forms

wdquery
query box
form: [opt] wdquery [title;] message
 opt has one or two elements:
 0{ = 0 okcancel (ok=0 cancel=1)
 1 retrycancel (retry=0 cancel=1)
 2 yesno (yes=0 no=1)
 3 yesnocancel (yes=0 no=1 cancel=2)
 4 abortretryignore (abort=0 retry=1 ignore=2)
 1{ = default button (0, 1 or 2)

wdselect
selection box

windows selection box

y. is a either: boxed list of choices
 or: title ; <boxed list of choices
 if y. is empty, closes selection box if open.

x. is optional of up to 3 values (default 0). the second and
 third options are only referenced when the box is created:
 0{ initial selection
 1{ 0=single selection, 1=multiple selection
 2{ 0=close on exit, 1=leave open if selection made

returns 2 item boxed list:
 0{ 0=cancel, 1=accept
 1{ indices of selections

wdstatus
put status message on screen
write status message on screen

{title} wdstatus message - write message
 wdstatus '' - close message box

default text size is 1 row of 50 characters.
for a larger size, call wdstatus initially with a message
of the required size (pad with blanks if necessary).
once created, the message box is not resized.

wdview
text viewer
y. is text or header;text [;wrap;print;top (default 0 1 0)]
x. is optional window name
uses standard Windows edit control,
which is limited to around 20K in size.

p79

write: write package

Name Type Description

drawbox verb draw box (outline or solid)

drawgraph verb draw graph (from wmf file)

drawline verb draw line

endpage verb end page

endprint verb end print job

makeframe verb make a frame

preview verb preview page

startpage verb start page

startprint verb initialize print job

write verb write text (see syntax below)

p80

Definition Summaries

Name Source Type Description

additem jmf p50 v add item to mapped noun

addwmfheader misc p55 v add metafile header to wmf file

adverb stdlib p70 n integer 1

arccos trig p74 v arccos

arccosh trig p74 v arccosh

arcsin trig p74 v arcsin

arcsinh trig p74 v arcsinh

arctan trig p74 v arctan

arctanh trig p74 v arctanh

assert stdlib p70 v assert value is true

av convert p37 v convert between characters and indices

ADDON sysenv p72 n path to addons

AND dll p44 v bitwise AND (&)

ARGV sysenv p72 n command line

baserep numeric p58 v y. in base x.

betarand statdist p68 v random numbers in a beta distribution

bind stdlib p70 c binds argument to a monadic verb

binomialdist statdist p68 v discrete values for binomial distribution

binomialprob statdist p68 v probability of success in binomial
distribution

binomialrand statdist p68 v random numbers 0 and 1 in binomial
distribution

bitwise dll p44 a bitwise operations

boxcols misc p55 v box columns of matrix

boxopen stdlib p70 v box argument if open

boxxopen stdlib p70 v box argument if open and 0<#

brep myutil p56 v boxed representation

bx stdlib p70 v indices of 1's in boolean

calendar dates p40 v calendar for year [months]

capitalize text p73 v capitalize text

cauchyrand statdist p68 v random numbers in a cauchy distribution

cd dll p44 v call DLL procedure

cdcb dll p44 v callback address

cder dll p44 v error information

cderx dll p44 v GetLastError information

cdf dll p44 v free DLLs

center format p46 v center text in given width

charsub strings p71 v character substitution

chop misc p55 v chop array into boxed list

cile isigraph p48 v x. cile values of y.

cile statfns p69 v x. cile values of y.

clean numeric p58 v clean y. to tolerance of x. (default 1e_10)

clear stdlib p70 v clear all names in locale

clipfmt format p46 v format data for clipboard

clipunfmt format p46 v unformat data read from clipboard

coclass colib p33 v set current co class

cocreate colib p33 v create object

cocurrent colib p33 v set current locale

codestroy colib p33 v destroy current object

coerase colib p33 v erase object

coextend colib p33 v add class locale to path (before z)

cofind coutil p38 v find objects containing name in object:

cofullname colib p33 v return name with locale qualifier

coinfo coutil p38 v return info on co classes

coinsert colib p33 v insert into path (before z)

colhdr format p46 v define column headers

colsum numeric p58 v sum data columns of matrix by key

comb statfns p69 v combinations of size x. from i.y

compare compare p36 v compare character data

coname colib p33 v return current co name

conames colib p33 v formatted co name list

conew colib p33 v create object

conjunction stdlib p70 n integer 2

conl colib p33 v return co name list

conouns coutil p38 v nouns referencing object

conounsx coutil p38 v object references with locales

copath colib p33 v set/get co path

copathnl coutil p38 v path name list

copathnlx coutil p38 v formatted path name list with defining
classes

coreset colib p33 v destroy object locales,

corr statfns p69 v correlation

cos trig p74 v cos

cosd trig p74 v cos in degrees

coselect coutil p38 v select current locale

cosh trig p74 v cosh

costate coutil p38 v state of class objects

cov statfns p69 v covariance

create jselect p51 v create select form

createjmf jmf p50 v create mapped file

cut strings p71 v cut text, by default on blanks

cutopen stdlib p70 v cut argument if open

cutpara text p73 v cut text into boxed list of paragraphs

cuts strings p71 v cut y. at x. (conjunction)

cuttext text p73 v cut text into boxed list of texts

COLORTABLE colortab p35 n main colortable

COLOR16 color16 p34 n table of HTML primary colors

CONFIG sysenv p72 n path to user configuration files

CR stdlib p70 n carriage return character

CRLF stdlib p70 n CR LF pair

datatype stdlib p70 v noun datatype

dberm debug p42 v last error message

dberr debug p42 v last error number

dbg debug p42 v turn debugging window on/off

dbjmp debug p42 v jump to line number

dblocals debug p42 v display names and locals on stack

dblxq debug p42 v latent expression query

dblxs debug p42 v latent expression set

dbnxt debug p42 v run next (skip line and run)

dbq debug p42 v queries suspension mode (set by dbr)

dbr debug p42 v reset, set suspension mode (0=disable,
1=enable)

dbret debug p42 v exit and return argument

dbrr debug p42 v re-run with specified arguments

dbrrx debug p42 v re-run with specified executed arguments

dbrun debug p42 v run again (from current stop)

dbs debug p42 v display stack

dbsig debug p42 v signal error

dbsq debug p42 v stop query

dbss debug p42 v stop set

dbst debug p42 v returns stack text

dbstack debug p42 v displays call stack with header

dbstk debug p42 v call stack

dbstop debug p42 v set stops on all lines in namelist

dbstopme debug p42 v set stops on current definition if y.

dbtrace debug p42 v trace control

ddcheck dd p41 v check response, display any error message

ddcnm dd p41 v column names selected by ddsel

ddcnt dd p41 v rowcount of last ddsql command

ddcol dd p41 v column names in the table

ddcom dd p41 v commit transaction

ddcon dd p41 v connect to data source

dddis dd p41 v disconnect from data source

ddend dd p41 v end sql statement started with ddsel

dderr dd p41 v error info on last command (name, source,
warning, msg)

ddfch dd p41 v as ddfet, but with data in columns

ddfet dd p41 v fetch next record from selected data

ddrbk dd p41 v rollback transaction

ddsel dd p41 v prepare and execute sql statement
(selection)

ddsql dd p41 v prepare, execute, and end sql statement

ddsrc dd p41 v data source names available from ODBC
manager

ddtbl dd p41 v selection handle for tables in data source

ddtrn dd p41 v begin transaction

deal random p64 v deal x. items from y. (no repetition)

dealx random p64 v deal x. indices from list y. (no repetition)

deb strings p71 v delete extra blanks

def stdlib p70 c : (explicit definition)

default misc p55 v set default value

define stdlib p70 a : 0 (explicit definition script form)

delstring strings p71 v delete occurrences of x. from y.

destroy jselect p51 v destroy select form

detab convert p37 v remove tab stops

dev statfns p69 v deviation from mean

dfh convert p37 v decimal from hex

dfr trig p74 v degrees from radians

diff misc p55 v second differences

dir dir p43 v directory listings

dircompare dir p43 v compare files in directories

dirfind dir p43 v find name in directory

dirpath dir p43 v directory paths

dirs dir p43 v browse files in directory

dirss dir p43 v directory string search

dirssrplc dir p43 v directory string search and replace

dirtree dir p43 v get filenames in directory tree

dirused dir p43 v get count and space of files in directory
tree

discreterand statdist p68 v random numbers in a discrete distribution

dlb strings p71 v delete leading blanks

dltb strings p71 v delete leading and trailing blanks

dltbs strings p71 v delete multiple leading and trailing blanks

do stdlib p70 v name for ".

drawbox write p79 v draw box (outline or solid)

drawgraph write p79 v draw graph (from wmf file)

drawline write p79 v draw line

drop stdlib p70 v name for }.

dropafter strings p71 v drop after x. in y.

dropto strings p71 v drop to x. in y.

dstat statfns p69 v descriptive statistics

dtb strings p71 v delete trailing blanks

dtbs strings p71 v delete multiple trailing blanks in text

dyad stdlib p70 n integer 4

each stdlib p70 a each (&.>)

empty stdlib p70 v return empty result (i.0 0)

endpage write p79 v end page

endprint write p79 v end print job

erase stdlib p70 v erase namelist

every stdlib p70 a every (&>)

expand stdlib p70 v boolean expand

expandby format p46 c expand data with a given value

expandn format p46 v expand data at every nth item

exponentialrand statdist p68 v random numbers in an exponential
distribution

EAV stdlib p70 n ascii 255 character

fappend files p45 v append text to file

fappends files p45 v append string to file

fc dll p44 v float conversion

fcompare compare p36 v compare two text files

fcopynew files p45 v copies files if changed

fcopynews files p45 v copies files as strings if changed

fdir files p45 v file directory

ferase files p45 v erases a file

fetch stdlib p70 v name for {::

fexist files p45 v test if a file exists

fh dll p44 v free header

firstones parts p60 v first 1's in partition

fitrect01 isigraph p48 v fit rectangle data to 0 1

fitrect11 isigraph p48 v fit rectangle data to _1 1

fit01 isigraph p48 v fit data to range 0 1

fit11 isigraph p48 v fit data to range _1 1

flatten format p46 v flatten array to a character string

fmt format p46 v format a numeric matrix, various format
specs

fmtlines publish p63 v format lines of J code

fmtscript publish p63 v format script

fmtscriptto publish p63 v format script

fold format p46 v fold text to width

foldpara text p73 v fold single paragraph

foldtext text p73 v fold text to given width

fread files p45 v read file

freadr files p45 v read records from flat file

freads files p45 v read file as string

freplace files p45 v replace text in file

freqcount statfns p69 v frequency count

fselect files p45 v file selection dialog

fsize files p45 v return file size

fss files p45 v file string search

fssrplc files p45 v file string search and replace

fstamp files p45 v returns file timestamp

fstringreplace strings p71 v file string replace

fview files p45 v view file

fwrite files p45 v write text to file

fwrites files p45 v write string to file

FF stdlib p70 n formfeed character

FIXFONT sysenv p72 n fixed space font (used in session windows)

gammarand statdist p68 v random numbers in a gamma distribution

gbitmap isigraph p48 v bitmap viewer using isigraph control

gbrush isigraph p48 v set brush color

gclear isigraph p48 v clear graphics window

gdarc graph p47 v draw arc

gdarc01 graph p47 v draw arc in 0 0 1 1

gdchord graph p47 v draw chord

gdchord01 graph p47 v draw chord in 0 0 1 1

gdcolor graph p47 v set color

gddraw graph p47 v wrapper for draw methods

gdellipse graph p47 v draw ellipse

gdellipse01 graph p47 v draw ellipse in 0 0 1 1

gdlines graph p47 v draw lines

gdlines01 graph p47 v draw lines in 0 0 1 1

gdopen graph p47 v open/clear graphics window

gdpen graph p47 v set pen size and style

gdpencolor graph p47 v set pen color

gdpie graph p47 v draw pie-shaped wedge

gdpie01 graph p47 v draw pie-shaped wedge in 0 0 1 1

gdpixel graph p47 v draw pixel

gdpixel01 graph p47 v draw pixel in 0 0 1 1

gdpolygon graph p47 v draw

gdpolygon01 graph p47 v draw in 0 0 1 1

gdrect graph p47 v draw rectangle

gdrect01 graph p47 v draw rectangle in 0 0 1 1

gdroundr graph p47 v rounded rectangle

gdroundr01 graph p47 v rounded rectangle in 0 0 1 1

gdshow graph p47 v show graphics

geomean statfns p69 v geometric mean

getdate dates p40 v get date from character string

gethue viewmat p76 v generate color from color set

gfit isigraph p48 v fit data to graphics window

gh dll p44 v allocate header

glines isigraph p48 v display line connecting points

gopen isigraph p48 v open graphics window

gpen isigraph p48 v set pen color [;width,style]

gpolygon isigraph p48 v draw polygon given points

grayscale isigraph p48 v generate grayscale

grgb isigraph p48 v set color values

groupndx numeric p58 v group indices of y. in x.

gscale isigraph p48 v scale from (-1,1) to (0,1000)

gshow isigraph p48 v {parent} gshow graph

harmean statfns p69 v harmonic mean

hex convert p37 a create verb for hex calculation

hexdump format p46 v show text as hex and ascii characters

hfd convert p37 v hex from decimal

hue bmp p32 v generate color from color set

hue isigraph p48 v generate color from color set

hueRGB isigraph p48 v generate color from RGB color se

ic dll p44 v integer conversion

indegrees trig p74 a convert function to use degrees:

index misc p55 v index where result is _1 if not found,
instead of #x.

inrange validate p75 v (low, high) inrange data

int01 numeric p58 v interval in n steps from 0 to 1 (= steps 0
1,n)

inverse stdlib p70 a inverse (^:_1)

isbalanced validate p75 v pair isbalanced string

isboolean validate p75 v data is all 0 or 1

isboxed validate p75 v is boxed

ischaracter validate p75 v data is character

iscomplex validate p75 v data is complex

iscounter validate p75 v data is non-negative integer (counting
number)

isdate validate p75 v is date (as yyyy mm dd)

isinteger validate p75 v data is all integer

ismatrix validate p75 v data is a matrix

isnumeric validate p75 v data is numeric

isotimestamp dates p40 v format time stamps as: 2000-05-23
16:06:39.268

isreal validate p75 v data is all real

isscalar validate p75 v data is a scalar

isunicode validate p75 v data is unicode

isunique validate p75 v data has no duplicates

isvector validate p75 v data is a vector

IFCONSOLE sysenv p72 n if a console front end

IFJAVA sysenv p72 n if a Java front end

IFUNIX sysenv p72 n if UNIX

IFWINCE sysenv p72 n if Windows CE

IFWINNT sysenv p72 n if Windows NT,2000,XP

IFWIN32 sysenv p72 n if Windows (9x,ME,NT,2000,XP)

jaddonpath sysenv p72 v adds path to addons

jappend jfiles p49 v append to jfile, (<i.2 3) jappend 'dat'

jconfigpath sysenv p72 v adds path to user configuration files

jcreate jfiles p49 v create jfile, jcreate 'dat'

jdup jfiles p49 v duplicate jfile, 'new' jdup 'dat'

jerase jfiles p49 v erase jfile, jerase 'dat'

jhostpath sysenv p72 v converts path name to use host path
separator

join misc p55 v join boxed items

jread jfiles p49 v read jfile, jread 'dat';2

jreplace jfiles p49 v replace in jfile, ('new value';123) jreplace
'dat';2 5

jsize jfiles p49 v return size of jfile, jsize 'dat'

jsystemdefs sysenv p72 v loads appropriate netdefs or hostdefs

jsystempath sysenv p72 v adds path to J system directory

jtemppath sysenv p72 v adds path to directory for temporary files

juserpath sysenv p72 v adds path to user's directory

JIJX sysenv p72 n 1 if -jijx parameter (i.e. don't create ijx
window)

kcreate kfiles p53 v create file

kdir kfiles p53 v keyword directory

kerase kfiles p53 v erase file

keycreate keyfiles p52 v create file

keydir keyfiles p52 v keyword directory

keydrop keyfiles p52 v drop keywords

keyerase keyfiles p52 v erase file

keyread keyfiles p52 v read data

keyreadx keyfiles p52 v read extra data

keywrite keyfiles p52 v write data

keywritex keyfiles p52 v write extra data

key_new keyfiles p52 v make new components

kread kfiles p53 v read data for keyword

kurtosis statfns p69 v kurtosis

kwrite kfiles p53 v write date for keyword

lastones parts p60 v last 1's in partition

leaf stdlib p70 a leaf (L:0)

lfp parts p60 v lengths from partition

linsert numeric p58 v linear insert x. (default 2) steps into y.

list stdlib p70 v list data formatted in columns

ljust strings p71 v left justify

lrep myutil p56 v linear representation

lsfit statfns p69 v least-squares fit

LF stdlib p70 n linefeed character

makeframe write p79 v make a frame

map jmf p50 v map a file

max statfns p69 v maximum

mean statfns p69 v arithmetic mean

median statfns p69 v median

mema dll p44 v memory allocate

memf dll p44 v memory free

memr dll p44 v memory read

memshare jmf p50 v share memory with a process

memshareclose jmf p50 v close memory shared with memshare

memw dll p44 v memory write

mfv convert p37 v matrix from vector

midpt statfns p69 v index of midpoint

min statfns p69 v minimum

monad stdlib p70 n integer 3

nameclass stdlib p70 v name for 4!:0

namelist stdlib p70 v name for 4!:1

names stdlib p70 v formatted namelist

nappend nfiles p57 v append to file

nc stdlib p70 v name for 4!:0

nfmt format p46 v simple numeric formatter

nl stdlib p70 v selective namelist

normalprob statdist p68 v probability of success in normal
distribution

normalrand statdist p68 v random numbers in a standard normal
distribution,

noun stdlib p70 n integer 0

nread nfiles p57 v read file

nubcount misc p55 v nub + count

nwrite nfiles p57 v write to file

on stdlib p70 c name for @:

OR dll p44 v bitwise OR (|)

pack pack p59 v package namelist

packlocale pack p59 v package locales

partition parts p60 v partition items (1 marks new item)

pathname misc p55 v split DOS name into path;name

pcompare pack p59 v compare two packages

pd plot p61 v plot driver

pdef pack p59 v package define

perm statfns p69 v permutations of size y.

pex pack p59 v remove namelist from package

pfl parts p60 v partition from lengths

pget pack p59 v return value of name in package

pi trig p74 n pi

pick stdlib p70 v pick (>@{)

plot plot p61 v standard plot

poissondist statdist p68 v discrete values for poisson distribution

poissonprob statdist p68 v probability of success in poisson
distribution

poissonrand statdist p68 v random numbers in a poisson distribution

polygon isigraph p48 v vertices of a regular polygon

pps myutil p56 v set print precision

prep myutil p56 v parenthesized representation

preverse parts p60 v partioned reverse

preview write p79 v preview page

print print p62 v print text

printfile print p62 v print file

printfile2 print p62 v print file in 2-up mode

print2 print p62 v print text in 2-up mode

prompt misc p55 v prompt for input

psel pack p59 v select namelist from package

pset pack p59 v merge new into old

psort parts p60 v partioned sort

psum parts p60 v partioned sum

psumscan parts p60 v partioned sumscan

publish publish p63 v interactive publisher

PROFILE sysenv p72 n name of profile file

PROFONT sysenv p72 n proportional font (used in forms)

quote convert p37 v quote text

randomize numeric p58 v sets a random value into random link

randomize random p64 v sets a random value into random link

rand01 random p64 v generate y. random numbers in interval
(0,1)

rand11 random p64 v generate y. random numbers in interval
(_1,1)

range numeric p58 v range from a to b [in steps of c]

readbmp bmp p32 v read bitmap file, returning RGB data

readbmphdr bmp p32 v read header from bitmap file

readcsv csv p39 v reads csv file into a boxed array

recur numeric p58 v solves recurrence r(i)=a(i)+r(i-1)*m(i-1)

regression statfns p69 v multiple regression

rfd trig p74 v radians from degrees

rjust strings p71 v right justify

rotate isigraph p48 v rotate angle by given amount

round numeric p58 v round y. to nearest x. (e.g. 1000 round
12345)

rounddist numeric p58 v round y. to nearest x. preserving total

roundint numeric p58 v round to nearest integer

rows stdlib p70 a rows ("1)

rplc strings p71 v replace characters in text string

ruler format p46 v formatted ruler

runindices parts p60 v indices from run lengths

runlengths parts p60 v lengths of each run

rxall regex p65 v regex equivalent of { (all matches)

rxapply regex p65 v apply verb to pattern

rxcomp regex p65 v compile pattern

rxcut regex p65 v cut string into nomatch/match list

rxeq regex p65 v regex equivalent of -:

rxerror regex p65 v last regex error message

rxE regex p65 v regex equivalent of E.

rxfirst regex p65 v regex equivalent of {.@{ (first match)

rxfree regex p65 v free pattern handles

rxfrom regex p65 v matches from string

rxhandles regex p65 v list pattern handles

rxin regex p65 v regex equivalent of e.

rxindex regex p65 v regex equivalent of i.

rxinfo regex p65 v info on pattern handles

rxmatch regex p65 v single match

rxmatches regex p65 v all matches

rxmerge regex p65 v replace matches in string

rxrplc regex p65 v search and replace

RGB rgb p66 v convert between color triples and RGB
values

script stdlib p70 v load script, cover for 0!:0

scriptd stdlib p70 v load script with display, cover for 0!:1

scriptform misc p55 v script representation of names

sdaccept socket p67 v accept connection

sdasync socket p67 v set up async connection for the socket

sdbind socket p67 v bind socket

sdcheck socket p67 v check socket for errors

sdcleanup socket p67 v initialize winsock

sdclose socket p67 v close socket

sdconnect socket p67 v connect to the socket

sdgethostbyaddr socket p67 v returns a name from an address

sdgethostbyname socket p67 v returns an address from a name

sdgethostname socket p67 v returns host name

sdgetpeername socket p67 v returns address this socket is connected to

sdgetsockets socket p67 v returns all socket numbers

sdgetsockname socket p67 v returns address of this socket

sdinit socket p67 v initialize winsock

sdioctl socket p67 v read or write socket control information

sdionread socket p67 v get number of bytes available for reading
socket

sdlisten socket p67 v set up listener for the socket

sdrecv socket p67 v read data

sdrecvfrom socket p67 v read data from

sdselect socket p67 v find sockets that need work

sdsend socket p67 v send data

sdsendto socket p67 v send data

sdsetsockopt socket p67 v sets the value of a socket option.

sdsockaddress socket p67 v returns address

sdsockerror socket p67 v retrieve socket error code

sdsocket socket p67 v creates a socket

setrl random p64 v set random link

share jmf p50 v share a mapped file

show misc p55 v show names using linear representation

showmap jmf p50 v show all mappings

sign stdlib p70 a sign (*)

sin trig p74 v sin

sind trig p74 v sin in degrees

sinh trig p74 v sinh

skewness statfns p69 v skewness

smoutput stdlib p70 v output to session

snap myutil p56 v names snapshot

sort stdlib p70 v sort up

spdev statfns p69 v sum of products of deviations

split stdlib p70 v split head from tail

sqzint format p46 v squeeze list of positive integers into short
form

sqzrun format p46 v squeeze list of numbers into short form

ss strings p71 v string search

ssdev statfns p69 v sum squares of deviation

startpage write p79 v start page

startprint write p79 v initialize print job

stddev statfns p69 v standard deviation

steps numeric p58 v steps from a to b in c steps

stringreplace strings p71 v replace characters in text string

subs misc p55 c substitution

symget dll p44 v get address of locale entry for name

symget dll p44 v set array as address

SYSTEM sysenv p72 n path to J system directory

table stdlib p70 a function table

take stdlib p70 v name for {.

takeafter strings p71 v take after x. in y.

taketo strings p71 v take to x. in y.

tan trig p74 v tan

tand trig p74 v tan in degrees

tanh trig p74 v tanh

time myutil p56 v time

timespacex myutil p56 v time and space for expressions

timestamp dates p40 v format time stamps as: 23 May 1998
16:06:39

timex myutil p56 v time expressions

toCRLF stdlib p70 v converts character strings to CRLF
delimiter

todate dates p40 v converts day numbers to dates

todayno dates p40 v converts dates to day numbers

toHOST stdlib p70 v converts character strings to Host delimiter

toJ stdlib p70 v converts character strings to J delimiter
(linefeed)

tolist misc p55 v convert boxed list to LF delimited list

tolist myutil p56 v convert boxed list to LF delimited list

tolower stdlib p70 v convert text to lower case

topara text p73 v convert text to paragraphs

toss random p64 v pick x. items from y. (with repetition)

tossx random p64 v pick x. indices from list y. (with repetition)

toupper stdlib p70 v convert text to upper case

tree myutil p56 v tree representation

tsdiff dates p40 v differences between pairs of dates.

tsrep dates p40 v timestamp representation as a single
number

type stdlib p70 v object type

TAB stdlib p70 n tab character

TEMP sysenv p72 n path to temporary directory for temporary
files

unmap jmf p50 v unmap a mapped file

unmapall jmf p50 v unmap all mapped files

UNAME sysenv p72 n name of UNIX o/s

USER sysenv p72 n path to user's directory

valdate dates p40 v validate dates

var statfns p69 v variance

verb stdlib p70 n integer 3

vfm convert p37 v vector from matrix

viewbmp bmp p32 v bitmap viewer using isipicture control

viewmat viewmat p76 v view matrix in isigraph control

viewrgb bmp p32 v view numeric matrix of RGB data

wcsize stdlib p70 v size of execution window

wd winlib p78 v main window driver, name for 11!:0

wdbox winlib p78 v box wd argument

wdcenter winlib p78 v center form on another

wdclipread winlib p78 v read clipboard

wdclipwrite winlib p78 v write to clipboard

wde winlib p78 v as wd but displays error and signals break

wdfit winlib p78 v fit form in window

wdget winlib p78 v get values from matrix, e.g. wd'q'

wdhandler winlib p78 v wd handler

wdinfo winlib p78 v information box

wdisparent winlib p78 v return 1 if a parent window

wdmenu menu p54 v provide a pop-up menu

wdmove winlib p78 v position window, relative to side of screen

wdpclose winlib p78 v close parent window

wdqshow winlib p78 v display result of wdq

wdquery winlib p78 v query box

wdreset winlib p78 v reset window driver

wdselect winlib p78 v selection box

wdstatus winlib p78 v put status message on screen

wdview winlib p78 v text viewer

weekday dates p40 v returns weekday from date, 0=Sunday ...
6=Saturday

winconst winapi p77 v look up Windows constants

winset winapi p77 v set values of windows constants

win32api winapi p77 a look up Win32 API declaration, returning
verb

win32apir winapi p77 a win32api, except verb returns first element
of call result

write write p79 v write text (see syntax below)

writebmp bmp p32 v write bmp file from RGB data

writecsv csv p39 v writes a boxed array to a csv file

xfmt format p46 v format extended integers

xtab print p62 v remove tab stops from character string

xtabline print p62 v remove tab stops

XOR dll p44 v bitwise XOR (^)

p81

Script Listings

Short Name Full Name

bmp p32 system\packages\graphics\bmp.ijs

colib p33 system\main\colib.ijs

color16 p34 system\packages\color\color16.ijs

colortab p35 system\packages\color\colortab.ijs

compare p36 system\main\compare.ijs

convert p37 system\main\convert.ijs

coutil p38 system\main\coutil.ijs

csv p39 system\packages\files\csv.ijs

dates p40 system\main\dates.ijs

dd p41 system\main\dd.ijs

debug p42 system\main\debug.ijs

dir p43 system\main\dir.ijs

dll p44 system\main\dll.ijs

files p45 system\main\files.ijs

format p46 system\main\format.ijs

graph p47 system\classes\graph\graph.ijs

isigraph p48 system\packages\graphics\isigraph.ijs

jfiles p49 system\packages\files\jfiles.ijs

jmf p50 system\main\jmf.ijs

jselect p51 system\classes\input\jselect.ijs

keyfiles p52 system\packages\files\keyfiles.ijs

kfiles p53 system\packages\files\kfiles.ijs

menu p54 system\packages\winapi\menu.ijs

misc p55 system\main\misc.ijs

myutil p56 system\main\myutil.ijs

nfiles p57 system\packages\files\nfiles.ijs

numeric p58 system\main\numeric.ijs

pack p59 system\main\pack.ijs

parts p60 system\main\parts.ijs

plot p61 system\classes\plot\plot.ijs

print p62 system\packages\print\print.ijs

publish p63 system\packages\publish\publish.ijs

random p64 system\packages\stats\random.ijs

regex p65 system\main\regex.ijs

rgb p66 system\packages\color\rgb.ijs

socket p67 system\main\socket.ijs

statdist p68 system\packages\stats\statdist.ijs

statfns p69 system\packages\stats\statfns.ijs

stdlib p70 system\main\stdlib.ijs

strings p71 system\main\strings.ijs

sysenv p72 system\main\sysenv.ijs

text p73 system\main\text.ijs

trig p74 system\main\trig.ijs

validate p75 system\main\validate.ijs

viewmat p76 system\classes\view\viewmat.ijs

winapi p77 system\packages\winapi\winapi.ijs

winlib p78 system\main\winlib.ijs

write p79 system\packages\print\write.ijs

p82

Development Environment

Menu Commands p83
Component Files p84
Keyed Files p85
Find in Files p86
Printing p87

p83

Menu Commands

Several menu commands invoke J sentences, which typically execute verbs in the j
locale. These are as follows:

Menu

Shortcut

Verb

File|New Class

filenewform ''

File|Print

Ctrl+P

fileprint ''

Edit|Input Log

Ctrl+D

editinputlog ''

Edit|Find

Ctrl+F

editfind ''

Edit|Find in Files

Ctrl+Shift+F

fif ''

Edit|Configure

config ''

Run|Project Manager

Ctrl+B

projectmanager ''

Run|Debug

Ctrl+K

debug ''

Run|HTML Publish

publish ''

Studio|Labs

lab ''

Studio|Advance

lab 0

Studio|Chapters

lab 1

Studio|Author

lab 2

Studio|Options

lab 3

Studio|Demos

demos ''

{none}

Ctrl+F1

help ''

p84

Component Files (jfiles)

Jfiles are component files for J data. A jfile can be thought of as a boxed list
which is stored on file. An element of the boxed list is referred to as a component,
and can store a noun of any type, shape or size. File components are numbered
sequentially from 0 upwards.

To access the system (assuming you are using the standard profile):

 load 'jfiles'

This populates a locale jfiles with utility functions, and defines the following
verbs in the z locale:

 jcreate
 jerase
 jappend
 jread
 jreplace
 jdup
 jsize

You create a file using jcreate.

jappend adds new items to the file. Each item added to the file is stored in a new
component. Several items can be added to the file at a time.

jread reads items from file, and jreplace replaces items on file.

jdup duplicates a file, and jsize returns its size.

You can refer to a file either by its file name, or by its file handle. The default file
extension is .ijf - this is used if no file extension is given.

You cannot delete components once created. If you need to reclaim space no
longer required, either replace the components with empties, or else duplicate the
file, copying only the components required.

Create file
jcreate
create a file. The right argument is the filename. Any existing file is overwritten.
The result is 1 if successful, else 0. For example:

 jcreate 'mydata'
1

Note that since the file extension was not specified, this actually creates a file
named mydata.ijf.

Read and write file
jappend
append to file. The left argument is a boxed list, with each item in the list stored in
a new file component. An open noun is treated as a single boxed item. The right
argument is the filename. The result is the new component numbers created. For
example:

 'header' jappend 'mydata'
0

 ('rec1';'rec2') jappend 'mydata'
1 2

 (< <\1 2 3) jappend 'mydata'
3

 (2 2$10 20 30 40) jappend 'mydata'
4

jread
read file. The right argument is the filename, linked with one or more component
numbers. The result has the same shape as the component numbers. For example:

 > jread 'mydata';4
10 20
30 40

 jread 'mydata';i.5
+------+----+----+-------------+-----+
header	rec1	rec2	+-+---+-----+	10 20				
				1	1 2	1 2 3		30 40
			+-+---+-----+					
+------+----+----+-------------+-----+

 jread 'mydata';i.2 2
+------+-------------+
|header|rec1 |
+------+-------------+
rec2	+-+---+-----+				
		1	1 2	1 2 3	
	+-+---+-----+				
+------+-------------+

jreplace
replace in file. The result is the components replaced. For example:

 (1000;'abcde') jreplace 'mydata';1 2
1 2

 jread 'mydata';i.3
+------+----+-----+
|header|1000|abcde|
+------+----+-----+

The left argument is reshaped if necessary to match the components in the right
argument. For example, the following replaces components 1-3, each with the
word 'reserved':

 'reserved' jreplace 'mydata';1 2 3

1 2 3

Utilities
jdup
duplicate file. The left argument is the new filename; if elided, the file is
duplicated in place. The right argument is the source filename, optionally linked
with one or more component numbers to be copied to the new file, in the order
given. By default, the entire file is duplicated. The result is the number of
components written. For example:

 'newdata' jdup 'mydata'
5

 'newdata' jdup 'mydata';2 0 1
3

jsize
size of file, as 4 numbers:

starting component number (0)
number of components
length of file in bytes (same as result of 1!:4)
amount of free space that could be recovered by duplicating the file

For example:

 jsize 'newdata'
0 5 1312 0

jerase
erase file, for example:

 jerase 'newdata'
1

File handles
You can refer to a file either by its filename, or by its file handle if you have
already opened the file. For most purposes we recommend using the filename.
However, if you have a great deal of file activity, you may find it faster to open the
file first, then use the file handle; this means the system does not have to open and
close the file each time it is accessed. The utilities jopen and jclose in the jfiles
locale can be used for this purpose. For example:

 h=. jopen_files_ 'mydata'

... process file using handle h...
 jclose_files_ h
1

File structure
Each file is structured as a header record, followed by data. The header record is as
follows:

[0] version
[1] starting component
[2] number of components
[3] file length
[4] directory pointer
[5] freelist pointer
[6] sequence number

Freelist
Each component is stored in its 3!:1 representation in a space that is a power of 2.
This means that on average, the representation fills 75% of the space allocated, and
allows some space for growing replaces. If the space required on replacement is
less than half the space allocated, then the balance is freed up.

If you replace a component with a noun of smaller size, then this may result in

some unused space. The system keeps track of this in the freelist, and attempts to
reuse it where possible. The total free space available is given in the fourth element
of the result of jsize, and this is the space that would be freed by duplicating the
file using jdup.

p85

Keyed Files (keyfiles)

A keyed file is a J component file in which the components are accessed using
keywords.

A keyword may be any character string.

Load the keyed file system with:
 load 'keyfiles'

This defines the main functions:

keycreate

create file

keydir

keyword directory

keyerase

erase file

keyread

read data for keyword

keywrite

write date for keyword

read: if keyword not found, return '' else return value
write: if data='' then keyword is deleted

Examples:
 keycreate 'mydata'
1

 'Peter Rabbit' keywrite 'mydata';'name'
 'Lake District' keywrite 'mydata';'loc'

 keydir 'mydata'
loc name

 keyread 'mydata';'loc'
Lake District

p86

Find in Files

Ctrl+Shift+F or menu item Edit|Find in Files starts the Find in Files utility

You can search for simple text, or more complicated patterns with a Regular
expression. The Regex button selects the regular expression search; this is
automatically enabled when you use the Insert button to insert components that
match certain characters, strings, or J-related strings. You can also search in
specific contexts, such as assignment or use of names.

If you have projects created by the Project Manager, Find in Files loads with the
current Project files in the search path. You can select other projects to search.

If Find in Files is open and you change the current Project in Project Manager, the
change is not reflected immediately in Find in Files. To change to the new Project,
select menu Options|Refresh Project.

Otherwise, you can search through folders. In this case, you can specify the file
types to search, and the folders to search. Customize these by pressing the buttons
next to the selection boxes.

Run a search by pressing Enter or Find.

Open a file by putting the caret on a line and pressing Open.

p87

Printing

Printing from J is handled by the print package. Load with:
 load 'print'

This defines utilities in the jprint locale, plus the following user definitions:

print

print text

printfile

print file

print2

print text in 2-up mode

printfile2

print file in 2-up mode

verb: print

form: opt print data

where opt is an optional list separated by semicolons:

ascii [1|0]

set ascii box-drawing characters on|off

font fontspec

set font

fontsize points

set fontsize

filename

set filename text

fit

fit text to page width

header text

set header text

footer text

set footer text

land | landscape

set landscape mode (default is portrait)

ruler

add ruler to top of each page (use with fixed pitch font)

verb: printfile

form: opt printfile files

Options are as for print, except the filename is set automatically

verbs : print2 printfile2

These verbs are the same as print and printfile, except that the page is printing in
landscape mode, 2 pages per sheet. For example, this is good for printing script

files.

Options are as for print, except that fit, land and landscape are ignored, and there is
a new option:

cols

set columns, default 80

Default fonts and options can be set in menu Edit|Configure|Print.

The font for 2-up printing should be fixed pitch and around 7-7.5 point. "Lucida
Console" 7.25 bold is good if available - use oem if your printer supports it, else
ansi.

The ruler option uses the current session box-drawing characters. Choose a box-
drawing font, or include the 'ascii' option.

Examples:
 'font arial 12;land;footer just testing' print i.3 4 5

 'ascii;font "courier new" 14' print ;/i.3 4 5

 'fontsize 7.5;land;ruler' printfile
'system\examples\data\orders.prn'

 printfile2 'system\main\pack.ijs'

p88

Debug

Overview p89
Verbs p90
Commands p91
Stops p92
Watch p93

p89

Overview

Debug is an extension to the facilities provided by the debug foreign conjunction.
After Debug is turned on, then if execution is halted because of a stop or execution
error, the Debug window shows the current execution environment.

Panels in the Debug window show the code being executed, the stack, and values
of various names:

●

any watch names

●

the arguments of the current definition

●

any names on the current line of code.

For an introduction to Debug, see the Debug lab.

For information on the debug foreign conjunction, see the Dictionary entry for the
13!:x family, and script system\main\debug.ijs.

Load Debug

To load Debug, use menu Run|Debug..., or press Ctrl-K when the J session has
focus.

This loads the debug.ijs script, displays the Debug window, enables suspension
(dbr 1), and sets the debug latent expression (dblxs) to run the verb debug in the

jdebug locale.

Then run your program. If execution is halted because of a stop or execution error,
the execution state is shown in the Debug window. Several commands let you step
through the execution session.

To turn Debug off and disable suspension, close the Debug window.

Debug Settings

Debug is active when suspension is on, and the debug latent expression is set. The
Debug window is displayed when Debug is activated, so this provides a visual
indication that Debug is active.

However, if you change either of these directly, for example, by entering:

 dbr 0

then Debug will no longer be active, even if the Debug window is still displayed.
You can reactivate Debug by pressing Ctrl-K.

p90

Verbs

Debug is an addition to the definitions in script system\main\debug.ijs, which can
be loaded as follows:

load 'debug'

This script is loaded when you press Ctrl-K to run Debug.

The script defines:

dbg turns Debug on (dbg 1) or off (dbg 0)

dblocals displays local names on the stack

dbstack displays the stack

dbstop sets stops on all lines in a list of names

dbstopme sets stops in current definition

Verb dbg

To turn Debug on, enter:

 dbg 1 NB. same as Ctrl-K

To turn Debug off and disable suspension, enter:

 dbg 0 NB. same as closing Debug window

Verb dblocals

Displays local names on the stack, for example:
 dblocals''
+---+--------+
jmp	+--+---+			
		a	123	
	+--+---+			
		y.		
	+--+---+			
+---+--------+				
run	+--+-+			
		c	3	
	+--+-+			
		y.		
	+--+-+			
+---+--------+

Verb dbstack

Displays the current stack, for example:
 dbr 1
 plus=. +
 plus / 'abc'
 dbstack''
+----+--+--+--+-----+------+----+
|name|en|ln|nc|args |locals|susp|
+----+--+--+--+-----+------+----+
plus	3	0	3	+-+-+		*			
					b	c			
				+-+-+					

+----+--+--+--+-----+------+----+

Verb dbstop

This is a convenient way of setting stops on all lines in a list of names, for
example:

 dbstop 'accpay intm vrep'

is equivalent to:

 dbss (dbsq''), ';accpay *:*;intm *:*;vrep *:*'

Using dbstop does not change any other stop settings, except that to clear all stops,
enter:

 dbstop''

Verb dbstopme

This is a convenient way of setting stops on the current definition. If the argument
is non-zero (with same meaning as the if. control word) and suspension is on, then
all lines in the current definition are stopped, for example:

foo=: 3 : 0
dbstopme y.>2 NB. stop foo if y.>2
...
)

Using dbstopme does not change any other stop settings.

p91

Commands

In the code panel of the Debug window:

> marks the suspended line, same as the initial run line.

