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Preface
The present text is intended for a one-semester precalculus course at 
the freshman level. The main topics are those to be expected in an 
introductory course in elementary functions—polynomials, circular 
functions, and the logarithmic and exponential functions.

The major distinguishing characteristic of this treatment is the 
systematic use of formal algorithms or programs in the definition of 
functions. Programs are expressed in a simple programming language 
based on a small set of simple primitives: +, -, x, specification, 
branch, selection of a component of a vector, and formal composition 
of definitions.

The following characteristics of the treatment are also of interest:
1. Vectors are introduced early as an effective device for treat­

ing a family of variables and are used throughout the text. 
For example, the polynomial is treated in terms of its vector 
of coefficients, yielding simple explicit procedures for addi­
tion and multiplication of polynomials, synthetic division, 
and the generation of Pascal’s triangle.

2. The slope of a function is also defined early and is developed 
as a powerful tool for the study of functions. U se of the slope 
function yields, in particular, simple derivations of the poly­
nomial expansions of all the functions treated.

3. Notation is introduced for the reciprocal of a function and 
the inverse of a function and is used to clarify the relations

• among the functions treated.
4. The mathematical derivations are kept simple. Many are 

novel—for example, the derivation of the slope of the re­
ciprocal function in Chapter 7.



5. Each step of the development is carefully motivated; spuri­
ous rigor (that is, the making of careful distinctions which 
are never actually needed or used at the particular level of 
presentation) is avoided.

Programming is learned as a by-product of the constant use of 
algorithms, The use of a computer (treated in Chapter 9) is helpful 
but is neither necessary nor central to the development. The exercises 
are numerous (over 250) and span a wide range of difficulty. A com­
plete booklet of solutions is available from the publisher.

This book grew from my own work in programming languages, 
and from my conviction that the discipline naturally imposed by the 
formalism required in programming would prove a boon in the exposi­
tion of mathematics from a very early level onward. It was developed 
in a one-semester course for seniors at the Fox Lane High School.

I am indebted to a number of the faculty of the Fox Lane High 
School-to Mr. Robert Wallace for initial discussions of course con­
tent, to Mr. George Kasunick, Dr. Norman Michaels, and Dr. Neil 
Atkins for their support and cooperation, and to Messrs. Harold 
Barrett and James Lott for many helpful discussions. To Dr. Herbert 
Hellerman of the IBM Systems Research Institute, I am indebted for 
the use of his PAT system on the 1620 computer and for the many 
evenings he gave to coaching students in its use during the first years 
of the course. For the programming system used in the third year of 
the course, I am obliged to Mr. Lawrence M. Breed of IBM and 
Mr. Philip S. Abrams of Stanford University. I am particularly in­
debted to Mr. Adin D. Falkoff and to Mr. Breed, my colleagues at the 
Thomas J. Watson Research Center, for many helpful suggestions and 
discussions. Thanks are also due to the International Business Ma­
chines Corporation and, in particular, to Dr. G. L. Tucker, for free 
time to teach the course. I am also pleased to acknowledge the editorial 
assistance of Messrs. Peter Saecker and Coley Mills of Science Re­
search Associates. I am indebted to my wife Jean for typing and re­
typing the manuscript and to my son Eric for preparing solutions for 
the exercises.
Mount Kisco, New York Kenneth E. Iverson
March 1,1966
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Chapter One

Introduction
In order to give an overall view of the matters to be treated in this 
course it is necessary to begin with a simple working definition of the 
mathematical term function.

The weight of a quantity of water is related to its volume in the 
manner indicated in Table 1.1; for any volume shown in the table, 
the weight can be determined, and the weight of the water is said to 
be & function of its volume. The table could, of course, be enlarged to 
include fractional volumes so that the weights of any selected set of 
volumes would be specified. In general, if the value of any quantity w 
(in this case, weight) is determined by the value of some other quantity 
v (in this case, volume), then w is said to be a function of v. The vari­
able v is said to be the argument of the function.

Table 1.1 Weight of water as a function of volume
1

Volume 
(cubic inches)

Weight 
(ounces)

1 0.575
2 1.150
3 1.725
4 2.300
5 2.875
6 3.450
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A function can be specified in several ways. The function of 
Table 1.1 can, for example, be specified either by the graph in Fig­
ure 1.2 or by the equation

w = 0.575 xv (1.1)

Determining the value of w that corresponds to some chosen value of 
the argument v is called evaluating the function. Ip the present ex­
ample the function can be evaluated in three ways: by looking up the 
value in Table 1.1, by reading off the value of the corresponding point 
on the graph of Figure 1.2, or by computing the product 0.575 x v 
indicated in Equation 1.1.

Anyone wishing to check the specified relation between weight 
and volume of water could perform experiments with an accurate 
spring scale. If he performs the experiments near the North Pole, 
however, he will find the slightly different relation shown in Table 1.3. 
Since this relation is different, must one conclude that the weight is 
not really a function of the volume? No, one may suppose that the 
weight depends not only on the volume but also on some second factor. 
In this example it happens that the second factor is the strength of the 
earth’s gravitation, which is greatest at the poles and decreases toward 
the equator. Thus the weight of water can be considered a function of 
two arguments, the volume v and the gravitation g\

w = .0179 x g x v
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This can be shown to agree with both Tables 1.1 and 1.3 by using the 
appropriate values of g, which are 32.08 and 32.25 at the equator and 
the pole respectively.

Table 1.3 Weight of water as a function of volume (at North Pole)

Volume 
(cubic inches)

Weight 
(ounces)

1 0.578
2 1.156
3 1.73.4
4 2.312
5 2.890
6 3.468

A function can have one, two, three, four, or even more argu­
ments. For example, the volume v of a rectangular box is a function of 
three arguments: the length /, the breadth b, and the height h. This 
function can be expressed as follows:

v=Ixbxh

Furthermore, the weight of water filling such a box, which was treated 
as a function of the two arguments g and v, can also be considered a 
function of four arguments g, /, b, and h:

w = ,0179x g x I x b x h

Each of the functions mentioned thus far has been expressed as 
a simple product of its arguments. This is, of course, not possible in 
general. For example, the length J of a diagonal of a rectangle with 
sides of length 3 and length b is the following function of b\

d = V (32+fo2)

The graph of this function (Figure 1.4) is a curve, unlike the straight- 
line graph of Figure 1.2.
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Figure 1.4 Three representations of a function

b d

0 3.00
1 3J6
2 3.61
3 4.24
4 5.00
5 5.83
6 6.71
7 7.61
8 8.54

The simple notion of a function proves extremely useful, not 
only in such obvious areas as science and engineering (the weight a 
suspension bridge can support, for example, is a function of many 
arguments, such as the spacing of the towers, the size of the cables, 
and the quality of the steel), but also, though less obviously, in the 
humanities and virtually every field of study. Even the familiar opera­
tions of arithmetic (addition, subtraction, multiplication, and division) 
are functions.

Although there is a vast number of functions of practical interest, 
most of them can be expressed, exactly or approximately, in terms 
of a rather small number of elementary functions. Since the elementary 
functions are the simple building blocks from which more complex 
functions are constructed, their study is an important part of mathe­
matics. This course will concern the simplest and most important 
elementary functions: polynomial functions, circular (trigonometric) 
functions, logarithmic functions, exponential functions, and hyper­
bolic functions.
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The first step will be to develop a notation for describing or 
defining functions. As illustrated in the preceding examples, algebraic 
expressions are useful in defining some functions. The notation to be 
developed is a simple extension of algebraic notation and permits the 
use of a sequence of expressions that are to be evaluated in a specified 
order.

The sequence of expressions that defines a function actually 
provides a recipe, or algorithm, for calculating the value of the func­
tion for any given values of the arguments. Since one is frequently 
concerned with evaluating a function, it is advantageous to have the 
function defined in such a form. Furthermore, modern computers can 
be made to obey such a recipe automatically.

Chapter 9 deals with the use of the computer to evaluate func­
tions. If a computer is not available, this chapter may well be omitted. 
Chapter 9 depends on both Chapters 2 and 3 but may be studied con­
currently with them.



Chapter Two

Programming Notation
An adequate notation for the treatment of functions can be developed 
by a few simple extensions and modifications of familiar algebraic 
notation. The resulting notation is summarized in Appendix D on 
page 226. Although intended primarily for later reference, this sum­
mary should also prove helpful in reading this chapter.

Specification
The basic relations between numbers are represented by the 

familiar symbols <, =, >, >, and =#. For example, x< 14 means
that the value of x does not exceed 14, and y. = xT 3 means that y has 
the same value as x+ 3.

The symbol = is also used in a related but quite different sense 
that must be distinguished from the relation of equality. To illustrate 
the second use of =, consider the following prescription for calculating 
the area a of a rectangle of length / and width w:

a = lx w

If the symbol = represents a relation, then the expression simply 
means that the area a is equal to the expression on the right. This is, 
of course, true; but more is implied, namely, that the variable a is to 
be made equal to the value of the expression on the right. The distinc­
tion is the same as that between the indicative mood in English (“The 
door is closed”) and the imperative (“Close the door”). The impera­
tive orders an action to be performed, at the conclusion of which the 
corresponding indicative statement (“The door is closed”) is, of 
course, true.

6
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The notation 

a<^l x w

will be adopted to denote that a is to be made equal to I x w. The arrow 
denotes specification and implies that the value of the expression on 
the right specifies the value of the variable on the left. The entire ex­
pression is read either as “a is specified by I x w” or as ‘7 x w specifies 
6z”; it has the force of an imperative sentence and will be called a 
statement. Performance of the indicated specification is called execu­
tion of the statement.

Programs
A list of statements, together with a set of sequence arrows indi­

cating the order in which they are to be executed, is called a program. 
For example, Program 2.1 (a) prescribes a calculation of the length of

- ■ —> z<^-x+y
—► X<-lx I

— y<—wxw

(c)

X ^Ixl

y <r-WXW
Z' + y
d <-V z

Program 2.1 Three equivalent programs

the diagonal d of the rectangle in Figure 2.2. The meaning of a se­
quence arrow is obvious: an entrance arrow (as at the left of the first 
statement of Program 2.1 (a)) indicates the first statement to be exe­
cuted; an arrow joins each statement to its successor (that is, the next 

Figure 2.2 The diagonal of a rectangle
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to be executed); and an exit arrow (as at the left of the last statement) 
indicates the end of the program. It is therefore clear that Program 
2.1 (b) is equivalent to 2.1 (a). To simplify matters in common cases, 
the entrance arrow to the first statement in a list can be omitted, any 
sequence arrow from a statement to the one immediately following it 
can be omitted, and the exit arrow from the last statement can be 
omitted. With these rules, Program 2.1 (c) is also seen to be equivalent 
to 2.1 (a).

The validity of these programs can be tested by carrying out the 
steps indicated by the successive statements for some assumed values 
of I (length) and w (width). For example, if / = 4 and w = 3, the record 
would appear as follows:

/
w
X 
y 
z 
d

4
3

16
9

25
5

The making of such a complete step-by-step record is called executing 
the program, and the record itself is called an execution of the program.

The initial values of the arguments / and w can be indicated either 
informally, as was done in the execution above, or formally by pref­
acing the program with the statements 7 «- 4 and w «- 3 as in the pro­
gram below.

The sequence of execution can also be indicated in the familiar 
manner by parentheses; the calculation of d could, for example, be 
written as a one-statement program as follows:

d «— V ((I x /) + (w x w))
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Another familiar rule states that multiplication is performed 
before addition, so that the foregoing could have been written with 
fewer parentheses as follows:

d^V (lxl + W X IV )

Such a rule becomes less useful when many further functions are intro­
duced. Consequently this rule will not be used. However, in order to 
make every statement unambiguous, the following rule wz7/be adopted: 
The functions in a statement will be evaluated in order from right to 
left, subject, of course, to the order indicated by parentheses. For 
example, the statement

(s-q)irxs-p

is equivalent to the fully parenthesized statement

t<- (s-q) + (rx (s-p))

Note that the rule is to evaluate the functions from right to left, not to 
read the entire expression from right to left; thus the last term of the 
preceding expression remains (s -p), not (p- s).

This change in convention, although awkward at first, can be 
assimilated quickly and accurately by first parenthesizing all state­
ments completely and then gradually omitting parentheses as the right- 
to-left rule becomes more familiar, t

Alternative symbols for the same function will be avoided; thus 
x • y and xy will not be used for x x y, and xly will not be used formally 
for x 4- y. Moreover, since uppercase (capital) letters will be used to 
denote functions, variables will be denoted by lowercase letters only. 
To make the distinction clear, students should perhaps use script 
letters for lowercase; this also avoids the common confusion between 
x and x.

Any variable can be specified and respecified any number of 
times in the course of executing a program, and the value of the vari­
able is that produced by the last specification performed in the pro­
gram. For example, the “intermediate” variables x, y, and z, used in 
the original program for calculating d, can be eliminated by using the 
following equivalent program:

tThis departure from established mathematical convention has not been adopted 
lightly. The reasons for it are discussed fully in Appendix A.
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d+-lx I 
d^~ d + w xw 
d^Vd

For the case I = 4, w = 3 the execution now appears as

I
w
d

4
3
16 25 5

When a variable (such as d) appears on both sides of a specification 
arrow, the value given to it on the right is its old value (previously 
assigned), and its value on the left is the new value (obtained by evalu­
ating the entire expression on the right).

Finally, it is important to emphasize that every properly written 
program is a complete and explicit statement of a calculation; after 
the initial specification of the values of certain of the variables (the 
arguments) it must be possible to execute the entire program mechan­
ically, using only the few rules and functions detailed above, without 
recourse to any other knowledge. If any undefined function, symbol, 
or unspecified variable occurs in the program, execution stops at that 
point.

Writing a complete execution of a program is a powerful method 
of gaining a full understanding of the behavior and purpose of the 
program. For every new program encountered in the text the reader 
should carry out one or more executions.

Interpretation Tables
In writing or using a program it is usually helpful to have a list 

of the variables used, together with the significance attached to each 
variable. Such a list is called an interpretation table; in the case of 
Program 2.1 (a) it would appear as follows:

Significance Variables Execution

Length of rectangle I
Width of rectangle w
Square of length of rectangle X
Square of width of rectangle y ■
Square of diagonal of rectangle z
Length of diagonal of rectangle . d
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The interpretation table is helpful in interpreting the purpose 
and behavior of a program. The information in the left-hand column 
is strictly auxiliary, however, and has no bearing on the execution of 
a program. (Do Exercises

2.1-2.8.)

Variable Sequence: Branching
The simple notation already introduced can describe a wide 

variety of calculations (as indicated by the programs of Exercises 
2.1 through 2.8), but it cannot cope with the simple problem of deter­
mining the maximum of two arguments. However, a simple extension 
of the notation not only remedies this particular deficiency but greatly 
increases its power.

The trick is to introduce a new type of statement, called a com­
parison or conditional branch statement, which can change the se­
quence in which the statements of the program are executed. The 
conditional branch will first be illustrated by using it in a program for 
determining z as the maximum of two arguments x and y:

The symbol < used to label the sequence arrow on the right 
indicates that the arrow is followed if and only if a true statement is 
obtained when the colon is replaced with the < in the accompanying 
comparison statement. Thus if x < y, the third statement is executed 
next; if x > y, the second statement is executed. For example, if x = 3 
and y = 5, then x<y and statement three alone is executed to yield 
z = 5; if x = 3 and y = 2, then x>y and statement two alone is executed 
to yield z=3. The executions for several cases appear as follows:

X 3 X 3 X 3 . X -3
y 5 y 2 y 3 y -5
z 5 z 3 z 3 z -3

A comparison statement does not respecify the value of any variable; 
it merely affects the sequence in which the program statements are 
executed.
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More than one labeled sequence arrow may accompany a single 
comparison statement; however, in order that the sequence of execu­
tion of the program (and hence its results) be unambiguous, it is neces­
sary that these relations be mutually exclusive. For example, any one 
of the pairs <,>;<, and =? # may be used to label two branches 
from a single comparison statement, but the pair >,> may not. The 
arrow in the unlabeled branch introduced earlier is always followed; 
this can be considered an unconditional branch.

As a further example of the use of the branch, consider the fol­
lowing interpretation table and execution:

Significance Variables Execution

Weight of Andy a 130
Weight of Bob b 150
Weight of Charles c 125
Maximum of the weights m 150

of the three boys

and the corresponding program, Program 2.3.

(Do Exercises 
2.9-2.12.)

Program 2.3 The maximum of three arguments

The branch stateirient will prove useful in a surprising number 
of ways, but before examining them it is desirable to collect in one 
table the notation introduced thus far; until further notation is intro­
duced, all statements used in programs will be limited to the types 
shown in Table 2.4. In particular, it should be noted that the exponen­
tial notation (x2,x3, and so on) is not included. This notation will be 
used informally in the text, but must not be used in program state­
ments.
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Table 2.4 Summary of notation

Specification 
Branch

Relations
. 1 r •

Multiplication x x y .
Division x + y
Addition x + y . :
Subtraction x-y
Negation -y
Square rootf V Xv ■

How then is a function such as “the nth power of a” (that is, an) 
to be represented? Program 2.5 (a) shows one possible method em­
ploying the conditional branch. Execution for the case a = 2, n = 3 
yields y = 23 = 8, as shown to the right of the program.

i <— n
y a
z • 1
y a x y
i «— i — 1

a 2
3
3 2 4 0
X 2 4 8

(a)
Program 2.5 The nth power of a

Executing Program 2.5 (a) for one or two further cases (say a = 3, 
n—3 and a = 3, n = 1) will clarify its behavior. The heart of the process 
is statement 4, which is repeated or iterated the required number of 
times as determined by the value of n. Such a process is called itera-

fThe symbol V for square root will not be used on the computer (see Chapter 9) 
and will shortly be supplanted by a more general expression.
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tive, and the portion of the program that is iterated (statements 3 
through 5) is called a loop.

Although it works perfectly for positive integral values of n, 
Program 2.5 (a) is defective; it does not give the correct result (and 
in fact never terminates) for the case n = 0. Program 2.5 (b) corrects 
this defect but is still limited to nonnegative integral values of n.

An example of another important use of iteration is furnished 
by the related problem of determining a as a function of the argument 
p, so th<it a is the nth root of p (that is, a = p or p{ n). Program 2.6 
shows one solution for the case n = 2, that is, for square root. The 
basic idea is obvious from the program: the variable a is an approxi­
mation to the required solution, which is improved at each iteration 
by either adding or subtracting a chosen correction c. If the dif­
ference d = p - a2 is positive, the correction is added; otherwise 
it is subtracted. The solution will not be exact (for example, if p = 8, 
the exact solution a = 2.828 ... is an endless decimal) and it is 
therefore necessary to terminate the process when the difference d is 
less than a specified tolerance t. The accompanying execution and 
sketch should make the behavior clear.

Program 2.6 will correctly obtain the square root of p for all 
values of p greater than 1 but will not work for small values such as 
0.1. This problem is examined and solved in Exercise 2.14, as is the 

* problem of extending the program to obtain the nth root of p for any 
integer n.

In executing any program involving a tolerance in the manner of 
Program 2.6, it is clearly unnecessary to carry the calculations to a
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degree of accuracy much greater than the tolerance. The computer 
operation described in Chapter 9 carries calculations to an accuracy of 
eight decimal places. In exercises, an accuracy of four decimal digits 
should suffice.

A more interesting example of the use of successive approxima­
tions is furnished by the following method for computing the value of 
7r. From Figure 2.7 it is clear that the perimeter p = 6 x a of the in­
scribed hexagon is a rough approximation to the circumference of the 
circle of radius 1 (and hence to the value of 2 x tt). Furthermore, the 
perimeter p' = 12 x a' of the inscribed dodecagon is a better approxi­
mation, and p" = 24 x a" is even better, and so on.

(Do Exercises 
2.13-2.15.)
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From the right triangle ABO it is clear that

l-6 = Vl-a2-4

Consequently

b2 = (1 -V 1 - a2-4)2= (1 - a2-4) + 1 - 2xV 1 - a2-4 

and x

b2 + a2 - 4 - 2 - 2 x V 1 - a2 -=- 4
= 2 - V 4 - a2

From triangle ABC, a' = V b2 + a2 4- 4. Hence,
a’ = V2-V 4-a2

But a" is obtained from a' in the same way that a' was obtained 
from a. Hence

a" = V 2 - V 4 - (a')2
a'" =V2-V4-(a'')2 .

and so on.
In a program it is convenient to use the same variable a to repre­

sent all the successive approximations. Thus the expressions for a', 
a", a"and .so forth, can all be replaced by

a<— V 2 - V 4 - d2

Program 2.8 describes the process for approximation by a Zc-sided 
polygon.

n <— 6

p n x a
n: k
n<^-2x n

V2-V4 - ax a

(Do Exercises 
2.16-2.21.)

Program 2.8 An approximation to 2 x 77
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Notation for Numbers
All nonnegative numbers used in programs will be denoted by 

decimal notation in the usual way except that commas will not be 
permitted between groups of digits. Thus 1231 and 12.31 and .1231 
and 0.1231 are permitted, but 1,231 is not permitted as alternative 
notation for 1231.

A rational number such as two-thirds will be denoted informally 
2

in exposition by but in a program it must be denoted formally by 

division (that is, 2-^3) or by an approximate decimal value such as 
0.667.

The treatment of negative numbers can be clarified by adopting 
for them a notation which is distinct from the notation for negating 
a positive number!. This notation (which will now be adopted) con­
sists of a negative sign (“) preceding the number, thus: “1, “2, “3, 
“3.1416, “0.5, “.5, and so forth. The raised negative symbol (“) does 
not denote a function as does the minus sign, but is rather an integral 
part of the representation of the number just as the decimal point is. 
Therefore it is as meaningless to write ~x or 3 or “(3) or “- 3, as it is 
to write .x or ..3 or .(3) or .-3. It is of course meaningful to write - “3 
(which is equal to 3), as it is to write - .3. The negative sign is meaning­
ful only if it immediately precedes a digit or a decimal point. The num­
ber “3 will be read as “negative three,” whereas - 3 will be read as 
“minus three.”

Vectors
The example of Program 2.3 (for finding the maximum of three 

boys’ weights a, b, c) can be extended without difficulty to four 
boys by employing arguments a, b, c, d, or to five by using a, b, c, d, e, 
and so on for any number of arguments. If, however, the number of 
arguments is itself a variable (for example, the number of boys present 
in class tomorrow), a new difficulty arises. This can be surmounted by 
adopting a single name for such & family of variables and by identifying 
each member of the family by a numerical subscript or index. Thus, 
if x is the name of a family of four members, the successive members 
are x2, x3, x4.

Such a family of variables will be called a vector and each mem-

tSee M. Beberman and H. E. Vaughan, High School Mathematics Course 1 
(Heath, 1964), or D. E. Morris and H. D. Topfer, Advancing in Mathematics, J2 
(Science Research Associates, 1964).
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ber will be called a component of the vector. For example, if w is a 
vector of the weights of three boys, the first of whom weighs 130 
pounds, the second 150, and the third 125, then w1 = 130, and w2 
= 150, and w3 = 125. The number of components in a vector x is called 
the dimension of x and is denoted by p x.f The dimension of a vector 
is clearly a function of that vector; in the current example, p w is 3.

A single variable will now be called a scalar to distinguish it from 
a vector. A vector will be denoted by a boldface lowercase italic letter 
(for example, w) to distinguish it from a scalar, which will be denoted 
by a lightface lowercase italic as before. A component of a vector w is 
itself a scalar but it will also be shown in boldface (for example, w3) 
to indicate that it is a member of the family. In handwriting one may 
distinguish a vector by an underscore: x.

A vector can be formed by the catenation (chaining together) of 
scalars. The catenation function is denoted by a comma. Thus the 
statement

/^3,5

specifies f as a vector of dimension 2 such that = 3 and/2 = 5 and, 
as stated, pf=2. Catenation is defined on vectors as well as on 
scalars, so that if >

,9 and h<-f,g

then

p h = 4

and

hx = 3 h2= 5 ft3 = 7 h4=9

Successive catenations are executed in the established order, 
that is, from right to left. Hence the statement

3,5,7,9

yields a vector k which is identical with the vector h of the preceding 
paragraph. The common practice of requiring parentheses enclosing 
the set of components of a vector will not be followed. Extra paren­
theses can of course be placed around any expression —including the 
catenation denoting a vector.

tThe letter p is the Greek letter corresponding to the Roman r. It is spelled rho 
and pronounced roe.



Vectors

To illustrate the use of a vector, consider the following program, 
which determines the sum s of all components of the vector w:

0 4 A 3
0 >30 >80 405 ’
130
150
125

130,150,125
.s'*—0
z^0 i

= s
—► i:pw

i < i 4- 1
—Wj / 

w2

5 <— S + Wi W3

The execution appears on the right.
As a further example, the reader may execute the following 

program for determining the maximum m among the components of w:

If w is the vector of weights of p w boys, if b is the corresponding 
vector of weights of their baggage, and if t is the vector of total weights, 
then t{ is calculated as

. tj = wt- + bg

Statements 2 through 5 of Program 2.9 perform this addition for 
all components of w and b, using catenation to append the successive 
components of t as they are computed. The vector t must of course be 
assigned an initial value before the catenation of statement 5 can be 
executed. In thisinitial state the vector t must contain no components 
and must therefore be of dimension 0. For reasons discussed later, in
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the treatment of two-dimensional arrays in Chapter 4, the result of 
applying the dimension function p to any scalar is a vector of dimen­
sion 0. Hence statement 1 of Program 2.9 (that is, t <— p 0) gives to t 
the required initial value. < -

t<— p 0
z«-0
i: p w

i * j + 1
t <— t, wf + bg

i 
tv 
b 
t

4 2 3
130,150,125
100,75,115

230
230,225
230,225,240

Program 2.9 The component-by-cbmponent sum of vectors

(Do Exercise 
2.22.)

An execution of Program 2.9 is shown for the case where the 
given values of the arguments w and b are (130,150,125) and (100 , 
75 , 115) respectively. The value of a vector of dimension 0 is denoted 
by a blank as shown. The following more abbreviated record of the 
execution is more convenient and, since it is perfectly clear, also 
acceptable.

i KI 3
w 130,150,125
b 100,75,115
t 230,225,240

The indexing function xt (selecting the zth component of x) is
meaningful only if i is one of the integers 1,2, 3,..., p x. For any other 
values of i it is therefore undefined and cannot be evaluated. For ex­
ample, if

t-230,225

then the statement z*~t3 cannot be executed. Moreover the statement

t3«—240

cannot be executed either. Hence the following program (which might 
have been considered as a simpler alternative to Program 2.9) is not 
acceptable and cannot be executed:
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i:pw

i*-i+ 1
tj *— wt + hi

A component of a vector is a scalar. A scalar cannot be indexed, 
that is, if x is a scalar the expression xt is meaningless, and if y is«a 
vector the expression y- is meaningful but the expression (y)j is not. 
If x = (p 0), 6, then x is a vector of dimension 1 and is distinguished 
from the scalar y = 6 in two ways: (1) the vector can be indexed; and 
(2) p x is a vector of dimension 1 whose one component is equal to 1, 
whereas p y is a vector of dimension 0.

Functions of Vectors
Component-by-component. The need for component-by­

component addition of two vectors frequently arises, and this func­
tion will be denoted by

t<— w+ b

It is defined precisely by Program 2.9, except that it is further under­
stood to apply only to vectors w and 6 of the same dimension. Thus 
if w = (130,150,125) and if b = (100,75,115), then t = (230,225 , 
240); but if w = (130,150,125) and b = (100,70,115,85), then 
w + b is not defined.

Nevertheless, one of the arguments may be a scalar. For ex­
ample, if the boys’ baggage consists only of packs of the same weight c 
b, then the calculation of the total weight t will be written as

t<— b 4- w

and will imply that t{ = b + «,■.
It is useful to apply this component-by-component definition not 

only to addition but to all other functions in the same way. For ex­
ample, if t = (230,225,240) and if r = (2,1 ,0.5) is the rate per pound 
to be charged for each of the boys, then the cost for each is given by 
the vector c as
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and clearly c = (460,225,120). Similarly, if a common rate r is used, 
then

c <— r x t

For example, if r = 2, then c = (460,450,480), and if z = (25,16,9), 
then V z = (5,4,3). x

Reduction by a function of two arguments. The summa­
tion of all the components of a vector x illustrates another useful type 
of function. It will be denoted by +/ x and will be defined as

+lx = x1 + x2+... + x{px)_l + xpx

where the indicated additions are performed from right to left accord­
ing to the usual convention.

Again it is useful to extend the notion to all functions of two argu­
ments. For example, x/ x denotes the product over all components 
of x. In general, for any function F of two arguments, F/ x denotes the 
function x±F x2F... F xpx and is called “F-reduction of x” or “re­
duction of x by F” or simply “F over x.” For example, +/x is called 
“addition-reduction of x” or “the sum over x.”

In the case of subtraction-reduction, the right-to-left order of 
execution is significant. For example, if x = 1,4,9,16,25, then

-lx= 1 - (4 - (9 - (16 - 25)))
= 15

On the other hand, left-to-right execution would yield the result 
(((1 - 4) - 9) - 16) - 25) = _53. Ingeneral,

-ly=(y1 + y3+,ys+---)-(y2+y4 + ye+--.)

Similarly,

+ly= (yx Xy3Xy5X . . .) 4- (y2 Xy4Xy6 X .. .)

The following program provides a precise definition of the func­
tion+/x:
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Since the index i is initially set to p x rather than zero and is decreased 
on each iteration, the components are summed in the required order 
from right to left.

Applications of Vectors
In the foregoing examples the functions on vectors permitted 

a function on a whole family of variables to be denoted as conveniently 
as the corresponding function on a single variable. Because of this con­
venience it is advisable to watch for opportunities to treat a collection 
of variables as a vector. A few examples will be given in this section. 
They include points in a plane, points in three-dimensional space, 
rational numbers, and complex numbers.

Points in space. A point P in a plane having coordinates x 
andy is often denoted by P(x, y) as shown in Figure 2.10. The two co­
ordinates of the point P can be considered components of a vector p 
such that Pj is the first coordinate (that is, x) and p2 is the second 
coordinate.

(Do Exercise 
2.23.)

Figure 2.10 Vector representation of points in a plane

If q is the vector of coordinates of a second point in the plane, 
then clearly the vector

d=q—p 
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is the displacement required to move from point p to point q. Using 
the points shown in Figure 2.10, for example, p = (3 , l),q=(6,5), 
and d = (3,4). Furthermore the length I of this displacement (that is, 
the direct distance from p to q) is given by

I — ^7 +/ d X d

Again in Figure 2.10, dx d= (32,42) = (9,16), and +/dxd=9 
+ 16=25. Finally, l = V25 = 5.,

Figure 2.11 Vector representation of points in 3-space

Consideration of points in three-dimensional space reveals some 
of the power of vector notation, since the expressions for displacement 
and distance turn out to be identical with the corresponding expres­
sions for points in the plane. The three coordinates of a point in three- 
dimensional space are of course denoted by a vector p = (p1 ,p2 ,p3) 
of dimension 3. Thus in Figure 2.11, the displacement is

d = q - p = (3,2,6)

and

l = V +/dxd=7
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Rational numbers. A rational number n is any number that 
is expressed as the quotient of two integers i and j, that is, n = i + j. 
This pair of integers can be treated as a vector r of dimension 2. Thus 
a vector r whose components are integers represents a rational number 
n such that

For example, r = (3,4) represents 3^-4- 0.75, andq = (2,3) repre­
sents 2 + 3. If p represents the product of these two rational numbers, 
then clearly p = q x r. In the present example, p = (6,12). This repre­
sentation is not unique; the number could also be represented (in 
lowest terms) by I = (1,2), since 4-/1= 4-/p.

The addition of rationals q and r is somewhat more complicated. 
If s is the sum, then

. • V-
. s = ((q1Xr2)+ q2xr1),.q2xr2 4- ' f

Again using q = 2,3 and r = 3,4,

' s — ((2 x 4) + 3 x 3), 3 x 4
-(17,12)

. r3 . 2 . 17and the sum of — and y is yy

Complex numbers. A complex number n can be represented 
by a vector c of dimension 2 such that n = c1 + c2 x \1, where 
and c2 are real numbers. The addition of two complex numbers repre­
sented by c and d is simple:

s = c + d

Multiplication is slightly more complicated and will be left as an 
exercise.

Other applications. Suppose that a certain set of plywood 
panels suffices to make a covered box 2 feet high, 4 feet long, and 
3 feet wide. Then the set can be characterized by the numbers 2, 4, 
and 3. More generally, a group of such sets of panels could be de­
scribed by a list of the following form:

h I w

2 4 3
16 5
4 8 6
1 3 2
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where the zth row gives the dimensions of the Zth box. If the successive 
columns of this table are denoted by h (the vector of heights), I, and 
w, then the volumes v of the set of boxes are given by

v = h X I X w

Similarly, the surface areas s are given by

s = 2 x (/i x /) + (/i x w) + I x w

The ratios r of volumes to surface areas are given by

r = v 4- s

and the set giving the best ratio can be obtained by a program which 
(Do Exercises determines the maximum over the components of r.
2.24-2.27.)

Programming Techniques
The ability to write good programs, like writing ability of any 

kind, can be acquired only by practice. Four basic techniques will be 
presented and illustrated in this section:

1) program reading
2) placing decisions (that is, branches) early in the program
3) utilizing known programs for simple operations within a 

more complex program
4) programming the main operation before the statements that 

perform the auxiliary operations such as the indexing of 
vectors

Program reading. To write programs one must first learn to 
read programs critically. This is important not only for understanding 
the examples provided by completed programs, but also in criticizing 
and revising attempted programs.

The first step in program reading is learning to perform an accu­
rate execution for any selected initial values of the arguments. The 
next is to grasp the overall behavior of the program. In Program 
2.12 (b), for example, it might be necessary to execute for several dif­
ferent initial values of x to learn that the function determines the sum of 
the negative components of x. A completed program should always be 
executed to try to discover any subtle flaws in its performance.

Leading decisions. Sequence arrows that cross each other 
make a program unnecessarily difficult to read and usually betray a 
poorly organized program. Reordering of the sequence in which the 
statements are written can usually lead to improvement.
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One rule that tends to avoid certain errors and to simplify the 
branching structure is to place the branch statements early in the pro­
gram. This is called the use of leading decisions.

Consider, for example, Program 2.12 (a), which determines n 
as the sum of the negative components of x. The exit branch occurs 
last in the program. Execution for the case x = (3 , _2 , ~4,5) reveals 
a flaw—the program does not terminate properly if the last component 
of x is nonnegative. This kind of error is avoided naturally by placing 
the exit branch early, as in Program 2.12 (b).

(a) (b)

Program 2.12 The sum of the negative components of a vector

Utilizing known programs. A complex program can fre­
quently be built up from simpler known programs. Consider, for ex­
ample, the problem of determining a as the nth root of the argument 
p for any positive integer n. Program 2.6 is a solution for the special 
case of n = 2. It can be extended to the present case by replacing the 
fourth statement with a program segment that determines d as the 
difference between p and the nth power of a.

The nth power of a can in turn be provided by Program 2.5 (b). 
Hence a complete program can be constructed by incorporating Pro­
gram 2.5 in Program 2.6 as shown in Program 2.13. This solution, 
however, is subject to the limitations indicated in Exercise 2.14.
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Program 2.13 The nth root of p

The main operation. It is usually advisable to write the 
statement for the main operation of a program first and complete other 
details later. In other words, one begins in the middle of the process, 
treating, for example, the zth component of the vector involved and 
dealing later with the question of how the index i is set initially, modi­
fied, and compared to terminate the process.

Consider, for example, the following problem: Compute the 
vector p which contains as components all the prime numbers not 
greater than the integer n. For example, if n = 12, then p must be the 
vector (2,3,5,7,11). The main operation, therefore, is to make a 
variable j run through the integer values up to n, and to append to p 
each value of j that proves to be a prime. The overall program there­
fore includes the following statements:
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A test of whether j is prime must of course be interposed before the 
last statement.

The required test is that j must not be divisible by any of the 
smaller primes, that is, it must not be divisible by any of the present 
components of p. Hence the test for divisibility by must be repeated 
for each value of i and must therefore be followed by the steps:

i i + 1 
i:pp

The program thus far therefore appears as

where the two rows of dots indicate a program segment which tests 
j for divisibility by p/. Divisibility can be tested by repeated subtrac­
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tion as shown in statements 6 through 8 of the final program (Program 
2.14). The accompanying execution for the case n = 9 illustrates the 

(Do Exercises behavior.
2.28-2.31.)

9
424423442341 1 2
23436739
34 ~4 420331 ”4 3204 6 4 207334
-4 744 -2 72 -3 3642097534-1
963 0
2,3,5,7

Program 2.14 The vector p of the primes up to n

Exercises
2.1 Execute each of the following programs:

(a) (b) (c)
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2.2 Execute each of the following programs. (Be sure to ob­
serve the right-to-left order.)

(a) (b) (c)

2.3 Execute each of the following programs for a = 4 and 
b = 9:

(a) (b) (c)

(a + b)

(d)
2.4 For each program of Exercise 2.3, write an equivalent one- 

statement program that is fully parenthesized. For ex­
ample, 2.3 (a) is equivalent to (a x (a + 1)) x (a + 2). 
Check each result by actual execution for some chosen 
values of the arguments.

2.5 Rewrite the one-statement programs of Exercise 2.4 using 
the right-to-left convention to eliminate as many paren­
theses as possible.
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2.6 For each program of Exercise 2.3, state as simply as pos­
sible in words what each program does; For example, 
Program (a) determines z as the product of a and the next 
two integers following it. Assume that the arguments are 
restricted to integer values.

2.7 Write a program for each of the following:
(a) To determine the length f of a face diagonal of a cube 

whose edges are of length 5.
(b) To determine the length b of a body diagonal of a cube 

whose edges are of length s.
(c) To determine the length b of a body diagonal of a cube 

whose face diagonal is of length f.
2.8 (a) Execute your program for Exercise 2.7 (a) for s = 2.

(b) Execute your program for Exercise 2.7 (b) for s = 2,
(c) Execute your program for Exercise 2.7 (c) for/= 18.

2.9 Execute the following programs for x = 4 and y = 11:

positive integers, state in words what each program of 
Exercise 2.9 does. (Hint: Execute each program for 
values of the arguments selected so as to explore all possi­
ble sequences in the program.)

2.11 (a) Determine in how many different orders the statements 
of Program 2.3 can be executed. Select sets of values 
of a, b, and c so that the executions exhaust all cases.
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(b) Write a program to determine a as the absolute value 
of x.

(c) The program of Exercise 2.9 (b) can be modified by 
the addition of a single statement so as to determine a 
as the absolute value of x. Make such a modification.

2.12 (a) Let a, b, and c be the lengths of the three sides of a^—
triangle. Write a program to determine the type of 
triangle they form, that is, to produce a result t which 
is equal to 1 for scalene, 2 for isosceles, 3 for equi­
lateral.

(b) Extend the program of part (a) to reverse the sign of ■ 
the result if the triangle is also a right triangle, for ex­
ample,/ = ~2 for an isosceles right triangle.

2.13 Execute Programs 2.5 (a) and (b) for the following cases:
(a) a = 3, n = 2
(b) a= l,n=3
(c) a - 2, n = 0

2.14 (a) Execute Program 2.6 for p = 24 and t = 0.25.
(b) For p = 0.1 and / = 0.05, execute Program 2.6 far 

enough to appreciate why it will never terminate.
(c) The defect encountered in part (b) can be corrected ■ 

by giving c a sufficiently large initial value. Write a 
modification of Program 2.6 that will work for all non­
negative values of p?

