>>  <<  Usr  Pri  JfC  LJ  Phr  Dic  Rel  Voc  !:  Help  Dictionary

 Ceiling >. 0 0 0 Larger Of (Max)

 >.y gives the ceiling of y , that is, the smallest integer greater than or equal to y . Thus: ``` >. 4.6 4 _4 _4.6 5 4 _4 _4 ``` The implied comparison with integers is tolerant, as discussed under Equal (=), and is controlled by >.!.t . See Floor (<.) and McDonnell  for complex arguments. x>.y is the larger of x and y . For example: ``` 3>.4 _4 4 3 >./7 8 5 9 2 9 >./\7 8 5 9 2 7 8 8 9 9 ```

The comparison x = >. x determines whether x is an integer. Thus:
```   Integer_test=: ] = >.      NB. See the definition of fork in Section II F.
Integer_test 3 3.14 _5
1 0 1

f=: = >.                   NB. The same function may be defined by a hook.
f 3 3.14 _5
1 0 1
```
The ceiling >. y is equivalent to -<.-y . In other words, it is the dual of floor with respect to (that is, under) arithmetic negation: >. <.&.- and <. >.&.- . For example:
```   (<.&.- ; >.) 4.6 4 _4 _4.6
+---------+---------+
|5 4 _4 _4|5 4 _4 _4|
+---------+---------+
```

>>  <<  Usr  Pri  JfC  LJ  Phr  Dic  Rel  Voc  !:  Help  Dictionary