>> 
<< 
Usr 
Pri 
JfC 
LJ 
Phr 
Dic 
Voc 
!: 
Help 
Dictionary
| Taylor Coefficient | u t.  0 0 0 |  | 
| u t. y is the yth coefficient in the Taylor 
series approximation to the function u . 
The domain of the adverb t. is the same as the left 
domain of the derivative D. . See the case m t. . 
 |  | x u t.y is the product of (x^y) and u t. y . 
 | 
For example:
   f=: 1 2 1&p. 
   g=: 1 3 3 1&p. 
   x=: 10%~i=: i.8
   ]c=: (f*g) t. i
1 5 10 10 5 1 0 0
   6j2 ":(c p. x),:(f*g) x
  1.00  1.61  2.49  3.71  5.38  7.59 10.49 14.20
  1.00  1.61  2.49  3.71  5.38  7.59 10.49 14.20
   (c p. x)=(f*g) x
1 1 1 1 1 1 1 1
            
   ]d=: f@g t. i 
4 12 21 22 15 6 1 0
   (d p. x)=(f g x)
1 1 1 1 1 1 1 1
   sin=: 1&o. 
   cos=: 2&o.
   8j4":t=: (^ t. i),(sin t. i),:(cos t. i)
  1.0000  1.0000  0.5000  0.1667  0.0417  0.0083  0.0014  0.0002
  0.0000  1.0000  0.0000 _0.1667  0.0000  0.0083  0.0000 _0.0002
  1.0000  0.0000 _0.5000  0.0000  0.0417  0.0000 _0.0014  0.0000
   * t
1 1  1  1 1 1  1  1
0 1  0 _1 0 1  0 _1
1 0 _1  0 1 0 _1  0
   ((sin*sin)+(cos*cos)) t. i
1 0 0 0 _2.71051e_20 0 0 0
   rf=: n%d 
   n=: 0 1&p. 
   d=: 1 _1 _1&p.
   ]fibonacci=: rf t. i. 20
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181
   2 +/\ fibonacci
1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765
   (% -. - *:) t. i.20
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181
>> 
<< 
Usr 
Pri 
JfC 
LJ 
Phr 
Dic 
Voc 
!: 
Help 
Dictionary