(d) A program to determine the nth root of p can be ob- 
tained by replacing statement 4 of Program 2.6 with a 
program segment that computes the nth power of a 
and subtracts it from p. Write such a modification of

' Program 2.6./
(e) Execute your solution to part (d) for the case n = 3, 

p= 16, and t = 0.5, and check the resulting value of a.
2.15 For n = 2, Programs 2.5 and 2.6 define inverse functions 

(that is, square and square root) so that if the result p of 
Program 2.5 is used as the argument p of Program 2.6 it 
will yield (approximately) the original argument x used in 
Program 2.5. Conversely, the result a of Program 2.6 used 
as the argument of Program 2.5 yields the original argu­
ment used in Program 2.6.
(a) Use Program 2.5 (b) to check your solution to Exer­

cise 2.14 (a).
(b) Use Program 2.6 to check your solution to Exercise 

2.13(a).
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(c) The program required in Exercise 2.14 (d) produces a 
function (the nth root) that is inverse to the function 
of Program 2.5 (b) for any value of n. Use Program 
2.5 (b) to check your result to Exercise 2.14 (e). (Since 
t was not small, do not expect very close agreement.)

2.16 (a) Execute Program 2.8 for k= 48, and compare the re­
sulting value of the perimeter p with the known value 
Of 2 X 7T.

— (b) Write a program to approximate . 2 x tt by circum­
scribed polygons.

—-v” (c) Write a program (combining the programs of parts (a)
and (c)) to determine both upper and lower bounds on 
2 x 7r and to terminate when the difference between 
them is less than a given tolerance t.

— 2.17 Write a program which determines q as the integral part
of the quotient x'+y and r as the remainder, where the 
arguments x and y are restricted as follows:
(a) x and y are both positive.
(b) y is nonzero.

— > 2.18 Write a program for each of the following:
(a) To determine a as the value of ! n (that is, factorial 

n, defined as 1 x 2 x 3 x ... x n), for nonnegative inte­
gers n. Ensure that the program gives the correct value 
of! 0, which is defined as 1.

(b) To determine 5 as the sum of the first n positive inte­
gers.

(c) To determine q as the sum of the squares of the first n 
positive integers.

—-2.19 (a) Execute your solution to Exercise 2.18 (b) for the first 
few values of n and compare the values of s with the 
corresponding values of s in the program

s<— (n x n + 1) + 2
(b) Execute your solution to Exercise 2.18 (c) for a few 

values and compare with the program
q*~ (n x (h + .5) x n + 1) 3

- 2.20 (a) Execute the accompanying program for the following
cases:

(i) a = 30, b = 42
(ii) a = 15, b = 5

(b) Assuming that the variables a and b together represent 
the rational number a 4- b, state in words what the 
program does:
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(c) Write a program which determines the greatest com­
mon divisor of the integer arguments m and n.

2.21 (a) Write a program to determine z as a function of x such
that z = xm+n. (Hint: See Program 2.5 and Exercise 
2.14 (d) and note that xm + n = x)m.)

(b) Execute the program of part (a) for the case x= 10, 
m= 3, n = 4.

2.22 Execute the following programs for the case x= (1 ,2, 
3,4) and y = (4,3,2,1).

(a) (b) (c)

2.23 Write one-statement programs equivalent to those of 
Exercise 2.22. For example, x/x is equivalent to 
2.22 (a).
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2.24 A rectangular box is to be constructed. The njaterials 
available permit any one of several specified combinations 
of length, width, and height. Write a program which will 
determine the set of dimensions that give a box having the 
maximum ratio of volume to surface area. In writing the 
program —
(a) First prepare an interpretation table to show your 

choice of symbols for the variables involved.
(b) Use vector operations where possible.
(c) Execute the program for some simple case.

2.25 The following programs perform a pair of functions which 
should be familiar from elementary arithmetic. Identify 
these functions. (Hint: Execute the programs for several 
initial values. If necessary, refer to the section devoted to 
applications of vectors, page 25.) The vectors x and y are 
each of dimension 2 (that is, p x = p y = 2):
(a) z^~ ((Xj X y2) + x2 X yj ,x2 X^
(b) z^~ xX y

2.26 As in Exercise 2.25, identify the pair of familiar functions 
performed by the following programs:
(a) z<—x + y
(b) z^ ( (xt X yj - x2 X y2) , (X1 X y2) + x2 X y±

2.27 State in words the function performed by the following 
program:

—►

z<-0
—► t

i: p c ■—►
i <— i -T 1
t <— Ci
k^l

— k'.i <—

&<—£+ 1
t x x —

2.28 (a) The accompanying program produces a vector p as a 
function of n. State in words what the program does. 
(Execute for a few values of n if necessary.)
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(b) Modify Program 2.14 so that it will determine p as the 
vector of the first n primes rather than as the primes 
up to n.

2.29 (a) If x<- 1, (-2) ,3,4, (-5) ,6, then

Xj = 1 x2 = -2 xs = 3
x4 = 4 x. = -5 x6 = 6

Show that if 1;-2,3,4,-5,6, then y and x are 
not equivalent and in fact

= 1 y?= Vz = “3
= -4 . y5 = 5 y6 = 6

(Hint: Be careful to observe the exact right-to-left 
sequence in performing the successive catenations 
(denoted by commas) and negations.)

(b) Show that the components of the vector

a«—3 , —4 , —5 , —7 , —8 , —1

are alternately positive and negative. J
(c) Write a statement using only raised negative signs and 

catenation to specify a vector z which is equal to the 
vector x of part (a).

2.30 (a) Execute the accompanying program for the following
cases:
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j:px 
i^px 
i: 1
i <— i - 1

xrxi + i

b Xi
xi^xi + i 

xi+l^b

(i) x=6,2,l,9
(ii) x = 6,2,3,5,2,8,1

(b) State in words what the program does to the vector x.
(c) Write a program which determines d as the vector 

containing all the distinct components of a vector a. 
For example, if a = 3,5,5,9,12,12,12, then 
d = 3,5,9,12. Assume that the components of a 
are already in ascending order.

(d) Execute your program for the case

a = 3,5,5,9,12,12,12

(e) Modify the program developed in part (c) so that it 
will work for a vector a whose components are in 
arbitrary order. (Hint: Use the program of part (a) to 
arrange the components of a in ascending order.)

(f) Show that the program of part (a) produces the same 
result and is faster to execute if statement 5 is replaced 
with i: j.

2.31 (a) Let the vectors a, b, and c be the plane coordinates of 
the vertices of a triangle. Write a program to determine 
the same result as in Exercise 2.12 (a), using a, b, and 
c as arguments.

(b) Repeat part (a) assuming that a, b, and c represent 
points in three dimensional space (that is, pa = pb 
= pc=3). ,
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Functions
Definition of Functions
A program such as Program 3.1 (a), in which the value of each vari­
able is specified, has no arguments and the result z is assigned a 
single fixed value. In Program 3.1 (b), on the other hand, the values 
of the variables x and y are not prescribed and the program can be 
viewed as a rule for assigning a specific value to z for each specific 
pair of values assigned to x and y; the program therefore defines a 
function of the two arguments x and y.

(a)

+ y 
d^-x-y 
z^~ s x d

(b)
Program 3.1 Functions of no arguments and of two arguments

The arguments in a program are easily identified as the variables 
to which initial values are not assigned within the program. The identi­
fication of the result variables is less obvious and is, in fact, rather 
arbitrary. Program 3.1 (b), for example, produces three results: s(the 
sum of the arguments), d (their difference), and z (the product sx d). 
It therefore represents three functions of x and y. Usually, however, 
one of the result variables is singled out as the result of interest and 
is called the resultant} the others are then considered “intermediate” 
results.

39
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A program therefore provides a means for defining new functions. 
Once a suitable name or symbol is associated with a program, the 
function described by that program can be used in other programs as 
freely as the basic functions already defined. This provides a powerful 
means for extending the set of functions available for writing programs.

Consider, for example, Program 3.2, which determines z as the 
maximum of x and y. The expression

z^x\y

above the program is the name assigned to the function described by 
the program. The symbol [ is therefore assigned to the maximum func­
tion. It is necessary, however, to include the variables z, x, and y in 
the name so as to make clear which variable in the program represents 
the resultant, which represents the first argument, and which repre­
sents the second argument.

" z^~x\y

Program 3,2 Definition of the maximum function [

A function such as F is assumed to apply not only to the particu­
lar variables x and y used in its definition, but equally to any pair of 
variables whatever. Thus the statement

r^~P\q

implies that r is specified as the maximum of p and q. More precisely, 
it is equivalent to the following program,

z*~x\y
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in which statements 3 through 5 represent the function previously 
named: z <— x F y. '

Thus Program 3.3 together with the program for x F y (Pro­
gram 3.2) would be executed as follows:

7
5
7

p 3, 1 ,7,5 X 0 3 3
m 0 3 3 7 7 y 3 1 7
i 04 23 4 z 3 3 7
Pi 3275

The successive columns on the right each represent an execution 
for one of the cases prescribed by the step

m\pi

in Program 3.3.

p<—3,1,7,5 
m <— 0 
z<—0

i ■ P P 
i<—i+l
m<— m[ Pi

Program 3.3 Use of the maximum function

In Program 3.2 the variables x, y, z which appear in the name of 
the function it defines are simply dummy variables which indicate the 
role (for example, the first argument) played by the variables occurring 
in the program. Although it may seem strange that the assignment of a 
name such as z x F y then permits the use of statements such as 
r P F q and m «— m F p,, the situation is actually no different from that 
assumed for the basic functions such as + and x. They are assumed to 
apply to any set of variables (for example, r «- p + q-, m <- m x p(, and 
so forth) even though their definition for one unfamiliar with them 
would have to be couched in terms of specific variables such as x, y, 
and z- Moreover, when one encounters the symbol + in a statement he 
must (except for small integer arguments) turn aside to execute an 
algorithm for it, namely, the addition procedure learned in elementary 
school.
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Any new function of two arguments that has been defined by a 
program and appropriately named can therefore be used afterward 
in any and all of the ways that a basic function such as addition can 
be used. For example, +/x denotes the sum xt + x2 +... + xpx and, 
analogously, 17 x denotes xt F x2 F... F xpx. Consequently the program

3,1,7,5
m <- F I p

(Do Exercises is equivalent to Program 3.3.

Naming Functions
A function of one argument is called a monadic function, and a 

function of two arguments is called dyadic. To name a dyadic function, 
the symbol for the function will be placed between the arguments. 
This agrees with the form forthe basic dyadic arithmetic functions 
+ and x and was done for the maximum function in Program 3.2. 
Moreover, the symbol used for a function will be a special symbol 
such as F, a Greek letter, or an uppercase Roman letter.

Monadic functions are named in a similar way, with the symbol 
for the function being placed before the argument. This agrees with 
the form normally used for negation, that is, the symbol - is placed 
before the argument. The familiar notation for absolute value, how­
ever, does not follow this pattern, since the symbol both precedes and 
follows the argument, thus: |x|. This notation will therefore be 
replaced with | x, so that the symbol for the function precedes the argu­
ment. The absolute value function can be formally defined by Pro­
gram 3.4 (a) or by Program 3.4 (b).

(a) (b)
Program 3.4 Definitions of the absolute value function |

' This use of the same symbol to denote both a dyadic function 
(for example, x - y) and a related monadic function (- y) introduces 
no ambiguity, since the context determines the interpretation. For 
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example, in the expression x + y - z the symbol - represents a dyadic 
function, whereas in the expression x x - z it necessarily represents a 
monadic function. Any symbol can therefore be used unambiguously 
to denote both a dyadic function and a (not necessarily related) mo­
nadic function. For example, the symbol | used for the monadic func­
tion absolute value will also be used to denote the dyadic function 
residue to be defined in the following section. This double use of some 
symbols gives no difficulty and helps to keep the symbols required 
down to a reasonable number.

Two functions are said to be equivalent if they yield the same 
result for any chosen values of their arguments. Equivalence will be 
denoted by the symbol s. For example:

(x + 1) x x + 1 = (x x x) + (2 x x) + 1

Some Basic Functions
The method for defining new functions can now be used to extend 

the small set of basic functions adopted in Chapter 2; each new func­
tion can be defined by a program which employs only the basic func­
tions or previously defined functions. Consequently the eventual 
definition of each function is made in terms of a small and simple set 
of familiar functions. All notation and all functions defined in the text 
are listed in Appendix D.

Maximum, minimum, negation, and absolute value.
Negation is a monadic function denoted by the symbol - and defined 
in terms of subtraction as follows:

-x= 0 -x

Maximum is the dyadic function denoted by f and defined by Pro­
gram 3.2. Minimum is denoted by L. It could be defined by a simi­
lar program, but (as the reader should verify) it can be defined in 
terms of maximum and negation as follows:

X [ y = _ (_ x) [ _ y

Absolute value is a monadic function denoted by | and defined by

I X = X [ — X (Do Exercises
3.3-3.4.)

Residue. The residue of n modulo J is denoted by d\n and is 
defined for all values of d and n, except for J = 0, as the nonnegative 
remainder obtained on dividing n by d. More precisely, if r is the 
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residue of n modulo d, then 0 < r < | d, and n = r 4- q x rf, where q 
is some integer. Some sample values of the residue function are
shown below:

d n d\ n

3 7 1
3 8 2
3 9 0
3 -7 2
4 19 3
4 -19 1

A simple use of the residue function occurs in reducing a rational 
number to lowest terms. If a and b are two integers representing the 
rational number a 4- b, then Program 3.5 reduces them to lowest terms. 
The process is simply to divide by j if the residues j\ a and j\ b are 
both zero, and is illustrated by the accompanying execution for the 
case where a = 84 and b = 140.

84 42 24 3
>40 70 33 5
4 23 43 j6 7

Program 3.5 Reduction of the rational 
number a 4- b to lowest terms

The residue function is also used in a very efficient method for 
finding the greatest common divisor of two integers m and n, the so- 
called Euclidean algorithm. Any factor common to m and n is also a 
factor of the remainder obtained in dividing n by m, that is, m | n. Hence 
the gcd of m and n is also the gcd of m and m\n. The process can be 
repeated by obtaining the residue (m|n)|m, and so on, as shown ex­
plicitly in Program 3.6 and as illustrated in the accompanying execu­
tion for m = 30 and n = 42.
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g^~ mA n

30 6 0
42 30 12 6
30 12 6

Program 3.6 The Euclidean algorithm for the, greatest common 
divisor of m and n

It should also be noted that l|x is the fractional part of x and that 
x - 1 |x is the integral part of x. The reader can also verify the following 
relation between the residue function and the monadic function de- i 
noted by the same symbol, that is, the absolute-value function:

(Do Exercises
|x = (2xx)|x 3.5-3.9.)

The factorial function. The factorial function is denoted by 
! n and is defined for positive integral values of n as the product of the 
positive integers up to and including n. For example, !1 = 1; !2 = 2; 
!3 = 6; and !8 = 40320. The value of !0 is defined to be 1 so that the 
obvious identity

! n = n x! n — 1

will hold even for the case n = 1, that is,

! 1 = 1 x! 0

The factorial function is defined only for, nonnegative integral 
values of the argument. It is more commonly denoted by n!, but! n 
will be used here to obey the convention of placing the symbol for a 
monadic function before its argument.

The exponential function. The function JcEn defined by 
Program 3.7 will be recognized as the function more commonly de­
noted by xn and called “x to the power ft” or “x to the exponent ft.” 
The program defines xEp only for integral exponents, since it never 
terminates if n is not an integer. The definition was extended to the 
case ft = 0.5 (that is, square root) by Program 2.6, and to the case 
ft= 1 4- m by the more general program required in Exercise 2.14. 
Since xE q) = (xtEp) E (1 4- q) (that is, xp + q = (x2’)14^), the 
function can obviously be extended to any rational exponent p^q.
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Since any irrational number r can be approximated as closely as de­
sired by a rational number, the function can be extended to any expo- 

22 nent r. For example, since tt ■= 3.14159... is approximately -y, 
then x" is approximately (x22)1?7.

xEn

Program 3.7 Exponentiation (for integral n only)

The general exponential function defined for all exponents r 
will be denoted by x * r. If r is an integer, then x * r is equivalent to 
the function xEr defined by Program 3.7. Since x*.5 denotes the 
square root of x, the special symbol V will no longer be used formally 

7 for square root.
The familiar exponential notation xn violates the convention 

adopted for denoting a dyadic function; it has, in fact, no symbol for 
the function, which it indicates only by the raised position of the 
second argument. There are important advantages to using the explicit 
symbol *, which will become clear in the discussion of the fundamental 
properties of functions. A further advantage is that all extensions to 
vectors automatically apply to functions denoted in the standard form.

• Thus x * n\ p* n'9 and */ y are all meaningful and useful ex­
pressions. For example, if x = (7,6,5,4); n = (0,1,2,3); p = 8; 
q = 2; and y = (3,2,1,0), then

x*re^(7*0) ,(6* 1), (5 *2), (4*3) = 1,6,25,64 
P*»h(8*0),(8* 1), (8* 2), (8*3) = 1 ,8,64,512 
x* <7 = (7 * 2), (6 * 2), (5 * 2), (4* 2) = 49,36,25 ,16

and

*/y = 3 * 2* 1 * 0 = 9

However, because of its familiarity, the notation x" will continue to be 
(Do Exercises used informally at times.
3.10-3.13.)
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Relational functions. Any relation (such as xSy) is either 
true or false, and the relation can therefore be considered a function 
whose resultant has one of the two values, “true” or “false”. Thus the 
statement

x<y
gives to u the value “true” if x is less than or equal to y, and the value 
“false” otherwise. The value “false” will be represented by the number 
0 and the value “true” by the number 1. Thus if x = 6 and y = 8, then u 
takes on the value 1. A variable such as u which takes on only the 
values 0 and 1 is called a logical variable.

The relational functions are defined formally by Programs 3.8 
(a) through (f) and summarized in Program 3.8 (g). They extend to 
vectors in the usual way. For example, if

x (6,3,7 , -4) and y = (2,3,6,2)
then

x <y = (0,0,0,1) 
x<y = (0,1 ,0,1) 
x = y = (0,1 ,0,0) 
x#yMl,0,1,1) 
^<0= (0,0,0,1)

The logical vector that results from a relational function proves 
most useful in the compression function to be defined in the following 
section.

z^x<y —y z+~x = y ■ z<-x>y

Program 3.8 Definition of the relational functions
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Order reversal and compression. It is convenient to be 
able to reverse the order of the components of a vector. This can be 
done by the reversal function ®. Thus if x i 3 , 1,6,4,2, then

' ’ (Dx=2,4,6,l,3

The formation of a vector y by the selection of certain compo­
nents from a second vector x will be called compression and will be 
denoted by

y^-u/x

where u is a logical vector of the same dimension as x. The zeros in u 
indicate which components of x are to be suppressed. Thus if

x = 9,8,7,6,5,4,3

and

u = 0,1 , 1,0,0,0,1

then

u I x = 8,7,3

Similarly,
(1 ,0,1,0,1,0,1) / x = 9,7,5,3

The dimension of the vector u I x is of course equal to the number of 
l’s in u, that is, p(u I x) = +/ u.

Compression proves very useful, especially when the logical 
vector itself is determined by some relational function applied to the 
integer vector to be defined next.

The vector of integers. The monadic function t is defined as 
follows!: t n denotes a vector of dimension n whose zth component 
is equal to i. Thus

c 3 = 1,2,3
t5 = 1 ,2,3,4,5 ,

xl in = 1 n
+/1 h = 0.5 x n x n-\- 1

The last of the preceding identities is the well-known expression for 
the sum of the first n integers.

The combined uses of the relational functions, compression, and 
the integer vector will now be illustrated by a number of examples

ft is the Greek letter corresponding to the Roman i. It is spelled and pronounced 
iota.
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which can be verified by choosing some sample values of the argu­
ments:

(x > 0) I x selects all nonnegative components of x.
(J > t n) I x selects the first j components of x.
(CD j > t n) I x selects the last j components of x.
(j + l /?) / x suppresses the jth component of x.
(x^[/x)/x selects all components not equal to the maxi-

(0 = 3 | x) I x

(0 = it) I x 
0 = in 
0/ Ln

mum.
selects all components of x which are divisible 

by 3.
selects all components of x not selected by u.
is a vector of n zeros.
is a vector of n ones.

Finally, l 0 clearly denotes a vector of dimension zero, which has 
no components; it can be used instead of p 0. Similarly, the expression 
x x l 1 can be used instead of the expression (p 0), x to denote a vector 
of dimension 1 whose one component has the value x.

The argument of the function l can be either a scalar or a vector 
of dimension 1. For example, if x = (7,8,9), then

tpx = t3=l,2,3

Reduction over vectors of dimensions 0 and 1. Reduc­
tion by some dyadic function is frequently applied to a vector which is 
itself obtained by compression. For example, +/ (x > 0) I x yields the 
sum of all the nonnegative components of x, and x/ (j > Ln\l x yields 
the product over the first j elements of x.

The vector determined by compression can obviously be of any 
dimension, including 0 arid 1. Since the original definition of reduction 
involved placing the reducing function between the components (for 
example, +/ x = xr + x2 + x3 + ... + xpX), it does not apply to dimen­
sions 0 and 1. The definition will be extended to cover these cases in 
a simple manner that gives consistent results.

If x is split into two parts u I x and (0 = u) I x, then the sum over 
x must equal the total of the sums over the parts. Hence

+/ x = (+/ (0 = u) I x) 4- (+/ ul x)

For example, ifx = 2,3,4,5,6 and u = 0,1 ,0,1 ,0 then +/ x = 20; 
+/it/x=8;+/(0=it)/x=12; and the relation is satisfied. However, 
if u = 0,0,1 ,0,0, then +/ (0 = it) / x = 2+3 + 5 + 6=16 and it is 
clear that the sum over the single-component vector u I x should be 
defined as the value of that single component—in this case, 4. This is 
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(Do Exercises 
3.14-3.15.)

clearly desirable for dyadic functions other than + , and the reduction 
of any single-component vector will therefore be defined to be that 
single component.

The case of a vector of dimension 0 arises if u = 0,0,0,0,0. 
Since +/ x = (+/ (0 - u) I x) + (+/ ul x) and (0 = u) I x = x, it is 
clear that the sum over a vector of dimension 0 should be defined as 
0. The reason, of course, is that 0 added to any quantity z yields z.

In the corresponding situation for reduction by a product

x/ x= (x/ (0 — it) / x) x (x/ u I x)

and it is clear that the product over a vector of dimension 0 must be 
defined as 1 rather than 0, since z x 1 = z for any z.

A value r such that z F r = z for any value of z is called an iden­
tity element of the function F. For + the identity element is 0 and for x 
it is 1. Hence the value of Fl l 0 (that is, the F-reduction of a vector of 
dimension 0) will be defined as the identity element of the function F. 
The identity element of the minimum function L is clearly an element 
which is larger than any specified number. It is called infinity and de­
noted by oo. Hence

+/t0^0 x/i0=l -=_/to=l —/t0 = 0
Lho = oo [/to = -oo >i</to=i

It is interesting to note that the foregoing definition for x/t0 
yields the correct result for the case n = 0 in the identity ! n = xl t n, 
that is, ! 0 = 1. The residue x| y is an example of a function that does 
not have an identity element.

Fundamental Properties of Functions
All readers will be familiar with the following identities for the 

elementary arithmetic functions addition and multiplication'.

X + y = y + x 
xxy = yxx 
x + (y + z) = (x + y) + z 
XX (yxz) = (xxy)xz 
xx (y + z) — (xxy) + (x x z)

+ is commutative
x is commutative
+ is associative
x is associative
x distributes over +

Most readers will also be familiar with the descriptive phrase appended 
to each identity. In any case, it is easy to deduce from the foregoing 
list the general definitions of the terms commutative, associative, and 
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distributive. Thus:

1) A dyadic function F is commutative if and only if xFy 
= y F x for all values of x and y.

2) A dyadic function F is associative if and only if x F (y F z) 
= (x F y) F z for all values of x, y, and z.

3) A dyadic function F distributes over a dyadic function G if 
and only if xF (y G z) = (xFy) G (xFz) for all values of 
x, y, and z.

It is always helpful to understand the reasons for the choice of 
new mathematical terms encountered. Thus commute means to inter­
change two things; associative suggests that the terms in the expres­
sion can be associated (by parenthesizing) in any manner; distributive 
suggests that the effect of one function can be distributed over both 
arguments of the second function.

It is difficult to grasp the full significance of commutativity, as­
sociativity, and distributivity if they are applied only to the basic 
arithmetic functions, for this application simply gives pretentious 
names to identities already familiar and yields no new information. 
More insight (and many useful new identities) can be gained by ex­
amining the corresponding properties of less familiar functions such 
as F, L, and *. The maximum function will be used for illustration.

Commutativity. The maximum function can be shown to be 
commutative by comparing the expressions p F q and q F p for the two 
possible cases p <q and p as shown in Table 3.9. If p < q, then 
execution of the defining program (Program 3.2) shows that p \ q = q. 
A similar execution shows that q F p = q. Execution for the case p>q 
yields p \ q = p and q\ p = p- Hence p F q = q F p for all values of p 
and q\ that is, the function F is commutative.

Table 3.9 Commutativity of the maximum function

Case pF q q\p

p<q q q
p-q p p

Associativity. To prove that

pF (q F r) = (pF q) F r 

it is necessary to examine the six cases specified in the first column of
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Table 3.10. For the first case, execution of Program 3.2 yields q \ r=r,

Table 3.10 Derivation of some fundamental properties of F and L

Case
Associativity Distributivity

pf (q[ r) (p r q) r r pL G/Tr) (p L <?) r (p L r)

P — q — r r r p p
p<r<q q q p p
q<p<r r r p p
q<r<p P P r - rVIVJ q q P P
r—q — p p p q q ,

and a second execution yields p\ r= r; hence p\ (<7 F r) = r as shown in 
column 2. Similarly, (p\ q) F r= r as shown in column 3. Continuing 
for the remaining cases yields columns 2 and 3. Since they are identical, 
it follows that p F (<7 F r) = (p F <7) F r for all values of p, q, and r; the 
function F is therefore associative.

Distributivity. Columns 4 and 5 of Table 3.10 show the 
values of p L (q F r) and (p L q) F (p L r), respectively. Since agreement 
is? shown in all possible cases, it can be concluded that minimum dis­
tributes over maximum. The reader will find it instructive to verify 
that addition distributes over maximum. Only two cases heed be dis­
tinguished, as shown in Table 3.11.

Table 3.11 Distributivity of + over F

Case p+ q\r (p+q) I (p+r)

q<r p+ r p+ r
q>r p+q p+q

The methods used in constructing Tables 3.9 and 3.10 can be 
used to derive the properties of the other dyadic functions defined thus 
far. The results are summarized in Table 3.12, in which a 1 indicates 
that the property applies, and a 0 indicates that it does not apply. In 
the table for distributivity, the entries in the zth row indicate which
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Distributivity

+
Commutativity

- x \ r l * +
Associativity

- x r l *
1 0 10 11 0 ' 1 0 10 11 0

Table 3.12 Fundamental properties of some dyadic functions

+ - X ' -r r L *
+ 0 0 0 0 1 1 0
— 0 0 0 0 0 0 0
X 1 1 0 0 0 0 0
4- 0 0 0 0 0 0 0
r 0 0 0 0 1 1 _ 0
L 0 0 0 / 0 1 1 o.
* 0 0 0 0 0 0 0

functions the zth function distributes over. Thus row 1 shows that 
+ distributes over F and L, and column 1 shows that + is distributed 
over only by X. > (Do Exercises

Properties of vector functions. Since dyadic functions are 316-317-) 
extended to vectors component by component, the fundamental prop­
erties of any function F apply directly to any vector function of the 
formxFy. For

(x Fy)f = Xi Fyi send (y F x){ = yf F Xi

and if F is commutative, then XiF yt = ytF xt. Finally, (xFy)i 
= (yF x)i for all i, and hence

x F y = y F x

A similar argument applies to other properties; hence if F is 
associative,

xF (yF z) = (xFy) Fz

and if F distributes over G, s .
xF (yG z) = (xF y) G (x F z)

For example,
•z x , x / \ (Do Exercises

X X (y + z) = (x X y) + (x X z) 3.18-3.35.)



54 Chapter Three Functions

Exercises
3.1 Execute each of the following programs for the case 

x = 6 , 4,16,0 , “8 and y = 4,2,7 , “6 , ~10.

(a) (b) (c) (d)

3.2 Using the maximum function T, write a program for the 
solution of Exercise 2.24.

3.3 Using the maximum and minimum functions, write a one- 
statement program which determines whether all compo­
nents of a vector x are equal; that is, determine d so that 
d = 0 if all components are equal and d 0 otherwise.

3.4 Using the absolute-value and minimum functions, write 
a one-statement program to set n = 0 if all components of x 
are nonnegative and n # 0 otherwise.

3.5 Execute Program 3.6 for m = 30, n = 42, and then for 
m = 42, n = 30.

3.6 The integer vector a of dimension 2 represents the rational 
number -4-/ a. Write a program to reduce a to lowest terms 
(see Program 3.5, but use vector functions as much as 
possible).

3.7 (a) Write a one-statement program to determine r as the
vector of remainders on dividing the vector x by the 
integer n.

(b) Write a program to determine the greatest common 
divisor of the components of the vector x.

3.8 (a) Write a program to determine p as the vector con­
sisting of the prime numbers up to n.

(b) Execute your program for n = 8.
3.9 Write programs to determine, for any positive integer n,

(a) the vector d as the set of all distinct divisors of n
(b) the vector q as the set of all distinct prime divisors of n

3.10 Let p be a vector whose components are the first pp
prime numbers arranged in ascending order; for example,
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i

(2,3, 5,7) and (2,3,5,7,11,13,17,19) are such 
prime vectors. Then the factors of any number n whose 
prime factors are contained in p can be displayed in an 
exponent vector e such that

n = x/e

For example, if n = 1176 and p— (2,3,5,7,11), then 
e = (3 , 1 ,0,2,0), andp* e = (8,3 , 1 ,49,1), andx/p 
*e=1176.
(a) Let m = x/p* d, let n = x/p* e, and let r= x/p* g 

be the greatest common divisor of m and n. Write a 
program to determine g, using d and e as arguments.

(b) Execute your program for the case d = (2,2,1 ,1 ,1) 
and e =(3,1,0,2,0).

(c) Write a program (using d and e as arguments) to deter­
mine I such that 5 = x/p* I, where s is the least com­
mon multiple of m and n.

(d) Execute the program of part (c) for the case given in 
part (b).

3.11 (a) Write a program which factors n with respect to the
prime vector p (defined in Exercise 3.10) to yield the 
vector of exponents e such that n = x/p^< e. (Assume 
that the dimension of p is sufficiently large that p con­
tains all prime factors of n.)

(b) Using the program of part (a), write a program to deter­
mine / as the least common multiple of the arguments 
a and b.

3.12 Execute the following programs for the case x=2 and 
c=(l ,3,0,2).

(a) (c)
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3.13 State in words what well-known function all the programs 
of Exercise 3.12 represent.

3.14 Execute the following sequence of statements for the case 
x = 5,6 , _2,3 , ~3 and y = 2,7,1 , 3,4 , and for values 
of n from 1 to 5:
(a) u^x<y
(b) p+-+l (x < y) I x
(c) v 0 = (x < y)
(d) q <- +/ (0 = x < y) / x
(e) q-+/x
(f) w«-2|t8
(g) d<-(2|c8)/t8
(h) e<- (+/d) - (8-2)* 2
(i) e <r- (n * 2) - +/ (2.| l 2 x n) I t 2 x n

3.15 (a) State in words what each statement of Exercise 3.14
does.

(b) Write a one-statement program which selects from x 
(to determine z) those components of x which are

x divisible by the integer n.
(c) Write a one-statement program with integer arguments 

k and n which sums the integers 1, 1 + k, 1 + 2 x k, 
1 + 3 x k,... up to but not exceeding the positive inte­
ger n.b

(d) Write one-statement programs for each of the follow­
ing problems: x .

(i) Determine t as the sum of all components of s 
which are divisible by 3.

(ii) Determine i as the sum of all components of s 
which are integers.

3.16 To prove that a function F is commutative, it is necessary 
to show thatxF y = y F x for all possible values of x and y. 
To prove that F is not commutative, it is only necessary 
to exhibit one pair of values of x and y for which (x F y) 
^(yFx).
(a) Prove that each of the functions designated as non- 

commutative by Table 3.12 is indeed noncommutative.
(b) Prove the nonassociativity of each function so desig­

nated in Table 3.12.
(c) Prove the nondistributivity of + over -, of x over x, 

and of x over [.
3.17 Construct a table of the form of Table 3.10 to prove

(a) that F distributes over itself (as indicated by Table 3.12)
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(b) that [ distributes over L
3.18 Choose some numerical value for each of the arguments 

and verify each of the following identities for the chosen 
values.
(a) (+/ c x x * (t p c) - 1) + (+/ d x x * (t p d) - 1) 

= +/ (c + d) x x * (t p c) - 1, where pc = pd
(b) (xFy) ,pF q= (x ,p) Fy ,q (Choose any dyadic 
' function for F.)
(c) x.+ (yf z) = (x + y) f (x+z)

3.19 Prove each of the following identities, indicating clearly
the properties of the functions used in each step of the 
proof. Where possible, use any of the first identities in the 
proofs of later ones. ,
(a) +/ (x+y)= (+/ x) + (+/y)
(b) (c + d) X q . (c X q) + (d x q)
(c) +/ (c + d) X q = (+/ c X q) + (+/ d X q)
Note: The identity in part (c) is used in the first section of 
Chapter 4.

3.20 (a) Write a program to sort the vector x into ascending
order; that is, to rearrange its components so that they 
occur in ascending order.

(b) Write a program to specify r as the vector of all dis­
tinct components of y arranged in any convenient 
order.

3.21 The vectors s and d of the same dimension together repre­
sent a hand of playing cards, sf representing the suit of the 
zth card (with equal to 1 for a club, 2 for a diamond, 3 
for a heart, and 4 for a spade) and d. representing its de­
nomination (with 1 for an ace, 2 for a deuce, 3 for a three, 
and so on, up to 11 for a jack, 12 for a queen, and 13 for a 
king). For example, s = (3,1 ,4,1 ,4) and d = (8,3 , 
12,13,6), represent the hand eight of hearts, three of 
clubs, queen of spades, king of clubs, and six of spades. 
Write programs to respecify s and d so that they repre­
sent the same hand but arranged in the following order:
(a) In decreasing order by suit, and within each suit in 

decreasing order by denomination. For example: 
s= (4,4,3,1 ,1) andd= (12,6,8,13,3).

(b) In decreasing order by denomination within increasing 
order by suit, that is, s= (1 ,1 , 3 ,4,4) and d= (13 , 
3,8,12,6).

(c) In increasing order by denomination within increasing 
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order by suit.
(d) In decreasing order by suit within decreasing order by 

denomination.
3.22 Devise a scheme for representing a hand of playing cards 

by a single vector h such that the ith component of h is a 
single number representing the z’th card. Write programs to
(a) specify h as a function of the vectors s and d so that h 

represents the same hand in your scheme as s and d do 
in the scheme of Exercise 3.21

(b) respecify h (as a function of h) according to each of 
the four arrangements required in Exercise 3.21

3.23 (a) Write a one-statement program for the problem of 
Exercise 2.12 (a).
(b) Let s be a vector of dimension 3. Write a one-statement 

program to produce a result t such that t = 1 if the 
lengths sp s2, and s3 can form a triangle, and t = 0 
otherwise.

3.24 Let the four vectors a, b, c, and d (each of dimension 2) 
be the plane coordinates of four points A, B, C, and D, no 
three of which are collinear.
(a) Write a program to determine the equation of the line 

which passes through A and B, that is, determine the 
vector e of dimension 3 such that +/ e x a, ~1 = 0 and 
+/e x 6 , ~1 = 0.

(b) Write a program (using part (a)) to set s to 1 if C and D 
are on the same side of the line through A and B and to 
0 otherwise.

(c) Four vertices A, B, C, and D, given in a specified order, 
determine a figure of one of the following three types:

Type! Type 3

Write a program to determine t as the type (1, 2, or 3) 
of the quadrilateral formed by the vertices a, 6, c, 
and d.
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(d) Write a program which will (if possible) reorder the 
points to give a quadrilateral of Type 1 and to re­
specify t accordingly.

(e) Assuming that the quadrilateral is of Type 1, write a 
program to determine the kind k, setting k = 4 for a 
rhombus, 3 for a parallelogram, 2 for a trapezoid, and 
1 otherwise.

3.25 Assuming that the vectors a and b are each in ascending 
order, write a program which merges the two into a single 
vector s arranged in ascending order.

3.26 A perfect number is one whose divisors (including itself 
and one) sum to twice the number. For example, 6 is a 
perfect number with divisors 1, 2, 3, 6, as is 28 with di­
visors 1, 2, 4, 7, 14, 28.
(a) Write a program to determine p as the vector of all 

perfect numbers up to n.
(b) If +/ 2 * 0, i k is a prime number, then m = (2 * k) 

x +/ 2 * 0 , t & is a perfect number, for it has the 
divisors

2*0,ifcand (+/2*0,i£) x2*0,i&

whose sum is clearly (1 + +/ 2* 0 ,t k) x +/ 2* 0 , t k 

which is equal to 2 x nt, since

l + +/2>kO,iA:=24:A:+l=2x2;kA;

All even perfect numbers are of this type; e.g., 6 and 
28 are (for k = 1 and 2 respectively). Write a program to 
generate all perfect numbers of this type for values of k 
up to some given limit I.

3.27 Write a program to determine the radius r and center c of 
the circle that passes through the points with plane co­
ordinates f, g, and h.

3.28 Write a program to determine s as the score for a bowling 
string where p is the vector of pins felled, that is, p. are 
felled with the (th ball.

3.29 In the discussion of reduction over vectors of dimension 
zero, the identity element of a function F was defined as 
the value r such that zF r = z for all values of z. Such an 
element is more properly called a right-identity element, 
since one can also define a left-identity element as an 
element I which satisfies IFz — z for all values of z.
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(a) Show that if F is commutative its left and right identi­
ties are equal.

(b) Make a three-column table showing all the dyadic 
. functions listed in Table 3.12, together with their left-

and right-identity elements (if they exist).
(c) Why is the use of the right-identity element appropriate 

to the present definition of the F-reduction of a vector?
(d) Exhibit a value for x that shows that /1 x cannot have a 

left identity.
3.30 If F is a commutative function which distributes over a 

function G, then
xF (yGz) '= (xFy) G (xFz) (1)

and
(yGz)Fx=(yFx)G (zFx) (2)

However, if F is noncommutative, then one of the preced­
ing identities may hold while the other does not. For ex­
ample, if F is division and G is addition, then

x 4-(y + z) = (x 4-y) + (x 4-z)

but
(y + z) - x = (y -s- x)' + (z - x)

If identity (1) holds, then F is said to be left-distributive 
over G; if identity (2) holds, then F is said to be right­
distributive over G.
(a) Prove that if F left-distributes over G and if F is com­

mutative, then F right-distributes over G.
(b) Table 3.12 actually shows the left distributivity of the

functions listed. Make a corresponding table showing 
right distributivity. c

3.31 Certain identities that dp not hold for all values of the 
arguments may hold for certain restricted values. For ex­
ample, the identity

xx (y[ z) = (xXy) F (xXz)

does not hold for all values of the arguments but does hold 
for all positive values. Modify Table 3.12 and the table 
required in Exercise 3.30 (b) to show the distributive prop­
erties if the arguments are restricted to positive integers.