- marks the run line, if moved back from the suspended line.

+ marks the run line, if moved forward from the suspended line.

* marks a stop on a specific line.

| marks a stop on all lines.

Toolbar Commands

Command Shortcut Description

run F5 continue execution at the run line.

step into F6
continue execution at the run line, stopping on the
next line, or on the first line of any definitions on
the run line.

step over Enter, F7
continue execution at the run line, stopping on the
next line, or earlier stop..

step out F8

continue execution at the run line, stopping on the
next line of the calling function. Does not stop
again in the current definition, except where stops
have been set.

cutback cuts back stack to calling function.

back
move run line back one line. Does not undo
sentences already executed.

refresh
refresh Debug window, and restore run line to
suspended line.

forward
move run line forward one line. Does not execute
the run line.

stop name

set stops on all lines on name at cursor position, or,
if the entire line is selected, on all names on the
line. If successful, highlights the name, or entire
line of code.

stop manager manage the stop settings.

watch manager manage the watch names.

edit open script window with the current definition.

clear
reset stack and clear the Debug window. Leaves
suspension on.

help This help.

Other Commands (not on Toolbar)

stop line

F9

toggle stop on line at the cursor position.

»

p92

Stops

You can set and query stops using the foreign conjunctions dbss (13!:3) and
dbsq (13!:2), and using the utilities dbstop and dbstopme.

You can also set and view stops with Debug:

●

The stop name button in the Debug toolbar sets stops on all lines in the
selected name.

●

The Debug Stop Manager lets you set stops on any active definition.

For names whose definition has more than one line, Debug distinguishes between
stops set on specific lines (marked with *) and stops set on all lines (marked with
|). For one-line definitions, only the "all lines" marker is used.

The namelist in the Stop Manager defaults to the selected definition (if any), and
the names on the stack. Select the In Locale checkbox to view names by locale.
Place the cursor on a name, and run the Stop Manager toolbar button to view that
name.

Notes

Comment lines are ignored when setting stops.

p93

Watch

The watch is a list of names that will be displayed at the top of the Debug window
values panel. The list is stored in noun WATCH_jdebug_ .

You can set the watch list from the Debug Watch Manager.

You can also set the watch directly as a character string, or a boxed list of names,
for example:

 WATCH_jdebug_=: 'calc data DEFS'

p94

Project Manager

Overview p95
Project File p96
Project Manager p97
Project Manager Tabs p98
Building Applications p99
Project Conventions p100

p95

Projects Overview

A project file p96 lets you work with applications that are built from several
scripts. You can specify which scripts are to be included in the application, which
are required for development purposes only, and how the application is to be built.

While the scripts are maintained individually during development, they can be
compiled into a single output script for distribution/runtime/installation purposes.
Alternatively, you can specify a build script that is run to create the final
application, which may consist of several scripts.

The Project Manager p97 lets you work with project files. Run the Project
Manager from menu Run|Project Manager... or by pressing Ctrl-B.

Project files distinguish between scripts you write specifically for the project, and
library scripts distributed with the system that are needed in the project. The
project system automatically includes any files required by the scripts you specify.

Typically all the files in a project, apart from library files, will be stored in a single
directory, for example, a subdirectory of user\projects. Within the directory will be
a project file, plus the project source scripts.

The project facilities require that you adhere to various naming and coding
conventions p100.

p96

Project File

A project file is a script file with extension .ijp that defines the project. It is created
and maintained by the Project Manager p97.

A project file defines the following nouns:

PRIMARYFILES

Project-specific files, required for the application

PRIMARYLIBS

Standard libraries needed for the application

DEVFILES

Project-specific files, required for development only

DEVLIBS

Standard libraries required for development only

OTHERFILES

Other files accessible in Project Manager

TARGETFILE

Target file for the application

TARGETLOCALE

Target locale

TARGETHEADER

Header comments written to target file

TARGETEXTRA

Extra code appended to target file

BUILDOPTS

Build options (numeric list)

BUILDFILE

Special build file

NOTES

Free-form notes

WINDOWS

Project open window positions

WINDOWSTATE

Project open window state

The distinction between PRIMARY or DEVELOPMENT is that when you create
an application from the project, only the primary files are used. The development
files are assumed to be required for development purposes only.

FILES refer to files specific to the project, and LIBS to library files that are
supplied with the J system. Library files are referenced by their short names. Note
that library files stdlib.ijs, colib.ijs and winlib.ijs are assumed to be always
available, and therefore do not appear in the selections for library files.

OTHERFILES is an additional list of files that you can access when using Project
Manager. For example, these include the project file itself, the target file (if
specified), and any other files that you want to access easily, but not load with the
project.

The project system uses the jproject locale for storing the project definitions.

However, the project scripts are loaded into the TARGETLOCALE or base locale
if not given.

TARGETFILE is the file created when building the final application. If
TARGETLOCALE is given, the locale is set after any library files are loaded.
TARGETEXTRA is an optional line of code to be appended to the targetfile,
typically to run the application when it is loaded. TARGETHEADER comments
are lines prefixed by NB. that are added to the top of the file. Use this for the file
description.

BUILDOPTS configure the targetfile. BUILDFILE is an optional script file run
when building the application.

A project file is a plain text file and can be edited directly, as long as you preserve
the same names. You should not add new definitions to the file, since the Project
Manager will overwrite them when you next use it. Instead, add any new
definitions to other script files in the project.

p97

Project Manager

The Project Manager lets you work with project files. Run the Project Manager
from menu Edit|Project Manager... or by pressing Ctrl-B.

From the Project Manager dialog, open a project file by either:

selecting from the Project list
running menu File|New...
running menu File|Recent...

The Project list shows all files with extension .ijp found in the Look In folder and
its subfolders. If the project filename is the same as its folder name, for example,
mygraph\mygraph.ijp, then only the filename is shown.

You should set Look In to point to the folders (directories) where you are creating
J projects. For example, the default Look In folder is user\projects. You might then
create projects in directories such as user\projects\work, user\projects\test etc.

You can define and modify the Look In folders by pressing the >> button.

The menu File|Recent... shows the last 10 projects that have been loaded.

When a project is open, use Load to load the project on top of existing definitions.
Select menu Project|Clean Load to reset the system, clearing out existing
definitions, and then load the project.

Select Project|Clean Load Primaries to reset the system, and then load the project
primary files only; this is useful for testing the final application. The verb loadp
can also be used for this purpose.

Use menu Project|Build Options... to specify how the application is to be built. Use
menu Project|Build Application to build the application.

Notes
The Notes editbox in menu File|Notes is for free-form comments. These comments

are stored in the project file only, and do not appear in the final application.

p98

Project Manager Tabs

Source
The Source tab lists the files in the project. These are the scripts in the project other
than library scripts.

Files in the same directory as the project file are shown without any directory path.
Other files have their directory paths.

Use the menu Options|Mark as Dev Only to mark a script as being for development
only; its name is then shown followed by (d).

Required Files
If a source script depends on other scripts, for example, if it contains a line of the
form
 load 'source\util\myutil'

then the required file will also be shown, with a name followed by (r) or (dr).

This feature is primarily intended for library files. Typically, project source files
need not require other files, since it would be simpler to add them explicitly to the
source file list.

Library
The Library tab shows the library files in the project, as well as the library files that
are available. Files are shown with their short name only.

As with Source files, use the menu Options|Mark as Dev Only to mark files that
are for development only.

Required files have names followed by (r) or (dr). Unlike Source files, some
library files are expected to require other files.

Project
Here you can include any of the following four scripts; use the Add button to add
or modify one:

 Target the target file used when Project Manager builds the application

 Pre-Build a script file that is run before Project Manager builds the target file

 Post-Build a script file that is run after Project Manager builds the target file

 Test a script file that is run when you press the Test button

Include a Target file whenever you want Project Manager to build the application
for you.

The Pre-Build and Post-Build scripts allow you to customize the behavior of
Project Manager's build routine. Also, if you do not want Project Manager to build
your application, you can nevertheless define one or both "build" scripts with your
own custom build routines.

Include a Test file so that you can test your application by pressing the "Test"
button.

Other
The Other tab shows any other files you may want to include in the project, for
example, this is a good place to put additional test scripts, that may be loaded by
the project's Test script.

p99

Building Applications

You build the application by clicking the Build button in the Project Manager and
Build Options dialogs.

Include Files
You can choose whether to include or require files when building the targetfile;
"include" means the scripts form part of the target file, "require" means there is a
line of the form: script_z_ <'filename'

written into the target file.

For applications that will be run when the J development system is loaded, you
would typically want to require any project libraries, and either include or require
project source.

For standalone files, you should require libraries only if you know that the
application will be run on your own machine, and so the library files will be
available. Otherwise, you should select to include all library files; in this case, any
library script referenced by the project will be included in the targetfile.

The standard libraries that are included in standalone applications are:

colib.ijs
loadlib.ijs
stdlib.ijs
winlib.ijs

The Libraries for J DLL option excludes winlib.ijs from the standard libraries.

Build Options

The delete comments option removes all comments from your source files, except
only any comments that appear on consecutive lines in your first script.

If Load in locale is given as for example, "myloc", the script will include a line:
 coclass 'myloc'

after any standard libaries are loaded, and before the project files are loaded.

If Append to file is given, it is added as the last statement in the application. Use
this to run the application when it is loaded.

p100

Project Conventions

The project facilities require that you adhere to the following conventions:

● File extensions must be:

ordinary scripts

ijs

locked scripts

ijl

runtime scripts

ijr

project files

ijp

● Dependencies must be given in script files with lines of the form:
 load 'dates regex strings'

where the verb is either load, require or corequire, and the files are given in a
text string. Specifically, the first word on the line must be one of the allowed verbs,
and this must be followed by a character string. Blank separators are ignored.

Note that where dependencies are given in the right form, the project system will
automatically include the required files in the project.

There are no requirements as to project directories. However, it makes for easier
searching if you group the project subdirectories in a small number of directories.
For example, the recommended project directory is user\projects, and you might
then create subdirectories such as user\projects\mywork, user\projects\utils etc.

Also, you may wish to name project files with the same name as the directory,
since this simplifies the display in the Look In list box.

Since directories are searched for project files when you use the Project Manager,
you should avoid using directories where there are a large number of subdirectories
not being used for projects. For example, you would typically not include projects
under the J system subdirectory.

p101

Locked Scripts (ijl files)

The J development system can load definitions from a locked script file. The
names defined by running a locked file can be used normally, but their definitions
are hidden from the user. A locked file normally has a file suffix of .ijl. This
allows you to use proprietary or protected definitions within the framework of an
open J development system. Source is locked with verb 3!:6, for example:
dat=. fread 'user\projects\util\myapp.ijs' NB. read source
 dat=. 3!:6 dat NB. lock source
 dat fwrite 'user\projects\util\myapp.ijl' NB. create ijl file

The text for abc.ijl is encoded and running it defines its verbs,adverbs, and
conjunctions as locked. Locked definitions will not be disclosed by the J
interpreter. For example, create foo.ijs and foo.ijl with the following
definitions:
 plus =: 4 : 'x.+y.'
 mean =: 3 : '(plus/y.)%#y.'
 plust=: +
 meant=: plust/ % #

Load and test as: 0!:1 <'foo.ijs' | 0!:1 <'foo.ijl'
 3 plus 'abc' | 3 plus 'abc'
|domain error: plus | |domain error: plus
| x. +y. | | 3 plus'abc'
 mean 'abc' | mean 'abc'
|domain error: plus | |domain error: plus
| x. +y. | | mean 'abc'
 13!:0 [1 | 13!:0 [1
 mean 'abc' | mean 'abc'
|domain error: plus | |domain error: plus
| x. +y. | | mean 'abc'
|plus[:0] |
 13!:1 '' | 13!:1 ''
|domain error |
| x. +y. |
|plus[:0] |
| (plus/y.)%#y. |
|mean[0] |
| mean'abc' |
 |

 13!:0 [1 | 13!:0 [1
 plus | plus
4 : 'x.+y.' | plus
 meant f. | meant f.
+/ % # | meant

p102

Window Driver

Overview p103
wd p104
Window Forms p105
Event Handlers p106
wdhandler p107
Entering Information p108
Form Locales p109
Other Message Handlers p110
Wait p111
System Events p112

p103

Window Driver Overview

The J/Windows interface is referred to as the Window Driver and provides access
under program control to many features of the Windows graphical and operating
system environment. It provides essentially two mechanisms for communication:

● you can send instructions and queries to Windows.
● you can react to events signaled by Windows, such as the press of a button on a
form.

The verbs wd and wdhandler defined in script file winlib.ijs provide these
mechanisms:

● wd is used to send instructions and queries to the Window Driver - and is the
only way of doing so.
● wdhandler is used to react to events signaled by Windows. It is the standard
way of doing so, but may be changed if required.

These verbs are defined in the standard profile when you load J.

p104

wd

This is defined as:
 wd=. 11!:0

wd is used monadically and takes an argument of a character string of one or more
statements, separated by semicolons. These statements are converted by the
Window Driver into the appropriate Windows function calls. The result is the
result of executing the last statement. Each statement is a command followed by
any required parameters.

Commands supported include:

● creation and use of Windows controls to allow user input
● instructions to the J session manager
● DDE and OLE links to other Windows software
● access to custom controls
● information queries

For details and a list of commands see the wd Commands help file.

The result of wd is the information requested, typically as a character string, or
empty if none. For example, the following queries the system metrics used by
Windows (screen width, screen height, x logical units and y logical units:
 wd 'qm'
640 480 8 16

This shows a 640 by 480 screen, with the base dialog font (used when creating
forms) being 8 pixels wide and 16 pixels high.

The next example creates a dialog box that allows the user to select a font. The
result is returned after the user closes the dialog box, and contains a string of items
that describe the font selected:
 wd 'mbfont'

"Lucida Console" 10 bold

In some cases, the result is a character string delimited by LF, which can be
formatted by list. The following displays all control styles:
 list wd 'qs'
bs_defpushbutton bs_lefttext bs_ownerdraw
cbs_autohscroll cbs_sort es_autohscroll
es_autovscroll es_center es_lowercase
...

An invalid command is signalled as a domain error:
 wd 'qz'
|domain error
| wd'qz'

After an error, you can run command qer to query the error - the result is an error
message, following by the index in the command where the error occured:
 wd 'qer'
invalid command : 0

The following example executes Notepad, assuming it is available on your system -
if not, try executing another program.
 wd 'winexec "\windows\notepad.exe"'
0

The next example executes Notepad with the given filename argument (Notepad
loads the file).
 wd 'winexec "\windows\notepad.exe system\main\dates.ijs"'
0

In the case of an instruction, the result is empty. For example, the following sets
the session manager to tile open windows (assuming there are two or more

windows open), and returns an empty result:
 $ wd 'smtile'
0 0

p105

Windows Forms

wd is used to create the forms (windows and controls) in a user interface. The
easiest way to do this is to use the Form Editor, which builds the appropriate wd
calls for you.

For a tutorial introduction to the Form Editor, see lab Form Editor.

The following example creates a window mywin, adds a push button named
pressme, then shows it as a topmost window (i.e. it stays on top of any other
window):
 wd 'pc mywin;cc pressme button;pshow;ptop'

Once it is displayed, you can move the window away from the J session, so that
you can see both the session and the window. You can set focus on the J session or
in the window, by clicking on them.

If you now click on the button, it depresses, but otherwise nothing seems to
happen. In fact, the click on the button causes an event. If a corresponding event
handler is defined, then it is invoked, otherwise the event is ignored.

The following example is an event handler for the button. To try this out, enter the
following definition:
 mywin_pressme_button=: wdinfo bind 'button pressed'

Now when you click on the button, this event handler is run, and an information
box pops up.

The event handler mywin_pressme_button is an ordinary J verb. It was defined
using the standard utility wdinfo that displays an information message box,
together with a specific argument 'button pressed'. For example, you can run
this program from the J session, by entering:
 mywin_pressme_button''

p106

Event Handlers

An event handler is a verb that is invoked when a Windows event occurs, for
example, when a button is pressed. The standard event handling mechanism in J
supports three levels of event handler for a given form. If the form name is abc,
these are:

● abc_handler (the parent handler)

● abc_id_class (e.g. abc_pressme_button)
● abc_formevent (e.g. abc_close)

● abc_default (the default handler)

When an event occurs, the system searches for an event handler in the order given,
and executes the first one it finds. Therefore, for a form abc:

● if a verb abc_handler is defined, it is executed for every event associated with
that form
● if no such verb is defined, and the event is for a specific control, such as button
pressme, then if a verb for that control such as abc_pressme_button is defined,
it is executed;
or if the event is a form event and a verb for that event is defined, such as
abc_close, then it is executed
● if no such verb is defined, then if abc_default is defined, it is executed
● if no event handler verb is found, the event is ignored

Typically, most forms will be written using only the second level of event handler.
The other two levels allow the programmer to deal easily with special cases.

We can try this out on the form defined above. First define a default handler:
 mywin_default=: wdinfo bind 'this is the default'

Click on the form to give it focus, then try pressing a function key. Each time, this
new default event handler will be executed. However, when you press on the

button, its own event handler is executed.

Now try defining a parent handler:
 mywin_handler=: wdinfo bind 'this handles all events'

Once this is defined, it handles all events from the form.

Note that these event handlers are ordinary verbs and can be defined and modified
as required. The search for an appropriate event handler takes place at the time the
event occurs. For example, delete the parent handler:
 erase 'mywin_handler'
1

Now the other event handlers will again be used to respond to the form's events.

p107

wdhandler

This is the verb that provides the mechanism described above. When a Windows
event occurs, the system typically invokes the following sentence (but does not
show it in the session):
 wdhandler ''

To demonstrate this, try defining a new wdhandler as follows:
 wdhandler=: wdinfo bind 'my new handler'

Now any action you take on the form will invoke this new definition. Typically,
you would not want to redefine wdhandler, but the fact that you can do so gives
you complete control over the way events are handled. To erase your definition
and recover the old definition (which is in locale z), enter:
 erase 'wdhandler'

How does the standard wdhandler work? It first queries the event that has been
signaled, using wd'q', and assigns the result to a global variable wdq :
 wdq
+------------+---------------------------------+
|syshandler |mywin_handler |
+------------+---------------------------------+
|sysevent |mywin_pressme_button |
+------------+---------------------------------+
|sysdefault |mywin_default |
+------------+---------------------------------+
|sysparent |mywin |
+------------+---------------------------------+
|syschild |pressme |
+------------+---------------------------------+
|systype |button |
+------------+---------------------------------+
|syslocale | |
+------------+---------------------------------+

|syshwndp |1388 |
+------------+---------------------------------+
|sysfocus |pressme |
+------------+---------------------------------+
|syslastfocus|pressme |
+------------+---------------------------------+
|sysinfo |1 552 146 200 200 192 173 800 600|
+------------+---------------------------------+

Note that wd'q' only returns information about the last event that occurred. Re-
running it will provide new information only if another event has occurred,
otherwise it will give a domain error.

The result wdq is a boxed array describing the event and the current state of the
form. The first column contain various identifiers, and the second column
corresponding values. Note that the first three rows correspond to the three levels
of event handler discussed above. wdhandler checks whether any of these event
handlers exist, then

● defines each name in the first column with the corresponding value in the
second column, for example a global variable sysfocus will be defined with the
value pressme
● executes the first event handler it has found.

As another example, click on the form to give it focus, then press the Esc key.
Click on the J session window, and look at the variable wdq:
 wdq
+------------+---------------------------------+
|syshandler |mywin_handler |
+------------+---------------------------------+
|sysevent |mywin_cancel |
+------------+---------------------------------+
|sysdefault |mywin_default |
+------------+---------------------------------+
...

This shows that the second-level event handler for the Esc key is named

mywin_cancel. Define a verb of this name to close the form:
 mywin_cancel=: wd bind 'pclose'

Now click on the form to give it focus, press the Esc key, and the form will close.

p108

Entering Information

We next look at a simple example of creating a form to enter information. This
example is in a script file included with the J system.

First, clear out any existing definitions with:
 clear''

Then open the script file:
 open 'system\examples\demo\name.ijs'

You may find it helpful to print out the script file; to do so, with the script window
in focus, select the menu item File/Print. The relevant definitions are as follows:
NAME=: 'Jemima Puddle Duck'

EDITNAME=: 0 : 0
pc editname;
xywh 5 5 70 10;cc name edit;
xywh 85 5 32 12;cc OK button;
xywh 85 20 32 12;cc Cancel button;
pas 6 6;pcenter;pshow;ptop;
)

NB. this creates and initializes the form:
editname=: 3 : 0
wd EDITNAME
wd 'set name *',NAME
wd `'''''pshow'
)

NB. this handles the Cancel button:
editname_Cancel_button=: wd bind 'pclose'

NB. this handles the OK button:
editname_OK_button=: 3 : 0

NAME=: name
wd 'pclose'

)

NB. run the form:
editname''

The script defines a global variable, NAME, and a form, EDITNAME, with an edit field
and OK and Cancel buttons. The following verbs are also defined:

● editname is used to create the form. It first resets the Window Driver, then
sends the form definition EDITNAME to the Window Driver to create the form, then
sets the value of the global NAME into the name field.

● editname_Cancel_button is used to handle a click on the Cancel button. It
simply closes the form.

● editname_OK_button is used to handle a click on the OK button. It redefines
the global NAME with the current value of the name field, then closes the form.

Try this out by running the script (select menu option Run/Window):

Change the value of the name field, press OK, and check the value of the global,
NAME.

p109

Form Locales

A key point about forms is that they may be created and run in any locale, in fact
this would typically be the case. Forms can be created as a class, then instantiated
as an object when they are to be run. For a description, see the labs on Locales and
Object Oriented Programming.

When a form is created, the current locale is recorded as the form locale. This
locale is part of the event information, and allows an event to be handled by the
form handler in the locale.

For example, this means a form can be run in its own locale, without conflicting in
any way with definitions in other locales. You can design a form in the base locale,
and run it without change in another locale.

To experiment with this, switch to the J session, and clear out existing definitions
in the base locale:
 clear''

Check there are no definitions in the base locale:
 names''

Load the form into a locale myname:
 'myname' load 'system\examples\demo\name.ijs'

The form is shown. Change the name and click OK to close the form and update
the global, NAME. Note that there are still no definitions in the base locale:
 names''

However, there are definitions in the myname locale:
 names_myname_''

EDITNAME NAME
editname editname_Cancel_button
editname_OK_button wdq

Read the value of the name defined:
 NAME_myname_
Squirrel Nutkin

p110

Other Message Handlers

wdhandler is the main message handler, but other handlers may be used if
appropriate. There are essentially three alternatives:

● You can replace wdhandler with your own definition. This gives you complete
control over the way you respond to events.

● You can define a specific handler function for a given form, using the wd
command phandler. For example, when the following form is run, any event
specific to it will invoke the sentence: abc_event 0 :
wd 'pc abc;pshow;ptop'
wd 'phandler "abc_event 0"'
abc_event=: wdinfo bind 'abc form handler'

● You can bypass the handler mechanism entirely by issuing the wd command
wait, described below.

p111

Wait

The wait command allows you to create a form which bypasses the standard event
handler mechanism. When it is used, other forms are disabled - this is referred to as
a modal form, and is typically used where you want the user to respond to a query,
or acknowledge an information message. The mechanism is similar to that used in
Windows Common Dialog Boxes.

The wait command shows your form, disables events except for that form, and
waits for an event. After an event occurs, you can use wd'q' to query the event and
respond to it. Events for other forms are only enabled when the form is closed.

For example, the following creates a form with a list box. When you select an
entry, and click OK, the form is closed and the index of your entry is returned.
While the form is running, other J windows are disabled.
PICKNUM=: 0 : 0
pc picknum;
xywh 70 9 34 12;cc ok button;cn "OK";
xywh 8 8 50 57;cc nos listbox;
pas 6 6;pcenter;
)

picknum=: 3 : 0
wd PICKNUM
wd 'set nos zero one two three four'
wd 'setselect nos 0'
wd 'wait'
res=. wd 'q'
wd 'pclose'
ndx=.({."1 res)i.<'nos_select'
".>{:ndx{res
)

When you use a wait command, take care that the form has some means of closing
itself, for example, by defining the form with style closeok, or explicitly closing
the form after the wait is ended.

p112

System Events

Some events are not attached to a specific form, and are considered as system
events - these are the timer and DDE events. These events have a sys_ prefix for
their handler names, instead of the formname_ prefix used for form events. For
example, the wd'q' result for a timer event is:
+----------+-----------+
|syshandler|sys_handler|
+----------+-----------+
|sysevent |sys_timer |
+----------+-----------+
|sysdefault|sys_default|
+----------+-----------+

The wd'q' result for a ddepoke event is:
+----------+-----------+
|syshandler|sys_handler|
+----------+-----------+
|sysevent |sys_ddepoke|
+----------+-----------+
|sysdefault|sys_default|
+----------+-----------+

To respond to such events, you define an appropriate event handler just as for a
form event handler.

For example, define a handler for a timer event that writes the current time to the
session, then set the timer to be 1000 milliseconds. The timestamps when
Windows signals the timer event are written to the current session
 sys_timer=: (6!:0) (1!:2) 2:

 wd 'timer 1000'

1996 1 3 10 15 37.72

1996 1 3 10 15 38.76

1996 1 3 10 15 39.81

1996 1 3 10 15 40.9

To switch off the timer, create a new execution session (i.e. a jx window) and
enter:
 wd 'timer 0'

p113

Window Controls

Overview p114
Parent Windows p115
Location and Size p116
Child Controls p117
Child Classes p118
Richedit Control p119
Statusbar p120
Tab Control p121
Toolbar p122
Common Dialog Boxes p123
Fonts p124
Accelerator Keys p125
Menus p126
Tab and Cursor Keys p127
Ownerdraw p128

p114

Window Controls Overview

Windows supports several types of graphic controls that can be included in the user
interface. All these controls are accessed using the Window Driver.

This chapter describes each control, plus other Window Driver commands used in
developing user interfaces. For an example illustrating the main types of control,
run menu Studio|Demos|controls

All controls are displayed in a window called the parent window. The parent
window is created first, and controls are then added to it. The controls in a parent
window are referred to as child controls.

The parent window and child controls have names, referred to as their ids, that are
set when created. These start with an alphabetic character and consist of
alphanumeric characters. Ids are case-sensitive and can be up to 31 characters. For
example:
 wd 'pc abc'

creates a parent window with id abc.

Several parent windows may be created at a time. Only one parent window may be
selected at a time: wd 'psel abc' selects the parent with id abc. The wd
commands affect the selected parent.

p115

Parent Windows

The parent window is the display area for the menus and child windows required
by a user interface. The command pc, optionally followed by various styles,
creates a new parent window:

● pc creates a standard parent window
● pc owner creates a parent window that is owned by the currently selected
window. The owner is disabled until the new parent is closed.
● pc dialog creates a window that has a dialog box frame, that is, it cannot be
resized.
● pc closeok creates a window that closes without an event when the user
selects the window control menu item: Close.

Parent windows are initially not visible. They can be displayed in various ways
using the pshow command, for example pshow sw_showmaximized shows the
parent window maximized (to fit the available screen). Typically, a parent window
and all its children are created first, then the pshow command is given.

p116

Location and Size

The location and size of controls in a parent is set with the rectangle. The xywh
command sets all values for the rectangle.

4 integers define the rectangle:

x units from the left
y units from the top
w units in width (to the right)

h units in height (to the bottom)

These units are in terms of the average character size of a notional system font. The
size of this system font can be obtained from the qm (query metrics) command. wd
'qm' returns the screen size in pixels, and the pixel size of the system font.

● x and w values are 1/4 of the system font width
● y and h values are 1/8 of the system font height

For example:
 wd 'xywh 40 80 100 160'

sets the rectangle to be 40 units from the left edge of the parent; 80 units down
from the top edge of the parent; 100 units wide; and 160 units high.

Since location and size are defined relative to the size of the notional system font,
window definitions should display reasonably well on different screens at various
resolutions.

p117

Child Controls

Child controls are created in the currently selected parent window. A parent
window may have several child controls. wd commands affect the child controls of
the selected parent window.

Child controls are created with a given class and styles. The class defines the type
of control, the styles customize the control. Some styles are specific to a particular
type of control, other styles can be used with most or all controls. Style names
reflect their use, for example es_uppercase is a style applicable only to edit
boxes. Styles whose names begin with the letters ws_ apply to any control. The
group style groups the control with the previous control. Tab and Cursor keys
recognize groups.

The command cc creates child controls. Typical syntax is:
 cc id class style1 style2 ...

p118

Child Classes

The class defines the appearance and behavior of the control. The classes are:

button pushbutton
check box check box
combobox combination of edit and listbox

combodrop
dropdown combo box

combolist combination of edit and listbox
edit single line edit box
editm multiline edit box
groupbox group box
isigraph graphics box
isipicture picture from a BMP, WMF, or ICO file
listbox list box
radiobutton radio button
scrollbar horizontal scrollbar
scrollbarv vertical scrollbar
static static text
staticbox display box
progress progress bar
richedit single line rich edit control
richeditm multiline rich edit control
spin horizontal spin button
spin vertical spin button
tab tab control
trackbar horizontal trackbar
trackbarv vertical trackbar

button

A button simply initiates a Windows event when pushed. Possible styles are:

● bs_defpushbutton

the default pushbutton. Pressing Enter has the same effect as clicking this button.

● bs_ownerdraw

a button with a picture from a graphics filecheckbox
A checkbox allows a two way selection - checked or unchecked. The only style is:

● bs_lefttext

the caption is displayed on the left, instead of on the right. Use the set command
to set the value of a checkbox, for example, to check control cb:
 wd 'set cb 1'

The result of wd'q' contains the current value of each check box.

combobox
combodrop
combolist
A combobox is a combination of a listbox and an edit box. You can enter a
response into the edit box, or select a response from the listbox. You may select
only one item in a combobox.

A combodrop is similar to a combobox, but initially shows only the edit box, and
allows the list box to appear when selected.

A combolist is similar to a combobox, except that you may select only from the list
box, and may not enter any response into the edit box.

Class styles are:

● cbs_autohscroll

allow horizontal scrolling of the edit box

● cbs_sort

sort entries alphabetically Use the set command to set the possible selections in a
checkbox. This can be a list of names, that may be delimited by LF, EAV or ". For
example:
 wd 'set cbox red green blue brown'
 wd 'set cbox "red" "green" "blue" "brown"'
 wd 'set cbox ',; (;:'red green blue brown') ,each LF

Use setselect to set the selection. For example, the following sets item 2:
 wd 'setselect cbox 2'

The result of wd'q' contains the current value and selection of each combobox.
For example:
...
+------------+-----------------------------+
|cbox |blue |
+------------+-----------------------------+
|cbox_select |2 |
+------------+-----------------------------+

edit
editm
An edit control is a single-line box, and an editm control is a multiline box, in
which text can be displayed and edited. Edit control styles are:

● es_autohscroll

use horizontal scroll bars if required

● es_autovscroll

use vertical scroll bars if required

● es_center

center text

● es_lowercase

lowercase text only

● es_readonly

display text as read-only

● es_right

right justify text in control

● es_uppercase

uppercase text only Use the set command to write text to an edit control. For
example:
 wd 'set edit *Jeremy Fisher'

The result of wd'q' contains the current text for each edit box, and indices of any
selected text:
...
+------------+-----------------------------+
|edit |Peter Rabbit |

+------------+-----------------------------+
|edit_select |6 12 |
+------------+-----------------------------+

groupbox
A groupbox control is a box used to group controls, most often radiobuttons. There
are no class styles.

isigraph
An isigraph control is a window that can display graphics. First create an isigraph
control, then use graphics commands to create and display the graphics. All
graphics commands start with g. Graphics are displayed only when the gshow
command is given.

Graphics commands apply to the currently selected isigraph control. The graphics
window has coordinates running from (0,0) in the bottom left hand corner to
(1000,1000) at the top right.

See the demos, Studio|Demos|isigraph.

isipicture
An isipicture control displays an image from a file. The file may be a DIB (device
independent bitmap), WMF (Windows metafile) or ICO (icon file). DIB files
usually have a file extension of .bmp.

The set command sets the filename. For example, to display the J logo icon:
 wd 'set isipicture *system\examples\data\j.ico'

listbox
A listbox control displays a list of items that can be selected by the user. Listbox
control styles are:

● lbs_extendsel

extended select holding down the Shift key

● lbs_multicolumn

display in multiple columns

● lbs_multiplesel

allow multiple selections

● lbs_ownerdrawfixed

create an ownerdrawn listbox

● lbs_sort

sort entries alphabetically Use the set command to put items in the listbox (as in
combobox above).

In the result of wd'q', multiple selections are delimited by LF. For example:
+--------------+-----------------------------+
|listbox |green blue brown |
+--------------+-----------------------------+
|listbox_select|1 2 3 |
+--------------+-----------------------------+

progress
A progress control displays a bar used to indicate the status of a program. Use the
set command to set values between 0 and 100. For example, to indicate the half
way stage:
 wd 'set pg 50'

radiobutton
radiobutton controls typically allow a single selection from a group of controls.
Selecting one control switches the others off. The only style is:

● bs_lefttext

the caption is displayed on the left, instead of on the right. Use the set command
to set the value of a radiobutton, for example, to check control rb:
 wd 'set rb 1'

The result of wd'q' contains the current value of each radiobutton.

richedit
richeditm
A richedit control is a single line edit box, and a richeditm control is a multiline
edit box, each containing rich edit text. Class styles are:

● es_autohscroll

use horizontal scroll bars if required

● es_autovscroll

use vertical scroll bars if required

● es_center

center text

● es_readonly

display text as read-only

● es_right

right justify text in control

● es_sunken

display sunken For more information, see the Richedit Control section later in this
chapter.

scrollbar
scrollbarv
A scrollbar control displays a horizontal scrollbar, and a scrollbarv displays a
vertical scrollbar. There are no class styles.

The set command sets four values for the scrollbar: leftmost (or top) position,
current position, rightmost (or bottom) position, and the size of change resulting
from a click in the area between the thumbbox and either end of the scrollbar.
 wd 'set sb 0 500 1000 50'

A single parameter sets the current position:
 wd 'set sb 600'

Clicking a scrollbar signals an event. The result of wd'q' has the current position
of the scrollbar. For example:
...
+----------+----------------------------+
|sb |550 |
+----------+----------------------------+

spin
spinv
A spin control displays two arrows horizontally, and a spinv control displays the
arrows vertically. Clicking an arrow initiates a Windows event, and the result of
wd'q' is _1 for the down or left arrow, 1 for the up or right arrow.

static

A static control is used to display text. It is never active. Static control styles are:

● ss_center

center text

● ss_leftnowordwrap

left justify, no word wrap

● ss_noprefix

allow & characters in control

● ss_right

right justify text

● ss_simple

static text controlstaticbox
A static control is used to display boxes with various types of frames and
backgrounds. It is never active. Staticbox control styles are:

● ss_blackframe

black frame

● ss_blackrect

black rectangle

● ss_etchedframe

etched frame

● ss_etchedhorz

etched horizontally only

● ss_etchedvert

etched vertically only

● ss_grayframe

gray frame

● ss_grayrect

gray rectangle

● ss_sunken

sunken

● ss_whiteframe

white frame

● ss_whiterect

white rectangletab
A tab control is used to display several Windows controls on tab forms. Class
styles are:

● tcs_button

display tabs as buttons

● tcs_multiline

allow tabs to be displayed in several lines For more information, see the Tab
Control section later in this chapter.

trackbar
trackbarv
A trackbar control displays a horizontal trackbar, and a trackbarv displays a
vertical trackbar. Class styles are:

● tbs_autoticks

display tick marks along control

● tbs_both

display tick marks on both sides of control

● tbs_enableselrange

enables setselect to mark a range on the trackbar

● tbs_left

display thumb pointing to left / tick marks on left

● tbs_nothumb

do not display a thumb control

● tbs_noticks

do not display any tick marks

● tbs_top

display thumb pointing to top / tick marks on top The set command sets up to five
values for the trackbar: leftmost (or top) position, current position, rightmost (or
bottom) position, and the size of change resulting from a click in the area between
the thumbbox and either end of the trackbar, and line size.
 wd 'set tb 0 3 20 1 1'

A single parameter sets the current position:
 wd 'set tb 4'

Clicking a trackbar signals an event. The result of wd'q' has the current position of
the trackbar. For example:
...
+------------+--------------------------+
|tb |4 |
+------------+--------------------------+

p119

Richedit Control

A richedit control is an edit control that displays RTF (rich text format) data.

RTF is a text description language that uses only standard ASCII characters, so
that you can create and view RTF data as ordinary text. For a summary of the
language, see file: system\examples\data\rtf.txt.

You can also create RTF data from most Windows editors, for example, WordPad,
by saving your text in RTF format. Thus you could create and format some text in
WordPad, save it in RTF format, then read in the RTF file and display it in J using
a richedit control.

You can also copy and paste between a richedit control and any application, such
as WordPad, that supports RTF.

Events and event data for richedit controls are the same as for edit controls. The
event data is the simple text from the control, not the rtf data. To read the text in rtf
format, use command qrtf.

Here is a summary of commands applicable to richedit controls:

● set

set rtfdata into a richedit control. For example:

wd 'set rid *',rtfdata

● setreplace

replace selected rtfdata in a richedit control For example:

wd 'setreplace rid *',rtfdata

● setbkgnd

set background color. For example:

wd 'setbkgnd rid 255 0 0'

A useful color is the gray window background, which is typically 192 192 192. A
richedit control with this background color and without the sunken style appears as
text on the form.

● setreadonly

prevent the user from making changes. For example:

wd 'setreadonly rid'

● qrtf

reads the RTF data from the control. For example:

rtfdata=. wd 'qrtf rid'

Here is a brief overview of the RTF format:

The \ character starts an RTF command and curly braces {} group data.

Some RTF commands:

\b

bold

\cfn

color from color table

\fn

font from font table

\fsn

font size

\i

italic

\par

paragraph (new line)

\ul

underline Commands like \b can be followed by a 0 or 1 to turn the attribute off or
on.

The font table definition is enclosed in {} and each font definition is also enclosed
in {}. For example:
 {\fonttbl{\f0\fcourier Courier New;}}

The \fn command indicates which font to use. For example:
 \f0 test

The \fsn command indicates font size. For example:
 \fs90 test

To replace the current selection with "test" in Courier New size 90:
 wd 'setreplace rid *{{\fonttbl{\f0\fcourier Courier New;}}\f0\
fs90 test}'

Colors are managed in a manner similar to fonts. Define a color table and then
select colors from that table. The following table defines colors black and red:
 {\colortbl\red0\green0\blue0;\red255\green0\blue0;}

To replace the current selection with 'test' in red:
 wd 'setreplace rid *{{\colortbl\red0\green0\blue0;\red255\
green0\blue0;}\cf1 test}'

The / character is an escape character that treats the following character as text.
For example to enter a } as part of text, rather than treat it as a grouping character:
 wd 'setreplace red *{the character /{ appears}'

The following example (in script examples\demo\rtf.ijs) creates some RTF data,
then displays it in a form with a richeditm control:
rtfdata=: 0 : 0
{
{\fonttbl{\f0\fcourier Courier New;}}
{\colortbl\red0\green0\blue0;\red255\green0\blue0;}
\f0 black
\par
\b
\cf1 bold red
\par
\i
\fs60 big bold italic red
}
)
wd 0 : 0

pc abc closeok;
xywh 148 8 34 12;cc ok button;cn "OK";

xywh 148 23 34 12;cc cancel button;cn "Cancel";
xywh 9 7 128 69;cc rid richeditm es_autovscroll es_sunken;
pas 6 6;pcenter;
rem form end;
)
wd 'set rid *',rtfdata
wd 'pshow'

p120

Statusbar

A statusbar can be shown at the foot of a form.

