Fixing an argument of a verb produces a monad. Some verbs so produced are sufficiently important to justify being denoted by a primitive symbol, and the following table often shows the corresponding primitive together with the English definition. The conjunction & (often called with) is used to bond an argument to a verb.
| m0 =: 1&+ | Increment >: | 
| m1 =: +&1 | " | 
| m2 =: _1&+ | Decrement <: | 
| m3 =: -&1 | " | 
| m4 =: 1&- | Not -. (logical and probability complement) | 
| m5 =: 1&~: | " | 
| m6 =: 0&= | " | 
| m7 =: 0&- | Negate - (arithmetic) | 
| m8 =: _1&* | " | 
| m9 =: *&_1 | " | 
| m10=: 2&* | Double +: | 
| m11=: *&2 | " | 
| m12=: 3&* | Triple | 
| m13=: *&3 | " | 
| m14=: 0j1&* | j. (Multiply by √-1) | 
| m15=: ^@j. | r. (Complex # on unit circle at y radians) | 
| m16=: 1p1&* | π times | 
| m17=: 0.5&* | Halve -: | 
| m18=: *&0.5 | " | 
| m19=: %&2 | " | 
| m20=: 1&% | Reciprocal % | 
| m21=: ^&_1 | " | 
| m22=: ^&2 | Square *: | 
| m23=: ^&3 | Cube | 
| m24=: ^&0.5 | Square root %: | 
| m25=: ^&1r2 | " | 
| m26=: 2&%: | " | 
| m27=: ^&(%3) | Cube root | 
| m28=: ^&1r3 | " | 
| m29=: 3&%: | " | 
| m30=: (^1)&^ | Exponential ^ | 
| m31=: 1x1&^ | " | 
| m32=: 1x1&^. | Natural log ^. | 
| m33=: 10&^ | Antilog | 
| m34=: 10&^. | Base-10 log | 
| m35=: >:@<.@(10&^.)@(1&>.) | # of digits needed to represent integer y | 
| m36=: #@(10&#.^:_1)"0 | " | 
| m37=: >:@<.@( 2&^.)@(1&>.) | # of bits needed to represent integer y | 
| m38=: #@( 2&#.^:_1)"0 | " | 
| m39=: 0&{ | Head (first) {. | 
| m40=: _1&{ | Tail (last) {: | 
| m41=: 1&}. | Behead }. | 
| m42=: _1&}. | Curtail }: | 
| m43=: 0&< | Positive test | 
| m44=: 0&> | Negative test | 
| m45=: 0&>. | Max (0,y) | 
| m46=: 0&<. | Min (0,y) | 
| m47=: (0&=)@(2&|) | Even test | 
| m48=: (1&=)@(2&|) | Odd test | 
| m49=: _1&A. | Reverse |. | 
| m50=: (<0 _1)&C. | Interchange first and last items | 
| m51=: <.@(0.5&+) | Round | 
| m52=: ,~ $ 1: , ] $ 0: | Identity matrix of order y | 
| m53=: -.@(' '&E.) # ] | Remove multiple blanks | 
| m54=: BC=: i.@>: ! ] | Binomial coefficients of order y | 
| m55=: (0&,+,&0)^:([ `1:) | " (recursive) | 
| m56=: BCT=:i. !/ i. | BC table of orders to y-1 | 
| m57=: PAT=: |:@BCT | Pascal’s triangle | 
| m58=: (0&,+,&0)^:(i.`1:) | " (recursive) | 
| m59=: IX=: a.&i. | Index in ASCII alphabet | 
| m60=: Lt=:(1&e.)@(e.&a.)@, | Literal test | 
| m61=: 1&#. | Sum over lists (last axis) +/"1 | 
| m62=: 1&, | Preface a row of 1’s | 
| m63=: ,&1 | Append a row of 1’s | 
| m64=: 1&,. | Preface a column of 1’s | 
| m65=: ,.&1 | Append a column of 1’s | 
| m66=: 1&,@$ $ , | Itemize (append leading 1 to shape) ,: | 
| m67=: sin=: 1&o. | Sin | 
| m68=: asin=: _1&o. | Arcsin | 
| m69=: cos=: 2&o. | Cos | 
| m70=: acos=: _2&o. | Arccos | 
| m71=: tan=: 3&o. | Tan | 
| m72=: atan=: _3&o. | Arctan | 
| m73=: sinh=: 5&o. | Sinh | 
| m74=: asinh=: _5&o. | Arcsinh | 
| m75=: cosh=: 6&o. | Cosh | 
| m76=: acosh=: _6&o. | Arccosh | 
| m77=: tanh=: 7&o. | Tanh | 
| m78=: atanh=: _7&o. | Arctanh |