3.32 Prove that
(a) n| a + b = n| (n|a) + n| b
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(b) n \ a x b = n \ (n \ a) x n \ b
(c) n | +/ x = n | +/ n | x
(d) n | +/ c x x = n | +/ (n | c) x n | x
(e) 9 | 10 * k = 1 for any nonnegative integer k

3.33 Let z = ^l (m* 1 + m) x 0 =£ i n.
(a) Compute z for m = 2 and for values of n from 0 to 10.
(b) Compute z for m = 3 and for values of n from 0 to 10.
(c) The result of part (a) clearly approaches 2; the result 

of part (b) would approach 3 for larger values of n. 
Prove the theorem suggested by parts (a) and (b).

3.34 (a) Write and execute a one-statement program to deter­
mine the value of n * 1 4- n for integer values of n 
from 1 to 10.

(b) From the results of part (a) it is clear that the function 
n * 1 4- n has a maximum value somewhere between 
n = 2 and n = 4. The value of n for which the maximum 
occurs will be called e. Write a one-statement program 
which evaluates the function for eleven equally spaced 
points from 2 to 4 to get a closer approximation for e.

(c) From the execution of part (b), select an even shorter 
interval which contains the maximum point e and again 
evaluate the function at equally spaced points.

(d) The process illustrated by the preceding parts can be 
continued to determine the position of the maximum 
e to any desired accuracy. Write a program to perform 
the entire process so as to determine e to two decimal 
places.

(e) The precise value of e can be shown (see Exercise 
8.34) to be given by e = +/1 4-! 0 , l k for k sufficiently 
large. Evaluate this expression and compare with the 
result of part (d).

3.35 Consider the dyadic functions f ,L,A 
where the arguments are logical variables, that is, their 
values are restricted to 0 and 1.
(a) Make a table showing the values of each of the func­

tions for each of the four possible values of the argu­
ments.

(b) Determine which of the functions are commutative.
(c) Determine which of the functions are associative.
(d) Make a table like Table 3.12 to show the distributive 

properties of this set of functions.
(e) Use a few sample values for the vector x to show that 

#/x = 2 | +/x.
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The Polynomial Function
Introduction

A function such as

4 + (6 x x) + (3 x x2) + (5 x x4)

is commonly called a polynomial in x and is clearly a function of the 
argument x only. A function of the form

+ (c2 x x) + (c3 x X2) + (c4 x X3) + (c5 x X4)

is also a polynomial in x, but is a function of both x and the vector of 
coefficients c= (c1, c2, c3, c4, c5); it will be denoted! by

cllx

The numerical example given at the outset would therefore be repre­
sented as

(4,6,3,0,5) Hx

The polynomial function is defined by any one of the three 
equivalent programs of Exercise 3.12, repeated here as Program 4.1.

tn is the Greek capital letter corresponding to the Roman letter P; it is chosen 
here to suggest the initial letter of polynomial.

62
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z *— c n x z *— c n x

(a) (c)

Program 4,1 The polynomial function II

The polynomial function owes its importance to four main 
factors:

1) Its evaluation for any given value of x requires only multi­
plication and addition.

2) It can be used to approximate any of the elementary functions 
as closely as desired.

3) It includes several functions of great utility: the quadratic 
function, which describes the parabola; the linear function, which 
describes the straight line; and the constant function.

4) Its properties, such as its slope (to be defined in Chapter 5) 
and the locations of its zerost, are easily analyzed.

Because of its general importance, and because it will be used in 
analyzing the elementary functions introduced in later chapters, the 
polynomial function will be treated rather thoroughly. This treatment 
will include the addition and multiplication of polynomials, an efficient 
method of evaluation, the expansion of the function (x + a) * n (that 
is, its expression as an equivalent polynomial c II x), and the approxi­
mation of other functions by means of polynomials.

Efficient Evaluation of Polynomials
An alternative program for evaluating the polynomial c II x can 

be derived by factoring as follows:

t A zero of a function of one argument is any value of its argument for which the 
value of the function is zero. For example, the zeros of the polynomial function x2 + x - 6 
are 2 and ~3.
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cllx= ct+ (c2 xx) + (c3xx2) + (c4XX3) + ...+ (CpcXX^-1) 
= ct + xx (c2 + (c3xx) + (c4xx2) + ...+ (cpC xx^c)'2)) 
= Cj + xx (c2 + xx(c3+ (c4xx) + ...+ (cpC xx(pC) ~3))) 
= Cj + xx (c2 + xx (c3 + xx (c4 + ... (c^e^i + xx (c(pC)) . . .) 
= ct + X X c2 + X X c3 + X X C4 + ... + x x cpC

Program 4.2 describes this process, as can be verified by exe­
cuting it for a general value of x so as to reconstruct the foregoing 
expression. For actual calculation, Program 4.2 is preferable to Pro-

Program 4.2 Efficient evaluation of a polynomial

grams 4.1 (a) through (c), since it requires far fewer multiplications 
than the other programs. Program 4.2 is therefore said to provide an 

(Do Exercises efficient method for the evaluation of polynomials.
4.1-4.3.)

Degree of a Polynomial
The degree of a polynomial is the value of the largest exponent 

of x occurring in it. If the last component of c is nonzero, then the 
degree of c II x is equal to (p c) — 1. x

The last component of c is normally assumed to be nonzero for 
the following reason. If Program 4.1 (c) is used to evaluate c II x for 
the cases c=(4,6,3,5) and c= (4,6,3,5,0,0,0), it will be 
clear that extending a coefficient vector by catenating zero compo­
nents to the right makes no change in the polynomial it defines. More 
precisely,

(c ,0 = tn) IIx = cllx

for all values of x and n.
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Addition of Polynomials I Multiplication of Polynomials

r

Addition of Polynomials
The function (cllx) + dllxis called the sum of the polynomials 

c II x and d II x. The sum of two polynomials is itself a polynomial 
p II x. In particular, if c and d have equal dimensions, then p = c + d. 
For if q = x^ (ipc)- 1, then, using the identity derived in Exer­
cise 3.19,

p II x = +/ (c + d) X q = (+/ c X q) + (+/ d X q) = (c II x) 4- d II x

If (pc) > p d, then (c + d) is not defined, but the polynomials 
c II x and d II x can be added as follows:

(c + d, 0 = t (p c) - p d) n x = (c n x) + (d n x) 

for, as previously remarked,

(d, 0 = t a?) II x = d II x

A general expression for vectors c and d of arbitrary dimension 
can be obtained by appending (p c) - p d zeros to d, and (p d) - p c 
zeros to c, except that the dimension of the vector of zeros may be 
negative in one of the cases, in which event a zero dimension is desired. 
Finally,

((c , 0 = t Of (p d) -pc) + d,0—tOf(pc) -pd)IIx^ (cfixj+dfix

For example, if c = (3 ,1 , 5) and d= (2 , "4,0,3,2), then the co­
efficient vector on the left becomes

; (3,l,5,O = tOf2) + (2,-4,0,3,2,0 = t0r-2)
— (3,1 ,5,0,0)+ (2 , ~4,0,3,2) = (5 , “3,5,3,2) (Do Exercises

4.4-4.6.)

Multiplication of Polynomials
If p II x = (c II x) x (d II x), then p II x is called the product of 

polynomials cllx and dllx. It is clear that the coefficient vector 
p is a function of c and d.

Since c II x is a sum of terms of the form cz x x*-1, and d II x is 
a sum of terms of the form dj x x* ~ \ their product consists of the sum 
of all terms of the form

c. x xi-1 x d. x xJ-1 = (c. x d.) x xi+^~2

The values of the ((pc) x pd) coefficients cf x dj can be displayed in 
a rectangular array as shown in Table 4.3 for the case c = (3,1,2) 
and d=(4,0,l,3). The entry in the fth row and jth column is the 
product c; x dr It is obvious that all entries in the A:th diagonal oval
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(counting from upper left to lower right) share the factor x*-1; hence 
the coefficients p of the product polynomial are obtained by summing 
the entries in the successive ovals, as shown in Table 4.3.

Table 4-3 Product of polynomials p II x = (c II x) x (d II x)

Two special cases of polynomial multiplication merit mention: 

a x (c II x) = {a X p) II x

and

(x* n) X (c H x) = ((0 — tn), c) fl x

Both of these identities can be derived from the scheme of Table 4.3, 
since a = a II x and x * n = ((0 = i n) , 1) II x, as the reader should 

(Do Exercises verify.
4.7-4.11.)

Synthetic Division
If nilx and dllx are any two polynomials, then it is possible 

to find a quotient polynomial q II x and a remainder polynomial r II x 
such that (p r) < p d and

n n x = ((d IT x) X q II x) + r II x

This is analogous to the division of an integer n by an integer divisor d 
to obtain an integer quotient q and an integer remainder r which is 
less than d. i

For example, if
re= 3,7,0,7 ,-10,8 and d= 3,1,4

then
q=2,l , ~3.2 and r 3,2 
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as can be verified by multiplying dUx and qllx and then adding 
r II x as shown in Figure 4.4 (d).

In the present example, q and r can be determined from n and 
d as follows. First, from n n x subtract the polynomial

((0,0,0 , npre4- dpd) n x) X (d II x) 
= ((0,0,0,2) nx) x (3 ,1 ,4) IIx 
= (0,0,0,6,2,8)11%

This yields the remainder

(3,7,0,l,-12,0)n%

Since the coefficient npn+ dpd was chosen to make the final coefficient 
zero, the remainder is of degree (p n) - 2 and can be written as

(3,7,0,1 ,"12) nx

The process can be repeated by subtracting from the remainder an­
other multiple of d n x, so chosen as to further reduce the degree of 
the new remainder, and can be continued until the degree of the final 
remainder is less than the degree of d n x.

The entire process is called synthetic division and is described 
by the program of Figure 4.4. The program is accompanied by an exe­
cution (Figure 4.4 (b)) for the case

n= 3,7,0,7 , _10,8 andd= 3 ,1,4

Figure 4.4 (c) shows a convenient arrangement for the manual exe­
cution of synthetic division,t and Figure 4.4 (d) shows the verification 
of the result.

tReaders may be familiar with an arrangement in which the division process 
begins at the left rather than the right. The difference results from the present choice 
of order for the terms of the polynomial (that is, in ascending powers of the argument 
x). This is opposite to the order often used and has been chosen here to facilitate the 
treatment of polynomials of unlimited degree, which will be used extensively in later 
chapters.
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3,1,4
3,7,0,7,-10,8

2
-3,2
1 ,-3,2
2,1 ,-3,2
3,7,0,7,-10,8
3,7,0,1 ,-12,0
3,7,9,4,0
3,4,8,0
-3,2,0

2 1 -3 2
d=3 1 ,4|3 7 0 7 -10 8

6 2 8
1 -12 

-9-3 -12 
9 4

3 1 4
4 8 

6 2 8
r="3,2

(c)
Figure 4.4

n = 3 , 7, 0, 7 , -10, 8 
(d)

Synthetic division

If d is the vector ((-a) , 1), then the remainder r is a single
1 quantity (that is, p r = 1) and is the value of n n a. For

nIIx= ((qII x) x dII x) + r II x z
= ((q II x) x (- a) + x) + rj

and therefore

n n a = ((q II a) X (- a) + a) + r1 = rt

Synthetic division by (x-a) therefore serves to evaluate the 
polynomial for the value a of the argument x, and the computational 

(Do Exercises procedure is in fact equivalent to the method of Program 4.2.
4.12-4.15.)
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The Binomial Theorem
If n is a positive integer, the function (a + x) * n can be ex­

pressed as a polynomial in x; for example,

(« +x) *0=1
(a + x) * 1 = a + x
(a + x) * 2 == a2 + (2 x a x x) + x2
(a + x) * 3 = as + (3 x a2 x x) + (3 x a x x2) + x3

The binomial theorem provides a simple general scheme for deter­
mining the coefficients in such a polynomial expansion of (a + x) * n. 
Attention will first be restricted to the simple case for a = 1 (that is, 
(1 + x) * n), since the more general case can be derived from it.

Expansion of (1 +x) * n. If p is the vector of coefficients 
of the polynomial expansion of (1 + x) * n (that is, (1 + x) * n 
= p II x), and if q is the corresponding vector for (1 + x) * n + 1, then 
since (1 + x) * n + 1 = (1+ x) x (1 + x) * n. it follows that

q n x = (i + x) x p n x
= ((l,l)llx)xpllx

The last expression is a product of two polynomials and so can be 
evaluated by the method of Table 4.3. For example, if n = 3, then

(l+x)*3^pnx^(l,3,3,l)nx

Similarly, the coefficients q of the expansion of (l+x)*4 can be 
obtained as follows:

p^ 1331

q = (1 , 4 , 6 , 4 , 1)

From this example it is clear that, in general, q is determined 
from p as follows:

(o,p)+ (p,0)

This rule can be applied to generate the coefficients for successive 
powers of (1.+ x) as shown in the successive rows of Table 4.5; the 
table is called Pascal’s triangle.
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Table 4.5 Pascal’s triangle

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45' 10 1

The coefficient vector of the expansion of (1 + x)n, which appears 
as the (n + 1 )th row of Pascal’s triangle, is clearly a monadic function 
of n; it will be denotedf by ft. Thus 0 = 1; ft 1 = (1 ,1); 2 = (1,2 , 
1); and so forth. In general, then,

(1 + x) * n = (£ n) II x

Example: Computation of compound interest furnishes an example 
of the use of the expansion of (1 + x) * n. If a certain amount of capital 
c is invested and left to accumulate at an interest rate of x percent 
compounded annually, then the amounts accumulated at the end of the 
first, second, and third years are cx(l + x); ex (l+x)*2; and 
ex (1 + x) * 3. In general, the amount accumulated at the end of the 
nth year is c x (1 + x) * n. The value of (1 + x) * n can be conven­
iently computed from its expansion. For example, if n = 7 years, and 
x = .03 (that is, 3 percent), then from Table 4.5, /3 7 = (1,7,21,35 , 
35,21,7,1),and

(1 + .03) *7=1 + (7x .03) + (21 X .032) + (35 x .033) + ...
= 1 + .21 + .0189 + .000945 + ...
= 1.229845 + ...

This result is correct to four decimal places.
Expansion of (a + x) * n. Since

, (x x y) * n = (x* n) x (y* n)

tThe Greek letter ft corresponds to the Roman letter b, and is used here because 
b is the initial letter of binomial. It is spelled beta and pronounced bayta.
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and since
(a + x) * n = (a x (1 + x 4- a)) * n

then
(a + x) * n= (a* n) x (1 + X4- a) * n

= (a * n) x (j8 n) II x 4- a
= (a * n) x +/ (j8 n) x (x 4- a) * 0 , i n
= (a* a) x +/ (/? a) x ((1 4- a) * 0 , c a) x x* 0 , t a
= (a* a) x +/ (^6 a) x (a* - 0 , l a) x x* 0 , l a
= +/ ()8fl) x (a* a) x (a* - 0 ,tfl) xx* 0 ,tfl
= +/ (jg a) x (a* a - 0 , c a) x x* 0 , t a

But fl - 0 , l n = CD 0 , t m. For example, if n = 4, then m-0,ca = 
4- (0,1,2,3,4) = (4,3,2,1 ,0) = CD 0,t a.
Therefore

(a + x) * m = +/ (/3 a) x (fl * CD 0 , t fl) x x * 0 , t fl
= +/ (j8 a) x (CD a * 0 , t a) x x * 0 , t a

or

(a + x) * a = (()8 a) x CD a * 0 , t a) II x (4.1a)

Since (a + x) * n = (x + a) * a, it is clear that the roles of x and a 
can be interchanged, and hence (a + x) * n can be written as a poly­
nomial in a with coefficients that depend on x. Thus

(a + x) * a = ((^8 a) x CD x * 0 , t a) II « (4.1 b)

For example:

(« + ix) * 4 = ((1,4,6,4,1) x (a4 , a3 , a2 ,AX, a0)) fl x
= ((1,4,6,4,1) x (x4 , x3, x2, x1, x°)) II a

Equations 4.1 (a) and (b) are two commonly used forms of the binomial 
theorem.

Example: The polynomial (2,l,3,5,l)IIx+2 is clearly 
equivalent to some polynomial p II x. The value of p can be deter­
mined by applying the binomial theorem to each term of the given 
polynomial as follows:

2x1x1 =2
lx(l,l)x(2,l) =2,1
3x(l,2,l)x(4,2,l) =12,12,3
5 x (1 ,3,3 ,1) x (8,4,2,1) =40,60,30,5
1 x (1,4,6,4,1) x (16,8,4,2,1) = 16,32,24,8,1

p = 72,105,57,13,1 (Do Exercises 
4.16-4.21.)
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Approximation by Polynomials
If F is any monadic function and if p and q are vectors such that 

q = Fp (that is, qt = F p, for i = 1, 2,..., p p), then it is possible to 
determine a vector c of the same dimension as p such that c II pt 
= Fpi for i = 1, 2,..., p p. In other words, it is possible to find a poly­
nomial of degree (p p) - 1 or less which fits the function F at the 
p p points (pt ,Fpf). By choosing a large number of points (that is, by 
choosing a large value for pp), it is possible to fit the function F 
closely.

Consider, for example, the function F n = +l tn which is defined 
for all positive integers n and is both tabulated and plotted in Figure 
4.6. If the quadratic polynomial c II n is required to fit the three points 
(1,1), (2,3), and (3,6), then it is necessary that ell 1= 1 and

Figure 4.6 Polynomial approximation to +/i n
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c II 2 = 3 and c II 3 = 6. In other words (since p c = 3 for a quad­
ratic):

Cj + (c? X 1) + (c3 x I2) = 1
cx + (c2 x 2) + (c3 x 22) = 3

+ (c2 x 3) + (c3 x 32) = 6

Since the foregoing are three linear equations in the three variables 
cp c2, and c3, they can be solved to obtain the solution c = (0 , .5 , .5). 
Hence the polynomial

„ ~ n1 n2 n x n + 1e ll H = 0 + y + y =----- ------

fits the function +/ t n at the chosen points.
This polynomial fits the given function for the tabulated values, 

as the reader may verify. Actually, the polynomial fits the function 
for all integer values of h, and this can be shown by a simple proof 
(Exercise 4.22).

As a second example, consider the function +/ (tn)* 2 
(that is, the sum of the first n squares), tabulated and graphed in 
Figure 4.7. Fitting the first three points by a quadratic yields the fol­
lowing equations:

Cj + C2 + c3 = 1
cx+ (2x c2) + (4x c3) = 5 

+ (3 x c2) + (9 x c3) = 14

Their solution is given by

c = 2, "3.5,2.5

Although the polynomial c II n does indeed fit the first three points, its 
graph shows it to be a very poor approximation for large values of n.

A better approximation can be obtained by using a polynomial 
of a higher degree. Choosing degree 4 and fitting to the first five points 
yields

-n 1 1 1 n c-°'6’2’3-°
as can be verified by calculating the first five values of c II n. This 
polynomial fits the function exactly for all values of n. Moreover, 
since c5 = 0, it is in fact of degree 3, and may be written as

+/ (t, n) * 2 = fo ,4) n n 
\ o 2 3/

= (nx (n+.5) xn + 1) ■? 3
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Figure 4.7 Polynomial approximations to +/ (t n) * 2

From this example it appears that the use of an unnecessarily 
high degree for an approximating polynomial simply leads to zero 
coefficients for the higher-power terms of the polynomial; it therefore 
yields the same result as the use of a suitable lower degree but at the 
expense of more labor in calculating the coefficients. Finally, from the 
preceding two examples it may be surmised (correctly) that the sum 
of the /<th powers of the first n integers can be fitted exactly by a poly­
nomial of degree k+ 1.



Approximation by Polynomials 75

The functions of the foregoing examples were defined only for 
integral values of n. Nevertheless, the same method can be used to 
approximate a function that is defined everywhere; the function is 
simply fitted exactly for some selected values of the argument.

Consider, for example, the function sin x graphed (for x in 
radians) in Figure 4.8. Since the portion of the graph between the 
points (0,0) and (tt , 0) looks roughly like a parabola with vertex at 
(7T \ .y, 11, it seems reasonable to use an approximating quadratic that 
passes through these three points. The coefficients must therefore 
satisfy the following equations:

Cj+(c2x0) + (c3x0) =0
/ 7T\ / 7T2\

cl + \c2y^j + [c.ix—^i

+ (c2 x 7T) + (c3 X 7T2) = 0

Therefore

c4o,4 4_\
7T2/
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(Do Exercises 
4.22-4.26.)

As shown by the curves of Figure 4.8, the quadratic function c II x 
fits the function sin x reasonably well, but only from about (0,0) to 
(tt ,0). A better approximation could obviously be obtained by fit-

(77 \y, 11, and ((77 - 0.2) , 

0.198). A better approximation could also be obtained by fitting to a 
larger number of points with a polynomial of higher degree.

Solution of linear equations. From the foregoing it is clear 
that any program for determining the coefficients of a polynomial 
to approximate a given function must contain within it a program 
to solve a set of linear equations. Although the reader is probably 
familiar with manual methods for the solution of sets of linear equa­
tions, it may be well to review the programming of such methods.

To facilitate this review it will be convenient to introduce nota­
tion for a two-dimensional array or matrix. A matrix will be denoted 
by a boldface uppercase letter, and a typical matrix M would appear as

3 7 2 8
M = 4 8 16 2

2 13-6

The zth row of a matrix M is a vector denoted by M\ The jth column of 
M is a vector denoted by Mr For example,

M1 = (3,7,2,8) and flf2 = (4,8,16,2)

while

(3,4,2) andJf4= (8,2, ~6)

Moreover Mi denotes the component in the zth row and jth column. 
Thus 2, and = 16.

Thus the matrix, like the vector, represents a family of variables. 
Unlike the vector, it represents a two-dimensional family, which re­
quires two arguments (a row index and a column index) to identify an 
individual member of the family. A matrix can also be construed as a 
family of row vectors or as a family of column vectors Mr

The dimension of a matrix M is the two-component vector 
(m , n), where m is the number of rows and n the number of columns 
in the matrix M. The dimension of M is denoted by p M; in the present 
example, M has 3 rows and 4 columns, and therefore

pM^(3,4)

A matrix whose dimension is (m,n) is often called an m-by-/i matrix.
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Since p M is a vector of dimension 2 it is consistent to define 
px as a vector of dimension 1 rather than as a scalar and (since a 
scalar y can be construed as a zero-dimensional array) to define p y as 
a vector of dimension 0.

An equation of the form

(3 x xj + (6 x x2) + (2 xx3) = 8

is called a linear equation in xp x2, and x3. It can obviously be written 
as (+/ (3,6,2) x x) = 8. More generally, (+/ c x x) = b represents a 
linear equation with coefficients c and constant term b. The entire 
equation can be represented by the vector d = c , b, where a solution x 
must satisfy the relation (+/ d x x , _1) = 0. Moreover it is clear that 
for a 0 the equation ax d has the same solution as does d. Finally, 
if d and e represent two equations that are satisfied by the same vari­
ables x, the vector d + a x e has the same solution as do d and e.

If M is any matrix, then each row vector M* can be thought of as 
representing an equation in the variables x, where p x = (p M)2 - 1. 
The matrix then represents (p equations in (p M)2 - 1 variables, 
and if (p = (p flf)2 - 1 there is normally one solutiont, that is, 
one value of the vector x that satisfies all the equations

+/ (M* x X, -1) he o for i = 1, 2,..., (p M)1

For example, the matrix

2 6 4 2
M = 3 12 3 9

2 14 2

represents the set of linear equations

(2 x xx) + (6 x x2) + (4 x x3) - 2 = 0
(3 x xx) + (12 x x2) + (3 x x3) - 9 = 0
(2xxx)+ x2 4-(4 x x3) — 2 = 0

Dividing M1 by M\ yields a new set of equations (which will 
again be denoted by M):

13 2 1
M = 3 12 3 9

2 14 2

tThere can also be an unlimited number of solutions or none. See, for example, 
Earle B. Miller and Robert M. Thrall, College Algebra (Ginn, 1950), Sec. 125.
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These have the same solution as the original set. Furthermore, sub­
tracting M1 x M2 from M2 and M1 x M3 from M3 yields a new set of 
equations again possessing the same solution:

Finally, M1 <— M1 — M* x M3 and M2 <— M2 — M2 x M3 yields

1
M= 0

0

3
3

-5

2
-3
0

1
6 
0

The row M2 can now be divided by M2 to yield

1 3 2 1
M = 0 1 -1 2

0 -5 0 0

Then M1 <— M1 - Ml, x M2 and M3 <—M3 - M2 x M3 yields

1 0 5 -5
M = ' 0 1 -1 2

0 0 -5 10

Again M3 4- M3 yields

1 0 5 -5
M = 0 1 -1 2

0 0 1 -2

10 0 5
M = 0 10 0

0 0 1 -2

The first row of this matrix is equivalent to

(1 xxj + (Ox x2) + (0 x x3) - 5 = 0

or

x, = 5

Similarly, rows 2 and 3 yield

x2 = 0 and x3 = ~2

The foregoing procedure is formalized in Program 4.9 for any 
matrix M. Difficulties can arise in its execution if the element Mi i 
in statement 5 is ever zero. Methods of surmounting these difficulties 
are explored in Exercise 4.27.
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■* x-^M(pM)2

—+ i^O

i * i + 1
Mi M14- Ml 

j^Q 

j^pM\ 

1 
j-i
Mi <- Mj - Mi x Ml

Program 4.9 Solution of equations (+IM* x x , "1) = 0

For any matrix M, the restructuring function dpM produces 
the vector x such that x = Mj, M2, Ms,... It is necessary that d
= x/ p M. For example, if

1 2 3 4
M- 5 6 7 8

9 10 11 12
then 12 p M = l 12. Moreover, if d is a vector of dimension two such 
that x/,d = px then the function dp x produces a matrix Q such that 
pQ = d and that (x/ d)pQ = x. For example, if x = 3,6^9,12,15,
18,then

3 6 9 3 6
(2,3) p x =

12 15
and (3,2) px = 9

15
12
18

Finally, if the argument on the right of p is a scalar it is extended in 
the usual way. Hence n p x produces a vector of dimension n whose 
components are each equal to x. (Do Exercises 

4.27-4.41.)

Exercises
4.1 Evaluate (3 ,1,0,4) II 2 by executing Programs 4.1 (a),

4.1 (b), and 4.2.
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4.2 Evaluate each of the following:
(a) (i4)II3
(b) (0,t4)II3
(c) ((Mt4)II3

4.3 Find the zeros of each of the following polynomials:
(a) (2, l,"6)IIx (c) (c, 1, l)IIx
(b) (3,7 , 1) II x (d) c II x, where p c = 3

4.4 Determine the vector d such that d II x = (6II x) + c IT x, 
where
(a) 6 = 3,1,0,2 and c = 6 , "2,3 ,1
(b) 6 = 3 , 1,0,2 and c = _3,2,2,2
(c) 6 = 3 ,1,0,2 and c = 2 , "1,1, "2
(d) 6=1,2,3,4 and c=l,0,2,0,3,1
(e) 6 = 5,4,3,2,1 and c = 1,2,3

4.5 Determine the vector d such that
dHx= (6 II x) — c II x

for cases (a) and (b) of Exercise 4.4.
4.6 For each of the following cases, determine the vector d 

such that d 11 x is the sum of the given polynomials, after 
first putting each of the polynomials in the standard form 
c n x.
(a) ((3 x x2) - 6) + x - 2 x x5 and ((2 x x) - 3) + x4
(b) x4 + (3 x x2) + (2 x x) - 4 and (4 - 3 x x) + (2 x x2)

- x3
4.7 Use the method of Table 4.3 to determine the product of 

each of the following pairs of polynomials:
(a) (3 ,1 ,4) n x and (2,0,13,2) II x
(b) (t 4) II x and (CD l 4) fl x
(c) (1 ," 1) II x and (t 4) II x
(d) (l,l)IIxand (1, 3,3,1) II x
(e) (1 , 1) II x and (l,4,6,4,l)IIx
(f) ((3 x x2) — 2 x x) + 6 x x4 and (2 x x) + 3 - 2 x x3

4.8 Use the method of Table 4.3 to determine the coefficients 
of each of the following polynomials:
(a) ((l,l)nx)x(l,l)nx
(b) (d,i)nx)*2
(c) (d,i)nx)*6
(d) (d ,2,1) nx)* 3

4.9 Any function A x such that A x = A - x is called an even 
function; any function B x such that B x = - B - xis called 
an odd function. The sketch below shows the typical sym­
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metry about the y-axis of an even function A x and the 
typical symmetry about the origin of an odd function B x.

(a) Prove that any polynomial containing only even 
powers of the argument x is an even function.

(b) Prove that any polynomial containing only odd powers 
of the argument x is an odd function.

(c) Choose values for a vector c such that c II x is neither 
even nor odd.

4.10 Write a program to determine the coefficients of the poly­
nomial (6 n %) x c n x.

4.11 What are the relations between the following pairs of 
polynomials?
(a) (tn) II x and (0 , t n) II x
(b) ((1 ,"l)IIx) x (0#in)II xand (1 , - n = l n) II x
(c) ((1 , 1) II x) x p II x and ((0 ,p) + (p , 0)) II x
(d) (a x c) 11 x and a x c II x

4.12 (a) Execute the program of Figure 4.4 for the case
n = 6 , 1 , 3 , "2 , 7 , 4 and d = 2 , ~2 , 1.

(b) Check the result of part (a) by multiplication.
(c) Perform the synthetic division of part (a) using the 

tabular arrangement of Figure 4.4 (c).
4.13 Use the arrangement of Figure 4.4 (c) to perform the 

following synthetic divisions:
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(a) (7,6,1, "3, "4) II x by (l,2,l)nx
(b) (7,6,1 , -3 , -4) n x by (~3 , 1) II x
(c) (1,7,10, "3, 3,2) II x by (1,4, ~3,2)11 x
(d) ((6 x x5) _ 2 x x3) + (io x x4) - 2 by (x3 - 3 x x) + 6

4.14 Use the results of Exercise 4.13 (b) to determine the value 
of (7,6,1,“3,_4)II3, and check your result by using 
Program 4.2.

4.15 Show that 91 +/ c = 91 c II 10 (see Exercise 3.32).
4.16 (a) Write a program to determine p such that pllx

= (1 + x) * n.
(b) Execute the program of part (a) for the case n = 5 and 

compare the result with Table 4.5.
(c) Use the program of part (a) to determine ft 6.

4.1 7 Use Table 4.5 in the following calculations:
(a) Determine to the nearest cent the present value of an 

investment of $100 made five years ago and left to 
accumulate at the rate of 4 percent per annum com­
pounded annually.

(b) Determine to the nearest cent the present value of an 
investment of $100 made five years ago and left to 
accumulate at the rate of 4 percent per annum com­
pounded semiannually.

(c) Determine the ratio between the frequencies of two 
piano notes separated by twelve half tones, where 
the ratio between successive half tones is approxi­
mately 1.06. (Extend Table 4.5 as required and com­
pute to three decimal places.)

(d) Use the results of part (c) to determine whether the 
precise ratio between frequencies of successive half 
tones is greater than or less than 1.06. (Note that 
twelve half tones constitute one octave.)

4.18 Evaluate the following expressions, using any means you 
wish to simplify the work:
(a) ((5,4,3,2,1) n 3)- (2,4,3,2) n 3
(b) (1,5,10,10,5,1)112
(c) +/H0
(d) ((5,4,3,2,1) n 2)+ <©5,4,3,2,1) n 2

4.19 Use Table 4.5 to determine the coefficients of each of the 
following polynomials:
(a) (x+ 2) $ 2
(b) (x+2)*3
(c) (x+2)*5
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4.20 Use one synthetic division to check all three results of 
Exercise 4.19.

4.21 (a) Show that

((1 ,-l)hx)*5^ (1 , _5,10 , "10,5 , ~1) II x

(b) Show that ((1 ,_1) II x) * n = II x, where

^-l*0,i«= 1 ,~1 ,1 ,-l ,...

(c) Show that c II 1 = +/ c.
(d) Use the results of parts (c) and (b) to show that

+/ v x ft n = 0

(e) Verify the result of part (d) for each row of Table 4.5.
4.22 (a) Compute and compare the values of the functions

(0 , .5 , .5) II x and +/tx for x = 1, 2, 3, 4, 5, 6, and 7.
(b) Prove that the functions of part (a) are equal for all 

integer values of x. (Consider +/ (D t x and (i x) + (D 
LX.)

(c) Assuming that p c = 3, determine a polynomial c II x 
that fits the function +/ tx at three points.

4.23 (a) Tabulate the function +/ (tx) * 2 for x = 1,2,3,4 ,
5,6,7,8 and determine a polynomial of degree three 
that fits the function at the first four points.

(b) Verify that the derived polynomial fits the function at 
a number of further points.

4.24 (a) Determine a polynomial to fit the function +/ (t x) * 3.
(b) Square the polynomial of Exercise 4.22 (a) and com­

pare with the polynomial derived in part (a) above.
4.25 (a) Make tables of the values of each of the following

functions for values of n from zero to five:
(i) +/1 n

(ii) (0,.5,.5)nn
(iii) -I (l n) * 2

(b) From the results of part (a) makes a quick calculation 
of what you would expect the value of -/ (t 20) * 2 to 
be.

4.26 The result proved in Exercise 4.22 can also be proved by 
the use of mathematical induction as follows. Assume that 
the relation (0 , .5 , .5) II x = +/1 x holds for x equal to 
some integer k. Then (0 , .5 , .5) II k = +/ l k.
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But

(O,.5,.5)II£+1^U+1)+U+1)2

= ((0 , .5 , .5) II A) + (A+ 1) 
= (+/1 k) + k + 1 
=+/lk+ 1

Hence the assumption that (0 , .5 , .5) II x = +/1 x holds 
for x = k leads to the conclusion that it must also hold for 
x = k + 1. But the relation obviously holds for x = 1, since

(0 , .5 , .5) II 1 = 1 and+/11 = 1
Therefore (0 , .5 , .5) II x = +/1 x for x = 1. Since this is 
true for x = 1, it is also true for x = 1 + 1 or 2. Since true 
for 2, it is also true for 3, and so on for all succeeding 
integers.

The method of mathematical induction can be stated as 
follows: (1) if the assumption that the values of two func­
tions of x are equal for x = k (k an integer) implies that 
they are also equal for x = k + 1, and (2) if the functions 
can be shown to agree for some integral value of x, then 
they must agree for all succeeding integral values of x.
(a) Use mathematical induction to show that the poly­

nomial derived in Exercise 4.23 (a) agrees with the 
function +/ (lx)* 2 for all integral values of x.

(b) Show that the polynomial of Exercise 4.24 agrees with 
the function +/ (lx) * 3 for all integral values of x.

4.27 Program 4.9 fails if the pivot row has a zero component 
in its zth position M* (called the pivot element), since the 
division by M\ in statement 5 cannot then be carried out. 
However, since the equations can be reordered (that is, 
Mk and Ml can be interchanged) without affecting the solu­
tion, the offending pivot row M'1 can be exchanged with 
some other row Mk such that Mt # 0. However, the ex­
change can be made only with some row Mk that has not 
already served as a pivot row; that is, k must exceed i.
(a) Rewrite Program 4.9 so as to avoid the difficulty of a 

zero pivot element.
(b) Rewrite Program 4.9 so as to choose the pivot row in 

the zth stage as that row with the largest (in absolute 
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value) pivot element among the eligible rows. This is 
one of the best procedures for minimizing the accumu­
lation of round-off error in the solution.

4.28 Let g be a given set of argument values for a function F, 
and let r be the corresponding set of function values. In 
other words, r = F g. Write a program that will determine 
the coefficients c of a polynomial that fits the function F 
at all the points (gt ,Fgf).

4.29 (a) Write a program that will determine a polynomial of
degree n that fits the function F at equally spaced 
points in the interval from a1 to a2, including the end- 
ppints.

(b) Execute the program of part (a) for

Fx = 1 - (1 , 1 , 1) Hi

for a = 0.,1 and n = 3.
4.30 If c II z = 0, then z is said to be a zero of the polynomial 

with coefficients c. If z is a zero of c II x, then (x — z) is a 
factor of c II x, and hence there is a polynomial d such that 
cllx= (x-z) x dllx. If cllx contains the factor 
(x - z) * k but not the factor (x - z) * k + 1, then z is said 
to be a zero of multiplicity k.

Write a program to determine the multiplicity of a zero z 
of the polynomial c II x.

4.31 Let z be the vector of all the zeros of the polynomial 
c Hx (any zero of multiplicity k appears k times in s).
(a) What is the degree of c II x?
(b) Write a program to determine c as a function of z.

4.32 Let and a2 be numbers such that (cIIa1)<0and 
(c II a2) > 0. Write a program to determine z as one zero 
of the polynomial c II x to within a specified tolerance a3; 
that is, determine z so that the absolute value of c II z does 
not exceed a3.

4.33 (a) Prove that (0# t n) II x = (1 -x* ri) 4- (1 -x).
(b) Write a program to determine z as the value of (0 # t ri) 

II x using the result of part (a).
(c) Determine the sum of the first six terms of the se-

.111quence 1, j, ...

4.34 A vector s of dimension p c separates the zeros of c II x 
if, for each value of z, there is exactly one zero of c n x be­
tween and s. + 1. Write a program that determines z as 
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the vector of zeros of cllx to within a tolerance .0001 
(that is .0001 | c If 20.

4.35 Let p fl x = ((t n) fl x) x (CD c n) II x.
(a) Compute the value of p for each of the cases n = 2,3 , 

- 4,5.
(b) Prove that +/p = (+/ tn) * 2.
(c) Prove that [7p =+/(trt) * 2.

4.36 If m= 1776 and if d is a vector whose components are 
the successive decimal digits of m (that is, d = 1 , 7,7,6), 
then d will be called a base-10 vector representation of m, 
since m = (CD d) II 10. If n = 1860, if e is the representa­
tion of n, and if f= d+ e, then m + n = (CD/) II 10, since

(CD/) II 10= (6,13 , 15,2) II 10 = 6+ 130 + 1500 + 2000^ 3636

However, f= (2,15,13,6) is not the normal representa­
tion of the sum of m and n because it possesses compo­
nents that exceed nine. The normal representation g = (3 , 
6,3,6) can be obtained from / by “carrying,” that is, 
by subtracting ten from any component that exceeds nine 
and compensating by adding one to the component to the 
left of it.
(a) Execute the program below for the values of d and e 

used above and verify that it yields the correct repre­
sentation of the sum of the numbers represented by 
d and e.
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(b) Show that the program does not give the correct result 
for the case e = 7,6,1 and d = 4,5,7 , and modify 
the program to correct this defect.

(c) Further modify the program to permit argument d to 
have a dimension different from argument e.

4.37 (i) Rewrite the programs of Exercise 4.36, using rela­
tional functions and the residue to simplify the pro­
grams as much as possible.

(ii) Modify the programs of part (i) to perform addition in 
any specified bhse b rather than in base 10.

4.38 Write a program to determine p as the representation of 
the product of the numbers represented by d and e, that 
is, (®p)n io^((®d)n io) x (®e)n 10.

4.39 (a) Prove that if d is the decimal representation of the
integer m (that is, m = ((D d) n 10), then 91 m = 91 +/ 
d (see Exercise 3.32).

(b) Show that m is divisible by 9 if and only if +/ d is 
divisible by 9.

