>> 
<< 
Usr 
Pri 
JfC 
LJ 
Phr 
Dic 
Voc 
!: 
Help 
Dictionary
| {::y has the same boxing as y and its 
elements are the paths to each leaf (each open array). 
 |  | x{::y fetches a subarray of y according to 
path x ; the selection at each level is based 
on { and, except at the last level, must result in an atom. 
 | 
Map and Fetch can be modeled as follows:
   cat  =: { @: (i.&.>) @: $
   mapp =: 4 : 'if. L. y do. (<"0 x,&.><"0 cat y) mapp&.> y else. >x end.'
   map  =: a:&mapp
   fetch=: >@({&>/)@(<"0@|.@[ , <@]) " 1 _
The following phrases illustrate the use of Map and Fetch:
   ] y=: 1 2 3;4 5;i.4 5
+-----+---+--------------+
|1 2 3|4 5| 0  1  2  3  4|
|     |   | 5  6  7  8  9|
|     |   |10 11 12 13 14|
|     |   |15 16 17 18 19|
+-----+---+--------------+
| (2;_1 _1){::y | The number 19 | 
| (_1;3 4) {::y | The number 19 | 
| {::y | Paths to each open array | 
| {::cat L: 0 y | Paths to each open scalar | 
   ] t=: 5!:2 <'fetch'         An array with an interesting structure
+------------------------------------------------------+-+---+
|+-----------------+-+--------------------------------+|"|1 _|
||+-+-+-----------+|@|+--------------------+-+-------+|| |   |
|||>|@|+-------+-+|| ||+--------------+-+-+|,|+-+-+-+||| |   |
||| | ||+-+-+-+|/||| |||+-------+-+--+|@|[|| ||<|@|]|||| |   |
||| | |||{|&|>|| ||| ||||+-+-+-+|@||.|| | || |+-+-+-+||| |   |
||| | ||+-+-+-+| ||| |||||<|"|0|| |  || | || |       ||| |   |
||| | |+-------+-+|| ||||+-+-+-+| |  || | || |       ||| |   |
||+-+-+-----------+| |||+-------+-+--+| | || |       ||| |   |
||                 | ||+--------------+-+-+| |       ||| |   |
||                 | |+--------------------+-+-------+|| |   |
|+-----------------+-+--------------------------------+| |   |
+------------------------------------------------------+-+---+
| (0;2;0;0;0){:: t | Fetch the subarray corresp. to <"0 in t | 
| (0;2;0;0;0;_1){:: t | Fetch the 0 in that | 
| t ,&< L: 0 1 {:: t | Label each leaf with its path | 
| < S: 0 t | The boxed leaves of t | 
| < S: 1 {:: t | The boxed paths of t | 
| t ,&< S: 0 1 {:: t | A 2-column table of leaves and paths | 
| # 0: S: 0 t | The number of leaves in t | 
>> 
<< 
Usr 
Pri 
JfC 
LJ 
Phr 
Dic 
Voc 
!: 
Help 
Dictionary