>>  <<  Usr  Pri  JfC  LJ  Phr  Dic  Rel  Voc  !:  Help  Dictionary

 Hypergeometric m H. n  0 0 0

 The conjunction H. applies to two numeric lists to produce a monad which is the hypergeometric function defined in Section 15 of Abramowitz and Stegun [13]; it is the limit of the dyadic case, whose left argument restricts the number of terms of the approximating series. As discussed in Iverson [14], the conjunction is defined as follows: ``` rf=: 1 : '(,m) ^!.1/ i.@[' NB. Rising factorial L1=: 2 : 'm rf %&(*/) n rf' L2=: (i.@[ ^~ ]) % !@i.@[ H =: 2 : '(m L1 n +/ . * L2) " 0' ```

For example:
```   'a b'=: 2 3 5; 6 5

a L1 b
(2 3 5 ^!.1/ i.@[) %&(*/) 6 5 ^!.1/ i.@[

t=: 4 [ z=: 7

t a L1 b z
1 1 1.71429 4.28571

t (a H b , a H. b) z
295 295

8 (1 H. 1) i. 6
1 2.71825 7.38095 19.8464 51.8063 128.619
(1 H. 1) i. 6
1 2.71828 7.38906 20.0855 54.5982 148.413
^ i. 6
1 2.71828 7.38906 20.0855 54.5982 148.413

erf   =: (1 H. 1.5)@*: * 2p_0.5&* % ^@:*:    NB. error function
n01cdf=: -: @: >: @: erf @: ((%:0.5)&*)      NB. CDF of normal 0,1

erf 0.5 1 1.5
0.5205 0.842701 0.966105
n01cdf _2 _1.5 _1 _0.5 0 0.5 1 1.5 2
0.0227501 0.0668072 0.158655 0.308538 0.5 0.691462 0.841345 0.933193 0.97725
```

>>  <<  Usr  Pri  JfC  LJ  Phr  Dic  Rel  Voc  !:  Help  Dictionary