(c) Show that m is divisible by 11 if and only if -/ d is 
divisible by 11.

(d) Extend the results of parts (a), (b), and (c) to divisi­
bility by (b- 1) and\b + 1) in the representation in 
any specified base b.

4.40 (a) Write a program to determine d as the base-10 vector
representation of the argument m.

(b) Write a program to determine g as the base-b represen­
tation of the number whose base-10 representation is d.

4.41 Since (x 4- 1) * 5 = (1,5,10,10,5 ,1) fix,then((x4- 1)
*5) - x * 5 = (1 , 5,10,10,5) II x. Applying this iden­
tity for x = 1, 2, 3,..., and n yields

25 - 15= 1 + (5 x 1) 4- (10 x I2) + (10 x I3) 4- (5 x l4)
35 - 25 = 1 4- (5 x 2) + (10x22) + (10 x 23)+ (5 x 24)

( 45 - 35= 14- (5x3)4- (10 x 32) 4- (10 x 33)+ (5 x 34)

(n 4- I)5 - n5= I 4- (5 x n) + (10 x n2) 4- (10 x n3) + (5 x h4)

Adding these identities (and simplifying as much as possi­
ble on the left) yields

((« 4- 1) * 5) — 1 = n 4- (5 x 4-/1 ri) + (10 x 4-/ (t ri) 2)
4- (lOx +/ (m) * 3) + 5 x 4-/ (tn)*4

Solving for 4-/ (1/2) * 4 yields
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5 x +/ (t ri) * 4 = ((ft 4- 1) * 5) - (1 + n+ (5 x 4-/tft))
+ (10 x +/ (t ft) * 2) 4- 10 x +/ (t ft) * 3

Substituting known polynomials (see Exercise 4.24) for 
the sums on the right and adding yields

1 5 10 10 5 1
-1

0 - 1
0 -2.5 -2.5

0 W 
6 -5 10

3
0 0 -2.5 -5 -2.5

0 1
6 0 10

6
2.5 1

Finally, therefore,

+/ (t ft) * 4 M (0 , "I , 0,10,15,6) II ft) 4- 30

(a) For the cases n = 0, 1, 2, 3, and 4, verify that the fore­
going polynomial is equal to the sum of the first n inte­
gers each raised to the fourth power.

(b) Use the same method to find a polynomial for the sum 
of the fifth powers of the first n integers.

(c) Write a program to determine p as the vector of co­
efficients of the polynomial that fits the function 
4-/ (i n) m.
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The Slope Function
The slope of a straight line is defined as the ratio of the vertical rise 
to the horizontal distance between any pair of points on the line. For 
example, the slopes of the straight lines of Figure 5.1 are 2, 1, .5, “2, 
and 0, as shown. The graph of the function F x = b + a x x is a straight 
line with slope a. Moreover, if r # p, then the straight line through the 

s — Cl 
points (p,<?) and (r,s) has slope———.

Figure 5.1 Straight lines with various slopes

89



90 Chapter Five The Slope Function

The graph of a function is not necessarily a straight line and 
therefore may not have a fixed slope. However, at each point on a 
curve there is a tangent! line that does have a fixed slope. This is illus­
trated in Figure 5.2 for the graph of the function F x = 1 + x- x2. Thus, 
at the point (0 ,F0) the tangent is the line ABC, whose slope is 1. 
Similarly, the tangent at the point (.5,1.25) is the line DEF with 
slope 0, and the tangent at (1.5 .25) is the line GHI with slope ~2.

Figure 5.2 Slopes of tangents to a curve

Knowledge of the slope of the graph of a function can be very 
useful. In Figure 5.2, for example, the fact that the tangent DEF is

tThe terms tangent, chord, and secant are used for any curve in the same way 
that they are used for the circle. A secant is a straight line that intersects the curve in 
two (or more) points, a chord is that segment of the secant between the points of inter­
section, and a tangent is the limiting position of the secant as one point of intersection 
approaches the other (that is, the tangent touches the curve at one point).



I

I

The Slope Function 91

horizontal (that is, has slope 0) makes it clear that the point of tangency 
(.5,1.25) is a maximum point of the function Fx = 1 + x-x2. Simi­
larly, the fact that the slope at B is positive indicates that the function 
is increasing in the vicinity of that point, and the fact that the slope at 
H is "2 indicates that the function is decreasing rapidly in the vicinity 
of that point.

The slope of a polynomial (and indeed of any of the elementary 
functions) can be determined at every point on its graph by simple 
methods to be developed in this chapter; in other words, the slope at 
(x , F x) is itself & function of x. For example, the slope of the function 
Fx = 1+x-x2 of Figure 5.2 is equal to 1 - 2 x x for any value of x, 
and the slope of the function Gx = x+x2-x3 of Figure 5.3 is the 
function H x = 1 + (2 x x) - 3 x x2, also shown in the figure. The func­
tion H x is called the slope function of the function G x, or simply the
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The slope of a function is important in the study of the function; 
the elementary functions can, in fact, be defined in terms of their 
slopes. For example, the function Ex graphed in Figure 5.4 is defined 
by simply requiring that its value be 1 when x = 0 and that its slope at 
each point be equal to the value of the function itself at the point.

Figure 5.4 The function Ex whose slope function is equal to Ex

It is perhaps the most useful function in applied mathematics. More-
(Do Exercises over, a study of the slope of an elementary function leads to simple 

5.1 -5.2.) means for evaluating the function.
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The Secant Slope of a Function
In order to develop means for determining the slope of a func­

tion, it is necessary to begin with a careful definition of the slope of a 
tangent. The slope of the secant through the points (x,Fx) and 
((x + s) ,Fx+s) will be denoted by (Ds F) x. Thus

(n F\ r- (Fx+s)-Fx_ (Fx+s)—Fx 5 n
(n»F)X= (x+s)-x = 5 (5-1}

as illustrated in Figure 5.5 for the function Fx = x2 - (x3 3) and for

clear that the value of (Ds F) x is determined for every value of x. 
In other words, (DSF) x is itself a function of x; it will be called the 
secant slope function of F, or the secant slope of F. Figure 5.6 shows 
an example in which Fx = x* 2 and the corresponding secant slope 
function (Dj F) x = 1 + 2 x x, for the case s = 1. This expression for 
the secant slope of Fx is easily derived by setting s = 1 in Equation 
5.1 to obtain
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and then using the fact that F x is the function x* 2, thus: 

(D, F)x^((x + l)*2)-x*2
= 1+ (2xx) + (x* 2) -x* 2
= 1 + 2 x x

Figure 5.6 The secant slope function (Ds F) x for s = 1
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More generally, for any nonzero value of s:

tn ((x+s)>l<2)— x$2 (£>sF)x =------------ --------------

(5* 2) + 2xxX5
~ s

Hence, for Fx = x* 2,

(Z>sF) x= 5+2 x x (5.2)

Table 5.7 shows values of the secant slope of F for various points 
and for various values of s. It is clear from the table (as well as from 
Equation 5.2) that the secant slope approaches a limiting value as 
s approaches 0. Since s is the spacing (along the x-axis) of the two 
points that determine the secant, the geometrical meaning is that the 
slope of the secant approaches the slope of the tangent as its limiting 
value as s approaches 0. Hence, for 5=0, Equation 5.2 gives the slope 
of the tangent to the curve F x = x * 2 at any point x.

Table 5.7 Secant slopes for Fx = x* 2

X

(£>5F)x_______________________ ___

5=1 5 = 0.1 5=0.01 5 = 0.001 5 = 0.0001 5 = 0

-2.0 -3 -3.9 -3.99 -3.999 -3.9999 -4
-1.5 -2 -2.9 -2.99 -2.999 -2.9999 -3
-i.o -1 -1.9 , -1.99 -1.999 -1.9999 -2
-0.5 0 -0.9 -0.99 -0.999 -0.9999 -1
0.0 1 0.1 0.01 0.001 0.0001 0
0.5 2 1.1 1.01 1.001 1.0001 1
1.0 3 2.1 2.01 2.001 2.0001 2
1.5 4 3.1 3.01 3.001 3.0001 3
2.0 5 4.1 4.01 4.001 4.0001 4

The slope of the tangent to the graph of any function F at the 
point (x,Fx) will therefore be defined as the value approached by 
the secant slope (DSF) x as the spacing s approaches 0. This tangent 
slope function will be denoted by (D F) x and will be called the slope 
function of F. Because the slope function (£> F) x is derived from F, 
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it is often called the derivative of F; hence the choice of the symbol D 
to denote it.

Although the denominator of the right-hand side of Equation 5.1 
approaches 0 as s approaches 0, the numerator also approaches 0 in 
such a manner that the ratio approaches a fixed limiting value. For 
any particular function F this value is obtained by cancelling the 
factor s from both numerator and denominator before 5 is equated to 0. 

(Do Exercises The slope functions of all the elementary functions can be obtained
5.3-5.5.) jn way

The Slope of the Exponential Function n
Equation 5.1 was used earlier to derive the slope function of the 

function x* 2. It will now be used to determine the slope function 
of the function Fx = x* n for other nonnegative integer values of n.

For n= 3, Equation 5.1 yields

(D

= (3 xx2) + (3 x 5 xx) + s2

Thus, for 5=0,

(Z> F) x = 3 x x2

For a general value of n, the secant slope of Fx = x* n becomes

(5.3)

The binomial theorem (Equation 4.1 (b)) can be applied to obtain an 
expression for the first term of Equation 5.3:

(x + s) * n = ((ft ri) x <D x* 0 , i n) II s

Since the first and second components of ft n are obviously 1 and n 
respectively (see Table 4.5), then ft n = (1, n , c), where c is the vec­
tor of the remaining n - 1 components. Hence

(x+ s) * n= (1 ,n , c) x <D x* 0, in) Il s,
= ((x* n) , (n xx* n - 1) ,c x ® x$ 0 ,in - 2) II s
s (x*n) + jx((nxx*n-l),cX®x*0,m-2)IIs

Substituting this result in Equation 5.3, cancelling the terms in­
volving x* n, and performing the division by s yields

(DSF) x=((nxx*n - l),cx® x*0,m-2)IIi
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The slope function (Z) F) x is now obtained by evaluating the expres­
sion for the secant slope at 5 = 0. This value is clearly the constant 
term of the preceding polynomial in s. Therefore, for Fx = x^n,

(D F) x = nx x* n- 1 (5.4)

This general result can be compared with previous results by applying 
it for particular values of n:

Fx=x*3
Fx=x*2
Fx = x*1 = x
Fx = x* 0 = 1

(DF)x=3xx* 2 
(DF)x=2xx^ 1 = 2 xx 
(DF)x = 1 xx*0 = 1 
(Z>F)x=0xx* -1 = 0

The first two results agree with those previously obtained for x* 3 
and x* 2. The third case (Fx= x* 1 = x) is clearly the equation of 
the straight line with slope 1. The fourth case is the function having 
the constant value 1, and its slope is clearly 0.

The method just applied to the function x* n could be applied 
to determine the slopes of more complex functions such as (x3-x2) 
+ 5 or d n x. It will prove simpler and more efficient, however, to 
determine general expressions for the slopes of functions such as 
(Fx) + Gx and (Fx) x Gx in terms of the slopes of Fx and Gx. 
Then these results can be applied in a simple manner to obtain the 
slopes of a wide range of interesting functions. In order to do this it 
will be convenient to introduce an abbreviated notation for composite (Do Exercise 5.6.) 
functions.

Notation for Composite Functions
A monadic function such as

Hx= (2[x) x3fx

which is composed of (that is, defined in terms of) other functions is 
called a composite function. It will be defined by the abbreviated 
expression

Jf=(2[)x3r

obtained by deleting all occurrences of the argument x. The original 
expression can be reestablished by inserting the symbols for the 
argument x. Since a legitimate expression can be obtained only by 
inserting arguments in precisely the places from which they were 
dropped, the abbreviated expression is unambiguous and therefore 
provides a definition of the function H.
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(Do Exercises
5.7-5.8.)

Similarly, if A and B are two monadic functions, the abbreviated 
expression

H = (A)xB

can be expanded in only one way, namely,

Hx = (Ax) xB x

The parentheses around A are essential, since the expression P = 
A x B is an abbreviation for the quite different expression

P x = AxxBx

which, because of the right-to-left convention, is equivalent to
Px = A (xxBx)

The abbreviated expression Q = AB must be interpreted as 
Qx = ABx. For example, if Ax=2*x, and B x=3xx-2, then 
2x^2*3xx-2.

The use of any symbol (such as - or |) that denotes either a 
monadic or a dyadic function can lead to ambiguity, since H = A- B 
could be interpreted as either

Hx = A(-Bx) (monadic)

or

H x = A (x-Bx) (dyadic)

To avoid ambiguity, the monadic interpretation will be adopted when­
ever an expression permits it. The dyadic case can always be indi­
cated by inserting empty parentheses. For example, H = A ( ) - B 
would necessarily be interpreted as H x = A (x) - B x, which is equiva­
lent to A x - B x.

An abbreviated expression can sometimes be made more read­
able by adding redundant parentheses. For example, F=x can also 
be written as F = ( ) x ( ), since both are equivalent to F x = x x x. 
Similarly, F = and F = ( ) are both equivalent to Fx = x.

The Slope of the Sum of Two Functions
The function (F) + G is called the sum of F and G. The slope 

of the function

Hx = (F x) + G x
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is easily determined by applying Equation 5.1:

((F^) + Gx+5)-((Fx) + Gx)
(Ds H)x =---------------------- —------------------------

_ ((F x + s) — Fx) (G x+ s) - G x 
~ s s
= ((DSF) x)+(DsG)x

Consequently
(DH) x= ((£>F) x) + (DG)x

Finally, then
(£) (F) + G) x= ((£> F) 4-D G) x

or, in abbreviated form,
D(F) + G = (DF) + DG ' (5.5)

In other words, the slope of the sum of two functions F and G is the 
sum of the slope functions of F and G individually.

Figure 5.8 The slope of the sum of two functions
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This result is illustrated geometrically in Figure 5.8. If P Q repre­
sents the length of a line segment joining points P and Q, then

(Ds

uw-vw uv
F)p*-------------- = —“s s

SW-TW ST
s s

z x QW-RW QR (F) + G)p = ^   =

. But since ((F) + G) p= (Fp) + G p, then

RW=VW+TW

Similarly,

QW=UW+SW

Taking the difference of these two expressions and dividing by s 
yields the relation

(DS(F) + G)p^ (DsF)p + (DsG)p

Since this is true for all values of s, then

(D(F) + G) = (DF) + DG

It is easy to show that the rule for sums extends to three or more 
functions. For example, if

H=(P)+(Q) + R

then

H=(P) + ((Q) + R)

and the sum rule yields

DH= (DP) + D((Q) + R) .

But

D((Q) + R)^(DQ) + DR

Hence

DH = (DP) + (DQ) + DR
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Figure 5.9 Functions having the same slope

If F is a constant function Fx = c, then D F = 0, and the slope of 
the function (F) + G = c + G as given by Equation 5.5 is

(Dc+G)^(DF) + DG = 0+DG = DG

In other words, the functions G and c + G have the same slope, as 
illustrated by Figure 5.9. Conversely, any two functions having the 
same slope function can differ only by an additive constant. (Do Exercise 5.9.)

The Slope of the Product of Two Functions
The function H x = (F x) x G x is called the product of F x and

G x. From Equation 5.1,

((Fx+s) xG x+s) - (Fx) xG x
(F>SH) x~ „
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Regrouping the terms and adding and subtracting the term (Fx + s) 
xG x yields

(£> H) x= ((Fx+ x (G x+ ~ G x^ + (G x^ x (Fx+ ~ Fx 

^[(Fx+s) x (DsG)x) + (Gx) x (Z>sF) x

For s = 0, (F x + s) = F x, and hence

(DH) x = ((Fx) x (DG) x)+ (Gx) x (DF)x

Since // = (F) x G, the abbreviated form of this result becomes

D (F) x G = ((F) xZ> G) + (Z>F) x G (5.6)

For example, if F = G = ( ), then Hx= (Fx) x Gx = xxx, and 
(£> H) x = (x x 1) + (1 x x) = 2 x x. This agrees with the result pre­
viously obtained (Equation 5.4) for x*2.

The result in Equation 5.4 can be checked further as follows. If 
Fx = x and Gx = x*2, and 7/x=x*3, then Fx=(Fx)xGx. 
Therefore

(DH)x^((Fx) x (F>G)x) + ((£>F)x) xGx 
= (xx(2xx)) + lx (x* 2) 
= (2 xx* 2) + x* 2= 3 xx* 2

in agreement with Equation 5.4. y
If F x = c, then D F = 0 and

(Z> (F) xG)x = (ex (£>G)x) + 0xGx
= c x (Z> G) x

Hence

DcxG = cxDG

In other words, multiplying a function by a constant c multiplies its 
slope function by c as well. In particular, for c = ~ 1, it follows that 

(Do Exercises D (“ 1 x G) = - D G, and therefore D (- G) = - D G.
5.10-5.11.)

The Slope Function of the Polynomial
Since a polynomial is a sum of terms each of which is & product 

of a constant and a function of the form x* n, the slope of a poly­
nomial can now be derived by a simple application of the results ob­
tained thus far.
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For example, if c = (2,4,3), then

Hx = cllx = (2 xx* 0) + (4 xx* 1) + (3 xx* 2)

and

(DH)x = (Z)2xx*0)+ (D4xx* 1)+ (D3xx*2)

(applying Equation 5.5 for sums of functions). Applying the rule for 
multiplication by a constant (that is, D c x F = c x D F) yields

(DH)x = (2xDx*0)+(4xPx*l) + (3xDx*2)

Applying Equation 5.4 for powers yields

(DH) x= (2x0xx* -1) + (4 x 1 xx* 0) + (3 x2xx* 1)
= 0 + 4+6xx=(4,6)IIx

More generally, for any vector of coefficients c,

c II x = (Cj xx* 0) + (c2 xx* 1) +'(c3 xx* 2)
+ (c4xx*3) + ... + cpCxx*(pc)-l

and

(Dell) x — (Ox + (1 x c2xx* 0) + (2 x c3Xx* 1)
+ (3 x c4xx* 2) + ... + ((p c) — 1) x cpC xx* (p c) — 2

= dll x

where dt = 1 x c2; d2 = 2 x c3, and, so on. In general, it is clear that d 
is obtained by deleting the first component from the vector c and then 
multiplying successive components by 1, 2, 3, ..., (p c) - 1. Hence

d = (i (p c) - 1) X (1 < t p c)/c

Finally,

(dcn) x = ((t (p c) -1) x (i < tp c)/c) nx

or

Dcn = ((i(pc)-l)x(l<ipc)/c)n (5.7)

The rule for obtaining the slope function of any polynomial is 
therefore extremely simple: remove the first coefficient and multiply 
succeeding coefficients by 1, 2, 3, and so forth.
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For example, if

Fx = 6 + (3 x x) + (2 x _ x4

then
Fx=(6,3,2,0,-l)n/

and

(DF)x^ (3,4,0,~4)n%
(Do Exercises = 3 + (4 X x) — 4 X x3
5.12-5.13.)

Example 1: The function graphed in Figure 5.5 has zero slope 
/ 4\

at the points (0, 0) and (2, y I. These points are clearly a local mini­

mum and local maximum respectively.t For any elementary function 
the points of zero slope are rather easily determined, and the point 
where the function achieves its maximum can be easily selected from 
among them. The interest in determining the maximum can be illus­
trated by the following problem: Small squares, all of the same size, 
are to be cut from the corners of a one-foot square piece of sheet metal 
so that the remaining sheet can be folded up into a topless box. What 
size should the small squares be to yield a box of the largest possible 
volume? If the squares have sides of length x, then (as seen from Fig­
ure 5.10) the volume v is given by

v = F x = xx (1 — 2 x x) 2
= (0,l,-4,4)IIx

The maximum value of the volume is found by determining the 
points at which the function V x has zero slope. The slope function 
of V x is given by

(£> K)x=((l ,2,3) x (1 ,-4,4))IIx
(1 ,~8,12)nx

Equating (Z> V) x to zero and solving for x yields solutions x = v and o
1 2x = y. Evaluating V x for these values of x gives V1 + 6 = yr and

t A local minimum is a point on the graph of a function which is lower than all 
nearby points. A local minimum is not necessarily a minimum. For example, in Fig­
ure 5.5 the point (0,0) is a local minimum of the function Fx, but is not a minimum, 
since other points —such as (3.1 , “1.089) —are lower.
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1 -2xx

volume = xx(l-2xx)*2 

!x

V 1 4- 2 = 0. Hence (as illustrated by the graph of Vx in Figure 5.10) 
1 12

the function attains a minimum at (y, 0) and a maximum at > 27) 5

the maximum volume obtainable is cubic feet.

Example 2: Figure 5.11 shows the function P t which describes the 
position of a falling body (measured from its point of release at the top 
of a well at time t = 0) as a function of time. The function V t is the 
slope of P t. But V fis the limit (as 5- approaches zero) of the expression

(Do Exercise 5.14.)

v t (Pt + s)-Pt

which gives the average velocity during the time interval from tto t + s. 
Hence the function V t gives the velocity at time t. Similarly, the func-

s
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tion A t is the slope of V Land represents the acceleration at time t. In 
the present example it is seen to be a constant, as it should be in the 
case of free fall.

Figure 5.11 Position, velocity, and acceleration 
of a freely falling body as a function of time

It is instructive to consider the same functions in the opposite 
order. If only the acceleration is known, then a function having this 
slope can be determined. This function is V t. Likewise, a function 
having Vt as its slope can be determined; this is the function Pt. 
Furthermore, if the acceleration A Ms equal to the constant value 32 
(which is approximately true for free fall), then V t must be equal to 
c+ 32 x t, where c is some constant. For, if Vt = c+ 32 x t, then 
(D V) t = 32 as required. Moreover, if the velocity is zero when the 
body is dropped (that is, at time t= 0), then KO must be zero and 
therefore c = 0. Finally,

P7=32xz
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Similarly, P t must be equal to d + 16 x t2 for some constant d, 
since (D P) t is then equal to 2xl6xr=32xr=K/ as required. 
Again, since the position at time t = 0 is zero, the constant d must be 
zero. Hence

Pz=16xz2 (Do Exercise 5.15.)

Some Interesting Functions
Certain natural phenomena are described by functions with the 

following characteristic: the slope of the function is proportional to 
the function. For example, since bacteria multiply by division, the 
population of a well-fed colony of bacteria continually increases at a 
rate proportional to the population. Thus, if Pt gives the population 
as a function of time t, then

(DP)t = rxPt

where r is a constant of proportionality.
Other examples of this type of function abound. A tree grows at 

a rate (approximately) proportional to its present size; the rate of 
discharge from a hole at the bottom of a tank of water is proportional 
to the pressure and hence to the amount of water in the tank at each 
instant; the rate of discharge from an electrical condenser connected 
through a resistor is at every instant proportional to the voltage and 
hence to the amount of electrical charge remaining.

Is it possible to find a polynomial whose slope function is equal 
to the polynomial? Clearly not, for the slope function is a polynomial 
of degree one less than the original polynomial. However, a poly­
nomial that approximates this behavior can be found by simply 
choosing the coefficients so that the coefficients of the slope polynomial 
agree for all save the last.

If c = 1 + ! 0 , l n, then

/I Ill i 1\ 
c \! 0’! 1 ’! 2’! 3 ’' * •’! n — 1 ’! n/

and

' -v-2 y3 -v*4 ■yW
cnx-l+x + T2 + !3 + !4 + --- + nr
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is clearly a polynomial satisfying the requirements. For the slope 
function is d II x, where

. A I 1 _!_)

Hence

and

c = d , c r’ pC

x3 xn — i
d II X = 1 + X + yr- + 777 + . . . + ' r ! 2 ! 3 ! n-1

xn
= (cHx) -f- In

The slope of c II x therefore differs from c II x only by the term (x * ri)
! n, where n = (p c) - 1. Because of the factor! n in the denominator 

this difference can be made as small as desired by choosing n suffi­
ciently large. For n sufficiently large, the value of the polynomial 
c II x therefore approaches a limiting value which will be denoted by 
* x.t Thus

x= (1 -4-! 0 , i n) II x
-y-2 -y-3 -v-4

-l+x + ^ + ^ + ^+... (5.8)

and * x has the desired property, namely,

(£>*)% = *% ' (5.9)

fThis use of the symbol * for a monadic function does not conflict with the 
earlier use for the dyadic function of exponentiation. In Chapter 8 it will be shown 
that the monadic function * is, in fact, the special case of the dyadic function e*x, 
where e = * 1 = 2.71828 ...
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Although it has an infinite number of terms, the polynomial * x 
can be computed to any desired degree of accuracy because the co­
efficients of the higher-order terms decrease so rapidly. For example

*l = l + l+l + l + ±+^ + ^ + ^_+...

= 2.71828...

as can be verified by simple but tedious arithmetic. The general be­
havior of * x can be determined by evaluating and plotting the func­
tion for a number of values of x as shown in Figure 5.4.

The slope of the function

,. s j, . , , (rxx)2 (rxx)3(* r x) x = * r x x = 1 + (r x x) + , 2 +v (3 -1- • • •

can be obtained by applying Equation 5.7:

. r3 X x2 r4 x x3
(D*rx) x = r+(r2xx)+—py—I-——+...

Hence

(D* rx) x=rx (*rxx) (5.10)
/

In other words, (4 r x) is a function whose slope is proportional to 
itself, the constant of proportionality being r. It is therefore a function 
of the form suggested at the beginning of this section. (Do Exercises

The average of the polynomials * i and * - x yields another 51*>-519 ) 
useful function, which will be called A x. Specifically

Ax= .5 x (* x) +* -x 
, X2 X4 X6 
^1 + !2 + r4 + !6+-* (5J1)

Since A x contains only even powers of x it is an even function of x, 
that is

A - x= A x

The function is graphed in Figure 5.12.
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Figure 5.12 The functions A x and B x

X * X A x B x

-3 0.050 10.068 10.018
-2 0.135 3.762 3.627
-1 0.368 1.543 1.175
0 1.000 1.000 0.000
1 2.718 1.543 -1.175
2 7.389 3.762 -3.627
3 20.086 10.068 -10.018

One-half the difference of * x and * - x yields a third function, 
which will be called B x; thus

\

B x = .5 x (* x) - * - x
y-3 X?=x+^+_+_+... (5.12)

Since B x contains only odd powers of x, it is an odd function of x, 
that is, B — x= - B x. It is also graphed in Figure5.12.
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From the definitions of A and B it is clear that

(A) + B = * and (A) - B = *

Since

/111 \Ax = 11,0 ,0 ,—,0 ,-7,0 ,.. .)I1a:
\ I Z ! 4 ! o /

and

Bx = (0,1 ,0,pj,0,^,0,py,...)lIx

it is easily shown (by applying Equation 5.7) that

DA = B\ (5.13)
DB = Aj

Since a slope function D F is itself a function, it is possible to 
determine its slope function D(DF), the slope of that function 
D (Z> (D F)), and so on. Just as the slope function D F is sometimes 
called the derivative of F, so the function D D F is called the second 
derivative of F; D D D F is called the third derivative oi F, and so on.

For the function A it is clear that

D(DA)=A

Hence A is a function which is equal to its own second derivative. 
Clearly B is a similar function, since D(DB)=DA = B.

The graph of the function A x is the form assumed by a cable 
suspended between tWO supports. (Do Exercises

Two more interesting functions can be obtained by reversing 5-20-5.28.) 
the signs of alternate nonzero terms of A x and B x. They will be de­
noted by C x and S x and defined as follows:

C x — ,0 , f > 0, j 4,0 ,.. .^ n x

s x = (0,1,0, , 0, yj, 0,...) n x

It is easily shown that

DC = —51
DS=C J

(5.14)

(5.15)
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(5.16)

(Do Exercises 
5.29-5.31.)

Consequently

DDC^D (-5) =-DS=-C 
DDS^DC^-S

Thus C x is a function whose second derivative is equal to - C x. The 
function 5 x behaves similarly.

The functions C and 5 have a curious property, which is easily 
derived from the behavior of their slopes, namely

((C)xC) + (S)xSh1 (5.17)

For if H = ((CLx C) + (5) x 5, then

Dff^(((C)xDCj + (C)xDC)+((S)xDS) + (S)xDS
= 2x((C) xDC) + (5) xDS
= 2x((C) x-5) + (5) xC
= 0

Since the slope function of H is zero, the function H x must be a con­
stant. The value of this constant can be determined easily by evalu­
ating H x for x = 0. Since C 0 = 1, and 5 0 = 0, then H 0 = (1 x 1) 
+ 0x0=1. This result can be tested by computing the first few terms 
of the indicated polynomial.

It is clear from Equation 5.17 that the value of C x must lie be­
tween “1 and 1 and that the same is true of 5 x. Because C 0 = 1 is the 
slope of 5 x at x = 0, 5 x is rising from its value of 0 at x = 0. When 
5 x is increasing C x must (according to Equation 5.17) be decreasing; 
it continues to decrease until its value reaches’"1, at which point it 
again begins to increase until it reaches 1.

It is therefore not surprising that the functions C x and 5 x de­
scribe oscillations such as that of a weight suspended on a spring. If P t 
describes the position of a weight suspended on a spring as a function 
of time Z, then, as remarked in connection with Figure 5.11, (D P) t is 
the velocity of the weight and (DDP)t is the acceleration. Because the 
weight is supported by a spring, the acceleration applied to the mass is 
proportional to the displacement from the equilibrium position and is 
oppositely directed, that is, D D P = — P. Thus the function P has the 
same property as that shown by Equation 5.16 for the functions C 
and 5. These matters will be treated further in Chapter 6.
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Approximating Polynomials of Unlimited Degree
The polynomial Pf = 1 +f+f2 +fs + ... of unlimited degree can 

be evaluated precisely for nonnegative values off less than 1:

pf=T~f (5-18)

For if F n denotes the sum of the first n terms of the polynomial, then

Fn^ 1 + /+/2+/3 + .. • +fn~r

and

f x F n = f+ P + /3 + /4 + . + fn

Consequently (F n) -fx Fn=l -f*, and hence

As n becomes large, the value of F n approaches the value of P/and, 
since 0 —f< 1, the term fn approaches 0, yielding Equation 5.18. For 
example:

P .9 = 1 + .9 + .92 + .93 + . . . = - ---- — =10 (Do Exercise 5.32.)

In evaluating any polynomial of unlimited degree (such as * x) 
it seems obvious that any desired degree of accuracy can be attained 
by taking a sufficiently large number of terms, provided that the later 
terms continually decrease in size. In particular, it would appear that 
the maximum extent of the error is indicated by the magnitude of the 
first neglected term. Consider, however, the evaluation of the poly­
nomial

P/-l+/+/2+/3+/4+...

fdr/= 0.9. The eighth term,/7, has the value 0.4782969, yet the sum 
of the preceding seven terms is only 5.217031 and differs from the 
true value of P0.9 (which is 10) by 4.782969, an amount greatly ex­
ceeding the first neglected term.

It is evident that the first neglected term is not a sufficiently accu­
rate measure of the potential error and that a better criterion is needed. 
Finding a suitable upper bound for the sum of all the neglected terms 
is a difficult problem that has received much attention in mathematics, 
in the theory of convergence of series. For the rather simple poly­
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nomials of interest in elementary functions, however, a simple criterion 
is easily obtained.

Let t be the vector of terms of the polynomial to be evaluated, 
let s be the vector of the first i terms actually summed, and let r be 
the vector of the remainder terms (that is, those not summed). Then 
t = s , r; the true sum is +/1 = (+/ s) + (+/ r); the calculated sum is 
+/«; and the error due to the remainder is +/ r.

What is needed is an upper bound on the absolute value of the 
error (that is, | +/ r) rather than on the error itself. For example, an 
error of “678 is less than a tolerance t = 0.001, but is clearly unac­
ceptable because the magnitude of the error (that is, | “678 = 678) is 
too large. Since (| +/ r) < +/1 r, the required upper bound can be es­
timated by summing the components of the vector | r. The absolute 
value of the vector r will now be denoted by a, that is, a = | r.

In general, +/ a cannot be evaluated directly, but it is frequently 
possible to find a vector d which can be summed and which dominates 
a, that is, for ally. Clearly, (+/ d) > (+/ a) = (+/1 r) > (| +/ r), 
and therefore the sum over d provides an upper bound on the error 
incurred by neglecting the remainder +/ r.

If aJ+1 — Uj x/for all values of / then ak 5 x/* k- 1. There­
fore the vector

d-^xQ,/,/1 2,/*,...)

dominates a. If the factor/is less than 1, then from Equation 5.18

+/ d = ttj x

If the ratio betweeri successive terms of a is not increasing (that is, 
“i+l aj a2------—------ ), then d will dominate a if/is chosen equal to—. Hence

aj aj-i ai

(|+/ r) < (+/ «) < (+/ d)
A ttg

Since t = and (p s) = i and a = |r, then a1 = |ti+1 and 
a2 = |ti+2. Therefore, in terms of the original polynomial +/1, the 
error bound on +/ r is given by 

1 — (I ^ + 2) I *{+1 (I *i+l) ~ I *i + 2 (5.19)

In summary, the true sum of the terms t of a polynomial will 
differ from the sum of the first i components of t by an amount not
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exceeding the expression for | +/ r in Equation 5.19, provided that for 
all j > i the ratios (| tJ+1) 4-1 tj do not exceed the ratio (| tj+2) 4-1. tj+1, 
and that the ratio (| ej+2) + | tj+1 is less than 1.

For example, since

*2=1 + 2 + ^ 8.16 32 64
*2 i + 2 +, 2 +, 3 + j 4 + j 5 + , 6 + • • •

then

* 2 ss +/1, where

? 4 8 16 32 64 \
\ 2’! 3 ’! 4 ’! 5 ’! 6 ’' *

Moreover, for i = 6, the ratio (| tJ + 1) 4-11. is less than unity for j > i, 
and Equation 5.19 can therefore be applied to give the error bound 

64

+/ d. Therefore +/ d =------ //™\—Z7 = FZ = 0.1244 ... Hence

\!7f!6
the sum of the first six terms of * 2 gives an approximation of * 2 to 
within a possible error of 0.1244 ...

The polynomial
-v-2 -v-3

-K = 1 + X + — + — + . . .

can be treated in a similar manner for any specified value of the argu-
I x

ment x. For, since the ratio | tk+2 4- tfc+1 is equal to + all the re­

quired conditions are satisfied by choosing z>x. Similar arguments
apply to the functions A, B, C, and S. 5.3^-s!ST

Applications of the Slope Function
Perhaps the most important application of the slope function is 

in the study of functions such as the circular functions and the expo­
nential function. This use of the slope will occur repeatedly in later 
chapters. Applications to be treated here are the graphing of curves 
and the determination of areas and volumes enclosed by certain curves.

Curve plotting. In making an accurate graph of a function, 
it is helpful to know the slope of the curve at each point plotted and 
to indicate this slope by drawing a short segment of the tangent line 
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at each point. For example, if
h=(-2,6,-2,-2,l)nx

then

(DF)x = (6,-4,-6,4)lix

Figure 5.13 shows a tabulation of both these functions for a number 
of values and a plot of the tangent for each of the tabulated points.

Figure 5.13 The use of tangents in graphing a function

It is clear from Figure 5.13 that the tangents give a much better 
picture of the curve than the points alone would. In particular, the 
points (-1, F -1) and (1 , F 1) are points of zero slope and are a local 
minimum and a local maximum respectively. Moreover the third zero 
of (D Fj x is easily found to be at x = 1.5; it is a second local minimum 

13of F x with a value of -ry.
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The area under a curve. The area of the shaded portion of 
Figure 5.14 enclosed by the y-axis, the x-axis, the curve Fx, and the 
line x = t is clearly a function of t. It will be denoted by G t. If t is in­
creased by a small amount s, the added area is approximately sxF t 
and therefore the slope of the function G t is approximately F t. That is,

/ ((G t) sx F t) - G t(Ds G) t =-------------- --------------- = F t (approximately)

If, as will be shown,

(DG) t = Ft (5.20)

exactly, then the area can be determined simply by finding the function 
G whose slope is F. If F is a polynomial, this is easily done by re­
versing the procedure described by Equation 5.7.

Figure 5.14 The area under a curve F x

For example’ if Fx is the parabola

Fx=9-4xx2= (9,0, _4) II x

shown in Figure 5.15, then G t is the polynomial whose coefficients 
are obtained from those of F by dividing successive components by 
1, 2, 3, and then appending a leading component c. Thus
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/ 4\Gt=lc,9,0,~ jlnz

Any value of c will satisfy Equation 5.20, and the value of c can there­
fore be chosen so that the area G t is 0 for t= 0, as required. Hence

/ 4\Q = GQ = k,9,0,-y)n0 = c

and therefore c = 0. Finally

/ 4\ 4Gt=(o,9,o,-y)nt= (9xt) -jXt3

More generally, the area enclosed by the curve F x, the x-axis, and the 
lines x= a and x- t can be determined similarly. The only difference 
arises in the evaluation of the constant c. If this area is denoted by 
H t, then H a must be zero and therefore for the curve F x of the pre­
ceding example

/ 4\0 = H a = (c , 9,0 , —y) II a

Therefore

40 = c + (9 x a) - y x a3

/4 \c -- (y x a31 — 9 x a

and

//4 \ \ 4 XH t = ((y x a3 j - 9 x a\ + (9 x t)----- y-

For example, if a = y, then c = - y and

// 13\ 4\1,9,0,-y)nt

The relation between the functions G t and H t is shown by their 
graphs in Figure 5.15; H t is obtained by moving G t vertically until 
Ha = 0.
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Figure 5.15 The area under F = (9,0 , _4) II

This method of determining the area under a curve can be tested 
by applying it to the function

F x= (p ,q)Ux=p + q^x

whose area (Figure 5.16) is known from geometry. In this case

Gz=(c,p,^n?

and c is evaluated from the relation

G a = , p , II a = 0

Hence c = (p x a) \ and finally
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/ . . q x a2\ z ' q x t2G t = (- (pxo) +2”)+ (?x0 +2~

= (r-a)x(p + |x(r + a)^

= (t - a) x .5 x (p + qx a) + p + qx t
= (t- a) x .5 x (F a) + F t

which is the appropriate expression for the area of a trapezoid.

According to Equation 5.20, the area G t enclosed by the curve 
Fx, the x-axis, the line x = 0, and the line x= t satisfies the relation

(DG)t = Ft

To prove this, reconsider Figure 5.14. Clearly

((G t) + s x F t) > (G t + s) ((G t) + s x F t + s)
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Therefore

5

and

Ft> (DSG) t>Ft + s

As approaches zero, (DSG) t approaches (DG) t and Ft + s ap­
proaches F t. Therefore F t> (D G) t> F t, and (£> G) t must equal 
Ft. If the function Ft is increasing at the point t, the foregoing in­
equalities are all reversed, but the conclusion is obviously the same.

Volumes. Consider a solid such as the one shown in Figure 
5.17, whose cross-sectional area in all planes perpendicular to the 
x-axis is some known function W of the distance x from the origin. 
Then the volume V t cut off by a plane at x = t can be found by methods 
analogous to those used for determining areas. From Figure 5.17 it 
appears that

(DF) t = Wt (5.21)

where W t is the cross-sectional area of the plane at distance t from 
the origin. If W t is a polynomial, the function V t can be determined. 
Moreover the proof of Equation 5.21 follows the proof of Equation 
5.20.