There are 3 statusbar commands:

sbar n; n is number of panes in the statusbar
sbarshow b; b is 0 to hide, 1 to show (default)
sbarset id width text; a width of -1 leaves at current value

The first pane is special. Its width is variable and takes up what is left. It does not
have a border. It can be used to display help text for menu and toolbar items.

p121

Tab Control

A tab control is a panel used to display other controls.

Commands applicable to the tab control are:

set tab text; add a tab label to the control
setreplace tab n text; replace the text of a tab label
setinsert tab n text; insert a tab label
setdelete tab n; delete a tab label

There are two uses for tab controls:

● You can set up a single set of controls, and use the tab control to switch between
different values for the controls. In this case, the controls in the tab area are created
in the same form as the tab itself.

● You can set up several forms, and use the tab control to switch between forms.
In this case, the forms should be created separately from the main form.

As an example of the first use, you could create controls that contain values for
days of the week. Selecting the tab for the day changes the values of the controls
accordingly.

For example, the following demo shows an edit control that depends on the day of
week:
 load 'system\examples\demo\days.ijs'

An example of the second type of tab control is the controls demo that displays the
main Windows controls supported by J, see menu Studio|Demos|Controls.

In this example, the controls displayed on each tab were created in separate script
files: system\examples\demo\control1.ijs, control2.ijs etc.

This second type of tab control uses the creategroup command to allow several
forms to be displayed in a single form.

A form definition used with a creategroup command is an ordinary form that can
be designed and tested with the form editor. It is loaded by the parent of the tab
control by doing a form_run'' that is bracketed by creategroup commands. The
first creategroup command gives the id of the tab control where the new controls
are being created. The final creategroup command has no parameter.

creategroup causes parent commands such as pc to be ignored so that when the
form definition is run, the child creates occur in the original parent form. The
initial argument to creategroup is an id, usually of a tab control, in the current
form. Controls created under a creategroup command are created as hidden, and
as part of a group with the id from their (ignored) pc command. The setshow
command with a group id, shows or hides the controls in a group.

For example, here is the relevant code from the controls demo:
wd 'creategroup tabs'
edits_run''
selects_run''
wd 'creategroup'

This code:

● uses creategroup to prepare to load forms for the tabs control
● loads each form to be shown on the tabs control
● uses creategroup with no parameter to finish up

Note that a tab control should be created before any controls that appear on top of
it - this ensures controls will be painted properly.

The event data for a tab control is the label text and the id_select variable
contains the index of the selected tab.

p122

Toolbar

A toolbar can be shown at the top of a form, beneath any menu.

There are 3 toolbar commands:

tbar filename;

filename of toolbar bitmap

tbarshow b;

b is 0 to hide, 1 to show (default)

tbarset id index image;

toolbar index and image number in bitmap The tbarset command with an empty
id sets the toolbar index as a separator with a width as specified in the image value.

Toolbar buttons are usually for a command that is also on the menu. If the menu
item and the toolbar button are given the same id, then set and setenable commands
affect both, and they will cause the same event.

The set command for an id that is a menu or toolbar command will check or
uncheck the menu or toolbar. The setenable command for an id that is a menu or
toolbar command enables or disable the commands.

Any toolbar bitmap file can be used. An example is provided in file:
system\examples\data\isitbar.bmp, which is referenced by the controls demo.

You can create and edit toolbars using Paint. To do so, open the .bmp file using
Paint, maximize the zoom setting and select grid on.

p123

Common Dialog Boxes

Windows provides several built-in dialog boxes called Common Dialog Boxes that
perform useful functions.

The color dialog box allows selection of colors. The result is a list of the RGB
values for 17 colors, of which the first is chosen in the standard color dialog box,
and the rest in the custom color dialog box. Try:
 _3[\ ". wd 'mbcolor'

This returns a matrix of the 17 values, one row per color.

The font dialog box allows selection of a logical font. The result describes the font
chosen (in this case the font used in the J logo):
 wd 'mbfont'
"Bookman Old Style" 24

The message box dialog box displays a message and waits for a user response. For
example:
 wd 'mb title text'
 wd 'mb title text mb_iconstop mb_retrycancel'

To list all message box styles:
 list wd 'qs mb'
mb_abortretryignore mb_defbutton2 mb_defbutton3
mb_iconasterisk mb_iconexclamation mb_iconhand
mb_iconinformation mb_iconquestion mb_iconstop
mb_ok mb_okcancel mb_retrycancel
mb_yesno mb_yesnocancel

The open filename dialog box allows the user to select a fully qualified file name:
 wd 'mbopen'

 wd 'mbopen title "" "" Write(*.wri)|*.wri| Word(*.doc) |*.doc"
ofn_filemustexist'

To list all open filename styles:
 list wd 'qs mbopen'
ofn_createprompt ofn_filemustexist...
ofn_overwriteprompt ofn_pathmustexist

The save filename dialog box is similar to the open filename dialog box:
 wd 'mbsave'

p124

Fonts

A font can be chosen with the mbfont command. The result is a description of a
font, that can be used as the argument to other commands.

A maximum of 20 fonts can be selected for use in controls. Deleting a control does
not release the font resource. A wd'reset' command frees all font resources.

Use the setfont command to set the font. For example, the following sets the font
for control bn to: Lucida Console, 24 point, italic, bold:
 wd 'setfont bn "Lucida Console" 24 italic bold'

p125

Accelerator Keys

& in the name of a button or menu item sets a keyboard accelerator. The & is not
displayed and the next character is underlined. Pressing ALT + the character is the
same as clicking on the button or menu item.

p126

Menus

Several Window Driver commands support menus:

menu id text

add menu item

menupop text

add popup menu item

menupopz

ends popup menu and drops down a level

menusep

add separator line in a popup menu To add a popup menu item pop1, displayed in
the menu bar:
 wd 'menupop pop1'

To add individual items to the popup menu, displayed when the menu is selected:
 wd 'menu item1 "item name"'

This displayes the text "item name", and if selected, the Windows result contains
the name item1.

To add a separator line:
 wd 'menusep'

To end the popup menu:
 wd 'menupopz'

To check a menu item:
 wd 'set item 1' NB. 1=check, 0=uncheck

To enable a menu item:
 wd 'setenable item 1' NB. 1=enable, 1=disable

p127

Tab and Cursor Keys

TAB and SHIFT+TAB keys cycle the focus through the children in the order they
were created.

Cursor keys cycle through the controls in a group. By default, controls, except for
radiobuttons, are created as part of a group consisting only of themselves.

p128

Ownerdraw

A button created with the bs_ownerdraw style is an ownerdraw button. A listbox
created with lbs_ownerdrawfixed style is an ownerdraw listbox.

A control with ownerdraw style displays a picture from a file. The files supported
are the same types supported for the pictures in isipicture class windows.

The file names to display are set with the set command.

For example, the following will display an ownerdraw button with the J icon:
 wd 'pc abc; xywh 10 10 30 30'
 wd 'cc b1 button bs_ownerdraw'
 wd 'cn "system\examples\data\jb.ico"'
 wd 'pas 10 10; pshow'

p129

Window Driver Command Reference Overview

The foreign family 11!:x is the J-Windows interface.

All 11!:x verbs are rank 1.

wd commands p130 are executed when x is 0 (11!:0).

gl2 commands p131 are for 2D (GDI) graphics (x between 2000 and 2999).

fontspec p132 is several parameters that specify a font.

isigraph events p133 support character and mouse events.

Mapping Mode p134 affects how logical units are mapped onto the display surface.

gl3 commands p135 are for 3D (OpenGL) graphics (x between 3000 and 3999)

OpenGL printing p136 for printing OpenGL images by creating a bitmap RC,
drawing to the bitmap, and then printing the bitmap.

p130

wd commands 11!0

wd takes a string right argument and returns a string result. A wd argument is 0 or
more statements delimited by semicolons. A statement is a command followed by
0 or more parameters. Commands and parameters are separated by one or more
whitespace characters from the set: space, carriage return, line feed, and tab.
Simple parameters start with an alphanumeric, -, or _, and run to a; or whitespace.
A * starts a parameter at the next character, and runs to the end of the array.
Delimited parameters start with " or 255{a. (EAV) and run to the matching
delimiter. Some commands are not supported in some environments.

A wd error is a J domain error. Command qer returns the error message text and
wd argument index for the last error.

The first letters of a command usually indicate a category: dde, mb (message box
and common dialogs), menu, ole, p (parent), q (queries), set (setting properties),
sm (session manager), and vbx.

A parameter can be an id, style, number, or text. An id identifies a parent, child,
menu item, or other object. A style is a keyword, usually with a prefix. For
example, bs_autoradiobutton is a button style.

A color is 3 parameters giving RGB values in the range 0 to 255. For example, 0 0
0 is black, 255 255 255 is white, and 255 0 0 is red.

A bool is 0 or 1 and is 1 if elided.

wd Commands

beep [i] ; beep (parameter is ignored)

cc id class [style...] ; create child

clipcopy text ; put text on the clipboard

clippaste ; result is text from the clipboard

cn name ; set child name after a cc command (otherwise setcaption is preferred)

creategroup id ; causes parent commands to be ignored so that, when a form
definition is run, the child controls created are in the current form. The id is a
control in the current form, usually a tab control, and child creates are offset from
that control. Controls created under creategroup are hidden and are part of a group
with the id from their ignored pc command. The setshow command with a group id
hides or shows the controls in a group. A form definition loaded under creategroup
is a normal form definition that can be designed and tested with the form editor. It
is loaded by a main form with a form_run that is bracketed by creategroup
commands. The first creategroup gives the id of a control in the main form and the
final creategroup command has no parameter and ends the group.

creategroup ; ends the group started by a previous creategroup command

dde commands...

fontdef fontspec p132; default font used when a child is created.

mb title text [style...] ; messagebox with styles from set (mb_arbortretryignore,
mb_defbutton2, mb_defbutton3, mb_iconasterisk, mb_iconexclamation,
mb_iconhand, mb_iconinformation, mb_iconquestion, mb_iconstop, mb_ok,
mb_okcancel, mb_retrycancel, mb_yesno, mb_yesnocancel)

mbcolor [colors] ; choose color common dialog box. Result is chosen color and
16 custom colors. Colors are 3 integers giving RGB values. Optional argument sets
initial chosen color and 16 custom colors (51 integer values in range 0 to 255).

mbfont [fontspec p132] ; choose font common dialog. Start with last chosen and
set new one if OK. Result is a fontspec p132.

mbopen title directory filename filterpairs [style...] ; open file common dialog
returns fully qualified file name selected by user. Filterpairs are delimited by |.
Styles are from the set (ofn_createprompt, ofn_filemustexist, ofn_nochangedir,
ofn_overwriteprompt, ofn_pathmustexist).

wd 'mbopen'
wd
'mbopen mytitle "" "" "Write(*.wri)|*.wri|(Word(*.doc)|*.doc"
ofn_filemustexist'

mbprinter [pd_printsetup] ; The parameter selects the setup dialog instead of the
print dialog. The result is '' if the user pressed CANCEL. If the user pressed OK,
the result is the name of the selected printer followed by LF delimited values.
Currently the only value after the name is the print-to-file value from the print
dialog. This sets the session default printer setup ithat is used by glzcreate with no
argument.

mbsave title directory filename filterpairs [style...] ; save file common dialog
returns fully qualified file name (see mbopen).

menu id text ; add menu item

menupop text; add popup menu item

menupopz ; ends popup menu and drops down a level

menusep ; separator line in a popup menu

ole commands...

pactive ; SetActiveWindow for selected parent

pas i j ; parent size adjusted to provide i and j margins beyond children

pc id [style...] ; parent create. Styles are: nomenu, nomin, nomax, nosize, dialog,
owner, and closeok.

pcenter ; center parent on screen

pclose ; close parent. If no parent selected, nothing is done and there is no error.

pcolor R G B; (win32) set parent background color. See setcolor command.

pgroup groupname; set parent groupname. Parents are created with a default
groupname of ''. The ijx window has a groupname of 'ijx' and an ijs window has a
groupname of 'ijs'. A groupname can be used as an argument to the reset and qp
commands.

picon filename n ; (win32) set form icon with icon n from file (exe, dll, or ico file)

wd'picon "',(jsystempath
'system\examples\data\jy.ico'),'" 0'

pmove x y w h ; move and resize parent. Values are in logical units and are
relative to the top left corner of the screen. Value of -1 inherits current value.

pmovex x y w h ; move and size form in pixels

pn text ; name for parent window caption

psel id ; select parent id to be target for subsequent commands

psel n ; select parent with qhwnp of n for subsequent command

psel ; clear parent and child selection

pshow [style] ; style is from the set: sw_hide, sw_minimize, sw_restore, sw_show,
sw_showmaximized, sw_showminimized, sw_showminnoactive, sw_showna,
sw_shownoactivate, sw_shownormal. sw_shownormal is the default.

ptop [bool]; set 1 so that window stays on top of other windows. No error on Jwdp
(portable Java version), but has no effect.

q ; return event data

qbreak ; (win32) returns count of menu/button/and toolbar commands that have
been ignored because J was busy. This value can be polled in a loop with a long
execution time to see if the user is getting impatient.

qchildxywh id; return child position and size in units

qchildxywhx id; return child position and size in pixels

qcolor color ; return RGB for system colors defined in
system\packages\color\wdcolor.ijs

qd ; return data for form. Similar to q result.

qer ; return last error information

qformx ; returns form x y w h values in pixels.

qhinst ; (win32) return HINSTANCE of application

qhwndc id; return HWND (handle) of child

qhwndp ; return HWND (handle) of current parent

qhwndx ; (win32) return HWND (handle) of application

qkeystate keys ; (win32) returns 0 or 1 (pressed) for each key in keys. The values
in keys are virtual key values as defined in packages\graphics\vkeys.ijs.

The portable way to work with shift type info in an event is to use the sysmodifiers
event data. The sysmodifers value is: 2#.ALT,META,CTRL,SHIFT

qm ; return system metrics:
 screen width, screen height,
 x logical unit, y logical unit,
 cxborder, cyborder,
 cxfixedframe, cyfixedframe,
 cxframe, cyframe,
 cycaption, cymenu,
 desktop x, desktop y,
 desktop w, desktop h
 More elements may be added.

qp [groupname] ; return parent ids. With no parameter it reports all windows with
the default groupname of ''. With a groupname parameter it reports all windows
with that groupname.

qprinters ; (win32) returns an LF delimited list of printers. The first entry is the
session default printer. The second entry is the system default printer. The
remaining entries are a list of all printers. The session default printer starts out as
the system default printer and is changed by mbprinter or File|Print Setup.

qpx ; extended information about all forms (see wdforms_j_)

qrtf id; (win32) return RTF data from richedit control

qs [cmd] ; return styles or keywords used in command. cmd can be: cc, gpen, mb,

mbopen, mbsave, pshow, sendkeys, smshow, or winexec

qscreen ; screen information (see glqprinter)

horzsize width in millimeters

vertsize height in millimeters

horzres width in pixels

Vertres height in raster lines (pixels)

logpixelsx horizontal pixels per logical inch

logpixelsy vertical pixels per logical inch

bitspixel number of color bits per pixel.

planes number of color planes

numcolors number of entries in the device's color table (_1
if > 8)

aspectx relative width of a pixel

aspecty relative height of a pixel

aspectxy diagonal width of a pixel

qwd ; returns 'jjava' for Jwdp and 'jwin32' for Jwdw

rem text ; remark

reset [groupname] ; close windows. With no parameter it closes all windows with
the default groupname of ''. With a groupname parameter it closes only windows
that have that groupname (as set by the pgroup command).

sbar n; create status bar with n panes

sbarset id width text; set id, width, and text of the next statusbar pane. A width of
-1 leaves the width unchanged. A set command sets the text of the pane.

sbarshow [bool]; show (1) or hide statusbar

security [bool]; (win32) 1 sets java sandbox (disables commands that can 'cause
damage')

set id [parameters...] ; set object property

checkbox, radiobutton - check (1 or elided) or uncheck (0)

combobox - similar to listbox

edit, editm - set text.

isipicture - set filename of picture source. dib or bmp (device
independent bitmap), wmf (windows metafile), or ico (icon) file to
display.

listbox - clear contents and add items. A parameter can contain LF
delimited items. Ownerdrawfixed listbox items are picture file
names.
 wd 'set listbox red green blue'
 wd
'set listbox red green blue "pink',LF,'orange"'

menu - check (1 or elided) or uncheck (0). If menu and toolbar
button have same id, both are set.

progressbar - set value in range 0 to 100

richedit, richeditm - set RTF text

scrollbar - set min/position/max/pagesize values or just position
 wd'set scrollbar 0 60 100 10'
 wd'set scrollbar 75'

static - set text

statusbar - set pane text

tab - add a tab for each parameterwd'set tab Jan Feb Mar Apr'

toolbar - check (1 or elided) or uncheck (0). If menu and toolbar
button have same id, both are set.

trackbar - similar to scrollbar but has linesize in addition to
pagesizewd'set trackbar 0 60 100 10 2'

setbkgnd id color ; (win32) set background RGB color of richedit or richeditm
control

setcaption id text ; set control caption. If control is ownerdraw button, text is
picture filename.

setcolor id textR G B textbkgndR G B bkgndR G B ; (win32) set control colors.
You can set form and control (text, text background, and background) colors. The
setcolor command can override the gray readonly edit boxes. The setcolor
command has no effect on push buttons or the dropdown listbox of a combobox
(unfortunate Window facts). For example:

abc_run=: 3 : 0
wd ABC
NB. initialize form here
wd 'pcolor 0 0 255'
wd 'setcolor cceditm 255 0 0 0 0 255 0 0 255'
wd 'pshow;'
)

setcolwidth id width ; (win32) set multicolumn listbox column width

setdelete id n ; delete tab item n

setedit id x ; parameter is z x c v or y and it performs the command undo, cut,
copy, paste, or redo

setenable id [bool] ; enable (1) or disable. Applies to menu items, toolbar buttons,
and controls.

setfocus id ; set focus on control

setfont id fontspec p132; set font for control

setinsert id n text ; insert tab item at position n

setinvalid id ; (win32) InvalidateRect

setlimit id n ; (win32) limit length of user typed text in edit, editm, richedit,

richeditm, combodrop, and combobox controls.

setreadonly id [bool] ; set readonly (1) for edit, editm, richedit, and richeditm

setreplace id newtext ; replace selected text with newtext in edit, editm, richedit,
and richeditm control

setreplace id n newtext ; replace tab item n text with newtext

setscroll id n ; scroll n to be first visible line in editm and richeditm control

setselect id [parameters...] ; set selection

edit, editm, richedit, richeditm - parameters are [start end [noscroll]
]. Selects text from start to end. If start and end are elided, then all
text is selected. If noscroll is elided or 1, then the selection is not
scrolled into view. If noscroll is 0, then the selection is scrolled into
view

combobox, listbox - -number of item to select. -1 clears selection.

trackbar - parameters are start and end of range to mark as selected

setshow id [bool] ; show (1) or hide. If it is a group id (the id of the pc command
ignored by a creategroup), then all controls in the group are affected. Controls
explicitly hidden are not affected by a group show.

settabstops id [n [n [n...]]] ; sets tab stops in editm and listbox controls. Values
are in dialog units.

setupdate id ; (win32) UpdateWindow

setxywh id x y w h ; set child position and size in units

setxywhx id x y w h ; set child position and size in pixels

smcolor n R G B; set code editor color. No effect in Jwdp.

sminputlog ; return input log

smkeywords n keywords ; code editor keywords (for color n). No effect in Jwdp.

smsetlog ; set input log

tbar filename; set filename of bmp file for toolbar. JFEwdp (JFE wd portable) can
read either bmp or gif files. The file contains images that are 16 pixels wide by 15
pixels high.

tbarset id index image; set id for a toolbar button. index is the position in the
displayed toolbar and image is the index of the button bitmap to use from the
toolbar bitmap.

tbarshow [bool]; show (1) or hide toolbar

timer i ; set interval timer to i milliseconds. Event systimer occurs when time has
elapsed. The timer keeps triggering events until the timer is turned off. An
argument of 0 turns the timer off. The systimer event may be delayed if J is busy,
and it is possible for several delayed events to be reported as a single event.

tnomsgs ; (win32)

wait ; (win32) the normal message loop executes a handler in immediate execution
when an event occurs. This is overkill for getting input from a simple form, and the
way mb works is simpler: the message box is displayed, other events are disabled
until it is closed, and the result is the wd result. The wait command allows a form
to be used in a similar way. The wait command shows the form, disables events
except for that form, and waits for an event. The event information is given by
wd'q'. While a wait form is active events in other forms, DDE events, and timer
events are disabled. They are enabled when the wait form is closed.

winexec text [style]; Execute program. style is same as for pshow.
wd ' winexec "write.exe text.wri" sw_showmaximized;'

xywh x y w h ; sets rectangle. -1 value inherits the previous value.

dde commands (win32)

ddeadvise t i d ; send data to client in an advise loop. Client will get ddeadvise

event.

ddecons ; return s|t active conversations

ddedis [s [t]] ; discontinue conversations

wd 'ddedis;' conversations with all servers
wd 'ddedis s;' conversations with servers
wd 'ddedis s t;' conversation with server s on topic t

ddeex s t d ; data d is sent to server s for topic t to execute

ddename id ; set dde service name (can be done only once). Command line
/ddename= can also set dde service name.

ddepoke s t i d ; send data to S|T!I

ddereq s t i ; data for item i is requested from S|T

ddereqd d ; send data in response to ddereq event (must be done immediately after
ddereq event)

ddestart s t i ; advise loop requested for S|T!I. New data signals ddeadvise event.

ddestop s t i ; stop advise loop on S|T!I

ole commands (win32)

oledlg id ; run property dialog. State can be saved with the olesave command.

oleenable id eventname [bool] ; enable/disable event. You must enable an event
in order to trigger an event in J.

oleget id objectname property ; return property value. Objectname is base, temp,
or a name set with oleid. If the result is an object, it is set as the temp object. This
allows a series of wd commands that use the temp object to get the next object.

olegetlic ; returns licence information

oleid ; give a temp object a name to make it permanent

oleinfo id ; return information about events, methods, properties, and constants

oleload id filename ; initialize properties from a file created by olesave. An
oleload should only be done once before it is shown.

olemethod id objectname method parameters....; run a method. , is an elided
parameter. A wd parameter of , is the same as "", except it is treated as an elided
parameter where appropriate.Some methods distinguish between a numeric
parameter and a string. A simple (not delimited) string that is an integer is treated
as an integer. If you want 23 to be treated as a string, use "23". If the result is an
object, it is set as the temp object.

 An object parameter is indicated by a simple parameter of the
form:object:formid.childid.objectname

 A picture object parameter is indicated by a simple parameter of the
form:picture:filename

olemethodx ;

oleocx ;

olerelease ;

olesave id filename ; save properties in a file that can be used to initialize a
control after it is created

oleset id objectname property value ; set property value

olesetlic ; set the licence information for a runtime OCX

Incompatible changes

197{a. is no longer supported as a parameter delimiter. Event data no longer
includes sysinfo. Many commands have been decommitted.

p131

gl2 commands 11!:2000+n

gl2 commands are for 2D drawing in an isigraph control. Script system\main\gl2.js
defines gl2 verbs in the jgl2 locale.

 load 'gl2' NB. define gl2 verbs in jgl2 locale

The many gl2 definitions are in the jgl2 locale so they don't clutter up the z locale.
Production users of gl2 can either use the full name (e.g. glline_jgl2_) or can use
coinsert to add the jgl2 locale to their locale path. Requiring _jgl2_ on all names
for casual use is a nuisance and you can use coinsert to add jgl2 to your. For
example:

 coinsert'jgl2'

Most gl2 commands add drawing information to a buffer. When the control is
painted, it is painted with these buffered commands. Some commands, such as
glcursor are not buffered commands and either have an immediate effect, or
change a global state.

mapping mode p134 affects how the logical units of the gl2 commands are mapped
onto the display surface.

isigraph events p133 allow user interaction with the isigraph control with the
keyboard and mouse.

Command 11!:2999 takes a list of multiple gl commands. Each command starts
with an integer count followed by the command and data. For example:
 11!:2999 [4 2013 500 500 4 2013 900 100 2 2036 NB. glline, glline, glshow
 11!:2999 [4 2056 500 200 5 2038 65 66 67 2 2036 NB. gltextxy, gltext, glshow
This can be used to move the overhead in the J Engine Protocol of passing
thousands of individual small commands over the socket interface by one large
2999 command.

gl2 Commands

glarc x y w h xa ya xz yz ; (not wince) draw arc on the ellipse defined by
rectangle. Arc starts at xa,ya and ends at xz,yz. Start and end points need not lie on
the ellipse, they define a line from the center that intersects the ellipse.

glbkcolor '' ; set current background color to current color (last grgb). Background
color is used in the gaps in styled lines and as the background for text.

glbkmode bool ; (noop java) set background mode for gbkcolor to OPAQUE with
0, or TRANSPARENT with 1

glbmp filename ; (only win32) display bitmap in glbmpxywh rectangle

glbmpxywh x y w h ; (only win32) set rectangle for the display of a bitmap

glbrush '' ; select solid brush in current color

glbrushnull '' ; select null brush (leaves area painted with it unchanged)

glcapture type ; type is 0 release, 1 capture, 2 line band, 3 box band, 4 ellipse
band, 5 vertical line, 6 horizontal line. A capture is normally done in a mouse
down event and a glcapture 0 should be done in the mouse up event.

glcaret w h ; (not java) create a text caret at the current position with a width and
height of w h.

glchord x y w h xa ya xz yz ; (only win32) same parameters as garc. Drawn with
pen and brush.

glclear '' ; clear isigraph drawing buffer and reset defaults. If a printer context has
been created, it is carried forward. Default values are 0 except for the following:

glmap MM_DEFAULT
glzmap twips
glbkcolor white
glwindowext 1000 1000
glplaymap anisotropic
glplayextent 1000 1000

glextent 1

glclear n ; initialize graphics state. If n is '' or 0, then an InvalidateRect is done, If
n is 1, then it is not done.

glcursor n ; sets mouse cursor. Values are defined as IDC_... in gl2.

glellipse x y w h ; draw an ellipse in the rectangle with pen and brush

glextent bool ; 0 selects the screen context and 1 selects the printer for glqextent
and glqtextmetrics. The default is 1.

glextentfont fontspec p132 ; set font for glqtextent and glqtextmetrics

glfile filename ; (only win32) set filename for glsave and glsavebmp. '' is the
clipboard.

glflood i j color ; (only win32) fill area around point i,j with the current brush. The
area is bounded by color.

glfont fontspec p132 ; font for text commands

glgrid '' ; buffered drawing command that causes a grid to be painted. The grid is
painted based on the state information set by the following glgrid... commands.

glgridatt attributes ; A set of attributes is a list of 20 integers. The argument is the
ravel of the sets of attributes.

attribute set: pen, brush, text, font, align, edit, 8 unused values

pen, brush, and text are 3 integers with RGB values
font: _1 selects font based on first character (-, _ , and digit select
font 1); 0 selects font 0, 1 selects font 1
align: _1 selects left or right based on first character (-, _, and digit
selects right), 0 selects right, 1 selects left, 2 selects center.
edit: 0 not editable, 1 editable

glgridborder borders ; a border is specified as 20 integers:
 row, col, rows, cols, left b, top b, right b, bottom b

 b field for each side is a type and RGB color
 type is 0 to 3 and 11 for none, thin, medium, fat, and double line

glgriddrawmark '' ; undraw previous mark and draw new mark

glgridedit text ; create edit box at mark

glgridedit 0 ; destroy edit box

glgridedit 1 ; enable arrow keys in edit box

glgridfill width height fixfilltype filltype ; information about cells beyond the
grid data

glgridfix row col ; fixed rows and columns

glgridfont0 fontspec p132 ;

glgridfont1 fontspec p132 ;

glgridgetedit '' ; get text from edit box

glgridgettext row col ; get text for this cell

glgridgettype row col ; get type and attributes for this cell

glgridh heights ; row heights for the grid data

glgridinvalidate bool ; 1 causes subsequent glgridtext and glgridtype commands
to invalidate the cells they change.

glgridmark row col rows cols ; marked range of cells

glgridrc rows cols ; rows and columns in grid data

glgridrchw row col rows cols ; select subarray used in subsequent glgridtext and
glgridtype commands

glgridscroll row col ; scrolled rows and columns

glgridskip row col ; rows and columns in total data that are not in grid data

glgridtext ; NULL terminated strings of grid data

glgridtype types ; integer value for each cell that selects its attributes

glgridw widths ; column widths for the grid data

glline i j ; draw line from current position to point i,j and update current position

gllined I j k l linelen spacelen [linelen spacelen ...] ; (not java) draw dashed line
from i,j to k,l. Works only for vertical and horizontal lines.

gllines pts ; draw connected lines. pts is 2 or more points.

glmap mode ; See mapping mode p134.

glmark ; (not java) set mark in graphics buffer and reset pens etc.

glmarkc ; (not java) clear graphics buffer back to last gmark (does not undraw)

glmove i j ; move current position to i,j

glnoerasebkgnd bool ; default paint clears background and if commands paint
entire area this is not necessary. Set to 1 to avoid initial paint of background.

glpaint '' ; does immediate paint of a 2D control. The painting of a 3D control is
delayed until the paint event handler can be run.

glpaintx '' ; mark control for painting when possible. If a glpaintx is done and J
continues execution for a while, then the painting will be delayed.

glpen i [style] ; select pen. pen is color from last glrgb command and is i units
wide. style is from the set (ps_solid, ps_dash, ps_dot, ps_dashdot, ps_dashdotdot,
ps_null, ps_insideframe)

glpie x y w h xa ya xz yz ; (not wince) draw pie shaped wedge with pen and brush.
Same parameters as garc.

glpixel i j ; draw pixel at i,j in current color

glpixels x y w h pixeldata ; pixeldata is an integer per pixel with RGB values

glplay filename ; (only win32) the wmf file filename is played into the isigraph
control. The glplaymap, glplayxywh, and glplayext commands determine how the
file is played.

glplayext extx exty ; (only win32) windowport extent information for scaling the
wmf file

glplaymap mode ; (only win32) set map mode for playing a wmf file.
See mapping mode p134.

glplayxywh x y w h ; (only win32) set rectangle for playing a wmf file. This is not
a clipping rectangle and if the drawing goes beyond the w and h values it will be
displayed. The w h values establish the extents that are used for scaling if the
drawing is done in an isotropic or anisotropic mapping.

glpolygon pts ; draw polygon in pen and brush

glpolymode bool ; (only win32) 0 selects alternate filling of polygon and 1
selects winding

glqdevmode '' ; (only win32) return printer document properties (see glzdevmode)

glqextent text ; return width and height of the text in a particular font on a
particular device. The glextent command determines whether the screen or printer
context is used and glextentfont determines which font is used.

The layout (rasterization) of text is quite complicated and the final
length of text is not simply the sum of the lengths of the individual
characters. For this reason, calculations based on character widths
are not very useful.

In addition, the length of text depends on the device. Drawing
"testing 1 2 3" with an arial 240 font in a twips mapping will have
different lengths on the screen, on a 150dpi printer, and on a 300dpi
printer. Calculations such as line breaks, page breaks, and
positioning stuff at the end of text are sensitive to the actual device.

glqpixels x y w h; return pixeldata as integer per pixel with RGB values

glqprinter '' ; (only win32) return printer information

horzsize width in millimeters

vertsize height in millimeters

horzres width in pixels

Vertres height in raster lines (pixels)

logpixelsx horizontal pixels per logical inch

logpixelsy vertical pixels per logical inch

bitspixel number of color bits per pixel.

planes number of color planes

numcolors number of entries in the device's color table (_1
if > 8)

aspectx relative width of a pixel

aspecty relative height of a pixel

aspectxy diagonal width of a pixel

physicalwidth width of the physical page. A 600 dpi printer on
8.5"x11" paper could have a physical width of
5100. The physical page is almost always
greater than the printable area of the page, and
never smaller.

physicalheight height of the physical page

physicaloffsetx distance from the left edge of the physical page
to the left edge of the printable area. A 600 dpi
printer on 8.5"x11" paper, that cannot print on
the leftmost 0.25" of paper, has a horizontal
physical offset of 150.

physicaloffsety distance from the top edge of the physical page
to the top edge of the printable area

glqtextmetrics '' ; return font information. The context (screen or printer) is
selected by glextent and the font is selected by glextentfont. The values are:
Height, Ascent, Descent, InternalLeading, ExternalLeading, AverageCharWidth,
MaxCharWidth

glqwh '' ; return window width and height in pixels.

glrect x y w h ; draw rectangle with pen and brush

glrgb color ; set current color

glroundr x y w h rw rh ; (not java) draw rectangle with rounded corners defined
by ellipse with width rw and height rh

glsave flip w h ; (only win32) save drawing in WMF format in the glfile filename.
Save to the clipboard if filename is empty.

flip 0 has J orientation of 0 0 as lower left corner.
flip 1 flips for applications like Word with 0 0 as upper left corner.

w h are suggested clipboard width and height in 0.01 millimeters.

The wmf file is saved without a "placeable metafile header". Some
applications require this 22 byte header at the front of a wmf file.
The utility addwmfheader from script system\main\winutil.js adds a
header to a wmf file so that it is suitable for use by WORD and
similar applications.

glsavebmp width height ; (only win32) save drawing as bitmap (24bit color) to
glfile filename. Save to clipboard if filename is empty.

glsel id ; select isigraph child of currently selected parent for graphic commands

glsel hwndc ; hwndc is the result of wd'qhwndc' for an isigraph control. Parent and
child are selected as the wd and gl command targets.

glshow '' ; add new commands (since last glshow or glshowx) to the 2D paint
buffer and immediately paints just the new commands. A glshow immediately after
creating and showing a form can result in extra painting and flicker. The glshow
paints the new stuff, which in most cases is everything, and then the normal
window painting mechanism requests painting the new window and the painting
will be done again. It is generally better to use glshowx and glpaintx.

glshowx '' ; add new commands to the 2D paint buffer with no explicit painting

gltext text ; write text in the glfont font. Where and how the text is displayed is
affected by the gltextalign and gltextxy commands.

gltextalign TA_value ; the TA_value affects how gltext displays text

TA_LEFT TA_CENTER TA_RIGHT
TA_TOP TA_BASELINE TA_BOTTOM
TA_NOUPDATECP TA_UPDATECP

The first option in each group is the default. TA_NOUPDATECP
causes gltext to use the position set by gltextxy. TA_UPDATECP
causes gltext to use and update the current position.

Values from each of the 3 groups can be combined:
gltextalign TA_BOTTOM + TA_UPDATEDCP

gltextcolor '' ; glrgb color is set as color of text for gtext

gltextjustify space nblanks; (only win32) space is the amount of space to insert
for nblanks. This space per blank is inserted for EACH blank in subsequent gtext
commands. Because of rounding error there may be unused space at the end of the
text. To allow spacing multiple texts on the same line this unused space is carried
over into the next qlgextent calculations. Justifying a line should be sure to start
with this unused space set to 0. A gltextjustify 0 0 sets this unused space to 0. Each
section of a line should be measured with glqextent and then a gltextjustify should
be done with the required space and the number of blanks in that section of text,
and finally the gltext should be done. At the end of the justifying a line it is a good
practice to do a gltextjustify 0 0 to clear the unused space value and to be sure that
subsequent text is not inadvertently spaced out.

gltext commands painted with glshow after gltextjustify commands
have been processed will not be justified unless the entire control is
repainted. glpaint forces a repaint.
The Macintosh runs the gltextjustify command without error, but
text justification is not supported and the text is displayed without
justification.

gltextxy x y ; position for gltext with gltexalign of TA_NOUPDATECP

gltop topvalue ; (not java) topvalue is in logical units and ties that y coordinate
value to the top of the drawing . This can be used to make a window display the
top part of an image, rather than the bottom part.

glwantresize ; request resize event for gl2 control.

glwindowext x y ; default is 1000 1000. Change these values to change the scale
(zoom) in anisotropic and isotropic mappings

glwindoworg x y ; (not java) default is 0 0. Change these values to scroll the
drawing in the viewport

glzabortdoc '' ; (only win32) cancel the print job

glzcreate printername ; (only win32) name from the set of printers returned by
wd qprinters. If no name is given then the session default printer is used. If a
printer context already exists, it is deleted before creating the new context. The
session default printer is the system default printer when J is started. This can be
changed with wd mbprinter.

glzdelete '' ; (only win32) deletes printer context created by glzcreate. There is no
error if there is no context.

glzdevmode '' ; (only win32) modifies printer document properties such as
orientation and copies. The command glqdevmode returns the properties that can
be changed by glzdevmode and their current values. You can determine arguments
for glzdevmode by using mbprinter to create the desired printer document setup
and then use glqdevmode to get those values. This command must be done before
the glzstartpage command.

The Macintosh does not support glzdevmode and printer properties
can not be changed.
The information returned is: orientation, papersize, paperlength,
paperwidth, scale, copies, source, quality, color, duplex, yresolution,
truetype

glzenddoc '' ; (only win32) ends a document.

glzendpage '' ; (only win32) ends a page.

glzmap mode ; (only win32) set mapping mode used in printing. Default is twips.

glzprint '' ; (only win32) draws the image on the printer.

glzprintpage ; (only java) prints current page

glzstartdoc 'jobname [filename]' ; (only win32) the job name can be up to 31
characters and appears in print manager. The filename indicates to print to a file
instead of the printer. This file can be printed with the print command. The
Macintosh does not support the second parameter of file name.
 glzstartdoc '"first job"'
 glzstartdoc '"my job" tofile.prn'

glzstartpage '' ; (only win32) starts a page. Each page must be bracketed by a
glzstartpage and a glzendpage.

glzstartprint ; (only java) start printer job

glzorientation n ; (not wince) 0 landscape, 1 portrait

p132

fontspec

A fontspec is several parameters that specify a font. A fontspec is used in some wd,
gl2 and gl3 commands.

A fontspec is a font name, size, and and optional styles:
name size [italic] [bold] [underline] [oem] [angle]

For example: "lucida console" 15 italic

A positive size gives cell height and negative gives character height. In both cases
a font defined interline spacing is used. It is recommended to use cell height
(positive) as this maps more directly and accurately to physical fonts. This is
particularly true for printers.

The size is in logical units. For wd commands this is generally point size. In gl2,
size is in mapping mode units. In gl3, size is in pixels.

Fonts can have different character sets. The standard Windows character set is
ANSI and does not include boxes. The old PC character set is OEM and does
contain boxes. Fonts such as Courier New and MS Linedraw contain a single
DEFAULT character set. The oem parameter selects an OEM font. The default
parameter selects the DEFAULT font. If neither oem nor default is supplied, an
ANSI font is selected. If there is not an exact match, you get an arbitrary font.
There are differences in distributed fonts and in the way fonts are selected in
different hosts.

isij 12 default isij with boxes
"ms linedraw" 12
default

linedraw with boxes

"lucida console" 12 oem console with boxes (if the font has oem)
"courier new" 12 oem courier with boxes (if the font has oem)

You may have to experiment to find the best font for J boxes with your particular
host, fonts, screen, and printer.

Fonts such as WINGDINGS, do not have an ANSI character set, and you need to
specify default to get the default character set for the font.glfont 'wingdings
100 default'

The angle style gives an angle in 10ths of degrees clockwise from the baseline. For
example:glfont 'arial 240 angle900'

p133

isigraph events

An isigraph control supports character and mouse events. The Code Dialog in the
form editor lists all events for an isigraph control.

char isij with boxes

sizeresize event (OpenGL, gl2 must request with glwantresize) paint

paint event (OpenGL only) mmovemouse move event

mbldblmouse button left double-click mbldownmouse button left down
mblupmouse button left up

mbrdblmouse button right double-click mbrdownmouse button right down
mbrupmouse button right up

For mouse events the wdhandler variable sysdata contains:
x y width height leftbutton rightbutton ctrl shift

The x y width and height are in pixels and the other values are 1 if the
corresponding button or key was down when the event occurred.

