Ackermann’s Function Index   <<   >>


 

⍺ ack ⍵ ←→ f⍢(3∘+) ⍵    (⍺+1)ack ⍵ ←→ f⍣(1+⍵)⍢(3∘+) 1
 

Proof: by induction on .


(⍺+1) ack 0 basis
⍺ ack 1 definition of ack
f⍢(3∘+) 1 antecedent of lemma
f⍣(1+0)⍢(3∘+) 1 f ←→ f⍣1
 
(⍺+1) ack ⍵  induction
⍺ ack (⍺+1) ack ⍵-1  definition of ack
f⍢(3∘+) (⍺+1) ack ⍵-1  antecedent of lemma
f⍢(3∘+) f⍣(1+⍵-1)⍢(3∘+) 1  inductive hypothesis
¯3∘+ f 3∘+ ¯3∘+ f⍣(1+⍵-1) 3∘+ 1      
¯3∘+ f f⍣(1+⍵-1) 3∘+ 1  + 
¯3∘+ f⍣(1+⍵) 3∘+ 1   
f⍣(1+⍵)⍢(3∘+) 1   
          QED