(Do Exercises 
5.35-5.37.)
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For example, in the cone of Figure 5.17,

W t = 77 x (p x z)2 
^(t7xp2)x (0,0,1) nz

Therefore

Fz = (tt x p2) x (c,O,O,|jll /

Again c can be evaluated by noting that V 0 = 0 and therefore c = 0. 
Hence

Vt = (tt xp2) x ^0,0,0 n t

Since the area of the base of this cone is given by

b = irx (p x z)2

V t can be reexpressed in the more familiar form

For the volume U of the frustum of the cone bounded by the planes at 
distances a and Z from the origin, the constant c can be evaluated ac­
cordingly. Thus \

U t = (tt x p2) x , 0,0 ,fl Z and U a = 0

— as
Hence c = and

The solid cone of Figure 5.17 can be conceived as being gen­
erated by revolving the curve F x = pxx about the x-axis. The volume 
of any solid so generated is called a volume of revolution generated 
by Fx. Figure 5.18 shows the volume of revolution generated by the 
function Fx=Vx. The cross-sectional area at distance Z from the 
origin is clearly given by

Wt=TTX (Vty = TTXt=TTX (0,1)11/
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Hence
jz^==7rxfc,0,yjn/

and again

Therefore

c = 0

V z = 7rxfo ,0 , II t = .5 'Xtt'xF

Figure 5.18 Volume of revolution of the square-root function

The foregoing methods for determining the areas and volumes 
enclosed by curves succeed only if the slope function obtained is one 
for which it is possible to determine another function having that 
slope. At present this means that the slope function must be a poly­
nomial, and the method therefore fails in some seemingly simple cases 
such as determining the area of a circle (although the volume of a 
sphere can be determined). Later chapters will extend the set of func­
tions which can be treated. (Do Exercises 

5.38-5.42.)
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Exercises
Note: If a computer is available, it may be well to perform some 
of the indicated calculations by writing and executing programs.

5.1 (a) Draw tangents to the graph of the function G x of
-1 11Figure 5.3 at x= _1,-y, 0, y, y, and 1.

(b) Measure the slopes of these tangents, and use the 
measurements to make a table showing these slopes as 
a function of x for the six indicated points.

(c) Add a third column to the table of part (b) to show the 
values of H x = 1 + (2 X x) - 3 x x2 at the six points, 
and compare with the values obtained for the slopes 
of the tangents.

5.2 Repeat Exercise 5.1 for the graph of Ex of Figure 5.4 for
x = “1.5, -.5, .5, and 1.5, making the comparison with 
the value of E x at each of the points.

5.3 (a) Graph the function Fx = x^f 2 from x- ~2 to x- 2,
and draw the secant slope lines for the case s = .5 at 
x =-2,-1.5,-1,-.5, 0, .5, 1.0, and 1.5.

(b) Determine the slopes of the secant lines and make a 
table of their values.

(c) Write an expression for the secant slope function 
(D 5 F) x, tabulate its values for the eight points of 
part (a), and compare with the slopes determined in 
part (b).

5.4 For each of the functions Fx listed below:

(a) Determine the secant slope function DSF for s = l,y, 
and^.

(b) Tabulate the secant slope functions of part (a) for 
x= “1,0,1, and 2.

(c) Determine the slope function (D F) x.
List of functions:

(i) Fx = 3
(ii) Fx = 2 x x* 3

(iii) F x = 2 4- x* 3
(iv) Fx = (x* 2) + x* 3
(v) F x = ^0 II x

(vi) Fx = (o
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(vii) Fx = x
(viii) F x = 3 x x

(ix) Fx = 3
5.5 For each of the functions x* 2, x* 3, and x* 4: y

(a) Determine the slope functions.
(b) Graph the original functions from x = _1.5 to x= 1.5 

and use the results of part (a) to draw tangents for 
x = -1.5, -1.0, -0.5, 0, 0.5, 1.0, and 1.5.

5.6 (a) Use Equation 5.4 to determine the slope of the func­
tion Fx = a'*5.

(b) Use Equation 5.3 to determine the slope of F x = x * 5, 
and compare with the result of part (a).

5.7 If Fx = x^ 2 and Gx = x* 3, show that,
(a) FF=(F)xF
(b) FG = GFb(f)x(F)x(F)s(G)xG
(c) F 1 + = 1 + (2 x ) + F

5.8

5.9

= /n 1 1 1U ~ V ’ 6 ’ 2 ’ 3 /11 x'

(d) G 1 + = 1 + (3 x ) + (3 x F) + G
(e) (G)xF^ (F)xG . . . ‘
(f) GxF=GG
(g) (G):F=()
(h) G-F=l-G
(i) F^G = 1 - (F)*2
(a) If F x = +1 lx and G x = +/ (t x) * 3, show that 

G = (F) x F (see Exercise 4.24).
(b) If Fx = x*2, show that +/Fix

Apply the rule for (1) the slope of the sum of two functions, 
and (2) the slope of the function x* n to each of the func­
tions (i), (ii), (iii), and (iv) of Exercise 5.4, and compare the 
results with those of Exercise 5.4 (c). Note that 2xx 
* 3 = (x* 3) +x* 3.

5.10 Apply the rule for the slope of the product of two functions 
as well as the rules used in the preceding exercise to each 
of the functions (v), (yi), and (viii) of Exercise 5.4 and 
compare with the results of Exercise 5.4 (c).

5.11 For each of the functions listed below, two or more equiva­
lent forms are listed. For each form use the appropriate 
rules to derive the slope function DF, and compare the 
results.
(a) Fx = x 3 = xxx 2 = x xx xx
(b) F x = x * n = x x x * n- 1
(c) Fx = x*5^(x*2)xx*3
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(d) Fxs3xx* 4 = (x* 4) + (x* 4) + x* 4
(e) Fx= 1 + (x* 2)-xxx = 1

5.12 For each of the polynomials listed below, determine the 
coefficient vector p such that p II x =(Z) F) x. Where two 
equivalent forms are given, compute both and compare 
the results.
(a) F x = ^0, y j II x

/ i i i\(b) Fx^ (0,4,4,4 IIx
\ O Z 3/

(c) Fx=((3xx4)-2xx2) + (7xx)-3
(d) Fx = (1 ,0,0,0,-1) IIx= (1 -x) x (0#i4) nx
(e) Fx^ (2,5,-8, 10,7,-10,12) Ox

= ((1 ,3,-2,4)Hx) x (2,-1 ,-l ,3)Hx
(f) Fx= (1,2,6,7) Hx

= ((2,6,4,7)Hx) +(-l,-4,2)Hx
(g) Fx= (1 4-10,i4) Hx^fl ,i,|,l^jnx

\ Z o Z4/
(h) Fx = (1 v!0,i9)nx

5.13 (a) Write a program to determine p as a function of c
such that

p n x = (z> c n) x
(b) Write a program to determine p as a function of c such 

that p II x is the nth derivative of c II x. Ensure that 
p= c for the case n = 0. (Z> D F is the second deriva­
tive of F,D D D F is the third derivative, and soj forth.)

5.14 Consider the problem of Figure 5.10 for a rectangular 
sheet 3 feet long and 2 feet wide, and determine the value 
of x that yields the maximum volume.

5.15 The function P t of Figure 5.11 (for the position of a freely 
falling body as a function of time) is

16x z* 2 j
(a) Determine the function Do P for the cases = 1, and

■ ± . 2
4‘

(b) Determine the slope function V= DP (that is, the 
velocity as a function of time).

(c) Determine the function D DP (that is, D V).
5.16 (a) Evaluate the function * x to three decimal places for 

values of x from -2 to 2 in steps of one-half. (To save work,
x compute each term by multiplying the preceding term by — 
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and by noting that the terms in * k and * - k are identical 
except for sign.)
(b) Using the results of part (a), compute the products 

(* k) x * - k for values of k from 0.5 to 2 in steps of 
one-half.

(c) Corroborate the general result suggested by part (b) 
by computing the first few coefficients of the poly­
nomial for (* x) x * - x.

5.17 Since the slope of * x is equal to * x for all values of x,
(•4- x + s) — x 

the value of the secant slope (D *)x =-------- -----------
s s

should be approximately equal to * x for small values of s.

(i) Compute (Ds *) x for x = 1 and for s = 1, y, and 

and compare with the value of * 1.
(ii) Compute (DA *) x for x = 1, 2, and 3, and compare 

with * 1, * 2, and 3, respectively.
5.18 Let x = s x t 5, let t = (1 < t 5) / * x, and let h= (5 > l 5) 

I * x.
(i) For s = 0.1, compute t and h correct to four decimal 

places.
(ii) Compute the difference d=h- (t-h) s, and ex­

plain why the components of d are so small (see Ex­
ercise 5.17).

(iii) Write a program to determine the vector d as a func­
tion of s, using k terms of the polynomial for *.

5.19 The results of Exercise 5.16 suggest the following identity:
(*i) x * -x= 1

In other words, (^ - x) is the reciprocal of * x. Prove this 
identity by the following steps:
(a) Show that the function H x = (* x) x * -x is a con­

stant. (Hint: Show that the slope of H x is zero, using 
the product rule and Equation 5.10 with r= -1.)

(b) Show that the constant function H x has the value 1 by 
evaluating it for some value of x.

5.20 Evaluate the functions A x and B x for x = ~2 to x = 2 in 
steps of 0.5 (use the terms computed in Exercise 5.16).

5.21 (a) Repeat Exercise 5.17, substituting (DsA) x for
(Ds *) x and comparing it with B x rather than with 
* x.

(b) Repeat Exercise 5.17, substituting (DSB) x for 
(Ds*) x and comparing it with A x.
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5.22 (a) Repeat Exercise 5.18, substituting Ax for * x and
redefining d as d = ((5 > i 5) IB x) — (t - h) s.

(b) Repeat part (a), interchanging the roles of the functions 
ylandB.

5.23 Write programs to evaluate each of the following func­
tions to an accuracy such that the absolute value of the 
first neglected term is less than a specified tolerance t.
(a) * x
(b) A x
(c) B x

5.24 Write a single program having arguments xp x2, and x3 
which evaluates * if x2 = 0; A Xj if x2 = 1; and Bxt if 
x2 = _ 1, all evaluations being performed so that the ab­
solute value of the first neglected term is less than a speci­
fied-tolerance x3.

5.25 Write a program to check the theorem suggested by the 
results of Exercise 5.16 (b) for further values of k.

5.26 (a) Let e = * 1 =2.718 as determined in Exercise 5.16.
_ 3

Compute the following powers of e: e~2, e 2, e~J, 
e~ 5, e, e2, e1, e2, e2, and compare them with the values 

3
of * ~2, * - y, * _ 1, and so forth, obtained in Exercise

5.16.
(b) Write a program to check the theorem suggested by the 

results of part (a) for further values.
5.27 (a) Compute and compare the values of * x + y and (* x)

x * y for a few values of x and y.
(b) Write a program to further test the result suggested by 

part (a).
5.28 Establish the identity suggested in Exercise 5.27 by con­

sidering the expression:

+ I + u+» ...

and collecting all terms in x°, all terms in x1, and so forth, 
to show that

/ z y2 y3V + y + <2 + TJ +x + y =
/ y2 y3 \+ xx (1 + y + + 7"3 + • • • 1 +

v2 y3 \
+ ), + !2 + !3 + --J +
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X3
L3

/ y2 y3 \
+y+T2+T3 + ”7 

= (* y) x * x

4,4 
! 2 ! 3. 
X2 X3 
T2+Ti

5.29 (a) Evaluate the first few coefficients of the polynomial
((C x) x Cx) + (5 x) x 5 x

and compare them with the result of Equation 5.17.
(b) Evaluate the first few coefficients of the polynomial

((A x) x A x) - (B x) x B x
and conjecture a relation similar to that of Equation
5.17.

(c) Prove the validity of the relation conjectured in part 
(b).

5.30 (a) Repeat Exercise 5.17, substituting (Ds C) x for
(Ds*) x and comparing with - S x rather than with 
* x.

(b) Repeat Exercise 5.17, substituting (DsS)x for 
(Ds *•) x and comparing with C x.

5.31 (a) Repeat Exercise 5.18, substituting C x for * x and re­
defining d as d = ((5 > l 5) / - S x) - (t - h) 4- s.

(b) Repeat Exercise 5.18, substituting S x for * x and re­
defining d as d = ( (5 > t 5) ICx) - (t - B) 4- s.

5.32 For each of the following polynomials of unlimited degree, 
make a table showing the sum of the first n terms for values 
of n from I to 6 and showing (if possible) the complete 
sum as given by Equation 5.18.

f (a) + | +
(b) (1,1 , 1 ,...)11.9
(c) (1,1,1 ,...)II.l
(d) (4,4,4,...) Il .5

;• . (c) (1 , 1 , 1 , 1 ,1 , 1 ,...) 11.5 W
■ (i) .(i,i,i,i,...)ni. 4' / ? 1

. ' (g) (1 ,-i, 1,1,1 ,-i ,...) ri i
5.33 Throughout this exercise- rise Equation 5.19 to determine

error bounds. ■■
(a) Use Equation 5.14 to compute the values (to three 

/ digits of accuracy) of the functions C x and S x for the

following values of x: - -j, 0, y. •
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(b) Write programs to evaluate S x and C x to a prescribed 
tolerance t, and use them to compute S tt , C tt , S — it, 
and C - 7F.

(c) Write a single program (in the manner of Exercise 5.24) 
to evaluate any one of the functions *, A, B, C, and S.

5.34 (a) Without making any further evaluations of the func­
tions C x and S x, make as accurate a graph of them as 
possible using the Values computed in Exercise 5.33, 
Equation 5.17 (to establish upper and lower bounds on 
the values of the functions), Equation 5,15 (to draw 
tangents to the curves at the points computed in Exer­
cise 5.33), and the fact that C is an even function and 
that S is odd.

(b) Use the programs of Exercise 5.33 to evaluate the 
functions C and S at about forty equally spaced points 
from _4 to 4, graph the results, and compare them with 
the graphs produced in part (a).

5.35 Determine the areas enclosed by the x-axis, the curve 
F and the lines x = a and x = t, for
(a) Fx = x*2 (c) Fx= (1 ,1 ,1) 11%
(b) Fx=4xjt*3 (d)Fx = cIIx

5.36 Show that the function G t of Figure 5.15 represents the 
area between the curve F and the x-axis even for values 
of t >1.5 (where F is negative), provided that the area 
enclosed by the negative portion of the curve F is treated 
as a negative area.

5.37 Determine the entire area enclosed by the x-axis and the 
positive portion of the curve of the function Fx4 - x2.

5.38 (a) Determine the volume of revolution of the curve Fx 
= x^f- 3 enclosed between planes at x= 1 and x= 2.
(b) Determine the volume of a hemisphere of radius r. 

(Assume that the center is placed at the origin.)
5.39 Exercise 2.14 (d) shows how the equation a* n = p can 

be solved for a by computing successively better approxi­
mations to a. The same method can be applied to solve

"■ Fa=p

for any other function F.
A much faster method (requiring fewer approxima­

tions) can be derived by using the slope of F in the calcula­
tion of a new approximation. From the accompanying 
illustration it is clear that
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yields an improved approximation.
(a) Revise Program 2.6 to apply this method.
(b) Write a program using this method to determine a real 

zero of the polynomial c n x (that is, a real number x 
such that cIIx = 0). Assume that an initial approxi­
mation b1 and a tolerance 62 are given.

(c) Write a program to determine the value of x such that 
S x = 1 to within a tolerance t. Execute the program for 
t=.00001 using x= 3.14-4- 2 as an initial approxi­
mation.

5.40 The abbreviated notation introduced for composite func­
tions was limited to functions of a single argument. Hence 
F = + 1 -4- indicates that F x = x + 1 4- x. The notion can be 
extended to functions of many variables by simply re­
quiring that the successive positions to be filled by argu­
ments be filled by distinct arguments. Then F=+1'4- 
would indicate that F is a function of two arguments and 
that xFy = x + 1 4- y. Using this definition of F, compute 
the following:
(a) F/xforx= 1,2,3
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(b) FI l n, for values of n from 1 to 6
(c) Fl 1,1,1,1
(d) F10 l n, for values of n from 1 to 8
(e) F/3,7,15,1 ,256

5.41 Using the scheme of Exercise 5.40 to define dyadic func­
tions, the expression + 1 h- represents a dyadic function

30 
and therefore (+ l^-)/2,3,4=2 + 1-^3+ 1 - 4 = yj.

If c is any vector, then (+ 1 -^)/ c is called the continued 
fraction defined by the vector c (see, for example, C. D. 
Olds, Continued Fractions, L. W. Singer, 1963).
(a) Show that if the components of c are all positive, then 

each of the successive values of (+ 1 +) I (j t p c) I c 
for j = 1, 2, 3,... fall between the preceding pair.

(b) Show that (+ 1 -f) ten approaches a limiting value 
as n increases.

5.42 Iff is a vector such that= f2 = 1 and fj + 1 =f. Ffj_1 for 
J > 1, then f is called a vector of Fibonacci numbers.
Let h= (pf) > t pf and let t = 1 < t p f.
(a) Compute the value of /for p /= 9.
(b) Prove that 1, /+ 0 , h If is also a Fibonacci vector.
(c) Compute the vector (t If) 4- h If and compare its com­

ponents with the results of Exercise 5.40 (d).
(d) Prove the relation suggested by part (c).



Chapter Six

Circular Functions
The Sine and Cosine Functions

If P is a point on a circle with center at the origin and with a 
radius of 1 unit, then the length of arc measured counterclockwise 
from the point (1, 0) to the point P is called the arc of the point P. 
In Figure 6.1, for example, the arc of P is 1 and the arc of Q is 0.5.

133
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If P is the point (x, y) and a is the arc of P, then the values of the 
coordinates x and y are uniquely determined by the value of a. In 
other words, x and y are functions of a. The function which determines 
the vertical component of P is called the sine function, and the func­
tion which determines the horizontal component is called the cosine. 
Thus y = sine a and x = cosine a. The terms sine and cosine are often 
abbreviated as sin and cos respectively.

The length of a semicircle of unit radius is denoted by the sym­
bol 7r and is approximately equal to 3.14159. Consequently, the arcs

7T 3of the points A, B, C, and D of Figure 6.1 are 0, y, it, and x tt, re­

spectively. The following relations are therefore evident:

cos 0 = 1

77
COSy = 0

COS 77 =1 

3
COSy X 77 = 0

sinO^O

• 77 1
Siny = 1 

sin 77 = 0

An arc measured clockwise from the reference point (1,0) is 
considered to be negative. Hence the arc of point D can be considered 

77 3
as - y as well as y x 77. Likewise the arcs of C and B are -77 and 

3 .
-y x tt. Consideration of the points E and F and the points G and H 

of Figure 6.2 shows that in general (because of symmetry about the 
x-axis)

cos - a = cos a 1
r (o.l)sin - a = — sin a J

In other words, the cosine function is even and the sine function is odd.
As illustrated in Figure 6.3, an arc of length greater than 2 x tt 

(that is, one circumference) can be measured off. From the figure it is 
clear that cos (a + 2 x tt) = cos a and that sin (a + 2 x 77) = sin a. 
More generally, if n is any integer (positive, negative, or zero), then

cos a + n,x (2 x tt) = cos a 
sin a + n x (2 x 77) = sin a (6.2)

The sine and cosine functions therefore repeat themselves at intervals 
of 2 x 77 and are said to be periodic functions with period 2x tt.
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Figure 6.2 The even character of the cosine and the odd character 
( of the sine

Figure 6.3 An arc exceeding 2 x tt
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cos a

Figure 6.4 Method of graphing the sine and cosine functions
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The sine and cosine functions can be graphed by the method 
of Figure 6.4. Figure 6.5 shows the graphs superimposed and ex­
tended to negative values of the argument. The even character of the 
cosine, the odd character of the sine (Equation 6.1), and the perio­
dicity of both (Equation 6.2) are evident from Figure 6.5.

Figure 6.5 also shows that the graphs of sine and cosine are
77 77

displaced horizontally by y. More precisely, sin a = cos a -y. Since

cosine is an even function, this can also be written as

sin a = cos y - a (6.3)

TTArcs a and b are said to be complementary if their sum is y. The 

77
arcs a and y-tz are clearly complementary; Equation 6.3 therefore 

shows why the term cosine is used for the second of the circular func­
tions. Moreover sin^= cos^-^= cos-^, as can also be seen in

4 2 4 4
Figure 6.6 from the symmetry about the line through P and the origin.

The application of the Pythagorean theorem to Figure 6.7 reveals 
another important property of the circular functions:

(sin a)2 + (cos a)2 = 1 (6.4)
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y

Figure 6.6 Equality of the sine and eosine of -r

Figure 6.7 (sin fl)2 4- (cos fl)2 = 1
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Since sin—= cos — Equation 6.4 shows that sin—= cos — = V 0.5.4 4 4 4
Figure 6.7 also shows that the sine and cosine functions can be 

used to describe the relations between the sides of a right triangle 
having a hypotenuse of length 1. They can also be used to describe the 
relations in a right triangle of arbitrary size, as shown in Figure 6.8. 
Since the triangles AOC and BOD are similar, the corresponding sides 
are proportional:

OB = BD OP
OA AC OC

Since OA = 1, AC = sin a, and OC = cos a, then
BD= OB x sin a

and
OD = OB x cos a

It is frequently convenient to treat a triangle such as BOD with­
out explicit reference to its intersections with the unit circle having 
center O. For this reason one speaks of the angle formed by the lines 
DO and BO and denotes this angle by Z_DOB. However, the measure 
of this angle is the length of the arc it subtends on the unit circle having 
center O. The measure of an angle is frequently indicated by writing its 
value beside a curved arrow between the sides of the angle, as in Fig­
ure 6.8. This curved arrow stands for the arc of the unit circle sub­
tended by the angle.

Figure 6.8 Relations in a right triangle BOD
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Since an argument of either of the circular functions is the meas­
ure of some angle, this argument itself is frequently referred to as an 
angle. It must be emphasized, however, that the terminology and 
notation for angles is merely an (often confusing) abbreviation: 
“/.DOB” or “the measure of LDOB” simply means the length of arc 
subtended by the lines DO and BO intersecting the unit circle having . 
center O.

Because the arc which determines the measure of an angle must 
be measured in the same metric units in which the radius has length 1, 
the unit of measure of an angle is called a radian. Thus the measure 
of a right angle is y radians. Measures of angles are often expressed 

in degrees, with 360 degrees corresponding to 2 x tt radians. A meas­
urement expressed in degrees is usually indicated by a small raised 

circle or degree sign', thus radians corresponds to 45°. Radian meas­

ure will be used throughout the present treatment except when dealing 
with standard tables of the circular functions, which are commonly 

(Do Exercises expressed in degrees.
6.1—6.5.)

Addition Theorems for the Sine and Cosine
An identity for the value of F x + s is called an addition theorem 

for the function F. An addition theorem is very useful in the study of 
a function. In particular, it is useful in evaluating the expression 
(Fx+ s) - Fx which occurs in the expression for the secant slope 
of F. The binomial theorem used in deriving the slope of the function 
x * n is an example of an addition theorem.

Addition theorems for the sine and cosine will now be derived 
with the aid of Figure 6.9. The line segments OR, OM, and ON are 
radii of a circle of radius 1, and/ROM, LMON, and /_RON have 
measures of x, y, and x + y radians respectively. The segments NV 
and QT are dropped perpendicular to OR, NQ is perpendicular to 
OM, and QP is perpendicular to NV.

The angles PNQ and PQO are equal, since each is complemen­
tary to NQP', and angles PQO and ROM are equal, since they are 
alternate interior angles with respect to two parallel lines and a trans­
versal. Hence /.PNQ = /ROM, and /.PNQ therefore has the meas­
ure x, as indicated in the figure.
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Using MO as the reference line, it is clear that the length of seg­
ment NQ is equal to sin y (abbreviated S y in the figure). Likewise the 
length of segment OQ is equal to cos y (abbreviated C y in the figure).

Using line PN as a reference line and using the results displayed 
in Figure 6.8, it is clear that the length of segment NP is (sin y) x cos x 
and the length of segment PQ is (siny) x sinx. A similar argument 
shows that the segments QT and OT have the lengths indicated in the 
figure.

Finally, the length of NV is sin (x + y), and since it is also equal
to the sum of the lengths of NP and QT, it follows that 

sin x + y = ((sin y) x cos x) + (cos y) x sin x (6.5)

Similarly

cos x + y = OV = OT - QP

and hence

cosx + y = ((cosy) x cosx) - (siny) x sinx (6.6) (Do Exercises 
6.6-6.10.)
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The Slope Functions of the Sine and Cosine
The slope of the sine function can now be obtained by using the 

methods of Chapter 5 and the addition theorem (Equation 6.5):

. (sinx + s) - sinx
De sin x =------------ -----------S s

_ (((sin s) x cos x) + (cos s) x sin x) - sin x

/sin s \ 1-coss= ------x cos x---------------x sin x
\ s / , s

(6.7)

The slope function (D sin) x can be obtained from the foregoing ex­
pression for the secant slope by determining the limiting values of the 
r . sin s , 1 - cos s ,factors -y— (and----- ------ as s approaches zero.

From Figure 6.10 it is clear that the lengths of the arc RA, the 
line segment NA, and the tangent TA satisfy the following relations:

NA<RA<TA

as s approaches 0



The Slope Functions of the Sine and Cosine 143

Therefore

sin sin 5 sin s
~NA~^RA~~TA

But NA = sin s, and RA = s, and TA = — - (since TA = OTx sin s cos s
and OTx cos s = 1). Hence

. sin 5’1 —------> COS 5

sin sThe ratio —y therefore lies between 1 and cos s. But as s approaches

sin iS0, cos s approaches 1, and hence the limiting value of must be 1.

c. .. . 1 - COS 5 NR NT ... smat \Similarly,----- ------= -y < -y and (since /_NAT = s)

NT TA ><: sin s sin s sin 5-— = —--------- . = —■—x------
S S COS 5 5

_ • . 1-coss sinr sins- , sins ~
Therefore----------- < —— x ——. But as s approaches 0,-------ands cos s s s
coss each approach 1, and sin s approaches 0. Hence the limiting

■ 1 - coss .
value of———is 0.s

To summarize:
Sil1 S 1
----- - approaches 1 as s approaches 0
1 s (6.8)1 - cos s t v -
----- -—- approaches 0 as s approaches 0

These results can now be substituted in Equation 6.7 to yield the 
slope function of sin x:

(D sin) x = cosx (6.9)

This simple result can be. corroborated by the graphs of Fig­
ure 6.5. The slope of sind for any value of a is seen to be equal to 
the value of the cosine for that same value of a. In particular, for

77- \
a=~2 the slope of sin a is 0, as is the value of cos a; and for a = ir, the 

slope of sin a is ~I, as is the value of cos a.
The slope function of cos x can now be obtained by an analogous 

use of Equation 6.6:
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, . (cos X + 5) - COS X(Dscos)x = ----- ----- y----------

_ (((cos5) x cosx) - (sin5) x sinx) -cosx
~ s

/7(coss)-l\ \ /sins\ .= 2-------------  x cos x — ------ x sin x\\„ s / ) \ s )

Again using Equation 6.8 for the limiting values of the factors involving
s, the slope of cos x becomes

(Z> cos) x = - sinx (6.10)
Equations 6.10 and 6.9 can be rewritten as follows:

D cos = - sin) (Kin
D sin = cos J

Consequently

(Do Exercise 6.11.)

D D cos = D (- sin) = — cos 
D D sin = D cos = - sin (6.12)

Polynomial Approximations for Sine and Cosine
The patterns of Equations 6.11 and 6.12 were encountered in 

Chapter 5, in the study of the polynomials C x and 5 x. The relevant 
equations (5.15 and 5.16) are repeated here for comparison:

DC=-S\ 
DS = C J (5.15)

DDC
DDS

C)
S J (5.16)

From Equations 5.16 and 6.12 it is evident that the functions S 
and sine are similar in behavior, as are C and cosine. Two functions 
can have the same slope functions and yet differ by a constant as illus­
trated in Figure 5.9. Note, however, that sinx and 5x agree for x= 0, 
that is, sin 0 = S 0. Moreover, since cos 0 C 0 = 1, Equations 5.15 
and 6.11 can be used to show that the slopes of sin x arid S x also agree 
at x = 0, that is, (D sin) 0 = (D &) 0, Similat arguments can be used to 
show similar agreement between cos x and C x.

The functions sin x and S x are in fact identical, as arc cos x and 
C x; the notation “cos” and “sin” will now be replaced by the equiva­
lent notation “C” and “5.”

The functions C and S must of course satisfy the addition theo­
rems of Equations 6.5 and 6.6. Although these relations were easily 
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derived from geometry, they are not at all obvious from the definition 
of the polynomials C and S. The theorems can be corroborated, how­
ever, by applying them for specific values of the arguments x and y, 
and also by computing the first few terms of the polynomial for S x + y 
and comparing these terms with the coefficients in the expression 
indicated in Equation 6.5.

It is also interesting to compare Equations 6.4 and 5.17:

(sin a)2 + (cos a)2 = 1
(5a)2+ (Ca)2 = 1

The values of C x and S x can also be computed and compared with 

such as y, and - for which the

values of cos x and sin x are known. (Do Exercises 
6.12-6.14.)

The Tangent Function
The tangent function Tx is defined as the quotient (5 x) + Cx; 

in abbreviated form

T=(5)-C (6.13)

The reason for the name tangent is evident from Figure 6.10, where 
! sin s

the length of the tangent segment TA is shown to be equal to

that is, to T s.
The tangent function T x can be evaluated by evaluating S x and 

C x and computing their quotient. Whereas the sine and cosine func­
tions are bounded by the value 1 (that is, their absolute values never 
exceed the value 1), the tangent function is unbounded and becomes 
infinite at points where C x is zero. (Do Exercises

6.15-6.17.)

Tables of the Circular Functions
Brief tables of the sine, cosine, and tangent functions are pro­

vided in Appendix B for arguments from 0 to y, that is, for angles i 

from 0 to 90 degrees, More extensive tables, using a smaller interval 
between successive values of the argument and providing greater 
precision in the functions, are readily available.

If the value of the argument x falls somewhere between two suc­
cessive argument values a and b in the table, then F x can be deter­
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mined as a weighted sum of F a and F b as follows:

Fx^(Fa) + ^x(Fb)-Fa

This is called linear interpolation because, as shown in Figure 6.11, 
it evaluates F x as if the function between the arguments a and b were 
a straight line passing through the points (a , F a) and (b , F b).

Figure 6.11 Linear interpolation for the function F

For example, the sine of 6.16 degrees is derived from the table 
entries

sine of 6° = 0.1045 
sine of 7° =0.1219

as follows:

sine of 6.16° = 0.1045 + (6’ x (0.1219 - 0.1045) 

= 0.1073

The table can also be used to determine values of the inverse 
functions, that is, to determine the angle corresponding to a specified 
value of sine, cosine, or tangent. For example, if the sine of x is 0.4384, 
then a search of the column for the sine shows that this value corre­
sponds to an angle of exactly 26°. Interpolation can of course be ap­
plied in this inverse use of the tables as well. For example, if the sine 
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of x is .4462, then the nearest table entries above and below are

sine of 26° = .4384
sine of 27° = .4540

Linear interpolation then gives

4462- 4384
26° + 4540-43 84 X(270 - 26O) = 26-5° (Do Exercises 

6.18-6.24.)

Applications of the Circular Functions
Applications of the circular functions fall into two major classes, 

geometric and nongeometric. The nongeometric applications to be 
treated are perhaps more interesting but require some knowledge of 
physics. The treatment of the physical principles employed may be too 
brief to satisfy some readers. However, since these examples are only 
intended to illustrate the wide range of application of the circular 
functions, the reader should follow the examples without worrying 
about the full significance of the physical concepts introduced.

Geometric applications. Geometric applications concern 
surveying and related problems. For example, the height h of a build­
ing can be calculated from the measured angle a and the horizontal 
distance b measured from the base, as shown in Figure 6.12. From 
Figure 6.12 and the relations shown in Figure 6.8, it is clear that 
h = rxS a and b = r x Ca. Hence r = b -h C a and h = b x (5 a) C a.

b= rxC a
h = bf (5 a) C a = bxT a

Figure 6.12 Calculation of height
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For example, if a = 0.5 radians (28.65°), and b = 200 feet, then

\2 48/ \3840 645120. 
= .4794...

-iM-___ —) +“V 8/ \384 46080/ 
= .8776...

and hence

.4794h = 200 x = 109.2 feet, approximately .O / /O

This result could also be obtained by using the table of circular 
functions in Appendix B, in which case it would be necessary to con­
vert the measure of the angle to degrees. It would also be more con­
venient to use the equivalent expression h^bxTa.

f o J dx(Ta)xTcFigure 6.13 h = —----T----(Ta) -T c

Figure 6.13 illustrates the similar but slightly more complex 
problem of calculating the height of a mountain, where the distance 
to the base (that is, the horizontal distance to a point directly below 
the summit) cannot be measured directly. However, the distance from 
point P to a point Q (which is at the same level as P and directly be­
tween P and the vertical through the summit) can be measured, as can 
the angles to the summit from both P and Q. As shown in the figure, 
these measures are denoted by d (in feet) and by c and a (in radians), 
respectively.

It is clear from the figure that

h S c „ , h Sa T~v = = j c and 7-—3 = 73— =1 ab C c b — d C a
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Therefore

h / h \= and /i= (/? - J) x Ta^\^--d x Ta
T c \T c /

Multiplying both sides by T c and collecting terms in h gives

Ax (T c) - T a = - dx (T a) xT c

Therefore </x(Tfl)x7c
h =------ -------~——( T a ) — T C (Do Exercises

6.25-6.26.)
Nongeometric applications. An electric generator produces 

a voltage by rotation of a coil in a magnetic field as illustrated in Fig­
ure 6.14. The amount of magnetic flux F x passing through the coil

Figure 6.14 Magnetic flux through a generator coil
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when it is inclined at an angle x to the direction of the magnetic field 
is equal to s x I x w x S x, where s is the field strength and where / is 
the length, w is the width, and I x w is the area enclosed by the coil. If 
the coil rotates at a constant angular velocity of v radians per second, 
then the angle x is a function of the time t.

x=vxt

Hence the magnetic flux through the coil is also a function of the time t:

F t = sxlxwx Svxt

The voltage generated in the coil at any instant depends, how­
ever, not directly on the amount of flux through the coil but rather 
on the rate at which the flux is changing. Hence the voltage function 
V Ms the slope function of F t:

Vt^(DF)t

If the angular velocity v is equal to 1, then (from Equations 5.6 
and 6.9) '

V t = (DF) t= (D (sxlx w) xS) t
= (sxlxw)xC t

Hence the voltage is proportional to the cosine function. The graph of 
the cosine in Figure 6.5 shows that an alternating voltage is produced, 
the maximum voltage occurring when the coil is horizontal, and a 
change in direction of voltage occurring when the voltage passes 

77 3
through zero at angles of y and y x tf radians.

For a general value of the velocity v, the relation (DSvx) t 
= v x C v x t (established in Exercise 6.27) can be applied to give the 
following general expression for the voltage:

Vt=vx(sxlxwxCvxt)

This result shows that the voltage generated is proportional to the 
(Do Exercises angular velocity of the coil.
6.27-6.32.) The vibration of a mass freely suspended from a spring turns 

out to be a motion which is a sine function of the time t. The less 
familiar electrical vibrations or oscillations produced by connecting 
a coil to a charged condenser have the same form, and the reasons for 
the similarity become apparent in the equations describing the me­
chanical and the electrical vibrations. An example of each will now 
be examined.
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Let a weight of mass m be suspended from a spring, and let P t 
be the function which describes its position as measured from its 
equilibrium position (with positive direction downward), as shown in 
Figure 6.15. Since the force required to stretch a spring is propor­
tional to the distance it is stretched, the force applied to the weight 
at time Hs

F t=-kxP t

Figure 6.15 Position (Pt), accelerating force (Ft), and accelera­
tion (G t = (D D P) t) for a vibrating body

The minus sign indicates that the direction of the force F t is opposite 
to the direction of the displacement from the zero position.

But the acceleration of a mass m is related to the applied force 
F t as follows:

F t = mx G t
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Hence the acceleration G t at time t is given by

The velocity V t is the rate of change of the position P r, that is, 
V t = (D P) t. Since the acceleration is the rate of change of the veloc­
ity, then

G i= (£> F) t =(DDP)t

Therefore

k
(DDP) t=-----xPtm

If the mass and the stiffness of the spring (m and k) are chosen 
k

so that —= 1, then (DDP) t=-Pt. Both the sine and the cosine m
functions satisfy this same relation and, more generally, if a and b are 
constants, then the function P t = (a x sin t) + b x cos t satisfies it as 
well. For

(D P) t = (a x cos t) + b x — sin t

and

(£> DP) t= (ax - sin r) + bx - cos t=- P t

The constants a and b are determined by the initial position and 
velocity of the mass at time t = 0. For example, if the mass is released 
from rest (that is, zero velocity) at an initial position z, then

P 0 = (a x sin 0) + b x cos 0 = i
(D P) 0 = (a x cos 0) + b x — sin 0 = 0

Therefore b = i and a = 0. Finally

P t= ix cos t .

(Do Exercise 6.33.) The case of general values of k and m will be treated in the exercises.
The electrical circuit of Figure 6.16 contains a coil and a charged 

condenser (capacitor). The voltage V t, the current J t, and the amount 
of electrical charge in the condenser Q t are all functions of time. They 
are related exactly as were the acceleration, velocity, and position 
functions of the preceding mechanical example. If I is the inductance 
of the coil in henries, and c is the capacity of the condenser ih far ads, 
then the voltage across the coil (which depends on the rate of change 
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of the current Jr) is given by /x. (DJ) t, and the voltage across the 

condenser is — x Q t.

Figure 6.16 Relations between voltage Vt, current Jr, and charge 
Q t in an oscillating circuit

I

Since the coil and condenser form a complete circuit, the sum of 
these voltages must be zero and therefore (since (DJ)t= (DD Q) t)

-xQt=-lx (DDQ) t

Hence

Qt^-(cxl)x (DDQ)t v

If c x I = 1, the function Q t clearly has the same form as the function 
Pt: <

Q t = fa x sin r) + b x cos t

Therefore the charge Q (and hence the voltage across the condenser) 
oscillates in a manner analogous to the oscillations of a mass sus­
pended on a spring.

(Do Exercises
6.34 - 6.36.)
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Exercises
776.1 (a) Determine the values of sinx and cosx for x = - y,

77 77 77 77 _ 77
“4’0’4’T’3x4’and7x4-

, (b) Use geometric methods to determine the values of sin
77 . 77y and COSy.

77 77(c) Determine the values of sin-7 and cos -7.o o

6.2 An angle whose measure lies at or between 0 and y radians 

is said to be in the first quadrant or is said to be a principal 
angle. For each of the following angles, express the value 
of its sine in terms of the sine of an angle in the first 
quadrant.

(a) 3 Xy radians (e) 5 X y radians

(b) - y radians (f) 5 x y radians

(c) 7 Xy radians (g) 3 x 77 radians

77(d) 3 Xyradians

6.3 For each of the angles of Exercise 6.2, express
(i) the cosine in terms of the cosine of a principal 

angle
(ii) the sine in terms of the cosine of a principal angle

(iii) the cosine in terms of the sine of a principal angle
6.4 Write programs which will determine for any argument x 

(expressed in radians) the factor f and principal angle p 
such that f= ± 1 and
(a) sinx^/xsinp (c) sinx =/x cosp
(b) cos x =fx cos p (d) cos x =/x sinp
Note that x may be negative or may exceed 2 x tt.