For a char event sysdata contains the value of the character. Characters, such as
HOME, END, or the arrow keys are returned as 128+VK_name (virtual key) as
defined in packages\graphics\vkeys.js.

p134

Mapping Mode

gl2 command values are in logical units and the mapping mode affects how logical
units are mapped onto the display surface. The mapping modes are:

MM_DEFAULT lower left 0 0, upper right 1000 1000
MM_RIGHTDOWN upper left 0 0, lower right 1000 1000
MM_RAW upper left 0 0, values are pixels
MM_TWIPS upper left 0 0, values are twips (win32 only)

glmap sets the mapping mode.

MM_DEFAULT

The default is a logical drawing surface that has 0 0 as its lower left corner and
1000 1000 as its upper right corner. The x axis starts at 0 and is positive to the
right. The y axis starts at 0 and is positive upwards.

The windowport is the drawing represented by the drawing commands. The
viewport is the surface (screen window or printer paper) that the drawing is drawn
on.

The scaling is based on the ratio between the x and y extents of the viewport and
windowport. It is the ratios of these extents that is important, not the individual
values.

The viewport (drawing surface) origin is fixed as 0 0 in the lower left corner. The
viewport extent is fixed as the pixels in the x and y directions. These values can not
be changed by commands. However, as the window on the screen is resized, the
viewport extents change.

The default windowport (drawing) is 0 0 and the default windowport extent is 1000
1000. The glwindoworg command changes the origin and the glwindowext
command changes the extent.

MM_RIGHTDOWN

This is the same as MM_DEFAULT except the y axis is flipped. The upper left

corner is 0 0 and the lower right corner is 1000 1000. The x axis starts at 0 and is
positive to the right. The y axis starts at 0 and is positive downwards.

MM_RAW

Values are in pixels and the drawing is directly to the pixels on the drawing
surface. The upper left corner is 0 0 and x goes to the right and y goes down. The
resize event (glwantresize) can be used to redraw based on the new pixel size of
the control.

MM_TWIPS

This mode is supported only in JFEwdw (win32 only). It is similar to MM_RAW
except that the logical units are in twips and are scaled to the device. A twip is a
"twentieth of a point". A point is approximately 1/72 of an inch and in computer
systems a twip is considered to be exactly 1/1440 of an inch. This mode is
particularly suited to laying out text and graphs for printing.

p135

gl3 commands 11!:3000+n

gl3 commands are for 3D (OpenGL) drawing in an isigraph control. Script
system\main\gl3.ijs defines gl3 verbs.
load 'gl3' NB. defines verbs such as: glAccum=:11!:3001

The syntax of most OpenGL verbs should be clear from standard OpenGL API
documentation, even though that documentation is oriented towards C
programmers.

You are encouraged to start learning OpenGL programming with the OpenGL
Introduction lab from the Studio|Labsl menu command.

This section documents the gla... commands that are not part of the OpenGL
specification or where the syntax needs clarification. The gla... commands are
concerned with how OpenGL fits into J or with Windows extensions.

Most 2D commands do not work in a 3D isigraph control. The following are the
commands that do work: glshow, glshowx, glpaint, glpaintx, glqwh, glcapture.

OpenGL Printing p136 shows how to print 3D images.

gl3 commands

glaFont fontspec p132 - font for glaUseFontBitmaps and glaUseFontOutlines

glaGetErrors '' - return recent errors reported by Quadric, Nurbs, and Tess error
callbacks. The error callbacks must be enabled with the appropriate
gluQuadricCallback, gluNurbsCallback, or gluTessCallback.

glaRC '' - create OpenGL render context for drawing on an isigraph window. This
must be run before pcenter, pmove, or any other posiitioning is done.

Fails if:
control is in use by 2D graphics
unable to initialize the OpenGL dlls (opengl32.dll and glu32.dll)

control missing ws_clipchildren and ws_clipsiblings styles

glaRC type w h - create OpenGL render context for drawing on a bitmap: type
must be 1. w h give width and height of a 24bit color bitmap.

A bitmap RC is associated with an isigraph window but doesn't display anything in
the window so normally this window should be hidden.

If the window is hidden, the form_isigraph_size and form_isigraph_paint
handlers are not automatically called and they must be called explicitly.

The size handler for a bitmap RC should not use the window size (glqwh'') for
setting the viewport. It should use the width and height used to create the bitmap in
glaRC .

glaSaveBMP filename - save bitmap of an isigraph control with a bitmap RC. If
the filename is '' , the bitmap is saved to the clipboard.

glaSwapBuffers '' - the front-buffer is the one displayed on the screen. Drawing is
done into the back-buffer. A glaSwapBuffers makes the back-buffer the front-
buffer.

glaUseFontBitmaps 0 first count listbase - create display lists based on glaFont. A
display list is created for count characters starting at first. The display list numbers
start at listbase.

glaUseFontOutlines 0 first count listbase deviation extrusion format - create
display lists for drawing 3D characters based on glaFont.

first - first of the set of characters
count - number of characters used to create display lists
listbase - starting display list
deviation - maximum chordal deviation from the original outlines. When deviation
is zero, the chordal deviation is equivalent to one design unit of the original font.
The value must be equal to or greater than 0.
extrusion - how much a font is extruded in the negative z direction. The value must
be equal to or greater than 0.
format - WGL_FONT_LINES or WGL_FONT_POLYGONS

Returns a matrix with a row for each character. The row contains:

BlackBoxX - black box (smallest rectangle that contains the glyph) width
BlackBoxY - black box height
OriginX - black box upper-left x coordinate
OriginY - black box upper-left y coordinate
IncX - horizontal distance from current cell origin to the next cell
IncY - vertical distance from current cell origin to the next cell

glBitmap - argument is boxed list where the last argument is the data argument

glDrawPixels - argument is boxed list where the last argument is the data argument

glCallLists integer_data

glCallLists character_data

glClearColor R G B [A] - sets clear color red, green, blue, alpha. If A is elided, it is
set to 1.

glColor R G B [A] - sets color red, green, blue, alpha. If A is elided it is set to 1.

glFeedbackBuffer integer type - feedback buffer size in floating values. This
command is only allowed once. This avoids potential crashes with the buffer being
changed at the wrong time.

glGetError '' - return OpenGL error flags (there may be more than one).
gluErrorString returns a string for an error number.

glPixelStore - GL_UNPACK_ALIGNMENT and GL_PACK_ALIGNMENT are
the only pname arguments supported.

glSelectBuffer size - select buffer size in integers. This command is only allowed
once. This avoids potential crashes with the buffer being changed at the wrong
time.

The result data from the select buffer is recorded for commands done after a
glRenderMode GL_SELECT. The result buffer is returned as the result of a
glRenderMode any_other_mode. OpenGL defines the select buffer as returning
minimum and maximum z values as unsigned integers.

unsigned int value - J signed int value

0 - smallest negative int
max 32 bit unsigned int - largest positive int

To convert the J signed integer range to a float range from 0 and up, add 2^32 to
the negative integers.

glTexImage1d - argument is boxed list where the last argument is the data
argument

glTexImage2d - argument is boxed list where the last argument is the data
argument

glVertex X Y [Z [W]] - sets vertex coordinates. If W (rarely used scaling value)
is elided it is set to 1. If Z is elided it set to 0.

gluBuild1dMipmaps - argument is boxed list where the last argument is the data
argument

gluBuild2dMipmaps - argument is boxed list where the last argument is the data
argument

gluPwlCurve nurb type data - count and stride parameters are fixed based on type
and length of data.

gluNurbsCurve nurb uknots udata ustride uorder type data

gluNurbsCurve nurb uk ud vk vd ustride vstride uorder type data

gluScaleImage - argument is boxed list where the last argument is the data
argument

p136

OpenGL printing

Printing OpenGL images is not directly supported. However, it is possible to get
reasonably good printing of OpenGL images by creating a bitmap RC, drawing to
the bitmap, and then printing the bitmap. If the bitmap is not stretched to much to
fit the printing area the quality of the printed image is good.

The steps are as follows:
1. create temporary form and isigraph control
2. create a bitmap RC
3. size image - the size handler, but with bitmap size, not glqwh''
4. draw image - the paint handler
5. save the bitmap to file

Something like the following could be used to print an OpenGL image drawn on
form a in isigraph control.
print=: verb define
wd 'pc p;cc g isigraph ws_clipchildren ws_clipsiblings;'
BMPSIZE=.2$1000 NB. big bitmap for little stretch
glaRC 1,BMPSIZE
NB. do initialization required by size and paint
size BMPSIZE NB. a_g_size calls size with glqwh''
a_g_paint''
glaSaveBMP 't.bmp'
wd'pclose'
NB. print t.bmp file with 2D printing
)

p137

Form Editor

Overview p138
Hints p139
Mouse p140
Keyboard p141
Design p142
New Control p143
Control p144
Parent p145
Menu p146
Toolbar p147
Statusbar p148
Code p149
Tab Order p150
Run p151
Defaults p152
Tech Notes p153

p138

Form Edit Overview

A form definition is the set of wd commands that define a parent window and its
controls. The Form Editor takes a form definition from a script file, displays the
form, supports editing, and saves the new definition back in the script. The script
also contains the verbs that handle events when the form is run. The Form Editor
facilitates editing these verbs.

The best way to learn about this is to try it. Create a new script and run Edit/Form
Edit. Click the Design New button to add controls. Drag controls with the mouse.

Controls can be marked with red or blue borders. The red control is the selection
and all marked controls are the collection. The mouse marks and unmarks controls.

Hints p139

Mouse p140

Keyboard p141

Design p142

New Control p143

Control p144

Parent p145

Menu p146

Toolbar p147

Statusbar p148

Code p149

Tab Order p150

Run p151

Defaults p152

Tech Notes

p139

Form Edit Hints

Pick a good form id at the outset, to avoid having to change it later.

Create a new script and save it as a permanent file. The form id might be a good
name for the script.

Menu command Edit/Form Edit activates the form editor. It asks for a form id and
a template.

Use the Design Dialog p142 to create, position, and size controls. The New button
activates the New Control Dialog p143 used to add new controls to the form.

In dialogs such as New Control, OK performs the action and returns to the Design
Dialog, and Apply performs the action and stays in the dialog.

Ctrl+C copies the collection to an internal clipboard and Ctrl+V, Ctrl+B, or Ctrl+N
paste. For example, create a radiobutton, move it, Ctrl+C, and do Ctrl+N several
times.

The Tab key can be used to find a control covered by another control.

You can open more than one form and copy and paste between forms.

Create the controls you want and position and size them roughly. Fine tune
position, size, and alignment, after everything is on the form.

Customize control styles, captions, and ids with the Control Dialog p144. Give
descriptive ids to controls that cause events or will be used in wd commands.

Create a menu with the Menu Dialog p146.

Set the tab order p150 after the form is pretty much complete. Moving, adding, or
deleting controls require redoing the tab order. Radiobuttons are automatically
grouped if they are in the right tab order.

Run p151 the form with the Design Dialog Run button. This shows the form as it

will look to the user. Check the tab order and test your event handlers.

The Code Dialog p149 shows which verbs are required to handle events and allows
you to activate the form script and position the caret at the definition. Do not add
handlers until the layout is settled.

Ctrl+click a control, a menu item, or the script to switch between the script and the
form editor.

p140

Form Edit Mouse Actions

click -- select control (collection is maintained)
shift+click -- toggle mark on control
ctrl+click -- activate script (ctrl+click script to return)

double-click -- show Control Dialog

drag move -- drag collection. Ctrl+shift to move just the selection.
drag resize -- just outside the red border shows a resizing cursor. Ctrl+shift to
resize just the selection.

draw select -- press the mouse outside any control and draw a box to select controls

A mouse action in a marked control affects that control. To select a control covered
by a marked control, first unmark the control. The mouse selects the control with
the nearest upper left corner.

The mouse displays the form menu. Select a menu item with Ctrl to activate the
script.

If tab order p150 is displayed mouse actions are different.

p141

Form Edit Keyboard Actions

Ctrl+X -- cut collection (internal clipboard)
Ctrl+C -- copy collection
Ctrl+V -- paste
Ctrl+B -- paste Beside collection
Ctrl+N -- paste beNeath collection
Ctrl+T -- toggle tab order p150 display
Del -- delete collection
Tab -- select next in tab order
Shift+Tab -- select previous

p142

Form Edit Design Dialog

The New button shows the New Control Dialog p143 for adding controls to the
form.

Move collection with the cross direction buttons. The central button switches the
move-grid between 1 and 4. The move is to the move-grid if not already on the
grid.

Align collection with shift + a direction button.

Size collection with ctrl + a direction button.

The shift key causes the following buttons to act down rather than across.

Center -- center collection
Size -- size collection to the selection width
Space -- space 3 or more controls across the form
Touch -- space collection so they touch
Minus -- remove space
Plus -- add space

p143

Form Edit New Control Dialog

Design Dialog New button shows this dialog that is used to add controls to the
form.

Select the type of control you want to create and give the control an id.

Some controls, such as edits, are often labeled by a static. If you want to label the
control, fill in the label field. Check down if you want the control below the label.

To create several controls of the same type, for example several radiobuttons, fill
in the copies field. Check down if you want them vertical.

Click OK or Apply to recreate the form with the new control(s).

p144

Form Edit Control Dialog

Double-click a control to show this dialog. Make changes and press OK or Apply
to recreate form.

The listboxes can have multiple items selected.

Ownerdraw buttons are not drawn when designing the form. The file name is in the
caption. Edit the caption to be the name of the file with the graphic for the button.

p145

Form Edit Parent Dialog

Design Window/Parent shows this dialog. Make changes and press OK or Apply to
recreate form.

Styles:
closeok -- parent closes without causing an event
dialog -- heavy frame
nomax -- no maximize button
nomenu -- no system menu
nomin -- no minimize button
nosize -- no sizing frame
owner -- owned by currently selected form (owner disabled until close)

Options do not affect the form during design.

The pmove button toggles use of a pmove command. When set, the current design
location is shown to the right of the button. The form will be moved to that
location when it is created.

The right and bottom margins set the margins used in creating the form.

p146

Form Edit Menu Dialog

Design Window/Menu shows this dialog. Edit the definition and press
OK or Apply to recreate the form.

A popup menu item definition has just a caption. For example:
File

A command menu item definition has an id, caption, and optional
shortcut, tooltip, and statushelp. For example:
idopen caption _ shortcut _ tooltip _ statushelp

The _ character separates fields that may contain blanks. The shortcut
appears at the right side of the menu list. The tooltip does not affect
the menu, but a toolbar button with the same id will show the tooltip
when the mouse rests on the button. The statushelp shows in the
statusbar when the mouse is on the menu item.

+ ends a popup menu, - is a separator. and & underlines the next
character.

For example:
&File
new &New
open &Open _ Ctrl+O _ tool tip _ status help text
-
idquit Quit
+
&Help
idhelp &Contents

Use the mouse to show the menu on the form. Press Ctrl and select a
menu item to go to the code in the script for that event.

Use the Code Dialog p149 to define verbs for menu ids and shortcuts.

A menu shortcut usually calls the verb defined for the menu id. For
example, shortcut Ctrl+O could define a handler for fkey 'o ctrl' that
called formid_idopen_button.

p147

Form Edit Toolbar Dialog

Design Window/Toolbar shows the Toolbar Dialog. This dialog manages the form
toolbar.

A toolbar is a set of buttons that show across the top of form, below the menu.

The buttons are drawn from a bitmap. The File button allows you to select the
bitmap for your toolbar. The selected bitmap shows across the top of the dialog
with the buttons numbered.

A line in the edit box gives the id for the toolbar button, the index of the bitmap
picture to use, a tooltip to display when the mouse rests on the button, and
statushelp to display in the status bar.

A line with just an index is a separator where the index is the width.

For example:
idnew 0 new file _ Create a new file.
idsave 2 save file _ Save file.
25
idprint 6 print file _ Print file

A toolbar button is usually a shortcut for a menu item and in this case they should
have the same id.

p148

Form Edit Statusbar Dialog

Design Window/Statusbar shows the Statusbar Dialog. This dialog manages the
form statusbar.

A statusbar is a set of panes across the bottom of a form.

The first pane is the help pane and its width varies from a minimum up to the space
remaining. It has default text set by the sbarset command. It shows menu and
toolbar statushelp when the mouse is on a menu item or toolbar. When this
temporary help is not shown the pane reverts to its default contents.

A line in the edit box give the id, width, and initial text for each pane in order.

For example:
idstatushelp 100 Press F1 for help.
idstatusrdy 50 Ready
idstatusoption 75 option

p149

Form Edit Code Dialog

Design Window/Code shows this dialog.

This dialog helps you define and edit verbs in the script that handle events.

The button event type lists the ids of controls that cause button events.

Items are indented if a verb is not defined for that event.

Double-click an item in the listbox to activate the script with the caret located at
the verb. If there is no definition, a default definition is added. Ctrl+click the script
to return to the form editor.

The fkey event type lists keys that cause events. Alphabetic and numeric keys with
Ctrl or Ctrl+Shift as well as function keys cause events. Fkey events Ctrl+Z,X,C,
or V are not supported. Menu shortcuts are handled as fkey events.

The other event type lists general form events.

The orphan event type lists verbs defined in the script for which there is no control
that would cause the event. For example, create a button and create a handler verb
in the script, then delete the button.

Ctrl+click a control, a menu item, or the script to switch between the script and the
form editor.

p150

Form Edit Tab Order

Ctrl+T in the form toggles display of the tab order.

The tab order determines how the user moves around on the form with the tab key.

Mouse actions with the tab order displayed are as follows:

click -- select control (red border)
shift+click -- put new selection after previous selection in the tab order
ctrl+click -- put new selection as first in tab order

p151

Form Edit Run

Design Dialog Run button saves the form in the script, saves the script, runs the
script, and runs the verb formid_run to create and show the form.

Code Dialog p149 other event type entry run takes you to the form run verb
definition.

p152

Form Edit Defaults

Design Dialog File/Defaults displays the sizes used for controls created with New
Control. The defaults can be changed and can be recorded in the ini file.

The default form font can be set by the main J menu with View/Set Form Font.
Use File/Save jsm.ini to save a new form font as the default in the ini file.

p153

Form Edit Tech Notes

A form definition in a script begins with a line that starts with a pc command and
ends with the line <rem form end>.

Scripts in system\packages\forms are used as templates for new forms.

p154

Regular Expressions

Regular Expression p155
Patterns p156
Verbs p157
Utilities p158
Demo p159
Copyright p160

p155

Regular Expression

A regular expression is a text string that specifies a pattern of characters. This
facility allows you to write J programs using regular expressions to search arbitrary
text. You can perform a search for a single or multiple matches, or extract the
matched text from the string. You can also merge new text in to replace the
matches, or apply a verb to the matched text in a string.

Utility verbs are included to assist in building regular expression patterns, as is a
utility to search J scripts and other text files for patterns.

The primary definitions are in system\main\regex.ijs ; utility verbs to build
patterns are in system\packages\regex\regbuild.ijs .

The Find in Files utility, available from the Edit menu or by pressing Ctrl+Shift+F,
can search for simple text, regular expression, or special patterns such as the
assignment of a name.

Labs and a demo on regular expressions are available from the Studio menu.

p156

Regular Expression Patterns

A regular expression pattern is a sequence of elements which matches successive
portions of a character string. For example, simple letters are elements which
match the same characters in the string. The asterisk indicates that the previous
element should be matched 0 or more times. So, a pattern of abcd must match in
the string exactly; a pattern of ab*cd matches the letter a followed by 0 or more
occurrences of the letter b , followed by the letters cd . The particular elements of a
pattern are described below.

Characters
Non-special characters match exactly. Non-special characters are anything other
than: [] () { } $ ^ . * + ? | \

A special character is included as simple text by preceding it with a backslash.

Character sets
The special character . matches any character (except the null character, 0{a.)

The special characters ^ and $ match the start and end of lines.

Sets of characters are defined by enclosing the list of characters in brackets:
[aeiou] matches a single vowel character

Ranges can also be included within the brackets:
[a-z] matches any lower case letter

Combinations of the above are acceptable:
[a-zA-Z13579] matches any lower case, upper case, or odd digit

Fixed sets (classes) of characters can be included in the list, as a name within
bracket-colon pairs:
[#[:digit:]abc] matches the character # , a digit, or any of the letters a , b ,
or c

The character classes defined are:

alnum

alphanumeric

alpha

alphabetic

blank

tab and space

cntrl

control chars

digit

digits

graph

printable (except space)

lower

lowercase

print

printable

punct

punctuation

space

whitespace

upper

uppercase

xdigit

hex digits

If a set begins with ^ , then the pattern will match with any character not in the set.

Subexpressions
A series of elements may be combined by enclosing them in parenthesis.
Subexpression are affected by closures such as * just as simple characters are:
([a-z][0-9])* matches any number of occurrences of a letter followed by a digit

The result of searches for a pattern return a match for the overall pattern, and a
separate match for each subexpression

A \ followed by a digit, N, matches the same substring which occurred in the Nth
subexpression:
([[:digit:]]+)#\1 matches one or more digits, followed by a # , followed by
the same string of digits

Closures
A * following an element matches 0 or more occurrences of that element:
[aeiou]* matches 0 or more vowels

A + following an element matches 1 or more occurrences of that element:
[[:alpha:]]+ matches 1 or more alphabetic characters

A ? following an element matches 0 or 1 occurrences of that element:
-?[[:digit:]]+ matches an optional hyphen, followed by 1 or more digits

An interval expression, {m,n} , follows an element to allow it to match at least m,
and no more than n, occurrences of the element:
[[:digit:]]{3,5} matches 3, 4, or 5 digits

Alternation

Multiple regular expressions can be separated with a vertical bar | to match any of
them:
print|list|exit matches any of the strings print , list , and exit

Matches
When searching for a pattern in a string, it is possible to find multiple substrings
which match the pattern. The one that is returned is the one which starts earliest in
the string. If more than one match starts at the same place, the longest one is
returned.

Even once a particular match is located, it is possible for there to be multiple
combinations of the contents of the subexpressions which make it up. As a rule,
whenever possible the subexpressions which begin earlier in the string will be as
long as possible.

The result of a match is a table which describes the match. The first row covers the
whole match, and subsequent rows describe where the subexpressions in the
pattern match in the string. Each row has two elements: index of the first character
of the start of the match, and the length of the match. Any row which doesn't
participate in the match is filled with _1 0.

p157

Regular Expression Verbs

The standard regex verbs are defined in system\main\regex.ijs .The main
verbs are rxmatch and rxmatches. The former locates the first occurrence of a
match in the string; the latter locates all occurrences. Four other verbs create, list,
display, and free up compiled patterns: rxcomp, rxhandles, rxinfo, and
rxfree.

Most of the rest of the definitions either use the rxmatch or rxmatches verbs, or
take the result of them as arguments.

match=. pattern rxmatch string

Find first match The result of rxmatch is a table, each row being an index/length
pair. The first row describes the entire match, one row per subexpression follow
which describes where each subexpression was found in the string. Where a match
does not occur, _1 0 is returned.

matches =. pattern rxmatches string

Find all matchesrxmatches returns a list of tables, with one item per match in the
string. The shape of the result is #matches by #subexpr by 2.

phandle =. rxcomp pattern

Compile pattern

rxfree phandle

Release compiled pattern

phandles =. rxhandles ''

Return all pattern handles

'nsub pat' =. rxinfo phandle

Return #subexprs;pattern
The verbs rxcomp, rxhandles, rxinfo, and rxfree allow you to create pattern
handles which are simple integers which represent compiled patterns. A handle can
be used anywhere a pattern can be and, if used repeatedly, will avoid having to
recompile the pattern on each call.

rxcomp compiles a pattern and returns a handle.

rxhandles returns a list of all existing handles.

rxinfo returns information about a handle. It currently returns a boxed list of 1 +
the number of subexpressions and the original pattern. The length of the result may
be extended (on the right) in the future.

rxfree releases all resources associated with a compiled pattern.

errtext =. rxerror ''

Error text The result of rxerror is a text string describing the last error from a
regular expression verb.

ismatch =. pattern rxeq string

1 if entire string matches Returns a 1 if the pattern fully describes the string.
(Similar to = verb).

index =. pattern rxindex string

index of match or #string The result of rxindex is the index of the first match, or
#string if none. (Similar to i. verb).

mask =. pattern rxE string

mask: 1's start matchesrxE returns a boolean mask of length #string, with 1's to
mark the start of a match. (Similar to E. verb).

sub =. pattern rxfirst string

first substring matchrxfirst returns the substring in the right argument which
matches the pattern.

subs =. pattern rxall string

all substring matches The result of rxall is a boxed list of all substrings in the
right argument which match the pattern.

subs =. matches rxfrom string

select substrings matchedrxfrom returns a box containing the substrings described
by each index/length pair on the left.

subs =. matches rxcut string

cut into alternating non-match/matchrxcut returns a boxed list which will match
the original string if razed. The items alternate between non-matches and matches,
always starting with a non-match.

newstr =. string rxrplc (pat;rplcstr)

replace pat with rplcstrrxrplc replaces substrings in the left argument. The right
argument is a boxed list of the pattern and the replacement text.

newstr =. rplcstrs matches rxmerge string

merge rplcstrs into stringrxmerge takes a table of matches as an argument, and
returns a verb which merges the boxed strings in the left argument into those
positions on the right. (Similar to } adverb).

newstr =. pattern f rxapply string

apply f to each matchrxapply applies its verb argument to each of the substring in
the right argument which match the pattern in the left argument.

All verbs which take a pattern as an argument can be called with either a character
list containing a pattern or pattern handle (an integer resulting from rxcomp). For
example,

'[[:alpha:]]+' rxmatches str NB. match all sets of letters in str

handle=. rxcomp
'[[:alpha:]]+'

NB. compile pattern into handle

handle rxmatches str NB. do the match

rxfree handle NB. (once handle is no longer required)

Notes
1. the rmatch and rxmatches verbs return either a single or list of matches,
respectively, with each match being a table of index/length pairs for the match and
each subexpression. Other verbs which use the result of rxmatch or rxmatches
tend to only use the first row for each match, which represents the entire match.

2. if you're interested in one or more of the subexpressions, it is possible to identify
the specific rows of the match which are to be returned by rxmatch and

rxmatches. If a boxed array is passed rather than a character or numeric pattern, it
is a 2-element list consisting of a pattern and a list of the indices of the important
rows in a match.

For example, the pattern '(x+)([[:digit:]]+)' matches one or more letters
'x', followed by a string of digits, with both the 'x's and the digits being a
subexpressions of the pattern. Each match will be returned as a three-row table,
describing the entire match, just the 'x's, and just the digits.

 pat=. rxcomp '(x+)([[:digit:]]+)'
 str=. 'just one xxx1234 match here'
 pat rxmatches str
9 7
9 3
12 4
 (pat;1 2) rxmatches str NB. just the 'x's and digits
9 3
12 4

 pat |. rxapply str NB. reverse the whole match
just one 4321xxx match here
 (pat;,2) |. rxapply str NB. reverse just the digits
just one xxx4321 match here

Examples
 pat=. '[[:alpha:]][[:alnum:]_]*' NB. pattern for J name
 str=. '3,foo3=.23,j42=.123,123' NB. a sample string
 pat rxmatch str NB. find at index 2, length
4
2 4

 pat=. '([[:alpha:]][[:alnum:]_]*) *=[.;]' NB. subexp is name
in assign
 pat rxmatch str NB. pattern at 2/6; name at 2/4
2 6
2 4
 pat rxmatches str NB. find all matches
2 6
2 4

11 5
11 3

]phandle=. rxcomp pat NB. compile
1
 rxcomp '[wrong' NB. a bad pattern
|domain error: rxcomp
| rxcomp'[wrong'
 rxerror ''
Unmatched [or [^
 rxhandles '' NB. just handle 1 defined
1

 rxinfo phandle NB. return (1+#subexp);pattern
+-+---------------------------------+
|2|([[:alpha:]][[:alnum:]_]*) *=[.;]|
+-+---------------------------------+

 phandle rxmatches str NB. use phandle like pattern
2 6
2 4

11 5
11 3

 phandle rxfirst str NB. first matching substring
foo3=.

 phandle rxall str NB. all matching substrings
+------+-----+
|foo3=.|j42=.|
+------+-----+

 phandle rxindex&> ' foo=.10';'nothing at all' NB. index of
match
2 14

 phandle rxE str NB. mask over matches
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

 '[[:digit:]]*' rxeq '2342342' NB. test for exact match
1
 '[[:digit:]]*' rxeq '2342 342'
0 NB. rxfrom selects substring using index/length
pairs

 phandle rxmatch str

2 6
2 4 NB. entire and subexpression match

 m=. phandle rxmatches str
 phandle rxmerge str
+------+----+
|foo3=.|foo3|
+------+----+

 phandle rxmatches str NB. all matches
2 6
2 4

11 5
11 3
]m=.(phandle;,0) rxmatches str NB. entire matches only
2 6
11 5
 m rxcut str NB. return alternating non-match/match
boxes
+--+------+---+-----+-------+
|3,|foo3=.|23,|j42=.|123,123|
+--+------+---+-----+-------+

 phandle |. rxapply str NB. reverse each match
3,.=3oof23,.=24j123,123
 (phandle;,1) |. rxapply str NB. reverse just name part of
match
3,3oof=.23,24j=.123,123

p158

Regular Expression Utilities

The script system\packages\regex\regbuild.ijs contains definitions to for
building regular expression patterns.

Many of the verbs below may enclose its argument in parentheses (to make it a
subexpression). For example,
anyof 'abc' returns '(abc)*'.

The argument is only put in parentheses if necessary.
anyof set 'abc' is '[abc]*'.

The following verbs correspond directly to a feature of the regular expression
notation:

set chars returns set construction for chars
 set 'abc'

[abc]

not chars set of non-matching chars
 set not 'abc'

[^abc]

sub pat make a subexpression
 set 'abc'

(abc)

someof pat pattern matching 1 or more pat
 someof 'abc'

(abc)+

(min,max) of pat pattern matchin min up to max of pat
 2 4 of 'abc'

(abc){2,4}

pat1 or pat2 pattern matching either pat1 or pat2
 'abc' or 'd'

abc|x

pat1 or pat2 pattern matching pat1 immediately followed by pat2
 'action=' by
'move' or 'copy'

action=(move|copy)

sub pat makes pat a subexpression
 sub 'abc'

(abc)

bkref refnum back-reference to a previous subexpression
 bkref 1

\1

Some nouns can be used as parts of regular expressions:

white pattern matching one or more whitespace characters
owhite pattern matching optional whitespace
sol pattern matching the start of a line
eol pattern matching the end of a line
any pattern matching any character

Finally, some miscellaneous verbs
plain text returns a regular expression matching the plain text
 plain 'dir
j.*'

dir j\.*

pat1 between y result is elements of y catenated together
with pat1 between each

 ' *' between 'abc'

a *b *c
 ' *' between
'p1';'p2';'p3|p4'

p1 *p2 *(p3|p4)

comment nb
pattern

add comment to pattern

Interpretation of a pattern always stops at the first null character (0{a.). The nb
verb makes use of this by catenating a null character and comment at the end of a
pattern.
 p=. rxcomp 'some digits' nb '[[:digit:]]+'
 rxinfo p
+-+----------------------------+
|1|[[:digit:]]+ NB. some digits|
+-+----------------------------+

setchars setpat returns list of characters matching a set pattern
 setchars '[a-
d[:digit:]]'

0123456789abcd

Character classes

The following nouns are strings which are used within sets to specify a character
class: alnum, alpha, blank, cntrl, digit, graph,
 lower, print, punct, space, upper, xdigit

For example, alpha=. '[:alpha:]'

Corresponding nouns, named with a leading uppercase, are patterns specifying a
set of the character class, for example, Alpha=.
'[[:alpha:]]' NB. (same as set alpha)

J patterns

The following nouns, defined in packages\regex\regj.ijs , are patterns
which match elements of J code:

Jname

matches a J name

Jnumitem, Jnum

matches a J numeric item or array (constant)

Jchar

matches a J character string

Jconst

matches a J numeric or character constant, include a. and a:

Jgassign, Jlassign, Jassign

matches J global, local, or either assignment

Jlpar, Jrpar

match J's left and right parentheses

Jsol, Jeol

match the start or end of a J sentence
(ignores leading blanks and trailing blanks/comments)

p159

Regular Expression Demo

This program demonstrates and allows you to experiment with regular expressions.
Some standard text can be searched, or you can open any text file which will be
displayed. When you type in a pattern and hit the Match button, the text will be
searched for that pattern. All matches will be displayed in red and underscored.

A set of canned patterns can be tried by selecting them in the Patterns menu.

Run this demo from the Studio|Demos menu command. This demo requires a
richeditm control and is only supported in the J Win95 and NT versions.

p160

Regular Expression Copyright

The J system and its interface to the regular expression pattern
matching library is
Copyright (©) 1994-1998 Iverson Software Inc.

The regular expression library used in the interpreter is
Copyright (©) 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
This library is being used according to the GNU Library Public
License.

GNU Library Public License

GNU LIBRARY GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2
because it goes with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

This license, the Library General Public License, applies to some
specially designated Free Software Foundation software, and to any
other libraries whose authors decide to use it. You can use it for your
libraries, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if
you want it, that you can change the software or use pieces of it in new
free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone
to deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute
copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or
for a fee, you must give the recipients all the rights that we gave you.
You must make sure that they, too, receive or can get the source code.
If you link a program with the library, you must provide complete
object files to the recipients so that they can relink them with the
library, after making changes to the library and recompiling it. And
you must show them these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the
library, and (2) offer you this license which gives you legal permission
to copy, distribute and/or modify the library.

Also, for each distributor's protection, we want to make certain that
everyone understands that there is no warranty for this free library. If
the library is modified by someone else and passed on, we want its
recipients to know that what they have is not the original version, so
that any problems introduced by others will not reflect on the original
authors' reputations.

Finally, any free program is threatened constantly by software patents.

We wish to avoid the danger that companies distributing free software
will individually obtain patent licenses, thus in effect transforming the
program into proprietary software. To prevent this, we have made it
clear that any patent must be licensed for everyone's free use or not
licensed at all.

Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License, which was designed for utility
programs. This license, the GNU Library General Public License,
applies to certain designated libraries. This license is quite different
from the ordinary one; be sure to read it in full, and don't assume that
anything in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that
they blur the distinction we usually make between modifying or
adding to a program and simply using it. Linking a program with a
library, without changing the library, is in some sense simply using the
library, and is analogous to running a utility program or application
program. However, in a textual and legal sense, the linked executable
is a combined work, a derivative of the original library, and the
ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary General Public
License for libraries did not effectively promote software sharing,
because most developers did not use the libraries. Weconcluded that
weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the
users of those programs of all benefit from the free status of the
libraries themselves. This Library General Public License is intended
to permit developers of non-free programs to use free libraries, while
preserving your freedom as a user of such programs to change the free
libraries that are incorporated in them. (We have not seen how to
achieve this as regards changes in header files, but we have achieved it
as regards changes in the actual functions of the Library.) The hope is
that this will lead to faster development of free libraries.

The precise terms and conditions for copying, distribution and

modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, while the latter only
works together with the library.

Note that it is possible for a library to be covered by the ordinary
General Public License rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION

0. This License Agreement applies to any software library which
contains a notice placed by the copyright holder or other authorized
party saying it may be distributed under the terms of this Library
General Public License (also called "this License"). Each licensee is
addressed as "you".

A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of running
a program using the Library is not restricted, and output from such a
program is covered only if its contents constitute a work based on the
Library (independent of the use of the Library in a tool for writing it).
Whether that is true depends on what the Library does and what the
program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a
fee.

2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent noticesstating
that you changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no charge to
all third parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of
data to be supplied by an application program that uses the facility,
other than as an argument passed when the facility is invoked, then
you must make a good faith effort to ensure that, in the event an
application does not supply such function or table, the facility still

operates, and performs whatever part of its purpose remains
meaningful.

(For example, a function in a library to compute square roots has a
purpose that is entirely well-defined independent of the application.
Therefore, Subsection 2d requires that any application-supplied
function or table used by this function must be optional: if the
application does not supply it, the square root function must still
compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library, and
can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works
based on the Library.

In addition, mere aggregation of another work not based on the
Library with the Library (or with a work based on the Library) on a
volume of a storage or distribution medium does not bring the other
work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General
Public License instead of this License to a given copy of the Library.
To do this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can
specify that version instead if you wish.) Do not make any other
change in these notices. Once this change is made in a given copy, it is

irreversible for that copy, so the ordinary GNU General Public License
applies to all subsequent copies and derivative works made from that
copy. This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative
of it, under Section 2) in object code or executable form under the
terms of Sections 1 and 2 above provided that you accompany it with
the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source
code from the same place satisfies the requirement to distribute the
source code, even though third parties are not compelled to copy the
source along with the object code.

5. A program that contains no derivative of any portion of the Library,
but is designed to work with the Library by being compiled or linked
with it, is called a "work that uses the Library". Such a work, in
isolation, is not a derivative work of the Library, and therefore falls
outside the scope of this License.

However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License. Section 6
states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be linked
without the Library, or if the work is itself a library. The threshold for
this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure
layouts and accessors, and small macros and small inline functions
(ten lines or less in length), then the use of the object file is
unrestricted, regardless of whether it is legally a derivative work.
(Executables containing this object code plus portions of the Library
will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link
a "work that uses the Library" with the Library to produce a work
containing portions of the Library, and distribute that work under
terms of your choice, provided that the terms permit modification of
the work for the customer's own use and reverse engineering for
debugging such modifications.

You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by this
License. You must supply a copy of this License. If the work during
execution displays copyright notices, you must include the copyright
notice for the Library among them, as well as a reference directing the
user to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-
readable source code for the Library including whatever changes were
used in the work (which must be distributed under Sections 1 and 2
above); and, if the work is an executable linked with the Library, with
the complete machine-readable "work that uses the Library", as object
code and/or source code, so that the user can modify the Library and
then relink to produce a modified executable containing the modified
Library. (It is understood that the user who changes the contents of
definitions files in the Library will not necessarily be able to recompile
the application to use the modified definitions.)

b) Accompany the work with a written offer, valid for at least three

years, to give the same user the materials specified in Subsection 6a,
above, for a charge no more than the cost of performing this
distribution.

c) If distribution of the work is made by offering access to copy from a
designated place, offer equivalent access to copy the above specified
materials from the same place.

d) Verify that the user has already received a copy of these materials
or that you have already sent this user a copy.

For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

It may happen that this requirement contradicts the license restrictions
of other proprietary libraries that do not normally accompany the
operating system. Such a contradiction means you cannot use both
them and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library
side-by-side in a single library together with other library facilities not
covered by this License, and distribute such a combined library,
provided that the separate distribution of the work based on the
Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library facilities.
This must be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that

part of it is a work based on the Library, and explaining where to find
the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the
Library except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, link with, or distribute the
Library is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from
you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and all
its terms and conditions for copying, distributing or modifying the
Library or works based on it.

10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this
License.

11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent license
would not per

p161

Grid Control

Overview p162
Classes p163
Methods p164
Properties p165
Actions p166

p162

Grid Control Overview

A grid is a display of data in cells. Grids are drawn on an isigraph control in a
form.

Some wd commands are specific to grids and have names prefixed glgrid, for
example, glgridatt; see the Window Driver Command Reference, gl2
commands. Apart from these wd commands, the grid is implemented in J.

The code that paints the grid is in an object derived from one or more grid classes
p163. The main grid classes included with J are:

jzgrid

basic grid class

jtgrid

table class, extends jzgrid.
Displays a function table in a grid.

jwgrid

watch class, extends jzgrid.
Displays a global variable in a grid.

A demo class, jfgrid (report class) is also included.

