| Power | u^:n _ _ _ | 
| n may be integer, boxed, or a gerund. Integer. The verb u is applied n times. An infinite power n produces the limit of the application of u . For example, (2&o.^:_)1 is 0.73908 , the solution of the equation y=Cos y . If n is negative, the obverse u^:_1 (see below) is applied |n times. Finally, u^:n y for an array n is produced by assembling u^:a y (for all the atoms a in n) into an overall result. The obverse is used in u&.v and is produced by v b. _1 . Repeated application of a verb is also provided by Bond (&). Boxed. If n is boxed it must be an atom, and u^:(<m) 
 Gerund. See on the right. | n may be integer, boxed, or a gerund. Integer or Boxed. x u^:n y ↔ x&u^:n y Gerund. (Compare with the gerund cases of the merge adverb }) | 
The obverse (which is normally the inverse) is specified for six cases:
| 1. | The self-inverse functions + - -. % %. |. |: /: [ ] C. p. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 2. | The pairs in the following tables: 
 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 3. | Obviously invertible bonded dyads such 
as -&3 and 10&^. 
and 1 0 2&|: and 3&|. and 1&o. 
and a.&i. as well as u@v and u&v 
if u and v are invertible. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 4. | Monads of the form v/\ and v/\. where v 
is one of +  * -  %  =  ~: | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 5. | Obverses specified by the conjunction :. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 6. | The following cases merit special mention: p:^:_1 n gives the number of primes less than n, denoted by π(n) in math q:^:_1 is */ b&#^:_1 where b is a boolean list is Expand (whose fill atom f can be specified by fit, b&#^:_1!.f or #^:_1!.f ) a&#.^:_1 produces the base-a representation !^:_1 and !&n^:_1 and n&!^:_1 produce the appropriate results {= and i."1&1 are inverses of each other; these convert between integer permutation vectors and boolean permutation matrices | 
(] ; +/\ ; +/\^:2 ; +/\^:0 1 2 3 _1 _2 _3 _4) 1 2 3 4 5 +---------+-----------+------------+-------------+ |1 2 3 4 5|1 3 6 10 15|1 4 10 20 35|1 2 3 4 5| | | | |1 3 6 10 15| | | | |1 4 10 20 35| | | | |1 5 15 35 70| | | | |1 1 1 1 1| | | | |1 0 0 0 0| | | | |1 _1 0 0 0| | | | |1 _2 1 0 0| +---------+-----------+------------+-------------+
Example 2: Fibonacci Sequence
   +/\@|.^:(i.10) 0 1
 0  1
 1  1
 1  2
 2  3
 3  5
 5  8
 8 13
13 21
21 34
34 55
   {. +/\@|.^:n 0 1x [ n=:128       NB. n-th term of the Fibonacci sequence
251728825683549488150424261
   {.{: +/ .*~^:k 0 1,:1 1x [ k=:7  NB. (2^k)-th term of the Fibonacci sequence
251728825683549488150424261
Example 3: Newton Iteration
-:@(+2&%)^:(0 1 2 3) 1 1 1.5 1.41667 1.41422 -:@(+2&%)^:(_) 1 1.41421 -:@(+2&%)^:a: 1 1 1.5 1.41667 1.41422 1.41421 1.41421 %: 2 1.41421
Example 4: Subgroup Generated by a Set of Permutations
   sg=: ~. @ (,/) @ ({"1/~) ^: _ @ (i.@{:@$ , ])
   sg ,: 1 2 3 0 4
0 1 2 3 4
1 2 3 0 4
2 3 0 1 4
3 0 1 2 4
   # sg 1 2 3 4 5 0 ,: 1 0 2 3 4 5
720
Example 5: Transitive Closure
   x=: (#x)<. (#x),~x=: (i.20)+1+20 ?.@# 3
   (i.#x) ,: x
0 1 2 3 4 5 6 7  8  9 10 11 12 13 14 15 16 17 18 19 20
1 4 5 5 7 6 9 9 10 12 11 14 14 15 16 18 18 18 20 20 20
   {&x^:(<15) 0
0 1 4 7 9 12 14 16 18 20 20 20 20 20 20
   {&x^:a: 0
0 1 4 7 9 12 14 16 18 20
   x {~^:a: 0
0 1 4 7 9 12 14 16 18 20
Interpretation: x specifies a directed graph with nodes numbered i.#x and links from i to i{x . For example, the links are: 0 1 , 1 4 , 2 5 , 3 5 and so on. Then {&x^:a:0 or x{~^:a:0 computes all the nodes reachable from node 0.
Example 6: Transitive Closure
Each record of a file begins with a byte indicating the record length (excluding the record length byte itself), followed by the record contents. Given a file, the verb rec below produces the list of boxed records.
rec=: 3 : 0
 n=. #y
 d=. _1 ,~ n<.1+(i.n)+a.i.y
 m=. d {~^:a: 0
 ((i.n) e. m) <;._1 y
)
randomfile=: 3 : 0
 c  =. 1+y ?@$ 255           NB. record lengths
 rec=. {&a.&.> c ?@$&.> 256  NB. record contents
 (c{a.),&.> rec              NB. records with lengths
)
   boxed_rec=: randomfile 1000
   $ boxed_rec
1000
   file=: ; boxed_rec
   $ file
132045
   r=: rec file
   $r
1000
   r -: }.&.> boxed_rec
1
The last phrase verifies that the result of rec are the records without the leading length bytes.