Ackermann’s Function | Index << >> |
⍺ ack ⍵ ←→ f⍢(3∘+) ⍵ ⇒ (⍺+1)ack ⍵ ←→ f⍣(1+⍵)⍢(3∘+) 1 Using the lemma (or otherwise), it can be shown that: 0∘ack = 1∘+⍢(3∘+) 1∘ack = 2∘+⍢(3∘+) 2∘ack = 2∘×⍢(3∘+) 3∘ack = 2∘*⍢(3∘+) 4∘ack = */∘(⍴∘2)⍢(3∘+) 5∘ack = {*/∘(⍴∘2)⍣(1+⍵)⍢(3∘+) 1} From http://xkcd.com/207 |