For an introduction to the grid control, see the labs Grid Control, Grid Examples
andGrid Low Level Programming

p163

Classes

The basic grid class is jzgrid, and this provides facilities that should be required for
any grid, including:

scrolling
mouse events
keyboard events
setting attributes, e.g. font, color, border, cell size

While the jzgrid class could in theory be used directly (for a very simple grid),
there would typically be another class on top of the basic grid class that provides a
specific type of grid, for example the watch class jwgrid. This would include data-
related definitions such as providing formatted data for the grid and support for
copying and editing.

As well as the grid classes, yet another class is needed for the Windows form
definition. This will include

● the isigraph control to display the grid
● code to create the grid object from the grid classes to be used
● calls to grid event handlers

If you create a new form using File|New Class, the Form Editor Wizard can be
used to add the appropriate definitions.

See Watch Example for a typical class structure.

Watch Example

The following example using the watch grid illustrates the class paths:

 dat=. ?30 30$100

This defines some data to be watched.
 load 'jwatch'

This loads the class jwatch into the jwatch locale, which in turn loads the scripts
jwgrid and jinput, each into their own locale. jwgrid in turn loads the basic grid
script, jzgrid. At this stage, all that has happened is that these scripts have been
loaded, and the locale namelist looks like:
 conl ''
+----+-+------+------+------+------+-+
|base|j|jinput|jwatch|jwgrid|jzgrid|z|
+----+-+------+------+------+------+-+

No locale path settings have been made, so each locale has a path of z, as is the
case with all new locales.
 a=. conew 'jwatch'

This creates a new object (numbered locale) referenced by a. In a new session, it
would be named '0' :
 conl''
+-+----+-+------+------+------+------+-+
|0|base|j|jinput|jwatch|jwgrid|jzgrid|z|
+-+----+-+------+------+------+------+-+

The new locale is empty, but has a locale path that includes jwatch and z.
 create__a 'dat'

create__a is called in the new locale, and gets its definition from jwatch. This
verb creates a new form to display the grid, and then itself calls conew to create a
jwgrid object and sets its path to include jwgrid and jzgrid:
 grid=: ''conew'jwgrid'

Therefore the locale list now includes two numbered locales:
 conl''
+-+-+----+-+------+------+------+------+-+
|0|1|base|j|jinput|jwatch|jwgrid|jzgrid|z|
+-+-+----+-+------+------+------+------+-+

The paths in these two numbered locales are:
 copath a locale '0'
+------+-+
|jwatch|z|
+------+-+

 copath grid__a locale '1'
+------+------+-+
|jwgrid|jzgrid|z|
+------+------+-+

The structure of numbered locales is returned by costate:
 costate''
+----+--+-------+---------------+
|refs|id|creator|path |
+----+--+-------+---------------+
|a |0 |base |jwatch z |
+----+--+-------+---------------+
| |1 |0 |jwgrid jzgrid z|
+----+--+-------+---------------+

Now suppose the mouse is clicked on one of the grid cells. The form is defined in
locale a, so the mouse event handler watch_grid_mbldown will be called there.
Since this locale has no event handlers of its own, the definition in the jwatch
locale is used. This is defined as:
 watch_grid_mbldown=: 3 : 'mbldown__grid sysdata'

Therefore the actual handler called is mbldown in the grid locale, which will pick

its definition up from either jwgrid or jzgrid, whichever it sees first.

p164

Method

The following are the public methods of the base jzgrid class.

Method

Description

create

resets grid globals

destroy

destroy object (cover for codestroy)

get

get data for grid, returns 1 if new data was required

gridselect

selects grid control (cover for glsel)

init

initialize grid. Argument is:

dataname name of grid data
gridid id of grid control
sbarid id of scrollbar
sbarvid id of scrollbarv

setdata

set new data in grid

setfont0

set font 0

setfont1

set font 1

setheights

set heights for range

setwidths

set widths for range

Event handler methods The following methods handle events for the grid control
and are defined in jzgrid.

Method

Description

char

character event handler

mbldbl

mouse button left double click

mbldown

mouse button left down

mblup

mouse button left up

mbrdbl

mouse button right double click

mbrdown

mouse button right down

mbrup

mouse button right up

mmove

mouse button move

scrollbar

scroll horizontal bar

scrollbarv

scroll vertical bar

size

size event handler

Watch Methods The following are the public methods of the watch class jwgrid.
In some cases, the watch class method overrides the base method.

Method

Description

copy

copy selected cells to clipboard

create

resets grid globals

destroy

destroy method

paste

paste clipboard into grid

setdata

set new data in grid

sethightlight

show highlights in grid

p165

Properties

The following are the public properties of the base jzgrid class.

Name

Default

Description

atts

see resetatts

attribute matrix

borders

{empty}

border definitions

dataname

{none}

name of variable displayed in grid

defheight

20

default cell height

defwidth

50

default cell width

editenable

0

set to 1 when editing is enabled

editflag

0

set to 1 if editing cell

extent

1 1

extent of selection

filltype

0

fill type for other cells

fixc

1

number of fixed columns

fixeddata

0

1 if all data is supplied at one go

fixr

1

number of fixed rows

fixtype

0

fill type for a fixed cell

font0

courier new 12

font0, default '"courier new" 18'

font1

arial 12

font1, default 'arial 18'

formhwnd

{none}

form window handle

gridhs

{empty}

grid heights

gridhwnd

{none}

grid control handle

gridws

{empty}

grid widths

mark

0 0

top left row,col of selected data

maxc

_

max number of columns

maxr

_

max number of rows

sbarid

{none}

id of the scrollbar

sbarvid

{none}

id of the scrollbarv

scrollc

0

cols scrolled out of view

scrollr

0

rows scrolled out of view

sizeenable

0

set to 1 if user can resize cells

skipc

0

skipped cols

skipr

0

skipped rows

The following are the public properties of the jwgrid watch class.

Name

Description

highlight

highlight expression

p166

Actions

The following actions are defined in jzgrid.

Action

Description

arrows

move selection (scrolls to keep visible)

shift+arrows

extends range

ctrl+arrows

scrolls data

ctrl+shift+arrows

changes default cell size

home

scrolls left to col 0

ctrl+home

scrolls to row 0 and col 0

ascii characters

new data for selected cell

enter

end edit mode, move to next row

alt-enter

edit mode new line

click

selects cell

double-click

set edit mode on for current cell data, if edit is enabled

mouse-down & hold

extends range of selection to right and down

ctrl+e

enable/disable edit

ctrl+f

edit font

A specific grid may define additional or alternative behavior. For example, the
watch grid adds:

ctrl+m

enter highlight expression

p167

Plot

Overview p168
pd verb p169
plot verb p170
Plot Class p171
Plot Types p172
Plot Commands p173
Plot Options p174
Plot Data p175
Plot Colors p176

p168

Plot Overview

Plot is a plotting package that provides business and scientific graphics.

Plots can be drawn directly from the J session, or included in a Windows form.

For example:
 load 'plot'
 plot */~ i.20

This loads the plot system and draws a simple plot.

There are two user verbs, pd (plot driver) and plot.

● pd is the low-level verb that handles all calls to Plot.
● plot is a cover verb for pd that will handle most simple uses of Plot.

For an introduction, see the lab Plot Package.

For examples illustrating the main facilities provided, see the demo
Studio|Demos...|plot. In the demo, use Options|View Definition to view and
experiment with the plot definitions.

To use the plot class, for example, to include plots on a Windows form, see Plot
Class p171

p169

pd verb

pd is the low-level verb that handles all calls to Plot.

pd has three types of argument:

commands

set up and show a plot

Plot Commands p173

options

specify plot type, colors etc

Plot Options p174

data

data used in the plot

Plot Data p175

Commands and options are given in a character list, delimited by semicolons. Data
is a numeric or boxed array.

For example:
load 'plot numeric trig' NB. load plot and some utilities
pd 'reset' NB. command reset
pd 'textc 500 950 My Plot' NB. command textc
pd 'type line' NB. option type
pd cos steps 0 8 100 NB. data
pd 'show' NB. command show
pd 'clip' NB. command clip
pd 'print' NB. command print

p170

Plot Verb

plot is a cover for pd.

The optional left argument is a list of commands and options, delimited by
semicolons. The right argument is data.

plot and pd may be used together, for example:
 'type bar' plot >:?2 6$10 NB. draw a barchart
 pd 'print' NB. print it

p171

Plot Class

Plot is defined in class jzplot.

Public verbs are pd and plot.

Public nouns specify the Windows form and isigraph control id, where these differ
from the default plot.

Name

Description

Default

PForm

form handle

plot

PFormhwnd

form handle

defined when the form is created

PId

isigraph control id

gs

Example: create two plots

The following draws two independent plots:
load 'jzplot' NB. load plot class

a=: conew 'jzplot' NB. create plot object a
b=. conew 'jzplot' NB. create plot object b
plot__a */~ i.20 NB. draw plot in a

plot__b +./~ i.20 NB. draw plot in b

Example: add plot to a form

In this case, you need to define the public nouns PForm, PFormhwnd and PId.
These override the default values.
load 'jzplot'

MYPLOT=: 0 : 0
pc myplot closeok;
xywh 2 2 125 100;cc g0 isigraph ws_border rightscale bottommove;
xywh 131 3 34 11;cc close button leftmove rightmove;cn "Close";
pas 2 2;pcenter;
rem form end;
)

myplot_close_button=: wd bind 'pclose'

wd MYPLOT

a=: conew 'jzplot' NB. create plot object
PForm__a=: 'myplot' NB. define PForm in a
PFormhwnd__a=: wd 'qhwndp' NB. define PFormhwnd in a
PId__a=: 'g0' NB. define PId in a

'density' plot__a 7|i.25 25 NB. draw plot on the form

p172

Plot Types

Type

2D

3D

Description

area

x

shows area under one or more lines

bar

x

bar chart

density

x

density plot (2D representation of 3D data)

dot

x

dot plot

errorbar

x

error bars

hilo

x

hi - lo plot

line

x

x

line plot (3D if x;y;z values given)

linefit

x

fitted line plot

fbar

x

floating bar chart

sbar

x

step bar chart

pie

x

pie char

point

x

point plot

radar

x

radar plot

stick

x

x

stick plot (vertical bars)

step

x

step plot

surface

x

surface plot

wire

x

wire surface plot

p173

Plot Commands

The units used in these commands are based on an isigraph window of 1000 by
1000. The point 0,0 is the bottom left corner.

Some of these commands refer to "gl" commands which are documented in the wd
Commands online help.

Command

Description

reset [parent]

reset plot with optional parent window id.

For example:
 pd 'reset'

new [window]

starts new plot with optional window, sets user defaults. Use to set initial values,
and when display multiple plots. The default window is 0 0 1000 1000.

For example, create a new plot window with xy position 100 100, and of size 400
by 600:
 pd 'new 100 100 400 600'

use window

change window

text, textc, textr arg

text (left aligned), centered, right aligned.

Argument is x y text, where x y are coordinates relative to window.

For example, the following writes the text "J Graphics" centered at position 500
950:
 pd 'textc 500 950 J Graphics'

{options}

sets plot options. See Plot Options

For example:
 pd 'backcolor white; frame 1'

{numeric data}

sets plot data. More than one set of data can be given.

clip [w h]

copy plot to clipboard in wmf format

w h are clipboard width and height in 0.01 millimeters, default 10000 7500

show

displays plot

save [file w h]

save plot to file in wmf format

file is filename. The file extension defaults to .wmf. If file not given, 'save' is
treated as 'clip'.

w h are relative width and height. Default is current plot width and height. For
example,

1000 1000 same width and height
1000 500 width is twice height

savebmp [file w h]save plot as 24bit color bitmap file.

file is filename. The file extension defaults to .bmp. If file not given, the bitmap is
copied to the clipboard.

w h are width and height in pixels, default 512 512.

p174

Plot Options

Plot options and their defaults are shown below. The defaults are set whenever you
use the 'reset' or 'new' commands and are defined in script
system\classes\plot\plotdefs.ijs.

Options are specified by providing the option name followed by its argument.
Several options can be given at one time, separated by semicolons. Option values
are stored as uppercase global variables.

Options whose names begin with 'x' apply to the x-axis; corresponding options
apply to the y and z axes.

"Isigraph units" are based on graphics window size of 1000 by 1000.

Some of these options refer to "gl" commands which are documented in the wd
Commands online help.

Options

Type

Default

Description

aspect

n

2r3

ratio of graphics window height to width. Used to adjust ticmark lengths, and
graph boxes for a pie chart.

axes

b

1 1

if x,y axes are shown

backcolor

color

WHITE

background color

bandcolor

colors

see Plot Colors

band color scheme

border

b

0

if a border is drawn

bordersize

n

8

size of border (isigraph units)

boxed

b

1

if drawn in a box (3D only)

captionfont

font

Arial 40

font for x and y captions

clear

b

1

if clear the background before drawing plot

color

colors

see Plot Colors

plot colors

edgecolor

colors

BLACK

edge color (ellipse, pie, poly, rect)

forecolor

color

BLACK

foreground color (for axes, text)

frame

b

0

if plot is framed

gridcolor

color

GRAY

grid line color

grids

b

0 0

if x, y grids are shown

itemcolor

colors

see Plot Colors

item color scheme

key

c

{none}

key names (legend identifying plot items)

keyfont

font

Courier New 25

font for key names

keystyle

n

0 2

0=horizontal 1=vertical style 0-3 positions from top left

labelfont

font

Courier New 40

font for labels

labels

b

1 1

if x,y labels shown

mesh

b

1

if a mesh is drawn (3D only)

orientation

n

1

1=portrait, 2=landscape (printing only)

penpattern

v

see plotdefs

patterns used by pen styles

pensize

n

1

pensize (see definition of glpen)

penstyle

n

solid

pen style (see definition of glpen)

plotbox

n

0 0 1000 1000

position and size of plotting window.

plotcaption

c

Plot

plot caption

polar

b

0

if a polar plot, data is r;theta (2D only)

rtic

v

{none}

r tics (#major,#minor) (radar plot only)

separator

c

|

separator for char matrix entries

symbolfont

font

Symbol 40 bold

symbol font used in point plots

textcolor

color

BLACK

text color

textfont

c

Arial 40

text font

ticmajor

v

12

size of major tic marks (isigraph units)

ticminor

v

8

size of minor tic marks (isigraph units)

tics

v

1 1

if x, y tic marks shown

title

c

{none}

title text

titlefont

c

Arial 60

title font

type

c

line

plot type (see Plot Types)

viewcenter

v

0 0 0

position of plot center (3D only)

viewpoint

v

1.6 _2.4 1.5

position of observer (3D only)

viewsize

v

1 1 0.5

relative sizes of viewbox

viewup

v

0 0 1

upwards direction (3D only)

visible

b

1

if plot is displayed

xcaption

c

{none}

x caption

xgridpattern

v

3 5

x grid pattern

xint

n

{none}

position of x-intercept

xlabel

c

{none}

x labels

xlog

n

0

if log applied to x values

xrange

v

{none}

range of x data - low,high

xtic

v

{none}

x tic (style)

xticpos

v

{none}

x tic positions

Type

Description

b

boolean 0 or 1

c

character string

color[s]

color or color matrix - given by name or values

font

font specification

n

number

v

numeric list

p175

Plot Data

Plot data may be given as either a numeric or boxed array.

A numeric array should be a vector or matrix.

● For a 2D plot, a vector is the y values and a matrix is treated as rows of y values.
The x axis defaults to i.{:$y .

● For a 3D plot, the array should be a matrix and is treated as z values. The x axis
defaults to i.# z and the y axis to i.{:$z .

A boxed array is either x;y values for a 2D plot, or x;y;z values for a 3D plot. The
boxed values should conform in size.

● For a 2D plot, the x values should have the same shape as the y values, or be a
vector of length {:$y .

● For a 3D plot, the x and y values should have the same shape as the z values, or
the x values should have length #z and the y values of length {:$z .

p176

Plot Colors

Several color schemes are used in Plot.

Before any drawing is made, the backcolor is applied to the plot box. The axes,
frame, ticmarks, labels and titles are then drawn in the forecolor.

Text specified with the text/textc/textr commands is drawn with the
textcolor.

Data is colored in two ways, depending on plot type:

● where each data item is plotted in a single color (e.g. line plots), the items are
drawn with the itemcolor

● where a data item is banded and requires several colors to plot, (e.g. density
plots), it is drawn with the bandcolor.

The edges of filled-in shapes are drawn with the edgecolor (usually black).

Backcolor, forecolor, textcolor and edgecolor are single colors.

Itemcolor and bandcolor are lists of colors. Itemcolor typically contains quite
distinctive colors to distinguish the different data items. Bandcolor is typically a
graduated scale of colors, for example to indicate height. Typical lists of colors are
defined in system\classes\plot\plotdefs.ijs.

The term color can also be used as an abbreviation to specify the itemcolor or the
bandcolor depending on plot type. This convenient for simple plots where only one
plot type is being drawn.

For example:

pd 'textcolor red'

single color for text

pd 'itemcolor blue,red,green'

list of colors for items

pd 'bandcolor bgclr'

list of colors in color band

pd 'color blue,red'

item or band colors (depends on plot type) The script
system\classes\plot\plotdefs.ijs defines several color schemes, for example:

● STDCLR is the color scheme used by default
● RBCLR is a red/blue color scheme that is appropriate for 3D surface plots

p177

OpenGL

Movement Keys p178
Viewing p179

p178

Movement Keys

The following keys are active when an OpenGL graphic is displayed and has the
current focus.

Keys Movement

i o in / out (shift = 5 steps at a time)

x y z Rotate about axis (shift = rotate back)

F5 F6 F7 Rotate about axis by 45_ (shift = rotate back)

Ctrl F5 F6 F7 Rotate about axis by 180_

j k l Move object in x, y, z direction (shift = move back)

up/down/left/right Move view position (fly around)

PageUp/Page Down Spin view position

1-9 Change speed (1=slowest, 5=default, 9=fastest)

F3 Snap current state

F4 Return to snap state or initial state if none.

Shift F4 Return to initial state.

p179

Viewing

Graphics are drawn at the origin, and then three viewing controls are applied. First,
the graphic is rotated about one or more axes. Next, it is translated (moved) to a
new position. Finally, the observer's view position is given.

These viewing controls are always applied. If not specified, defaults are used.
Rotation and translation may be zero, leaving the graphic at the origin, as
originally drawn.

(Since OpenGL applies viewing commands in the reverse order in which they are
specified, they are here specified in the order: view, translate, rotate.)

Rotation

The rotation angles are given in degrees in ROTXYZ, and are applied in the order
ROTNDX.

By default ROTNDX is 0 1 2, meaning the specification order is x-axis, y-axis and
z-axis (and applied by OpenGL in the order z, y, x). When setting up a graphic, it
is easiest to leave ROTNDX as the default. However, the paint handlers may
change the order to ensure smooth rotations when using the x y z keys to rotate the
graphic.

Translation

Translation moves the graphic away from the origin, by the amount in TRNXYZ.
In most cases, there is no need to move the graphic.

Viewing

The position of the observer is given in VIEWXYZ, and the up direction in
VIEWUP. The observer always looks at the origin. If you set VIEWXYZ
manually, ensure that VIEWUP is also given a suitable value.

Example

A good way to experiment with viewing is to use the OpenGL demo

Basic/Viewing. This shows the viewbox with the positive axes. Try to guess which
way the graphic will move when each key is pressed.

p180

Java

Java p181
Java jserver class p182
Java classpath p183
Jsoftware Java applets p184
Java examples p185
Java applet security p186

p181

Java

J Automation objects JEXEServer and JDLLServer are available to Java
programmers. A Java programmer can easily use the power of J in building
applications and applets.

J Automation objects and the corresponding Java support are only available in the
Windows 95 and NT versions of J.

J User Manual chapter OLE gives an overview of J Automation objects. The term
Automation supersedes the term OLE.

Automation is a Microsoft technology and it is supported directly in the MS J++
Java Development system, the MS Java Virtual Machine (JVM) jview.exe, and in
Internet Explorer.

There are two problems with this direct MS support of Automation. JVMs from
other vendors (e.g., Sun's java.exe) and Netscape browsers can't run Java programs
that use Automation objects. There are also serious limitations in mapping data
between J and Java with the MS Automation support.

These problems were solved by building a Java class that wraps the J Automation
objects in a way that is identically usable in all JVMs and browsers. This Java class
is the jserver class and it is distributed with the J system.

The best way to learn how to use J in Java is to study the examples. Run them,
build them in your Java development environment, and experiment. Stepping
through with a debugger is a good way to study the examples.

p182

Java jserver class

The jserver class is a wrapper for the J Automation objects JEXEServer and
JDLLServer. The jserver.class is in package isi.ijserver (Iverson Software Inc.) and
is distributed with the J system. To use a J object you import isi.ijserver into a Java
source file and use the class methods and fields.

The jserver class provides identical access for all JVMs to J Automation objects
and it provides methods that simplify mapping J data to Java. The jserver class
uses native methods in a C++ dll. There are two versions of the native method dll:
jsnmms.dll (J Server Native Method MS) and jsnmns.dll (Netscape and other
JVMs).

The jserver class uses native methods and must exist in the local file system. The
class and native method dlls must be in the J system\extras\java\classes\isi\jserver
directory. This path is added to the Java classpath environment variable when J is
installed.

// constants - results of getType()
final static int TYPEBOOL=1;
final static int TYPEBYTE=2;
final static int TYPEINT=4;
final static int TYPEDOUBLE=8;
final static int TYPEBOX=32;

// methods
synchronized void start(int dllv) // 0 for JEXEServer, 1 for JDLLServer
int close() // close J object
int Do(String s)
int DoR(String s) // Do with formatted result
int Show(boolean b)
int Log(boolean b)

// methods for getting J data
int Get(String s) // get data for J variable

int getType()

int getRank()
int getElements()
int[] getShape()

boolean getBool()
char getChar()
int getInt()
double getDouble()

boolean[] getBools()
byte[] getBytes()
int[] getInts()
double[] getDoubles()
String getString()

// methods for setting J data
int Set(String s, Object x)

int Set(String s, byte x)
int Set(String s, int x)
int Set(String s, double x)

p183

Java classpath environment variable

A Java class is a .class file that contains the compiled result of java source files.
When a JVM runs a program it dynamically loads the java classes required. When
the jserver.class is required it must be loaded from your local file system. Different
JVMs have different search paths for class files, but they all search the classpath
path. Rather than add the jserver class file to different locations, the J installation
updates the classpath environment variable to include the J
system\extras\java\classes directory.

p184

Java www.jsoftware.com applets

www.jsoftware.com has a few simple applets that you can run in your browser.
When the applet uses the jserver class, it is loaded from the J
system\extras\java\classes directory.

The nyse applet is different from the others in an important way because it reads
data from a URL at the NYSE web site. Applets downloaded from the web run in
the Java sandbox and are not allowed to read data from other web sites. The nyse
applet would get a security violation if it were downloaded from the web site. The
nyse applet class is in your J directory system\extras\java\classes. If this is in your
classpath environment variable (as set by J setup) then the class is loaded from
your hard drive and is not restricted to running in the sandbox. Installing applet
classes on your hard drive and adding paths to your classpath have serious security
implications. Be sure to read: Java sandbox and applet security p186.

p185

Java examples

The source for several Java programs is included in J directory
system\examples\java. The examples are simple and could be understood just by
reading, but it is helpful to use a debugging environment to step through the code
to see exactly what happens.

Most of the examples are applets. Directory jstest contains an application. The
jstest.class file is in the J system\extras\java\classes directory. You can run jstest
with the MS JVM jview.exe or the Sun JVM java.exe. Bat file jv.bat runs
jview.exe and ja.bat runs java.exe.

p186

Java sandbox and applet security

A java applet downloaded from the web runs on your system in a secure
environment called the sandbox. An applet running in the sandbox is not allowed
to do anything that could violate the security of your system. In particular it can't
read or write files. It is very important that a J object created in the sandbox obeys
the rules. J foreigns (!:) and wd commands that could violate sandbox rules are
disabled when the J object is created in the sandbox.

Important exception: loading ijs script files is allowed.

Be very careful about adding applet classes to your hard drive or changing your
classpath. An applet loaded from your hard drive has complete access to your
system. Allowing a strange applet to run from your hard drive is just as dangerous
as running a strange exe program on your system.

It might sometimes be useful to explicitly request sandbox security completely
independently from Java and Automation. For example, you might want sandbox
security to run a script downloaded from the net. You trust the script, but setting
sandbox security makes it safer. You can explicitly set sandbox security:
 wd'security 1' NB. wd sandbox security
 9!:24 [1 NB. !: sandbox security

p187

Sockets

Socket Driver p188
Socket Utilities p189

p188

Socket Driver

A socket is an endpoint in a bi-directional communication channel. The other end
can be in the same task (not usually very interesting), in another task on the same
machine, or in a task on another machine that is accessed through a TCP/IP
connection.

The foreign family 16!: support sockets under NT and Win95. The Socket Driver
is not available on the Macintosh. The Socket Driver works with 32 bit TCP/IP and
does not work with a 16 bit TCP/IP stack.

File system\main\socket.ijs contains cover functions for the new Socket Driver. To
load, enter:
 load 'socket'

Directory system\examples\socket contains examples of using the Socket Driver to
communicate between two J sessions. See system\examples\socket\socket.txt for
details.

To use sockets you need to have TCP/IP support configured. The following is an
excerpt from a FAQ:

[Q: How do I set up my computer for a TCP/IP network?]

1. In Control Panel, double-click the Network icon.
2. On the Configuration tab, click Add, and then double-click Protocol.
3. Click Microsoft, and then click TCP/IP

After it is installed, click TCP/IP on the Configuration tab of Network properties,
and then click Properties. Configure your protocol per instructions from your
system administrator.

The Socket Driver is a very direct mapping onto the Windows Sockets 1.1 API.
interface. General documentation on sockets and the Windows API is relevant and
useful for complete understanding of how best to make use of sockets. Web sites
www.stardust.com and www.sockets.com have lots of relevant information for a

serious socket application developer. In particular, you might want to download the
complete Windows Sockets 1.1 Specification from:
http://www.stardust.com/winsock/ws1.1_api

There are labs (Studio|Labs) on sockets.

p189

Socket Utilities

Script system\main\socket.ijs has definitions for working with sockets.

The first element of the result of all socket verbs is a result code. It is 0 if there was
no error, or it is an error number. Utility sderror returns the text name of the error
number.

Some socket verbs take integer constants as arguments and some of these constants
have been given names in socket.ijs. For example SOCK_STREAM is 1.

A socket can be blocking or non-blocking. A verb such as sdrecv will hang on a
blocking socket until it can complete. On a non-blocking socket, the sdrecv
returns immediately with a result code of EWOULDBLOCK 10035. In Windows the
use of non-blocking sockets is recommend.

A socket created with sdsocket is a blocking socket. The verb sdioctl can make
it non-blocking. In Windows it is recommended to use sdasync to make the socket
non-blocking as this also marks the socket so that events are notified to J by
running sentence socket_handler''. This is similar to window events and the
wdhandler'' sentence.

Verb sdselect returns information about the state of a socket and indicates if it
has data to read, is ready for writing, or has had an error.

Addresses used with sockets consist of 3 parts: family, address, port. The first is an
integer which indicates the type of address. Currently this is always AF_INET
(address family internet). The second part is a string that is a series of 1 to 4
numbers separated by dots. The third part is an integer port.

sdsocket family , type , protocol
sdsocket ''

Creates a new socket. A socket is identified by an
integer. The family must be AF_INET as defined in
sockets.ijs. The type can be any of the SOCK_ values,
but is usually SOCK_STREAM. The protocol must be 0.
The result is a socket number that can be used as the
socket argument to other verbs. The '' argument is
equivalent to
AF_INET,SOCK_STREAM,0sdrecv socket ,
count , flags

Receives data from a socket. The count is the
maximum amount of data that will be received. The
flags are from the MSG_ values and is usually 0. The
result is a boxed list. The first element is the result
code and the second is the data. There may be less
data received than in count.

If the socket is blocking and there is no data, the verb will hang until there is data.

If the socket is non-blocking and there is no data, it immediately returns result code
EWOULDBLOCK 10035.

sdioctl can be used to see how much data is available for a socket.

If the socket at the other end is closed, then the socket will be in the sdselect
ready-to-read list and an sdrecv will immediately receive 0 characters with no
error.

If sdasync has been done for a socket, then the socket_handler'' is run
whenever new data is available.sdrecv sk , 1000 , 0
data sdsend socket , flags

The left argument is the data to send. The flags are from the MSG_ values and is
usually 0.

Blocking and non-blocking sockets work with sdsend in a similar manner to
sdrecv.

The second element of the result indicates how many characters were actually sent.
This may be less than was requested and you need to call sdsend again to send the

remaining data.'testing 1 2 3' sdsend sk , 0
sdrecvfrom socket , count , flags

Similar to sdrecv except it is used with a SOCK_DGRAM socket. The result has
additional elements that give the address of the data source.

data sdsendto socket ; flags ; family ; address ; port

Similar to sdsend except it is typically used with a SOCK_DGRAM socket and the
argument includes the address to send the data to.'test' sdsend sk ; 0 ;
AF_INET ; '127.0.0.1' ; 800
sdclose socket

Close a socket.

sdconnect socket , family , address , port

Connect the socket to the socket indicated by the address.

An sdconnect on a blocking socket will hang until it completes and will either
return a 0 result code indicating success, or an error code.

An sdconnect on a non-blocking socket returns immediately with EWOULDBLOCK
10035. The system will try to complete the connection asynchronously. If it is
successful, the socket will be marked ready for writing in sdselect. If the
connection fails the socket will be marked in error in sdselect.sdconnect sk ;
AF_INET ; '127.0.0.1' ; 800
sdbind socket , family , address , port

Bind a socket to an address. The address can be '' if the socket will be used to listen
for connects to any address on the machine. If the port number is 0, the system will
assign a port (which can be queried with sdgetsockname).

A bind is usually done with a socket that will listen for connections.sdbind sk ;
AF_INET ; '' ; 800 NB. any connections to 800
sdlisten socket , number

Set the socket to listen for connections. A bind must have been done. The number
is the limit to queued connections. The host typically forces this limit to be
between 1 and 5.

When a connection is made the socket is marked in sdselect as ready for reading.
When it is ready sdaccept should be done.

sdaccept socket

When a listening socket is marked as ready for reading in sdselect, then an
accept can be done to create a new socket for this end of the channel. The new

socket is a clone of the listening socket and has all its attributes. In particular, if the
listening socket is non-blocking or has been marked with sdasync, then the new
socket is as well. The result is the result code and the new socket.

sdselect read ; write ; error ; timeout
sdselect ''

The argument is a 4 element list. The first is a list of sockets to check for ready-to-
read, the second is a list to check for ready-to-write, and the third is a list to check
for errors. The last element is a timeout value in milliseconds. If it is 0, the select is
non-blocking and returns immediately. If the timeout is not 0, it will return as soon
as there is a socket to report on, but will not wait longer than the timeout value.

An empty argument checks all sockets for all conditions with a timeout of 0.

The result has a result code and 3 socket lists. The first is the list of ready-to-read
sockets. The second is a list of ready-to-write sockets. The last is a list of sockets
that had an error.

Ready-to-read sockets are sockets with data available for an sdrecv or listening
sockets with an incoming connection

sdgetsockopt socket , option_level , option_name

Returns the value of a socket option.sdgetsockopt sk , SOL_SOCKET ,
SO_DEBUG
sdgetsockopt sk , SOL_SOCKET , SO_LINGER
sdsetsockopt socket , option_level, option_name , value...

Set the value of a socket option.
sdsetsockopt sk , SOL_SOCKET , SO_DEBUG , 1
sdsetsockopt sk , SOL_SOCKET , SO_LINGER , 1 , 66
sdioctl socket , option , value

Read or write socket control information.
sdioctl sk , FIONBIO , 0 NB. set blocking
sdioctl sk , FIONBIO , 1 NB. set non-blocking
sdioctl sk , FIONREAD, 0 NB. count of data ready to read
sdgethostname ''

Returns host name.

sdgetpeername socket

Returns address of socket this socket is connected to.

sdgetsockname socket

Return address of this socket.

sdgethostbyname name

Returns an address from a name.
 sdgethostbyname 'localhost'
+-+-+---------+
|0|2|127.0.0.1|
+-+-+---------+
 sdgethostbyname >1{sdgethostname ''
+-+-+-------------+
|0|2|204.92.48.126|
+-+-+-------------+
 sdgethostbyname 'www.jsoftware.com'
+-+-+--------------+
|0|2|198.53.145.167|
+-+-+--------------+
sdgethostbyaddr AF_INET , address_name

Returns a name from an address.

 sdgethostbyaddr 2 ; '127.0.0.1'
+-+---------+
|0|localhost|
+-+---------+

sdgetsockets ''

Return result code and all socket numbers.

sdwsaasync socket

Make a socket non-blocking and cause the system to run sentence socket_handler''
whenever the state of the socket has changed.

sdcleanup ''

Close all sockets and release all socket resources.

p190

J Engine Protocol

Jconsole in both Windows and Unix provides a console interface to the J Engine
(JE). Jconsole can also be started with a command line parameter so that it instead
provides a socket interface to the JE that uses the J Engine Protocol. The client side
of this interface to the JE server is a J Front End (JFE).

JFE starts JE with a command line requesting it to connect to a socket. JFE can
start JE on the same machine, in which case it needs to provide a port number. Or
it can start JE on another machine, in which case it also nees to provide the host
name or address. For example:

jconsole -jconnect 1234
jconsole -jconnect frodo:2002
jconsole -jconnect 192.168.1.3:4321

The J Socket Protocol allows any client with sockets to have full use of a JE. This
provides facilities that are similar to J OLE Automation in Windows, but does so in
a portable, open, more efficient, and much simpler manner.

Jsoftware provides a JFE written in Java that runs in both Windows and Unix. This
JFE supports the J wd interface that provides GUI facilities to the J programmer
and provides a standard, portable, cross-platform IDE (Interactive Development
Environment).

Jsoftware also provides a script (open'jserver') that lets J act as a JFE to another JE.
Studying and playing with this script is a good way to learn about the J Socket
Protocol. See the jserver script for details like the values for names (e.g. CMDDO)
used in this document.

Messages

The JFE client and the JE server exchange messages over the socket. Some
messages require a reply and others don't.

All messages have the following format:

Command - 1 byte
reserved - 3 bytes
Type - 4 byte integer (NBO) with extra command info
Len - 4 byte integer count (NBO) of bytes in data
Data - Len bytes of data

In NBO (network byte order or standard byte order) the bytes 0 0 0 1 are the
integer 1. In RBO (reverse byte order) the bytes 1 0 0 0 are the integer 1. In HBO
(host byte order) the byte order is NBO or RBO depending on the host. Intel x86
and related machines are RBO and most others are NBO.

Len can be 0, in which case there are 0 Data bytes. Data bytes are not null
terminated and can have any value.

Command Summary

Command Sent by Type Data Description

CMDDO client 0 string JE executes sentence

CMDDOZ JE error none JE finished with sentence

CMDIN JE 0 prompt J requests keyboard input

CMDINZ client 0 input JE resumes execution

CMDWD JE x array client runs 11!:x request

CMDWDZ client WDZ data JE resumes execution

CMDOUT JE OUT string output for display

CMDBRK client 0 none JE interrupts execution

CMDGET client 0 name JE replies with CMDGETZ

CMDGETZ JE error array value in 3!:1 format

CMDSETN client 0 name sets name for CMDSET

CMDSET client 0 array sets name with 3!:1 value

CMDSETZ JE error none result of set

CMDED client 0 event null terminated strings for wd'q'

CMDFL JE 0 locale locale for next wd commands

CMDEXIT JE code none 2!:55 code

Type in CMDWDZ describes the Data format:
WDZSTR - string
WDZINT - list of integers in JE HBO
WDZMTM - Len is 0 and the J result is an emtpy matrix
WDZERR - Len is 0 and Type is 1000+error (e.g. 1003 is domain error)

Type in CMDOUT describes the output:
OUTFR - formatted result array (just before CMDDOZ)
OUTERR - error output
OUTLOG - output from loading script
OUTSYS - system assertion failure
OUTFILE - 1!:2[2

error Type is 0 for no error or a J error (e.g. 3 is domain error).

Data array is the 3!:1 binary representation of a J array.

CMDED (Event Data) sends the data for an event to JE before a CMDDO with the
wdhandler sentence. JE gets this event data with wd'q' which runs locally in the JE.

CMDFL (Form Locale) sends the current locale to JFE before a CMDWD for
11!:0. The locale name is required by the client so it can be included in an event
for a form created by a pc command.

Command Transactions

Some messages require a response.

DO/DOZ - client sends a sentence and JE replies when finished
WD/WDZ - JE sends a wd command and the client replies when finished
GET/GETZ - client sends a name and JE replies with its 3!:0 value
SETN/SET/SETZ - client sends name, then 3!:0 value, and JE replies when
finished

DO/DOZ is the main transaction. IN/INZ/WD/WDZ/OUT/BRK/ED/FL messages
occur only only within a DO/DOZ transaction.

DO, GET, SETN, and SET commands can only be sent when J is ready (i.e., not
already working on a message).

Command Sequences

sentence with no output:
client DO a=.5
server DOZ

sentence with output:
client DO i.5
server OUT OUTFR 0 1 2 3 4
server DOZ

1!:2[2 (smoutput) output
client DO i.5[smoutput 'test'
server OUT OUTFILE test
server OUT OUTFR 0 1 2 3 4
server DOZ

error:
client DO 'a'+1
server OUT OUTERR domain error
server DOZ

1!:1[1 request for input (or a debug suspension):
client DO ...
server IN prompt
client INZ input
server OUT OUTFR formatted result
server DOZ

break:
client DO 6!:3[100 NB. long running sentence
client BRK
server OUT OUTERR interrupt

server DOZ

wd command:
client DO wd'pc abc;cc b button;pshow'
server FL base
server WD 'pc abc;cc b button;pshow'
client WDZ WDZMTM
server OUT OUTFR formatted result
server DOZ

wd event:
client ED event data
client DO wdhandler_formlocale_''
... server DOZ

Array Data

Array data is the 3!:1 representation of a J array. Numerics are in the JE HBO
except for SET which can be either NBO or RBO.

The array format is: type, flag, count, rank, shape, data

The type, flag, count, rank, shape are 4 byte integers. The type is defined as in 3!:0.
The flag must be 0. Boxed arrays are nested with values as offsets to the array.

You can experiment in J to see the bytes in the data array. Try the following
sentences.

 hex=: 3!:3 NB. hex display of 3!:1 - host byte order
 hex 'abc'
 hex 'abcd'
 hex 2 2$'abcd'
 hex 23+i.3

Character arrays have a trailing null that is padded with nulls to a 4 byte boundary.
This format of J array data will not change over releases with the possible
exception of the nulls after character data. Do not depend on the character trailing
nulls!

p191

DDE

DDE Overview p192
Server and Client p193
DDE Conversations p194
J Commands & Events p195
Communication Protocol p196
Examples p197

p192

DDE Overview

Dynamic Data Exchange allows Windows programs to communicate with each
other.

DDE allows two Windows programs to exchange data by posting messages to each
other using a standard protocol. J provides a comprehensive set of DDE commands
so that you can communicate between J and any other Windows program
supporting DDE, including another copy of J. You may have up to 20 DDE
conversations at a time.

For example, with DDE you could set up J as a calculation server, so that another
Windows program could send it a sentence for evaluation and receive back the
result.

The DDE interface uses the Window Driver. Messages are sent with Window
Driver commands, for example:
 wd 'ddereq jserver calc res'

Messages are received as a Windows event, and require handlers, named
sys_eventname, for each event.