6.5 Write programs which will determine for any argument x 
(expressed in radians) the factor fi the angle /z, and the

77“function selector” 5 such that 0 5 h 5 — and
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(a) sinx = ((.s = 0) xfx cos h) + (5 = 1) xfx sinh.
(b) cos x = ((s = 0) xfx cos h) + (s = 1) xfx sin h

6.6 Use the addition theorem for the sine function (Equation
6.5) to evaluate sinx + y for the following values of x 
and y, comparing each result with the known value of the
sine of x + y:
z x 77 77(a) x = y,y = y

(b) x=7T,y = y

z \ 77 77
<e) X'6’J=6
z 77 77(f) x = y,y = y

(c)%=77,y=77 (g)*-3’y--6
z j \ 7^ 7 J(d) x = -y = - (h) x = 2 x 77 , y = a

6.7 Repeat Exercise 6.6, substituting cos x + y for sin x + y.
6.8 (a) Use Equation 6.1 and the addition theorem for the sine 

to show that

sinx - y = ((cos y) x sin x) - (siny) x cOs x

(b) Show that

cos x - y = ((cos y) x cos x) + (sin y) x sin x

6.9 Use the addition theorems for the sine and cosine to prove 
the following:
(a) sin 2 x x = 2 x (cos x) x sin x
(b) cos 2 x x = (cos x)2 - (sin x)2
(c) cos 2 x x = (2 x (cos x)2) - 1 (Use Equation 6.4.)
(d) cos 2 x x = 1 — 2 x (sin x)2
(e) cosy2 = ± V (1 + cos y) h-2 (Use the result of

part (c) with x = 2. The symbol ± means that one
or the other sign is correct, not both')

(f) siny-H 2 = ±V (1-cosy)2 (Use the result of 
part (d) with x = y 4- 2.)

6.10 For the following values of y, use parts (e) and (f) of Ex­
ercise 6.9 to determine the values of sin y + 2 and cos y + 2, 
and where possible compare the results with known values:

(a) 2X77 (c) y (e) y

(b) 77 (d) y (f) y
3 O

6.11 For each of the angles a = 0, y, 3 x tt, 2 x it, and 2, 
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make a table showing
(a) the slope of sin a as determined graphically from Fig­

ure 6.5 (by laying a ruler tangent to the graph of sin a 
and measuring its slope as accurately as possible)

(b) the slope of sin a as determined by Equation 6.11 and 
the graph of cos a in Figure 6.5

(c) the slope of cos a as determined graphically
(d) the slope of cos a as determined by Equation 6.11

6.12 Use the polynomials of Equation 5.14 to evaluate the func-
TT TT TT TT IT TTtions S x and C x for x = -=■, - ~-r, v. and - —, compar-4 2 4 6 3 6

ing each result with the known values of sin x and cos x.
6.13 In this exercise use the program of Exercise 5.33 (b) to

TT evaluate the functions S and C. For the cases x= 0, y, 

~ and 1, compare the values of z i
(a) Sx, S x+2xtt, and S x - 2 x tt (See Equation 6.2.)
(b) C x, C x + 2 x tt, and C x - 2 x tt

(c) C x and C - x (See Equation 6.1.)
(d) Sx and - S - x

X 77
(e) S x and C y- x (See Equation 6.3.)

(f) C x and S x + y

6.14 The evaluation of the polynomials for the sine and cosine 
(Equation 5.14) requires the use of a large number of terms 
if the argument is large. The programs required in Exercise
6.5 reexpress the functions sin x and cos x in terms of sin h

77 '
and cos h, where 0 — h — —.4
(a) Write an efficient program for the evaluation of Sx 

based on Exercise 6.5.
(b) Write an efficient program which evaluates cos x if 

g = 0, and sin x if g = 1.
6.15 Use the polynomials for S x and C x to compute the fol­

lowing values of the tangent function:

(a) T~ (c) TO

(b) (d) Ty

6.16 Establish the following identity:
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1 4- (Tx) x T x = 1 4- (C x) x Cx
6.1 7 Use the addition theorems for the sine and cosine to de­

rive similar expressions for the following tangent functions. 
Check each result by applying it to at least one case for

77 
which the correct result is known (for example, for x = o 
,T2xx = Tj=V 3).

(a) Tx + y (c) T2xx
(b) Tx-y (d) r|

77 77 77 77 -z
6.18 For angles with measures of y, y, y, y radians, make a 

table showing
(a) the corresponding number of degrees
(b) the sine as determined from Appendix B
(c) the cosine as determined from Appendix B
(d) the sine and cosine as determined in earlier exercises

6.19 (a) Use linear interpolation in the table of Appendix B to
determine both the sine and the cosine of an angle of 
1 radian.

(b) Use Equation 6.4 to check the result of part (a).
(c) Use the polynomials for 5 x and C x to check the re­

sult of part (a).
6.20 If S x, C x, S a, and C a are known, then the addition theo­

rems can be used repeatedly to obtain first S x + a and 
C x + a, then S x + 2 x a and C x + 2 x a, then S x + 3 x a 
and C x + 3 x a, and so on.
(a) Compute S 0, CO, S .0175, and C .0175 and use them 

with the addition theorems to compute the first few 
entries of a table of sines and cosines for an interval of 
.0175 radians. (Note: .0175 radians equals 1 degree.)

(b) Write a program for the method of part (a), including 
the calculation of S .0175 and C .0175.

(c) Execute the program of part (b) and compare the re­
sults with the tabulated values of Appendix B to ob­
serve the cumulative effects of round-off error.

6.21 Use the tables of Appendix B to determine the principal
angle (in radians) whose t

.1(a) sine is y

• • 1(b) cosine is y
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■(c) tangent is 1
(d) sine is .6 (use interpolation)
(e) cosine is .3 (use interpolation)

6.22 For a circle of unit radius, the perimeter of the circum-
7T

scribed hexagon is clearly 12 x T—. Use the result of Ex- o
ercise 6.17 (d) and the method of Figure 2.7 to develop a 
program for approximating it by the perimeters of cir­
cumscribed polygons.

6.23 (a) Write an expression for the altitude of a triangle in
terms of the length of one side and the angle (in radi­
ans) which it makes with the base.

(b) Write an expression for the area of a parallelogram in 
terms of its sides arid the smallest included angle.

6.24 Write a program to determine the angles in a right triangle 
whose legs have lengths x and y. (Use the polynomials for 
S x and C x and the method of successive approximation 
employed in Program 2.6.)

6.25 (a) Determine the height of a building if the line of sight
to the top from a point 148 feet from the base makes an 
angle of 56° with the horizontal.

(b) Determine the distance of a point from the base of a 
building if the line of sight to the top makes an angle 
of 37° with the horizontal arid the building is known 
to be 240 feet high.

6.26 Determine the height of the mountain of Figure 6.13 if 
d= 4800 feet, c = 26°, and a = 39°.

6.27 (a) As stated in the discussion of Figure 6.14, (D S v x) t
= v x C v x t. Prove this result by determining the slope 
of the polynomial

c (r (vxr)3\ /(vxr)5 (vx/)7\S v x t = [(v x z) - J + !5 ~ !7 J + • • •

obtained from Equation 5.14.
(b) Determine the slope of the function C v x t.

6.28 If the coil in the generator of Figure 6.14 has n turns rather 
than 1, the voltage produced is increased by a factor of n 
and the expression for the voltage becomes

V t = n x v x j x / xw x C v x r

where v is the angular velocity in radians per second, 5 is 
the field strength in webers per square meter, and / and w 
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are the coil dimensions in meters.
(a) At what angles do the maximum values of the voltage 

occur?
(b) What is the maximum voltage produced if s = .08252 

webers per square meter, v = 120 x it radians per sec­
ond, I = .1 meters, w = .05 meters, and n = 1000 turns?

(c) What is the voltage produced at the instant when

t =“737? seconds?480
(d) For any periodic function of time, the frequency of 

the function (expressed in cycles per second) is de­
fined as the number of periods occurring in one second. 
What is the frequency of the voltage produced by the 
generator?

6.29 Use the results of Exercise 6.27 and Exercise 6.9 to show 
that

x S "2 x x(a) the function yH----- has the slope function (C x)z

x V 2 X x(b) the function y------— has the slope function (5 x)2

6.30 Use the methods of Chapter 5 to determine
(a) an expression for the area to the left of the line x=t 

and enclosed by the x-axis and the sine function S x 
(The expression must be valid for 0 < tt.)

(b) an expression for the area enclosed by the x-axis, the 
cosine function C x, and the lines x = 0 and x = t

(c) the area enclosed by the x-axis and the first loop of the 
sine function (that is, from x = 0 to x = tt)

6.31 Use the methods of Chapter 5 and the results of Exer­
cise 6.29 to determine
(a) the area enclosed by the x-axis, the function (5 x) 

x S x, and the line x = t
(b) the area enclosed by the x-axis and the first loop of the 

function (5 x) x S x
(c) the area enclosed by the x-axis and one loop of the 

function (C x) x C x
6.32 As shown in Figure 6.14, the voltage generated for and 

available in domestic wiring is a function of time t and has 
the form

Vt = m x C 2 x 7T x/x t

where m is the maximum voltage and/is the frequency (in 
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cycles per second) of the supply. The value of m can be 
determined by connecting a direct current voltmeter V, 
a rectifier R, and large condenser K (10 microfarads) as 
follows:

(The maximum voltage is observed because the rectifier 
permits current to pass in one direction only, and the con­
denser charges to the peak voltage and is discharged be­
tween peaks only very slightly by the currenf drawn by 
the meter.) If the condenser is replaced with a lamp, the 
meter records only the average voltage a, which is the 
average over cycles of the form shown below.
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The zero voltage portions shown in the diagram are due to 
the prevention of reverse current by the rectifier.

(a) Find the ratio between the average and the maxi­

mum voltages. (Use the results of Exercise 6.30.)
(b) The average voltage a determined in part (a) is not 

110 volts. The 110-volt figure is based on the square 
root of the average of the squares of the voltages and 
is therefore called the rms (root mean square) volt­
age. Using the results of Exercise 6.31, determine the 
relation between the rms voltage and the maximum m. 
(Since the power in watts delivered to a resistor R by

V V2a current 7 = — is equal to the product V x I = the
' K A

rms voltage is a good indication of the power supplied 
by an alternating voltage.)

6.33 (a) Use the results of Exercise 6.27 to obtain an expres­
sion for the motion of the mass of Figure 6.15 which is 
valid for general values of k and m.

6.34 (a) Show that the frequency f of the electrical oscillation
produced by the circuit of Figure 6.16 is given by 

2 X 7T
V/Xc

(b) What is the frequency of the oscillation if 1= 4 milli­
henries (4xl0_3 henries) and c=.001 microfarads 
(.001 x 10-6 farads)?

(c) If c = .001 microfarads, choose a value of I which will 
produce a signal for a radio station broadcasting at a 
frequency of 1 megacycle per second (106 cycles per 
second).

6.35 Let F a be the area of the segment of a unit circle which
is cut off by a chord that subtends an angle of 2 x a at the 
center of the circle. Then it is clear from the accompany- 

mg figure that----------- -------- is approximately equal to

(iS X *5 O) X (2 X S d) _ / \ o 'T'U n f r\ r^\—;---------------------- =2 x (5 a) x S a. Therefore (Z) F) as
= 2x(Sa)xSa. Use the results of Exercise 6.29 to 
determine
(a) an expression for F a
(b) the area of the unit circle
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(c) the area of a circle of radius r, showing the entire der­
ivation from a modified figure for the area

6.36 Consider a sphere of unit radius with center at the origin 
and a plane perpendicular to the x-axis intersecting the 
sphere at points for which x = C a. Thus each of the radii 
to the circle of intersection of the sphere and the plane 
makes an angle of a radians with the x-axis. Let G a be the 
surface area of that portion of the sphere to the right of 
the plane.
(a) Draw a figure similar to that of Exercise 6.35 and use 

it to show that the slope of the function G a is given by
(£) G) a = 2 x it x S a'

(b) Determine the surface area of the zone of the sphere 
cut off by the plane.

1 (c) Determine the surface area of the entire sphere.



Chapter Seven

Inverse and 
Reciprocal Functions

Introduction
If G is any monadic function, then the function 1 4- G is called the 
reciprocal of G and is denoted by G. Hence

(Gx)xGx=l (7.1)

For example, if Gx = x^n, then Gx = x^—n, since (x* — ri) 
x x* /? = x* 0 = 1. Similarly, (* x) x * - x = 1 (according to Exer­
cise 5.19) and therefore = * -x. Moreover it is obvious that tak­
ing the reciprocal of a reciprocal yields the original function, that is, 
G x = G x. Since the reciprocal G x becomes infinite at any point for 
which G x is zero, the reciprocal function cannot be defined at all 
points. This is illustrated by the graphs of S and S in Figure 7.1.

If F is a function such that F G x = x, then F is called the in­
verse of G and is denoted by G'. Hence G'Gx = x. For example, if 
G x = x* n, then G' x = x* 1 n, since (x* n)* 1 + n = x* 1 = x.

In this example it is also true that G G' x = x; since (x* 1 n) 
* n = x* 1 = x. In other words, in this example G is also the inverse 
of the function G'. This is true for any function G, that is, G' G x = x 
implies that G G' x = x. For, applying the function G to both sides of 
G' G x = x yields G G’ G x = G x. Since G x is some value y, this may 
be written as G G' y = y. Finally

. GG'x^x]
G’ Gx = x\ 1 ’

The relation between the function x* 3 and its inverse is ap­
parent from their graphs shown in Figure 7.2; one curve is obtained 
from the other by reflecting it in the 45° line. In other words, the graph

163
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Figure 7.1 The sine (5) and cosecant (S) functions

of the inverse is obtained by interchanging the x and y coordinate 
axes. This relation clearly holds between the graph of any function G 
and the graph of its inverse G'.

The graph of the inverse function S' of the sine function obtained 
in this manner from the graph of the sine function appears in Figure 7.3. 
It illustrates the fact that the inverse function maybe multivalued; that 
is, for any one value of the argument there may be several suitable
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values of the function. For example, if x = 1, then S' x has the possible 

values y, y + 2 X 77, y + 4 x 7T, and so forth. If G' x is multivalued, 

some single-valued section of the graph is chosen as the definition 
of G'. In the case of the sine function, for example, the section AB 
(IT 7r\
from S' x= - y to y 1 is used. In the case of a periodic function such 

as the sine, it is clear that other possible values of the inverse can be 
obtained by adding some multiple of the period to the value given by 
the chosen single-valued function. (Do Exercises

7.1-7.3.)
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Figure 7.3 The sine (5) and arcsine (5') functions

The Slope of the Reciprocal G
The slope of the function (Gx) xGx occurring on the left side of 

Equation 7.1 can be obtained by applying the rule for products (Equa­
tion 5.6):
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DGx G = ((G) xDG) + (G) xDG

But the slope of the right side of Equation 7.1 is clearly zero; therefore

((G) xDG) + (G) xDG = 0
_  jy G D G

Dividing through by (G) x G yields — +- = 0, or
_ G G 

DG _ DG 
G ~ G (7-3)

In other words, the slope of G bears the same ratio to G as does 
the slope of G to the function G, except that it is opposite in sign. 
This is reasonable, since any fractional increase in G must be com­
pensated by an equal fractional decrease in G so that their product 
remains equal to 1.

Equation 7.3 can be transformed by simple algebra into the fol­
lowing useful forms: 1

DG--(G)x^
(jr

and

For example, if Gx = x^ n, then it follows from Equations 7.4 
and 5.4 that

tn cv = -
(x* n) x r* n

= (- ri) x x* (- n) - 1

Since G x = x * - h, then

Dx^ - n = (-ri) x x* (-ri)- 1

In other words, the rule for obtaining the slope of x * n given in Equa­
tion 5.4 applies for negative values of the exponent as well. In particu­

lar, D — = Dx^ - 1 = - 1 xx^ - 2 = and Dx^-2=-2xxX X2
— 3. (Do Exercises

7.4-7.6.)

Reciprocals of the Circular Functions
The reciprocal of the cosine function C is denoted by C and is 

called the secant function. It may be evaluated by using the poly­
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nomial for C x and then taking the reciprocal. The slope of the secant 
can be obtained from Equations 7.4 and 6.10:

"? <7-5>

The reciprocal of the sine function S is called the cosecant. Its 
slope is given by

Z)5^f~^„^-(C)x(5)xS^-(T)x5 (7.6)
(O ) /X kJ

The function T occurring in Equation 7.6 is the reciprocal of the 
tangent function T and is called the cotangent. Since T = (C) + S 
= S x C, then

DT^((S) xDC) + (C) x£>5
M(S) x-S) + (C) x- (T) x5
= - 1 + (T) x T ~
= - 1 + (T)*2

Similarly

T = C x S, and hence _ 
DT^{(C) xDS) +SXDC

(Do Exercises =1 + (T)>I<2 (7.7)
7.7-7.9.)

The Slope of the Inverse G'
Equation 7.2 (that is, G G' x = x) can be used to obtain the slope 

of G'. Taking the slopes of both sides yields

(DGG')x^l (7.8)

However, the left side of this equation is the slope of a composite 
function of the form G F x whose slope has not yet been determined.

The slope of the composite function G F can be determined by 
the basic method presented in Chapter 5. The secant slope DsG F is 
given by

's s <
_ (GFx + s) -G Fx (Fx + s)-Fx ' 

. = '{Fxis) - Fx * ' s /

. As s approaches 0, the second factor clearly approaches (£> F) x; the 
first factor approaches (D G) Fx, that is, the function D G evaluated 
for the argument Fx. For,
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(GFx + s) -GFx 
(F x + s) — F x = (DpG)Fx

where p = (Fx + 5) - Fx. When s approaches 0, so does p. But as p 
approaches 0, the first factor approaches (DG) F x. Finally,

(£> G F) xM (£> G) Fx) x (£) F) x

or

DGF^fDG) F) xDF (7.9)

For example, if Gx = x*4, and Fx = x*2, then (D F) x 
= 2 x x, (DG) x = 4xx* 3, and

(DG) Fx = 4x (Fx) * 3 
' = 4x(x*2)*3

=4xx^6

Hence

(DGF)x^((DG)Fx)x (DF)x 
= (4xx*6)x2xx 
=8xx47

This result can be corroborated by noting that G Fx= (x*2)*4 
= x T 8 and taking the slope of this function directly.

The slope of G' can now be obtained from Equation 7.8 by using 
the result of Equation 7.9 with F = G':

(D G G') x = ((D G) G'x) / (D G' ) x = \

Therefore

(p C;,) j ~ (Z> G) G' x <7J0>

For example, if Gx = x* 4, then G' x = x* 1 -?4 and

(D G ) x = 4x * 3 = 4 x (x* 1 4) * 3

Finally

1£)x*l-4=, ——r4 x x* 3 4
= ^xx=k - 3 4

This result can be compared with the direct application of Equation 5.4. (Do Exercises
7.10-7.12.)
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Inverses of the Circular Functions
The inverse functions of the circular functions are very useful, 

since they determine the arc associated with a given value of sine, 
cosine, or tangent. The inverse tangent function is the most easily 
derived, and S' and C can be determined indirectly by first computing 
the corresponding tangent from one or other of the following relations: 

T = - =-------- 1 ~ * 2 = V( (C) * 2) - 1 (7.11)
C Vl - (S) * 2 - C

The inverse sine, cosine, and tangent are frequently called the arcsine, 
arccosine, and arctangent respectively;

The slope of the inverse tangent T' is given by Equations 7.10 
and 7.7:

(DT')x- (1 + Tx i + (rrx)*2' 1+x2

In words, (Z> T') x is equal to 1 divided by the function 1 + (T) * 2 
evaluated at T' x which, since T T' x = x, is equal to 1 -r- 1 + x2.

Since

t +x2= (1 - x2) + (x4 - x6) + • • •

(as can be verified by multiplying both sides by 1 + x2), then 

(£) F) x= (1-x2) + (x4-^) + (x8-x10)+...

Hence

, ( X3\ /X5 x7\T X= a+ (x-+ . . .

as can be verified by taking the slope of the polynomial on the right. 
The constant a can be evaluated by observing that the angle having a 
tangent of 0 is itself 0 and hence T' 0 = 0. But the foregoing poly­
nomial for T' x shows that T 0 = a. Hence a = 0 and

or

(7.12)

(7.13)



Inverses of the Circular Functions 1 71

For example, the tangent of an angle of — radians (30°) is ----
6 V 0.75

= Hence T— = —j— and — =T' -y—. Finally, tt --= 6 x T' —I— and
V 3 6 V 3 6 V 3 V3

Equation 7.13 yields

1 /, ,1\ / 1 1A / 1 1 \Tt — 6 X . X I I ) i I A I I 4" . . .
V 3 \ 9/ \45 189/ \729 2673/

Since each parenthesized term in the above equation is positive, the 
sum of any finite number of terms is less than the exact value of tt. 
The sums of the first few terms are shown in the second column of 
Table 7.4.

Table 7.4 Approximations tO7r = 6xT'14-\/3

number 
of terms

lower bound upper bound

1 3.0792 3.4641
2 3.1377 3.1561
3 3.1412 3.1416

The terms in the equation can be regrouped as follows:

r 177 = 6 X —X 1 —
V 3

l-L-jA-L-LX
9 45/ \1S9 729/

Again, each group is positive but is subtracted so that the sum of any 
finite number is greater than tt. These sums are shown in the third 
column of Table 7.4. The last two entries of the table show that

3.1412 < 7T < 3.1416
The polynomial for T' x given in Equation 7.12 can be evaluated 

only for values of the argument not exceeding 1 in absolute value, 
since for larger values of x the succeeding terrhs of the polynomial 
increase in value. Larger values of the argument can be handled by 
evaluating T' 1 4- x and using the relation

’ T' x^-T 1+x

developed in Figure 7.5. Equation 7.12 can be evaluated for the argu­
ment 1 for if (| x) > 1 then (| 1 4- x) < 1.
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Figure 7.5 Reexpressing the inverse tangent for an argument in 
the range “1 — x< 1

Since T y is the quotient of an odd function divided by an even 
function, Ty is itself odd. Hence T’ x is odd. This is corroborated by 
its polynomial (Equation 7.12), which contains only odd powers of x. 
Equation 7.12 can also be written

Fx^(o, 1,0,y ,0,y,0,y ,0,...)nx (7.14)

The coefficients are easily remembered, since they differ from those 
(Do Exercises for the sine only in that the denominators of the latter are factorials. 
7.13-7.19.)

The Natural Logarithm
The natural exponential function

j^-2
X = 1 + X +^2 + + . . .
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defined by Equation 5.8 has an inverse denoted by *' and called the 
natural logarithm function. According to Equation 7.10 the slope of 
the natural logarithm is given by

(D*')x^ , * ■ ,
(D*)*'x

Since (D*) = *, then (D') x = But 'x = x, and there- 
fore

lM')x = -J (7.15)

In the case of the inverse tangent T', the expression for D T' 
could be converted into a polynomial by division, that is,

(1-x2) + (x4-x6) + ...

The same cannot be done for the expression of Equation 7.15, but can 
be done if some function G x is first substituted for the argument x. 
Thus:

(D*')Gx^~ (7.16)

If G x = 1 - x, then

7=^7 —= 1+x + x2 + x3+.. ..
G x 1 —x

as may be verified by multiplication. Therefore

(£>*') Gx = 1 + x + x2+x3 + ...
But from Equation 7.9:

(£>*' G) x = (DGx) x (£>*') Gx
= “1 x 1 + X + X2 + X3 + . . .

Therefore
y2 -y-3 -v-4

*' Gx^*’ l-x = a-x + ^ + 4 + 4+ ...
2 3 4

as can be verified by taking the slope of the polynomial on the right. 
The constant a can be shown to be 0 by noting that forx = 0 the value 
of the polynomial is a, and *' 1 -0 = *' 1 = 0, since *0=1. There­
fore
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-v-2 -v-3 y4
*'l-x=-x + |- + y + j+... ' (7.17)

For example, ifx= 0.1, then

.01 .001
*'(0.9) = -0.1 + y- + ^~ + 

.0001
4

= -0.10535...

Moreover

* *' 0.9 = * - 0.10535 ...

-(1-

-d-
.10535)+

/.105352
\ !2

.1053$3\
!3 / +

.10535) + (.00554 - .00019) + ...
= 0.90000 ...

(Do Exercise 7.20.) Hence * *' (0.9) equals 0.9, as it should.
The polynomial of Equation 7.17 can be evaluated only for values 

of x having absolute values less than 1, since the later terms of the 
polynomial cannot be disregarded if the absolute value of x is greater 
than or equal to 1. A polynomial expression for the natural logarithm 
*' n which can be evaluated for all positive values of the argument n 
will now be developed from Equation 7.17 and from the following 
property of the natural logarithm:

q= (*'p)q (7.18)

Equation 7.18 states that the natural logarithm of the quotient 
p = q is the natural logarithm of p less the natural logarithm of q. This 
result will not be proved until Chapter 8 (Equation 8.10 (g)), but is 
used here to unify the treatment of the natural logarithm.

Substituting (-x) for x in Equation 7.17 yields

, / x2\ /x3 x4\
*' (1 + x) = + • • •

Therefore
/ Xs

(*' (1 +x)>-*' 1 - X= 2 X lx + -y+ y + . . .

Applying Equation 7.18 for the case p= 1 +x and q = 1 -x yields
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Let n - -j----- . Then x = ——- as can be verified. Finally 1
1 — x n + 1 J

n — 1
Since n is less than 1 for all positive values of n, this polynomial 

can be evaluated for all positive values of the argument n. Moreover 
the values of the function * x are positive for all values of x. Hence 
Equations 5.8 and 7.19 define and as inverse functions, and 
each polynomial can be evaluated for any relevant argument. (Do Exercises 

7.21-7.26.)

Application of the Inverse Circular Functions
The need to calculate the angle corresponding to a given value 

of the sine, cosine, or tangent frequently arises. This will be illus­
trated for one case.

Figure 7.6 Graduation of a dipstick
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Consider the horizontal cylindrical fuel tank of Figure 7.6, in 
which a dipstick is used to determine the depth d of fuel in the tank. 
The dipstick is to be graduated to read directly in gallons. Assume that 
the length /, radius r, and depth d are all given in feet.

For specified values of I and r it is clear that the volume in cubic 
feet is determined by the depth d. In other words, the volume is a 
function of d. However, it is easier to determine the volume v as a 
function of the angle a, first determining a as a function of d. Thus 
v = V a and a = F d. Hence, if g is the number of gallons, then

g = 7.48 xvh 7.48 x Va = IM x VF d

Finally, the functions V and F must be determined.
The cross-sectional area of the fuel is the area of the sector 

MONB plus the area of the triangle MON, Hence

, Va = rxrx(^a + ^+(Sa)xCa

a=T' \'S a) 4- C a
S a = (d- r) 4- r
Ca^(\ - (Sa)*2)*0.5

This analysis is also valid for d<r, since a and S a are then 
(Do Exercises negative.
7.27-7.33.)

Exercises

7.1 For each of the following functions, write the simplest 
possible expression for the reciprocal function F x:
(a) F x = x * 3
(b) F x = x * n
(c) F x = (x * m) * - n
(d) F x = (c II x) 4- d n x
(e) Fx = ((x + a) * 2) - (x - a) * 2

7.2 For each of the following functions, write the simplest 
possible expression for the inverse function F' x:
(a) F x = x * 3 (d) F x = c x x
(b) Fx=x^n (e) Fx=c + x
(c) Fx= (x* m)

7.3 For the case x = 2, m = 3, h = 4, and c = 5, check each of 
the results of Exercise 7.2 to show that

(i) F!Fx = x
(ii) F F' x = x
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7.4 Determine the slope functions D F and D F for each of the 
functions in parts (a), (b), (c), and (e) of Exercise 7.1.

7.5 Use the fact that F G = F x G to show that

DF^G^ ((G) xDF) - (F) xDG 
(G) x G

7.6 For each of the following pairs of functions F and G, use 
the result of Exercise 7.5 to determine the slope of the 
function (F) + G. Where possible, check the result by 
putting the function (F) G in another form. For ex­
ample, in part (a), (Fx)+ G x = x* 3.
(a) F x = x 5, G x = x 2
(b) F x = x * 2, G x = x * 5
(c) Fx = x^m, Gx = x^n
(d) F x = * x, G x = x
(e) F x = * x, G x = — x
(f) Fx = a + x,Gx=bix
(g) F x= (a + x) * m,G x = (ft + x) * n
(h) Fx = 5x,Gx = Cx
(i) Fx = cII x, Gx^dll x

7.7 Use the addition theorems for the sine and cosine to estab­
lish the following addition theorems for the tangent and
cotangent:

(a) T x + y =

(b) T x + y =

(Tx)iTy 
\-(Txy* Ty 
((Fx)xTy)-l

(Tx) + Ty
7.8 Use the results of Exercise 7.7 to obtain the following 

slope functions directly from the limiting value of the 
secant slope (Equation 5.1):
(a) the tangent function T (Compare the result with Equa­

tion 7.7.)
(b) the cotangent function T (Compare with the text.)

7.9 Prove that Tx=T^-x.

7.10 Use the rule for determining the slope of the function G F 
in order to determine the slope of the function H=GF 
for each of the following pairs of functions. In each case 
compare the result with the slope obtained by applying 
earlier methods to some equivalent expression for the 
function H.
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(a) F x = x * 2; G x = x * 3
(b) Fx = x*3;Gx^x*2
(c) F x = x^ 4; G x=3xx
(d) Fx=3xx\ G x = x* 4
(e) F x = x * 4; G x = - x
(f) F x = - x; G x = x * 4

. (g) Fx = x^k 4, G x = 3 + x
(h) F x=3 + x;G x = x* 4

7.11 E^etermine the slope function D F for each of the following 
functions:
(a) Fx^(6 + x*3)*2
(b) Fx = x* 1-^-6
(c) F x = ((3 ,1,2) II x) 4- (4,1 ,0,2) II x

7.12 Use Equation 7.9 to derive the slope of the function H from 
the first expression given for it, and compare the result 
with the slope as derived from the second expression.
(a) 77x = S2xx = 2x(Cx)xSx
(b) Hx = C2 xx = ((Cx) * 2) - (Sx) * 2
(c) Hx = 5x2 = ((1 — Cx) - 2) *1-2

7.13 Show that T' x = - T'2 x
7.14 Let Q n be the sum of the first n (nonzero) terms of the 

polynomial of Equation 7.12. Show that if (| x) 5: 1, then
(a) ((gn) -T'x)>0forH = 1,3, 5, 7,...
(b) ((gn) -T x)50forn = 2,4,6,8,...
(c) ((gzz) -gn + 2)>0forn= 1,3,5,7,..;
(d) ((gn) -gn + 2)<0forn = 2,4,6,8,...
(e) the absolute value of the difference between g n and 

T' does not exceed the absolute value of the last term 
used in g n. (Hint: Use the observations made in the 
evaluation of T' 1 4-V3.)

7.15 Write a program to compute the inverse tangent T' x to a 
specified tolerance t, using the polynomial of Equation 7.12 
and the results of Exercises 7.13 and 7.14.

7.16 Verify that the functions T and T' as defined by Equations 
5.14, 6.13, and 7.12 are in fact inverse for the following 
values of the argument x. (Compute both TT' x and 
T'Tx.)
(a) x = 0 (c) x — 77 h- 6
(b) x-O.l (d)x=HV3

7.17 Write programs to compute
(a)5'y. (b)S'y (c) C y



Exercises 179

7.18 Prove that
(Cx)*2

(a) C2xx- j _ (Tx)5t;2

(c) Ox,-11211*21"1
2 x T x

7.19 Write a single program which computes to within a toler­
ance x5 one of twelve functions of x1 as determined by the 
arguments x2 (type), x3 (reciprocal), and x4 (inverse), as 
follows:
1. The basic function involved is sine, tangent, or cosine, 

according to whether =1,0, or l.
2. The function selected in part 1 or its reciprocal is em­

ployed according to whether x3 = 1 or “1.
3. The function determined by parts (1) and (2) or its 

inverse is calculated according to whether x4 = 0 or 1.
7.20 (a) Use Equation 7.17 to compute the natural logarithm

3 11*'y for y = 4,y and^.

IB 
4 ’ 2/ 
TH 
2 ’ 4/

(b) Use Equation 5.8 to check the results of part (a).
7.21 Use the results of Exercise 7.20 (a) to test Equation 7.18 

as thoroughly as possible. For example, *'

= *' should equal • and *'

= *' 2 can be checked by computing **'2.
7.22 Use Equation 7.19 to evaluate *' n for /? ==^, y, an^ 

and compare the results with the results of Exercise 
7.20(a).

7.23 (a) Use Equation 7.19 to evaluate n for n = 1, 2, and 3. 
(b) Use Equation 5.8 to check the results of part (a).

7.24 Since the terms of Equation 7.19 decrease slowly for large 
values of /?, a great deal of calculation is required to 
achieve a few decimal places of accuracy in the approxi­
mation to n.
(a) Evaluate 4 by the direct use of Equation 7.19, and 

then evaluate it by using Equation 7.18 in the following 
form:
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= (2^-y')= (*'2) -*'y

(b) Evaluate*' 8 = (*' 4) - *'y

(c) Evaluate*'10= (*'41 “*'4-
. \ 4/ 4

7.25 (a) Use Equation 7.18 to show that *' 1 q = - *' q.
(b) Show that Equation 7.19 yields the same result.

7.26 Write a program based on Equation 7.19 to compute *' n 
to within a tolerance t.

7.27 Write a program to graduate the dipstick of Figure 7.6, 
that is, to determine for each foot of the dipstick the 
corresponding number of gallons of oil in the tank.

7.28 The functions A and B defined by Equations 5.11 and 5.12 
can be derived from the hyperbola in a manner analogous 
to the derivation of the cosine and sine functions from the 
circle.! The functions A and B are therefore called the 
hyperbolic cosine and the hyperbolic sine respectively. 
The hyperbolic tangent (to be denoted by U) is defined as 
the analogue of the tangent, that is, U = (B) A.
(a) Show that ((Ax) xAx) - (B x) xBx = 1. (Use the 

method of proof employed for Equation 5.17.)
(b) Show that 1 - (U x) x U x = 1 4- (A x) x A x.
(c) Show that (D U') x = - * ■ . (Use the method em-

1 - x2
ployed for the inverse tangent.)

(d) Derive a polynomial expression for U' x.
(e) Evaluate U' U x and U U' x for several values of x so 

as to check the result of part (d).
(f) Write programs to determine 17' x, A' x, and B' x.

7.29 Derive the following expressions for the slopes of the 
functions S', C', A', and B'\

tSee, for example, H. W. Reddick and F. H. Miller, Advanced Mathematics 
for Engineers (Wiley, 1938) or W. L. Hart, Analytic Geometry and Calculus, 2nd ed. 
(Heath, 1963).
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7.30 Show that if H x = *' G x, then (Z> H) x=
(jr X

7.31 Use the result of Exercise 7.30 to prove the following
identities: _
(a) (/)*' S)x=Tx
(b) (D*'C)x = -Tx

7.32 (a) Use the result of Exercise 7.31 (b) to derive an expres­
sion for the area enclosed by the x-axis, the graph of 
the function T x, and the vertical line x = b, for 0 _ b 

> ' 77
<T

7T(b) Compute the value of the area for the case b = y.



Chapter Eight

The Exponential Function 
and Its Inverse
Introduction
Any dyadic function F gives rise to two different monadic functions 
if one or the other of the arguments is treated as a constant. Thus 
pF q can be treated either as the monadic function (p F) with the argu­
ment q or as the monadic function (F q) with the argument p:

p F q — (pF) q
=p(Fq)

If F is commutative, the two cases give rise to functions of the same 
form. The noncommutative exponential function x * n has been treated 
as the monadic function x (* n), for example, in developing the bi­
nomial theorem (Equation 4.1), This chapter will treat the other case, 
(x *) n, as a monadic function of n. This function and its inverse are of 
great importance in mathematics.

As with the polynomial function and the circular functions, the 
treatment will proceed by first deriving an addition theorem and then 
using the theorem to derive the slope function. Since the symbol x 
has so far been used to denote the argument of the monadic function 
under study, the form x n will be discarded in favor of the form

b*x

where b is the base and (Z?*) is the monadic function applied to the 
argument x. The function b* is called the base-b exponential func­
tion, and its inverse (Z>*)' is called the base-b logarithm.

182
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The Base-b Exponential (b >!<) x
The function b * x was originally defined only for integral values 

of x, and it denoted a product of x factors each equal to the base b. 
In this case it is clear that

b^xiy= (b^x)xb^y (8.1)

The function is extended to nonintegral values of x by simply requiring 
the foregoing addition theorem to hold for all values of x and y. For 
example, if x - y = .5, then

b = b* 1 = Z?* .5 + .5 = (Z>* .5) x b* .5

In other words, b * .5 is the square root of b. Consequently, Equation 
8.1 is the addition theorem for the exponential.

The slope function D b * is then obtained from the secant slope:

Thus the secant slope of (Z? *) x is equal to the function (Z? *) x itself 
multiplied by a factor which depends only on the horizontal interval 5 
between the points of intersection of the secant and the graph of

(Z?*) x. Table 8.1 shows the behavior of the factor —- for

various values of b. The entries in each column of the table appear to 
be approaching a limiting value. The slope function itself is therefore 
of the form

(Z> Z?*) x= r x Z?>k x (8.2)

where r is the constant obtained (for a fixed value of Z?) as the limiting 

value of the ratio - ------------- as 5 approaches zero.
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Table 8.1 Behavior of —-S'

1-3 1-2 1 2 3 4

1 -0.6667 -.5000 0 1.0000 2.0000 3.0000
1-2 -0.8453 -.5858 0 .8284 1.4641 2.0000
1-4 -0.9607 -.6364 0 .7568 1.2643 1.6569
1-8 -1.0265 -.6640 0 .7241 1.1776 1.5137

1 - 16 -1.0617 -.6783 0 .7084 1.1372 1.4481
1-32 -1.0800 -.6857 0 .7007 1.1177 1.4168
1-64 -1.0892 -.6894 0 .6969 1.1081 1.4014

1 - 128 -1.0939 -.6913 0 .6950 1.1033 1.3938
1-256 -1.0963 -.6922 0 .6941 1.1010 1.3901
1-512 -1.0974 -.6927 0 .6936 1.0998 1.3882

But, according to Equation 5.10, the function

(*rx)i.l + (,xx)+-<ti£)!+<r^+...

has the same property:

(D* rx)x = rx (* rxx) (5.10)

Moreover (>k r x x) is equal to b * x for x = 0, since (* r x 0) = 1 and 
(b * 0) = 1. It therefore appears that the function * r x x is identical 
with the function b x if a suitable value is chosen for r.

A value of r must be chosen such that (h^x) rxx. For 
x = 1 this becomes b* l=*rx 1, or (since b * 1 = b) b = * r. There­
fore r = b and, finally,

b* x = * xx*' b (8.3)

The function is the natural logarithm, which can be evaluated 
by the polynomial of Equation 7.19. For example, to evaluate 0.9 
* 1.5, one can first show that 0.9 = “0.10535 ... (as in the example 
following Equation 7.17) and then substitute this result in Equation 
8.3; this yields
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0.9* 1.5 = * 1.5 x-0.10535 = *-0.15802 /
= (1 - .15802) + (-15^022 _ -158023) + 

= .8539...

This result can be checked as follows: Since (0.9* 1.5)2= (0.9)3, 
then (0.9)3 should agree with (.8539)2.

