⍺ ack ⍵ ←→ f⍢(3∘+) ⍵
⇒ (⍺+1)ack ⍵ ←→ f⍣(1+⍵)⍢(3∘+) 1
Proof: by induction on ⍵ .
(⍺+1) ack 0 | basis |
⍺ ack 1 | definition of ack |
f⍢(3∘+) 1 | antecedent of lemma |
f⍣(1+0)⍢(3∘+) 1 | f ←→ f⍣1 |
|
(⍺+1) ack ⍵ | induction |
⍺ ack (⍺+1) ack ⍵-1 | definition of ack |
f⍢(3∘+) (⍺+1) ack ⍵-1 | antecedent of lemma |
f⍢(3∘+) f⍣(1+⍵-1)⍢(3∘+) 1 | inductive hypothesis |
¯3∘+ f 3∘+ ¯3∘+ f⍣(1+⍵-1) 3∘+ 1 | ⍢ |
¯3∘+ f f⍣(1+⍵-1) 3∘+ 1 | + |
¯3∘+ f⍣(1+⍵) 3∘+ 1 | ⍣ |
f⍣(1+⍵)⍢(3∘+) 1 | ⍢ |
| QED |
|