For example, here is a typical result of wd'q', following a ddepoke event:
 wdq
+----------+-----------+
|syshandler|sys_handler|
+----------+-----------+
|sysevent |sys_ddepoke|
+----------+-----------+
|sysdefault|sys_default|
+----------+-----------+
|systopic |top |
+----------+-----------+
|sysitem |item |
+----------+-----------+
|sysdata |+/\i.10 |
+----------+-----------+

To respond to a ddepoke, you define a handler named sys_ddepoke, for example
the following is used in file system\packages\dde\server2.ijs:
sys_ddepoke=: 3 : 0
sysdata=: sysdata -. CRLF,TAB
write0 sysdata
if. sysdata -: 'exit' do. return. end.
if. sysdata -: 'off' do.
 delay 1
 signoff ''
end.
try. val=: ".sysdata
catch. val=: 'unable to execute: ',sysdata end.
if. FORMAT do. val=: ":val end.
write1 val
topitem=: topitem,systopic;sysitem;<val
)

Most Windows applications support DDE in some form or another. However, not
all applications support the complete set of DDE commands, and in some cases the
command usage is not standard. With J, you write programs to handle the DDE
interface, and therefore you can tailor the J side of the protocol to fit the other
application's requirements.

In this chapter we discuss general principles of DDE with examples of a J to J
DDE link, and then discuss a link between J and Microsoft Word for Windows.
Several other examples, including a link to Microsoft Visual Basic will be found in
the directory: system\examples\dde.

p193

Server and Client

The two parties to a DDE conversation (connection or link) are known as the
server and client. The server makes itself available by registering itself with
Windows. The client initiates the conversation by sending a message to the server.

The DDE protocol is asymmetric: the client initiates the conversation, sends
messages and instructions to the server, and terminates the conversation. The
server cannot by itself initiate a conversation, or send messages except in response
to a client request.

p194

DDE Conversations

There are three types of DDE conversations, known as hot, warm and cold:

● in a hot link, the client asks that whenever some data changes, the server send it
the new data.

● in a warm link, the client asks that whenever some data changes, the server send
it an indication that the data has changed (but not the new data itself).

● in a cold link, the server never notifies the client whenever data has changed.

Programs to handle each of these will be slightly different, and you will need to
know what type of conversation the other application supports.

Hot and warm links are also known as advise loops.

A warm link is essentially a combination of a hot and cold link - the hot link
advises of a change in the data item, the cold link is used to send the data item.

A conversation uses three identifiers: service, topic and item. A conversation may
also move data:

● service identifies the server application, and is typically set by the server
● topic is a high level identifier of the information being exchanged
● item is a low level identifier of the information being exchanged
● data is the data being exchanged (as character data)

Service, topic, and item names are case-insensitive.

Some applications require specific topic and item names be used; others do not
care. A commonly used topic is the system topic, which may also have a sysitems
item, both are used to provide information about a server application to a client.
For example, Lotus 123 for Windows has a system topic:
 wd 'ddereq 123w system sysitems'
SysItems Topics Formats RangeNames Selection Status

 wd 'ddereq 123w system status'
Ready

Some applications such as spreadsheets allow data to be exchanged in clipboard
format. The utility clipfmt in script format.ijs will convert a list or table into
clipboard format.

With spreadsheets, it is typical for the topic to be the worksheet name, and the item
to be the cell or range name. For example, suppose data is a table of shape two by
three, then this could be written to an Excel worksheet sheet1 as follows:
 txt=. clipfmt data
 wd 'ddepoke excel sheet1 r1c1:r2c3 *',txt

Some servers support a DDE execute command, allowing the client to use the
server's command language directly. However, servers that support execute usually
do so only in the system topic, and then only in a limited fashion, for example to
run menu commands such as File/Open. For non-trivial tasks it is usually best to
create a macro in the application and then use the execute command to run the
macro. Most applications follow the conventions for execute expressions indicated
in the following:
 [open("sample.xlm")]
 [run("r1c1")]
 [connect][download(query1,results.txt)][disconnect]

p195

J Commands and Events

The following summarizes the Window Driver commands and event types. Here:

S

is the service name

T

is a topic

I

is an item

D

is some dataServer commands:

ddename S

set service name S

ddereqd D

provide data D to a ddereq event. It must be the first command given after a ddereq
event is received.

ddeadvise T I D

provides data D to advise loops with given topic and item. It returns 0 if the loop is
no longer active.Server events:

ddepoke

data has been sent

ddeex

execute command string

ddereq

request for data

ddestart

request to start advise loopClient commands:

ddecons

return conversation names (service and topic)

ddedis [S [T]]

disconnect

ddeex S T D

execute command in server

ddepoke S T I D

poke data to server

ddereq S T I

request data from server

ddestart S T I

start advise loop

ddestop S T I

top advise loopClient events:

result

answer to ddereq query

ddeadvise

new data from advise loop

p196

Communications Protocol

Opening the conversation:
The client always initiates the conversation by sending a message to the server.
The server must be ready to respond. How the server does this depends on the
application.

For J to act as a server, you must have first loaded J and set the service name,
either from the command line or using the ddename command. You also need
event handlers for the events you want to respond to.

Client commands:
The client can send four types of messages:

● a ddepoke message sends data to the server. The server does not respond. How
the server treats this data depends on the application. If the server is a spreadsheet,
the data may be written to the current worksheet; if the server is J, it may be treated
as a sentence to be executed.

● a ddeex message sends a command to the server. The server does not respond.
How the server treats this depends on the application, but it would typically be
used to invoke a macro command in the server. A J server does not have to
recognise this message, since a ddepoke message can be used instead.

● a ddereq message sends a request for a data item to the server. The server
responds with the data item.

● a ddestart message sets up an advise loop, asking the server to advise the client
whenever a specific data item has changed. The ddestop message terminates the
advise loop. Once an advise loop has been initiated, the client must be prepared to
accept messages from the server at any time.

Closing the conversation:
A conversation is closed whenever either application terminates. A client can also
close the conversation by issuing a ddedis command (received by Windows, but
not sent to the server).

p197

Examples

The following examples illustrate. First we set up a J to J connection manually:

Load two copies of J, and arrange the windows so that both are visible at the same
time. You may find it helpful to minimize Program Manager to reduce screen
clutter.

In one window (the server), define the service name as jserver:
 wd 'ddename jserver'

In the other window (the client), use the ddepoke command to send data to the
server:
 wd 'ddepoke jserver abc xyz mydata'

In the server, check the value of wdq
 wdq
+----------+-----------+
|syshandler|sys_handler|
+----------+-----------+
|sysevent |sys_ddepoke|
+----------+-----------+
|sysdefault|sys_default|
+----------+-----------+
|systopic |abc |
+----------+-----------+
|sysitem |xyz |
+----------+-----------+
|sysdata |mydata |
+----------+-----------+

This indicates the character string mydata was sent to the J server, with topic abc
and item xyz.

Now terminate the connection from the client:
 wd 'ddedis'

In practice, you will want to set up a protocol that will enable client and server to
communicate back and forth. To illustrate this we describe typical hot and cold
links that use J as an execution server.

J to J Hot Link
The script system\packages\dde\server1.ijs implements the server side of a DDE
hot link. The protocol is as follows:

● the server defines its service name to be: jserver
● the client issues a ddestart command, using any topic and item
● the client issues a ddepoke for this topic and item, with the data being an
executable J sentence
● the server executes the sentence, and returns the result with a ddeadvise
command
● the client can issue a ddepoke repeatedly. If the data is close the topic and item
are closed. If the data is exit the J server program is exited. If the data is off the J
server task is terminated.

If you have not already done so, load 2 copies of J and minimize Program Manager
to reduce screen clutter. In one copy of J (the server), enter:
 load 'system\packages\dde\server1.ijs'

If you wish, you could load one copy of J, and enter the following command to
load the second copy as a server (change the directory reference as appropriate):
 wd 'winexec "\j3\j.exe system\packages\dde\server1.ijs"'

You could also create a new Shortcut or Program Manager item, which loads J
with this script file as its profile file.

The server displays a Windows dialog box, which will be used to illustrate the
conversation. If you wish, you can also minimize the server window.

In the other copy of J (the client), enter the following to initialize the client
 load'system\examples\dde\client1.ijs'

You should see some J code executed in the server window, and the result in the
client session.

You can now send J sentences to be evaluated:
 cmd 'i.4 5'
0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19

cmd sends its argument using ddepoke:
cmd=: 3 : 0
wd 'ddepoke jserver top item *',y.
)

The server window shows the conversation.

Try other expressions, for example, to create and use names:
 cmd 'mydata=: 2 3 5 7'
2 3 5 7

 cmd '#mydata"'
4

To close the server, enter:
 cmd 'off'

(The server does not respond.)

J to J Cold Link

The script system\packages\dde\server2.ijs implements the server side of a DDE
cold link. The protocol is as follows:

● the server defines its service name to be: jserver
● the client issues a ddepoke for any topic and item, with the data being an
executable J sentence
● the server executes the sentence, and saves the result with the topic and item
● the client issues a ddereq command for the topic and item
● the server responds with the corresponding result
● the client can issue a ddepoke and ddereq repeatedly. If the ddepoke data is
exit
the J server program is exited. If the data is off the J server task is terminated.

As before, load 2 copies of J and minimize Program Manager. In the server copy of
J, enter:
 load 'system\packages\dde\server2.ijs'

then minimize the server window.

To initialize the client copy of J:
 load'system\examples\dde\client1.ijs'

Use cmd to set expressions:
 cmd 'i.4 5'
0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19

cmd sends its argument using ddepoke, and retrieves the result using ddereq:
cmd=: 3 : 0
wd 'ddepoke jserver top item *',y.
wd 'ddereq jserver top item'
)

Try other expressions, then to close the server, send:
 cmd 'off'

(The server does not respond.)

Note that the hot link protocol is simpler than the cold link protocol, since once it
is set up, the client need only issue one command to send a sentence and retrieve
the result. Also, the ddereq command used with the cold link may time out if the
server is not ready to send the data item requested.

p198

Calling DLLs p199
cd Domain Error & GetLastError p200
Memory Management p201
Calling J.DLL p202

p199

Calling Procedures in Dynamic-link Libraries (DLLs)

Calling procedures incorrectly can crash your system or corrupt memory.

To learn how to call DLLs, run Labs 'DLL: Writing and Using a DLL' and 'DLL:
Using System DLLs (file examples)'.

A DLL is a file (usually with extension .dll) that contains procedures. J can call
DLL procedures.

Win32 API system services are provided by system DLLs such as kernel32. You
can also use 3rd party DLLs or DLLs you write yourself.

Script main\dll.ijs (load 'dll') defines utilities for working with DLLs.

Verb cd calls a procedure. The form is:
 'filename procedure [+][%] declaration' cd parameters.

● filename is the name of the DLL. If a suffix is not provided, .dll is used. The
search path for finding a filename that is not fully qualified involves many
directories and is different on each platform. Except for system DLLs, a fully
qualified filename is recommended.

● procedure is the case-sensitive name of the procedure to call. A procedure name
that is a number is specified by # followed by digits. Win32 API procedures that
take string parameters are documented under a name, but are implemented under
the name with an A suffix for 8 bit characters and a W suffix for 16 bit characters.
For example, CreateFile is documented, but the procedures you call are
CreateFileA or CreateFileW. A procedure returns a scalar result and takes 0 or
more parameters. Parameters are passed by value or by a pointer to values. Pointer
parameters can be read and set.

● + option selects the alternate calling convention. The calling convention is the
rules for how the result and parameters are passed between the caller and the
procedure. Using the wrong one can crash or corrupt memory. J supports two:
__stdcall and __cdecl. __stdcall is used by the Win32 API and most procedures.
__cdecl is the standard C calling convention and is used for some procedures.

__stdcall is the standard cd calling convention and __cdecl is the alternate.

● % option does an fpreset (floating-point state reset) after the call. Some
procedures leave floating-point in an invalid state that causes a crash at some later
time. DLL's built with Delphi likely have this problem. If J crashes on simple
expressions after calling a procedure, try adding the % option.

● declaration is a set of blank delimited codes describing result and parameter
types:

c

character (1 byte)

s

short integer (2 byte)

i

integer (4 byte)

f

short floating-point (4 byte)

d

floating point (8 byte)

j

complex (16 byte) (not as result)

*

pointer

n

no result (result, if any, is ignored and 0 is returned)

The first declaration type describes the result and the remaining ones describe the
parameters in the cd right argument.

The c i d and j types are native J types and the s and f types are not. Scalar s and f
values are handled as i and d types. Pointer s and f parameters are handled as
character data.

The * type is a pointer to values. A * can be followed by c s i f d or j to indicate the
type of values. The DLL can read from this memory or write to it.

A scalar type (c s i f d j) must have a scalar parameter. A pointer type (* *c *s *i *f
*d *j) must have either a non-scalar parameter of the right type, or a boxed scalar
integer that is a memory address.

J boolean data is stored as 1 byte values. Boolean parameters are automatically
converted to integers.

The mema result (Memory Management p201) can be used as a * type parameter.
A memory address parameter is a boxed scalar. The NULL pointer is <0 .

The cd right argument is a list of enclosed parameters. An empty vector is treated
as 0 parameters and a scalar is treated as a single parameter.

The cd result is the procedure result catenated with its possibly modified right
argument.

For example, the Win32 API procedure GetProfileString in kernel32 gets the value
of the windows/device keyword.
 a=: 'kernel32 GetProfileStringA s *c *c *c *c s'
 b=: 'windows';'device'; 'default'; (32$'z');32
 a cd b
+--+-------+------+-------+--------------------------------+--+
|31|windows|device|default|HP LaserJet 4P/4MP,HPPCL5MS,LPT |32|
+--+-------+------+-------+--------------------------------+--+

The first type s indicates that the procedure returns a short integer. The first pointer
names a section. The second pointer names a keyword. The third pointer is the

default if the keyword is not found. The fourth parameter is where the keyword
text is put. The fifth parameter is the length of the fourth parameter.

If the GetProfileStringA declaration was wrong, say a d result instead of s, it would
crash your system. If the fifth parameter was 64 and the keyword was longer than
the 32 characters allocated by the fourth parameter, the extra data would overwrite
memory.

Procedures are usually documented with a C prototype or a Visual Basic
declaration. The C prototype and VB declaration for GetProfileString are:
DWORD GetProfileString(
LPCTSTR lpAppName, // address of section name
LPCTSTR lpKeyName, // address of key name
LPCTSTR lpDefault, // address of default string
LPTSTR lpReturnedString,// address of destination buffer
DWORD nSize // size of destination buffer
);

Declare Function GetProfileString Lib "kernel32"
Alias GetProfileStringA"
ByVal lpAppName As String,
ByVal lpKeyName As String,
ByVal lpDefault As String,
ByVal lpReturnedString As String,
ByVal nSize As Long)
As Long

J declaration types and some corresponding C and VB types are:

J

C/Visual Basic

c

char, byte, bool

s

short int, word, %

i

int, long int, dword, &

f

float, !

d

double, #

*

char*, int*, LP..., void*, $

n

void

cdf'' unloads all DLLs that cd has loaded. A loaded DLL is in use and attempts
to modify it will fail. If you are developing and testing a DLL you must run cdf''
before you can build and save a new version.

Release J4.02 introduced some incompatible changes:
1. scalar error results are now domain errors (cder'' provides details)
2. *m no longer supported
3. fpreset no longer always done (explicit % flag)
4. * memory address must be boxed scalar, not a scalar

p200

cd Domain Error and GetLastError Information

cder'' returns information about a cd domain error:
0 0 - no error
1 0 - file not found
2 0 - procedure not found
3 0 - too many DLLs loaded (max 20)
4 0 - parameter count doesn't match declarations
5 x - declaration x invalid
6 x - parameter x type doesn't match declaration

cderx'' returns GetLastError and text from the last cd.

p201

Memory Management

Some DLL procedures return pointers to memory or require parameters of pointers
to memory that cannot be provided by referencing a J array. The following verbs,
defined in main\dll.ijs, are provided to allocate, free, read and write memory:
mema allocate bytes of memory

memr read bytes from memory (as type)

memw write bytes to memory (from type)

memf free memory allocated by mema

mema allocates memory. The result is an integer memory address. A 0 result
indicates the allocation failed. For example:
 address=: mema length

memf frees memory. The argument could be a mema result or pointer returned by a
procedure. A 0 result is success and a 1 is failure.
 memf address

memr reads data from memory. A _1 count reads up to the first 0 (read a C string).
 data=: memr address,byte_offset,count [,type]

memw writes data to memory. If type is char, count can be 1 greater than the length
of the string left argument, in which case a 0 is appended (writing a C string).
 data memw address,byte_offset,count [,type]

memr and memw type parameter is 2 4 8 or 16 for char integer float or complex. The
default is 2. The count parameter is a count of elements of the type.

p202

Calling J.DLL

The J DLL can be called by any program that can call DLLs.

Since J.DLL is itself used by the J session, you need to make a copy of J.DLL first
before calling it from J; for example, copy it to file JJ.DLL.

File system\examples\data\jdll.h. gives C prototypes for J procedures.

Script system\examples\dll\jdll.ijs. gives examples of calling the J DLL from J.

Use procedure JDo to execute a sentence. For example, the following writes text
abc to file t1.txt:
 load 'dll files'
 cmd=: '''abc'' 1!:2 <''t1.txt''' NB. example sentence
 'jj.dll JDo i *c' cd <cmd NB. send to J DLL
+-+--------------------+
|0|'abc' 1!:2 <'t1.txt'|
+-+--------------------+
fread 't1.txt' NB. check file was
written
abc

Use procedure JGetM to retrieve a J variable. The cd right argument is a name,
followed by 4 pointers, which will correspond to the result datatype, rank, pointer
to shape, and pointer to values. For example:
 'jj.dll JDo i *c' cd <'ABC=: i.5' NB. define ABC
+-+---------+
|0|ABC=: i.5|
+-+---------+

 'jj.dll JGetM i *c *i *i *i *i' cd 'ABC';4#<,0
+-+---+-+-+--------+--------+
|0|ABC|4|1|13496196|13496500|
+-+---+-+-+--------+--------+

The 6 items in the result are: error code (0=success), name, datatype (4=integer),
rank(1), pointer to shape, and pointer to values.

The pointers refer to memory addresses within the J DLL. You should reference
their values before calling the J DLL again, as further calls may invalidate the
memory addresses. Use function memr to read memory and and ic to convert to J
integers. For example, the shape is:
 _2 ic memr 13496196 0 4
5

Once the result datatype and shape are known, you can read the values, again using
memr, and convert to a J variable.

File system\examples\dll\jdll.ijs defines functions that perform the necessary
conversions. For example:
 load 'system\examples\dll\jdll.ijs'
 jdo 'ABC=: i.3 4'
+-+-----------+
|0|ABC=: i.3 4|
+-+-----------+

 jget 'ABC'
0 1 2 3
4 5 6 7
8 9 10 11

 jcmd 'q: 123456'
2 2 2 2 2 2 3 643

p203

ODBC

Overview p204
The SQL Language p205
Installing ODBC p206
Connection & Statement Handles p207
Data Driver p208
Listing the Data Sources p209
ODBC error messages p210
Data Source Connection p211
Selecting & reading data p212
Updating a record p213
Creating a new file p214
SQL Statements p215
SQL Elements p216
SQL Reserved Words p217

p204

ODBC Data Driver Overview

The Open Database Connectivity (ODBC) interface allows applications to access
data from database management systems (DBMS), using Structured Query
Language (SQL) expressions.

J Win9x/NT only supports 32-bit ODBC drivers.

The J/ODBC interface uses the Data Driver verbs, defined in script dd.ijs.

The processing required by the application is essentially independent of the
DBMS. For example, if you have written programs to access dBase files using
ODBC, then you can use similar programs to access Paradox, or indeed any other
DBMS.

The application, and the driver programs that access the DBMS, are physically
separate. To access a DBMS, you need only ensure a driver for that DBMS is
available. There are ODBC drivers for virtually all commercial DBMS, and J itself
is distributed with drivers for several popular systems, including Access, Btrieve,
dBase, Excel, FoxPro, Oracle, Paradox and SQL Server.

Note that the DBMS need not itself support SQL, for example dBase does not. All
that matters is that the ODBC DBMS driver is available.

An ODBC DBMS driver, together with information on where its datasets are
stored, is typically referred to as a data source.

Between the application and the data there are 3 layers, though they appear to the
application as a single unit:

J application

Data Driver

ODBC Manager

Data Source Data Source Data Source

Data Data Data

The application sends requests to the Data Driver (using the verbs defined in script
dd.ijs), which converts them into a standard format and sends them to the ODBC
Manager. The ODBC Manager then sends them to the appropriate Data Source,
and is also responsible for ensuring the required drivers are loaded. The Data
Source drivers then handle the data access.

p205

The SQL language

SQL, or Structured Query Language, is a widely accepted protocol used for data
access. It is an ANSI standard with SQL-92 being the most recent specification. A
summary of the language appears in Appendix B.

The language is defined with various levels, listed in the appendix as minimum,
core and extended. All SQL servers support at least the minimum level, some may
also support core or extended levels, or extensions of their own. ODBC DBMS
drivers are distributed with Help files that list the functionality of the driver, plus
other useful information - when you install the drivers you should also print out the
Help files for reference.

p206

Installing ODBC

ODBC must be installed on your system. An easy way to check for this is to look
for the 32bit ODBC icon in Control Panel. ODBC is installed automatically with
many Microsoft applications.

If you do not have ODBC installed, you may be able to obtain ODBC drivers from
the Microsoft web site www.microsoft.com. Search for the ODBC FAQ (at the
time of writing this is at www.microsoft.com/data/odbc/faq_odbc.htm).

To follow the examples in this chapter, you should install the dBase driver, even if
you do not intend to use it later. When you install this driver, or any other driver,
you will be prompted to enter the data source name. The data source indicates the
DBMS driver and where the data files are stored. Note that it is not the name of a
specific data file as may be imagined.

The examples here use the dBase driver, and files stored in J subdirectory
examples\data, and the data source name used is jdata. To set this up, in Program
Manager, select the ODBC icon in Control Panel. Use Add or Setup to create a
panel as shown:

Note that you should at least have one data source name as shown above, but you
can set up multiple data source names, using the same driver but typically with a
different directory.

Although the data source name specifies a directory, this is in fact used by the
dBase driver as the default directory. You can override this default either by
specifying another directory when you connect to the dBase driver, or afterwards
when you specify a file with its full pathname. However, note this capability is
provided by extensions to ODBC in the dBase driver, which are not necessarily
found in other ODBC drivers.

p207

Connection and Statement Handles

You start accessing a database by first opening a connection to the data source. The
result is a number, called the connection handle. Subsequent requests to the data
source use this connection handle.

When you send a request to select some data, the result is also a number, called the
statement handle. Again, subsequent requests that reference this selection use the
statement handle. There may be more than one statement handle associated with a
connection handle. You may also have a statement handle not associated with a
connection handle, where the request made was not specific to a particular data
file.

In both cases, you should close the handle to free up resources when you are
finished with it. For example, to read records from a file, you typically:

● open a connection to the data source, returning a connection handle
● make a selection on a specific file using the connection handle, returning a
statement handle
● read the records, using the statement handle
● close the statement handle
● close the connection handle

You must always close a connection handle explicitly. However, a statement
handle may be closed if you have fetched all records selected - see the discussion
of ddfet below. In any case, it is good practice to always close the statement
handle explicitly, as there is no harm done if you try to close a handle that had
already been closed.

p208

Data Driver

ODBC access is provided by the Data Driver verbs, that are defined in script dd.ijs.
First load this file:
 load 'dd'

The Data Driver verbs may be summarized as follows:

Here, ch refers to a connection handle, and sh a statement handle. Note that SQL
commands are not case-sensitive.

ddcnm r=. ddcnm sh
Column names of selected data

ddcnt r=. ddcnt '' (available in J Win95 only)
Rowcount of last ddsql command

ddcol r=. 'tdata' ddcol ch
Column names and atrributes in a database

ddcom r=. ddcom ch
Commit a transaction (after a ddtrn)

ddcon ch=. ddcon 'dsn=jdata'
Connect to ODBC data source name. The result is a connection handle. The
argument can set several parameters, separated by semicolons. Some are supported
by all databases, and others have a meaning only for specific databases. Parameters
recognized by most database systems are:

dsn

ODBC data source name

dlg

dlg=1 prompts for a connection string with a dialog box with entries for User Id
and Password (not supported by the distributed dBase driver)

uid

user name

pwd

user password

modifysql

set to 1 (the default) to use ODBC SQL grammer. Set to 0 to use native database
grammer.

rereadafterupdate

set to 1 to force a re-read of a record after an update. This is useful for retrieving
auto-updated values such as timestamps.

rereadafterinsert

set to 1 to force a re-read of a record after an insert
For example:
ch=. ddcon'dsn=mydata;uid=george;pwd=sesame'

dddis r=. dddis ch
Closes connection handle (disconnects from the data source)

ddend r=. ddend sh
Closes statement handle

dderr r=. dderr ''
Return error message on last command. An error message is given when a data
driver verb returns _1.

ddfet r=. ddfet sh,n
Fetch next records from selected data. Note that after you have read a record, the
next fetch will not read it again. If you need to read it again, you must select it

again. For example:

r=. ddfet sh

fetch next record (same as ddfet sh,1)

r=. ddfet sh,5

fetch next 5 records

r=. ddfet sh,_1

fetch all remaining records.

If you fetch all remaining records using ddfet sh,_1, or if your fetch returns
fewer records that you requested (i.e. the fetch reads past the end of the file), then
ddfet closes the statement handle. Otherwise, the statement handle remains open,
and you should explicitly close it if you have finished reading the file.

ddfch r=. ddfch sh,n (available in J Win95 only)
As ddfet, but returns data in columns

ddrbk r=. ddrbk ch
Discards (rollbacks) a transaction (after a ddtrn)

ddsel sh=. 'select * from tdata' ddsel ch
Select data from a database, returning a statement handle

ddsql r=. 'create table mydata' ddsql ch
Execute an SQL statement

ddsrc r=. ddsrc ''
In J Win95:
Data source names available from the ODBC manager.
These names can be used as the dsn= argument to ddcon.

In J Win31:
a statement handle that can be used with ddfet to return data source names.

ddtbl sh=. ddtbl ch
Returns a statement handle for tables in the data source. Some ODBC drivers,
including the distributed dBase driver, do not support this service and the result
will be empty.

ddtrn r=. ddtrn ch
Begin a transaction on a connection. Subsequent actions are not committed to the
database until a ddcom is done. Actions since the ddtrn can be discarded by doing
a ddrbk (rollback).

p209

Listing the Data Sources

The list of data sources that are specified in the ODBC Control Panel dialog box
can be retrieved under program control. The verb ddsrc requests this information.
In J Win95, the result is the list of data sources; in J Win31, the result is a
statement handle that may be used with ddfet to return the list of data sources.
 ddsrc''
+----------------------+------------------------------------+
|MS Access 7.0 Database|Microsoft Access Driver (*.mdb) |
+----------------------+------------------------------------+
|Excel Files |Microsoft Excel Driver (*.xls) |
+----------------------+------------------------------------+
|FoxPro Files |Microsoft FoxPro Driver (*.dbf) |
+----------------------+------------------------------------+
|Text Files |Microsoft Text Driver (*.txt; *.csv)|
+----------------------+------------------------------------+
|dBASE Files |Microsoft dBase Driver (*.dbf) |
+----------------------+------------------------------------+
|jdata |Microsoft dBase Driver (*.dbf) |
+----------------------+------------------------------------+

The result will depend on the drivers you have set up. Note that you should see an
entry for jdata, which is the data source name you assigned to the examples\data
subdirectory.

The result has 2 columns: the data source name, and a description of the driver.

p210

ODBC error messages

The data driver verbs that open and close connections, and send SQL statements,
all return a number. Typically, if the number is positive, it is a handle. If the
number is 0, it means the operation completed successfully (but the function
returns no handle). If the number is _1, it means there was some error. You can get
more information about the errror using dderr. For example, try closing a non-
existent statement handle:
 ddend 42
_1

 dderr''
ISI04 Bad statement handle

p211

Connecting to a data source

The ddcon command connects to a data source returning a connection handle,
using the form:
 [ch=. ddcon 'dsn=jdata'
1

We have now connected to a data source, but not yet to a data file. The file we will
use is tdata, and the next statement uses ddcol to retrieve the column names and
attributes for this file:
 $cols=. 'tdata' ddcol ch
7 13

 3 4 7 {"1 cols
+------+----+---------+
|Column|Type|Type_Name|
+------+----+---------+
|NAME |1 |CHAR |
+------+----+---------+
|SEX |1 |CHAR |
+------+----+---------+
|DEPT |1 |CHAR |
+------+----+---------+
...

p212

Selecting and reading data

To read data from a file, you first select the data you want to read using the ddsel
verb, which returns a statement handle. You then use ddfet or ddfch to fetch the
records.

The left argument of ddsel is a SQL selection expression. Here are typical
examples:

Select all records (* means all columns):
 sh=. 'select * from tdata' ddsel ch

Fetch the first 3 records:
 ddfet sh,3
+--------------+-+----+---------+---------+-----+
|MACDONALD B |F|D101|1.95906e7|1.97805e7|32591|
+--------------+-+----+---------+---------+-----+
|GENEREAUX S |F|D103|1.94503e7|1.96602e7|95415|
+--------------+-+----+---------+---------+-----+
|KOEBEL R |M|D101|1.93711e7|1.98009e7|63374|
+--------------+-+----+---------+---------+-----+

Fetch the next record:
 ddfet sh
+--------------+-+----+---------+---------+-----+
|KELLER J |F|D101|1.95105e7|1.97404e7|48898|
+--------------+-+----+---------+---------+-----+

Close the statement handle:
 ddend sh

You should always close the statement handle when you no longer need it.

However to avoid repetition, the remaining examples do not show this.

Select males with salary exceeding 40000:
 sel=.'select * from tdata where sex=''M'' and salary >= 40000'
 sh=. sel ddsel ch
 ddfet sh,4
+--------------+-+----+---------+---------+------+
|KOEBEL R |M|D101|1.93711e7|1.98009e7|63374 |
+--------------+-+----+---------+---------+------+
|NEWTON R |M|D108|1.95601e7|1.97902e7|73368 |
+--------------+-+----+---------+---------+------+
|DINGEE S |M|D103|1.9641e7 |1.98309e7|46877 |
+--------------+-+----+---------+---------+------+
|ROGERSON G |M|D101|1.95712e7|1.98302e7|108777|
+--------------+-+----+---------+---------+------+

Select only the name, department and salary fields, where date of birth is before
1950:
 sel=.'select name,dept,salary from tdata where dob<19500000'

Fetch the first such record:
 ddfet (sel ddsel 1),1
+--------------+----+-----+
|GENEREAUX S |D103|95415|
+--------------+----+-----+

Use ddfch to return data in columns:
 [a=. ddfch 1005,_1
+--------------+-+----+---------+---------+-----+
MACDONALD B	F	D101	1.95906e7	1.97805e7	32591
GORDON E	F	D103	1.95202e7	1.97908e7	29960
BAUERLEIN J	F	D103	1.96204e7	1.98409e7	33668
CHESHER D	F	D103	1.9561e7	1.98408e7	35184
+--------------+-+----+---------+---------+-----+

 (;:'name sex dept dob doh salary')=. a
salary
32591

29960
33668
35184

p213

Updating a record

To update a record, you process an SQL update statement. Here we update the
salary field for ABBOTT K.

First read the record to see the current value (the salary is 50817):
 sel=. 'select * from tdata where name=''ABBOTT K'''
 ddfet sel ddsel ch
+--------------+-+----+--------+---------+-----+
|ABBOTT K |M|D103|1.9631e7|1.98309e7|50817|
+--------------+-+----+--------+---------+-----+

Next we process an update statement:
 us=. 'update tdata set salary=45000 where name=''ABBOTT K'''
 us ddsql ch

Finally, we read the record again, to ensure the update was successful:
 sel=. 'select * from tdata where name=''ABBOTT K'''
 ddfet sel ddsel ch
+--------------+-+----+--------+---------+-----+
|ABBOTT K |M|D101|1.9631e7|1.98309e7|45000|
+--------------+-+----+--------+---------+-----+

p214

Creating a new file

To create a new file, use the SQL create command, with a list of the column names
and attributes in the new data set. Here we create file test, with columns for name
and salary.

First, drop test in case it already exists (the _1 result means the table was not
found):
 'drop table test' ddsql ch
_1

Now create the new file:
 'create table test (name char(12),sal numeric)' ddsql ch
0

Add a record:
 t=. 'insert into test (name,sal) values (''Neumann,E'',40000)'
 t ddsql ch
0

Add another record:
 t=. 'insert into test (name,sal) values (''James, P'',42000)'
 t ddsql ch
0

Now read the file:
 ddfet _1,~ 'select * from test' ddsel ch
+------------+-----+
|Neumann, E |40000|
+------------+-----+
|James, P |42000|
+------------+-----

p215

SQL Statements

The following SQL statements define the base ODBC SQL grammar.

Statement Min Core Ext

alter-table-statement ::=
ALTER TABLE base-table-name
{ADD column-identifier data-type
|ADD (column-identifier data-type [, column-identifier data-
type]...) }

 X

create-index-statement ::=
CREATE [UNIQUE] INDEX index-name
ON base-table-name
(column-identifier [ASC | DESC]
[, column-identifier [ASC | DESC]]...)

 X

create-table-statement ::=
CREATE TABLE base-table-name-1
(column-element [, column-element] ...)
column-element ::= column-definition | table-constraint-
definition
column-definition ::=
column-identifier data-type
DEFAULT default-value
[column-constraint-definition [,column-constraint-definition]...]
column-constraint-definition ::=
NOT NULL
| UNIQUE | PRIMARY KEY)
| REFERENCES base-table-name-2 referenced-columns
| CHECK (search-condition)
default-value ::= literal | NULL | USER
table-constraint-definition ::=
UNIQUE (column-identifier [, column-identifier] ...)
| PRIMARY KEY (column-identifier
[, column-identifier] ...)
| CHECK (search-condition)

X

| FOREIGN KEY referencing-columns REFERENCES
base-table-name-2 referenced-columns

create-view-statement ::=
CREATE VIEW viewed-table-name
[(column-identifier [, column-identifier]...)] AS
query-specification

 X

delete-statement-positioned ::=
DELETE FROM table-name WHERE CURRENT OF cursor-
name

 X

X

(v2)X

delete-statement-searched ::=
DELETE FROM table-name [WHERE search-condition]

X

drop-index-statement ::=
DROP INDEX index-name

 X

drop-table-statement ::=
DROP TABLE base-table-name
[CASCADE | RESTRICT]

X

drop-view-statement ::=
DROP VIEW viewed-table-name
[CASCADE | RESTRICT]

 X

grant-statement ::=
GRANT {ALL | grant-privilege [, grant-privilege]... }
ON table-name
TO {PUBLIC | user-name [, user-name]... }
grant-privilege ::=
DELETE
| INSERT
| SELECT
| UPDATE [(column-identifier [, column-identifier]...)]
| REFERENCES [(column-identifier
[, column-identifier]...)]

 X

insert-statement ::=
INSERT INTO table-name [(column-identifier [, column-
identifier]...)]
VALUES (insert-value[,insert-value]...)

X

insert-statement ::=
INSERT INTO table-name [(column-identifier [, column-
identifier]...)]
{ query-specification | VALUES (insert-value [, insert-value]...}

 X

ODBC-procedure-extension ::=
ODBC-std-esc-initiator [?=]call procedure ODBC-std-esc-
terminator
| ODBC-ext-esc-initiator [?=]call procedure ODBC-ext-esc-
terminator

 X

revoke-statement ::=
REVOKE {ALL | revoke-privilege [, revoke-privilege]... }
ON table-name
FROM {PUBLIC | user-name [, user-name]... }
[CASCADE | RESTRICT]
revoke-privilege ::=
DELETE
| INSERT
| SELECT
| UPDATE | REFERENCES

 X

select-statement ::=
SELECT [ALL | DISTINCT] select-list
FROM table-reference-list[
[WHERE search-condition]
[order-by-clause]

X

select-statement ::=
SELECT [ALL | DISTINCT] select-list
FROM table-reference-list
[WHERE search-condition]
[GROUP BY column-name [, column-name]...]
[HAVING search-condition]
[UNION select-statement]...
[order-by-clause]

 X

select-for-update-statement ::=
SELECT [ALL | DISTINCT] select-list
FROM table-reference-list
[WHERE search-condition]
FOR UPDATE OF [column-name [, column-name]...]

 X

(v1)

X

(v2)

statement ::= create-table-statement
| delete-statement-searched | drop-table-statement
| insert-statement | select-statement
| update-statement-searched

X

statement ::= alter-table-statement
| create-index-statement
| create-table-statement
| create-view-statement
| delete-statement-positioned
| delete-statement-searched
| drop-index-statement
| drop-table-statement
| drop-view-statement
| grant-statement
| insert-statement
| revoke-statement
| select-statement
| select-for-update-statement
| update-statement-positioned
| update-statement-searched

 X

statement ::= alter-table-statement
| create-index-statement
| create-table-statement
| create-view-statement
| delete-statement-positioned
| delete-statement-searched
| drop-index-statement
| drop-table-statement
| drop-view-statement
| grant-statement
| insert-statement
| ODBC-procedure-extension
| revoke-statement
| select-statement
| select-for-update-statement
| statement-list
| update-statement-positioned
| update-statement-searched

 X

statement-list ::= statement | statement;statement-list X

update-statement-positioned ::=
UPDATE table-name
SET column-identifier = {expression | NULL}
[, column-identifier = {expression | NULL}]...
WHERE CURRENT OF cursor-name

 X

(v1)

X

(v2)

update-statement-searched
UPDATE table-name
SET column-identifier = {expression | NULL }
[, column-identifier = {expression | NULL}]...
[WHERE search-condition]

X

p216

Elements Used in SQL Statements

The following elements are used in the SQL statements listed previously .

Element

Min

Core

Ext

approximate-numeric-literal ::= mantissaEexponent
mantissa ::= exact-numeric-literal
exponent ::= [+|-] unsigned-integer

X

approximate-numeric-type ::=
FLOAT
| DOUBLE PRECISION
| REAL

X

argument-list ::= expression | expression, argument-list

X

base-table-identifier ::= user-defined-name

X

base-table-name ::= base-table-identifier

X

base-table-name ::= [user-name.]base-table-identifier

X

between-predicate ::= expression [NOT] BETWEEN expression AND expression

X

binary-literal ::= {implementation defined}

X

binary-type ::= BINARY (length)
| VARBINARY (length)
| LONG VARBINARY·

X

character ::= {any character in the implementor's character set}

X

character-string-literal :: = '{character}...'

X

character-string-type ::=
CHARACTER(length)
| CHAR(length)

X

character-string-type ::=
CHARACTER(length)
| CHAR(length)
| CHARACTER VARYING(length)
| VARCHAR(length)

X

character-string-type ::=
CHARACTER(length)
| CHAR(length)
| CHARACTER VARYING(length)
| VARCHAR(length)

| LONG VARCHAR

X

column-identifier ::= user-defined-name

X

column-name ::= [table-name.]column-identifier

X

column-name ::= [{table-name | correlation-name}.]column-identifier

X

comparison-operator ::= < | > | <= | >= | = | <>

X

comparison-predicate ::=
expression comparison-operator expression

X

comparison-predicate ::= expression comparison-operator

{expression | (sub-query)}

X

correlation-name ::= user-defined-name

X

cursor-name ::= user-defined-name

X

data-type ::= character-string-type

X

data-type ::=
character-string-type
| exact-numeric-type
| approximate-numeric-type

X

data-type ::=
character-string-type
| exact-numeric-type
| approximate-numeric-type
| binary-type

| date-type
| time-type
| timestamp-type

X

date-literal ::= 'date-value'

X

date-separator ::= -

X

date-type ::= DATE

X

date-value ::=
years-value date-separator months-value date-separator days-value

X

days-value ::= digit digit·

X

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

X

dynamic-parameter ::= ?