By applying the function *' to both sides of Equation 8.3 and 
using the fact that *' * z = z, one obtains the equivalent expression

*' />* x = xx*' b (8.4)

The exponential function satisfies one further important identity:

b* xX y = (/»*x) *y (8.5)

This identity may be more familiar in the form bxx « = (bx)v. Its proof 
for integral values of x and y is obvious. For arbitrary values of x and y 
it can be derived by applying Equations 8.3 and 8.4 as follows:

(b * x) * y = * y x *' b * x
= *yxxx*' b
= * (xxy) x*' b
= & * XX y (Do Exercises

8.1-8.3.)

The Base-b Logarithm x \
The base-/? logarithm can be expressed in terms of the natural 

logarithm *'as follows:

= (8.6)

To prove Equation 8.6 it is necessary to show that the function given 
for (/>*)' is in fact inverse to />*. In other words, it must be shown 
that the function on the right-hand side of Equation 8.6 yields the re­
sult x when applied to the argument b * x. But according to Equa­
tion 8.4,

*' (/?* x) _ xX*' b=
*' b ~ *'b ~x

For example, if b = 2 and x = 3, then the base-2 logarithm of 3 
is given by

(2*)'3=^j
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Both numerator and denominator can be evaluated by applying Equa­
tion 7.19:

*'3 _ 1-0985
*'2“ .6931... “ •

This result can be checked by computing 2 * 1.585 and comparing it 
with 3:

2* 1.585 = * (*'2) x 1.585
= *.6931 x 1.585
= * 1.0985
. l + 1.0985 + <l^+<L™<«! +........

(Do Exercises = 2.99 . . .
8.4-8.5.)

Properties of (b * ) and (b * )' '
The main properties of the base-fe exponential and the base-Z? 

logarithm can now be derived rather easily. They will be collected in 
two groups, the first group arising from the addition theorem for the 
exponential (Equation 8.1) and the second group arising from the 
multiplication theorem of Equation 8.5:

&*x + y=(Z>*x)x&*y (a)
1 = (&* x) x £>* -x (b)

£>*x-y=(/>*x)-^Z>*y (c)
b*((b*)’p) + (b*)' q = p*q (d) I
b*ttb*yp)-(b*)'q = p + q (e) f

((£*)» + (b*yq= (b*)'pXq (f)
((fe*)'p)-(b*)'«=(b*)'p-« (g)

- (b*)'q= (b*y l+q (h)

b * x x y = (b * x) * y , (a)
b^yx (&*)' d=d*y (b)

yx (b*y d= (£*)' d*y (c) I (8 8)
((d*yq) x (&*)' d = (b*)’q (d) |

(</*)'?=((/?*)'?)-(ft*)'J (e) 
(d*y b=l -(&*)' d (f)

, Equation 8.7 (a) is repeated from Equation 8.1. Equation (b) 
states that b * - x is the reciprocal of b * x and is obtained by setting 
y = - x in Equation (a) and noting that Z>*x-x=Z>*0 = 1. Equation
(c) is obtained by applying Equation (a) to Z>* x + (-y) and substi­
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tuting 1 + b * y for b * - y as permitted by Equation (b). Equations
(d) and (e) are obtained from Equations (a) and (c) respectively by 
substituting (/?*)'p for x, and (/?*)' q for y, and noting that b* 
(b *)' z = Equations (f) and (g) are obtained from Equations (d) and
(e) respectively by applying the function (/?*)' to both sides. Equa­
tion (h) is obtained by setting p = 1 in Equation (g) and noting that 
(/?*)' 1 = 0.

Equation 8.8 (a) is repeated from Equation 8.5. Equation (b) is 
obtained by setting d = b * x in Equation (a) and using the fact that x 
is equal to (/?*)' d. Equation (c) is obtained by applying (/?*)' to 
both sides of (b), and (d) is obtained by setting d* y = q in (c). Equa­
tion (e) is obtained from (d) by dividing through by (/?*)' d. Equa­
tion (f) is obtained by setting q = b in Equation (e) and observing that 
(b^f b = 1; Equation (f) states that the base-/? logarithm of d is the 
reciprocal of the base-rf logarithm of b. (Do Exercises

8.6-8.7.)

The Natural Logarithm and Natural Exponential
If b is set equal to * 1 in Equation 8.3, then (since*'* 1 = 1)

(* 1) * x = * x

In other words, the monadic function * x is the special case of the 
base-/? exponential where /? = * 1. Likewise, the function *'x is 
equivalent to (/?*)' where b = * 1.

The number

*1=1+1+ Y2 +T3 * • • •

is an important constant called Napier's number or the base of the 
natural logarithms. It is denoted by e and is approximately equal to 
2.71828. The results of the preceding paragraph can now be stated 
as follows:

The function *' x is called the natural logarithm, and the function 
* x will be called the natural exponential.

Since * and *' are special cases of /?* and (/?*)', their prop­
erties can be obtained from Equations 8.7 and 8.8 by omitting all 
occurrences of any argument preceding the symbol *. Equations 8.7 
and 8.8 therefore yield the following equations:
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(Do Exercises
8.8-8.9.)

* x + y = (* x) x * y (a)
1 = (* x) x* -x (b)

* X - )’ - (* x) - * y (c)
* .(*' p) + q=pX q (d)
* (*'/?)-*'q^p^q (e)

(*» +*'^*>x^ (f)
(*»-*'q = *'p + q (g)

-*'(? = *'1(h)^

. , * x x y = (* x) * y (a) " 
*yx*' d = d^y (b)

yx*' d=*' d*y (c)
((d*Y q) X*' d = *f q (d)

(d*Y q = (*' q)+*' d (e) 
W*)'^ 1-*' d (f) ,

Tables of Logarithms
Tables of the natural logarithm can be computed by using the 

polynomial of Equation 7.19. According to Equation 8.11 (e), a table 
of base-d logarithms can be obtained from a table of natural logarithms 
by dividing the entries by the natural logarithm of d. A more efficient 
method of computing logarithms is developed in Exercise 8.31.

Appendix C gives a table of base-10 logarithms for arguments 
from 1.00 to 10.00 in steps of .01. More extensive tables of base-10 
logarithms are readily available. Tables of the natural logarithms are 
also available, but logarithms for bases other than 10 and e are not 
usually tabulated.

The base-/? exponential function b * x is not commonly tabulated, 
since it can be determined from the table for the base-/? logarithm. 
This is done by reversing the roles of argument and result, as detailed 
in Chapter 6, that is, the argument x (or its nearest approximations 
above and below) is found in the body of the table, and the result is 
the heading corresponding to that entry. For example, in the table of 
Appendix C, if x= 3.333, then (10*)' 3.33 is found to be .5224, and 
(10*)'3.34= .5236. Interpolation finally gives (10*)'3.333 
= 0.5228. Conversely, if x= 0.6667, the inverse function 10 *x is 
obtained by locating the bounding entries 0.6665 and 0.6675 in the 
body of the table and the corresponding headings 4.64 and 4.65. Inter­
polation then gives 10 * x = 4.642.
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Applications of the Logarithm and Exponential
Multiplication and division. Tables of base-10 logarithms 

provide an eifective basis for performing multiplication and division. 
Multiplication is based upop Equation 8.7 (d), namely,

p X q = b *((&*)' p) + (&*)' q

For base-10 logarithms this relation becomes

px q= 10*((10*)'p) + (10*)' q

The product of two positive numbers p and q can therefore be 
obtained by determining the values of (10 *)' p and (10 *)' q from a 
table of base-10 logarithms, adding them to obtain a sum z, and deter­
mining from the same table the value of the inverse function 10* z. 
This value is the desired product px q. Similarly, division can be per­
formed by using the following equation (obtained from Equation 
8.7 (e)f.

P~^q — (10*((10*)'p)) - (10*)'

For example, if p= 5.08 and q = 1.89, then

((10*)'p) + (10*)' q = 0.7059 4- 0.2765 = .9824 

and

pxq= 10* .8824=9.602

Similarly, p + q = 10 * (0.7059 - 0.2765) = 10 * .4294 = 2.688.
It will be observed that the base-10 logarithms are tabulated 

only for arguments from 1 to 10. Any positive argument outside this 
range can be treated as the product

x = zxl0*c
where c is an integer so chosen that z is between 1 and 10 and can 
therefore be found as an argument in the table. Then, since (10*)' 
10*c = c,

(10 *)' x = ((10 *)' z) + c
where c is an integer called the characteristic of x and (10*)' z is 
the logarithm of a number z which occurs in the range of the table 
(Appendix C). The number (10*)' z is called the mantissa of x.

For example, if x - 365 and y = .04167, then
(10*)'x= 0.5623 + 2
(10 *)'y = 0.6198 - 2

(10 *)'x X y = 1.1821 + 0
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and

(10*)'xXy = 1.1821 +0
= 0.1821 + 1

Hence

x xy = 1.521 x 10 * 1 
= 15.21

Similarly,

x + y = 10* (0.5623 -0.6198) + (2 -~2)
= 10* (0.5623 -0.6198)+4
= 10* (1.5623 -0.6198)+ 3

/ = 10*0.9425 + 3
= 8.760 xlO3

(Do Exercises = 8760
8.10-8.13.)

Exponentiation. A table of base-10 logarithms can be used 
to determine the inverse function 10 * and hence can be used to find 

, any power (integral or nonintegral) of the integer 10. It can also be 
used to determine any power of an arbitrary base d. Setting b = 10 in 
Equation 8.8 (b) yields

J* y = 10* y x (10*)' d

In other words, if z is the base-10 logarithm of d* y, then z is equal 
to y times the base-10 logarithm of d, and J*y is equal to 10 * z- 

For example, the ratio r between two successive half tones on 
the musical scale is such that twelve intervals (one octave) produce the 
ratio 2:1. Hence r12 = 2 and r = 21-12. Therefore

(10*)'r = + x (10*)'2

= + x 0.3010 = 0.0251

(Do Exercises Finally, r = 10* 0.0251 = 1.060, approximately.
8.14-8.16.) .

Logarithms of the circular functions. In order to use 
logarithms to evaluate an expression of the form

z = (Sx) x Cx

it is necessary first to determine S x and C x and then to determine 
their logarithms. Thus

z = 10* ((10*)' S x) + (10*)' Cx
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To eliminate one of these steps, tables of the composite functions 
(10*)' 5 and (10*)' C are often provided. The functions are called 
log sine, log cosine, log tangent, and so forth.

(Do Exercise 8.17.)

The slide rule. Any function Fx can be represented by re­
cording corresponding values of argument and function along a straight 
rule, as shown in Figure 8.2 for the function 10 * x. For example, the 
value of 10* 0.8 can be found by locating 0.8 on the lower scale and 
reading off the (approximate) corresponding value 6.3 on the upper 
scale.

The inverse function (10 *)' y can be determined from the same 
rule by locating the argument y on the upper scale. Thus for y = 3, 
the value of the base-10 logarithm (10*)' y is approximately 0.475.

The rule of Figure 8.2 can therefore be used for multiplication. 
For example, the product 1.6 x 2.5 can be obtained as follows:

(10*)' 1.6 = 0.2
(10*)'2.5 = 0.4

Therefore,

(10*)' 1.6 x 2.5 = ((10*)' 1.6) + ((10*)'2.5) = 0.2 + 0.4 = 0.6 

Finally,

1.6 x 2.5 = 10 * 0.6 = 4.0

as read from the rule at the point x = 0.6.
Since the scale for x (that is, for the logarithm) is uniform, the 

addition of the logarithms can be performed directly on the rule itself 
by using a draftsman’s divider. Thus, if a divider is set to span a length 
from the beginning of the rule to the point 1.6 on the upper scale and 
is then moved to place the first leg at the point 2.5 on the upper scale, 
the second leg will rest at the value 0.6 on the lower scale and at the 
value 4.0 on the upper scale, that is, at the value of the sum of the 
logarithms on the lower scale and at the value of the product on the 
upper scale.

Adding distances determined by the upper scale and reading the 
result on the upper scale therefore determines a product directly. 
Gunter, who first devised this method of multiplication in 1620, used 
dividers to perform the addition of logarithms as outlined above. 
About ten years later Wingate introduced the use of two similar rules 
laid side by side to perform the multiplication as illustrated in Fig­
ure 8.3 for the same arguments 1.6 and 2.5.
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Somewhat later an instrument maker fastened two rules and a 
cursor together in a sliding arrangement similar to the modern slide 
rule shown in Figure 8.4. The modern slide rule is accurate to about 
three decimal places and provides a number of additional scales repre­
senting various useful functions, such as the logarithms of the circular 
functions.!

The slide rule, like a table of logarithms, represents the function 
(10*)' x only for a limited range of argument values, namely, for 
1 — x — 10. The usable range of the slide rule is extended exactly as for 
the log table: an integral characteristic represents a factor of the form 
10 * c. If a series of products moves the result off the upper end of the 
scale of a slide rule, the cursor is moved back the length of one rule. 
This action is compensated for by making a final multiplication by ten. (Do Exercises 

8.18-8.22.)

The Family of Exponential Functions
By considering complex arguments, it is possible to express 

all the circular functions and also the hyperbolic functions A and B 
(defined in Equations 5.11 and 5.12) in terms of the single function * x. 
This brings out more clearly the relations between the functions 
studied thus far. It also gives further evidence of the importance of 
complex numbers.

It will first be necessary to review briefly the elementary prop­
erties of complex numbers. They are usually first encountered in 
mathematics as an extension of the real numbers that is required to 
ensure that every polynomial will have a root.

The need for such an extension arises in the case of the quad­
ratic equation

x2 + (2 x b x x) + c = 0

which has the general solution

x= (- b) ± V Z?2 - c

If (b2 - c) < 0, there is no real number r such that r = V b2 - c. How­
ever, in that case x is equal to

(-/>)+ (Vc-&2)xV-l

fFor an interesting account of the development of the slide rule, see F. Cajori, 
“A History of the Logarithmic Slide Rule,” in W. W. R. Ball et al, String Figures 
and Other Monographs (Chelsea, 1960).
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Figure 8.4 
A m

odern slide rule
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and by introducing the symbol i for V _ 1, the solution for x can be 
written as

x= (- b) ± (V c - b2) x i <

Any number of the form/+ g x i is called a complex number, the 
real number/is called its real part, and the real number g is called its 
imaginary part. Complex numbers obey the normal rules of arithmetic, 
with the added characteristic that

ix i = (V_l)2 = “1

Thus, if p = a + bx i and q = c + d x i, then

P + Q = (a + c) + (b + J) x i

and

p x q = (a x c) + (a x d x z) + (b x c x z) + (/? x d x i x z)
= ( (a X c) — (b X d) ) + ( (fl X d) + (b X c) ) X z (Do Exercises

8.23-8.24.)

Since the polynomial c II x is evaluated solely by multiplication 
and addition, and since both these operations are defined for complex 
arguments, it is meaningful to consider the polynomial c II p with a 
complex argument p, even for a polynomial of unlimited degree.

In particular, the exponential

x2 x% x^
* 1 + x + — + y^ + y^+■ ■ ■

for the imaginary argument x x i becomes/

. 1 , Z .x . (xxz)2 , (xXz)3 ,X X l — I + (xx z) d--- --------- 1------------ F ...

. (( *3\ /x5 X7\+ zx^x-—-yyj + ...

= (C x) + z x S x

where C and S are the cosine and sine functions. Hence
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* xxz = (Cx) + ix Sx (8.12)
*-xxz = (Cx) -ixSx (8.13)

Cx=|x(*xxi) + *-ixi (8.14)

Sx=^-.x (*xx z)-*-xx i (8.15)

Thus the sine and cosine functions can be expressed in terms 
of the exponential function in a manner analogous to that shown for 
the hyperbolic functions A and B in Chapter 5:

Ax = jx (*x) + *-x (5.11)

Bx = yX (*x)-*-X (5.12)

Moreover, since

-y-2 y-4^^1 + !2+S+-”

then

= C x

This and similar arguments lead to the following set of relations:

A x x i = C x
Bxxi =ixSx .
Cxxi = Ax (816)
S x x i = i x B x

The foregoing relations, together with the addition theorems for 
the sine and cosine, can be used to derive analogous addition theorems 
for the hyperbolic functions A and B.

Since * x x i = (Cx) + i x S x, it follows that

* 77 X i = (C 77) + i X S 77

But C 77 = -1 and 5 77 = 0. Hence e * 77 x i = -1, or

(Do Exercises 
8.25-8.34.)

1 + e * 77 X i = 0
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Exercises
8.1 (a) Use Equation 7.19 to compute *'2 to four decimal

places.
(b) Use Equations 8.3 and 5.8 and the result of part (a) to

1 2compute 2 * x for x = “1, 0, y, 1, 2, and y.

(c) Verify the results of part (b) by comparing with the 
value of 2 raised to the appropriate powers.

8.2 (a) Write a program to compute the natural logarithm *' x
to within a tolerance t.

(b) Execute your program for x= 2 and t = .0001.
8.3 Evaluate the left and right sides of Equation 8.5 for the 

case b = 2, x = .3, and y = .4, and compare the results.
8.4 Use Equation 8.6 to compute the following to three deci­

mal places:
(a) (2*)'3 (b) (3*)'2 (c) (2*)'2

8.5 Extend the program of Exercise 8.2 to compute the base-/? 
logarithm to within a specified tolerance t.

8.6 Choose suitable values for the arguments in Equations 8.7 
and 8.8, and use them to test the equations by computing 
and comparing the right and left sides of each equation.

8.7 State in words the relations expressed by each of the equa­
tions in 8.7 and 8.8; for example, Equation 8.7 (f) states 
that the base-/? logarithm of a product is the sum of the 
base-/? logarithms of the factors.

8.8 Repeat Exercise 8.6 for Equations 8.10 and 8.11.
8.9 Repeat Exercise 8.7 for Equations 8.10 and 8.11.

- 8.10 Use the log table of Appendix C to compute the following
products:
(a) 2x3 (d) 3.14x27.24
(b) 3x3 (e) 2138 x.00124
(c) 3 x 10

8.11 Extend the result of Equation 8.7 (d) to three factors; 
that is, prove that

px qx r = b* p) + ((/?*)' q) + (/?*)' r
(b) Use log tables to compute 3.14 x 2.718 x 365.
(c) Use log tables to compute 365 x 24 x 60 x 60.

8.12 Use log tables to compute the following:
(a) 6-3 (d) 6-24
(b) 24-6 (e) 2.718 -3.14
(c) 3 - 6
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8.13 Use log tables to compute the following:
z x 32x2.7x2.7
(a) 2x11.6
(b) (32-11.6) x (17-16) x (9-11)

8.14 Use log tables to compute the following:
(a) 16*4 (e) (1.3 *2.2) *5
(b) 16*2- (f) 13*2.2x5

(c) 3.14*2.718 (g) 2*~
12

(d) (3.14* 2.718) x 2.7* 1.6 ,
8.15 Use log tables to evaluate the following expressions and 

compare the results:
(a) 3.14*3 (b) 3.14x3.14x3.14

8.16 Account for the convenience of tables of base-10 loga­
rithms as compared with tables of logarithms using other 
bases.

8.17 Use tables of log sine, log cosine, and log tangent to 
evaluate the following expressions.

<b) (s30x1?o) + c(30x'i?o)

(c) (t30x^)*2

(d) (S 1.3) x (C 1.3) - T0.6
8.18 Repeat Exercise 8.10 using a slide rule instead of log 

tables.
8.19 Repeat Exercise 8.12 using a slide rule.
8.20 Repeat Exercise 8.14 using a slide rule.
8.21 Use a slide rule to evaluate the following:

12.681 x 64x 132
(a) 6x15.40x27

(3.14)2xV17x 14.3
W 2.718 x 14* 1-3

8.22 Repeat Exercise 8.17 using a slide rule.
8.23 Compute the sum and the product of each of the following 

pairs of complex numbers:
(a) (3 + 4 x i) and (6 + 10 x z)
(b) (3 - 5 x z) and (3 + 5 x z)
(c) (0 + 5 x z) and (0 + 6 x z)
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(d) (3 + 0 x z) and (5 + Ox i)
8.24 Write programs to determine x and y such that

(a) x + y x i = (a + b x z) + (c + dx i)
(b) x + y x i.= (a + b x z) x (c + d x z)

8.25 Evaluate the following:
(a) 3 + 2 x (4 + 2 x z) + 2 x (4 + 2 x z)2
(b) (3,2,2) n (4 + 2xz) -
(c) c n (4 - 2 x z) for c = 3 , -2,2 , "1
(d) c II 2 x z for c = 3 , ~2,2 , _1

8.26 Write a program to determine x such that
(xx + x2 x z) = c n (ax + a2 X z)

8.27 For each of the following values of x, compute the value 
of * (x x z) to three decimal places, and compare the two 
parts of the result with S x and C x as found in the table 
in Appendix B.
(a) x^ (b)x=0.2 (c)x=-0.2o

8.28 (a) Since Sx = xX *1 an addition theoremz x z
for the sine function can be obtained from the relation

_ (* (xxi) +yx i) -* (- (xxz) + yxi)
Sx + y =------- ■----------------------------------------------- by

using the addition theorem for the exponential to 
evaluate the expressions (* (x x z) + y X z) and 
* (- (x x z) + y x i). Show that the result agrees with 
the addition theorem already derived for the sine.

(b) Perform a similar derivation and check for the addi­
tion theorem for the cosine.

8.29 Use the method of Exercise 8.28 to check the following 
addition theorems for the hyperbolic functions:
(a) A x + y = ((A x) x A y) + (Bx) xBy
(b) Bx + y = ((Ax)xBy) +(Bx)xAy

8.30 Derive an addition theorem for the hyperbolic tangent U 
as defined in Exercise 7.28.

8.31 The terms of the polynomial expression for *' n (Equation 
7.19) decrease rather slowly for large values of the argu­
ment. However, the identity

(obtained from Equation 8.10 (g)) permits the calculation 
of the natural logarithm of n as the sum of two natural 
logarithms each computed for an argument smaller than n.
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A table of natural logarithms for arguments from 1 to 
I in steps of g can be computed in this way by using the last 
entry computed for computing the next.
(a) Write a program using the foregoing scheme to make a 

table of natural logarithms for arguments from 1 to I 
in steps of g.

(b) Modify the program of part (a) to make a table of base- 
10 logarithms for the same range of arguments.

8.32 A cylindrical water tank with a vertical axis is fitted with 
a discharge vent at the bottom. The rate of discharge (in 
gallons per minute) at any instant is proportional to the 
pressure at the bottom and hence to the number of gallons 
remaining in the tank. If this constant of proportionality 
is p and if the amount of water remaining in the tank at 
time t is W t, then

(£> W) t = - p x W t
Let f be the number of gallons present in the tank when 
the vent is first opened at time t = 0.
(a) Derive an expression for W t as a function off, p, and t.
(b) Determine the number of gallons remaining in the 

tank after ten minutes if f= 500 gallons and p = 0.1.
(c) Determine (as a function of p) the “half-life” of the 

tank’s contents, that is, the time at which exactly one- 
half of the original contents remains.

8.33 In the electrical circuit shown in the diagram, the rate 

of discharge at any instant is equal to coulombs per 

second, where r is the resistance in ohms and V t is the
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voltage at time t. The voltage is in turn equal to where 

c is the capacity (in farads) of the condenser and Q Ms the 
charge (in coulombs) on the condenser at time t. Therefore

r ex r
The initial charge at time t = 0 is f coulombs.
(a) Determine the charge as a function of t, f, c, and r.
(b) Determine the time required to reduce the charge to 

one-half of its initial value.
(c) The rate of dissipation of energy in the resistor at any 

instant is equal to the product of the voltage and cur-
(Kr)2

rent, and hence to —-—. The total energy dissipated

is therefore equal to the total area under the graph of 
(T'/)2the function —-—-. Obtain an expression for the total 

energy dissipated and observe that it does not depend 
on the value of r.

8.34 The maximum value of the function Hn = n^ \ + n in­
vestigated in Exercise 3.34 can be determined by deriving 
the slope of the function and then finding the point at which 
the slope is zero. However, since the base n is not a con­
stant, Equation 8.2 cannot be applied to obtain the slope; 
and since the exponent 1 4- n is not a constant, Equation 
5.4 cannot be applied.

The slope of the function H n can be derived by first 
considering the natural logarithm of the function.
(a) Show that (*' H) n = (1 4- n) x n.
(b) Show that (D*'F) n = ^p^ f°r any function F. 

(Use Equations 7.9 and 7.15.)
(c) Show that n = f— x —) -p (*' n) x (Use part

Hn \n n) n2
(a) and Equations 5.6, 7.4, and 7.15.)

(d) Show that (£> H) n= (n * 1 4- n) x x 1 - *' n.n2
(e) Show that the slope of the function n * 1 4- n is zero 

for n = e.
(f) Determine the maximum value of the function

1 4- n.



Chapter Nine

Automatic Program 
Execution
Manual execution of a program is frequently tedious and time con­
suming, and it is therefore convenient to employ the modern automatic 
computer, which executes programs rapidly and automatically. The 
computer is an interesting device whose operation can itself be de­
scribed and studied by means of programs. In the study of elementary 
functions, however, the computer is of interest only as a tool for the 
execution of programs, t

The Typewriter
The computer is controlled by a typewriter having the characters 

shown in Figure 9.1. A statement entered on the typewriter is execu­
ted by the computer, and results dan be printed by the same typewriter.

Since the typewriter provides only one set of letters, it is im­
possible to distinguish scalars, vectors, and matrices by type of letter 
(lightface, boldface, and boldface capital) as is done in the text. Dif­
ferent types of letters are convenient for reading but are not essential, 
since the distinctions are implicit in any statement; for example, in 
the statement

3,2,5

X is necessarily a vector. It is, however, necessary to choose different 
symbols for various scalars, vectors, and functions occurring in a pro-

tThe computer system described here is an IBM 7090 computer provided with 
an IBM 1050 typewriter terminal and an interpreter program written by L. M. Breed 
and P. S. Abrams. Similar systems employing other computers and other interpreter 
programs may differ in detail; the manual for any particular system should therefore 
be consulted.

202
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<<=>>*VA-t 
1234567890+*

QWERTYUIOP+

ol r l_ v a° ’ □() 
ASDFGHJKL[]

cdauit|;:\ 
ZXCVBNM,./

Figure 9.1 Character set of IBM Selectric Typing 
Element #1167988

gram. A string of alphabetic characters with no intervening spaces 
or nonalphabetic characters is treated as a single symbol for a variable 
or function. An alphabetic symbol for a variable or function must be 
separated by at least one space (on each side) from digits and from 
other alphabetic characters.

Since typing proceeds on a single line, an index for a vector 
cannot be typed as a subscript but, instead, must be indicated by en­
closing it in brackets. Thus x. is typed as X[Z]. All such symbol sub­
stitutions are shown in Appendix D. Certain symbols are produced by 
backspacing and overstriking. For example, ® is formed by striking O, 
backspace, and | in succession.

When a statement has been typed, the carriage return initiates its 
immediate execution. For example, typing of the sequence

X<-7
Y^3
z^-(x-y)xx+r

will assign the values 7, 3, and 40 to the variables X, Y, and Z re­
spectively. However, since these variables are represented only in 
the computer’s memory, their values cannot be observed directly.

The value of any variable can be displayed by executing a state­
ment that causes it to be printed by the typewriter. The quad symbol □ 
is assigned to the typewriter and then treated as a variable; thus typing 
of the statement

□ ^Z

will cause the number 40 (that is, the value of Z) to be automatically 
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typed out. Similarly, typing of the statement

□ <-572x 1319

would be followed immediately by the automatic typing of the number

754468

Results produced by the computer are accurate to some fixed number 
of significant digits (typically eight or more) depending upon the par­
ticular computer system in use.

(Do Exercise 9.1.)

Branches
In typing programs for the computer, an unconditional branch to 

the statement whose number is the value of X is denoted by
/

-+x
A conditional branch is denoted by

->UIX
where U is a logical vector and X is a vector of statement numbers. 
The compression selects from X the components indicated by the non­
zero components of U. If exactly one component is selected, it deter­
mines the statement executed next; if none are selected, the normal 
successor is executed next; and if two or more are selected, the branch 
is invalid. For example, step 1 of Program 9.2 (a) (reproduced from 
Exercise 2.9 (a)) would be typed as

^(x>y)/3

and step 1 of Program 9.2 (b) would be typed as

-»((X<0) ,X>0)/3,4

A branch to any statement number outside the range of statement 
numbers of the program signifies completion of the program. This 
includes the case of executing the last statement of a program which 
(provided this statement is not itself a branch) is, in effect, succeeded 
by a statement whose index is outside the permitted range.
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(a) (b)
Program 9.2

Definition of Functions
Any new function can be defined in the manner indicated in 

Appendix D and detailed in Chapter 3. The symbol V (an inverted 
Greek delta, called del) is typed at the beginning of the line on which 
the new function is named. The statements of the program defining the 
function follow on successive lines, and are followed (on a separate 
line) by the symbol V, which terminates the definition.

For example, typing of the sequence

VG<-Af U N
[1] G+-M
[2] M^M\N
[3] N^G
[4] ^(M#0)/l
[5] V

defines the function U such that M U N is the greatest common di­
visor of M and N (see Program 3.6). The numbers in brackets are 
statement numbers, which are typed automatically by the computer. 
Subsequent typing of

□ <-42 V 30

will evaluate U for the arguments 42 and 30 and type out the result 6, 
that is, the greatest common divisor of 42 and 30.

Once a function has been defined, it behaves like the basic func­
tions listed in Appendix D. In particular, it can be used in the definition 
of further functions. For example, Figure 9.3 (a) shows the definition 
of the greatest common divisor function U, the least common multiple 
function L (using U in its definition), and a function A (using both L 
and U). Figure 9.3 (b) shows what must be typed to define these same 
functions. Typing the lines of Figure 9.3 (b) and then the line

B^-21 A 28
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(Do Exercise 9.2.)
will evaluate the function A for the arguments 21 and 28, specifying 
B as 21, 28, 84, and then typing out the value of B.

p xA y

p<— x, y, x Ly
□ «-p

V P^XJ Y .
[1] P<- X, Y,X L Y
[2] U^P
[3] V

V M L Nr<^mLn
[1] S^MxN
[2] T^M U N
[3] R<-S-rT
[4] V

V R^M U Nr<— mU n

(a)

[1] G^M
[2] M^M\N
[3] N<-G
[4] -*(M#O)/1
[5] V

Values 
of A for 
21 A 28 

1 
1 , 1 
1 ,2 
1,2,1 
1,2,2 
1,2,3 
1,2,4 
1,2,1 
1,2,2 
1,2,3 
1,2,4
1 ,3
2 ■

(b) (c)

Figure 9.3 Function definition

Correction and Display of Programs
An error in a statement being typed can be corrected before 

pressing the carriage return by backspacing to the point of correction, 
pressing the linefeed button (which advances the paper), and retyping 
on the new line everything from the point of correction on. In order 
to mark the point of correction (which otherwise would not be re­
corded on the paper if the correction began with spaces) the linefeed 
is followed by the automatic typing of the symbol V (an inverted caret),
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a backspace to reposition the carriage, and a further automatic line­
feed. For example, the printed record

A^AXB+C
V
xB + C

would result from typing the first line shown, backspacing to the X, 
pressing the linefeed, and then typing the correction shown on the 
bottom line.

In short, the linefeed types the symbol V and “erases” every­
thing from that point on. Further corrections can be made in the same 
manner. It must be emphasized that backspacing alone does not erase.

In defining a function, the number of each statement is typed at 
the left in brackets. These statement numbers are typed automatically 
by the computer, but to make corrections convenient they can be 
overridden by typing an alternative statement number in brackets 
before typing the statement. A statement number can be any number 
with at most two digits to the right of the decimal point and at most 
two digits to the left of it. (Fractional line numbers permit the insertion 
of statements between existing statements.) The statement numbers 
automatically typed are increased by 1 or, if the number is fractional, 
by 1 in the least significant digit position.

When the definition of the function is concluded (by typing V), 
the following actions occur in the indicated order:

(1) if any statement number is repeated, the earlier occurrences 
are deleted and only the last associated statement is retained;

(2) if any statement is empty (that is, the bracketed statement 
number was followed only by a linefeed and a carriage re­
turn, it is deleted;

(3) the statements are reordered according to their statement 
numbers, and the statement numbers are replaced by the 
integers 1, 2, 3, and so on.

Thus it is easy to make replacements, deletions, and insertions 
of statements during the definition of a function. For example, the 
typing shown on the left of Figure 9.4 will produce the function shown 
on the right. The line headed by [5] replaces statement 2, the next 
line inserts the statement □ <— P between statements 2 and 3, and the 
next line deletes statement 4.

After the definition of a function has been concluded (by typing 
the final V), corrections can be made by returning to the function 
definition mode, that is, by typing V and the name of the function to 
be corrected. This will be followed by the automatic typing of the



208 Chapter Nine Automatic Program Execution

V BINOMIAL N V BINOMIAL N

[1] P<-1
[2] P^P,O + O,P
[3] —> (7V>P [2]) /2
[4] n<-p
[5] [2]P«— (P,0) + 0,P
[3] [2.1] Q^P
[3.1] [4]

V
[5] V

[1] P^-l
[2] P«—(P,O) + O,P
[3] n^p
[4] —» (TV>P [2]) /2
[5] V

Figure 9.4 Corrections in function definition

(Do Exercises
9.3 to 9.5.)

statement number one greater than the number of statements in the 
definition of the function. Correction then proceeds in the usual 
manner.

For example, if the function U of Figure 93 has been defined, 
then typing V U will cause the following automatic type-out of [5]. 
An entire function can be deleted by deleting every statement in its 
definition.

In the function definition mode, the typing of [n □ ] will cause the 
automatic typing of statement n of the function definition; and the 
typing of [□] will cause the typing of the entire function definition, 
including the name line. Typing can be stopped by pressing the atten­
tion button, which returns the system to the function definition mode.

Interrupted Execution
In executing a program either manually or on a computer, it is 

necessary to keep track of what statement is currently being executed. 
In the computer a special variable called an instruction counter serves 
this purpose. It is denoted by the Greek letter A (delta), and its value 
is the number of the statement being executed. The value of A is in­
creased by one at the completion of each statement, except that it 
may be respecified by the value of the expression occurring in a branch 
statement.

In the example of Figure 9.3, functions are used on several levels', 
thus the main or highest level function A uses the function L, which in 
turn uses the function U. The instruction counter A must keep track 
of the current instruction at each level; it is therefore a vector of vary-



Interrupted Execution I Invalid Statements 209

ing dimension, with one component for each level and with the highest 
level counter first. For example, in executing A for the arguments 21 
and 28, the instruction counter takes on the sequence of values shown 
in Figure 9.3 (c).

The execution of a function may be interrupted because of an 
erroneous statement in the function or because the operator presses 
the attention button. If the attention button is pushed, execution will 
stop as soon as the end of a statement is reached. The name of the 
lowest level function being executed will then be typed out, followed 
by the number (enclosed in brackets) of the next statement to be 
executed.

Once a program has been interrupted for any reason, statements 
can be executed from the keyboard. For example, typing

U+-X

will cause the current value of the variable X to be displayed. Typing

□ <-A

will cause the display of the current value of the instruction counter 
vector. Execution of the interrupted program can be resumedt by 
typing a branch —> R. Execution will then resume with statement R of 
the lowest level program. Alternatively, the instruction counter can 
be “reset” by the statement

A^tO
The type-out of a vector quantity (by a statement of the form 

□ <— X, where X is a vector) can be interrupted at the completion of 
any component by pushing the attention button. Typing will simply 
stop; statements can then be executed from the keyboard, and the 
execution can be resumed in the usual manner. However, typing a 
space will cause the typing to continue to completion of the type-out 
statement; at that point an end-of-statement interruption will occur 
and will be indicated in the usual way by an automatic type-out of the 
function name and statement number.

Invalid Statements
If a statement that is being executed is not meaningful, its execu­

tion will be interrupted, and the computer will then type

tin some systems defining or correcting a function while execution is interrupted 
also sets A to the value t 0 and execution of the interrupted program cannot be resumed.
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(1) one of the messages in the left-hand column of Table 9.5 to 
indicate the nature of the fault,

(2) the invalid statement, preceded (if applicable) by the name 
of the function in which it occurs and its statement number 
in brackets, and

(3) a caret directly below the symbol at which the fault was 
detected

For example, if the statement Z«—3 + x9 — 5 occurred as state­
ment 3 in the definition of a function F, then an attempt to execute F 
would result in an interruption of the execution and the typing of

SYNTAX ERROR
F [3] Z<-I+x9

A -

indicating that the evaluation of the expression stopped at the point 
where the first argument of the multiplication was found to be

(Do Exercise 9.6.) missing.

Type of error Significance

BRANCH Result of branch expression is of dimension 
other than 0 or 1

FUNCTION . Improper expression in function definition, cor­
rection, or display

CHARACTER
INDEX

Illegal character in input
Value of subscript expression not in the range of 
indices of the variable indexed

LABEL 
LENGTH 
M FULL 
NAME

Improper use of colon (which delimits a label) 
Dimensions of arguments do not match 
Computer memory full
Allowable length of the name of a function or 
variable is exceeded

RANGE Argument value out of range of function (for 
example, division by 0 or a nonintegral value for 
index or branch)

RANK Rank of an argument X (that is, p p X) is too 
large for the function; or nonmatching ranks, 
for example, A + 6

SYNTAX 
VALUE

Ill-formed statement
Value of variable has not been specified

Table 9.5 Error messages
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Statement Labels
Modification of a program produced by inserting dr deleting 

statements changes the statement numbers of subsequent statements. 
It may therefore require changes in the branch statements occurring 
in the program.

If each statement number occurring in branch statements is 
replaced by a corresponding variable which is separately specified to 
give it the appropriate numerical value, then any change in statement 
numbering can be accommodated (without changing the branch state­
ments themselves) by simply changing the values of these statement 
number variables. Moreover, the value of any variable used in this 
manner can be automatically defined if the variable is associated with 
the statement by typing the variable and a colon to the left of the 
statement (as shown in Figure 9.6); the variable is called the label of 
the statement. If insertions or deletions in the program change any 
statement numbers, the value assigned to the associated label is auto- x 
matically changed at the conclusion of the definition.

VR^MUN
[1] F:G^M
[2] M+-M\N
[3] N <—G
[4] —»(M^0)/F
[5] V

Figure 9.6 Statement labels (Do Exercise 9.7.)

Literals
The ability to type out a message such as FINISHED or X is 

sometimes needed. Since the execution of the statement

\J+-X

types the value of the variable X, it is necessary to indicate explicitly 
if the literal symbol X is to be typed instead. A literal symbol is indi­
cated as in ordinary English, by enclosing the symbol in quotation 
marks. Thus the execution of

□ *- ’X’



212 Chapter Nine Automatic Program Execution

types out

and the execution of

□ <- ’FINISHED'

types out

(Do Exercise 9.8.) FINISHED

Analysis of a Program
Any newly defined function must be analyzed carefully, and 

perhaps modified, to ensure that it will produce the intended results. 
The tool provided for this analysis is the trace.

A trace is an automatic type-out of information generated by the 
execution of a program as it progresses. In a complete trace of a func­
tion F, the number of each statement executed is typed out enclosed 
in brackets, preceded by the symbol F, and followed by the value 
assigned to the result variable of the statement. For example, Fig­
ure 9.7 shows a complete trace for the case B «- 21 U 28, where U is 
the function defined in Figure 9.3.

