The Zeros of the Partial Sums of ez Reference 26 of Ken Iverson’s Ph.D. thesis [0] was:
I quickly found a citation [1] on the internet: @Article{Iverson:1953:ZPS, author = "K. E. Iverson", title = "The Zeros of the Partial Sums of $e^z$", journal = j-MATH-TABLES-OTHER-AIDS-COMPUT, volume = "7", number = "43", pages = "165--168", month = jul, year = "1953", CODEN = "MTTCAS", ISSN = "0891-6837", bibdate = "Tue Oct 13 08:06:19 MDT 1998", bibsource = "http://www.math.utah.edu/pub/tex/bib/ mathcomp1950.bib; JSTOR database", acknowledgement = ack-nhfb, fjournal = "Mathematical Tables and Other Aids to Computation", } From thence a helpful J Forum member provided a link to the actual text [2]. This is the earliest Ken Iverson publication I have found so far. The paper began thus:
The table entry for n = 23 stated:
The verb p. in J [3] works with polynomials. The dyad x p. y evaluates the polynomial x at y ; the monad p. x converts x between coefficients c and multiplier and roots (m;r) . The coefficients of the partial sum of ez for n=23 are: c=: % ! i.24 c 1 1 0.5 0.166667 0.0416667 0.00833333 0.00138889 ... Converting from coefficients to muliplier and roots: mr=: p. c mr ┌───────────┬──────────────────────────────────────────────── │3.86817e_23│13.1749j10.1263 13.1749j_10.1263 7.72434j10.9536 ... └───────────┴──────────────────────────────────────────────── r=: > {: mr r 13.1749j10.1263 13.1749j_10.1263 7.72434j10.9536 ... The roots from 1953 are ordered in increasing modulus, with the real root last; the roots computed by J are ordered in decreasing modulus. We compare the evaluation of the roots from 1953 and of the reordered roots computed by J: r1953=: _7.192685907451j1.475059195082 ... _5 ]\ | c p. r1953 7.36698e_14 7.36698e_14 1.37043e_13 1.37043e_13 1.20857e_13 1.20857e_13 6.67108e_14 6.67108e_14 8.19945e_14 8.19945e_14 1.53714e_13 1.53714e_13 2.75251e_13 2.75251e_13 6.80251e_12 6.80251e_12 1.12317e_10 1.12317e_10 3.0922e_9 3.0922e_9 5.55512e_8 5.55512e_8 9.19177e_11 0 0 _5 ]\ | c p. 1 |. r /: | r 3.76597e_14 3.76597e_14 4.7101e_14 4.7101e_14 2.6361e_14 2.6361e_14 5.01272e_14 5.01272e_14 9.52945e_14 9.52945e_14 3.9363e_14 3.9363e_14 2.26531e_13 2.26531e_13 3.41104e_13 3.41104e_13 3.58005e_12 3.58005e_12 3.33604e_11 3.33604e_11 3.7143e_10 3.7143e_10 1.73195e_14 0 0 I survey the last results with considerable relief.
It would have been shameful to produce a worse result
59 years later.
References
|