X

exact-numeric-literal ::=
[+|-] { unsigned-integer [.unsigned-integer]
| unsigned-integer.
| .unsigned-integer }

X

exact-numeric-type ::= DECIMAL(precision,scale)
| NUMERIC(precision,scale) | SMALLINT | INTEGER

X

exact-numeric-type ::= DECIMAL(precision,scale)
| NUMERIC(precision,scale) | BIT | SMALLINT | INTEGER
|BIGINT

X

exists-predicate ::= EXISTS (sub-query)

X

expression ::= term | expression {+|-} term
term ::= factor | term {*|/} factor
factor ::= [+|-]primary
primary ::= column-name
| dynamic-parameter
| literal
(continued)
| (expression)
primary ::= column-name
| dynamic-parameter
| literal
| set-function-reference
| USER
| (expression)
primary ::= column-name
| dynamic-parameter
| literal
| ODBC-scalar-function-extension
| set-function-reference
| USER
| (expression)

X

X

X

hours-value ::= digit digit

X

index-identifier ::= user-defined-name

X

index-name ::= [index-qualifier.]index-identifier

X

Index-qualifier ::= user-defined-name

X

in-predicate ::=
expression [NOT] IN {(value {, value}...) | (sub-query)}
value ::= literal | USER | dynamic-parameter

X

p217

SQL Reserved Keywords

The following words are reserved for use in ODBC function calls. These words do
not constrain the minimum SQL grammar; however, to ensure compatibility with
drivers that support the core SQL grammar, applications should avoid using any of
these keywords.
ABSOLUTE DECLARE INTEGER REVOKE
ADA DEFERRABLE INTERSECT RIGHT
ADD DEFERRED INTERVAL ROLLBACK
ALL DELETE INTO ROWS
ALLOCATE DESC IS SCHEMA
ALTER DESCRIBE ISOLATION SCROLL
AND DESCRIPTOR JOIN SECOND
ANY DIAGNOSTICS KEY SECTION
ARE DICTIONARY LANGUAGE SELECT
AS DISCONNECT LAST SEQUENCE
ASC DISPLACEMENT LEFT SET
ASSERTION DISTINCT LEVEL SIZE
AT DOMAIN LIKE SMALLINT
AUTHORIZATION DOUBLE LOCAL SOME
AVG DROP LOWER SQL
BEGIN ELSE MATCH SQLCA
BETWEEN END MAX SQLCODE
BIT END-EXEC MIN SQLERROR
BIT_LENGTH ESCAPE MINUTE SQLSTATE
BY EXCEPT MODULE SQLWARNING
CASCADE EXCEPTION MONTH SUBSTRING
CASCADED EXEC MUMPS SUM
CASE EXECUTE NAMES SYSTEM
CAST EXISTS NATIONAL TABLE
CATALOG EXTERNAL NCHAR TEMPORARY
CHAR EXTRACT NEXT THEN
CHAR_LENGTH FALSE NONE TIME
CHARACTER FETCH NOT TIMESTAMP
CHARACTER_LENGTH FIRST
NULL TIMEZONE_HOUR
CHECK FLOAT
NULLIF TIMEZONE_MINUTE
CLOSE FOR NUMERIC TO
COALESCE FOREIGN OCTET_LENGTH TRANSACTION
COBOL FORTRAN OF TRANSLATE

COLLATE FOUND OFF TRANSLATION
COLLATION FROM ON TRUE
COLUMN FULL ONLY UNION
COMMIT GET OPEN UNIQUE
CONNECT GLOBAL OPTION UNKNOWN
CONNECTION GO OR UPDATE
CONSTRAINT GOTO ORDER UPPER
CONSTRAINTS GRANT OUTER USAGE
CONTINUE GROUP OUTPUT USER
CONVERT HAVING OVERLAPS USING
CORRESPONDING HOUR PARTIAL VALUE
COUNT IDENTITY PASCAL VALUES
CREATE IGNORE PLI VARCHAR
CURRENT IMMEDIATE POSITION VARYING
CURRENT_DATE IN PRECISION VIEW
CURRENT_TIME INCLUDE PREPARE WHEN
CURRENT_TIMESTAM INDEX PRESERVE WHENEVER
CURSOR INDICATOR PRIMARY WHERE
DATE INITIALLY PRIOR WITH
DAY INNER PRIVILEGES WORK
DEALLOCATE INPUT PROCEDURE YEAR
DEC INSENSITIVE PUBLIC
DECIMAL INSERT RESTRICT

p218

OLE & OCX

Overview p219
J OLE Automation Server p220
J OLE/OCX Client p221
Examples p222
Tutorial: J OLE Server for Excel p223
Tutorial: J OLE Client to Excel p224

p219

OLE & OCX Overview

OLE allows client programs to access server programs, enabling integration
between a variety of software components. All OLE servers are usable by all OLE
clients.

An OCX control, also known as an ActiveX control, or Microsoft Custom Control,
is a special form of OLE control. The main difference is that OCX controls cause
events, and are in-process server objects (DLL) whereas OLE controls are local-
server objects (EXE).

Both OLE and OCX controls are application packages that can be accessed in a
simple and consistent way from other Windows applications.

J Win95/NT supports OLE and OCX, enabling J to be used both as a calculation
server and as a client for other Windows software such as Visual Basic and Excel.
In particular, OLE makes it very easy to add the power of J to other applications.

OLE
A key part of OLE is that a server can run in the same task, or as a separate task, or
even as a separate task on another network connected machine. A server in the
same task is an in-process server, a server in another task on the same machine is a
local server, and a server on another machine is a remote server. An in-process
server is the most efficient; the task can call the in-process server's routines almost
as efficiently as its own routines.

Servers provide functions, called methods, that can be accessed by a client. For
example, the J server provides a method Do which executes a J sentence; and a
method Get which retrieves the value of a variable. If a client runs the method
Do'x=. 3+5', this causes the sentence to be executed in the J server. The client
can then call method Get to retrieve the value of x.

OLE Automation is an interface supported by many clients and servers. OLE
Automation gives a client an interface to a server that mimics the server's end-user
interface. This allows a client to automate what would otherwise have to be done
manually by a user. Although this is useful, the real power comes when the server
has a general purpose programming environment that can be used to build complex

services that can be used from a client. OLE Automation then provides easy access
from the client to the full power of the server.

J supports OLE Automation as follows:

J OLE Automation server. There are two servers:
● JDLLServer is an in-process J server
● JEXEServer is a local J server

J OLE Automation client. This supports servers such as Excel, that provide an
OLE Automation interface to an application object that supports macro execution.

p220

J OLE Automation Server

There are two servers:

● JEXEServer is the full J development system and is intended for use in
developing applications. This is the same J.EXE file that provides the regular J
development system.

● JDLLServer is the J interpreter only, and is intended for runtime applications.
This is in file J.DLL.

An EXE server runs as a separate application from the client, i.e. is a local server.
JEXEServer provides the full J development system, which makes it easy to
develop and debug applications. As a developer, you have full access to both the
client and the J server environments.

A DLL is part of the client application and uses the same memory space, i.e. is an
in-process server. A client accesses DLL services almost as efficiently as it
accesses its own native services. The JDLLServer is not as convenient as
JEXEServer for development purposes, but it is very efficient and is ideal for
runtime applications.

Typically, you develop your application using JEXEServer, and run it using the
JDLLServer.

Note that JEXEServer and JDLLServer are 32bit servers and are designed for 32bit
clients. It may be possible to use JEXEServer from 16bit clients, but this is not
officially supported.

J.DLL can be called directly as an ordinary DLL, without using OLE. For more
information, see online help DLLs and Memory Management.

Clients
Any application with OLE Automation controller support, such as Visual Basic,
Delphi, Excel, or a Visual C++ application, can use JEXEServer and JDLLServer.
Also, any application that can call 32bit DLLs can access JDLLServer.

Registration
JEXEServer and JDLLServer must be registered with your system before they can
be used. To do so, you run JREG.EXE , which is stored in the same directory as
J.EXE, i.e. select Start/Run and enter:

c:\j401\jreg.exe (use the correct directory name)

If there are problems later when accessing the J servers it may be because they are
no longer properly registered. You can always run JREG.EXE to register the
servers again. In particular, you will need to do this if you move the J system files
to another directory, or if for some reason, the Registry is damaged and you have
to recover an old version.

Using the J OLE Automation servers
The steps are fairly straightforward, but may differ in minor ways from one client
to another.

You should be familiar with both the J system and the client before tackling them
in a client/server combination.

First load the client application and ensure it references the J servers. You need
only select the server you intend to use, but when experimenting, you should check
both:

Once the J servers are referenced, you can check the methods available, which are
as follows.

Break

interrupt J execution

Clear

erases all definitions in J

Do

execute a J sentence

ErrorText/ErrorTextM

get error text (run after a J error)

Get/GetB/GetM

get the value of a J variable

IsBusy

returns 0 if J is ready to execute, else an error code

Log

display (1) or discard (0) the J EXE session log

Quit

causes J EXE server to close when last object is released

Set/SetB/SetM

set a value to a J variable

Show

show (1) or hide (0) the J EXE server

Transpose

return array data transposed

For details, see file system\examples\data\jdll.h.

Note that methods Show and Log are ignored by a JDLLServer.

Once the J servers have been referenced, their methods become available for use
by the client. You should declare the J server as an object in the client, and can
then reference that object in order to access the J server methods.

p221

J OLE/OCX Client

J interacts with OLE and OCX controls using the Window Driver. You need a
parent window to display the control, and you then create and use a OLE/OCX
control in much the same way as for any other child control. You can use both
standard and OLE/OCX controls on the same form.wd 'cc tree
ocx:comctl.treectrl.1'
wd 'cc xl oleautomation:excel.application'

OCX and OLE controls are not distributed with J. Some OCX and OLE controls
are included with Windows, and with software such as Visual Basic. In some
cases, these are subsets or earlier versions of the full systems obtainable from the
original manufacturer. For serious use, we recommend you purchase the most
recent versions of the controls, which will then include full documentation and
support.

To see which OCX controls are available, create a new form using the Form
Editor, then click New for new control, and select class OCX.

OLE controls are not supported by the Form Editor and should be added directly in
the form_run verb. The names of the OLE controls that are available are not
visible from J.

An OCX or OLE control is a child on a form that contains an object named base.
This base object can contain other objects. For example the base object could
contain a font object. An object is identified by the child id and the name of the
object. The name temp refers to a contained object that has been returned by a
method or property. The temp object is automatically released and reset whenever
a new object is returned. The oleid command gives the temp object a name and
makes it permanent.

Each control has a specific list of methods, properties and events (for OCX
controls). The properties define the way the control is set up. The events are the
events that the OCX control can generate. When you create a control, you typically
set various properties, and register various events that you want to be notified of.
When the control is in use, you retrieve information from the control by either

reading the value of its properties, or by receiving event notifications.

wd commands for OLE/OCX controls

oledlg id

Run the OCX property dialog. The state can be saved with the olesave command.

oleenable id eventname [bool]

Enable/disable OCX event. You must enable an event in order to trigger an event
in J.

oleget id objectname property

Return value of a property. Objectname is base, temp, or a name set with oleid. If
the result is an object, it is set as the temp object. This allows a series of wd
commands that use the temp object to get the next object.

oleinfo id

Return information about events, methods, properties, and constants.

oleload id filename

Initialize properties from a file created by olesave. An oleload should only be
done once before it is shown.

olemethod id objectname method parameters....

Run a method.

, is an elided parameter. A wd parameter of , is the same as "", except it is treated as
an elided parameter where appropriate.

Some methods distinguish between a numeric parameter and a string. A simple
(not delimited) string that is an integer is treated as an integer. If you want 23 to be
treated as a string, use "23";.

If the result is an object, it is set as the temp object.

An object parameter is indicated by a simple parameter of the form:
object:formid.childid.objectname

A picture object parameter is indicated by a simple parameter of the form:
picture:filename

olesave id filename

Save properties in a file that can be used to initialize a control after it is created.

oleset id objectname property value

Set property value.

Objectnames
An OLE or OCX base object can contain other objects.

For example, many OCX controls contain a Font object that is returned by the font
property.

wd 'oleget ocx base font' get font object as temp

wd 'oleget ocx temp fontsize' get font size
8.5

wd 'oleget ocx temp fontname' get font name
Times New Roman

wd 'oleset ocx temp Times New Roman;oleset ocx temp fontsize 20'
set font

OCX Events
An OCX event is signalled as a button event. For example, form abc, OCX id
spin, signals sysevent abc_spin_button. The name sysocx is assigned the OCX
event name.

Example: Spinbutton Control
To illustrate these commands, we use the Outrider Systems SPIN32.OCX, a simple
control that is ideal for experimentation. We assume you have this control installed
on your system.

First try reading the OCX information (if this fails, you do not have the SpinButton
installed). This returns a text description of properties, methods and events:

load 'packages\ocx\ocxutil.js' load OCX utilities
ocxinfo 'spin.spinbutton'
NB. event: SpinDown
NB. prototype: void SpinDown ()
NB. help: Occurs when the user clicks one of the arrows...

NB. event: SpinUp

...

Next, load the spinbutton demo, as follows: load
'examples\ocx\misc\spin.js'

Click on the spinbutton to change the text field. Click on the About button to
display the about box from Outrider, and the Dialog button to view and change the
OCX properties.

Note that to see events from the spinbutton, you use the oleenable command
when initializing the form, i.e.
spin_run=: 3 : 0
wd SPIN
showpay''
wd 'oleenable sx spindown'
wd 'oleenable sx spinup'
wd 'pshow;'
)

The About button invokes the OCX's aboutbox method:
spin_about_button=: 3 : 0
wd 'olemethod sx base aboutbox'
)

The Dialog button invokes the oledlg command:
spin_dialog_button=: 3 : 0
wd 'oledlg sx'
)

A press of the spinbutton, invokes the spinbutton handler:spin_sx_button=: 3 :
0
if. sysocx-:'spinup' do.
 PAYNDX=: 4|>:PAYNDX
else.
 PAYNDX=: 4|<:PAYNDX
end.

showpay''
)

This handler checks the value of sysocx and adjusts the text field accordingly.

p222

Examples

Example: Graph control

File: examples\ocx\misc\graph.js has a simple example using Pinnacle's
GRAPH32.OCX control.

For a fuller example:load 'examples\ocx\graph\grafdemo.js'
Example: TreeView
This example assumes you have the TreeView OCX installed and assorted
bitmaps.

Run the script examples\ocx\misc\tree.js to create a treeview control. An imagelist
control is loaded with various bitmaps which are then used by the treeview control.

Example: Controlling Microsoft Word
It is possible to automate the word.basic object. This could be a useful way of
solving some printing problems. The following loads Word, and reads in the J
readme.wri file:load 'examples\ocx\misc\word.js'
Example: Excel OLE Automation

wd 'pc excel'

parent to hold ole child

wd 'cc x oleautomation:excel.application'

create excel.application object

wd 'oleset x base visible 1'

set base visible property to 1

wd 'oleget x workbooks'

get workbooks object as temp

wd 'oleid x workbooks'

temp to permanent as workbooks

wd 'olemethod x workbooks open foo.xls'

open workbook foo.xls

wd 'olemethod x workbooks add'

run workbooks add method add method returns temp as the new workbook object

wd 'oleget x temp name'

get workbook name

wd 'olemethod x base quit'

quit The excel.application object is defined in the system registry to create a new
instance (private copy) of excel. The excel.sheet object creates a new worksheet in
a shared excel.

Run the script and then run excel''. It is possible to access properties and methods
directly, as well as run macros. The getobject verb shows how to support some of
the simpler syntax of VB. Run excelquit'' to close excel.

p223

Tutorial: J OLE Server for Excel

This tutorial has been created with Excel 2002 and J501. Expect different behavior
with other versions!

It will help to have the Excel help file readily available.

Introduction
The purpose of OLE Automation is to allow a client program to run functions in a
server program, and the basic idea is pretty straightforward - simply load J from
Excel, then send it the required J functions for execution. In practice is it helpful to
create Excel macros that provide cover functions for the basic tasks such as loading
J, reading cells for transmission to J and so on. Thus you typically program with a
mixture of J functions and Excel macros.

Functions provided by an OLE Server are referred to as methods, see J OLE
Automation Server p220

In Excel, you can enter these method names in upper or lowercase. When you enter
names in Excel, it gives them its default capitalization. Here we use lowercase
throughout.

Troubleshooting
You are going to be working with both J and Excel sessions active. It will be
helpful to close down other applications to minimize screen clutter.

As you use OLE, commands sent from Excel may change the active focus to J. To
enter new commands in Excel, click on the Excel session to change the active
focus back to Excel.

Most of the time when things go wrong, you can simply shut down J and Excel and
start again. Sometimes, the J server has been loaded but is not visible. You can
check this by pressing Ctrl+Alt+Del simultaneously, which brings up the list of
current applications loaded. If necessary, select J and click End Task.

Sometimes when you edit Excel macros, Excel closes down J - it closes the OLE
Automation object which may in turn cause J to close. You will then need to re-

open the J OLE Automation object. If J has closed and you try to run an OLE
command, the error message is "Object variable not Set". This problem occurs only
while you are developing Excel macros, and should not occur when your
application is in use.

One of the "user-friendly" features of Excel is to change your entry in a cell if it
thinks it may be incorrect. For example, "i.5" gets changed into "I.5". To get
around this, enter more letters, then backspace and delete the extra entries, for
example, instead of "i.5' try entering "ii.5".

Tutorial
Start by unloading all applications, then loading Excel. Arrange the window so that
it covers only about half the screen. Open a new workbook if none is shown.

Bring up Visual Basic (Alt-F11 or Tools|Macro|Visual Basic Editor), and insert a
new module sheet (Insert|Module).

With the module sheet visible, select menu item Tools|References and check both J
DLL Server and J EXE Server, and click OK. In practice you need only check the
server that will be used.

In the module sheet, enter:

Public js As Object

Sub jopen()
Set js = CreateObject("jexeserver")
js.Quit
js.Do "0!:0<1!:45$0"
End Sub

The function jopen will be used to load the JEXEServer. Note that you can only
run this once - you will get an error at this point if you try to open the server twice.

In jopen:

The first statement declares the name js that will be used for the JEXEServer.

js.Quit ensures that when Excel is closed, the J server will automatically terminate.

js.Do "0!:0<1!:45$0" loads the standard profile.

Loading J
Next open up the Immediate window for experimentation (if not already open). To
do so, select menu item View|Immediate Window. You can enter a series of
commands in this Window - when you press Enter, Excel runs the command in the
line where the cursor is.

To load J, enter:

jopen

Experiment with show:

js.show 0

this hides the window

js.show 1

this shows it again

This means: run the show method of js, i.e. of the JEXEServer, with the given
argument.

The J OLE Automation Server should be visible. Arrange the windows so that both
Excel and J are visible. Note that not only is the J Server visible, but if you click on
it to give it focus then you have full access to the regular J development system.

Next set on logging - this tells J to display commands sent by Excel in the J
window:

js.log 1

Sending commands to J
The required function is do, which takes a J sentence as its argument. Note that

Excel strings are delimited by the double quote, so that J quotes can be entered as
is, and need not be doubled. Try:

js.do "i.4 5"

js.do " 1!:1<PROFILE"

You should see the statements and results in the J window.

Retrieving values from J
The function get retrieves a value from J, as a Variant datatype. Variants cannot be
displayed directly in the Immediate window, but can be assigned to a worksheet
range. For example:

Set value of x in J:

js.do "x=: i.4 5"

Retrieve value of x into Excel variant y:

js.get "x",y

Set value of y into the worksheet:

Worksheets("sheet1").Range("a1:e4")=y

Now switch to Sheet1 to see that the value of y has been written in.

Utilities
Now lets take a look at the J OLE utilities in file
system\examples\ole\excel\jsutil.txt. Copy and paste the contents of this file into
your Excel module.

The utilities available are:

jdopen

open JDLLServer

jxopen

open JEXEServer

jcmd (string)

execute J command, return result as variant

jcmdc string,r,c,h,w

execute J command, store result in active sheet at row,col,height,width

jcmdr string,range

execute J command, store result in active sheet at range

jdo string

execute J command

jget(x)

get J noun x

jloadprofile

load standard J profile

jlog boolean

log on/off (EXE only)

jshow boolean

show on/off (EXE only)

You can customize these or add your own utilities.

Loading J automatically
In the Module, enter an auto_open subroutine as follows:

Sub auto_open()
jxopen
jloadprofile
jshow 1
jlog 1
End Sub

This sub will be run each time this workbook is opened. It opens the JEXEServer,
shows the J session and logs commands sent from J.

Now check that auto_open works correctly when you load the book. Switch back
to Excel, save the book as test.xls and close Excel - note that the J session will
close as well. Reload Excel, and open test.xls - you should see the J session again.
Arrange the windows so that both Excel and J are visible.

jcmd
In Excel, switch to Sheet1 and in cell B3 enter:

=jcmd("+/2 3 5 7")

The statement should be executed in J, and the result (17) displayed in Excel.

Try:

In cell B5 enter: 12
In cell B6 enter: 15
In cell B7 enter: =jcmd(B5 & "*" & B6)

B7 displays the result (180). Note that if you now change B5 or B6, then B7 will
be recalculated.

In general, jcmd can be used for calculations which return a single value to be
displayed in the current cell. The right argument is the sentence to be sent to J.

This method is really only suitable for simple calculations. Typically, you will
want to run calculations that return a range of results to Excel and you set up such
calculations by invoking an Excel macro explicitly, for example, by selecting
Tools|Macro|Macros|Run or pressing an assigned hot-key.

jcmdc, jcmdr

These utilities execute a J expression, displaying the result in a range in the active
sheet. Function jcmdc specifies the range as 4 numbers: topleft row, column,
number of rows, number of columns. Function jcmdr specifies the range in the
traditional alphanumeric notation, for example: C6:E10.

We will create a macro run to test these and subsequent expressions. Switch to the
module and enter:

Sub run()
jcmdc "?3 4$10", 2, 3, 3, 4
End Sub

Next, return to the worksheet, select Tools|Macro|Macros, highlight run and click
Options. Enter Ctrl-r as the shortcut key and click OK. If J has been closed down,
then either reload the spreadsheet or re-run auto_open to load it again. Close the
Macro dialog, switch to Sheet1 and press Ctrl-r. The macro should run and display
the result. Press Ctrl-r again to re-run the macro.

jsetc, jsetr
These utilities set values in J, from a range in the active sheet. As with jcmdc and
jcmdr above, jsetc specifies the range as 4 numbers and function jsetr specifies the
range in the traditional notation. Switch to the module and edit run to:

Sub run()
jsetr "Y", "D3:F4"
End Sub

Switch to Sheet1 and as before use Tools|Macro to select Ctrl-r as a shortcut key
for the macro. In the worksheet, press Ctrl-r. Then click on the J session and
display Y (these are random numbers so the exact values will likely differ):
 Y
+-+-+-+
|4|8|8|
+-+-+-+
|7|3|1|
+-+-+-+

Change run to:

Sub run()
jsetc "Y", 2, 3, 3, 4

jcmdc "+/\>Y", 7, 3, 3, 4
End Sub

Switch to Sheet1, use Tools|Macro to select Ctrl-r as the shortcut key, then in the
worksheet, press Ctrl-r. The macro will read the numbers in the upper range and
display the sum scan in the lower range. Now if you change one of the numbers in
the upper range, for example E2, press Ctrl-r to update the lower range.

p224

Tutorial: J OLE Client to Excel

This tutorial has been created with Excel 97 and J401. Expect different behavior with other versions!

It will help to have the Excel VBA help file VBAXL8.HLP (or similar) readily available.

When you create a new book in Excel, by default the book has 16 worksheets. Since we will
experiment with adding worksheets under program control, we suggest that you change the default to 1
worksheet (use the Tools|Options|General dialog).

Introduction
In theory, any Excel function can be called directly from J. In practice, some Excel functions have an
unusual syntax that is either awkward or impossible to call from J, for example the ChartWizard
method. However, you can always get around this by creating a corresponding Excel macro that you
can call from J. Moreover it makes sense to use Excel macros anyway - there is no point in trying to
duplicate in J a series of Excel function calls that could be just as easily, or more easily, programmed in
Excel.

Thus you typically program with a mixture of J functions and Excel macros.

Excel Hierarchy
The various parts of Excel such as the Workbooks, Worksheets and Charts (all known as objects) are
organized in a hierarchy. Objects have methods (functions) and properties (variables). References to
Excel objects, methods and properties must include their position in the hierarchy, for example:

Application.Workbooks("Book1").Worksheets("MySheet").ChartObjects.Item(1).Chart.PlotArea.Width

Now this naming convention gets a little tedious to enter, so Excel allows you to simplify it a little. For
example, if MySheet happens to be the active sheet, you could instead use:

Activesheet.ChartObjects.Item(1).Chart.PlotArea.Width

J does not support this method of referencing names. Instead, for each reference you provide two names
- the first being the position in the object hierarchy. Thus if the name abc represented
Activesheet.ChartObjects.Item(1).Chart.PlotArea then the equivalent J reference would be:abc width
How do you assign names in J to positions in the object hierarchy? To start off with, there are two
reserved names. The name base represents the root of the hierarchy, equivalent to Application in
Excel. Thus the following are equivalent:

base visible

J

Application.Visible

Excel

The name temp is assigned to the current position in the hierarchy. For example, if you have just
created a new worksheet Sheet1, then the following are equivalent:

temp activate

J

Worksheets("Sheet1").Activate

Excel

Next, at any point, you can assign a name to the temp position. Thus if you assigned the name sh1 to
temp at this point, you could then use:sh1 activate
The idea is that you assign names to positions that you expect to revisit, while temp can be used for
positions that you are just passing through.

Note that Excel names are not case-sensitive, but when programming, Excel automatically converts
your entries to its standard capitalization. From J, you can use any case, and here we use lowercase
throughout.

Troubleshooting
You are going to be working with both J and Excel sessions active. It will be helpful to close down
other applications to minimize screen clutter.

As you use OLE, commands sent from J may change the active focus to Excel. To enter new
commands in J, click on the J session to change the active focus back to J.

If the OLE link goes wrong somewhere, you can simply close down the Excel session, and reset the J
session. The J OLE interface uses the Window Driver, so you should enter wd'reset' to reset it. Of
course, normally you would shut down Excel and reset J under program control.

Sometimes you send a command to Excel that appears to hang up, while the Excel session flashes. This
happens when Excel displays a dialog box that requires user intervention, for example an error message
or a prompt to save changes on exit. In such cases, switch to Excel and respond to the dialog box before
continuing.

At other times, Excel will hang up when it is waiting for user entry to be completed. For example, if
you highlight a cell and start editing its contents, then switch to J and try an OLE command, the system
will hang until you go back to Excel and complete the cell editing.

While Excel is fairly efficient at the tasks you are likely to use it for, you might inadvertently give it a
task that takes a long time. For example, suppose you create a chart from data in a spreadsheet, then
send a command from J to update that data. After each cell is updated, Excel will re-draw the chart - as
many times as there are cells! While this happens, everything is locked up, and you will have to wait, or
shut Excel down. (This particular problem is solved by erasing the chart before you update the data,
then re-creating it after the update.)

Tutorial
Start by unloading all applications, then loading J. Maximize the ijx window in the J session, then
arrange the J session window so it covers only about half the screen.

Opening up Excel
Create a parent to hold the Excel OLE Automation control:wd 'pc xlauto'

Create the Excel OLE Automation control. This may take a few seconds, because it loads Excel into
memory (it will not be visible).wd 'cc xl oleautomation:excel.application'

All J OLE commands from now on will refer to the xl control. Note that the names xlauto and xl
used here are not required - you can use your own names. However, the utilities included with J also
use these names, so it is recommended that you stick with them. Note also that xl is short for Excel and
not `x',`one'.

At this point, Excel has been loaded, but is not visible. Excel has a Visible property that can be set to
display it. This property is part of the Application object, and hence the Excel call to use it would be:

Application.Visible = 1

In J, the Application object is named base, therefore to set it, enter:wd 'oleset xl base visible
1'

This means: execute oleset on control xl, setting the visible property of base to 1.

If Excel opens full screen, shrink it down so that both the J and Excel windows are visible.

Now Excel is visible, but has no workbook open. To create a new workbook in Excel, you use the Add
method of the Workbooks object. Note that Add is a method of the Workbooks object (as well as
several other objects), but is it not a method of the Application object - Application.Add will not work!
Therefore the first step in J is to get access to the Workbooks object. To do so, enter:wd 'oleget xl
base workbooks'

This command should complete successfully, but display no result. However, internally, J has assigned
the Workbooks object to temp, and this can now be used to invoke the Add method:wd 'olemethod
xl temp add'

This should have created a new workbook. Try entering it again to add another workbook:wd
'olemethod xl temp add'
|domain error
| wd'olemethod xl temp add'

This time you get a domain error - try: wd'qer'. What happened is that the temp name really is
temporary - it refers to the current position in the Excel hierarchy, which is constantly changing as you

move about Excel. In this case, when you added the new workbook, temp changed to that workbook -
which does not have an Add method!

Therefore, in order to add another workbook, you have to assign temp to Workbooks again:
wd 'oleget xl base workbooks'
wd 'olemethod xl temp add'

Of course, this quickly becomes tedious - therefore the proper treatment here is to assign a name to the
Workbooks object, so that you can just use that name in future. To do so, use the oleid command:
wd 'oleget xl base workbooks'
wd 'oleid xl wb'

Now you can use wb to create several books:
wd 'olemethod xl wb add'
wd 'olemethod xl wb add'
wd 'olemethod xl wb add'

Closing Excel
Now lets try closing down Excel. The Application object in Excel has the Quit method to close down.
Quit will prompt, should there be any unsaved changes. Try switching to Excel, then entering some
values into one of the spreadsheets. Ensure that you have completed your entries (press Enter if Excel is
waiting for you to complete the entry of a cell), then switch back to J and enter:wd 'olemethod xl
base quit'

Excel will start flashing, and if you try to enter anything in the J window, it eventually displays a
"Server Busy" dialog box. Click on Excel, and respond to the "Save changes in `Book'?" prompt.
Eventually, Excel will close. You should now reset the J Window Driver with:wd'reset'

Utilities
This is a good time to look at the Excel OLE utilities, to do so enter:
load 'system\examples\ole\excel\xlutil.ijs'
names ''

This defines several utilities, the main ones being:

xlopen

create Excel OLE automation object

xlshow

show/hide Excel OLE automation object

xlexit

exit Excel OLE automation object (saves)

xlget

cover for oleget - get object

xlset

cover for oleset - set object parameter

xlcmd

cover for olemethod - invoke method

xlid

cover for oleid - assign id to current position

xlread

read cell

xlreadr

read range

xlwrite

write cell

xlwriter

write range

xlsetchart

set chart range

The verb xlopen opens up Excel. It:

● creates the parent window xlauto
● creates the Excel OLE automation control xl
● names wb as the Workbooks object
● loads the macro file examples\ole\excel\jmacros.xls (which is hidden)

Try:xlopen''

Note that Excel is not shown, indeed you may want to use Excel without it ever being visible. To make
it visible, enter:xlshow''

Verb xlcmd runs an OLE method. Since wb has been named in xlopen, it can be used directly. To add
a workbook:xlcmd 'wb add'

Take a look at the workbook name:
 xlget 'temp name'
Book1

Try changing the workbook name:
 xlset 'temp name Mybook'
|domain error
| xlset'temp name Mybook'

 wd 'qer'
ole - Workbook does not have writeable Name property : 12

What is happening is that in Excel, you can only change the name of a workbook by saving it. Thus, the
following saves the workbook, and also renames it:
 xlcmd 'temp saveas Mybook'

This may return -1, which really is the result from Excel!

(If you already have saved Mybook, Excel will prompt you to overwrite it.)

Accessing the Worksheet
To access the worksheet, we first have to get the Worksheets object, which belongs to the workbook.
We will use the Worksheets object a few times, so will give it a name:
 xlget 'temp worksheets'
 xlid 'ws'

We can try adding new worksheets:
 xlcmd 'ws add'
 xlcmd 'ws add'
 xlcmd 'ws add'

Next we access the first sheet using the Item method, and assign the name sh1:

 xlget 'ws item sheet1'
 xlid 'sh1'
 xlget 'sh1 name'
Sheet1

Be careful to distinguish sh1 which is the name used by J for a position in the Excel object hierarchy,
from Sheet1, which is the name used by Excel for the current worksheet. You can change the
worksheet name:
 xlset 'sh1 name Mysheet'

If this worksheet is hidden behind another (which will be the case if you followed the above steps
exactly) you can activate it with:
 xlcmd 'sh1 activate'

Now lets try writing to a specific cell. In Excel you can use cell references of the form 2 3 or old-style
alphanumeric references such as B3; the former are easier to program. First reference a cell, using the
Cells property:
 xlget 'sh1 cells 2 3'

Then set the value of temp as required. The new value should appear in the spreadsheet:
 xlset 'temp value 123'

 xlget 'temp value'
123

Reading and Writing Ranges
In practice, you will typically want to read and write a range of cells. It would be tedious to do so one
cell at a time; unfortunately, the form in which Excel reads and writes range data is not available to J.
The solution is to use the utilities xlreadr (read range) and xlwriter (write range) that call
appropriate macros from jmacros.xls. The right argument is the workbook, worksheet, topleft cell
position and number of rows and columns. The left argument of xlwriter is the data to be written.
Try:
 (i.3 4) xlwriter 'mybook.xls mysheet 2 2'

Verb xlreadr returns data as a boxed array of character strings:
 xlreadr 'mybook.xls mysheet 3 3 2 3'
+-+--+--+
|5|6 |7 |
+-+--+--+
|9|10|11|
+-+--+--+

 ". &> xlreadr 'mybook.xls mysheet 3 3 2 3'
5 6 7
9 10 11

Finally, use xlexit to close Excel (you may be prompted to save):
 xlexit''

Data passing
Data parameters sent using these utilities are limited to 65K, which suffices for most purposes. The best
way to pass data longer than this is via a temporary file. Thus J can write a file then send an OLE
command to Excel to read it.

p225

Labs

Overview p226
Lab Header p227
Lab Sections p228
Running Labs p229
Lab Author p230
Rich-Text p231
Program Access p232

p226

Lab Overview

A J Lab file combines a text description and executable J code in a single file. The
Lab system lets you step through the file, displaying the text and executing the
code. The user is in a normal J session, and can try out other J expressions while
running the lab.

A Lab is structured into one or more chapters, each containing one or more
sections. The user can go through chapters in any order, but the sections within
each chapter must be run sequentially.

Lab files are either ordinary text files with extension .ijt; or rich-text files with
extension .rtf. Rich-text files permit greater control over text formatting, but
work only in Windows 95/NT, and take more effort to set up.

You can create the ijt files using Lab Author p230 or any text editor such as
Notepad; and create the rtf files with word processors such as Word or WordPad,
see Rich-Text p231.

Lab files provided with J are stored under the subdirectory system\extras\labs. The
directory system\extras\labs\personal is available for the user, though you can
create labs in any directory - if so, you should update file
system\extras\labs\labdir.ijs.

p227

Lab Header

A Lab file has a header defining various nouns, followed by one or more chapters
that start with lines beginning Lab Chapter followed by the chapter name. If
there is only one chapter, the line Lab Chapter need not be given.

Each chapter consists of sections that start with lines beginning Lab Section
optionally followed by a section title. Where the section title is not given, it is
assumed to be a continuation of the previous section.

Header
The header is executed as a script in the jlab locale, and may be used to define the
following nouns:

LABTITLE

Title (must be given first)

LABAUTHOR

Author (optional, may include address, email etc.)

LABCOMMENTS

Comments (optional)

LABERRORS

1=continue after errors in code (default 0)

LABFOCUS

Return focus to session after advancing the lab

LABNOSESSION

1=no output to J session (default 0)

LABWIDTH

Text width (default 61)

LABWINDOWED

1=run Lab with text in a window (default 1)

LABWRAP

1=wrap text to LABWIDTH (default 1)

The title and author (if given) are shown when the lab is run.

Comments are not shown when the lab is started.

Continue after errors should be on if you intend to demonstrate errors in your J
code, otherwise errors are signalled to the user. By default this is 0 (off).

Set no session output if you do not want to write to the J execution session. This
may be appropriate for labs where there are no code examples; the labs may still
contain code within keywords.

Run in window shows the lab text in a window. By default this is 1 (on); you may
want to set this off for labs that create their own windows.

Text wrap and text width: by default text wrap is on, and means that any text
output to the J execution window is wrapped to the specified text width (default
61).

The header may also contain any other required definitions, such as initialization
code that is to be run at the beginning of each chapter. You can invoke any such
definitions within PREPARE keywords in the first section of the chapter (see below).
Since the header is defined in the jlab locale, subsequent references must use the
full locale name.

Chapters
Chapters are delimited by a line beginning Lab Chapter, for example:
Lab Chapter Function Rank

p228

Lab Sections

Sections
Sections are in two parts, either of which may be empty. The first part is the text to
be displayed, ended by a line starting with) . Lines after the) are J sentences that
are executed. If no) line is given, the section is assumed to be text only.

For example, the following is a lab section named "Numbers":
Lab Section Numbers
The integer function (i.) generates numbers:
)
i.10 NB. first 10 numbers
i.4 3 NB. first 12 numbers in a 4 by 3 table

The lab system responds advance by reading the next section, displaying the text,
and executing the J sentences. All display is normal output to the active jx window,
and the user has complete access to the J session.

Section Keywords
Lines in the second part of a Lab Section (the J sentences to be executed) may
begin with one of the keywords SCRIPT, PREPARE or SOUND.

● SCRIPT allows you to enter a character string that will be stored in the global
variable SCRIPT, in the jlab locale. For example, this can be used to build up an
example script.

● PREPARE allows you to enter sentences that will be run silently before the rest of
the section is run. >.

The SCRIPT and PREPARE keywords are used to delimit text or sentences to be run
before the rest of the section, and must occur at the beginning of the section. Any
text on the same line as the keyword is ignored. For example, you can use these
facilities to define the global SCRIPT, or load required code, and check whether it
is OK to continue the lab.

A typical use of PREPARE is when your Lab creates Windows forms. To ensure that
wd commands are sent to the selected form, start the code with a psel command,
for example:
PREPARE
wd 'psel myform'
PREPARE

To prevent further execution of the section, signal an error. The utility
assert_lab_ may be used for this purpose; the left argument is the message to
display when a 0 occurs in the right argument.

For example:
Lab Section Printing
The following prints the result:
)
PREPARE read in print fns ------------
load 'print'
load 'myutils'
ERRORMSG=. 'Unable to load myutils',LF,LF,'Check they are
installed'
ERRORMSG assert_lab_ 3=nameclass <'myprintfn'
PREPARE ------------------------------
myprint RES

Text Width
When using ijt (plain text) files, the recommended text width is 61 characters,
which should display on all screens with typical screen fonts. You can create wider
lines, but some users may have to scroll the screen in order to read them.

If LABWRAP is set on, text beginning at the left margin is automatically wrapped
to width LABWIDTH when it is written to the J execution window. To avoid this,
for example when including J code, indent text by one or more spaces.

Ignored Lines
The system ignores any lines beginning NB. ==.

Files created with Lab Author p230 have sections delimited with the line below,
which has the text width used by the editor:

NB. ===

p229

Running Labs

A lab is invoked from menu item Studios|Labs, which runs the verb lab in the j
locale. See Lab Program Access p232.

The Lab Select form has an Intro to Labs button, which runs the lab
system\extras\labs\labintro.txt, not listed with the other labs.

The Category selection box allows you to select labs in specific directories. These
are defined in script system\extras\labs\labdir.ijs, which you can modify as needed
to include your own lab directories. Subdirectories of system\extras\lab are
automatically included in the list of categories.

You can step through a lab by selecting menu Studio|Advance, or pressing the
corresponding shortcut key, when the J session has focus. A lab that creates a form
may allow stepping through when the form has focus, by defining a handler such
as:
 myform_jctrl_fkey_z_=: 3 : 'lab_j_ 0 [wd''smselout;smfocus'''

You can also jump to other chapters of the lab from menu item Studios|Jump.

p230

Lab Author

The Lab Authoring system can be used to create lab files. Load it from menu item
Studio/Author.

A lab is created as a header, plus lab chapters and sections. Each section is
displayed in two panes - the top pane is the text, and the lower pane is the code.
Either may be empty.

Press the Run button to run the code in any section. The Lab is run in the session
window, i.e. LABWINDOWED is ignored. Any errors are displayed in a message
box. The code is not run automatically as you navigate through the lab.