The tracing of a function F is controlled by the trace vector for 
F, denoted by A F. Statement k of F is traced if and only if some 
component of A F is equal to k. Thus if A F is specified by executing 
the statement

AF^2,3,5

then statements 2, 3, and 5 will be traced in any subsequent execution 
of F. Tracing of F can be discontinued by executing the statement 
AF^tO.

A specification of a trace control vector can be useful within 
a program as well as in direct execution from the typewriter. For 
example, the statement

A (J> 10) x 3,5,12

(Do Exercises
9.9 and 9.10.)

incorporated in a program Q would cause the tracing of statements 
3,5, and 12 of program Q to be instituted only after the statement is 
executed with the value of the variable J exceeding ten.
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u [1] 21
u [2] 7
u [3] 21
U [4] 1
U [1] 7
U [2] 0
U [3] 7
U [4]

Figure 9.7 Complete trace of 21 U 28

Other Basic Functions
The computer system provides a number of useful functions that 

were not discussed in previous chapters because they were not essen­
tial to the development. Their treatment here will be brief; the reader 
can clarify doubtful points by experimenting with the functions on the 
computerf.

The argument i in the expression x. can be a vector as well as a 
scalar. For example, if x = 6,8,10,12,14 and i = 3,1,4, then 
Xi^ 10,6,12.

The dyadic function f is called left rotation and is defined as 
follows:

k f x = *i + (px)|-i + /c+1,pX

Right rotation is denoted by | and is defined as follows:

k | x = x1 + {px}\(_x_k}+Lpx

For example, 2 f 1,2,3,4,5 = 3,4,5,1,2 and 2 J, 1 ,2,3,4,5 
— 4,5,1,2,3.

The prefix vector naj is a logical vector of dimension n whose 
first j components are equal to 1. More precisely, naj=j>Ln. Simi­
larly, the suffix vector na>j is defined as ® j c n. For example, 5 a 3 
= 1 ,1 ,1 ,0,0, and 5 co 3 = 0,0,1 , 1 , 1.

The monadic function ~ (logical negation) and the dyadic func­
tions V and A (or and and) are defined only for logical values of their 
arguments (that is 0 and 1). They are defined as follows:

tFurther discussion of these functions and their application to computers and 
data processing can be found in K. E. Iverson, A Programming Language (Wiley, 1962).
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\

— x = 0 = x 
X\/ y = X\ y 
xhy = x[y

The identity elements of V and A are 0 and 1 respectively.
The monadic functions L and [ are called floor and ceiling re­

spectively, and are defined as follows:

L x = x - l|x 
rx=-l-x

In other words, Lx is the largest integer not exceeding x, and L x is the 
smallest integer not exceeded by x.

The dyadic function 1 is called the base value function and is 
defined as follows: r 1 x = +/ w x x, where w = 1 and w. , = r.x w.. 
For example, ifx = 2,l,15isa vector giving elapsed time in hours, 
minutes, and seconds, and if r = 24,60,60 is the corresponding radix 
vector, then w = 3600,60,1 and r ± x = 7275 is the elapsed time in 
seconds. If either argument is a scalar it is extended in the usual way. 
For example, 10 1 d is the base-10 value of the digits d, and r 1 x is 
the polynomial in x with coefficients ® r (see Exercise 4.36). The 
monadic function ± is defined as a special case of the dyadic func­
tion 1:

± x = 2 ± x

In other words, 1 x is the base-2 value of x.
The dyadic function T is the inverse of the base value function. 

Thus if x <— r T j, then px = pr and r ± x = (x/ r)\j. i For exam­
ple, (24,60,60) T 7275 = 2,1 , 15 and (4 p 10) T 1776 1,7,7,6.

The characteristic function e is defined as follows:

In other words, y e x is equal to 1 if y is equal to some component of x. 
More generally, if y is a vector the statement

specifies a vector u such that pu = p y and ui = yie x. Hence the set y 
is included in x if and only if /\l ye x = 1. In particular, (bn) ex de­
notes a logical vector of dimension n having l’s in the positions x2, 
and so on. For example, (t 8) e2,3,5 = 0,1,1,0,1,0,0,0.

The dyadic function t is called inverse indexing. The statement

j <— at x
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is valid only if the set a contains the set x (that is, only if A/xea = 1); 
it specifies a vector j such that x = aj.

If F and G are dyadic functions, then

x F. G y = Fl x G y

More generally, if X and Y are matrices such that (pX)2 = (p F)p 
then the statement

Z<—XF.GY

specifies a matrix Z such that pZ=(pX)v (pY),, and Z] 
= X1 F .G Yr The matrix Z is called the matrix product of X and Y 
with respect to F and G. If F and G are addition and multiplication 
respectively, then Z is called the ordinary matrix product of X and Y. 
Either or both of the arguments of the function F. G may be vectors.

The outer product of two vectors x and y is denoted by x o. F y, 
where F is any dyadic function. The outer product is a matrix M of 
dimension (p x) , p y and MJ = xt F y}. For example, (t 2) o. x t 3 is the 
matrix

1 2. 3
2 4 6

and (t 3) o . = t 3 is the matrix

1 0 0
0 1 0
0 0 1

Exercises
9.1 Type each of the following four sequences on the console 

typewriter and observe and interpret the results produced.

X^-3 
Y<—XxX
□ «-Y

X+-i3
Y*-XxX
□ ^Y
Z«—Y^-Y[3]
□ ^Z

N«-8
Z<—tN
□ *-+/Z
□ <—x/Z

Z<~L 10
X^QZ
Y*-XxZ
M+-\IY

D^M=Y
9.2 (a) Type the definition of the function U occurring in 

Figure 9.3.
(b) Execute the function U for various integral values of 
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the arguments (for example, □ «- 21 U 28), and verify 
that the result is the greatest common divisor of the 
arguments.

(c) Type the definitions of all the functions of Figure 9.3, 
and execute function A for various integral values of 
the arguments.

9.3 (a) Display each of the functions entered in Exercise 9.2.
(b) Use the method of correcting functions to change the 

first statement of the function A to

p<-x,r, (x l y) ,x u y

(c) Display the modified function^.
(d) Execute the modified function A for the arguments 21 

and 28.
(e) Execute the modified function A for several pairs of 

integral values of the arguments.
9.4 (a) Insert the statement

p<-p, (x,y)+p [4]
in the function A produced in Exercise 9.3 so that it 
becomes the second statement of the function (with 
the original two statements becoming statements 1 and 
3 respectively).

(b) Display the modified function A.
(c) Execute the modified function A for various integral 

values of the arguments.
(d) X -4- y is clearly equal to P [3] + P [4]. What is the 

relation between the pairs (X , y) and P [3] ,P [4]?
9.5 (a) Delete the second statement of the function A of Exer­

cise 9.4.
(b) Display the resulting function^.
(c) Execute the resulting function for various integral 

values of the arguments.
9.6 (a) Type the definition of the function a^-Pk of Pro­

gram 2.8 (b). (Note that Vx is replaced by x* 3.)
(b) Execute the statement □ <— P K for various values of 

K, and compare the results with the known value of tt. 
(If the results are not correct, insert statements of the 
form □ <- X in the program to observe successive 
values of any chosen variable X in order to analyze 
and correct the behavior of the program.)

(c) Use the attention button to interrupt the execution of 
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the function P, and then execute statements of the form 
□ «- X to type out the values of each of the variables 
in the program.

(d) Use a branch statement to resume execution of the 
function P so that the final result will be correct.

9.7 (a) Modify the function P of Exercise 9.6 so as to use
statement labels in each of the branches. Display and 
execute the modified program to ensure that it is 
correct.

(b) Use statements of the form □ to type out the 
value of each label variable L.

(c) Insert innocuous statements of the form X <— X in the 
program so as to change the statement number associ­
ated with some label, execute the program to ensure 
that it still performs correctly, and then type out the 
new value of the label.

9.8 Use the heading

ve n

to define a function Q with the argument N which types 
out the line

THE PRIMES UP TO

followed on the next line by the value of N, and on the 
next line by the vector of the primes up to N. (Use the 
program of Exercise 2.28 (a).)

9.9 Enter the program of Exercise 2.30 (a) and use tracing to 
analyze its execution for a few values of the argument X.

9.10 Execute, analyze, and correct any errors in the following 
programs:
(a) Program 2.13
(b) Program 2.14
(c) The program for Exercise 2.12
(d) The program for Exercise 2.15

9.11 (a) A set of eight equal weights is known to be perfect
except that one of them is too light. Describe in words 
a procedure for determining which of the weights is 
light, using not more than two weighings with a balance 
scale.

(b) Write and execute a program for the procedure of 
part (a). Use a vector W of dimension 8 to represent 
the given weights, and use an expression of the form
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(+IW[1,2,3]) -+IW [6,7,8]

to determine the difference D in balancing the first 
three weights against the last three.

9.12 (a) A set of 12 equal weights is known to be perfect ex­
cept that at most one of them may be either too light 
or too heavy. Describe in words a procedure for deter­
mining which weight (if any) is faulty and whether 
it is light or heavy, using at most three weighings on a .

? balance scale.
(b) Write and execute a program for the procedure of 

part (a).

i
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Appendix A

Conventions Governing Order of Evaluation
The common conventions for the evaluation of unparenthesized ex­
pressions include the rules that (1) in a multilevel expression such as 
a +~, each line is evaluated before the function connecting the lines 
c + a
is evaluated; (2) subject to the first rule, multiplication and division 
are performed before addition and subtraction; (3) subject to the first 
two rules, evaluation proceeds from left to right; (4) division can be 
represented by three distinct but synonymous symbols (a + b, al b, 

and and (5) multiplication can be represented by two distinct but 

synonymous symbols {a x b and a • b), or the symbol can be elided. 
The one convention used in this book is that (subject to parentheses) 
evaluation proceeds from right to left. This appendix treats the major 
reasons for this choice.

The common conventions are usually defended on the grounds 
that they are simple and well known and that their use significantly 
simplifies the reading and writing of expressions. Because of the 
familiarity of certain common constructions, these conventions appear 
simple, but this simplicity is illusory and vanishes on closer examina­
tion. Inquiries among students and colleagues have shown such dis­
agreement on the interpretation of the conventions as to dispel the 
notion that they are well known. Finally, the much simpler conven­
tion adopted in this text proves at least as effective in simplifying the 
reading and writing of expressions.

Consider, for example, the expressions x 4 y x z and x 4 yz. Ac­
cording to the rules, both are equivalent to the expression (x 4 y) x z. 
However, yz is frequently used as an expression for multiplication 
which is performed first regardless of other rules. Furthermore, the 
dot notation for multiplication yields the expression x 4 y • z, which 
(according to the interpretations encountered) seems to fall midway 
between the other cases. Proponents of the common convention pro­
test that such expressions would be parenthesized anyway for clarity; 
but then the convention seems to lose most of its value.

Matters are further complicated by the alternative notations for 
division. For example, x 4 y 4 z and x 4 y I z should have the same 
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interpretation, but frequently they do not. Similarly, the formally 
equivalent expressions x + a 4- y + b and x + a I y + b frequently re­
ceive different interpretations. It is interesting to consider the dif­
ferent possible evaluations of the following expressions which, 
according to rule 3, are equivalent:

xyyxz x + yz x + yz
xlyxz xlyz x I yz

The common convention also appears to include a number of 
tacit rules that writers obey automatically. For example, xy may be 
written for x x y, and any variable should be replaceable by a numeri­
cal value. However, while the expression 3y is commonplace, most 
readers would find the expressions x3 and 3 4 jarring and perhaps 
inadmissible as expressions for x x 3 and 3x4.

In spite of these defects, the common conventions are reasonably 
convenient when applied to simple expressions involving only the 
four basic arithmetic functions, but more serious difficulties arise in 
their haphazard extension to other functions. For example, the expres­
sion sin nx cos m would be interpreted as (sinn) x (cos m), whereas 
sin n x 77 would be interpreted as sin (n x tt). Moreover, the expres­

sion abC is usually interpreted as a^b(c ^rather than as ((ab)c)d (that is, 
from right to left rather than from left to right according to rule 3), 
apparently because the latter case can be expressed by the equivalent 
expression ab/cxd. In the notation used in this book the first case 
would be expressed as either a*b*c*d or */ a ,b ,c ,d and the 
second as either a* bxcxd or a*x/b,c, d. ''

As further functions are introduced (for example, absolute value, 
maximum, minimum, residue, the relations, logical functions, and the 
circular functions), the complexity grows and the utility of any relative 
priority of execution among the functions decreases. Mathematical 
texts handle this problem either by liberal use of parentheses or by 
ad hoc (and frequently unstated) conventions. Programming lan­
guages, which must face the issue more formally, have usually treated 
the problem by ^establishing a hierarchy of priorities among the func­
tions such that any function is evaluated before all others having lower 
priorities. Such a system is usually very complex (Algol, one of the 
best known, has nine priority levels) and can therefore be used effi­
ciently only by a programmer who employs it frequently. The occa­
sional (and the prudent) programmer avoids the whole issue by 
including all the parentheses that would have been required with no 
convention.
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Further examples of the complexity and ambiguity of the com­
mon conventions could be easily adduced. However, the skeptical 
reader will find it more instructive to scan various textbooks trying to 
formulate precisely the rules used (stated or implied) and applying 
them rigorously.

The question of the efficacy of the common convention in re­
ducing the need for parentheses will now be addressed. Any conven­
tion will reduce the need for parentheses, but the important question 
is how the common convention compares in this respect with other 
conventions, and in particular with the notation used in this text.

The utility of the common convention stands forth well in the 
expression for a polynomial. For example, in the expression

axp + bxq + cxr

it would be awkward to have to enclose each term in parentheses. 
However, in the present notation this would be written as

+/ (a,b,c)Xx*p,q,r

or, if the vectors of coefficients and exponents were denoted by c and e 
respectively, then it would be written as

! r +/cxi*e

These forms make clear the structure of the polynomial while per­
mitting suppression of detail by using vectors; the corresponding ex­
pression in conventional notation is

X Xel + C2 X Xe2 + . . . + Cn X Xen,

where n is the magic variable that denotes the dimensions of all vectors.
The expression (derived in Chapter 4) for the efficient evaluation 

of a polynomial such as (a ,b ,c ,d ,e ,/) II x provides a further ex­
ample. In the notation used in this text it appears (without parentheses) 
as

(a , b, c , d, e Hx = a+xxb + xxc + xxd + xxe + xxf 

whereas in the common convention it would appear as

(a , b , c d, e ,f) II x
, = cHxx (b + xx (c + xx (J + x x (e + xx/))))

Further examples could be adduced, but again the skeptical 
reader will find it more instructive to formulate a set of precise rules 
based on the common convention and to translate into the resulting 
notation the expressions appearing in the present text.
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There is one further argument against imposing a priority among 
functions in the present notation. If F and G are dyadic functions, 
then the expression Fl xG y would have either of two interpretations 
(that is, (F/ x) G y or Fl (x G y)), depending upon the relative priori­
ties of F and G. These two interpretations differ markedly in form 
and would therefore lead to confusion. For example, +/ x x y would be 
interpreted as +/ (x x y) whereas the similar expression x/ x + y 
would be interpreted as (x/ x) + y. Similar remarks apply to the matrix 
product MF.GN (defined in Chapter 9).

The reasons for choosing a right-to-left instead of a left-to-right 
convention are:

1. The usual mathematical convention of placing a monadic 
function to the left of its argument leads to a right-to- 
left execution for monadic functions; for example, FGx 
= F(Gx).

2. The notation Fl z for reduction (by any dyadic function F)
tends to require fewer parentheses with a right-to-left con­
vention. For example, expressions such as +/ (xXy) or 
+/ (it/x) tend to occur more frequently than (+/ x) x y and 
(+/ it) I x. }

3. An expression evaluated from right to left is the easiest to 
read from left to right. For example, the expression

a + x x b 4- x x c + x x d + x x e + x xf
U-—'______________ V-—--------------------- X t--------

(for the efficient evaluation of a polynomial) is read as a plus 
the entire expression following, or as a plus x times the fol­
lowing expression, or as a plus x times b plus the following 
expression, and so on.

4. In the definition

Fl x = X1Fx2Fx3F.. .Fxpx

the right-to-left convention leads to a more useful definition 
for nonassociative functions F than does the left-to-right 
convention. For example, -/ x denotes the alternating sum 
of the components of x, whereas in a left-to-right convention 
it would denote the first component minus the sum of the 
remaining components. Thus if d is the vector of decimal 
digits representing the number n, then the value of the ex­
pression 0 =- 9|+/ d determines the divisibility of n by 9; 
in the right-to-left convention, the similar expression 
0 = 111—/ d determines divisibility by 11.
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Tables of Circular Functions 
0°-45°

45°-90‘

deg rad sin cos tan cot rad deg

0° 0.0000 0.0000 1.0000 0.0000 — 1.5708 90°
1° 0.0175 0.0175 0.9998 0.0175 57.2900 1.5533 89°
2° 0.0349 0.0349 0.9994 0.0349 28.6363 1.5359 88°

r3o 0.0524 0.0523 0.9986 0.0524 19.0811 1.5184 87°
4° 0.0698 0.0698 0.9976 0.0699 14.3007 1.5010 86°

5° 0.0873 0.0872 0.9962 0.0875 11.4301 1.4835 85°
6° 0.1047 0.1045 0.9945 0.1051 9.5144 1.4661 84°
7° 0.1222 0.1219 0.9925 0.1228 8.1443 1.4486 83°
8° 0.1396 0.1392 0.9903 0.1405 7.1154 1.4312 82°
9° 0.1571 0.1564 0.9877 0.1584 6.3138 1.4137 81°

10° 0.1745 0.1736 0.9848 0.1763 5.6713 1.3963 80°
11° 0.1920 0.1908 0.9816 0.1944 5.1446 1.3788 79°
12° 0.2094 0.2079 0.9781 0.2126 4.7046 1.3614 78°
13° 0.2269 0.2250 0.9744 0.2309 4.3315 1.3439 77°
14° 0.2443 0.2419 0.9703 0.2493 4.0108 1.3265 76°

15° 0.2618 0.2588 0.9659 0.2679 3.7321 1.3090 75°
16° 0.2793 0.2756 0.9613 0.2867 3.4874 1.2915 74°
17° 0.2967 0.2924 0.9563 0.3057 3.2709 1.2741 73°
18° 0.3142 0.3090 0.9511 0.3249 3.0777 1.2566 72°
19° 0.3316 0.3256 0.9455 0.3443 2.9042 1.2392 71°

20° 0.3491 0.3420 0.9397 0.3640 2.7475 1.2217 70°
21° 0.3665 0.3584 0.9336 0.3839 2.6051 1.2043 69°
22° 0.3840 0.3746 0.9272 0.4040 2.4751 1.1868 68°
23° 0.4014 0.3907 0.9205 0.4245 2.3,559 1.1694 67°
24° 0.4189 0.4067 0.9135 0.4452 2.2460 1.1519 66°

25° 0.4363 0.4226 0.9063 0.4663 2.1445 1.1345 65°
26° 0.4538 0.4384 0.8988 0.4877 2.0503 1.1170 64°
27° 0.4712 0.4540 ' 0.8910 0.5095 . 1.9626 1.0996 63°
28° 0.4887 0.4695 0.8829 0.5317 1.8807 1.0821 62°
29° 0.5061 0.4848 0.8746 0.5543 1.8040 1.0647 61°

30° 0.5236 0.5000 0.8660 0.5774 1.7321 1.0472 60°
31° 0.5411 0.5150 0.8572 0.6009 1.6643 1.0297 59°
32° 0.5585 0.5299 0.8480 0.6249 1.6003 1.0123 58°
33° , 0.5760 0.5446 0.8387 0.6494 1.5399 0.9948 57°
34° 0.5934 0.5592 0.8290 0.6745 1.4826 0.9774 56°

35° 0.6109 0.5736 0.8192 0.7002 1.4281 0.9599 55°
36° 0.6283 0.5878 0.8090 0.7265 1.3764 0.9425 54°
37° 0.6458 0.6018 0.7986 0.7536 1.3270 0.9250 53°
38° 0.6632 0.6157 0.7880 0.7813 1.2799 0.9076 52°
39° 0.6807 0.6293 0.7771 0.8098 1.2349 0.8901 51°

40° 0.6981 0.6428 0.7660 0.8391 1.1918 0.8727 50°
41° 0.7156 0.6561 0.7547 0.8693 1.1504 0.8552 49°
42° 0.7330 0.6691 0.7431 0.9004 1.1106 0.8378 48°
43° 0.7505 0.6820 0.7314 0.9325 1.0724 0.8203 47°
44° 0.7679 0.6947 0.7193 0.9657 L0355 0.8029 46°
45° 0.7854 0.7071 0.7071 1.0000 1.0000 0.7854 45°

deg rad cos sin cot tan rad deg
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Tables of Base-10 Logarithms
1.00-5.49

N 0 1 2 3 4 5 6 7 8 9

10 0000 0043 0086 0128 0170 0212 0253 0294 0334 0374
11 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755
12 0792 0828 0864 0899 0934 0969 1004 1038 1072 1106
13 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430
14 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732

15 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014
16 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279
17 2304 2330 2355 2380 2405 2430 2455 2480 2504 2529
18 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765
19 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989

20 3010 3032 3054 3075 3096 3118 3139 3160 3181 3201
21 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404
22 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598
23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784
24 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962

25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133
26 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298
27 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456
28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609
29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757

30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900
31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038
32 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172
33 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302
34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428

35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551
36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670
37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786
38 5798 5809 5821 5832 5843 5855 5866 5877 5888 5899
39 5911 5922 5933 5944 5955 5966 5977 5988 5999 6010

40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117
41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222
42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325
43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425
44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522

45 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618
46 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712
47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803
48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893
49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981

50 6990 6998 7007 7016 7024 7033 7042 7050 7059 7067
51 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152
52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235
53 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316
54 7324 7332 7340 7348 7356 7364 7372 7380 7388 7396

N 0 1 2 3 4 5 6 7 8 9
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Tables of Base-10 Logarithms 
5.50-9.99

N 0 1 2 3 4 5 6 7 8 9

55 7404 7412 7419 7427 7435 7443 7451 7459 7466 7474
56 7482 7490 7497 7505 7513 7520 7528 7536 7543 7551
57 7559 7566 7574 7582 7589 7597 7604 7612 7619 7627
58 7634 7642 7649 .7657 7664 7672 7679 7686 7694 . 7701
59 7709 7716 7723 7731 7738 7745 7752 7760 7767 7774

60 7782 7789 7796 7803 7810 7818 7825 7832 7839 7846
61 7853 7860 7868 7875 7882 7889 7896 7903 7910 7917
62 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987
63 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055
64 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122

65 8129 8136 8142 8149 8156 8162 8169 8176 8182 8189
66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254
67 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319
68 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382
69 8388 8395 8401 8407 8414 8420 8426 8432 8439 8445

70 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506
71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567
72 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627
73 8633 8639 8645 8651 8657 8663 8669 8675 8681 8686
74 8692 8698 8704 8710 8716 8722 8727 8733 8739 8745

75 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802
76 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859
77 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915
78 8921 8927 8932 8938 8943 8949 8954 8960 8965 8971
79 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025

80 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079
81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133
82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186
83 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238
84 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289

85 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340
86 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390
87 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440
88 9445 9450 9455 9460 9465 9469 9474 9479 9484 9489
89 9494 9499 9504 9509 9513 9518 9523 9528 9533 9538

90 9542 9547 9552 9557 9562 9566 9571 9576 9581 9586
91 9590 9595 9600 9605 9609 9614 9619 9624 9628 9633
92 9638 9643 9647 9652 9657 9661 9666 9671 9675 9680
93 9685 9689 9694 9699 9703 9708 9713 9717 9722 9727
94 9731 9736 9741 9745 9750 9754 9759 9763 9768 9773

95 9777 9782 9786 9791 9795 9800 9805 9809 9814 9818
96 9823 9827 9832 9836 9841 9845 9850 9854 9859 9863
97 9^68 9872 9877 9881 9886 9890 9894 9899 9903 9908
98 9912 9917 9921 9926 9930 9934 9939 9943 9948 9952
99 9956 9961 9965 9969 9974 9978 9983 9987 9991 9996

N 0 1 2 3 4 5 6 7 8 9
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Summary of Notation

Function Notation Definition or Example

Specification 
Arithmetic 
Branch 
Relations 
Component of x 
Dimension of x 
Catenation 
Definition of 

function F

3 assigns the value 3 to z

Arrow is followed if x y is true 
in branches and relational functions 
zth component of x 
p (3,4,5,6) = 4 
x,y^x1,x2,...,xpX,y1,...,ypy

Z<- | x

Maximum 
Minimum 
Residue 
Absolute value 
Negation 
Exponentiation 
Factorial 
Relation
Compression 
Reversal 
Integer vector 
Reduction 
Row i of matrix 
Column i of 

matrix
Element of 

matrix
Restructuring

Polynomial

Natural 
exponential

Hyperbolic 
cosine

Hyperbolic 
sine

Cosine

Sine

Tangent 
Hyperbolic 

tangent
Base of natural 

logarithm
Circular 

constant

4f 2 = 4
4[2 = 2
3|7 = 1; 3|_7 = 2; 3|6 = 0
| 3.14 = 3.14; |_3.14= 3.14
- x - 0 - x
x* 0 = l;.x*n = xxx*n- 1
! 0 = l;l n = nx \ n - 1
(3 _ 3) = 1; (3 < 3) = 0
(1 , 0,1 , 0,1)/ x = (xx, x3 , x5) 
01,2,3,4 = 4,3,2,1 
t4= 1,2,3,4
Fl x = xxF x2F x3 . .. F xpX
M2 = 4,5,6 A
M2 = 2,5,8,11 j 2 3

L . * 58 I

(4,3)pil2 = M 10 11 12 
12pM=il2
cr + (c2 xx) + (c3 x x2) + . . .

(0,1 ,o,y|,o,...)nx

(,.o

(5 x) 4- C x
(BxHAx

3.14159...

Page 
Refs.

Computer 
Notation

6 Z<~X
6 + - X 4-

11 (X^Y)IS
6 << = > > #

18 xin
18 px
18 X, Y
39 VZ+-F X

[1]--------
[2]--------
[3]--------
[4] V

40 X[ Y
43 XL Y
43 X| Y
43 \x .
43 -X
45 X*N
45 IN
47 XXY
48 UIX
48 ® X
48 iN
22 Fl X
76 MU-,]
76 M[-J]

76

79 DpX

62

187 *X

180

180

133

133
145
180

187

15
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Index

Abrams, P. S. 202
Absolute value 42, 45
Acceleration 106, 151
Accuracy 15
Addition, polynomial 65
Addition theorem 140, 186
Algol 220
Algorithm 5, 44
Alternating voltage 150
flm/213
Angle 139

complementary 140
principal 154, 157

Angular velocity 150
Applications

circular functions 147, 175
exponential 189
logarithm 189
slope function 115
vector 23

Approximation 72, 113, 144
Arc 133, 137, 142
Arccosine 170
Arcsine 170
Arctangent 170
Area under a curve 117
Argument 1, 17, 39
Arrow, sequence 7
Associativity 51
Attention button 209
Automatic computer 202
Automatic program execution 202

Ball, W. W. R. 193
Base-Z?

exponential 182, 188
logarithm 182, 185, 188
representation 87

Base value 214
Basic functions 40, 43
Beberman, M. 17
Beta 70
Binomial theorem 69, 96, 140, 182
Bound 113, 171
Branch 11, 204, 209,211
Breed, L. M. 202

Cajori, F. 193

Capacity 152 '
Catenation 18
Ceiling 214
Characteristic 189
Characteristic function 214
Characters 202
Charge 152
Chord 90
Circle 133
Circular functions 4, 133, 145, 147, 167,

170,190
applications 147
inverse 170, 175
logarithm 190
tables 145

Coefficient vector 62, 103
Column vector 76
Commutativity 51, 182
Comparison 11
Complementary arcs 137, 140
Complex numbers 23, 25, 193
Component 18
Composite functions 97, 168
Compound interest 70 ,
Compression 47, 204
Computer 5, 202
Conditional branch 11, 204
Cone 122
Constant 63, 97, 112, 118, 122, 170
Continued fraction 132
Conventions 219, 222
Convergence of series 113
Correction, program 206
Cosecant function 164, 168
Cosine 133, 137, 144, 150, 196

hyperbolic 180, 196
inverse 170
logarithm 192
table 145

Cotangent 168
Counter, instruction 208
Curve

area under 117
plotting 115

Decimal representation 87
Decisions, leading 26
Definition of functions 5, 39, 205
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Degree 140
polynomial 64
unlimited 113

Del 205
Delta 205, 209
Derivative 96, 111
Dimension 18, 79

of matrix 76
one 49
zero 20, 49

Display of program 206
Distributivity 52, 60
Divisibility 29
Division, synthetic 66
Domination 114
Dyadic function 42, 49, 98, 108,182,213, 

222

e 61, 108
Electric generator 149
Elementary functions 4, 63, 92, 114
Equations, linear 73, 76
Equivalence 43
Errors 210
Euclidean algorithm 44
Evaluation

of function 2,5
order of 219

Even function 80, 134, 172
Execution 7, 12, 19, 41, 202

interrupted 208
Expansion, polynomial 69
Exponent, rational 45
Exponential 4, 45, 96, 108, 182, 185, 190, 

193
base-6 182, 188
natural 172, 187

Factorial 45
Falling body 105
False 47
Farad 152
Fibonacci numbers 132
Floor 214
Flux, magnetic 149
Fraction, continued 132
Fractional part 45
Function 1, 9

absolute value 42
base-6 exponential 182

base-6 logarithm 185
basic 40, 43
catenation 18
characteristic 214
circular 4, 133, 145, 147, 167, 170,

190
composite 97, 168
compression 47
constant 63
cosecant 164, 168
cosine 133, 137, 144, 150, 196
cotangent 168
definition 5, 39, 205
dyadic 42, 49, 51, 98, 108, 182, 213, 

222
elementary 4, 63, 92, 114
equivalence 43
evaluation 2, 5
even 80, 134, 172
exponential 4, 45, 96, 108, 182, 185,

193
factorial 45
hyperbolic 4, 180, 196
indexing 20, 214
inverse 33, 146, 163, 175
level 209
linear 63
logarithm 4, 172, 182, 184, 187, 190
maximum 40, 51
minimum 43
monadic 42, 70, 72, 97,108, 163,182,

213,222
multivalued 164
naming 42
natural exponential 172, 187
natural logarithm 172, 184, 187
negation 43
odd 80, 134, 172
other 213
periodic 134
polynomial 4, 62, 72, 108, 214
power 13, 45
product 101
reciprocal 163, 186
relational 47, 48
representation 4
residue 43, 50
restructuring 79
secant 167
sine 75, 133, 144, 152, 164, 196
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slope 89, 95, 123, 142 
sum 98
tangent 145
vector 21

Fundamental properties 50

function 63
interpolation 146

Linefeed 206
Literal 211
Local maximum 104, 116
Local minimum 104, 116

Greatest common divisor 44
Gunter 192

Logarithm 4
base-Z? 182, 185, 188
of circular functions 190

Hart, W.L. 180
Henry 152
Hyperbolic functions 4, 180, 196

natural 172, 184, 187 
tables 188

Logical negation 213
Logical variable 47
Logical vector 47, 213

Identity element 50, 59 
Imaginary part 195 
Indexing 17, 20, 214 
Induction, mathematical 83 
Infinity 50 
Instruction counter 208 
Integer vector 48 
Integral part 45 
Interest, compound 70 
Interpolation, linear 146 
Interpretation table 10, 12 
Interrupted execution 208 
Invalid statement 209 
Inverse 33, 146, 163, 175 

circular functions 170 
cosine 170 
indexing 214 
sine 170 
slope of 168 
tangent 170, 173

Iota 48
Irrational number 46 
Iteration 14, 23 
Iverson, K. E. 213

Loop 14
Lower bound 171
Lowest terms 44

Magnetic flux 149
Mantissa 189
Manual execution 202
Mathematical induction 83
Matrix 76
Matrix product 215
Maximum 11, 12, 40, 41, 51

local 104,116
Messages, error 210
Miller, E. B. 77
Miller, F. H. 180
Minimum 43

local 104, 116
Minus sign 17
Modification of program 211
Modulo 43
Monadic function 42, 70,72,97,108,163, 

182,213,222
Multiplication of polynomials 65
Multivalued function 164
Musical scale 190

Label 211
Leading decisions 26
Left distributive 60
Left-identity element 59
Left rotation 213
Left-to-right convention 222
Line

straight 63, 89, 97
tangent 90, 115

Linear
equation 73, 76

Naming of functions 42
Natural exponential 172, 187
Natural logarithm 172, 184, 187
Negation 42
Negative number 17
Negative sign 17
Neglected terms 113
Notation 12, 43, 46

composite functions 97
number 17



230 Index

summary 6, 226 slope 101
Numbers 

complex 23, 25, 193 
Fibonacci 132 
irrational 46 
negative 17 
notation 17 
perfect 59 
prime 28 
rational 17, 23, 44 
statement 207, 211

Program 7
analysis 212 
completion 204 
correction 206 
display 206 
execution 8, 202 
modification 211 
reading 26 
trace 212

Programming notation 6 
Programming techniques 26

Odd function 80, 134, 172
Olds, C.D. 132
or 213
Order of evaluation 219
Order reversal 48
Oscillation 112, 150
Outer product 215

Properties, fundamental 50
Pythagorean theorem 137

Quad 203
Quadrant, first 154
Quadratic polynomial 63, 72
Quotient polynomial 66

Parabola 63
Parentheses 8, 18 
Pascal’s triangle 69 
Perfect number 59 
Periodic function 134 
Pi 15, 62, 134, 171 
Pivot 84 
Plane 23 
Plotting 115 
Points in space 23 
Polygon 16
Polynomial 4, 62, 72, 108, 214 

addition 65 
approximation 72, 113, 144 
degree 64, 113 
expansion 69 
multiplication 65 
product 65 
quadratic 63, 72 
quotient 66 
remainder 66 
slope 102

Power 13, 45 
Prefix vector 213 
Prime numbers 28 
Principal angle 154, 157 
Product

function 101 
matrix 215 
outer 215 
polynomial 65

Radian 140
Radix vector 214
Rational exponent 45
Rational number 17, 23, 44
Real part 195
Reciprocal function 163, 186
Reddick, H. W. 180
Reduction 22
Relational function 47, 48
Relations 6
Remainder polynomial 66
Remainder terms 114
Representation

base-Z? 87
decimal 87
of functions 4

Residue 43, 50
Restructuring function 79
Resultant 39
Reversal, order 48
Revolution, volume of 122
Rho 18
Right distributive 60
Right-identity element 59
Right rotation 213
Right-to-left execution 9, 222
Root mean square 161
Rotation, left 213
Row, pivot 84
Row vector 76
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Scalar 18
Scale, musical 190
Secant 90

function 167
slope 93, 96, 142, 168, 183

Second derivative 111
Sequence, variable 11
Sequence arrow 7
Series, convergence 113
Sign, minus 17 (
Sine 75, 133, 144, 152, 164, 196 

hyperbolic 180, 196 
inverse 170 
logarithm 192 
table 145

Slide rule 192
Slope 63, 89, 95, 115, 123, 142 

inverse 168 
polynomial 102 
product 101 
reciprocal 166
secant 93, 96, 142, 168, 183 
sum 98

Solid cone 122
Space points 23
Specification 6, 10
Sphere 162
Square root 14, 45
Squares, sum 73
Statement 7 >

branch 209,211 
execution 7 
invalid 209 
label 211 
number 207, 211

Straight line 63, 89, 97
Subscript 17, 203
Suffix vector 213
Sum of squares 72
Sum slope 98
Summary of notation 6, 226
Symbol substitutions 203 
Syntax error 210 
Synthetic division 66

function 145 
hyperbolic 180 
inverse 170, 173 
line 90, 95, 115 
logarithm 192 

Techniques, programming 26 
Terms, lowest 44 
Terms, neglected 113 
Terms, remainder 114 
Theorem

addition 140, 186 
binomial 69, 96, 140, 182 
Pythagorean 137

Thrall, R. M. 77 
Tolerance 14, 114 
Trace 212 
Trapezoid 120 
True 47 
Typewriter 202

Unconditional branch 12, 204 
Unlimited degree 113 
Upper bound 113, 171

Variable 9
Variable, logical 47 
Variable sequence 11 
Vaughan, H. E. 17 
Vector 17, 53, 76 

applications 23 
coefficient 62, 103 
column 76 
component 18, 21 
functions 21 
integer 48 
logical 47, 213 
prefix 213 
radix 214 
row 76 
suffix 213 
trace 212

Velocity 105, 150, 152 
Voltage 149 
Volume 121

i Volume of revolution 122
Table, interpretation 10, 12 
Tables

circular functions 145, 223
logarithms 188,224

Tangent

e
Wingate 192

Zero dimension 20, 49
Zero of a function 63
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Function Notation

Specification - X
Arithmetic + -- X 4-
Branch x: y\^*

Relations & < *2 = > > #
Component of x xi
Dimension of x Px
Catenation x, y
Definition of z,^-Fx

function F

Maximum x[ y
Minimum xl y
Residue m\n
Absolute value |x
Negation — X
Exponentiation x * n
Factorial \n
Relation xffly
Compression u lx
Reversal CD’ X

Integer vector t n
Reduction Flx

Row i of matrix M
Column i of M

matrix
Element of

matrix
Restructuring d Px

Polynomial c fix

Natural : X
exponential

Hyperbolic A x
cosine

Hyperbolic Bx
sine

Cosine Cx

Sine S x

Tangent Tx
Hyperbolic Ux

tangent
Base of natural e

logarithm
Circular 77

constant

Summary of Notation

Definition or Example

3 assigns the value 3 to z

Arrow is followed if x & y is true 
in branches and relational functions 
ith component of x 
p (3,4,5,6)=4
x , y = x\»X2»• * ■ ’ Xp x ’ ^*1 ’ ’' ’ ’ y 

z*-| x

4f 2 = 4
4 L 2 = 2
3|7 = 1; 3|"7 = 2; 3|6 = 0 
| 3.14=3.14; |-3.14=3.14 
- x = 0 - x
x*0 = l;x* « = xxx* n- 1 
!0=1;!h = mx!m-1 
(3 < 3) = 1; (3 < 3) = 0 
(1 ,0,1 ,0,1)/ x= (xt ,x 
CD 1 ,2,3,4 = 4,3,2,1 
t4= 1 ,2,3,4
Fl x = Xj F x2 F x3 . . . F xt 
M2 = 4,5,6 
M2 = 2,5 , 8 , 11

M2 = 6

Page Computer
Refs. Notation

6
6

11
6

18
18
18
39

Z^X 
+ - x 
-*(X@Y)IS

X[I] 
pX

VZ+-F X
[1]--------
[2] --------
[3] --------
[4] V

(4,3) pt \2 = M 
12pM=tl2 .

X ± ±
1 ’ 1 ’! 2 ’! 3 ’! 4

1 2 3
4 5 6
7 8 9

10 11 12

(o.i ,0,^,0,...)nx

(o.I.■■■)"«
(Sx) + Cx
(Bx)+Ax

2.71828.. .= 1 +T^+T5+---

3.14159.. . 

 

40
43
43
43
43
45
45
47
48
48
48
22
76
76

76

79

62

187

180

180

133

133
145
180

187

15

x[ y 
xl y 
x| Y 
I* 
-X 
X* N 
IN 
X&Y 
UlX 
(DX 
lN 
FIX 
M[I;] 
M[;/]

m [r,j]

DpX
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