You can step through the lab by pressing the advance shortcut key when the
Author form has focus. This simulates the normal running of the lab. Note that the
Author form has to have the focus to advance.

To load and run the lab exactly as the user would run it, use the menu item
File/Run Lab.

Note that if your Lab creates Windows forms, you need to ensure that wd
commands are sent to the correct form. Start your code sections with appropriate
PREPARE statements, for example:
PREPARE
wd 'psel myform'
PREPARE

The Wrap button wraps the text pane to the current width. Use Edit/UnWrap to
undo; this is only available immediately after a wrap has been done. Otherwise, use
Edit/Restore Section to restore the pane to its original state.

The width indicator shows the current default width. Only part of the width
indicator will show if the choice of Font and Width makes it too wide to display in
the window - in which case, resize the window, or reduce the Font or Width
settings.

The Sounds items are enabled only when the lab has sounds. Check Enable to play
the sounds when running each section. Use the Insert button to insert a sound in the
code.

The menu items are mostly self-explanatory, for example:

Section/Restore Section

Restores the panes to the initial values when you moved to the section

Edit/Font...

Sets the font used in the two panes

Edit/Header...

Sets the lab header

p231

Rich-Text

The essential difference between the ijt and rtf file is that the text part of each
section in the rtf file can contain formatting such as bold, superscript and color.
When the lab is run, the formatted text is displayed in a Windows form with a rich-
text control.

If you close the form, the lab can be run in the session in the usual way.

The facilities available in the Windows rich-text control are those of WordPad, and
are a subset of those in Word and other word processors. Formatting instructions
not supported by the rich-text control are ignored.

The layout of the rtf file is exactly the same as for the ijt file. Formatting for the
non-text sections is ignored, and it may be helpful to apply distinctive formatting
to each section to make it easy to read.

LABWIDTH and LABWRAP are ignored by the rich-text control, except when the
text window is closed and the lab run in a J session.

p232

Lab Program Access

The verb lab in locale j runs the lab system. It is invoked by selecting the lab
menu items in the Studio menu; and by pressing the lab advance shortcut when a
lab has been loaded.

lab can also be called under program control as described below, and this can be
helpful when creating and testing a lab. If you are using lab in this way, you may
want to define lab_z_=. lab_j_ to remove the need for the locale reference.

The form is:

lab ''

Lab dialog for files in system\extras\labs directory. Invoked by menu item
Studio|Labs...

lab 0 [,num]

Show next Lab Section (or section num). Invoked by menu item Studio|Advance,
or by the corresponding shortcut key.

lab 1

Show jump dialog Invoked by menu item Studio|Jump...

lab 2

Run Lab Author Invoked by menu item Studio|Author...

lab 'directory'

Show lab dialog for files with extension .ijt in given directory.

lab 'filename'[;num]

Invoke lab on given file (at chapter num)

Note that you can run any file as a lab file, e.g.
 lab 'system\extras\labs\labintro.txt'

p233

Index

A

a. J 5.01 Release Highlights and Overview p1 · Old Windows
Release Notes p2 · wd commands p130 · Patterns p156 ·
Utilities p158

a: J 5.01 Release Highlights and Overview p1 · Utilities p158

abbreviation(s) Plot Colors p176

abort winlib p78

aboutbox J OLE/OCX Client p221

absence Copyright p160

absolute SQL Reserved Words p217

accelerator Window Controls p113 · Accelerator Keys p125

accurately fontspec p132

acknowledge Wait p111

activate(s) Controlling p20 · Hints p139 · Mouse p140 · Code p149 ·
Tutorial: J OLE Client to Excel p224

activated Overview p89

activex Overview p219

actuarial system\packages p23

administrator Socket Driver p188

aggregation Copyright p160

agree(s) Copyright / Warranty / License p9

agreement(s) Copyright / Warranty / License p9 · Copyright p160

aix Products p6

algebra Old Windows Release Notes p2

algorithm(s) strings p71

alphabetic text p73 · Overview p114 · Code p149 · Patterns p156

alphabetically Child Classes p118

alphanumeric Overview p114 · wd commands p130 · Patterns p156 · Tutorial:
J OLE Server for Excel p223 · Tutorial: J OLE Client to Excel
p224

approximate(s) SQL Elements p216

approximately Mapping Mode p134

arbortretryignore wd commands p130

arc(s) graph p47 · Definition Summaries p80 · gl2 commands p131

arccos trig p74 · Definition Summaries p80

arccosh trig p74 · Definition Summaries p80

arcsin trig p74 · Definition Summaries p80

arcsinh trig p74 · Definition Summaries p80

arctan trig p74 · Definition Summaries p80

arctanh trig p74 · Definition Summaries p80

argv J 5.01 Release Highlights and Overview p1 · sysenv p72 ·
Definition Summaries p80

argverb J 5.01 Release Highlights and Overview p1

arithmetic dates p40 · statfns p69 · Definition Summaries p80

ascii J 5.01 Release Highlights and Overview p1 · Old Windows
Release Notes p2 · format p46 · stdlib p70 · Definition
Summaries p80 · Printing p87 · Richedit Control p119 · Actions
p166

assert(s) Old Windows Release Notes p2 · stdlib p70 · Definition
Summaries p80 · Lab Sections p228

assertion(s) stdlib p70 · J Socket Protocol p190 · SQL Reserved Words p217

assignment(s) J 5.01 Release Highlights and Overview p1 · Find in Files p86 ·
Regular Expression p155 · Utilities p158

assigns wdhandler p107

async socket p67 · Definition Summaries p80

asynchronously Socket Utilities p189

authoring Lab Author p230

axe(s) Plot Options p174 · Plot Colors p176 · Viewing p179

B

backslash Patterns p156

backspace Old Windows Release Notes p2 · Tutorial: J OLE Server for
Excel p223

barchart(s) plot verb p170

baserep numeric p58 · Definition Summaries p80

bident(s) J 5.01 Release Highlights and Overview p1

binary J 5.01 Release Highlights and Overview p1 · Copyright p160 · J
Socket Protocol p190 · SQL Elements p216

binomial(s) statdist p68 · Definition Summaries p80

binomialdist statdist p68 · Definition Summaries p80

binomialprob statdist p68 · Definition Summaries p80

binomialrand statdist p68 · Definition Summaries p80

bitmap(s) Mac J.402 Startup p11 · system\packages p23 · bmp p32 ·
isigraph p48 · Definition Summaries p80 · Child Classes p118 ·
Toolbar p122 · Window Driver Command Reference p129 · wd
commands p130 · gl2 commands p131 · gl3 commands p135 ·
OpenGL printing p136 · Toolbar p147 · Plot Commands p173 ·
Examples p222

bits wd commands p130 · gl2 commands p131

bitsize bmp p32

bitspixel wd commands p130 · gl2 commands p131

bitwise dll p44 · Definition Summaries p80

bold Printing p87 · wd p104 · Richedit Control p119 · Fonts p124 ·
fontspec p132 · Plot Options p174 · Rich-Text p231

bool Old Windows Release Notes p2 · wd commands p130 · gl2
commands p131 · Calling DLLs p199 · J OLE/OCX Client
p221

boolean(s) isigraph p48 · misc p55 · stdlib p70 · viewmat p76 · Definition
Summaries p80 · Verbs p157 · Plot Options p174 · Java jserver
class p182 · Calling DLLs p199 · Tutorial: J OLE Server for
Excel p223

box Old Windows Release Notes p2 · About J p5 · J User License
Order Form p7 · Copyright / Warranty / License p9 · Mac J.402
Startup p11 · Script Windows p16 · misc p55 · stdlib p70 ·
winlib p78 · write p79 · Definition Summaries p80 · Printing
p87 · Project Conventions p100 · wd p104 · Window Forms
p105 · Wait p111 · Parent Windows p115 · Child Classes p118 ·
Common Dialog Boxes p123 · wd commands p130 · gl2
commands p131 · gl3 commands p135 · Mouse p140 · Toolbar
p147 · Statusbar p148 · Verbs p157 · Plot Options p174 · Plot
Colors p176 · Examples p197 · Data Driver p208 · Listing the
Data Sources p209 · J OLE/OCX Client p221 · Tutorial: J OLE
Client to Excel p224 · Running Labs p229 · Lab Author p230

boxed J 5.01 Release Highlights and Overview p1 · Old Windows
Release Notes p2 · Mac J.402 Startup p11 · csv p39 · dir p43 ·
files p45 · format p46 · misc p55 · myutil p56 · stdlib p70 ·
strings p71 · text p73 · validate p75 · winlib p78 · Definition
Summaries p80 · Component Files p84 · Watch p93 · wdhandler
p107 · gl3 commands p135 · Verbs p157 · pd verb p169 · Plot
Options p174 · Plot Data p175 · Socket Utilities p189 · J Socket
Protocol p190 · Calling DLLs p199 · Tutorial: J OLE Client to
Excel p224

boxes Old Windows Release Notes p2 · Status Bar p19 · Find in Files
p86 · Wait p111 · Window Controls p113 · Child Controls p117
· Child Classes p118 · Common Dialog Boxes p123 · wd
commands p130 · fontspec p132 · isigraph events p133 · Verbs
p157 · Plot Options p174

boxopen stdlib p70 · Definition Summaries p80

break(s) J 5.01 Release Highlights and Overview p1 · scriptdoc utility
p31 · winlib p78 · Definition Summaries p80 · gl2 commands
p131 · J Socket Protocol p190 · J OLE Automation Server p220

brk J Socket Protocol p190

byte(s) Old Windows Release Notes p2 · misc p55 · socket p67 ·
Definition Summaries p80 · Component Files p84 · gl2
commands p131 · Java jserver class p182 · J Socket Protocol
p190 · Calling DLLs p199 · Memory Management p201

C

C. J 5.01 Release Highlights and Overview p1

calendar scriptdoc utility p31 · dates p40 · Definition Summaries p80

callback(s) Old Windows Release Notes p2 · dll p44 · Definition
Summaries p80 · gl3 commands p135

caret J 5.01 Release Highlights and Overview p1 · Find in Files p86 ·
gl2 commands p131 · Hints p139 · Code p149

categories Running Labs p229

category Old Windows Release Notes p2 · wd commands p130 ·
Running Labs p229

catenated Old Windows Release Notes p2 · Utilities p158 · Calling DLLs
p199

catenating Utilities p158

cauchy statdist p68 · Definition Summaries p80

cauchyrand statdist p68 · Definition Summaries p80

classpath Java p180 · Java jserver class p182 · Java classpath p183 ·
Jsoftware Java applets p184 · Java applet security p186

clip pd verb p169 · Plot Commands p173

clipboard Session Manager p14 · format p46 · winlib p78 · Definition
Summaries p80 · wd commands p130 · gl2 commands p131 ·
gl3 commands p135 · Hints p139 · Keyboard p141 · Methods
p164 · Plot Commands p173 · DDE Conversations p194

clipcopy wd commands p130

clipfmt format p46 · Definition Summaries p80 · DDE Conversations
p194

clippaste wd commands p130

coclass colib p33 · Definition Summaries p80 · Building Applications
p99

coclasspath colib p33

cocreate colib p33 · Definition Summaries p80

cocurrent colib p33 · Definition Summaries p80

codestroy colib p33 · Definition Summaries p80 · Methods p164

coerase colib p33 · Definition Summaries p80

coextend colib p33 · Definition Summaries p80

coinfo coutil p38 · Definition Summaries p80

coinsert J 5.01 Release Highlights and Overview p1 · colib p33 ·
Definition Summaries p80 · gl2 commands p131

compared J 5.01 Release Highlights and Overview p1

component(s) system\packages p23 · jfiles p49 · keyfiles p52 · Definition
Summaries p80 · Development Environment p82 · Component
Files p84 · Keyed Files p85 · Find in Files p86 · Copyright p160
· Overview p219

coname(s) colib p33 · Definition Summaries p80

conew J 5.01 Release Highlights and Overview p1 · colib p33 ·
Definition Summaries p80 · Classes p163 · Plot Class p171

config Old Windows Release Notes p2 · Directory Paths p12 ·
system\extras p25 · user p27 · sysenv p72 · Definition
Summaries p80 · Menu Commands p83

conj format p46 · misc p55 · stdlib p70

conjunction(s) J 5.01 Release Highlights and Overview p1 · Old Windows
Release Notes p2 · Directory Paths p12 · system\packages p23 ·
scriptdoc utility p31 · stdlib p70 · strings p71 · Definition
Summaries p80 · Overview p89 · Stops p92 · Locked Scripts
p101

conl colib p33 · Definition Summaries p80 · Classes p163

constants winapi p77 · Definition Summaries p80 · wd commands p130 ·
Java jserver class p182 · Socket Utilities p189 · J OLE/OCX
Client p221

control(s) J 5.01 Release Highlights and Overview p1 · Old Windows
Release Notes p2 · Session Manager p14 · Script Windows p16
· system\packages p23 · bmp p32 · debug p42 · files p45 ·
isigraph p48 · socket p67 · viewmat p76 · winlib p78 ·
Definition Summaries p80 · Verbs p90 · Overview p103 · wd
p104 · Window Forms p105 · Event Handlers p106 · wdhandler
p107 · Other Message Handlers p110 · Window Controls p113 ·
Overview p114 · Parent Windows p115 · Location and Size
p116 · Child Controls p117 · Child Classes p118 · Richedit
Control p119 · Tab Control p121 · Toolbar p122 · Fonts p124 ·
Tab and Cursor Keys p127 · Ownerdraw p128 · wd commands
p130 · gl2 commands p131 · isigraph events p133 · Mapping
Mode p134 · gl3 commands p135 · OpenGL printing p136 ·
Form Editor p137 (only first 40 listed)

controll Session Manager p13

D

D. Old Windows Release Notes p2 · Input Log p17

database(s) Old Windows Release Notes p2 · Overview p204 · Connection
& Statement Handles p207 · Data Driver p208 · Listing the Data
Sources p209

date(s) J User License p3 · J User License Order Form p7 · Copyright /
Warranty / License p9 · Mac J.402 Startup p11 · system\main
p22 · system\packages p23 · scriptdoc utility p31 · dates p40 ·
dir p43 · kfiles p53 · misc p55 · validate p75 · Definition
Summaries p80 · Definitions by Script p81 · Keyed Files p85 ·
Project Conventions p100 · Copyright p160 · Selecting &
reading data p212 · SQL Elements p216 · SQL Reserved Words
p217

datefmt system\packages p23

dbr Old Windows Release Notes p2 · debug p42 · Definition
Summaries p80 · Overview p89 · Verbs p90

dde system\packages p23 · wd p104 · System Events p112 · wd
commands p130 · DDE p191 · DDE Overview p192 · Server
and Client p193 · DDE Conversations p194 · Examples p197

deal(s) random p64 · Definition Summaries p80 · Component Files p84
· Event Handlers p106

debug J 5.01 Release Highlights and Overview p1 · Old Windows
Release Notes p2 · system\main p22 · debug p42 · winlib p78 ·
Definition Summaries p80 · Definitions by Script p81 · Menu
Commands p83 · Debug p88 · Overview p89 · Verbs p90 ·
Commands p91 · Stops p92 · Watch p93 · Socket Utilities p189
· J Socket Protocol p190 · J OLE Automation Server p220

debugger Java p181

debugging debug p42 · Definition Summaries p80 · Copyright p160 · Java
examples p185

decommited J 5.01 Release Highlights and Overview p1 · Old Windows
Release Notes p2

decommitted J 5.01 Release Highlights and Overview p1 · Old Windows
Release Notes p2 · wd commands p130

derivative(s) Copyright p160

derived Copyright p160 · Overview p162

determinant(s) Old Windows Release Notes p2 · system\packages p23

diagonal(s) wd commands p130 · gl2 commands p131

dimension(s) Old Windows Release Notes p2

dir(s) Script Libraries p21 · system\main p22 · dir p43 · Definition
Summaries p80 · Definitions by Script p81 · Utilities p158

distribute(s) Old Windows Release Notes p2 · Copyright p160

distributed Old Windows Release Notes p2 · About J p5 · Products p6 ·
Mac J.402 Startup p11 · Overview p95 · fontspec p132 ·
Copyright p160 · Java p181 · Java jserver class p182 · Overview
p204 · The SQL Language p205 · Data Driver p208 · J
OLE/OCX Client p221

distributing system\main p22 · Copyright p160

distribution(s) Old Windows Release Notes p2 · system\packages p23 · statdist
p68 · Definition Summaries p80 · Overview p95 · Copyright
p160

distributive numeric p58

div Copyright p160

doc(s) Old Windows Release Notes p2 · Common Dialog Boxes p123 ·
wd commands p130

document(s) J 5.01 Release Highlights and Overview p1 · Old Windows
Release Notes p2 · Session Manager p14 · Controlling p20 ·
scriptdoc utility p31 · gl2 commands p131 · gl3 commands
p135 · Copyright p160 · J Socket Protocol p190

documentation J 5.01 Release Highlights and Overview p1 · Old Windows
Release Notes p2 · Copyright / Warranty / License p9 · Mac
J.402 Startup p11 · scriptdoc utility p31 · gl3 commands p135 ·
Socket Driver p188 · J OLE/OCX Client p221

documented Old Windows Release Notes p2 · Products p6 · Starting J p10 ·
scriptdoc utility p31 · Plot Commands p173 · Plot Options p174
· Calling DLLs p199

documention J 5.01 Release Highlights and Overview p1 · Products p6

dot(s) gl2 commands p131 · Plot Types p172 · Socket Utilities p189

doubled Tutorial: J OLE Server for Excel p223

downloadable J 5.01 Release Highlights and Overview p1

downloaded Jsoftware Java applets p184 · Java applet security p186

draw(s) graph p47 · isigraph p48 · write p79 · Definition Summaries p80
· gl2 commands p131 · OpenGL printing p136 · Mouse p140 ·
Overview p168 · plot verb p170 · Plot Class p171 · Tutorial: J
OLE Client to Excel p224

drop(s) Old Windows Release Notes p2 · keyfiles p52 · stdlib p70 ·
strings p71 · Definition Summaries p80 · Menus p126 · wd
commands p130 · Creating a new file p214 · SQL Statements
p215 · SQL Reserved Words p217

dsn dd p41 · Data Driver p208 · Data Source Connection p211

duplex gl2 commands p131

duplicate(s) Input Log p17 · jfiles p49 · validate p75 · Definition Summaries
p80 · Component Files p84 · Tutorial: J OLE Client to Excel
p224

duplicated Component Files p84

duplicating Component Files p84

duplication Copyright / Warranty / License p9

dyad(s) Old Windows Release Notes p2 · stdlib p70 · Definition
Summaries p80

dyadic dll p44

E

e. colib p33 · regex p65 · stdlib p70 · Definition Summaries p80

E. regex p65 · Definition Summaries p80

eav stdlib p70 · Definition Summaries p80 · Child Classes p118 ·
wd commands p130

editm Old Windows Release Notes p2 · Child Classes p118 · wd
commands p130

eigenpicture(s) Old Windows Release Notes p2

eigenvalue(s) Old Windows Release Notes p2 · system\packages p23

empties Component Files p84

enclose Utilities p158

enclosed Copyright / Warranty / License p9 · Richedit Control p119 ·
Calling DLLs p199

enclosing Patterns p156

enclosure J User License Order Form p7

encoded Locked Scripts p101

eol Utilities p158

equation(s) Old Windows Release Notes p2 · system\packages p23

evaluated Session Manager p14 · Script Windows p16 · Examples p197

evaluation DDE Overview p192

executable(s) J 5.01 Release Highlights and Overview p1 · Directory Layout
p29 · Copyright p160 · Examples p197 · Overview p226

executes J 5.01 Release Highlights and Overview p1 · Old Windows
Release Notes p2 · wd p104 · Event Handlers p106 · wdhandler
p107 · wd commands p130 · J Socket Protocol p190 · Examples
p197 · Overview p219

executing J 5.01 Release Highlights and Overview p1 · Products p6 · wd
p104 · Overview p226 · Lab Sections p228

expand(s) format p46 · stdlib p70 · Definition Summaries p80

expandby format p46 · Definition Summaries p80

exponent(s) SQL Elements p216

exponential(s) statdist p68 · Definition Summaries p80

exponentialrand statdist p68 · Definition Summaries p80

F

f. Locked Scripts p101

factor(s) system\packages p23 · isigraph p48 · SQL Elements p216

factorization(s) Old Windows Release Notes p2 · system\packages p23

fermat system\packages p23

float(s) dll p44 · Definition Summaries p80 · gl3 commands p135 ·
Calling DLLs p199 · Memory Management p201 · SQL
Elements p216 · SQL Reserved Words p217

fonts Old Windows Release Notes p2 · Mac J.402 Startup p11 ·
Printing p87 · Window Controls p113 · Richedit Control p119 ·
Fonts p124 · fontspec p132 · Lab Sections p228

fontsize Printing p87 · J OLE/OCX Client p221

fontspec Printing p87 · Window Driver Command Reference p129 · wd
commands p130 · gl2 commands p131 · fontspec p132 · gl3
commands p135

fork(s) J 5.01 Release Highlights and Overview p1

forum Old Windows Release Notes p2 · Support and Questions p8 ·
bmp p32

foxpro Overview p204 · Listing the Data Sources p209

fractal(s) Old Windows Release Notes p2

G

gamma statdist p68 · Definition Summaries p80

gcd system\packages p23

geometric statfns p69 · Definition Summaries p80

gnu Copyright p160

gnuplot system\packages p23

goto SQL Reserved Words p217

grammar(s) SQL Statements p215 · SQL Reserved Words p217

grammer Data Driver p208

H

handler(s) winlib p78 · Definition Summaries p80 · Window Driver p102 ·
Window Forms p105 · Event Handlers p106 · wdhandler p107 ·
Form Locales p109 · Other Message Handlers p110 · Wait p111
· System Events p112 · wd commands p130 · gl2 commands
p131 · gl3 commands p135 · OpenGL printing p136 · Hints
p139 · Menu p146 · Code p149 · Classes p163 · Methods p164 ·
Viewing p179 · Socket Utilities p189 · DDE Overview p192 ·
Communication Protocol p196 · Examples p197 · J OLE/OCX
Client p221 · Running Labs p229

head(s) Directory Paths p12 · stdlib p70 · Definition Summaries p80

hex convert p37 · format p46 · Definition Summaries p80 · Patterns
p156 · J Socket Protocol p190

hexdump format p46 · Definition Summaries p80

hyphen Patterns p156

I

i. J 5.01 Release Highlights and Overview p1 · Old Windows
Release Notes p2 · debug p42 · format p46 · isigraph p48 · jfiles
p49 · misc p55 · numeric p58 · regex p65 · stdlib p70 ·
Definition Summaries p80 · Component Files p84 · Printing p87
· Wait p111 · Overview p168 · Plot Class p171 · Plot Data p175
· J Socket Protocol p190 · DDE Overview p192 · Examples
p197 · Calling J.DLL p202 · Tutorial: J OLE Server for Excel
p223 · Tutorial: J OLE Client to Excel p224 · Lab Sections
p228

i: Old Windows Release Notes p2 · Directory Paths p12

icon(s) J 5.01 Release Highlights and Overview p1 · Old Windows
Release Notes p2 · Mac J.402 Startup p11 · Child Classes p118 ·
Ownerdraw p128 · wd commands p130 · Socket Driver p188 ·
Installing ODBC p206

ide J 5.01 Release Highlights and Overview p1 · Products p6 · J
Socket Protocol p190

image(s) Old Windows Release Notes p2 · Child Classes p118 · Toolbar
p122 · Window Driver Command Reference p129 · wd
commands p130 · gl2 commands p131 · gl3 commands p135 ·
OpenGL printing p136

indexed J 5.01 Release Highlights and Overview p1 · winlib p78

indexes system\packages p23

infinities Old Windows Release Notes p2

integral(s) dates p40

integrated Old Windows Release Notes p2

integration system\packages p23 · Overview p219

invoke(s) Menu Commands p83 · wdhandler p107 · Other Message
Handlers p110 · Communication Protocol p196 · J OLE/OCX
Client p221 · Tutorial: J OLE Client to Excel p224 · Lab Header
p227 · Program Access p232

invoked Controlling p20 · Window Forms p105 · Event Handlers p106 ·
Copyright p160 · Running Labs p229 · Program Access p232

invoking Tutorial: J OLE Server for Excel p223

J

j. Old Windows Release Notes p2 · Utilities p158

jacobi system\packages p23

java J 5.01 Release Highlights and Overview p1 · system\extras p25
· sysenv p72 · Definition Summaries p80 · wd commands p130 ·
gl2 commands p131 · Java p180 · Java p181 · Java jserver class
p182 · Java classpath p183 · Jsoftware Java applets p184 · Java
examples p185 · Java applet security p186 · J Socket Protocol
p190

jsoftware Old Windows Release Notes p2 · J User License p3 · About J
p5 · Products p6 · J User License Order Form p7 · Copyright /
Warranty / License p9 · Java p180 · J Socket Protocol p190

jul J 5.01 Release Highlights and Overview p1 · J User License p3 ·
Products p6 · J User License Order Form p7

K

keyboard J 5.01 Release Highlights and Overview p1 · Accelerator Keys
p125 · gl2 commands p131 · Form Editor p137 · Overview p138
· Keyboard p141 · Classes p163 · J Socket Protocol p190

keyfiles system\packages p23 · keyfiles p52 · kfiles p53 · Definition
Summaries p80 · Definitions by Script p81 · Keyed Files p85

keyword(s) Old Windows Release Notes p2 · Directory Paths p12 · keyfiles
p52 · kfiles p53 · Definition Summaries p80 · Keyed Files p85 ·
wd commands p130 · Calling DLLs p199 · SQL Reserved
Words p217 · Lab Header p227 · Lab Sections p228

kfiles system\packages p23 · kfiles p53 · Definition Summaries p80 ·
Definitions by Script p81

L

L: stdlib p70 · Definition Summaries p80

languages J 5.01 Release Highlights and Overview p1 · Old Windows
Release Notes p2

lapack Old Windows Release Notes p2

largest gl3 commands p135

latent Old Windows Release Notes p2 · debug p42 · Definition
Summaries p80 · Overview p89

legendre system\packages p23

letter(s) Mac J.402 Startup p11 · Controlling p20 · scriptdoc utility p31 ·
text p73 · Child Controls p117 · wd commands p130 · Patterns
p156 · Verbs p157 · Tutorial: J OLE Server for Excel p223

libaries Building Applications p99

library J 5.01 Release Highlights and Overview p1 · Old Windows
Release Notes p2 · Products p6 · Script Libraries p21 ·
system\main p22 · Script Library Overview p30 · colib p33 ·
stdlib p70 · winlib p78 · Overview p95 · Project File p96 ·
Project Manager Tabs p98 · Building Applications p99 ·
Copyright p160

limit(s) Old Windows Release Notes p2 · debug p42 · wd commands
p130 · Socket Utilities p189

linux J 5.01 Release Highlights and Overview p1 · Products p6

lipshutz Old Windows Release Notes p2

locale(s) J 5.01 Release Highlights and Overview p1 · Old Windows
Release Notes p2 · Directory Paths p12 · Menus p18 ·
system\main p22 · colib p33 · coutil p38 · dll p44 · pack p59 ·
plot p61 · stdlib p70 · winlib p78 · Definition Summaries p80 ·
Menu Commands p83 · Component Files p84 · Printing p87 ·
Overview p89 · Stops p92 · Project File p96 · Building
Applications p99 · Window Driver p102 · wdhandler p107 ·
Form Locales p109 · gl2 commands p131 · Classes p163 · J
Socket Protocol p190 · Lab Header p227 · Lab Sections p228 ·
Running Labs p229 · Program Access p232

locals debug p42 · Definition Summaries p80 · Verbs p90

log(s) Session Manager p13 · Input Log p17 · Menu Commands p83 ·
wd commands p130 · Plot Options p174 · Java jserver class
p182 · J OLE Automation Server p220 · Tutorial: J OLE Server
for Excel p223

lowercase J 5.01 Release Highlights and Overview p1 · wd p104 · Child
Classes p118 · Patterns p156 · Tutorial: J OLE Server for Excel
p223 · Tutorial: J OLE Client to Excel p224

M

macintosh Products p6 · Mac J.402 Startup p11 · gl2 commands p131 ·
Socket Driver p188

mailto Copyright / Warranty / License p9 · Directory Paths p12

mailto:info About J p5

mailto:sales J User License p3

mailto:salesinfo About J p5

mailto:tech About J p5

mantissa SQL Elements p216

math system\packages p23

mathematical Old Windows Release Notes p2

mathutil system\packages p23

matrices system\packages p23 · compare p36 · dates p40

matrix Old Windows Release Notes p2 · system\packages p23 · bmp
p32 · convert p37 · dates p40 · dir p43 · files p45 · format p46 ·
isigraph p48 · misc p55 · numeric p58 · stdlib p70 · strings p71 ·
text p73 · validate p75 · viewmat p76 · winlib p78 · Definition
Summaries p80 · Common Dialog Boxes p123 · gl3 commands
p135 · Properties p165 · Plot Options p174 · Plot Data p175 · J
Socket Protocol p190

member(s) Old Windows Release Notes p2

memory Old Windows Release Notes p2 · dll p44 · jmf p50 · Definition
Summaries p80 · DLLs and Memory Management p198 ·
Calling DLLs p199 · Memory Management p201 · Calling
J.DLL p202 · J OLE Automation Server p220 · Tutorial: J OLE
Client to Excel p224

modal Wait p111

module(s) Copyright p160 · SQL Reserved Words p217 · Tutorial: J OLE
Server for Excel p223

monadically wd p104

N

NB. J 5.01 Release Highlights and Overview p1 · Old Windows
Release Notes p2 · scriptdoc utility p31 · publish p63 · Verbs
p90 · Project File p96 · Locked Scripts p101 · Entering
Information p108 · Menus p126 · wd commands p130 · gl2
commands p131 · gl3 commands p135 · OpenGL printing p136
· Verbs p157 · Utilities p158 · pd verb p169 · plot verb p170 ·
Plot Class p171 · Java applet security p186 · Socket Utilities
p189 · J Socket Protocol p190 · Calling J.DLL p202 · J
OLE/OCX Client p221 · Lab Sections p228

nested J Socket Protocol p190

nub misc p55 · Definition Summaries p80

nubcount misc p55 · Definition Summaries p80

null(s) Old Windows Release Notes p2 · gl2 commands p131 · Patterns
p156 · Utilities p158 · J Socket Protocol p190 · Calling DLLs
p199 · SQL Statements p215 · SQL Reserved Words p217

numerical Copyright p160

O

obverse(s) J 5.01 Release Highlights and Overview p1

odbc Old Windows Release Notes p2 · Mac J.402 Startup p11 · dd
p41 · Definition Summaries p80 · ODBC Data Driver p203 ·
Overview p204 · The SQL Language p205 · Installing ODBC
p206 · Data Driver p208 · Listing the Data Sources p209 ·
ODBC error messages p210 · SQL Statements p215 · SQL
Elements p216 · SQL Reserved Words p217

ole J 5.01 Release Highlights and Overview p1 · Old Windows
Release Notes p2 · wd p104 · wd commands p130 · Java p181 ·
J Socket Protocol p190 · OLE & OCX p218 · Overview p219 · J
OLE Automation Server p220 · J OLE/OCX Client p221 ·
Examples p222 · Tutorial: J OLE Server for Excel p223 ·
Tutorial: J OLE Client to Excel p224

operator(s) SQL Elements p216

P

parentheses Utilities p158

parenthesis Patterns p156

parenthesized myutil p56 · Definition Summaries p80

partioned parts p60 · Definition Summaries p80

partition(s) system\main p22 · misc p55 · parts p60 · Definition Summaries
p80

pixel(s) J 5.01 Release Highlights and Overview p1 · Controlling p20 ·
graph p47 · Definition Summaries p80 · wd p104 · Location and
Size p116 · wd commands p130 · gl2 commands p131 ·
fontspec p132 · isigraph events p133 · Mapping Mode p134 ·
Plot Commands p173

plots Overview p168 · Plot Class p171 · Plot Commands p173 · Plot
Options p174 · Plot Colors p176

plotting Overview p168 · Plot Options p174

pocketpc Products p6

poisson statdist p68 · Definition Summaries p80

poissondist statdist p68 · Definition Summaries p80

poissonprob statdist p68 · Definition Summaries p80

poissonrand statdist p68 · Definition Summaries p80

polynomial(s) system\packages p23

posix J 5.01 Release Highlights and Overview p1

pousse Old Windows Release Notes p2

power(s) Mac J.402 Startup p11 · Component Files p84 · Java p181 ·
Overview p219

powerpc Mac J.402 Startup p11

prime(s) system\packages p23

primitive(s) J 5.01 Release Highlights and Overview p1 · Old Windows
Release Notes p2 · system\packages p23

probability statdist p68 · Definition Summaries p80

Q

q: myutil p56 · Calling J.DLL p202

quadratic system\packages p23

R

r. Tutorial: J OLE Server for Excel p223

radian(s) trig p74 · Definition Summaries p80

random system\packages p23 · numeric p58 · random p64 · statdist p68 ·
viewmat p76 · Definition Summaries p80 · Definitions by Script
p81 · Tutorial: J OLE Server for Excel p223

randomize numeric p58 · random p64 · Definition Summaries p80

rank(s) Old Windows Release Notes p2 · format p46 · stdlib p70 ·
Window Driver Command Reference p129 · J Socket Protocol
p190 · Calling J.DLL p202 · Lab Header p227

raster wd commands p130 · gl2 commands p131

rasterization gl2 commands p131

ratio(s) Mapping Mode p134 · Plot Options p174

ravel(s) gl2 commands p131

ravelled files p45

razed Verbs p157

recurse dir p43

recursive dir p43

richedit system\packages p23 · Window Controls p113 · Child Classes
p118 · Richedit Control p119 · wd commands p130

rotated Viewing p179

rotation(s) Viewing p179

rounded graph p47 · Definition Summaries p80 · gl2 commands p131

rounding numeric p58 · gl2 commands p131

roundint numeric p58 · Definition Summaries p80

S

sandbox wd commands p130 · Jsoftware Java applets p184 · Java applet
security p186

schaum Old Windows Release Notes p2

school(s) J User License p3

script(s) J 5.01 Release Highlights and Overview p1 · Old Windows
Release Notes p2 · Mac J.402 Startup p11 · Directory Paths p12
· Session Manager p13 · Session Manager p14 · Script Windows
p16 · Input Log p17 · Menus p18 · Script Libraries p21 ·
system\main p22 · user p27 · Script Library Overview p30 ·
scriptdoc utility p31 · debug p42 · misc p55 · myutil p56 ·
publish p63 · stdlib p70 · Definition Summaries p80 ·
Definitions by Script p81 · Printing p87 · Overview p89 · Verbs
p90 · Commands p91 · Overview p95 · Project File p96 · Project
Manager Tabs p98 · Building Applications p99 · Project
Conventions p100 · Locked Scripts p101 · Overview p103 ·
Entering Information p108 · Richedit Control p119 · Tab
Control p121 · gl2 commands p131 · gl3 commands p135 ·
Overview p138 · Hints p139 (only first 40 listed)

scriptdoc Script Libraries p21 · scriptdoc utility p31

self Lab Author p230

semicolon(s) format p46 · Printing p87 · wd p104 · wd commands p130 · pd
verb p169 · plot verb p170 · Plot Options p174 · Data Driver
p208

shaped graph p47 · Definition Summaries p80 · gl2 commands p131

shapes Plot Colors p176

singleton(s) format p46

sinh trig p74 · Definition Summaries p80

solaris Products p6

sparse Old Windows Release Notes p2

square(s) Old Windows Release Notes p2 · system\packages p23 · statfns
p69 · Definition Summaries p80 · Copyright p160

stdcall Calling DLLs p199

stderr J 5.01 Release Highlights and Overview p1

stdin J 5.01 Release Highlights and Overview p1

stdout J 5.01 Release Highlights and Overview p1

T

t. J Socket Protocol p190

tabs convert p37 · print p62 · Project Manager p94 · Project Manager
Tabs p98 · Child Classes p118 · Tab Control p121

tanh trig p74 · Definition Summaries p80

teach J 5.01 Release Highlights and Overview p1

teacher(s) J User License p3

tech J 5.01 Release Highlights and Overview p1 · About J p5 ·
Support and Questions p8 · Form Editor p137 · Overview p138 ·
Tech Notes p153

technical About J p5 · Support and Questions p8 · Copyright / Warranty /
License p9

technology Java p181

technotes Overview p138

telnet J 5.01 Release Highlights and Overview p1

theory Old Windows Release Notes p2 · Classes p163 · Tutorial: J
OLE Client to Excel p224

theta Plot Options p174

tie(s) gl2 commands p131

timer System Events p112 · wd commands p130

tolower stdlib p70 · Definition Summaries p80

toupper stdlib p70 · Definition Summaries p80

transform(s) J 5.01 Release Highlights and Overview p1 · Old Windows
Release Notes p2

transformation(s) J 5.01 Release Highlights and Overview p1

transforming Copyright p160

translate(s) Copyright p160 · Viewing p179 · SQL Reserved Words p217

translated Copyright p160 · Viewing p179

translation(s) Copyright p160 · Viewing p179 · SQL Reserved Words p217

transpose(s) J OLE Automation Server p220

transposed J OLE Automation Server p220

treeview Examples p222

trident(s) J 5.01 Release Highlights and Overview p1

trigonometric system\main p22 · trig p74

troubleshooting Tutorial: J OLE Server for Excel p223 · Tutorial: J OLE Client
to Excel p224

U

underscored Demo p159

uppercase Child Controls p117 · Child Classes p118 · Patterns p156 ·
Utilities p158 · Plot Options p174

url(s) Jsoftware Java applets p184

utililties J 5.01 Release Highlights and Overview p1 · Products p6

V

verb(s) J 5.01 Release Highlights and Overview p1 · Old Windows
Release Notes p2 · Directory Paths p12 · scriptdoc utility p31 ·
bmp p32 · colib p33 · compare p36 · convert p37 · coutil p38 ·
csv p39 · dates p40 · dd p41 · debug p42 · dir p43 · dll p44 · files
p45 · format p46 · graph p47 · isigraph p48 · jfiles p49 · jmf p50
· jselect p51 · keyfiles p52 · kfiles p53 · menu p54 · misc p55 ·
myutil p56 · nfiles p57 · numeric p58 · pack p59 · parts p60 ·
plot p61 · print p62 · publish p63 · random p64 · regex p65 · rgb
p66 · socket p67 · statdist p68 · statfns p69 (only first 40 listed)

W

warranties Copyright / Warranty / License p9

warranty General Information p4 · Copyright / Warranty / License p9 ·
Copyright p160

wdhandler winlib p78 · Definition Summaries p80 · Window Driver p102 ·
Overview p103 · wdhandler p107 · Other Message Handlers
p110 · isigraph events p133 · Socket Utilities p189 · J Socket
Protocol p190

winapi Old Windows Release Notes p2 · winapi p77 · Definition
Summaries p80 · Definitions by Script p81

wince gl2 commands p131

workbook(s) Examples p222 · Tutorial: J OLE Server for Excel p223 ·
Tutorial: J OLE Client to Excel p224

X

x. J 5.01 Release Highlights and Overview p1 · bmp p32 · dates
p40 · debug p42 · dir p43 · files p45 · format p46 · isigraph p48 ·
misc p55 · numeric p58 · random p64 · socket p67 · statfns p69 ·
stdlib p70 · strings p71 · text p73 · viewmat p76 · winlib p78 ·
Definition Summaries p80 · Locked Scripts p101

xls Listing the Data Sources p209

Y

y. J 5.01 Release Highlights and Overview p1 · bmp p32 · dates
p40 · debug p42 · dir p43 · files p45 · format p46 · isigraph p48 ·
misc p55 · numeric p58 · random p64 · socket p67 · statfns p69 ·
stdlib p70 · strings p71 · viewmat p76 · winlib p78 · Definition
Summaries p80 · Verbs p90 · Locked Scripts p101 · Examples
p197

year(s) scriptdoc utility p31 · dates p40 · Definition Summaries p80 ·
Copyright p160 · SQL Elements p216 · SQL Reserved Words
p217

